
Aachen
Department of Computer Science

Technical Report

Improving Dependency Pairs

Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, and

Stephan Falke

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2003-4

RWTH Aachen · Department of Computer Science · July 2003 (revised version)

1

The publications of the Department of Computer Science of RWTH Aachen
(Aachen University of Technology) are in general accessible through the World
Wide Web.

http://aib.informatik.rwth-aachen.de/

2

Improving Dependency Pairs?

Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke

LuFG Informatik II, RWTH Aachen, Ahornstr. 55, 52074 Aachen, Germany
{giesl|thiemann}@informatik.rwth-aachen.de
{nowonder|spf}@i2.informatik.rwth-aachen.de

Abstract. The dependency pair approach [2, 12, 13] is one of the most powerful
techniques for termination and innermost termination proofs of term rewrite sys-
tems (TRSs). For any TRS, it generates inequality constraints that have to be
satisfied by weakly monotonic well-founded orders. We improve the dependency
pair approach by considerably reducing the number of constraints produced for
(innermost) termination proofs.
Moreover, we extend transformation techniques to manipulate dependency pairs
which simplify (innermost) termination proofs significantly. In order to fully au-
tomate the dependency pair approach, we show how transformation techniques
and the search for suitable orders can be mechanized efficiently. We implemented
our results in the automated termination prover AProVE and evaluated them on
large collections of examples.

1 Introduction

Termination is an essential property of term rewrite systems. Most traditional
methods to prove termination of TRSs (automatically) use simplification orders
[8, 28], where a term is greater than its proper subterms (subterm property). Ex-
amples for simplification orders include lexicographic or recursive path orders [7,
19], the Knuth-Bendix order [20], and (most) polynomial orders [22]. However,
there are numerous important TRSs which are not simply terminating, i.e., their
termination cannot be shown by simplification orders. Therefore, the dependency
pair approach [2, 12, 13] was developed which allows the application of simplifi-
cation orders to non-simply terminating TRSs. In this way, the class of systems
where termination is provable mechanically increases significantly.

Example 1 The following TRS from [2] is not simply terminating, since in the
last quot-rule, the left-hand side is embedded in the right-hand side if y is instan-
tiated with s(x). Thus, classical approaches for automated termination proofs fail
on this example, while it is easy to handle with dependency pairs.

minus(x, 0) → x

minus(s(x), s(y)) → minus(x, y)

quot(0, s(y)) → 0

quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))

? Extended version of a paper from the Proceedings of the 10th International Conference
on Logic for Programming, Artificial Intelligence and Reasoning (LPAR ’03), Almaty,
Kazakhstan, LNAI, Springer-Verlag, 2003.

In Sect. 2, we recapitulate the dependency pair approach for termination and
innermost termination proofs (i.e., one tries to show that all reductions are finite,
where in the innermost termination case, one only considers reductions of inner-
most redexes). Then we present new results which show that the approach can
be improved significantly by reducing the constraints for termination (Sect. 3)
and innermost termination (Sect. 4). Sect. 5 introduces new conditions for trans-
forming dependency pairs by narrowing, rewriting, and instantiation in order to
simplify (innermost) termination proofs further.

For automated (innermost) termination proofs, the constraints generated by
the dependency pair approach are pre-processed by an argument filtering and
afterwards, one tries to solve them by standard simplification orders. We present
an algorithm to generate argument filterings in our improved dependency pair
approach (Sect. 6) and discuss heuristics to increase efficiency in Sect. 7.

Our improvements and algorithms are implemented in our termination prover
AProVE. We give empirical results which show that they are extremely successful
in practice. Details on our experiments can be found in the appendix. Thus, the
contributions of this paper are also very helpful for other tools based on depen-
dency pairs (e.g., [1], CiME [6], TTT [17]). Moreover, we conjecture that they can
also be used in other recent approaches for termination [5, 11] which have several
aspects in common with dependency pairs. Finally, dependency pairs can be com-
bined with other termination techniques (e.g., in [29] we integrated dependency
pairs and the size-change principle from termination analysis of functional [23]
and logic programs [10]). Moreover, the system TALP [26] uses dependency pairs
for termination proofs of logic programs. Thus, improving dependency pairs is
also useful for termination analysis of other kinds of programming languages.

2 Dependency Pairs

We briefly present the dependency pair approach of Arts and Giesl and refer
to [2, 12, 13] for refinements and motivations. We assume familiarity with term
rewriting (see, e.g., [4]). For a TRS R over a signature F , the defined symbols
D are the root symbols of the left-hand sides of rules and the constructors are
C = F \ D. We restrict ourselves to finite signatures and TRSs. Let F] = {f] |
f ∈ D} be a set of tuple symbols, where f] has the same arity as f and we often
write F for f], etc. If t = g(t1, . . . , tm) with g ∈ D, we write t] for g](t1, . . . , tm).

Definition 2 (Dependency Pair) If l → r ∈ R and t is a subterm of r with
defined root symbol, then the rewrite rule l] → t] is called a dependency pair of
R. The set of all dependency pairs of R is denoted by DP (R).

So the dependency pairs of the TRS in Ex. 1 are

MINUS(s(x), s(y)) → MINUS(x, y) (1)

QUOT(s(x), s(y)) → MINUS(x, y) (2)

QUOT(s(x), s(y)) → QUOT(minus(x, y), s(y)) (3)

4

To use dependency pairs for (innermost) termination proofs, we need the
notion of (innermost) chains. We always assume that different occurrences of
dependency pairs are variable disjoint and we always consider substitutions whose
domains may be infinite. Here, i→R denotes innermost reductions.

