
Aachen
Department of Computer Science

Technical Report

Size-Change Termination for Term

Rewriting

René Thiemann and Jürgen Giesl

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2003-2

RWTH Aachen · Department of Computer Science · April 2003 (revised version)

The publications of the Department of Computer Science of RWTH Aachen
(Aachen University of Technology) are in general accessible through the World
Wide Web.

http://aib.informatik.rwth-aachen.de/

Size-Change Termination for Term Rewriting?

René Thiemann and Jürgen Giesl

LuFG Informatik II, RWTH Aachen, Ahornstr. 55, 52074 Aachen, Germany
{thiemann|giesl}@informatik.rwth-aachen.de

Abstract. In [13], a new size-change principle was proposed to verify termina-
tion of functional programs automatically. We extend this principle in order to
prove termination and innermost termination of arbitrary term rewrite systems
(TRSs). Moreover, we compare this approach with existing techniques for termi-
nation analysis of TRSs (such as recursive path orderings or dependency pairs). It
turns out that the size-change principle on its own fails for many examples that
can be handled by standard techniques for rewriting, but there are also TRSs
where it succeeds whereas existing rewriting techniques fail. In order to benefit
from their respective advantages, we show how to combine the size-change prin-
ciple with classical orderings and with dependency pairs. In this way, we obtain a
new approach for automated termination proofs of TRSs which is more powerful
than previous approaches.

1 Introduction

The size-change principle [13] is a new technique for automated termination
analysis of functional programs, which raised great interest in the functional
programming and automated reasoning community. However, up to now the con-
nection between this principle and existing approaches for termination proofs of
term rewriting was unclear. After introducing the size-change principle in Sect. 2,
we show how to use it for (innermost) termination proofs of arbitrary TRSs in
Sect. 3. This also illustrates how to combine the size-change principle with exist-
ing orderings from term rewriting. In Sect. 4 and 5 we compare the size-change
principle with classical simplification orderings and with the dependency pair
approach [1] for termination of TRSs. Finally, to combine their advantages, we
developed a technique which integrates the size-change principle and dependency
pairs. The combined technique has been implemented in the system AProVE re-
sulting in a very efficient and powerful automated method which improves the
original dependency pair approach significantly. A description of the implemen-
tation can be found in the appendix.

2 The Size-Change Principle

We assume familiarity with the basics of term rewriting (see e.g., [3]). For a TRS
R over a signature F , the defined symbols D are the root symbols of the left-
hand sides of rules and the constructors are C = F \ D. We restrict ourselves to

? Extended version of a paper from the Proceedings of the 14th Int. Conference on Rewriting
Techniques and Applications (RTA-03), Valencia, Spain, LNCS, Springer-Verlag, 2003.

finite signatures and TRSs. A TRS is called a constructor system if the left-hand
sides of its rules are terms of the form f(s1, . . . , sn) where all si are constructor
terms (i.e., si ∈ T (C,V)). For any signature F we define the embedding rules
EmbF = {f(x1, . . . , xn) → xi | f ∈ F where n = arity(f), 1 ≤ i ≤ n}.

In [13], the size-change principle was formulated for a functional program-
ming language with eager evaluation strategy and without pattern matching.
Such functional programs are easily transformed into TRSs which are orthogo-
nal constructor systems whose ground normal forms only contain constructors
(i.e., all functions are “completely” defined). In this section we present an exten-
sion of the original size-change principle which can be used for arbitrary TRSs.

We call (%,�) a reduction pair [11] on T (F ,V) if % is a quasi-ordering and
� is a well-founded ordering on terms where both % and � are closed under
substitutions and compatible (i.e., % ◦ � ⊆ � or � ◦ % ⊆ �, but � ⊆ % is
not required). In general, neither % nor � have to be closed under contexts. If
% is closed under contexts, we speak of a monotonic reduction pair. In Sect. 3
we examine which additional conditions must be imposed on (%,�) in order to
use the size-change principle for (innermost) termination proofs of TRSs. Size-
change graphs denote how the size of function parameters changes when going
from one function call to another.

Definition 1 (Size-Change Graph) Let (%,�) be a reduction pair. For every
rule f(s1, . . . , sn) → r of a TRS R and every subterm g(t1, . . . , tm) of r where
g ∈ D, we define a size-change graph. The graph has n output nodes marked
with {1f , . . . , nf} and m input nodes marked with {1g, . . . ,mg}. If si � tj, then
there is a directed edge marked with “�” from output node if to input node jg.
Otherwise, if si % tj, then there is an edge marked with “%” from if to jg. If f

and g are clear from the context, then we often omit the subscripts from the nodes.
So a size-change graph is a bipartite graph G = (V,W,E) where V = {1f , . . . , nf}
and W = {1g, . . . ,mg} are the labels of the output and input nodes, respectively,
and we have edges E ⊆ V × W × {%,�}.

Example 2 Let R consist of the following rules.

f(s(x), y) → f(x, s(x)) (1) f(x, s(y)) → f(y, x) (2)

R has two size-change graphs G(1) and G(2) resulting from (1) and (2). Here, we

use the embedding ordering on constructors C, i.e., (%,�) = (→∗
EmbC

,→+
EmbC

).

G(1) : 1f

� //�
��>

>>
> 1f

2f 2f

G(2) : 1f
�

��>
>>

> 1f

2f

�

??����
2f

To trace sizes of parameters along subsequent function calls, size-change
graphs (V1,W1, E1) and (V2,W2, E2) can be concatenated to multigraphs if W1 =
V2, i.e., if they correspond to arguments {1g , . . . ,mg} of the same function g.

Definition 3 (Multigraph and Concatenation) Every size-change graph of
R is a multigraph of R and if G = ({1f , . . . , nf}, {1g , . . . ,mg}, E1) and H =

4

({1g, . . . ,mg}, {1h, . . . , ph}, E2) are multigraphs w.r.t. the same reduction pair
(%,�), then the concatenation G·H = ({1f , . . . , nf}, {1h, . . . , ph}, E) is also a
multigraph of R. For 1 ≤ i ≤ n and 1 ≤ k ≤ p, E contains an edge from if

to kh iff E1 contains an edge from if to some jg and E2 contains an edge from
jg to kh. If there is such a jg where the edge of E1 or E2 is labeled with “�”,
then the edge in E is labeled with “�” as well. Otherwise, it is labeled with “%”.
A multigraph G is called maximal if its input and output nodes are both labeled
with {1f , . . . , nf} for some f and if it is idempotent, i.e., G = G·G.

Example 4 In Ex. 2 we obtain the following three maximal multigraphs:

G(1)·G(2) : 1f

� //
�

��=
==

==
1f

2f 2f

G(2)·G(1) : 1f 1f

2f
�

//

�
@@�����
2f

G(2)·G(2) : 1f

� // 1f

2f

� // 2f

For termination, in every maximal multigraph a parameter must be decreasing.

Definition 5 (Size-Change Termination) A TRS R over the signature F
is size-change terminating w.r.t. a reduction pair (%,�) on T (F ,V) iff every
maximal multigraph contains an edge of the form i

�→ i.

In Ex. 4, each maximal multigraph contains the edge 1f
�→ 1f or 2f

�→ 2f .
So the TRS is size-change terminating w.r.t. the embedding ordering. Note that
classical path orderings from term rewriting fail on this example (see Sect. 4).

Since there are only finitely many possible multigraphs, they can be construc-
ted automatically. So for a given reduction pair, size-change termination is de-
cidable. However, in general size-change termination does not imply termination.

Example 6 Consider the TRS with the rules f(a) → f(b) and b → a. If we use
the lexicographic path ordering �LPO [9] with the precedence a > b, then the
only maximal multigraph is 1f

�LPO−→ 1f . So size-change termination is proved,
although the TRS is obviously not terminating.

In [13], size-change termination was defined in a slightly different way. Here,
instead of concatenating size-change graphs G1, . . . , Gn, one builds (possibly in-
finite) graphs by identifying the input nodes of a size-change graph with the
output nodes of the next size-change graph. They called a program size-change
terminating if there exists an infinite path in this graph which contains infinitely
many edges labeled with “�”. The following lemma (which corresponds to [13,
Thm. 4]) states that our definition is equivalent to the one of [13].

Lemma 7 (Correspondence of Infinite Graphs and Multigraphs [13])
Let Γ be a finite set of size-change graphs. Then the following two statements
are equivalent.

(1) In every infinite graph resulting from graphs of Γ by identifying the input
nodes of a graph with the output nodes of the next graph, there exists an
infinite path containing infinitely many edges labeled with “�”.

5

(2) Every maximal multigraph resulting from concatenations of graphs of Γ has
an edge of the form i

�→ i.

Proof. (1) ⇒ (2): For two size-change graphs or multigraphs G and H where G’s
input nodes have the same labels as H’s output nodes, let G ◦ H be the graph
resulting from identifying G’s input and H’s output nodes. So G◦H differs from
G·H in that these nodes are not dropped.

Assume that there exists a maximal multigraph G = G1· . . . ·Gn which has
no edge of the form i

�→ i. On the other hand, the infinite graph G1 ◦ . . . ◦ Gn ◦
G1 ◦ . . . ◦ Gn ◦ . . . must have infinitely many edges labeled with “�”. Thus, this
also holds for the infinite graph G◦G◦ . . . Obviously, for some i ∈ IN and f ∈ F ,
a node labeled with if must occur more than once in this path such that an edge
between these two occurrences is labeled with “�”. Let n be the length of the
subpath from the first occurrence of if to the next occurrence of if such that
an �→-edge is on this subpath. Thus, there is a path from if to if in the graph
G ◦ G ◦ . . . ◦ G (where G is combined with itself n times) and at least one edge
of the path is labeled with “�”. This means that the multigraph G·G· . . . ·G
(where G is concatenated with itself n times), contains an edge i

�→ i. Since G is
idempotent, we have G·G· . . . ·G = G and thus, this contradicts the assumption
that G does not have such edges.

(2) ⇒ (1): Assume that there is an infinite graph G1 ◦G2 ◦ . . . that does not
contain an infinite path with infinitely many “�” edges. For all pairs of numbers
(n,m) with n < m let Gn,m be the multigraph resulting from the concatenation
of Gn, . . . , Gm−1, i.e., Gn,m = Gn· . . . ·Gm−1. As there are only finitely many
possible multigraphs, by Ramsey’s theorem there is an infinite set I ⊆ IN such
that Gn,m is always the same graph for all n,m ∈ I with n < m. We call this
graph G. Note that G is a maximal multigraph: for n0 < n1 < n2 with ni ∈ I,
we have Gn0,n2 = Gn0· . . . ·Gn1−1·Gn1· . . . ·Gn2−1 = Gn0,n1·Gn1,n2 , and thus
G = G·G.

Let I = {n0, n1, . . .}. Thus, for our original infinite graph, we have

G1 ◦ G2 ◦ . . . = G1 ◦ . . . ◦ Gn0−1 ◦ Gn0 ◦ . . . ◦ Gn1−1 ◦ Gn1 ◦ . . . ◦ Gn2−1 ◦ . . .

Since by assumption, this graph did not contain an infinite path with infinitely
many “�” edges, this also holds for the graph

Gn0· . . . ·Gn1−1 ◦ Gn1· . . . ·Gn2−1 ◦ . . . = Gn0,n1 ◦ Gn1,n2 ◦ . . . = G ◦ G ◦ . . .

But since G is a maximal multigraph, G contains an edge i
�→ i. Thus, in con-

tradiction to the assumption, the above infinite graph does contain an infinite
graph labeled with infinitely many “�” edges. ut

3 Size-Change Termination and Termination of TRSs

In this section we develop conditions on the reduction pair used in Def. 5 which
ensure that size-change termination indeed implies (innermost) termination.

6

Then the size-change principle can be combined with classical orderings from
term rewriting and it becomes a sound termination criterion.

In [13], the authors use reduction pairs (%,�) where % is the reflexive closure
of � and � is defined in terms of a well-founded relation > on (ground) normal
forms of R. We now show that such reduction pairs can be used for innermost
termination proofs of arbitrary TRSs. For non-overlapping systems as in [13],
it suffices to regard ground normal forms, since there, ground innermost termi-
nation is equivalent to innermost termination (and in fact, to termination). For
arbitrary TRSs, one has to regard normal forms with variables as well. Moreover,
% can be any compatible quasi-ordering. We denote innermost reduction steps by
i→R and s i→!

R
s′ means that s′ is a normal form reachable from s by innermost

reduction. Thm. 8 will serve as the basis for the automation of the size-change
principle in Thm. 9 afterwards.

Theorem 8 (Size-Change Termination and Innermost Termination)
Let > be a well-founded ordering on normal forms of a TRS R. For s, t ∈ T (F ,V)
we define NF(s, t) = {(s′, t′) | sσ i→!

R
s′, tσ i→!

R
t′, σ instantiates all variables of

s and t with normal forms of R}. Let (%,�) be a reduction pair where s � t

implies s′ > t′ for all (s′, t′) ∈ NF(s, t). If R is size-change terminating w.r.t.
(%,�), then R is innermost terminating.

Proof. If R is not innermost terminating, then there is a minimal non-innermost
terminating term v0, i.e., all proper subterms of v0 are innermost terminating.
Let i→ε denote root reductions and let i→>ε denote reductions below the root.
Then v0’s infinite innermost reduction starts with v0

i→∗
>ε u1

i→ε w1 where all
proper subterms of u1 are in normal form. Since w1 is not innermost terminating,
it has a minimal non-innermost terminating subterm v1.

The infinite reduction continues in the same way. So for i ≥ 1, we have
vi−1

i→∗
>ε ui = liσi and vi = r′iσi for a rule li → ri, a subterm r′i of ri with

defined root, and a substitution σi instantiating li’s variables with normal forms.
For each step from ui to vi there is a corresponding size-change graph Gi. We

regard the infinite graph resulting from G1, G2, . . . by identifying the input nodes
of Gi with the output nodes of Gi+1. If R is size-change terminating, by Lemma
7 this infinite graph contains an infinite path where infinitely many edges are
labeled with “�”. Without loss of generality we assume that this path already
starts in G1. For every i, let ai be the output node in Gi which is on this path.
So we have li|ai

� r′i|ai+1 for all i from an infinite set I ⊆ IN and li|ai
% r′i|ai+1

for i ∈ IN \ I. Note that li|ai
σi = ui|ai

and r′i|ai+1σi = vi|ai+1
i→!
R

ui+1|ai+1 .
Thus, (ui|ai

, ui+1|ai+1) ∈ NF(li|ai
, r′i|ai+1). Hence, for I = {i1, i2, . . .} we obtain

ui1 |ai1
> ui2 |ai2

> . . . which is a contradiction to the well-foundedness of >. ut

Innermost termination is interesting, since then there are no infinite reduc-
tions w.r.t. eager evaluation strategies. Moreover, for non-overlapping TRSs, in-
nermost termination already implies termination. However, Thm. 8 is not yet
suitable for automation. To check whether � satisfies the conditions of Thm. 8,

7

one has to examine infinitely many instantiations of s and t and compute normal
forms s′ and t′ although R is possibly not innermost terminating. Therefore, in
the examples of [13], one is restricted to relations % and � on constructor terms.

Thm. 9 shows how to use such reduction pairs on T (C,V) for possibly au-
tomated innermost termination proofs. In general, a reduction pair (%,�) on
T (G,V) with G ⊆ F can be extended to a (usually non-monotonic) reduction
pair (%′,�′) on T (F ,V) by defining s %′ t if s = t or if there exist u, v ∈ T (G,V)
with u % v such that s = uσ and t = vσ for some substitution σ. Moreover,
s �′ t iff u � v for u and v as above.

Theorem 9 (Innermost Termination Proofs) Let (%,�) be a reduction
pair on T (C,V). If R is size-change terminating w.r.t. the extension of the re-
duction pair (%,�) to T (F ,V), then R is innermost terminating.

Proof. Let (%′,�′) be the extension of (%,�) to T (F ,V). We show that s �′ t

implies s′ �′ t′ for all (s′, t′) ∈ NF(s, t). Then the theorem follows from Thm. 8.