Definition 3 (R-Chain) A sequence of dependency pairs s1 → t1, s2 → t2, . . .
is an R-chain if there exists a substitution σ such that tjσ →∗

R sj+1σ for every
two consecutive pairs sj → tj and sj+1 → tj+1 in the sequence. Such a chain is
an innermost R-chain if tjσ

i→∗
R σ and if sjσ is a normal form for all j.

Now we obtain the following sufficient and necessary criterion for termination
and innermost termination.

Theorem 4 (Termination Criterion [2]) R terminates iff there is no infi-
nite chain. R is innermost terminating iff there is no infinite innermost chain.

To estimate which dependency pairs may occur consecutively in (innermost)
chains, one builds a so-called (innermost) dependency graph whose nodes are the
dependency pairs and there is an arc from v → w to s → t iff v → w, s → t is
an (innermost) chain. In our example, the dependency graph and the innermost
dependency graph have the arcs (1) ⇒ (1), (2) ⇒ (1), (3) ⇒ (2), and (3) ⇒ (3).

Since it is undecidable whether two dependency pairs form an (innermost)
chain, we construct estimated graphs such that all cycles in the real graph are also
cycles in the estimated graph. Let cap(t) result from replacing all variables and
all subterms of t that have a defined root symbol by different fresh variables. Here,
multiple occurrences of the same variable are replaced by the same fresh variable,
but multiple occurrences of the same subterm with defined root are replaced by
pairwise different fresh variables. Let ren(t) result from replacing all occurrences
of variables in t by different fresh variables (i.e., ren(t) is a linear term). For
instance, cap(QUOT(minus(x, y), s(y))) = QUOT(z, s(y1)), cap(QUOT(x, x)) =
QUOT(x1, x1), and ren(QUOT(x, x)) = QUOT(x1, x2). We define capv like cap

except that subterms with defined root that already occur in v are not replaced
by new variables.

Definition 5 (Estimated (innermost) dependency graph) The estimated
dependency graph of a TRS R is the directed graph whose nodes are the de-
pendency pairs and there is an arc from v → w to s → t iff ren(cap(w)) and s
are unifiable. In the estimated innermost dependency graph there is an arc from
v → w to s → t iff capv(w) and s are unifiable by a most general unifier (mgu)
µ such that vµ and sµ are in normal form.

In Ex. 1, the estimated dependency graph and the estimated innermost depen-
dency graph are identical to the real dependency graph. Alternative approxima-
tions of dependency graphs can be found in [16, 24].

A set P 6= ∅ of dependency pairs is called a cycle if for any two pairs v → w
and s → t in P there is a non-empty path from v → w to s → t in the graph which

5

only traverses pairs from P. In our example, we have the cycles P1 = {(1)} and
P2 = {(3)}. Since we only regard finite TRSs, any infinite (innermost) chain of
dependency pairs corresponds to a cycle in the (innermost) dependency graph.

To show (innermost) termination of TRSs, one proves absence of infinite
(innermost) chains separately for every cycle. To this end, one generates sets of
constraints which should be satisfied by some reduction pair (%,�) [21] consisting
of a quasi-rewrite order % (i.e., % is reflexive, transitive, monotonic (closed under
contexts), stable (closed under substitutions)) and a stable well-founded order
� which is compatible with % (i.e., % ◦ �⊆� and � ◦ %⊆�). Note that �
need not be monotonic. Essentially, the constraints for termination of a cycle P
ensure that all rewrite rules and all dependency pairs in P are weakly decreasing
(w.r.t. %) and at least one dependency pair in P is strictly decreasing (w.r.t. �).
For innermost termination, only the usable rules have to be weakly decreasing.
In Ex. 1, the usable rules for P1 are empty and the usable rules for P2 are the
minus-rules.

Definition 6 (Usable Rules) For f ∈F , let Rls(f) = {l → r ∈R | root(l) =
f}. For any term, the usable rules are the smallest set of rules such that

• U(x) = ∅ for x ∈ V and
• U(f(t1, . . . , tn)) = Rls(f) ∪

⋃

l→r∈Rls(f) U(r) ∪
⋃n

j=1 U(tj).

Moreover, for any set P of dependency pairs, we define U(P) =
⋃

s→t∈P U(t).

We want to use standard techniques to synthesize reduction pairs satisfying
the constraints of the dependency pair approach. Most existing techniques gen-
erate monotonic orders �. However, for the dependency pair approach we only
need a monotonic quasi-order %, whereas � does not have to be monotonic.
(This is often called “weak monotonicity”.) For that reason, before synthesizing
a suitable order, some of the arguments of function symbols can be eliminated.
To perform this elimination of arguments resp. of function symbols the concept
of argument filtering was introduced in [2] (here we use the notation of [21]).

Definition 7 (Argument Filtering) An argument filtering π for a signature
F maps every n-ary function symbol to an argument position i ∈ {1, . . . , n} or
to a (possibly empty) list [i1, . . . , im] of argument positions with 1 ≤ i1 < . . .
< im ≤ n. The signature Fπ consists of all function symbols f such that π(f) =
[i1, . . . , im], where in Fπ the arity of f is m. Every argument filtering π induces
a mapping from T (F ,V) to T (Fπ,V), also denoted by π, which is defined as:

π(t) =

t if t is a variable
π(ti) if t = f(t1, . . . , tn) and π(f) = i
f(π(ti1), . . . , π(tim)) if t = f(t1, . . . , tn) and π(f) = [i1, . . . , im]

An argument filtering with π(f) = i for some f ∈ F is called collapsing.

Now the technique of automating dependency pairs can be formulated as
follows. Here, we always use argument filterings for the signature F ∪ F].

6

Theorem 8 (Automating Dependency Pairs [2, 13]) A TRS R is termi-
nating iff for any cycle P of the (estimated) dependency graph, there is a reduc-
tion pair (%,�) and an argument filtering π such that both

(a) π(s) � π(t) for one dependency pair s → t from P and
π(s) % π(t) or π(s) � π(t) for all other dependency pairs s → t from P

(b) π(l) % π(r) for all l → r ∈ R

R is innermost terminating if for any cycle P of the (estimated) innermost de-
pendency graph, there is a reduction pair (%,�) and an argument filtering π with
both

(c) π(s) � π(t) for one dependency pair s → t from P and
π(s) % π(t) or π(s) � π(t) for all other dependency pairs s → t from P

(d) π(l) % π(r) for all l → r ∈ U(P)

So in Ex. 1, we obtain the following constraints for termination. Here, (%i,�i)
is the reduction pair and πi is the argument filtering for cycle Pi, where i ∈ {1, 2}.

π1(MINUS(s(x), s(y))) �1 π1(MINUS(x, y)) (4)

π2(QUOT(s(x), s(y))) �2 π2(QUOT(minus(x, y), s(y))) (5)

πi(minus(x, 0)) %i πi(x) (6)

πi(minus(s(x), s(y))) %i πi(minus(x, y)) (7)

πi(quot(0, s(y))) %i πi(0) (8)

πi(quot(s(x), s(y))) %i πi(s(quot(minus(x, y), s(y)))) (9)

The filtering πi(minus) = [1] replaces all terms minus(t1, t2) by minus(t1).
With this filtering, (4)–(9) are satisfied by the lexicographic path order (LPO)
with the precedence quot > s > minus. Thus, termination of this TRS is proved.

For innermost termination, we only obtain the constraint (4) for the cycle P1,
since it has no usable rules. For P2, the constraints (8) and (9) are not necessary,
since the quot-rules are not usable for any right-hand side of a dependency pair.
In general, the constraints for innermost termination are always a subset of the
constraints for termination. Thus, for classes of TRSs where innermost termina-
tion already implies termination (e.g., non-overlapping TRSs) [14], one should
always use the approach for innermost termination when attempting termination
proofs.

As shown in [16], to implement Thm. 8, one should not compute all cycles,
but only maximal cycles (strongly connected components (SCCs)) that are not
contained in other cycles. When solving the constraints of Thm. 8 for an SCC,
the strict constraint π(s) � π(t) may be satisfied for several dependency pairs
s → t in the SCC. Thus, subcycles of the SCC containing such a strictly de-
creasing dependency pair do not have to be considered anymore. So after solving
the constraints for the initial SCCs, all strictly decreasing dependency pairs are
removed and one now builds SCCs from the remaining dependency pairs, etc.

7

3 Improved Termination Proofs

Now the technique of Thm. 8 for automated termination proofs is improved. For
automation, one usually uses a quasi-simplification order % (i.e., a monotonic,
stable quasi-order with f(. . . t . . .) % t for any term t and symbol f). As observed
in [25], then the constraints (a) and (b) of Thm. 8 even imply Cε-termination
of R. A TRS R is Cε-terminating iff R ∪ {c(x, y) → x, c(x, y) → y} is termi-
nating where c is a fresh function symbol not occurring in R. Urbain showed
in [31] how to use dependency pairs for modular termination proofs of hierar-
chical combinations of Cε-terminating TRSs. However in the results of [31], he
did not integrate the consideration of cycles in (estimated) dependency graphs
and required all dependency pairs to be strictly decreasing. Thm. 9 extends his
modularity results by combining them with cycles. In this way, one obtains an
improvement for termination proofs with dependency pairs which can be used
for TRSs in general. The advantage is that the set of constraints (b) in Thm. 8
is reduced significantly.

The crucial idea of [31] is to consider the recursion hierarchy of function
symbols. A function symbol f depends on the symbol h (denoted f ≥d h) if
f = h or if there exists a symbol g such that g occurs in an f -rule and g depends
on h. We define >d =≥d \ ≤d and ∼d =≥d ∩ ≤d. So f ∼d g means that f and g
are mutually recursive. If R = R1] . . .]Rn and f ∼d g iff Rls(f)∪Rls(g) ⊆ Ri,
then we call R1, . . . ,Rn a separation of R. Moreover, we extend ≥d to the sets Ri

by defining Ri ≥d Rj iff f ≥d g for all f, g with Rls(f) ⊆ Ri and Rls(g) ⊆ Rj .
For any i, let R′

i denote the rules that Ri depends on, i.e., R′
i =

⋃

Ri≥dRj
Rj .

It is clear that any cycle can only consist of dependency pairs from one Ri.
Thus, in Thm. 8 we only have to regard cycles P with dependency pairs from
DP (Ri). However, to detect the cycles P, we still have to regard the dependency
graph of the whole TRS R. The reason is that we have to consider R-chains, not
just Ri- or R′

i-chains.1

Thm. 9 states that instead of requiring π(l) % π(r) for all rules l → r of R, it
suffices to demand it only for rules that Ri depends on, i.e., for rules from R′

i. So
in the termination proof of Ex. 1, π(l) % π(r) does not have to be required for the
quot-rules when regarding the cycle P1 = {MINUS(s(x), s(y)) → MINUS(x, y)}.
However, this improvement is sound only if % is a quasi-simplification order.2

Theorem 9 (Improved Termination Proofs with DPs) Let R1, . . . ,Rn be
a separation of R. The TRS R is terminating if for all 1 ≤ i ≤ n and any
cycle P of the (estimated) dependency graph of R with P ⊆ DP (Ri), there is a
reduction pair (%,�) where % is a quasi-simplification order and an argument
filtering π such that both

1 To see this, consider Toyama’s TRS [30] where R1 = R′
1 = {f(0, 1, x) → f(x, x, x)} and

R2 = R′
2 = {g(x, y) → x, g(x, y) → y}. R′

1’s and R′
2’s dependency graphs are empty,

whereas the dependency graph of R = R1 ∪R2 has a cycle. Hence, if one only considers the
graphs of R′

1 and R′
2, one could falsely prove termination.