By the definition of extensions, s �′ t iff s = uσ, t = vσ, and u � v for
suitable u, v, and σ. In particular, u and v must be constructor terms and we
also have u �′ v (as σ may also be the identity). Since NF(s, t) ⊆ {(uσ, vσ) |
σ instantiates u’s and v’s variables with normal forms}, the claim follows from
u �′ v, because �′ is closed under substitutions. ut

For the TRS in Ex. 2, when using the extension of the reduction pair
(→∗

EmbC
, →+

EmbC
) on T (C,V), we obtain the same size-change graphs as with

(→∗
EmbC

,→+
EmbC

) on T (F ,V). Ex. 4 shows that this TRS is size-change termi-
nating w.r.t. this reduction pair and hence, by Thm. 9, this proves innermost
termination. However, a variant of Toyama’s example [14] shows that Thm. 8
and Thm. 9 are not sufficient to prove full (non-innermost) termination.

Example 10 Let R = {f(c(a, b, x)) → f(c(x, x, x)), g(x, y) → x, g(x, y) → y}.
We define %=→∗

S
and �=→+

S
restricted to T (C,V), where S is the terminating

TRS with the rule c(a, b, x) → c(x, x, x). The only maximal multigraph is 1f
�→

1f . Thus, R is size-change terminating and by Thm. 9 it is innermost terminating.
However, R does not terminate.

As in Ex. 10, reduction pairs (→∗
S
,→+

S
) satisfying the conditions of Thm. 9

can be defined using a terminating TRS S over the signature C. The following
theorem shows that if S is non-duplicating, then we may use the relation →S

also on terms with defined symbols and size-change termination even implies
full termination. A TRS is non-duplicating if every variable occurs on the right-
hand side of a rule at most as often as on the corresponding left-hand side. So
size-change termination of the TRS in Ex. 2 and Ex. 4 using the reduction pair
(→∗

EmbC
,→+

EmbC
) implies that the TRS is indeed terminating.

In order to prove the theorem, we need a preliminary lemma which states
that minimal non-terminating terms w.r.t. R∪S cannot start with constructors

8

of R. Again, here S must be non-duplicating. Otherwise, in Ex. 10, c(a, b, g(a, b))
is a minimal non-terminating term w.r.t. R∪S that starts with a constructor of
R.

Lemma 11 Let R be a TRS over the signature F with constructors C and let S
be a terminating non-duplicating TRS over C. If t1, . . . , tn ∈ T (F ,V) are termi-
nating w.r.t. R∪S and c ∈ C, then c(t1, . . . , tn) is also terminating w.r.t. R∪S.

Proof. For any term s ∈ T (F ,V), let Ms be the multiset of the maximal subterms
of s whose root is defined, i.e., Ms = {s|π | root(s|π) ∈ D and for all π′ above π we
have root(s|π′) ∈ C}. Moreover, let s′ be the term that results from s by replacing
all maximal subterms with defined root by the same fresh special variable xC . Let
�R∪S be the extension of →R∪S to multisets where M �R∪S M ′ iff M = N∪{s}
and M ′ = N ∪ {t1, . . . , tn} with n ≥ 0 and with s →R∪S ti for all i. We prove
the following conjecture.

Let s ∈ T (F ,V) such that all terms in Ms are terminating w.r.t.
R∪S and let s →R∪S t. Then all terms in Mt are also terminating
w.r.t. R ∪ S. Moreover, Ms �R∪S Mt or both Ms = Mt and
s′ →S t′.

(3)

Note that �R∪S is well founded on multisets like Ms which only contain termi-
nating terms. Termination of S implies that →S is also well founded and the lexi-
cographic combination of two well-founded orderings preserves well-foundedness.
Hence, (3) implies that if all terms in Ms are terminating, then s is terminating
as well. So the lemma immediately follows from Conjecture (3).

To prove (3), we distinguish according to the position π where the reduction
s →R∪S t takes place. If s has a defined symbol of D on or above position π, then
this implies Ms �R∪S Mt and all terms in Mt are also terminating. Otherwise,
if π is above all symbols of D in s, then s →R∪S t implies s →S t and Ms ⊇ Mt

(since S is non-duplicating). Moreover, s →S t also implies s′ →S t′. ut

Now we can show the desired theorem.

Theorem 12 (Termination Proofs) Let R be a TRS over the signature F
with constructors C and let S be a terminating non-duplicating TRS over C. If R
is size-change terminating w.r.t. the reduction pair (→∗

S
,→+

S
) on T (F ,V), then

R (and even R ∪ S) is terminating.

Proof. We define R′ := R ∪ S. If R′ is not terminating, then as in the proof of
Thm. 8 we obtain an infinite sequence of minimal non-terminating terms ui, vi

with vi →
∗
>ε,R′ ui+1 where the step from ui to vi corresponds to a size-change

graph of R′. Thus, for all i there is a rule li → ri in R′ with ui = liσi and
vi = r′iσi for a subterm r′i of ri and a substitution σi.

By Lemma 11, the roots of ui and vi are defined symbols. Thus, all these size-
change graphs are from R. As in Thm. 8’s proof, there are ai with li|ai

→+
S

r′i|ai+1

9

for all i from an infinite set I ⊆ IN and li|ai
→∗

S
r′i|ai+1 for i ∈ IN \ I. Since →S

is closed under substitution we also have ui|ai
→+

S
vi|ai+1 or ui|ai

→∗
S

vi|ai+1 ,
respectively. Recall vi|ai+1 →∗

R′ ui+1|ai+1 and S ⊆ R′. So for I = {i1, i2, . . .}
we have ui1 |ai1

→+
R′ ui2 |ai2

→+
R′ . . . contradicting the minimality of the terms

ui. ut

With Thm. 9 and Thm. 12 we have two possibilities for automating the
size-change principle. Note that even for innermost termination, Thm. 9 and
Thm. 12 do not subsume each other. Ex. 10 cannot be handled by Thm. 12 and
innermost termination of {g(f(a)) → g(f(b)), f(x) → x} cannot be proved with
Thm. 9, since f(a) 6� f(b) for any extension � of an ordering on constructor
terms. On the other hand, termination is easily shown with Thm. 12 using S =
{a → b}. In fact, a variant of Thm. 12 also holds for innermost termination
if S is innermost terminating (and possibly duplicating). However, this variant
only proves innermost termination of R ∪ S and in general, this does not imply
innermost termination of R.

So Thm. 9 and Thm. 12 are new contributions that show which reduction
pairs are admissible in order to use size-change termination for termination or
innermost termination proofs of TRSs. In this way, size-change termination can
be turned into an automatic technique, since one can use classical techniques
from termination analysis of term rewriting to generate suitable reduction pairs
automatically.

4 Comparison with Orderings from Term Rewriting

Most traditional techniques for TRSs are based on so-called simplification order-
ings (like lexicographic or recursive path orderings (possibly with status) RPOS
[5, 9], Knuth-Bendix orderings KBO [10], and most polynomial orderings [12]).
A TRS is simply terminating iff it is compatible with a simplification ordering.
Equivalently, a TRS R over a signature F is simply terminating iff R ∪ EmbF

terminates. Thm. 13 shows that similar to these traditional techniques, the size-
change principle can essentially only verify simple termination.

Theorem 13 (Size-Change Principle and Simple Termination)

(a) A TRS R over a signature F is size-change terminating w.r.t. a reduction
pair (%,�) iff R ∪ EmbF is size-change terminating w.r.t. (%,�).

(b) Let S be as in Thm. 12. If S is simply terminating and R is size-change
terminating w.r.t. (→∗

S
,→+

S
) on T (F ,V), then R∪ S is simply terminating.

Proof. (a) The “if” direction is obvious. For the “only if” direction, note that
EmbF yields no new size-change graphs. But due to EmbC , all constructors are
transformed into defined symbols. So from the R-rules we obtain additional
size-change graphs whose input nodes are labeled with (former) constructors
(i.e., 1c, . . . , nc for c ∈ C). However, since output nodes are never labeled

10

with constructors, this does not yield new maximal multigraphs (since there,
output and input nodes are labeled by the same function). Hence, size-change
termination is not affected when adding EmbF .

(b) As in (a), adding EmbD to R yields no new size-change graphs and thus,
R ∪ EmbD is also size-change terminating w.r.t. (→∗

S
,→+

S
) and hence, also

w.r.t. (→∗
S∪EmbC

,→+
S∪EmbC

). Since S∪EmbC is terminating, Thm. 12 implies
termination of R∪ EmbD ∪ S ∪ EmbC , i.e., simple termination of R∪S. ut

The restriction to simple termination excludes many practically relevant
TRSs. Thm. 13 illustrates that the size-change principle cannot compete with
new techniques (e.g., dependency pairs [1] or the monotonic semantic path or-
dering [4]) where simplification orderings may be applied to non-simply termi-
nating TRSs as well. However, these new techniques require methods to generate
underlying base orderings. Hence, there is still an urgent need for powerful sim-
plification orderings.

In the remainder of this section, we clarify the connection between size-change
termination and classical simplification orderings and show that size-change ter-
mination and classical orderings do not subsume each other in general.

A major advantage of the size-change principle is that it can simulate the
basic ingredients of RPOS, i.e., the concepts of lexicographic and of multiset -
comparison. Thus, by the size-change principle w.r.t. a very simple reduction
pair like the embedding ordering we obtain an automated method for termi-
nation analysis which avoids the search problems of RPOS and which can still
capture the idea of comparing tuples of arguments lexicographically or as multi-
sets. Thm. 14 shows that lexicographic orderings are simulated by the size-change
principle.

Theorem 14 (Simulating Lexicographic Comparison) Let (%,�) be a re-
duction pair and let π be a permutation of 1, . . . , n. We define an ordering �lex

on n-tuples as (s1, . . . , sn) �lex (t1, . . . , tn) iff there is an 1 ≤ i ≤ n such that
sπ(i) � tπ(i) and sπ(j) % tπ(j) for all j < i. If s∗1 �lex t∗1, . . . , s

∗
k �lex t∗k (where

s∗j and t∗j denote n-tuples of terms), then the TRS {f(s∗1) → f(t∗1), . . . , f(s∗k) →
f(t∗k)} is size-change terminating w.r.t. (%,�).

Proof. All size-change graphs have edges π(i)f
�→ π(i)f for some i and π(j)f

�
→

π(j)f for all j < i. Concatenation of such graphs again yields a graph of this form
and thus, all maximal multigraphs are also of this shape. Hence, they all contain
an edge of the form π(i)f

�→ π(i)f which proves size-change termination. ut

The construction in the proof is illustrated in Fig. 1. Here, the first size-
change graph corresponds to a rule f(s∗) → f(t∗) where s∗ �lex t∗ holds and
where the strict decrease is in the argument π(i). The second graph has the strict
decrease in argument π(i′). If i ≤ i′, then their concatenation again results in a
graph with strict decrease in argument π(i).

Thus, size-change termination w.r.t. the same reduction pair (%,�) can sim-
ulate �lex for any permutation π used to compare the components of a tuple.

11

π(1)

�
//

�
�
�
�
�
�

π(1)

�
�
�
�
�
�

π(1)

�
//

�
�
�
�
�
�
�
�
�
�
�
�
�
�

π(1)

�
�
�
�
�
�
�
�
�
�
�
�
�
�

π(1)

�
//

�
�
�
�
�
�

π(1)

�
�
�
�
�
�

�
//

�
//

π(i − 1)

�
// π(i − 1)

�
// π(i − 1)

�
// π(i − 1)

π(i)
� //

�
�
�
�
�
�
�
�
�
�
�

π(i)

�
�
�
�
�
�
�
�
�
�
� · = π(i)

� //

�
�
�
�
�
�
�
�
�
�
�

π(i)

�
�
�
�
�
�
�
�
�
�
�

π(i′ − 1)

�
// π(i′ − 1)

π(i′)
� //

�
�
�

π(i′)

�
�
�

π(n) π(n) π(n) π(n) π(n) π(n)

Fig. 1. Lexicographic Comparison with Size-Change Graphs

For example, regard the TRS {ack(0, y) → s(y), ack(s(x), 0) → ack(x, s(0)),
ack(s(x), s(y)) → ack(x, ack(s(x), y))} computing the Ackermann function. The
TRS is size-change terminating w.r.t. the embedding ordering on constructors,
whereas with traditional term rewriting techniques, one would have to use the
lexicographic path ordering. The next theorem shows that size-change termina-
tion can also simulate multiset comparison.

Theorem 15 (Simulating Multiset Comparison) Let (%,�) be a reduction
pair and let �mul compares tuples (s1, . . . , sn) and (t1, . . . , tn) by replacing at
least one si by zero or more components tj that are �-smaller than si. If s∗1 �mul

t∗1, . . . , s
∗
k �mul t∗k, then the TRS {f(s∗1) → f(t∗1), . . . , f(s∗k) → f(t∗k)} is size-

change terminating w.r.t. (%,�).

Proof. In all size-change graphs, we can select a subset of edges with the following
properties: (1) all input nodes have exactly one selected incoming edge, (2) for
each output node, if one selects an outgoing edge labeled with “%”, then no
other edge starting in this node may be selected, (3) at least one edge labeled
with “�” is selected. It is easy to see that if one concatenates such size-change
graphs G1 and G2 and selects those edges which result from the concatenation
of two selected edges in G1 and G2, then the selected edges in the resulting
multigraph also satisfy the conditions (1) – (3). Hence, the properties (1) – (3)
also hold for the maximal multigraphs. Due to (3), there exists a selected edge
if

�→ jf in each maximal multigraph. By (1), there is also a selected edge kf → if

12

reaching the input node marked with if . In the concatenation of the multigraph
with itself, kf → if

�→ jf would give rise to a (selected) edge kf
�→ jf . Since

maximal multigraphs are idempotent, the multigraph itself must already contain
the (selected) edge kf

�→ jf . Then (1) implies that kf = if and hence, we have a
selected edge kf = if → if . Due to (2), this edge must be labeled with “�” and
thus, size-change termination is proved. ut

1

�
��>

>>
>>

>>
1

2
�

��>
>>

>>
>>

2

3

� GG��������������

�

��>
>>

>>
>>

3

4 4

5

�
// 5

·

1

�
��>

>>
>>

>>
1

2

�
@@�������
2

3 3

4

�

@@�������

�
��>

>>
>>

>>
4

5

�
@@�������
5

=

1

�
// 1

2 2

3

�

@@�������

�

��.
..

..
..

..
..

..
.

� // 3

4 4

5

�
@@�������
5

Fig. 2. Multiset Comparison with Size-Change Graphs

The construction in the proof is illustrated in Fig. 2, where we only depicted
the selected edges of the graphs. Thus, every input node is reached by one unique
edge (1) and every output node may have at most one outgoing “ %” edge (2).
Moreover, there must be at least an “�” edge in the graph (3). The example
in Fig. 2 demonstrates that the properties (1) – (3) are indeed preserved under
concatenation of graphs.

For example, the TRS {plus(0, y) → y, plus(s(x), y) → s(plus(y, x))} where
plus permutes its arguments is size-change terminating w.r.t. the embedding or-
dering on constructors, whereas in existing rewriting approaches one would have
to use the recursive (multiset) path ordering.

Since both lexicographic and multiset comparison are simulated by the size-
change principle using the same reduction pair, one can also handle TRSs like
Ex. 2 where traditional path orderings like RPOS (or KBO) fail. In the first rule
f(s(x), y) → f(x, s(x)) the arguments of f have to be compared lexicographically
from left to right and in the second rule f(x, s(y)) → f(y, x) they have to be
compared as multisets. If one adds the rules for the Ackermann function then
polynomial orderings fail as well, but size-change termination is proved as before.

However, compared to classical path orderings, the size-change principle also
has several drawbacks. One problem is that it can only simulate lexicographic and
multiset comparison for the arguments of the root symbol. Hence, if one adds a
new function on top of all terms in the rules, this simulation is no longer possible.

13

For example, the TRS {f(plus(0, y)) → f(y), f(plus(s(x), y)) → f(s(plus(y, x)))} is
no longer size-change terminating w.r.t. the embedding ordering, whereas classi-
cal path orderings can apply lexicographic or multiset comparisons on all levels
of the term. Thus, termination would still be easy to prove with RPO.