2 It suffices if
�

is extendable to c(x, y)
�

x, c(x, y)
�

y and (
�

,�) is still a reduction pair.

8

(a) π(s) � π(t) for one dependency pair s → t from P and
π(s) % π(t) or π(s) � π(t) for all other dependency pairs s → t from P

(b) π(l) % π(r) for all l → r ∈ R′
i

Proof. We prove that (a) and (b) imply termination of R. If R is not terminating,
then by Thm. 4 there exists an infinite chain s1 → t1, s2 → t2, . . . of dependency
pairs where tjσ →∗

R sj+1σ for all j. As can be seen from the proof of Thm. 4 in
[2, Thm. 6], the infinite chain and the substitution can be chosen in such a way
that all sjσ and tjσ are terminating.

Without loss of generality, these dependency pairs come from a cycle P of
the dependency graph of R where P ⊆ DP (Ri). Let R′′

i = R\R′
i. Then R′

i and
R′′

i form a hierarchical combination (thus, defined symbols of R′
i may occur as

constructors in R′′
i , but not vice versa). By [31, Lemma 2] there exists a substitu-

tion σ′ such that tjσ
′ →∗

R′
iε

sj+1σ
′, where R′

iε = R′
i ∪{c(x, y) → x, c(x, y) → y}.

Since % is a quasi-simplification order with π(l) % π(r) for all l → r ∈ R′
i by

Constraint (b), we obtain π(tjσ
′) = π(tj)σ

′
π % π(sj+1)σ

′
π = π(sj+1σ

′) where
σ′

π(x) = π(σ′(x)) for all x ∈ V. Note that here we also need c(x, y) % x and
c(x, y) % y, which holds for all quasi-simplification orders. Constraint (a) implies
π(sj)σ

′
π � π(tj)σ

′
π for infinitely many j and π(sj)σ

′
π % π(tj)σ

′
π for all remaining

j. Thus, by compatibility of % and � we obtain a contradiction to the well-
foundedness of �. ut

Example 10 This TRS of [27] shows that Thm. 9 not only increases efficien-
cy, but also leads to a more powerful method. Here, int(sn(0), sm(0)) computes
[sn(0), sn+1(0), . . . , sm(0)], nil is the empty list, and cons represents list insertion.

intlist(nil) → nil (10)

intlist(cons(x, y)) → cons(s(x), intlist(y)) (11)

int(0, 0) → cons(0, nil) (12)

int(0, s(y)) → cons(0, int(s(0), s(y))) (13)

int(s(x), 0) → nil (14)

int(s(x), s(y)) → intlist(int(x, y)) (15)

The TRS is separated into the intlist-rules R1 and the int-rules R2 >d R1.
The constraints of Thm. 8 for termination of P = {INTLIST(cons(x, y)) →
INTLIST(y)} cannot be solved with reduction pairs based on simplification or-
ders:

We must satisfy π(INTLIST(cons(x, y))) � π(INTLIST(y)) (∗). We distinguish
three cases. First, let π(s) 6= [] or π(int) = []. Then we have π(int(0, s(y))) %

π(cons(0, int(s(0), s(y)))) % π(cons(0, int(0, s(y)))) by weak decreasingness of
Rule (13) and the subterm property. When substituting x by 0 and y by
int(0, s(y)) in (∗), we obtain a contradiction to well-foundedness of �.

Next, let π(intlist) = []. Rule (11) implies intlist % π(cons(s(x), intlist(. . .)))
which gives a similar contradiction when substituting x by s(x) and y by intlist(...)
in (∗).

9

Finally, let π(s) = [], π(int) 6= [], and π(intlist) 6= []. Now we obtain a
contradiction, since the filtered rule (15) cannot be weakly decreasing. The reason
is that x or y occur on its right-hand side, but not on its left-hand side.

In contrast, when using Thm. 9, only R′
1 = R1 must be weakly decreasing

when examining P. These constraints are satisfied by the embedding order using
an argument filtering with π(cons) = [2], π(intlist) = π(INTLIST) = 1, π(s) = [1].

The constraints from R2’s cycle and rules from R′
2 = R1 ∪ R2 can also be

oriented (by LPO and a filtering with π(cons) = 1 and π(INT) = 2). However,
this part of the proof requires the consideration of cycles of the (estimated)
dependency graph. The reason is that there is no argument filtering and sim-
plification order such that both dependency pairs of R2 are strictly decreasing:
π(INT(s(x), s(y))) � π(INT(x, y)) implies π(s) = [1]. But then π(INT(0, s(y))) is
embedded in π(INT(s(0), s(y))). Hence, we have π(INT(s(0), s(y))) 6� π(INT(0,
s(y))) for any simplification order �.

So if one only considers cycles or if one only uses Urbain’s modularity result
[31], then Ex. 10 fails with simplification orders. Instead, both refinements should
be combined as in Thm. 9.

4 Improved Innermost Termination Proofs

Proving innermost termination with dependency pairs is easier than proving
termination for two reasons: the innermost dependency graph has less arcs than
the dependency graph and we only require l % r for the usable rules instead of
all rules. In Sect. 3 we showed that for termination, it suffices to require l % r
only for the rules of R′

i if the current cycle consists of Ri-dependency pairs. Still,
R′

i is always a superset of the usable rules. Now we present a new improvement
of Thm. 8 for innermost termination in order to reduce the set of usable rules.

The idea is to apply the argument filtering first and to determine the usable
rules afterwards. However, for collapsing argument filterings this destroys the
soundness of the technique. Consider the non-innermost terminating TRS

f(s(x)) → f(double(x)) double(0) → 0 double(s(x)) → s(s(double(x)))

In the cycle {F(s(x)) → F(double(x))}, we could use the argument filtering
π(double) = 1 which results in {F(s(x)) → F(x)}. Since the filtered dependency
pair contains no defined symbols, we would conclude that the cycle has no usable
rules. Then, we could easily orient the only resulting constraint F(s(x)) � F(x)
for this cycle and falsely prove innermost termination. Note that the elimination
of double in the term F(double(x)) is not due to the outer function symbol F,
but due to a collapsing argument filtering for double itself. For that reason a
defined symbol like double may only be ignored if all its occurrences are in po-
sitions which are filtered away by the function symbols above them. Moreover,
similar to the refinement of capv, we build usable rules only from those subterms
of right-hand sides of dependency pairs that do not occur in the corresponding
left-hand side of the dependency pair.

10

Definition 11 (Usable Rules w.r.t. Argument Filtering) Let π be an ar-
gument filtering. For an n-ary symbol f , the set RegPosπ(f) of regarded posi-
tions is {i}, if π(f) = i, and it is {i1, . . . , im}, if π(f) = [i1, . . . , im]. For a term,
the usable rules w.r.t. π are the smallest set of rules such that

• U(x, π) = ∅ for x ∈ V and
• U(f(t1, . . . , tn), π) = Rls(f) ∪

⋃

l→r∈Rls(f) U(r, π) ∪
⋃

j∈RegPosπ(f) U(tj, π).

For a term s with V(t) ⊆ V(s), we define Us(t, π) = ∅ if t is a subterm of s.
Otherwise, the definition is similar to U(t, π), i.e.,

Us(f(t1, . . . , tn), π) = Rls(f) ∪
⋃

l→r∈Rls(f)
U(r, π) ∪

⋃

j∈RegPosπ(f)
Us(tj , π).

Moreover, for any set P of dependency pairs, let U(P, π) =
⋃

s→t∈P Us(t, π).

To prove the soundness of our refinement for innermost termination proofs,
we need the following lemma. For a reduction pair (%,�), the pair (%π,�π)
results from applying an argument filtering, where t %π u iff π(t) % π(u) and
t �π u iff π(t) � π(u). In [2] it was shown that (%π,�π) is indeed a reduction
pair as well.

Lemma 12 (Properties of Usable Rules) Let R be a TRS, let π be an ar-
gument filtering, let (%,�) be a reduction pair, and let s and t be terms with
V(t) ⊆ V(s), where s is in normal form. Then we have

(i) Usσ(tσ, π) ⊆ Us(t, π) ⊆ U(t, π) for all substitutions σ
(ii) t →R u implies Us(t, π) ⊇ Us(u, π)
(iii) If l %π r holds for all l → r ∈ Us(t, π) and t →R u, then t %π u.
(iv) If l %π r holds for all l → r ∈ Us(t, π) and t →∗

R u, then t %π u.

Proof.

(i) We use structural induction on t. If t is a variable, then t is a subterm of s
and thus, Usσ(tσ, π) = Us(t, π) = ∅. Otherwise, t has the form f(t1, . . . , tn).
Then

Usσ(tσ, π) = Rls(f) ∪
⋃

l→r∈Rls(f) U(r, π) ∪
⋃

j∈RegPosπ(f) Usσ(tjσ, π)
(ind.)

⊆ Rls(f) ∪
⋃

l→r∈Rls(f) U(r, π) ∪
⋃

j∈RegPosπ(f) Us(tj , π)=Us(t, π)

(ind.)

⊆ Rls(f) ∪
⋃

l→r∈Rls(f) U(r, π) ∪
⋃

j∈RegPosπ(f) U(tj , π)=U(t, π)

(ii) Let t →R u using the rule l → r ∈ R. We perform structural induction on the
position p of the redex. If p = ε then t = lσ →R rσ = u for a substitution σ.
As t can be reduced, it is no normal form and thus, no subterm of s. Hence,
Us(t, π) ⊇ U(r, π) ⊇ Us(rσ, π) = Us(u, π), by (i).
Otherwise p = jp′, t = f(t1 . . . tj . . . tn), u = f(t1 . . . uj . . . tn), and tj →R uj .
If j /∈ RegPosπ(f), then Us(t, π) = Us(u, π). If j ∈ RegPosπ(f), then

Us(t, π) = Rls(f) ∪
⋃

l→r∈Rls(f) U(r, π) ∪ ... ∪ Us(tj, π) ∪ ...
(ind.)

⊇ Rls(f) ∪
⋃

l→r∈Rls(f) U(r, π) ∪ ... ∪ Us(uj, π) ∪ ... = Us(u, π).

11

(iii) We use induction on the position p of the redex. If p = ε then t = lσ →R

rσ = u. Again, t is not a normal form and therefore, no subterm of s. Hence,
l → r ∈ Us(t, π), so l %π r and t %π u, since %π is stable.
If p = jp′, we have t = f(t1 . . . tj . . . tn), u = f(t1 . . . uj . . . tn), and tj →R uj .
If j /∈ RegPosπ(f), then π(t) = π(u) and thus, t %π u. Otherwise, j ∈
RegPosπ(f) and hence, Us(t, π) ⊇ Us(tj , π). So we can apply the induction
hypothesis and conclude tj %π uj . Monotonicity of %π implies t %π u.