Perhaps the most serious drawback is that the size-change principle lacks
concepts to compare defined function symbols syntactically. Consider a TRS
with the rule log(s(s(x))) → s(log(s(half(x)))) and rules for half such that half(x)
computes bx

2 c. If a function (like log) calls another defined function (like half)
in the arguments of its recursive calls, one has to check whether the argument
half(x) is smaller than the term s(x) in the corresponding left-hand side. The size-
change principle on its own offers no possibility for that and its mechanizable
versions (Thm. 9 and Thm. 12) fail since they only use an underlying ordering
on constructor terms. In contrast, classical orderings like RPO can easily show
termination automatically using a precedence log > s > half on function symbols.

Finally, the size-change principle has the disadvantage that it cannot measure
terms by combining measures of subterms as in polynomial orderings or KBO.

Example 16 Term measures (or weights) are particularly useful if one param-
eter is increasing, but the decrease of another parameter is greater than this
increase. So termination of {plus(s(s(x)), y) → s(plus(x, s(y))), plus(x, s(s(y))) →
s(plus(s(x), y)), plus(s(0), y) → s(y), plus(0, y) → y} is trivial to prove with poly-
nomial orderings or KBO, but the TRS is not size-change terminating w.r.t. any
reduction pair.

5 Comparison and Combination with Dependency Pairs

Now we compare the size-change principle with dependency pairs. In contrast to
other recent techniques [4, 6], dependency pairs and size-change graphs are both
built from recursive calls which suggests to combine these approaches to benefit
from their respective advantages.

We briefly recapitulate the concepts of dependency pairs; see [1, 7, 8] for re-
finements and motivations. Let F] = {f] | f ∈ D} be a set of tuple symbols, where
f] has the same arity as f and we often write F for f], etc. If t = g(t1, . . . , tm)
with g ∈ D, we write t] for g](t1, . . . , tm). If l → r ∈ R and t is a subterm of
r with defined root symbol, then the rewrite rule l] → t] is called a dependency
pair of R. So the dependency pairs of the TRS from Ex. 2 are

F(s(x), y) → F(x, s(x)) (4) F(x, s(y)) → F(y, x) (5)

We always assume that different occurrences of dependency pairs are variable
disjoint. Then a TRS is (innermost) terminating iff there is no infinite (innermost)
chain of dependency pairs. A sequence s1 → t1, s2 → t2, . . . of dependency pairs
is a chain iff tiσ →∗

R
si+1σ for all i and a suitable substitution σ. The sequence

is an innermost chain iff tiσ
i→∗
R

si+1σ and all siσ are in normal form.
To estimate which dependency pairs may occur consecutively in chains, one

builds a so-called dependency graph. Let cap(t) result from replacing all sub-

14

terms of t with defined root symbol by different fresh variables and let ren(t)
result from replacing all occurrences of variables in t by different fresh variables.
For instance, cap(F(x, s(x))) = F(x, s(x)) and ren(F(x, s(x))) = F(x1, s(x2)).
The (estimated) dependency graph is the directed graph whose nodes are the
dependency pairs and there is an arc from s → t to v → w iff ren(cap(t)) and
v are unifiable. In the (estimated) innermost dependency graph there is only an
arc from s → t to v → w iff cap(t) and v are unifiable. For the TRS of Ex. 2, the
dependency graph and the innermost dependency graph are identical and each
dependency pair is connected with itself and with the other pair.

A non-empty set P of dependency pairs is a cycle if for any pairs s → t and
v → w in P there is a non-empty path from s → t to v → w which only traverses
pairs from P. In our example we have the cycles {(4)}, {(5)}, and {(4), (5)}. If a
cycle only contains dependency pairs resulting from the rules R′ ⊆ R we speak of
an R′-cycle of the dependency graph of R. Finally, for f ∈ D we define its usable
rules U(f) as the smallest set containing all f -rules and all rules that are usable
for function symbols occurring in right-hand sides of f -rules. In our example, the
usable rules for f are (1) and (2). For D ′ ⊆ D let U(D′) =

⋃
f∈D′ U(f).

Theorem 17 (Dependency Pair Approach [1]) A TRS R is terminating
iff for each cycle P in the dependency graph there is a monotonic reduction
pair (%,�) on T (F ∪F],V) such that

(a) s % t for all s → t ∈ P and s � t for at least one s → t ∈ P
(b) l % r for all l → r ∈ R.

R is innermost terminating if for each cycle P in the innermost dependency
graph there is a monotonic reduction pair (%,�) on T (F ∪F],V) such that

(c) s % t for all s → t ∈ P and s � t for at least one s → t ∈ P
(d) l % r for all l → r ∈ U(D′),

where D′ = {f | f ∈ D occurs in t for some s → t ∈ P }.

For the TRS in Ex. 2, in the cycle P = {(4), (5)} we have to find a reduction
pair such that one dependency pair is weakly decreasing (w.r.t. %) and the other
is strictly decreasing (w.r.t. �). Since � does not have to be monotonic, a key
ingredient of the dependency pair approach is to use a standard simplification
ordering in combination with an argument filtering which eliminates argument
positions of function symbols. For example, we may eliminate the second ar-
gument position of F. In this way, F becomes unary and every term F(s, t) is
replaced by F(s). Then the constraint F(s(x)) � F(x) resulting from the depen-
dency pair (4) is easily satisfied but there is no reduction pair satisfying the
constraint F(x) % F(y) from the second dependency pair (5). Indeed, there exists
no argument filtering such that the constraints resulting from the dependency
pair approach would be satisfied by a standard path ordering like RPOS or KBO.
Moreover, if one adds the rules f(x, y) → ack(x, y), ack(s(x), y) → f(x, x), and
the rules for the Ackermann function ack, then the dependency pair constraints
are not satisfied by any polynomial ordering either.

15

Thus, termination cannot be proved with dependency pairs in combination
with classical orderings amenable to automation, whereas the proof is very easy
with the size-change principle and a simple reduction pair like the embedding
ordering on constructors. While the examples in [13] are easily handled by depen-
dency pairs and RPOS, this shows that there exist TRSs where the size-change
principle is preferable to dependency pairs and standard rewrite orderings.

In fact, size-change termination encompasses the concept of argument filter-
ing for root symbols, since it concentrates on certain arguments of (root) function
symbols while ignoring others. This is an advantage compared to dependency
pairs where finding the argument filtering is a major search problem. Moreover,
the size-change principle examines sequences of function calls in a more sophisti-
cated way. Depending on the different “paths” from one function call to another,
it can choose different arguments to be (strictly) decreasing. In contrast, in the
dependency pair approach such choices remain fixed for the whole cycle.

On the other hand, in addition to the drawbacks mentioned in Sect. 4, a
disadvantage of the size-change principle is that it is not modular, i.e., one has
to use the same reduction pair for the whole termination proof whereas the
dependency pair approach permits different orderings for different cycles. The
size-change principle also does not analyze arguments of terms to check whether
two function calls can follow each other, whereas in dependency graphs, this is
approximated using the functions cap and ren. Again, the most severe drawback
is that the size-change principle offers no technique to compare terms with defined
symbols, whereas dependency pairs use inequalities of the form l % r for this
purpose. For that reason, only very restricted reduction pairs may be used for the
size-change principle in Thm. 9 and 12, whereas one may use arbitrary monotonic
reduction pairs for the dependency pair approach. In fact, dependency pairs are
a complete technique which can prove termination of every TRS, whereas this is
not at all true for the size-change principle (see e.g., Ex. 16).

In the remainder, we introduce a new technique to combine dependency pairs
and size-change termination. A straightforward approach would be to use de-
pendency pairs as a preprocessing step and size-change termination as the “base
ordering” when trying to satisfy the constraints resulting from the dependency
pair approach. However, this would be very weak due to the restrictions on the
reduction pairs in Thm. 9 and Thm. 12.

Instead, we incorporate the size-change principle into the dependency pair
approach and use it when generating the constraints. The resulting technique
is stronger than both previous approaches: If (innermost) termination can be
proved by the size-change principle or by dependency pairs using certain reduc-
tion pairs, then it can also be proved with our new technique using the same
reduction pairs. On the other hand, there are many examples which cannot
be proved by the size-change principle and where dependency pairs would re-
quire complicated reduction pairs (that can hardly be generated automatically),
whereas with our combined technique the (automatic) proof works with very
simple reduction pairs, cf. the appendix.

16

Obviously, size-change graphs and dependency pairs have a close correspon-
dence, since they both represent a call of a defined symbol g in the right-hand
side of a rewrite rule f(s1, . . . , sn) → . . . g(t1, . . . , tm) . . . Since we only need to
concatenate size-change graphs which correspond to cycles in the (innermost)
dependency graph, we now label size-change graphs by the corresponding depen-
dency pair and multigraphs are labeled by the corresponding sequence of depen-
dency pairs. Then two size-change graphs or multigraphs labeled with (. . . , D)
and (D′, . . .) may only be concatenated if there is an arc from D to D ′ in the
(innermost)1 dependency graph. Another problem is that in size-change graphs
one only has output nodes 1f , . . . , nf and input nodes 1g, . . . ,mg to compare
the arguments of f and g. Therefore, the size-change principle cannot deal with
TRSs like Ex. 16 where one has to regard the whole term in order to show termi-
nation. For that reason we add another output node εf and input node εg which
correspond to the whole terms (or more precisely, to the terms F (s1, . . . , sn) and
G(t1, . . . , tm) of the corresponding dependency pair).

Definition 18 (Extended Size-Change Graphs) Let (%,�) be a reduction
pair on T (F ∪ F],V). For every rule f(s1, . . . , sn) → r of a TRS R and every
subterm g(t1, . . . , tm) of r with g ∈ D, the extended size-change graph has n + 1
output nodes if and m+1 input nodes jg where i ∈ {ε, 1, . . . , n}, j ∈ {ε, 1, . . . ,m}.
Let s = F (s1, . . . , sn) and t = G(t1, . . . , tm). Then there is an edge if

�→ jg iff
s|i � t|j and otherwise, there is an edge if

�
→ jg iff s|i % t|j. Moreover, every

extended size-change graph is labeled by a one-element sequence (F (s1, . . . , sn) →
G(t1, . . . , tm)).

Concatenation of extended size-change graphs to extended multigraphs works
as in Def. 3. However, if G is a multigraph labeled with (D1, . . . , Dn) and H is
labeled with (D′

1, . . . , D
′
m), then they can only be concatenated if there is an arc

from Dn to D′
1 in the (innermost) dependency graph. The concatenation G·H

is labeled with (D1, . . . , Dn, D′
1, . . . , D

′
m).

As an example, reconsider the TRS for the Ackermann function. The rule
ack(s(x), 0) → ack(x, s(0)) gives rise to the following extended size-change graph
if we use the embedding ordering on constructors.

εack
�

##HH
HH

H
εack

1ack
�

// 1ack

2ack 2ack

This graph is labeled with the singleton sequence consisting of the dependency
pair ACK(s(x), 0) → ACK(x, s(0)). Thus, it cannot be concatenated with itself,

1 Whether one regards the dependency graph or the innermost dependency graph depends on
whether one wants to prove termination or innermost termination.

17

since there is no arc from this dependency pair to itself in the (innermost) de-
pendency graph.

In the remainder, when we speak of size-change graphs or multigraphs, we
always mean extended graphs. Obviously, there may exist infinitely many multi-
graphs due to the labeling with a sequence of dependency pairs. However, two
multigraphs with labelings (D1, . . . , Dn) and (D′

1, . . . , D
′
m) are identified if their

nodes and edges are identical and if D1 = D′
1, Dn = D′

m, and {D1, . . . , Dn} =
{D′

1, . . . , D
′
m}. Thus, for the labeling only the set of dependency pairs and the

first and last dependency pair of the sequences is important. Then, there are
again only finitely many different multigraphs.

To combine dependency pairs and the size-change principle now we only
regard multigraphs labeled with a cycle P of the (innermost) dependency graph
(i.e., they are labeled with (D1, . . . , Dn) such that P = {D1, . . . , Dn}). Moreover,
one may use different reduction pairs for the multigraphs resulting from different
cycles. To benefit from the advantages of the size-change principle (i.e., combining
lexicographic and multiset comparison and using different argument filterings and
strict inequalities within one cycle), we do not build inequalities but size-change
graphs out of the dependency pairs.

The following theorem combines dependency pairs and the size-change princi-
ple for full termination (Thm. 12). In contrast to Thm. 12 we now allow arbitrary
reduction pairs. However, to handle defined symbols properly, one then has to re-
quire that all rules are weakly decreasing (like in the dependency pair approach).
Alternatively, as in Thm. 12 one may also use reduction pairs (→∗

S
,→+

S
) for a

terminating non-duplicating TRS S over the constructors of R without requiring
that R’s rules are weakly decreasing. For example, in this way one can prove ter-
mination of the Ackermann TRS with the embedding ordering (i.e., S = EmbC).
However, in order to use (→∗

S
,→+

S
) for some cycles and other reduction pairs

(%,�) for other cycles, one has to prove termination of R∪S instead of just R.

Example 19 To illustrate this, let R = {g(f(a)) → g(f(b)), f(b) → f(a)} and
S = {a → b}. The only cycle of R’s dependency graph is {G(f(a)) → G(f(b))}
and for this cycle, size-change termination can be shown using (→∗

S
,→+

S
). Thus,

if one only regards R instead of R∪S, one could falsely “prove” termination of
R. Instead, {F(b) → F(a)} must also be regarded, since it is an R-cycle of the
dependency graph of R∪S (because in R∪S, a is a defined symbol). Moreover,
for reduction pairs (%,�) 6= (→∗

S
,→+

S
), one has to demand l % r not only for

the rules l → r of R, but for those of S as well. Otherwise, the constraints for
the cycle {F(b) → F(a)} would falsely be satisfiable.

By Thm. 20, the resulting termination criterion is sound, complete, and more
powerful than the size-change principle or dependency pairs on their own.

Theorem 20 (Termination Proofs) Let R be a TRS over F with construc-
tors C and let S be a terminating non-duplicating TRS over C. R (and even
R ∪ S) is terminating iff for each R-cycle P in the dependency graph of R ∪ S
there is a monotonic reduction pair (%,�) on T (F ∪ F],V) such that

18

(a) all maximal multigraphs w.r.t. (%,�) labeled with P contain an edge i
�→ i

(b) %=→∗
S

and �=→+
S

or l % r for all l → r ∈ R ∪ S

If R is size-change terminating w.r.t. (→∗
S
,→+

S
) as in Thm. 12 or if a reduction

pair satisfies Conditions (a) and (b) of Thm. 17 for termination with dependency
pairs, then this reduction pair also satisfies the conditions of this criterion.

Proof. The above criterion can simulate size-change termination (Thm. 12): If
every maximal multigraph contains an edge i

�→ i then this also holds for those
maximal multigraphs that are labeled with P. It can also simulate dependency
pairs by choosing S = ∅: Condition (a) in Thm. 17 implies that every multigraph
labeled with P must contain the edge ε

�→ ε. Since the dependency pair approach
is complete for termination (even with estimated or no dependency graphs), this
also proves the “only if” direction.

For the “if” direction, suppose that R∪S is not terminating. Since S termi-
nates, by Lemma 11 and the soundness of dependency pairs, there is an infinite
chain s1 → t1, s2 → t2, . . . of R-dependency pairs such that tiσ →∗

R∪S
si+1σ for

all i and a substitution σ, and s1 = s] for a minimal non-terminating term s

w.r.t. R ∪ S. Moreover, there is an R-cycle P consisting of those dependency
pairs which occur infinitely often in this chain. Let i1 < i2 < . . . such that
{sij → tij , . . . , sij+1−1 → tij+1−1} = P for all j, i.e., we partition the sequence
into parts where all dependency pairs of P occur. For all j, let Gj be the multi-
graph resulting from the concatenation of the size-change graphs corresponding
to sij → tij , . . . , sij+1−1 → tij+1−1. Note that all Gj are labeled with P.

Due to (a), every multigraph H resulting from concatenation of size-change
graphs contains an edge of the form i

�→ i, provided that H = H·H and that H

is labeled with P. Hence, every idempotent multigraph H = H·H resulting from
concatenating graphs from G1, G2, . . . also contains an edge i

�→ i. The reason is
that since all Gj are labeled with P, then H is also labeled with P.