(iv) This follows from (ii) and (iii) by induction on the number of reduction steps.
ut

Now we can refine the innermost termination technique of Thm. 8 (c) and
(d) to the following one where the set of usable rules is reduced significantly.

Theorem 13 (Improved Innermost Termination with DPs) R is inner-
most terminating if for any cycle P of the (estimated) innermost dependency
graph, there is a reduction pair (%,�) and an argument filtering π such that both

(c) π(s) � π(t) for one dependency pair s → t from P and
π(s) % π(t) or π(s) � π(t) for all other dependency pairs s → t from P

(d) π(l) % π(r) for all l → r ∈ U(P, π)

Proof. By Thm. 4, we have to show absence of infinite innermost chains. Let
s1 → t1, s2 → t2, . . . be an infinite innermost chain from the cycle P. So there is
a substitution σ with tjσ

i→R
∗ sj+1σ for all j, where all sj and sjσ are in normal

form. From (d) we get l %π r for all l → r ∈ Usj
(tj , π). Since Usjσ(tjσ, π) ⊆

Usj
(tj , π) by Lemma 12 (i), we also have l %π r for all l → r ∈ Usjσ(tjσ, π).

Hence, we can use Lemma 12 (iv) to obtain tjσ %π sj+1σ. By (c) and closure of
�π under substitutions, we obtain s1σ %π t1σ %π s2σ %π . . . where sjσ �π tjσ
holds for infinitely many j in contradiction to the well-foundedness of �π. ut

Example 14 This TRS of [18] for list reversal shows the advantages of Thm. 13.

rev(nil) → nil (16)

rev(cons(x, l)) → cons(rev1(x, l), rev2(x, l)) (17)

rev1(x, nil) → x (18)

rev1(x, cons(y, l)) → rev1(y, l) (19)

rev2(x, nil) → nil (20)

rev2(x, cons(y, l)) → rev(cons(x, rev(rev2(y, l)))) (21)

When proving innermost termination with Thm. 8, for the cycle of the REV-
and REV2-dependency pairs, we would obtain inequalities from the dependency
pairs and π(l) % π(r) for all rules l → r, since all rules are usable. But with
standard reduction pairs which are based on lexicographic or recursive path
orders possibly with status (RPOS), Knuth-Bendix orders (KBO), or polynomial
orders, these constraints are not satisfiable for any argument filtering.

12

To prove this for LPO, RPO(S), and KBO, we first show that if an argu-
ment position is eliminated by an argument filtering π, then the constraints
cannot be satisfied. From (18) we obtain 1 ∈ RegPosπ(rev1) which leads to
2 ∈ RegPosπ(rev1) and 1, 2 ∈ RegPosπ(cons) by using (19) twice, so π(rev1) =
π(cons) = [1, 2]. Using (17) we obtain 1 ∈ RegPosπ(rev). Now we can conclude
π(rev2) = [1, 2] from (21). If we have π(rev) = 1, then (17) yields a contradiction
to the subterm property. Hence, π(rev) = [1]. Thus, if we search for a simplifica-
tion order such that the rules are weakly decreasing, then we are not allowed to
drop any argument or function symbol in the filtering. Hence, it is sufficient to
examine whether the orders above are able to make the unfiltered rules weakly
decreasing.

There is no KBO satisfying these constraints since (17) is duplicating. If we
want to orient the constraints by some lexicographic or recursive path order, we
need a precedence with rev2 > rev due to (21). But this precedence cannot be
extended further such that (17) can be oriented.

There is also no polynomial order such that the rules are weakly decreasing.
A polynomial interpretation has the following form.

Pol(rev(l)) = p1(l), where p1(l) = p′1 · l
n1 + p′′1(l)

Pol(rev1(x, l)) = p2(x, l), where p2(x, l) = p′2(x) · ln2 + p′′2(x, l)
Pol(rev2(x, l)) = p3(x, l), where p3(x, l) = p′3(x) · ln3 + p′′3(x, l)
Pol(cons(x, l)) = p4(x, l), where p4(x, l) = p′4(x) · ln4 + p′′4(x, l)
Pol(nil) = p5

Here, n1, n2, n3, n4 denote the highest exponents used for l in the respective
polynomials, where p′i and p′′i are polynomials with coefficients from IN. So in
p′′1(l), p

′′
2(x, l), p′′3(x, l), p′′4(x, l), the variable l occurs only with exponents smaller

than the corresponding ni. Similar to the argumentation above, where we showed
that with simplification orders one may not filter away any arguments, it is easy
to show that Pol(rev1(x, l)), Pol(rev2(x, l)), and Pol(cons(x, l)) must depend on
x and l and Pol(rev(l)) must depend on l. Hence, all values ni must be at least
1 and the polynomials p′i are not the number 0.

From the constraints of (17) and (21) we obtain

Pol(rev(cons(x, l))) ≥ Pol(cons(rev1(x, l), rev2(x, l)))

Pol(rev2(x, cons(x, l))) ≥ Pol(rev(cons(x, rev(rev2(x, l))))).