From this, Lemma 7 implies that there is an infinite path with infinitely many
“�”-edges in the infinite graph resulting from G1, G2, . . . by identifying the input
nodes of Gj with the output nodes of Gj+1. Hence, there is also such an infinite
path in the infinite graph resulting from the size-change graphs corresponding
to s1 → t1, s2 → t2, . . . Without loss of generality, we assume that the infinite
path already starts in the size-change graph corresponding to s1 → t1. For every
i, let ai be the output node in the size-change graph of si → ti which is on
this path. For infinitely many i we have si|ai

σ � ti|ai+1σ and otherwise, we have
si|ai

σ % ti|ai+1σ, since % and � are closed under substitutions.
If the reduction pair (%,�) is (→∗

S
,→+

S
), then we obtain a contradiction to

the minimality of s similar as in the proof of Thm. 12. Otherwise, ti|ai+1σ %

si+1|ai+1σ due to (b) since ti|ai+1σ →∗
R∪S

si+1|ai+1σ. Hence, we have an infinite
decreasing sequence w.r.t. � which contradicts its well-foundedness. ut

In the corresponding approach for innermost termination, we integrate the
technique of Thm. 9 with dependency pairs. (Integrating a variant of Thm. 12

19

for innermost termination would have the disadvantage that one would prove
innermost termination of R∪ S which does not imply innermost termination of
R.) In the dependency pair approach for innermost termination, only the usable
rules for defined symbols in right-hand sides t of dependency pairs s → t have to
be weakly decreasing. Here, one can benefit from the size-change principle, which
restricts the comparison of terms to certain arguments. Function symbols of t

which do not occur in the arguments being compared do not have to be regarded
as being “usable”. More precisely, if one uses the extension of a reduction pair
which only compares terms with defined symbols from a subset D ′ ⊆ D, then
one only has to require weak decreasingness of U(D ′). Thus, here the size-change
principle has the important advantage that one can reduce the set of usable rules.

For example, the Ackermann TRS has the rule ack(s(x), s(y)) → ack(x,

ack(s(x), y)) and therefore, we obtain the dependency pair ACK(s(x), s(y)) →
ACK(x, ack(s(x), y)). Since ack occurs in the right-hand side of this dependency
pair, in the dependency pair approach we would have to require l % r for all ack-
rules since they would be regarded as being usable. For this reason, we would need
a lexicographic comparison. However, in our new technique, the ACK-dependency
pairs are transformed into size-change graphs and size-change termination can
easily be shown using the embedding ordering on constructor terms (i.e., D ′ = ∅).
In other words, the second argument of ACK(x, ack(s(x), y)) is never regarded in
this comparison and therefore, the ack-rules are no longer usable. So instead of
LPO we only need the embedding ordering to satisfy the resulting constraints.
Hence, in the combined technique one can often use much simpler reduction pairs
than the reduction pairs needed with dependency pairs.

Here it is important that extensions are non-monotonic. Consider the TRS
of Ex. 19 and a reduction pair on constructor terms (i.e., D ′ = ∅) where a is
greater than b. Hence, we do not have to regard any usable rules. In the extension
(%,�) of this reduction pair we have f(a) 6� f(b). Thus, the dependency pair
G(f(a)) → G(f(b)) is not decreasing, i.e., innermost termination is not proved. But
if the extension were monotonic, we would falsely prove innermost termination
of R.

Theorem 21 (Innermost Termination Proofs) A TRS R is innermost ter-
minating if for each cycle P in the innermost dependency graph there is a reduc-
tion pair on T (C ∪ D′ ∪ F],V) 2 for some D′ ⊆ D which is monotonic if D′ 6= ∅,
such that for its extension (%,�) to T (F ∪F],V) we have

(a) all maximal multigraphs w.r.t. (%,�) labeled with P contain an edge i
�→ i

(b) l % r for all l → r ∈ U(D′)

2 Instead of a reduction pair on T (C ∪ D′ ∪ F],V) one can also use a reduction pair (� ′,

�′) with � ′,�′⊆ T (F ∪ F],V) × T (C ∪ D′ ∪ F],V). Here, � ′ and �′ must be closed under
substitutions with terms from T (C ∪ D′ ∪ F],V) and the reduction pair is considered to be
monotonic if � ′ is closed under T (C ∪ D′ ∪ F],V)-contexts. The advantage of this modifica-
tion is that one can deal with defined symbols on left-hand sides of dependency pairs without
including them in D′.

20

If R is size-change terminating w.r.t. a reduction pair as in Thm. 9 or if a reduc-
tion pair satisfies Conditions (c) and (d) of Thm. 17 for innermost termination
with dependency pairs, then it also satisfies the conditions of this criterion.

Proof. Thm. 21 can simulate the size-change principle: As in Thm. 20, size-
change termination implies (a). Moreover, if (%,�) is the extension of a reduction
pair on T (C,V) as in Thm. 9, then D′ = ∅ and thus, (b) is also satisfied.

The simulation of dependency pairs and the soundness of the above criterion
are shown as for Thm. 20. If R is not innermost terminating, then there is an
infinite innermost chain s1 → t1, s2 → t2, . . . with tiσ

i→∗
R

si+1σ and all siσ are
normal forms. As in Thm. 20’s proof, this implies that in the infinite graph re-
sulting from the corresponding size-change graphs there is an infinite path with
infinitely many “�” labels. For every i, let ai be the output node in the size-
change graph corresponding to si → ti which is on this infinite path. To conclude
ti|ai+1σ % si+1|ai+1σ, note that si|ai

% ti|ai+1 or si|ai
� ti|ai+1 . According to

the definition of extending reduction pairs, all subterms of ti|ai+1 with root from
D\D′ also occur in si|ai

. Hence, when instantiated by σ they are in normal form.
Therefore, the only rules applicable to ti|ai+1σ are from U(D′). Moreover, above
the redexes of ti|ai+1σ there are no symbols from D \ D′, since otherwise these
redexes would also occur in the normal form si|ai

σ. Now (b) ensures ti|ai+1σ %

si+1|ai+1σ. The remainder is as in Thm. 20’s proof. ut

The combined technique can handle TRSs where both original techniques
fail, since some rules require a lexicographic or multiset comparison and others
require polynomial orderings. In the combined technique, a lexicographic or mul-
tiset comparison is implicit since the size-change principle is incorporated. Thus,
the resulting constraints are often satisfied by simple polynomial orderings. For
example, we unite the plus-TRS (Ex. 16) with the TRS for Ackermann’s func-
tion, where ack(s(x), s(y)) → ack(x, ack(s(x), y)) is replaced by ack(s(x), s(y)) →
ack(x, plus(y, ack(s(x), y))). In the original dependency pair approach, both the
ack- and plus-rules are usable for the corresponding dependency pair and thus, no
standard ordering amenable to automation fulfills the resulting constraints. But
in the combined technique, there are no usable rules and hence, the innermost
termination proof works with the simple polynomial ordering on constructors
and tuple symbols where s(x) is mapped to x + 1 and PLUS(x, y) is mapped to
x + y. In practice, there are many TRSs where the combined technique simpli-
fies the termination proof significantly (e.g., TRSs for arithmetic operations, for
sorting algorithms, for term manipulations in λ-calculus, etc., cf. the appendix).

Example 22 To demonstrate the power of combining dependency pairs and the
size-change principle, we consider the following TRS for sorting lists taken from
[2, Ex. 3.10].

eq(0, 0) → true (6)

eq(0, s(x) → false (7)

21

eq(s(x), 0) → false (8)

eq(s(x), s(y)) → eq(x, y) (9)

le(0, y) → true (10)

le(s(x), 0 → false (11)

le(s(x), s(y)) → le(x, y) (12)

app(nil, y) → y (13)

app(add(n, x), y) → add(n, app(x, y)) (14)

min(add(n, nil)) → n (15)

min(add(n, add(m,x))) → ifmin(le(n,m), add(n, add(m,x))) (16)

ifmin(true, add(n, add(m,x))) → min(add(n, x)) (17)

ifmin(false, add(n, add(m,x))) → min(add(m,x)) (18)

rm(n, nil) → nil (19)

rm(n, add(m,x)) → ifrm(eq(n,m), n, add(m,x)) (20)

ifrm(true, n, add(m,x)) → rm(n, x) (21)

ifrm(false, n, add(m,x)) → add(m, rm(n, x)) (22)

minsort(nil, nil) → nil (23)

minsort(add(n, x), y) → ifminsort(eq(n, min(add(n, x))), add(n, x), y) (24)

ifminsort(true, add(n, x), y) → add(n,minsort(app(rm(n, x), y), nil)) (25)

ifminsort(false, add(n, x), y) → minsort(x, add(n, y)) (26)

To increase efficiency when using the dependency pair approach, instead of
searching for different reduction pairs for every cycle, one often tries to use the
same reduction pair (%,�) for all cycles in a strongly connected component
(SCC) of the (estimated) dependency graph. Thus, instead of Constraint (a) in
Thm. 17 we require the following constraints for all SCCs P:

(a)1 s % t for all s → t ∈ P
(a)2 s � t for at least one s → t ∈ P ′ for each cycle P ′ ⊆ P

The most interesting part is to show the termination of minsort and ifminsort.
The corresponding SCC consists of the following three dependency pairs.

MINSORT(add(n, x), y) → IFminsort(eq(n,min(add(n, x))), add(n, x), y)(27)

IFminsort(true, add(n, x), y) → MINSORT(app(rm(n, x), y), nil) (28)

IFminsort(false, add(n, x), y) → MINSORT(x, add(n, y)) (29)

In order to prove the absence of infinite chains built from (27), (28), (29), one
can show that in each cycle either the sum of both list sizes is reduced or the sum
remains equal and the first list is shortened. The list sizes can be expressed in

22

simple linear polynomials, but the lexicographic combination cannot be expressed
with simple polynomials. Therefore in [2], polynomials of degree 2 have been used
to simulate the lexicographic comparison.

In contrast to this, with the combined approach of Thm. 20 we are not forced
to use complex polynomials, even when regarding SCCs instead of cycles. The
reason is that the lexicographic combination can be simulated in the size-change
graphs. We map add(n, x) to n + x + 1, 0, true, false, nil, eq, le are mapped to
0, rm(x, y) and ifrm(b, x, y) are mapped to y, min(x), ifmin(b, x) are mapped to x,
and app(x, y), minsort(x, y), MINSORT(x, y), ifminsort(b, x, y), IFminsort(b, x, y) are
mapped to x + y. Then all constraints from the rules can be oriented (i.e., l % r

for all rules l → r) and we obtain the following three size-change graphs:3

(27)

εminsort

�
// εifminsort

1ifminsort

1minsort

�
// 2ifminsort

2minsort

�
// 3ifminsort

(28)

εifminsort

� // εminsort

1ifminsort

2minsort
�

&&NNNNNN 1minsort

3minsort

�
// 2minsort

(29)

εifminsort

�
// εminsort

1ifminsort

2minsort

� // 1minsort

3minsort 2minsort

It is now easy to see that all maximal multigraphs either contain a �-edge
between their ε-nodes or there is a %-edge between the ε-nodes, and a �-edge
between the but-last argument nodes.

The same advantage can be seen in Ex. 3.13 of [2] which computes a reach-
ability predicate in directed graphs. Again, quadratic polynomials were used in
[2] to integrate lexicographic effects into a polynomial ordering. And similarly,
with the approach combining dependency pairs and the size-change principle, we
can show the termination using simple linear polynomials.

In [1, 7], several refinements to manipulate dependency pairs by narrowing,
rewriting, and instantiation were proposed. These refinements directly carry over
to our combined technique. To summarize, the combination of dependency pairs
and the size-change principle has two main advantages: First, one can now prove
(innermost) termination of TRSs automatically where up to now an automated
proof was impossible. Second, for many TRSs where up to now the termination
proof required complicated reduction pairs involving a large search space, one
can now use much simpler orderings which increases efficiency.

6 Conclusion

In this paper, we extended the size-change principle to prove (innermost) termi-
nation of arbitrary TRSs. Then we compared this principle with classical sim-

3 To improve readability we did not depict all edges.

23

plification orderings from term rewriting: It is also restricted to proving simple
termination, it incorporates lexicographic and multiset comparison for root sym-
bols (although not below the root), but it cannot handle defined symbols or
term measures and weights. Nevertheless, there are even examples where the
size-change principle is advantageous to dependency pairs, since it can simulate
argument filtering for root symbols and it can investigate how the size of argu-
ments changes in sequences of subsequent function calls. On the other hand, the
size-change principle is not modular and it lacks a concept like the dependency
graph to analyze which function calls can follow each other. For that reason,
we developed a new approach which combines the size-change principle with de-
pendency pairs. This combined approach is more powerful than both previous
techniques and it has the advantage that it often succeeds with much simpler
argument filterings and base orderings than the dependency pair approach. We
have implemented both the original dependency pair approach and the combined
approach in the system AProVE and found that this combination often increases
efficiency dramatically. With this combination and with an underlying reduc-
tion pair based on the lexicographic path ordering, 103 of the 110 examples in
the collection of [2] could be proved innermost terminating fully automatically.
Most of these proofs took less than a second and the longest proof took about
10 seconds. The remaining 7 examples in [2] only fail because of the underlying
reduction pair (e.g., one would need polynomial orderings or KBO). More details
on these experiments can be found in the appendix.

References

1. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theoretical
Computer Science, 236:133–178, 2000.

2. T. Arts and J. Giesl. A collection of examples for termination of term rewriting using de-
pendency pairs. Technical Report AIB-2001-09, RWTH Aachen, Germany, 2001. Available
from http://aib.informatik.rwth-aachen.de.

3. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
1998.

4. C. Borralleras, M. Ferreira, and A. Rubio. Complete monotonic semantic path orderings.
In Proc. 17th CADE, LNAI 1831, pages 346–364, 2000.

5. N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation, 3:69–116,
1987.

6. O. Fissore, I. Gnaedig, and H. Kirchner. Induction for termination with local strategies. In
Proc. 4th International Workshop on Strategies in Automated Deduction, ENTCS 58, 2001.

7. J. Giesl and T. Arts. Verification of Erlang processes by dependency pairs. Applicable
Algebra in Engineering, Communication and Computing, 12(1,2):39–72, 2001.

8. J. Giesl, T. Arts, and E. Ohlebusch. Modular termination proofs for rewriting using de-
pendency pairs. Journal of Symbolic Computation, 34(1):21–58, 2002.

9. S. Kamin and J. J. Lévy. Two generalizations of the recursive path ordering. Unpublished
Manuscript, University of Illinois, IL, USA, 1980.

10. D. Knuth and P. Bendix. Simple word problems in universal algebras. In J. Leech, editor,
Computational Problems in Abstract Algebra, pages 263–297. Pergamon, 1970.

11. K. Kusakari, M. Nakamura, and Y. Toyama. Argument filtering transformation. In Proc.
1st PPDP, LNCS 1702, pages 48–62, 1999.

24

12. D. Lankford. On proving term rewriting systems are Noetherian. Technical Report MTP-3,
Louisiana Technical University, Ruston, LA, USA, 1979.

13. C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle for program
termination. In Proc. POPL ’01, pages 81–92, 2001.

14. Y. Toyama. Counterexamples to the termination for the direct sum of term rewriting
systems. Information Processing Letters, 25:141–143, 1987.

25

A Implementation and Experiments

We have developed a system AProVE (Automated Program Verification Envi-
ronment) for mechanized verification of functional programs and term rewrite
systems. To perform automated termination or innermost termination proofs
of TRSs, the system currently offers the techniques of recursive path orderings
(possibly with status) and dependency pairs (including recent refinements such
as narrowing, rewriting, and instantiation of dependency pairs [7]). The tool is
written in Java and termination proofs can be performed via a graphical user
interface.

To evaluate the results developed in the present paper, we extended the sys-
tem by an implementation of the size-change principle and by an automatic tech-
nique to prove innermost termination based on Thm. 21, i.e., on our combination
of dependency pairs with the size-change principle. The combined technique was
tested against the original dependency pair technique using the large collection
of examples in [2].

We first present our algorithm to verify innermost termination of a TRS R
with defined symbols D and give a detailed explanation afterwards:

1. Compute the (estimated) innermost dependency graph of R.
2. For each strongly connected component P in the graph:

2.1. Let CP be the set of the constructors occurring in P,
let DP be a subset of the defined symbols
occurring in right-hand sides in P,
let π be an argument filtering over the signature CP ∪ DP .
If all such DP and all argument filterings π on CP ∪DP

have already been examined without success,
then abort with “No Success”.