We now examine those parts of the polynomials which have the largest exponent
for l. So for large enough instantiations of l (and instantiations of x where the
p′i are non-zero) we must have

p′1 · p
′
4(x)n1 · ln1·n4 ≥ p′4(p

′
2(x) · ln2) · p′3(x)n4 · ln3·n4 (22)

p′3(x) · p′4(x)n3 · ln3·n4 ≥ p′4(x)n1 · p′1
n1·n4+1

· p′3(x)n
2

1
·n4 · ln

2

1
·n3·n4 (23)

Comparison of the highest exponents of l yields n1 · n4 ≥ n3 · n4 ≥ n2
1 · n3 · n4

and thus, n1 = n3 = 1. Moreover, p′4(x) may not depend on x, since otherwise

13

(22) would imply n1 · n4 ≥ n3 · n4 + n2. Now (22) and (23) simplify to

p′1 ≥ p′3(x)n4 (24)

p′3(x) ≥ p′1
n4+1

· p′3(x)n4 (25)

From (24) and (25) we can conclude that p′3(x) does not depend on x and p′3 =
p′1 = 1. Hence, our polynomial interpretation is as follows:

Pol(rev(l)) = l + p′′1
Pol(rev1(x, l)) = p′2(x) · ln2 + p′′2(x, l)
Pol(rev2(x, l)) = l + p′′3(x)
Pol(cons(x, l)) = p′4 · l

n4 + p′′4(x, l)
Pol(nil) = p5

Now we obtain

p′4 · p
n4

5 + p′′4(x, p5) + p′′1 = (26)

Pol(rev(cons(x, nil))) ≥ (27)

Pol(cons(rev1(x, nil), rev2(x, nil))) ≥ (28)

Pol(cons(x, rev2(x, nil))) = (29)

p′4 · (p5 + p′′3(x))n4 + p′′4(x, p5 + p′′3(x)) ≥ (30)

p′4 · p
n4

5 + p′′4(x, p5) + p′4 · p
′′
3(x)n4 (31)

The step from (27) to (28) is due to the weak decreasingness of Rule (17) and
the step from (28) to (29) follows from monotonicity and Rule (18). Note that
these inequalities give a contradiction if one instantiates x with a large enough
value like p′′1 + 1, since Pol(rev2(x, l)) and hence p′′3(x) must depend on x.

So the most common orders that are amenable to automation fail when trying
to prove termination according to Thm. 8. In contrast, when using Thm. 13 and
a filtering with π(cons) = [2], π(REV) = π(rev) = 1, and π(REV2) = π(rev2) = 2,
we do not obtain any constraints from the rev1-rules and all filtered constraints
can be oriented by the embedding order.

Our experiments with the system AProVE show that Thm. 9 and 13 indeed
improve upon Thm. 8 in practice by increasing power (in particular if reduction
pairs are based on simple fast orders like the embedding order) and by reducing
runtimes (in particular if reduction pairs are based on more complex orders).
More details are given in the appendix.

5 Transforming Dependency Pairs

To increase the power of the dependency pair technique, a dependency pair may
be transformed into several new pairs by narrowing, rewriting, and instantiation
[2, 12]. A term t′ is an R-narrowing of t with the mgu µ, if a non-variable subterm
t|p of t unifies with the left-hand side of a (variable-renamed) rule l → r ∈ R
with mgu µ, and t′ = t[r]p µ. To distinguish the variants for termination and
innermost termination, we speak of t- and i-narrowing resp. -instantiation.

14

Definition 15 (Transformations) For a TRS R and a set P of pairs of terms

• P] {s → t} t-narrows to P] {sµ1 → t1, . . . , sµn → tn} iff t1, . . . , tn are
all R-narrowings of t with the mgu’s µ1, . . . , µn and t does not unify with
(variable-renamed) left-hand sides of pairs in P. Moreover, t must be linear.

• P] {s → t} i-narrows to P] {sµ1 → t1, . . . , sµn → tn} iff t1, . . . , tn are all
R-narrowings of t with the mgu’s µ1, . . . , µn such that sµi is in normal form.
Moreover, for all v → w ∈ P where t unifies with the (variable-renamed)
left-hand side v by a mgu µ, one of the terms sµ or vµ must not be in normal
form.

• P] {s → t} rewrites to P] {s → t′} iff
U(t|p) is non-overlapping and t →R t′, where p is the position of the redex.

• P] {s → t} is t-instantiated to
P] {sµ → tµ |µ = mgu(ren(cap(w)), s), v → w ∈ P}.

• P] {s → t} is i-instantiated to
P] {sµ → tµ |µ = mgu(capv(w), s), v → w ∈ P, sµ, vµ are normal forms}.

For innermost termination, Def. 15 extends the transformations of [2, 12]
by permitting their application for a larger set of TRSs. In [12], narrowing a
pair s → t was not permitted if t unifies with the left-hand side of some de-
pendency pair, whereas now this is possible under certain conditions. Rewriting
dependency pairs was only allowed if all usable rules for the current cycle were
non-overlapping, whereas now this is only required for the usable rules of the
redex to be rewritten. Finally, when instantiating dependency pairs, in contrast
to [12] one can now use capv. Moreover, for both instantiation and narrowing
of dependency pairs, now one only has to consider instantiations which turn
left-hand sides of dependency pairs into normal forms.

The following theorem states that in the techniques for termination and in-
nermost termination proofs (Thm. 9 and 13), instead of the original dependency
pairs one may regard pairs that are transformed according to Def. 15. Of course,
then Thm. 9 and 13 have to be updated accordingly (e.g., in Thm. 9, instead of
P ⊆ DP (Ri) we now permit that P results from dependency pairs of DP (Ri)
by transformations).