2.2. Let s � t iff t ∈ T (CP ∪ DP ,V) and π(s) →+
EmbF

π(t).

Let s % t iff s � t or s = t.
2.3. Try to show that all maximal multigraphs w.r.t. (%,�)

labeled with P contain an edge i
�→ i.

2.4. If Step 2.3 fails, then go to Step 2.1 and
examine the next argument filtering π resp. the next subset DP .

2.5. Otherwise, let D′ consist of all defined symbols in U(DP).
Try to find a quasi-simplification ordering %′ on T (C ∪ D′,V)
and try to extend π to an argument filtering on C ∪ D ′

such that π(l) %′ π(r) for all l → r ∈ U(D′).
2.6. If Step 2.5 fails, then go to Step 2.1 and

examine the next argument filtering π resp. the next subset DP .
Otherwise, continue with the next
strongly connected component P in Step 2.

3. Finish with “Termination Proved”.

26

For reasons of efficiency, in our implementation we did not extend size-change
graphs by nodes labeled with ε, cf. Def. 18. These nodes would be necessary in
order to simulate dependency pairs with the combined technique. Thus, if our
implementation of the combined technique fails, then it might still be useful to
perform an (innermost) termination proof attempt with dependency pairs.

Moreover, to increase efficiency, in our implementation of the combined ap-
proach we regard SCCs instead of cycles of the (estimated) innermost dependency
graph. Clearly, every cycle is contained in a SCC and every SCC is a cycle, but
a SCC may contain several (smaller) cycles. In the original dependency pair ap-
proach, using cycles leads to a more powerful technique than using SCCs for two
reasons. One reason is that one can use different reduction pairs for each cycle,
whereas when working with SCCs one uses the same reduction pair for all cycles
contained in the SCC. However, in the examples of [2] this is not required for the
innermost termination proof of any TRS. The second and more important reason
why using cycles is more powerful than using SCCs is that only one dependency
pair in each cycle must be strictly decreasing, whereas the others only have to be
weakly decreasing. But when using SCCs, all dependency pairs of the SCC must
be strictly decreasing since the SCC may consist of many cycles. (See [7, p. 51]
for an example to illustrate this problem.) The constraints that all dependency
pairs in a SCC are strictly decreasing are often hard to satisfy, in particular when
handling mutually recursive functions.

However, this second reason is not valid any more for the combined approach
where the size-change principle is integrated into dependency pairs. The reason
is that the need for only one strict decrease in each cycle is implicitly covered by
the size-change analysis. Thus, in the combined approach, using SCCs instead of
cycles hardly changes the power of the method, whereas efficiency is increased
significantly, since there are typically far less SCCs than cycles. Moreover, when
regarding SCCs, in Thm. 21 (a), one must demand that all maximal multigraphs
(irrespective of their labeling) contain an edge of the form i

�→ i. Therefore,
now extended multigraphs with labelings (D1, . . . , Dn) and (D′

1, . . . , D
′
m) are

identified if their nodes and edges are identical and if D1 = D′
1 and Dn = D′

m, but
we do no longer require {D1, . . . , Dn} = {D′

1, . . . , D
′
m}. This increases efficiency,

since we obtain far less possible multigraphs. One should remark that for our
implementation of the original dependency pair approach, the change in efficiency
is much less dramatically when using SCCs instead of cycles,4 whereas using
cycles clearly increases the power of the original approach. Therefore, we usually
use cycles for the original dependency pair approach, but SCCs for the combined
technique. In a future version of our implementation of the combined technique,
we want to use cycles dynamically whenever the SCC-based analysis fails.

4 The reason is that there, we start with the largest cycles and keep in mind which dependency
pairs were strictly decreasing there. Then no extra work has to be done for those subcycles
which contain one of these strictly decreasing dependency pairs. This approach does not work
in the combination with the size-change principle, since here the selection between strict and
weak decrease is hidden in the computation of maximal multigraphs.

27

As in Thm. 21, we only regard a reduction pair on a subset D ′ of the defined
symbols. To this end, we first choose an arbitrary subset DP of the defined
symbols occurring in right-hand sides of dependency pairs from P. The reason is
that in size-change graphs we only have symbols from P.5 Afterwards, we define
D′ to consist of all defined symbols occurring in U(DP). The reason is that when
orienting the usable rules, we will have to consider these function symbols as
well.

Now we have to generate a suitable monotonic reduction pair with orderings
from T (F ,V) ×T (C ∪ D′,V) (different from Thm. 21, we do not have to extend
it to tuple symbols F], since we do not regard nodes labeled with ε). As in
the dependency pair approach, we use argument filterings in combination with
simplification orderings for this purpose. An argument filtering π maps terms
to terms by eliminating argument positions of function symbols. Moreover, it
is also possible to replace all occurrences of f -terms by their i-th argument
(for a function symbol f and 1 ≤ i ≤ arity(f)). When computing size-change
graphs, we already fix a part of the argument filtering, viz., we determine how π

operates on function symbols from CP ∪ DP ∪ DP ,L. Here, DP ,L denotes the set
of defined symbols occurring on left-hand sides in P. For CP ∪DP , the argument
filtering is chosen in Step 2.1 and for DP ,L \ DP we do not apply any filtering
when constructing the size-change graphs, so we are not allowed to apply a filter
later on. But we do not yet fix π on C \ CP and on D′ \ (DP ∪ DP ,L), since all
of these symbols do not occur in size-change graphs. Moreover, at this point,
we still leave the simplification ordering open. Thus, for the size-change graphs
we use a reduction pair (%,�) where s � t holds iff t ∈ T (CP ∪ DP ,V) and
π(s) →+

EmbF
π(t). Moreover, s % t iff s � t or s = t. For reasons of efficiency, in

our implementation it is possible to restrict the argument filterings considered
by determining how many symbols may be filtered at most.

After computing the size-change graphs we have to calculate the maximal
multigraphs and check whether all of them have an edge of the form i

�→ i.
As this may be an expensive operation we use a cache that stores the result
of this analysis for each set of size-change graphs. This caching is useful since
we often have to investigate equal sets of size-change graphs that are built by
different argument filters or different sets DP . In case of success (i.e., if all
maximal multigraphs have an edge of the form i

�→ i), the current reduction pair
is refined. To this end, π is also determined on the remaining symbols from C \CP

and D′ \ (DP ∪ DP ,L) and % is refined such that s % t iff π(s) %′ π(t) holds for
some quasi-simplification ordering %′. Note that the quasi-ordering % used for
the size-change graphs is indeed a subset of the refined quasi-ordering %, since
π(s) →EmbF

π(t) implies π(s) %′ π(t). The reason is that a quasi-simplification
ordering is a quasi-ordering containing the embedding ordering. Moreover, after
this refinement, (%,�) is still a monotonic reduction pair with orderings from

5 Defined symbols that only occur on left-hand sides of dependency pairs do not have to
be included in D′, since according to Footnote 2, we may use orderings from T (F ,V) ×
T (C ∪ D′,V), i.e., the “greater” term may come from the whole signature.

28

T (F ,V) × T (C ∪ D′,V). Thus, the final reduction pair used for the whole proof
consists of (the extension of) � and the refined version of %. Since the size-change
graphs were computed with a subset of the final refined quasi-ordering %, some
edges

�
→ may be missing, but this only affects the power, not the soundness of

the approach.

In contrast to Thm. 21, when computing size-change graphs, we do not con-
sider the extension of the ordering �, but instead we only allow a comparison
s � t if the term t on the right-hand side is from �’s signature CP ∪ DP for
right-hand sides. This approach is still correct, since every ordering is contained
in its extension. For %, we consider a part of its extension by allowing the com-
parison of equal terms outside of its signature CP ∪ DP for right-hand sides.
When comparing the terms of usable rules with the refined quasi-ordering over
T (C ∪ D′,V), an extension is not necessary any more, since the function symbols
in U(D′) = U(DP) are already contained in C ∪ D′.

The reason for only using the embedding ordering when comparing the ar-
guments in the size-change graphs is efficiency. More sophisticated orderings like
RPOS have several parameters (i.e., status and precedence). When using RPOS
for ordinary termination proofs (possibly with dependency pairs), these param-
eters are determined incrementally. However, to transfer this approach to the
size-change principle one would have to draw conclusions from an unsuccessful
size-change analysis to extend the precedence. This will be done in a future ver-
sion of the implementation. Nevertheless, our experiments show that the embed-
ding ordering is sufficient for many examples. Even if we choose the embedding
order for orienting the usable rules it turns out that most examples do not need
a more powerful ordering.

For the original dependency pair approach, as an alternative to brute-force
search we have developed an improved method which cuts off branches of the
search tree which are subsumed by previously examined argument filterings.
These improvements are also used in Step 2.5 in the combined technique.

To increase the power of the dependency pair approach, techniques to modify
the dependency pairs by narrowing, rewriting, and instantiation were introduced
in [7]. Every infinite innermost chain of the original dependency pairs corresponds
to an infinite chain of the modified pairs. These refinements can also be used for
the combination of dependency pairs and the size-change principle. To this end,
size-change graphs are built out of the modified dependency pairs and labeled
by these modified pairs. However, narrowing, rewriting, and instantiation are
only applied to dependency pairs (and size-change graphs), but not to the usable
rules. Here, one still uses the original rules from the TRS under consideration.
In our experiments, NRI indicates whether the use of narrowing, rewriting, and
instantiation was permitted. In that case, we always performed so called safe
transformations which are guaranteed to terminate. After applying these safe
transformations, we tried to orient the constraints resulting from the cycle. If
this orientation attempt failed, at most one narrowing and one instantiation step
were done for each dependency pair and then the proof attempt was repeated

29

with the modified dependency pairs.

In addition, we have integrated a hybrid variant of this algorithm. The dif-
ference to the algorithm described above is the following: If Step 2.1 returns “No
Success”, then we try to solve the constraints resulting from the original de-
pendency pair approach using SCCs. If this succeeds, we continue with the next
strongly connected component in the hybrid algorithm. Otherwise we return a fi-
nal “No Success”. In combination with narrowing, rewriting, and instantiation,
the hybrid algorithm first tries to use these techniques in case of a failure in Step
2.1. If these techniques do not succeed, too, then the original dependency pair
approach is used for the transformed strongly connected component.

In the following experiments, we used the original dependency pair approach
and the combined approach of dependency pairs with the size-change principle in
order to verify innermost termination of the 110 examples in [2].6 More precisely,
we used the following types of termination techniques:

– scp is the combination of dependency pairs and the size-change principle as
described above. However, to increase efficiency, we only try sets DP with
|DP | ≤ 2 and only allow a filtering of at most two function symbols in Step
2.1 (i.e., when building size-change graphs). Later, when orienting the usable
rules in Step 2.5, one can define π on C \CP and D′ \ (DP ∪DP ,L) arbitrarily.

– hscp is the hybrid version of scp.

– dpscc is the original dependency pair approach using SCCs instead of cycles.

– dp is the original dependency pair approach using cycles. However, as ex-
plained in Footnote 4, we do not check every cycle, but only the necessary
ones.

In the experiments, the following base orders (or reduction pairs) are applied.

– emb is the embedding ordering. This is the weakest, but also the fastest base
ordering in our experiments.

– lpo is the lexicographic path ordering where argument are compared lexico-
graphically from left to right. The required precedence is determined auto-
matically.

– qlpo is an extension of lpo. In contrast to lpo, in qlpo different symbols
may be equal in the precedence (thus, “q” stands for “quasi”).

– qrpos is the recursive path order with status. Here, the status (i.e., multi-
set or lexicographic comparison w.r.t. an arbitrary permutation of the argu-
ments) as well as the precedence is determined automatically. It subsumes all
of the above orderings.

For all of these path orderings, our system offers two algorithms. In breadth-
first search (bfs), one starts with computing a set of minimal stati and prece-
dences which solve the first constraint. When examining the next constraint, this

6 In Ex. 4.30c, the minus-rules must be chosen as in Ex. 4.30, 4.30a, and 4.30b. Otherwise,
innermost termination can hardly be proved automatically using dependency pairs.

30

set is refined further, and so on. This kind of calculation is good for a fast failure
detection.

Depth-first search (dfs) only looks for one status and precedence that solves
the given constraints. If a failure is detected, backtracking is performed. Thus,
this computation is usually faster than bfs in case of success, but slower in case
of failure.

type order NRI Power Time

dpscc emb bfs yes 66 [60.0 %] 65.2 s [0.5 s]
dpscc lpo bfs yes 87 [79.0 %] 1331.6 s [12.1 s]
dp lpo bfs yes 93 [84.5 %] 1468.3 s [13.3 s]
dp lpo dfs yes 93 [84.5 %] 1474.0 s [13.4 s]
dp qlpo bfs yes 95 [86.3 %] 1564.0 s [14.2 s]
dp qlpo dfs yes 95 [86.3 %] 1679.8 s [15.2 s]
dp qrpos bfs yes 97 [88.1 %] 1760.9 s [16.0 s]
dp qrpos dfs yes 85 [77.2 %] 2481.5 s [22.5 s]

scp emb bfs yes 84 [76.3 %] 293.1 s [2.6 s]
scp lpo bfs yes 93 [84.5 %] 293.7 s [2.6 s]
scp lpo dfs yes 93 [84.5 %] 268.7 s [2.4 s]
scp qlpo bfs yes 94 [85.4 %] 262.6 s [2.3 s]
scp qlpo dfs yes 94 [85.4 %] 247.9 s [2.2 s]
scp qrpos bfs yes 94 [85.4 %] 272.7 s [2.4 s]
scp qrpos dfs yes 94 [85.4 %] 248.0 s [2.2 s]

hscp lpo bfs yes 100 [90.9 %] 423.4 s [3.8 s]
hscp lpo dfs yes 100 [90.9 %] 424.8 s [3.8 s]
hscp qlpo bfs yes 103 [93.6 %] 326.4 s [2.9 s]
hscp qlpo dfs yes 103 [93.6 %] 310.7 s [2.8 s]
hscp qrpos bfs yes 103 [93.6 %] 402.7 s [3.6 s]
hscp qrpos dfs yes 103 [93.6 %] 323.4 s [2.9 s]

Table 1. Performance of the different techniques on the examples of [2]

Table 1 shows in the “power” column the number and the percentage of the
examples where the respective approach was successful within a time limit of 120
seconds. In the “time” column, it shows the time required for the 110 innermost
termination proof attempts (where proof attempts were interrupted after 120
seconds) as well as the average time needed per example (in square brackets).
Our experiments were performed on a Pentium IV with 2 GHz and 512 MB.

It turned out that RPOS had no advantage compared to LPO in our examples
using the combined method, whereas RPOS was needed for four examples using
the DP-approach. The possibility to regard precedences where different function
symbols are equal increases the power in both methods. To analyze the specific
advantages and disadvantages of dependency pairs and the combined technique,
the following table presents the results when using qrpos as the underlying base
ordering in the DP-approach, qlpo as the base ordering in the combined (hybrid)
algorithm and when enabling the use of narrowing, rewriting, and instantiation.
Thus, in this way we compare the most powerful version of dependency pairs

31

against the most powerful version of the combined technique in our implemen-
tation. If the proof attempt finished within 120 seconds, we gave the execution
time (in seconds) and otherwise we wrote “∞”. Moreover, “OK” means that
innermost termination was proved and “-” means that the proof attempt failed.

Type dp scp hscp
Order qrpos bfs qlpo dfs qlpo dfs
NRI yes yes yes

#3.1 1.0 OK 0.7 OK 0.7 OK
#3.2 0.3 OK 0.1 OK 0.1 OK
#3.3 19.2 OK 0.2 OK 0.6 OK
#3.4 1.1 OK 0.2 OK 0.2 OK
#3.5 14.6 OK 0.3 OK 0.3 OK
#3.5a 10.9 OK 0.2 OK 0.2 OK
#3.5b 92.7 OK 0.3 OK 0.3 OK
#3.6 30.2 OK 0.4 OK 0.4 OK
#3.6a 15.8 OK 0.4 OK 0.4 OK
#3.6b ∞ [-] 0.5 OK 0.5 OK
#3.7 0.1 OK 0.1 OK 0.1 OK
#3.8 1.2 OK 0.3 OK 0.3 OK
#3.8a 1.3 OK 0.3 OK 0.3 OK
#3.8b 83.6 OK 0.5 OK 0.5 OK
#3.9 63.8 OK 0.3 OK 0.3 OK
#3.10 ∞ [-] 69.6 - ∞ [-]
#3.11 ∞ [-] 1.6 OK 2.0 OK
#3.12 3.7 - 0.9 - 1.0 -
#3.13 ∞ [-] ∞ [-] ∞ [-]
#3.14 7.0 OK 0.7 - 0.8 OK
#3.15 0.3 - 0.0 - 0.1 -
#3.16 0.1 OK 0.0 OK 0.1 OK
#3.17 7.3 OK 2.0 - 2.9 OK
#3.17a 14.8 OK 2.0 - 4.3 OK
#3.18 0.4 OK 0.3 OK 0.3 OK
#3.19 0.6 OK 0.3 OK 0.4 OK
#3.20 0.6 OK 0.2 OK 0.2 OK
#3.21 0.1 OK 1.0 OK 0.5 OK
#3.22 0.5 OK 0.1 OK 0.1 OK
#3.23 0.2 OK 0.0 OK 0.1 OK
#3.24 0.5 - 0.2 - 0.3 -
#3.25 0.1 OK 0.0 OK 0.1 OK
#3.26 0.0 OK 0.2 - 0.3 OK
#3.27 0.0 OK 0.0 OK 0.0 OK
#3.28 13.5 OK 0.0 OK 0.1 OK
#3.29 0.0 OK 0.0 OK 0.0 OK
#3.30 0.0 OK 0.0 OK 0.0 OK

Type dp scp hscp
Order qrpos bfs qlpo dfs qlpo dfs
NRI yes yes yes

#3.31 0.0 OK 0.0 OK 0.0 OK
#3.32 0.0 OK 0.0 OK 0.0 OK
#3.33 0.0 OK 0.0 OK 0.0 OK
#3.34 0.0 OK 0.0 OK 0.0 OK
#3.35 0.0 OK 0.0 OK 0.0 OK
#3.36 1.0 OK 2.0 - 2.1 OK
#3.37 0.1 OK 0.0 OK 0.0 OK
#3.38 33.7 OK 0.3 - 2.4 OK
#3.39 0.3 OK 0.2 OK 0.1 OK
#3.40 0.3 OK 0.2 OK 0.2 OK
#3.41 0.0 OK 0.0 OK 0.0 OK
#3.42 0.3 OK 0.2 OK 0.3 OK
#3.43 0.2 OK 0.1 OK 0.1 OK
#3.44 0.1 OK 0.1 OK 0.1 OK
#3.45 0.2 OK 0.3 OK 0.3 OK
#3.46 0.0 OK 0.0 OK 0.0 OK
#3.47 0.3 OK 0.1 OK 0.0 OK
#3.48 8.5 OK 6.6 - 10.2 OK
#3.49 4.1 - 0.1 - 0.6 -
#3.50 0.0 OK 0.0 OK 0.0 OK
#3.51 0.1 OK 0.0 OK 0.0 OK
#3.52 0.4 OK 0.0 OK 0.0 OK
#3.53 10.5 - 0.9 - 1.7 -
#3.53a 0.0 OK 0.0 OK 0.0 OK
#3.53b 0.4 OK 0.0 OK 0.0 OK
#3.54 0.1 OK 0.0 OK 0.1 OK
#3.55 ∞ [-] 1.7 OK 1.6 OK
#3.56 0.2 OK 0.1 OK 0.1 OK
#3.57 8.2 OK 2.1 - 2.5 OK
#4.1 0.0 OK 0.0 OK 0.0 OK
#4.2 0.0 OK 0.0 OK 0.0 OK
#4.3 0.0 OK 0.0 OK 0.0 OK
#4.4 0.0 OK 0.0 OK 0.0 OK
#4.4a 0.0 OK 0.1 OK 0.1 OK
#4.5 0.0 OK 0.0 OK 0.0 OK
#4.6 0.4 OK 0.2 OK 0.2 OK
#4.7 0.0 OK 0.0 OK 0.0 OK

32

Type dp scp hscp
Order qrpos bfs qlpo dfs qlpo dfs
NRI yes yes yes

#4.8 0.7 OK 0.2 OK 0.2 OK
#4.9 1.0 OK 0.3 OK 0.3 OK
#4.10 0.0 OK 0.0 OK 0.0 OK
#4.11 0.0 OK 0.0 OK 0.0 OK
#4.12 0.8 OK 0.0 OK 0.0 OK
#4.12a 0.5 OK 0.0 OK 0.0 OK
#4.13 0.0 OK 0.0 OK 0.0 OK
#4.14 0.0 OK 0.0 OK 0.0 OK
#4.15 0.0 OK 0.0 OK 0.0 OK
#4.16 0.0 OK 0.0 OK 0.0 OK
#4.17 0.0 OK 0.0 OK 0.0 OK
#4.18 0.0 OK 0.1 OK 0.1 OK
#4.19 1.0 OK 0.0 OK 0.0 OK
#4.20 0.0 OK 0.0 OK 0.0 OK
#4.20a 0.2 OK 0.2 OK 0.1 OK
#4.21 0.1 OK 0.1 OK 0.0 OK
#4.22 0.1 OK 0.0 OK 0.0 OK
#4.23 0.4 OK 0.3 OK 0.3 OK
#4.24 0.1 OK 0.1 OK 0.0 OK

Type dp scp hscp
Order qrpos bfs qlpo dfs qlpo dfs
NRI yes yes yes

#4.25 0.0 OK 0.0 OK 0.0 OK
#4.26 72.0 OK 1.0 OK 1.0 OK
#4.27 0.1 OK 0.1 OK 0.1 OK
#4.28 0.2 OK 0.2 OK 0.2 OK
#4.29 111.6 OK 3.5 OK 3.6 OK
#4.30 97.5 OK 1.9 OK 1.9 OK
#4.30a 0.3 OK 0.1 OK 0.2 OK
#4.30b 45.5 OK 0.9 OK 0.9 OK
#4.30c ∞ [-] 4.6 OK 4.6 OK
#4.31 0.7 OK 0.8 OK 0.8 OK
#4.32 0.4 OK 0.0 OK 0.0 OK
#4.33 3.1 OK 0.2 OK 0.2 OK
#4.34 5.3 OK 1.1 - 2.2 OK
#4.35 ∞ [-] 3.7 OK 3.7 OK
#4.36 ∞ [-] 4.3 OK 4.3 OK
#4.37 0.2 OK 0.1 OK 0.1 OK
#4.37a 0.2 OK 0.1 OK 0.1 OK

Sum: 1760 97 247 94 310 103
Avg/%: 16.0 88.1 2.2 85.4 2.8 93.6

Of course, the most interesting examples are the ones where the two tech-
niques differ in their success or in their performance.

– For some examples, dependency pairs are successful, whereas the combined
non-hybrid technique fails (natural algorithms like 3.14 (comparison of binary
trees), 3.17 and 3.17a (summing up list elements), 3.38 (reverse), 3.57 (com-
parison of binary trees + quot) and pathological examples like 3.26, 3.36,
3.48, and 4.34). In almost all of these examples, the reason is that in our
implementation we only use the embedding ordering to build the size-change
graphs, whereas a more sophisticated path ordering would be required here.
All of these examples are easily solved with the hybrid algorithm. In the ex-
amples 3.14, 3.17, 3.17a, 3.38, 3.57, and 4.34 the hybrid algorithm is even
faster than the dependency pair technique. The reason is that the combined
technique can determine quickly that it fails without narrowing, rewriting,
or instantiation, and so the transformations will be applied earlier. After the
transformation limit has been reached, the system switches to the original de-
pendency pair approach and the transformed pairs can be oriented directly.
If one starts with the dependency pair method, the need for transformations
is determined only after a failed orientation attempt with the use of depen-
dency pairs. The detection of this failure costs more time than when using
the combined algorithm.

33

– For some examples, the combined technique is successful, whereas dependency
pairs “fail” (3.6b (gcd), 3.11 (quicksort), 3.55 (quicksort + div), 4.30c (gcd),
4.35 (renaming in lambda calculus), 4.36 (selection sort)) or take much longer
time (3.5b (mod), 3.6 (gcd), 3.8b (log), 4.26 (minus), 4.29 (times), 4.30 (quot),
4.30b (mod)). In all the “failures” mentioned above, the proof attempt was
aborted because of a timeout. Indeed, for all these example it is possible
to solve them with the dependency pair approach if one would only allow
them enough time. One might argue that this comparison is unfair because
in the combined method we used the faster qlpo. But for examples 3.6, 3.6a,
3.6b, and 4.30c one really needs the slower but more powerful qrpos. (In
contrast, for three of these four examples the combined algorithm is successful
even with the embedding order.) The time difference between the combined
approach and the original dependency pair technique can even be seen if one
uses qrpos in the combined approach (for the examples mentioned above,
the combined approach using qrpos is at most 5 seconds slower; see the
full tables at the end of this report for details). In the other examples, the
combined technique benefits from mainly two facts. There are less usable
rules, and there are far less argument filterings that have to be considered
for orienting the usable rules than in the original approach: If we perform a
successful size-change analysis, we have fixed the argument filtering for many
symbols, so the search space is reduced enormously.

– Finally, there are 7 examples which cannot be handled by our current imple-
mentation (3.10 (minsort), 3.12 (shuffle), 3.13 (reachability), 3.15 (average),
3.53 (quot + shuffle + comparison of binary trees), as well as the two patho-
logical examples 3.24 and 3.49).
Termination of Example 3.24 cannot be shown using the combined approach
or the dependency pair method if one is restricted to path orderings like
RPOS. But if we use a reduction pair based on Knuth-Bendix orderings or
on polynomial orderings then termination is easy to prove.
In the remaining examples 3.10, 3.12, 3.13, 3.15, 3.49, and 3.53, path order-
ings like RPOS are too weak for a successful termination proof, too. The
difference to Example 3.24 is that here even Knuth-Bendix orderings cannot
be used to generate appropriate reduction pairs. But again, with reduction
pairs based on polynomial orderings our algorithm would be able to prove
the termination of these examples. We are currently working on an imple-
mentation of polynomial orderings in AProVE.

To summarize, we implemented a version of the combined technique which
uses SCCs instead of cycles, which disregards nodes of size-change graphs labeled
with ε, and which only builds size-change graphs using the embedding ordering.
The advantage is that in this way, the method works very efficiently and our
experiments show that this approach is already very powerful. As a consequence
of the efficiency of the basic algorithm, we have developed a hybrid variant where
we first do a fast and often successful analysis based on the combined technique
and in case of a failure we switch to the original dependency pair method. In

34

this way we solved 103 of the 110 examples with qlpo as underlying reduction
pair. For each of these examples, the proof is performed in less than 10.5 seconds
(and most examples are solved in less than a second).

The detailed results of our experiments can be found on the following pages.
All experiments in the following tables were performed completely automatically.

Type dpscc dpscc dp dp dp dp dp dp
Order emb bfs lpo bfs lpo bfs lpo dfs qlpo bfs qlpo dfs qrpos bfs qrpos dfs
NRI yes yes yes yes yes yes yes yes

#3.1 0.5 OK 0.5 OK 0.6 OK 0.6 OK 0.6 OK 0.6 OK 1.0 OK 0.8 OK
#3.2 0.1 OK 0.1 OK 0.1 OK 0.7 OK 0.1 OK 0.1 OK 0.3 OK 0.1 OK
#3.3 0.2 - 6.2 OK 6.3 OK 6.4 OK 9.3 OK 9.2 OK 19.2 OK ∞ [-]
#3.4 0.1 - 0.2 OK 0.2 OK 0.2 OK 0.3 OK 0.2 OK 1.1 OK 0.3 OK
#3.5 0.3 - 6.8 OK 7.1 OK 7.3 OK 7.7 OK 10.6 OK 14.6 OK ∞ [-]
#3.5a 0.3 - 8.3 OK 5.8 OK 6.0 OK 6.3 OK 9.5 OK 10.9 OK ∞ [-]
#3.5b 0.3 - 33.5 OK 33.3 OK 33.4 OK 70.4 OK 98.2 OK 92.7 OK ∞ [-]
#3.6 0.4 - ∞ [-] ∞ [-] ∞ [-] ∞ [-] ∞ [-] 30.2 OK ∞ [-]
#3.6a 0.4 - 68.4 - ∞ [-] ∞ [-] ∞ [-] ∞ [-] 15.8 OK ∞ [-]
#3.6b 0.3 - ∞ [-] ∞ [-] ∞ [-] ∞ [-] ∞ [-] ∞ [-] ∞ [-]
#3.7 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.1 OK 0.1 OK 0.1 OK
#3.8 0.1 OK 0.4 OK 0.3 OK 0.3 OK 0.3 OK 0.3 OK 1.2 OK 0.5 OK
#3.8a 0.3 OK 0.3 OK 0.4 OK 0.3 OK 0.4 OK 0.4 OK 1.3 OK 0.6 OK
#3.8b 0.3 - 28.5 OK 27.0 OK 27.1 OK 44.1 OK 31.9 OK 83.6 OK ∞ [-]
#3.9 0.4 - 28.8 OK 29.5 OK 29.4 OK 38.5 OK 44.8 OK 63.8 OK ∞ [-]
#3.10 1.3 - ∞ [-] ∞ [-] ∞ [-] ∞ [-] ∞ [-] ∞ [-] ∞ [-]
#3.11 0.7 - ∞ [-] ∞ [-] ∞ [-] ∞ [-] ∞ [-] ∞ [-] ∞ [-]
#3.12 0.2 - 0.4 - 0.4 - 0.4 - 0.5 - 0.5 - 3.7 - 3.0 -
#3.13 3.2 - ∞ [-] ∞ [-] ∞ [-] ∞ [-] ∞ [-] ∞ [-] ∞ [-]
#3.14 0.2 - 0.3 - 0.8 - 0.8 - 0.4 OK 0.3 OK 7.0 OK 1.6 OK
#3.15 0.0 - 0.0 - 0.0 - 0.1 - 0.0 - 0.1 - 0.3 - 0.3 -
#3.16 0.0 OK 0.1 OK 0.1 OK 0.1 OK 0.0 OK 0.1 OK 0.1 OK 0.1 OK
#3.17 0.4 - 0.9 OK 1.0 OK 1.0 OK 1.0 OK 1.0 OK 7.3 OK 2.5 OK
#3.17a 0.4 - 3.1 OK 2.9 OK 3.0 OK 3.5 OK 3.4 OK 14.8 OK 9.0 OK
#3.18 0.5 - 0.1 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.4 OK 0.2 OK
#3.19 0.6 - 0.2 OK 0.3 OK 0.2 OK 0.3 OK 0.2 OK 0.6 OK 0.3 OK
#3.20 0.1 OK 0.2 OK 0.5 OK 0.2 OK 0.1 OK 0.1 OK 0.6 OK 0.2 OK
#3.21 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK
#3.22 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.3 OK 0.5 OK 0.4 OK
#3.23 0.0 OK 0.1 OK 0.1 OK 0.0 OK 0.5 OK 0.1 OK 0.2 OK 0.1 OK
#3.24 0.1 - 0.2 - 0.3 - 0.2 - 0.3 - 0.3 - 0.5 - 0.5 -
#3.25 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.1 OK 0.0 OK
#3.26 0.1 - 0.4 - 0.2 - 0.2 - 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.27 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.28 0.5 - 0.8 OK 0.8 OK 0.8 OK 1.3 OK 0.9 OK 13.5 OK 3.1 OK
#3.29 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.30 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.31 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.32 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.33 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.34 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.35 0.0 OK 0.1 OK 0.0 OK 0.0 OK 0.1 OK 0.0 OK 0.0 OK 0.0 OK
#3.36 0.9 - 0.7 OK 1.6 OK 1.5 OK 0.6 OK 0.5 OK 1.0 OK 0.7 OK

35

Type dpscc dpscc dp dp dp dp dp dp
Order emb bfs lpo bfs lpo bfs lpo dfs qlpo bfs qlpo dfs qrpos bfs qrpos dfs
NRI yes yes yes yes yes yes yes yes

#3.37 0.0 - 0.0 - 0.0 OK 0.1 OK 0.0 OK 0.0 OK 0.1 OK 0.1 OK
#3.38 0.2 - 1.8 OK 2.2 OK 2.2 OK 3.9 OK 5.8 OK 33.7 OK 29.1 OK
#3.39 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.3 OK 0.2 OK
#3.40 0.1 OK 0.2 OK 0.3 OK 0.2 OK 0.2 OK 0.2 OK 0.3 OK 0.2 OK
#3.41 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.42 0.1 OK 0.1 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.3 OK 0.2 OK
#3.43 0.0 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.2 OK 0.2 OK
#3.44 0.0 OK 0.1 OK 0.0 OK 0.0 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK
#3.45 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.2 OK 0.2 OK 0.2 OK 0.1 OK
#3.46 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.47 0.0 OK 0.0 OK 0.1 OK 0.0 OK 0.1 OK 0.0 OK 0.3 OK 0.1 OK
#3.48 0.5 - 3.8 OK 3.9 OK 4.0 OK 4.3 OK 3.8 OK 8.5 OK 4.7 OK
#3.49 0.0 - 0.0 - 2.2 - 2.0 - 2.1 - 2.0 - 4.1 - 4.0 -
#3.50 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.51 0.0 OK 0.1 OK 0.0 OK 0.0 OK 0.1 OK 0.0 OK 0.1 OK 0.0 OK
#3.52 0.0 - 0.2 - 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.4 OK 0.2 OK
#3.53 0.5 - 0.6 - 1.1 - 1.3 - 1.2 - 1.0 - 10.5 - 4.5 -
#3.53a 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.53b 0.0 - 0.1 - 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.4 OK 0.2 OK
#3.54 0.0 OK 0.0 OK 0.1 OK 0.0 OK 0.1 OK 0.0 OK 0.1 OK 0.1 OK
#3.55 0.7 - ∞ [-] ∞ [-] ∞ [-] ∞ [-] ∞ [-] ∞ [-] ∞ [-]
#3.56 0.0 OK 0.0 OK 0.1 OK 0.0 OK 0.1 OK 0.1 OK 0.2 OK 0.1 OK
#3.57 0.3 - 1.2 OK 1.1 OK 1.1 OK 1.3 OK 1.2 OK 8.2 OK 3.1 OK
#4.1 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.2 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.3 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.4 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.4a 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.5 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.6 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.1 OK 0.0 OK 0.4 OK 0.1 OK
#4.7 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.8 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.7 OK 0.4 OK
#4.9 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.2 OK 0.2 OK 1.0 OK 0.6 OK
#4.10 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.11 0.1 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.12 0.0 OK 0.1 OK 0.2 OK 0.2 OK 0.3 OK 0.4 OK 0.8 OK 0.6 OK
#4.12a 0.0 OK 0.1 OK 0.2 OK 0.2 OK 0.2 OK 0.1 OK 0.5 OK 0.4 OK
#4.13 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.14 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.15 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.16 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.17 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.18 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.1 OK
#4.19 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 1.0 OK 0.2 OK
#4.20 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.20a 0.0 OK 0.0 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.2 OK 0.1 OK
#4.21 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.1 OK 0.1 OK 0.0 OK
#4.22 0.0 - 0.0 - 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.1 OK 0.1 OK

36

Type dpscc dpscc dp dp dp dp dp dp
Order emb bfs lpo bfs lpo bfs lpo dfs qlpo bfs qlpo dfs qrpos bfs qrpos dfs
NRI yes yes yes yes yes yes yes yes

#4.23 0.1 - 0.2 - 0.1 OK 0.1 OK 0.2 OK 0.1 OK 0.4 OK 0.2 OK
#4.24 0.0 - 0.1 - 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK
#4.25 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.26 0.2 - 10.3 OK 23.3 OK 24.8 OK 29.0 OK 46.2 OK 72.0 OK ∞ [-]
#4.27 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK
#4.28 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.2 OK 0.2 OK
#4.29 0.5 - 16.1 OK 42.8 OK 43.2 OK 53.2 OK 95.6 OK 111.6 OK ∞ [-]
#4.30 0.3 - 23.0 OK 41.8 OK 44.2 OK 48.7 OK 68.8 OK 97.5 OK ∞ [-]
#4.30a 0.1 OK 0.1 OK 0.4 OK 0.1 OK 0.1 OK 0.1 OK 0.3 OK 0.1 OK
#4.30b 0.3 - 13.3 OK 20.6 OK 22.0 OK 23.3 OK 32.2 OK 45.5 OK ∞ [-]
#4.30c 0.6 - 103.2 - ∞ [-] ∞ [-] ∞ [-] ∞ [-] ∞ [-] ∞ [-]
#4.31 0.2 OK 0.5 OK 0.4 OK 0.4 OK 0.4 OK 0.5 OK 0.7 OK 0.6 OK
#4.32 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.1 OK 0.0 OK 0.4 OK 0.1 OK
#4.33 0.3 OK 0.3 OK 0.3 OK 0.3 OK 0.4 OK 0.3 OK 3.1 OK 0.5 OK
#4.34 0.4 - 1.2 OK 1.2 OK 1.1 OK 1.4 OK 1.2 OK 5.3 OK 1.5 OK
#4.35 39.7 - ∞ [-] ∞ [-] ∞ [-] ∞ [-] ∞ [-] ∞ [-] ∞ [-]
#4.36 0.5 - ∞ [-] ∞ [-] ∞ [-] ∞ [-] ∞ [-] ∞ [-] ∞ [-]
#4.37 0.1 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.1 OK 0.2 OK 0.1 OK
#4.37a 0.0 OK 0.0 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.2 OK 0.1 OK

Sum: 65 66 1331 87 1468 93 1474 93 1564 95 1679 95 1760 97 2481 85
Avg/%: 0.5 60.0 12.1 79.0 13.3 84.5 13.4 84.5 14.2 86.3 15.2 86.3 16.0 88.1 22.5 77.2

37

Type scp scp scp scp scp scp scp
Order emb bfs lpo bfs lpo dfs qlpo bfs qlpo dfs qrpos bfs qrpos dfs
NRI yes yes yes yes yes yes yes

#3.1 0.6 OK 0.7 OK 0.6 OK 0.6 OK 0.7 OK 0.7 OK 0.7 OK
#3.2 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK
#3.3 1.0 - 0.2 OK 0.2 OK 0.7 OK 0.2 OK 0.4 OK 0.2 OK
#3.4 0.8 - 0.2 OK 0.2 OK 0.1 OK 0.2 OK 0.7 OK 0.2 OK
#3.5 0.3 OK 0.3 OK 0.3 OK 1.0 OK 0.3 OK 0.3 OK 0.3 OK
#3.5a 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK
#3.5b 2.2 - 0.3 OK 0.3 OK 0.3 OK 0.3 OK 0.3 OK 0.3 OK
#3.6 0.4 OK 0.4 OK 0.5 OK 0.4 OK 0.4 OK 0.4 OK 0.4 OK
#3.6a 0.4 OK 0.6 OK 0.4 OK 0.5 OK 0.4 OK 0.4 OK 0.4 OK
#3.6b 2.9 - 0.5 OK 0.7 OK 0.5 OK 0.5 OK 0.5 OK 0.5 OK
#3.7 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK
#3.8 0.3 OK 0.2 OK 0.3 OK 0.2 OK 0.3 OK 0.2 OK 0.2 OK
#3.8a 0.3 OK 0.2 OK 0.3 OK 0.3 OK 0.3 OK 0.3 OK 0.3 OK
#3.8b 1.4 - 0.5 OK 0.5 OK 0.5 OK 0.5 OK 0.7 OK 0.7 OK
#3.9 2.0 - 0.3 OK 0.3 OK 0.4 OK 0.3 OK 0.6 OK 0.4 OK
#3.10 69.5 - 68.1 - 68.3 - 69.0 - 69.6 - 68.7 - 68.7 -
#3.11 6.1 - 1.6 OK 1.6 OK 1.7 OK 1.6 OK 2.4 OK 1.7 OK
#3.12 0.8 - 0.8 - 0.8 - 0.8 - 0.9 - 1.0 - 1.0 -
#3.13 ∞ [-] ∞ [-] ∞ [-] ∞ [-] ∞ [-] ∞ [-] ∞ [-]
#3.14 0.7 - 0.7 - 0.6 - 0.6 - 0.7 - 0.7 - 0.6 -
#3.15 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 -
#3.16 0.0 OK 0.1 OK 0.1 OK 0.0 OK 0.0 OK 0.1 OK 0.0 OK
#3.17 2.2 - 2.2 - 1.9 - 1.9 - 2.0 - 2.3 - 1.9 -
#3.17a 1.8 - 1.8 - 2.0 - 2.0 - 2.0 - 1.8 - 2.0 -
#3.18 0.2 OK 0.2 OK 0.3 OK 0.3 OK 0.3 OK 0.3 OK 0.3 OK
#3.19 0.3 OK 0.3 OK 0.4 OK 0.3 OK 0.3 OK 0.3 OK 0.3 OK
#3.20 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK
#3.21 0.4 OK 0.4 OK 0.9 OK 0.4 OK 1.0 OK 0.4 OK 0.4 OK
#3.22 0.1 OK 0.1 OK 0.0 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK
#3.23 0.1 OK 0.1 OK 0.0 OK 0.1 OK 0.0 OK 0.1 OK 0.1 OK
#3.24 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 -
#3.25 0.0 OK 0.1 OK 0.1 OK 0.1 OK 0.0 OK 0.1 OK 0.1 OK
#3.26 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 -
#3.27 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.5 OK
#3.28 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.0 OK 0.1 OK 0.0 OK
#3.29 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.30 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.31 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.32 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.33 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.34 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.35 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.36 2.1 - 2.2 - 2.0 - 1.9 - 2.0 - 2.2 - 1.9 -
#3.37 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.38 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 -
#3.39 0.5 OK 0.2 OK 0.2 OK 0.1 OK 0.2 OK 0.2 OK 0.2 OK
#3.40 0.2 OK 0.6 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK
#3.41 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK

38

Type scp scp scp scp scp scp scp
Order emb bfs lpo bfs lpo dfs qlpo bfs qlpo dfs qrpos bfs qrpos dfs
NRI yes yes yes yes yes yes yes

#3.42 0.2 OK 0.2 OK 0.3 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK
#3.43 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK
#3.44 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK
#3.45 0.3 OK 0.3 OK 0.3 OK 0.3 OK 0.3 OK 0.3 OK 0.3 OK
#3.46 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.47 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.1 OK 0.0 OK 0.0 OK
#3.48 5.5 - 5.5 - 6.0 - 5.7 - 6.6 - 5.5 - 5.7 -
#3.49 0.1 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1 - 1.0 -
#3.50 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.51 0.1 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.1 OK 0.0 OK
#3.52 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.53 1.0 - 1.0 - 0.9 - 0.9 - 0.9 - 1.0 - 0.9 -
#3.53a 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.53b 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.54 0.1 OK 0.1 OK 0.0 OK 0.1 OK 0.0 OK 0.1 OK 0.1 OK
#3.55 7.0 - 1.8 OK 1.7 OK 1.8 OK 1.7 OK 2.2 OK 1.7 OK
#3.56 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK
#3.57 2.2 - 4.1 - 2.1 - 2.0 - 2.1 - 4.2 - 2.1 -
#4.1 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.2 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.3 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.4 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.4a 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.1 OK 0.0 OK 0.0 OK
#4.5 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.6 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.9 OK 0.2 OK
#4.7 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.8 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK
#4.9 0.3 OK 0.3 OK 0.3 OK 0.3 OK 0.3 OK 0.3 OK 0.3 OK
#4.10 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.11 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.12 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.1 OK
#4.12a 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.13 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.14 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.15 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.16 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.2 OK
#4.17 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.18 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK
#4.19 0.1 OK 0.0 OK 0.1 OK 0.1 OK 0.0 OK 0.0 OK 0.1 OK
#4.20 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.20a 0.1 OK 0.1 OK 0.2 OK 0.2 OK 0.2 OK 0.1 OK 0.2 OK
#4.21 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.1 OK 0.0 OK 0.0 OK
#4.22 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.23 0.3 OK 0.2 OK 0.3 OK 0.3 OK 0.3 OK 0.2 OK 0.3 OK
#4.24 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.1 OK 0.0 OK 0.0 OK
#4.25 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.26 0.9 OK 0.9 OK 2.9 OK 0.9 OK 1.0 OK 0.9 OK 1.0 OK
#4.27 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK

39

Type scp scp scp scp scp scp scp
Order emb bfs lpo bfs lpo dfs qlpo bfs qlpo dfs qrpos bfs qrpos dfs
NRI yes yes yes yes yes yes yes

#4.28 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK
#4.29 1.5 OK 1.5 OK 1.4 OK 2.7 OK 3.5 OK 1.6 OK 3.8 OK
#4.30 2.0 OK 2.1 OK 1.9 OK 1.8 OK 1.9 OK 2.1 OK 1.8 OK
#4.30a 0.1 OK 0.1 OK 0.2 OK 0.1 OK 0.1 OK 0.1 OK 0.2 OK
#4.30b 0.9 OK 1.3 OK 0.9 OK 0.9 OK 0.9 OK 2.4 OK 0.9 OK
#4.30c 6.2 OK 4.1 OK 4.6 OK 4.5 OK 4.6 OK 4.2 OK 4.5 OK
#4.31 0.7 OK 0.8 OK 1.1 OK 0.8 OK 0.8 OK 0.7 OK 0.8 OK
#4.32 0.0 OK 0.1 OK 0.0 OK 0.1 OK 0.0 OK 0.0 OK 0.1 OK
#4.33 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK
#4.34 0.7 - 0.7 - 0.7 - 0.8 - 1.1 - 0.8 - 0.8 -
#4.35 27.7 - 52.1 - 26.9 - 4.4 OK 3.7 OK 5.6 OK 4.4 OK
#4.36 10.1 - 4.4 OK 4.3 OK 21.0 OK 4.3 OK 25.3 OK 4.5 OK
#4.37 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK
#4.37a 0.1 OK 0.4 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK

Sum: 293 84 293 93 268 93 262 94 247 94 272 94 248 94
Avg/%: 2.6 76.3 2.6 84.5 2.4 84.5 2.3 85.4 2.2 85.4 2.4 85.4 2.2 85.4

40

Type hscp hscp hscp hscp hscp hscp
Order lpo bfs lpo dfs qlpo bfs qlpo dfs qrpos bfs qrpos dfs
NRI yes yes yes yes yes yes

#3.1 0.7 OK 0.6 OK 0.7 OK 0.7 OK 0.7 OK 0.6 OK
#3.2 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK
#3.3 0.2 OK 0.2 OK 0.2 OK 0.6 OK 0.3 OK 0.2 OK
#3.4 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK
#3.5 0.3 OK 0.3 OK 0.3 OK 0.3 OK 0.3 OK 0.3 OK
#3.5a 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.3 OK 0.2 OK
#3.5b 0.3 OK 0.3 OK 0.3 OK 0.3 OK 0.3 OK 0.3 OK
#3.6 0.5 OK 0.4 OK 0.4 OK 0.4 OK 0.4 OK 0.4 OK
#3.6a 0.4 OK 0.4 OK 0.4 OK 0.4 OK 0.4 OK 0.4 OK
#3.6b 0.5 OK 0.5 OK 0.5 OK 0.5 OK 0.6 OK 0.5 OK
#3.7 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK
#3.8 0.2 OK 0.2 OK 0.3 OK 0.3 OK 0.2 OK 0.2 OK
#3.8a 0.3 OK 0.3 OK 0.3 OK 0.3 OK 0.3 OK 0.3 OK
#3.8b 0.5 OK 0.5 OK 0.5 OK 0.5 OK 0.8 OK 0.7 OK
#3.9 0.3 OK 0.3 OK 0.4 OK 0.3 OK 0.5 OK 0.3 OK
#3.10 ∞ [-] ∞ [-] ∞ [-] ∞ [-] ∞ [-] ∞ [-]
#3.11 1.7 OK 2.0 OK 2.1 OK 2.0 OK 2.5 OK 2.0 OK
#3.12 1.0 - 1.0 - 1.0 - 1.0 - 3.9 - 2.2 -
#3.13 ∞ [-] ∞ [-] ∞ [-] ∞ [-] ∞ [-] ∞ [-]
#3.14 1.2 - 1.3 - 0.8 OK 0.8 OK 6.8 OK 1.8 OK
#3.15 0.0 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1 -
#3.16 0.0 OK 0.0 OK 0.0 OK 0.1 OK 0.1 OK 0.1 OK
#3.17 2.1 OK 2.4 OK 2.4 OK 2.9 OK 7.7 OK 3.3 OK
#3.17a 4.0 OK 4.2 OK 4.4 OK 4.3 OK 14.5 OK 6.2 OK
#3.18 0.3 OK 0.3 OK 0.3 OK 0.3 OK 0.3 OK 0.3 OK
#3.19 0.3 OK 0.4 OK 0.3 OK 0.4 OK 0.3 OK 0.3 OK
#3.20 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK
#3.21 0.4 OK 0.4 OK 0.4 OK 0.5 OK 0.4 OK 0.4 OK
#3.22 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK
#3.23 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK
#3.24 0.3 - 0.3 - 0.7 - 0.3 - 0.4 - 0.3 -
#3.25 0.0 OK 0.4 OK 0.0 OK 0.1 OK 0.1 OK 0.1 OK
#3.26 0.2 - 0.2 - 0.2 OK 0.3 OK 0.8 OK 0.3 OK
#3.27 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.28 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.0 OK 0.1 OK
#3.29 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.30 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.31 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.32 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.33 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.34 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.35 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.36 2.7 OK 2.0 OK 2.1 OK 2.1 OK 2.4 OK 2.8 OK
#3.37 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.38 2.1 OK 2.0 OK 2.7 OK 2.4 OK 6.3 OK 3.8 OK
#3.39 0.2 OK 0.2 OK 0.1 OK 0.1 OK 0.2 OK 0.1 OK
#3.40 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK
#3.41 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK

41

Type hscp hscp hscp hscp hscp hscp
Order lpo bfs lpo dfs qlpo bfs qlpo dfs qrpos bfs qrpos dfs
NRI yes yes yes yes yes yes

#3.42 0.2 OK 0.2 OK 0.2 OK 0.3 OK 0.2 OK 0.2 OK
#3.43 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK
#3.44 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK
#3.45 0.3 OK 0.3 OK 0.3 OK 0.3 OK 0.3 OK 0.3 OK
#3.46 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.47 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.48 10.0 OK 10.2 OK 10.9 OK 10.2 OK 31.2 OK 11.1 OK
#3.49 0.1 - 0.1 - 0.1 - 0.6 - 1.4 - 0.5 -
#3.50 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.51 0.1 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.52 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.53 1.0 - 0.9 - 1.9 - 1.7 - 9.7 - 4.9 -
#3.53a 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.53b 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#3.54 0.1 OK 0.0 OK 0.0 OK 0.1 OK 0.0 OK 0.0 OK
#3.55 1.8 OK 1.7 OK 1.7 OK 1.6 OK 2.0 OK 1.7 OK
#3.56 1.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK
#3.57 2.3 OK 2.5 OK 2.5 OK 2.5 OK 7.6 OK 2.9 OK
#4.1 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.2 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.3 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.4 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.4a 0.0 OK 0.0 OK 0.0 OK 0.1 OK 0.0 OK 0.0 OK
#4.5 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.6 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK
#4.7 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.8 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK
#4.9 0.4 OK 0.3 OK 0.3 OK 0.3 OK 0.3 OK 0.5 OK
#4.10 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.11 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.12 0.0 OK 0.1 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.12a 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.13 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.14 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.15 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.16 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.17 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.18 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK
#4.19 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.1 OK 0.0 OK
#4.20 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.20a 0.1 OK 0.1 OK 0.2 OK 0.1 OK 0.2 OK 0.1 OK
#4.21 0.0 OK 0.1 OK 0.1 OK 0.0 OK 0.0 OK 0.0 OK
#4.22 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.23 0.3 OK 0.3 OK 0.3 OK 0.3 OK 0.3 OK 0.3 OK
#4.24 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.1 OK 0.0 OK
#4.25 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
#4.26 0.9 OK 1.0 OK 1.0 OK 1.0 OK 1.0 OK 1.0 OK
#4.27 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK

42

Type hscp hscp hscp hscp hscp hscp
Order lpo bfs lpo dfs qlpo bfs qlpo dfs qrpos bfs qrpos dfs
NRI yes yes yes yes yes yes

#4.28 0.2 OK 0.2 OK 0.8 OK 0.2 OK 0.3 OK 0.2 OK
#4.29 1.6 OK 3.8 OK 1.4 OK 3.6 OK 3.3 OK 1.7 OK
#4.30 2.9 OK 1.9 OK 1.9 OK 1.9 OK 1.9 OK 4.1 OK
#4.30a 0.1 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.1 OK
#4.30b 0.8 OK 0.9 OK 0.9 OK 0.9 OK 0.9 OK 0.9 OK
#4.30c 4.3 OK 4.5 OK 4.6 OK 4.6 OK 4.6 OK 4.5 OK
#4.31 0.8 OK 0.8 OK 1.2 OK 0.8 OK 1.2 OK 0.8 OK
#4.32 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.1 OK
#4.33 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK
#4.34 2.0 OK 2.2 OK 2.1 OK 2.2 OK 8.0 OK 2.3 OK
#4.35 ∞ [-] ∞ [-] 3.9 OK 3.7 OK 5.2 OK 4.7 OK
#4.36 4.3 OK 4.2 OK 20.9 OK 4.3 OK 24.0 OK 4.5 OK
#4.37 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK
#4.37a 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK

Sum: 423 100 424 100 326 103 310 103 402 103 323 103
Avg/%: 3.8 90.9 3.8 90.9 2.9 93.6 2.8 93.6 3.6 93.6 2.9 93.6

43

44

Aachener Informatik-Berichte

This is a list of recent technical reports. To obtain copies of technical reports

please consult http://aib.informatik.rwth-aachen.de/ or send your request

to: Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,

Email: biblio@informatik.rwth-aachen.de

95-11 ∗ M. Staudt / K. von Thadden: Subsumption Checking in Knowledge

Bases

95-12 ∗ G.V. Zemanek / H.W. Nissen / H. Hubert / M. Jarke: Requirements

Analysis from Multiple Perspectives: Experiences with Conceptual Mod-

eling Technology

95-13 ∗ M. Staudt / M. Jarke: Incremental Maintenance of Externally Material-

ized Views

95-14 ∗ P. Peters / P. Szczurko / M. Jeusfeld: Business Process Oriented Infor-

mation Management: Conceptual Models at Work

95-15 ∗ S. Rams / M. Jarke: Proceedings of the Fifth Annual Workshop on

Information Technologies & Systems

95-16 ∗ W. Hans / St. Winkler / F. Sáenz: Distributed Execution in Functional

Logic Programming

96-1 ∗ Jahresbericht 1995

96-2 M. Hanus / Chr. Prehofer: Higher-Order Narrowing with Definitional

Trees

96-3 ∗ W. Scheufele / G. Moerkotte: Optimal Ordering of Selections and Joins

in Acyclic Queries with Expensive Predicates

96-4 K. Pohl: PRO-ART: Enabling Requirements Pre-Traceability

96-5 K. Pohl: Requirements Engineering: An Overview

96-6 ∗ M. Jarke / W. Marquardt: Design and Evaluation of Computer–Aided

Process Modelling Tools

96-7 O. Chitil: The ς-Semantics: A Comprehensive Semantics for Functional

Programs

96-8 ∗ S. Sripada: On Entropy and the Limitations of the Second Law of Ther-

modynamics

96-9 M. Hanus (Ed.): Proceedings of the Poster Session of ALP’96 — Fifth

International Conference on Algebraic and Logic Programming

96-10 R. Conradi / B. Westfechtel: Version Models for Software Configuration

Management

96-11 ∗ C. Weise / D. Lenzkes: A Fast Decision Algorithm for Timed Refinement

96-12 ∗ R. Dömges / K. Pohl / M. Jarke / B. Lohmann / W. Marquardt: PRO-

ART/CE∗ — An Environment for Managing the Evolution of Chemical

Process Simulation Models

96-13 ∗ K. Pohl / R. Klamma / K. Weidenhaupt / R. Dömges / P. Haumer /

M. Jarke: A Framework for Process-Integrated Tools

45

96-14 ∗ R. Gallersdörfer / K. Klabunde / A. Stolz / M. Eßmajor: INDIA — Intel-

ligent Networks as a Data Intensive Application, Final Project Report,

June 1996

96-15 ∗ H. Schimpe / M. Staudt: VAREX: An Environment for Validating and

Refining Rule Bases

96-16 ∗ M. Jarke / M. Gebhardt, S. Jacobs, H. Nissen: Conflict Analysis Across

Heterogeneous Viewpoints: Formalization and Visualization

96-17 M. Jeusfeld / T. X. Bui: Decision Support Components on the Internet

96-18 M. Jeusfeld / M. Papazoglou: Information Brokering: Design, Search and

Transformation

96-19 ∗ P. Peters / M. Jarke: Simulating the impact of information flows in

networked organizations

96-20 M. Jarke / P. Peters / M. Jeusfeld: Model-driven planning and design

of cooperative information systems

96-21 ∗ G. de Michelis / E. Dubois / M. Jarke / F. Matthes / J. Mylopoulos

/ K. Pohl / J. Schmidt / C. Woo / E. Yu: Cooperative information

systems: a manifesto

96-22 ∗ S. Jacobs / M. Gebhardt, S. Kethers, W. Rzasa: Filling HTML forms

simultaneously: CoWeb architecture and functionality

96-23 ∗ M. Gebhardt / S. Jacobs: Conflict Management in Design

97-01 Jahresbericht 1996

97-02 J. Faassen: Using full parallel Boltzmann Machines for Optimization

97-03 A. Winter / A. Schürr: Modules and Updatable Graph Views for PRO-

grammed Graph REwriting Systems

97-04 M. Mohnen / S. Tobies: Implementing Context Patterns in the Glasgow

Haskell Compiler

97-05 ∗ S. Gruner: Schemakorrespondenzaxiome unterstützen die paargramma-

tische Spezifikation inkrementeller Integrationswerkzeuge

97-06 M. Nicola / M. Jarke: Design and Evaluation of Wireless Health Care

Information Systems in Developing Countries

97-07 P. Hofstedt: Taskparallele Skelette für irregulär strukturierte Probleme

in deklarativen Sprachen

97-08 D. Blostein / A. Schürr: Computing with Graphs and Graph Rewriting

97-09 C.-A. Krapp / B. Westfechtel: Feedback Handling in Dynamic Task Nets

97-10 M. Nicola / M. Jarke: Integrating Replication and Communication in

Performance Models of Distributed Databases

97-13 M. Mohnen: Optimising the Memory Management of Higher-Order

Functional Programs

97-14 R. Baumann: Client/Server Distribution in a Structure-Oriented Data-

base Management System

97-15 G. H. Botorog: High-Level Parallel Programming and the Efficient Im-

plementation of Numerical Algorithms

98-01 ∗ Jahresbericht 1997

46

98-02 S. Gruner/ M. Nagel / A. Schürr: Fine-grained and Structure-oriented

Integration Tools are Needed for Product Development Processes

98-03 S. Gruner: Einige Anmerkungen zur graphgrammatischen Spezifikation

von Integrationswerkzeugen nach Westfechtel, Janning, Lefering und

Schürr

98-04 ∗ O. Kubitz: Mobile Robots in Dynamic Environments

98-05 M. Leucker / St. Tobies: Truth — A Verification Platform for Distributed

Systems

98-07 M. Arnold / M. Erdmann / M. Glinz / P. Haumer / R. Knoll / B.

Paech / K. Pohl / J. Ryser / R. Studer / K. Weidenhaupt: Survey on

the Scenario Use in Twelve Selected Industrial Projects

98-08 ∗ H. Aust: Sprachverstehen und Dialogmodellierung in natürlichsprach-

lichen Informationssystemen

98-09 ∗ Th. Lehmann: Geometrische Ausrichtung medizinischer Bilder am

Beispiel intraoraler Radiographien

98-10 ∗ M. Nicola / M. Jarke: Performance Modeling of Distributed and Repli-

cated Databases

98-11 ∗ A. Schleicher / B. Westfechtel / D. Jäger: Modeling Dynamic Software

Processes in UML

98-12 ∗ W. Appelt / M. Jarke: Interoperable Tools for Cooperation Support

using the World Wide Web

98-13 K. Indermark: Semantik rekursiver Funktionsdefinitionen mit Strikt-

heitsinformation

99-01 ∗ Jahresbericht 1998

99-02 ∗ F. Huch: Verifcation of Erlang Programs using Abstract Interpretation

and Model Checking — Extended Version

99-03 ∗ R. Gallersdörfer / M. Jarke / M. Nicola: The ADR Replication Manager

99-04 M. Alpuente / M. Hanus / S. Lucas / G. Vidal: Specialization of Func-

tional Logic Programs Based on Needed Narrowing

99-07 Th. Wilke: CTL+ is exponentially more succinct than CTL

99-08 O. Matz: Dot-Depth and Monadic Quantifier Alternation over Pictures

2000-01 ∗ Jahresbericht 1999

2000-02 Jens Vöge / Marcin Jurdzinski: A Discrete Strategy Improvement Algo-

rithm for Solving Parity Games

2000-04 Andreas Becks / Stefan Sklorz / Matthias Jarke: Exploring the Semantic

Structure of Technical Document Collections: A Cooperative Systems

Approach

2000-05 Mareike Schoop: Cooperative Document Management

2000-06 Mareike Schoop / Christoph Quix (eds.): Proceedings of the Fifth In-

ternational Workshop on the Language-Action Perspective on Commu-

nication Modelling

2000-07 ∗ Markus Mohnen / Pieter Koopman (Eds.): Proceedings of the 12th In-

ternational Workshop of Functional Languages

47

2000-08 Thomas Arts / Thomas Noll: Verifying Generic Erlang Client-Server

Implementations

2001-01 ∗ Jahresbericht 2000

2001-02 Benedikt Bollig / Martin Leucker: Deciding LTL over Mazurkiewicz

Traces

2001-03 Thierry Cachat: The power of one-letter rational languages

2001-04 Benedikt Bollig / Martin Leucker / Michael Weber: Local Parallel Model

Checking for the Alternation Free mu-Calculus

2001-05 Benedikt Bollig / Martin Leucker / Thomas Noll: Regular MSC Lan-

guages

2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-

Order Logic

2001-07 Martin Grohe / Stefan Wöhrle: An Existential Locality Theorem

2001-08 Mareike Schoop / James Taylor (eds.): Proceedings of the Sixth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2001-09 Thomas Arts / Jürgen Giesl: A collection of examples for termination of

term rewriting using dependency pairs

2001-10 Achim Blumensath: Axiomatising Tree-interpretable Structures

2001-11 Klaus Indermark / Thomas Noll (eds.): Kolloquium Programmier-

sprachen und Grundlagen der Programmierung

2002-01 ∗ Jahresbericht 2001

2002-02 Jürgen Giesl / Aart Middeldorp: Transformation Techniques for

Context-Sensitive Rewrite Systems

2002-03 Benedikt Bollig / Martin Leucker / Thomas Noll: Generalised Regular

MSC Languages

2002-04 Jürgen Giesl / Aart Middeldorp: Innermost Termination of Context-

Sensitive Rewriting

2002-05 Horst Lichter / Thomas von der Maßen / Thomas Weiler: Modelling

Requirements and Architectures for Software Product Lines

2002-06 Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party

Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic

Finite Automata

2002-07 Jörg Dahmen: Invariant Image Object Recognition using Gaussian Mix-

ture Densities

2002-08 Markus Mohnen: An Open Framework for Data-Flow Analysis in Java

2002-09 Markus Mohnen: Interfaces with Default Implementations in Java

2002-10 Martin Leucker: Logics for Mazurkiewicz traces

2002-11 Jürgen Giesl / Hans Zantema: Liveness in Rewriting

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

48