Theorem 16 (Narrowing, Rewriting, Instantiation) Let DP (R)′ result
from DP (R) by t-narrowing and t-instantiation (for termination) resp. by i-
narrowing, rewriting, and i-instantiation (for innermost termination). If the
dependency pair constraints for (innermost) termination are satisfiable using
DP (R)′, then R is (innermost) terminating. Moreover, if certain reduction pairs
and argument filterings satisfy the constraints for DP (R), then the same reduc-
tion pairs and argument filterings satisfy the constraints for DP (R)′.3

3 Of course, the constraints depend on the approximation of the (innermost) dependency graph.
Here, we use the estimation of Def. 5.

15

Proof. For soundness of the transformations, we prove that if there is an infinite
(innermost) chain of pairs from DP (R), then there is also an infinite (inner-
most) chain of pairs from DP (R)′.4 Hence, if the dependency pair constraints
using DP (R)′ are satisfiable, then by the soundness of the dependency pair ap-
proach, the TRS is (innermost) terminating. For completeness, we show that if
the dependency pair constraints for DP (R) using the estimated (innermost) de-
pendency graph of Def. 5 are satisfied by some reduction pairs and argument
filterings, then the same reduction pairs and argument filterings satisfy the con-
straints for DP (R)′.

• narrowing : Soundness of t-narrowing is proved in [2, Thm. 27] and soundness
of i-narrowing is proved in [12, Thm. 12] (the soundness of the refined version
of i-narrowing in Def. 15 follows from the fact that in innermost chains,
one regards a substitution such that the instantiated left components of all
dependency pair are in normal form).
For completeness of t-narrowing, we assume that DP (R)′ is the result of
t-narrowing a dependency pair s → t from DP (R). In this transformation,
s → t was replaced by its narrowings sµ1 → t1, . . . , sµn → tn.
We first show that if P ′ is a cycle of the estimated dependency graph of
DP (R)′ containing some pair sµi → ti, then P = P ′ \ {sµ1 → t1, . . . , sµn →
tn}∪{s → t} is a cycle in the estimated dependency graph of DP (R). Assume
there is an arc from v → w to sµi → ti in the estimated dependency graph
of DP (R)′, i.e., ren(cap(w))σ = sµiσ for some substitution σ. Then there
is also an arc from v → w to s → t in the estimated dependency graph of
DP (R) using the same substitution σ on the variables of v → w by extending
it to behave like µiσ on the variables of s and t. (Recall that we may assume
that the variables in s → t are disjoint from all other variables.) Similarly,
if there is an arc from sµi → ti to v → w (i.e., ren(cap(ti))σ = vσ), then
there is also an arc from s → t to v → w in the estimated dependency
graph of DP (R) using a similar substitution σ as above. The reason is that
tµi →R ti, and hence, ren(cap(ti)) is an instance of ren(cap(tµi)) which in
turn is an instance of ren(cap(t)). Thus, by extending σ to the variables in
ren(cap(t)) in an appropriate way, we also obtain ren(cap(t))σ = vσ.
Now we show that if a reduction pair (%,�) and an argument filtering π
satisfy all constraints for a cycle P = P ′\{sµ1 → t1, . . . , sµn → tn}∪{s → t},
then they also satisfy the constraints for the cycle P ′. These constraints only
differ in that s %π t resp. s �π t is replaced by sµi %π ti resp. sµi �π ti. The
constraints of Type (b) are the same. Note that if P and P ′ contain a pair
F (. . .) → . . ., then for every function symbol g occurring below the root of
right-hand sides in pairs of P or P ′, we have g ≤d f . Then s %π t implies
sµi %π tµi %π ti by stability of %π and by the fact that tµi rewrites to ti

4 The converse direction (i.e., if there is an infinite (innermost) chain of pairs from DP (R)′ then
there is also an infinite (innermost) chain of pairs from DP (R)) holds as well for rewriting,
instantiation, and t-narrowing. For i-narrowing, this direction only holds if the usable rules
are non-overlapping (cf. [2, Ex. 43] and [12, Thm. 17]).

16

using a g-rule for a function symbol g ≤d f . Hence, the constraints of Type
(b) imply that all g-rules are weakly decreasing. Similarly, s �π t implies
sµi �π tµi %π ti.

Now we prove completeness of i-narrowing. As for t-narrowing, we first show
that if P ′ is a cycle of the estimated innermost dependency graph of DP (R)′

containing some pair sµi → ti, then P = P ′\{sµ1 → t1, . . . , sµn → tn}∪{s →
t} is a cycle in the estimated innermost dependency graph of DP (R). As
in the termination case, one can show that arcs from v → w to sµi →
ti correspond to arcs from v → w to s → t in the estimated innermost
dependency graph of DP (R). Similarly, if there is an arc from sµi → ti to
v → w (i.e., capsµi

(ti)σ = vσ), then there is also an arc from s → t to v → w
in the estimated dependency graph of DP (R) using a similar substitution
σ. The reason is again that capsµi

(ti) is an instance of capsµi
(tµi) which

in turn is an instance of caps(t). To see this, recall that tµi rewrites to ti.
Thus, the subterm of tµi that is the redex in this reduction cannot occur in
sµi, since sµi must be a normal form. Hence, in capsµi

(tµi), this subterm
(or a subterm containing this redex) is replaced by a fresh variable and thus,
capsµi

(ti) is an instance of capsµi
(tµi). If a subterm of t occurs also in s,

then the corresponding subterm of tµi also occurs in sµi. In contrast, there
may subterms of tµi that occur in sµi, whereas no corresponding subterm of
t occurs in s. This indicates that capsµi

(tµi) is an instance of caps(t).

Next we show that if a reduction pair (%,�) and an argument filtering π
satisfy all constraints for a cycle P = P ′\{sµ1 → t1, . . . , sµn → tn}∪{s → t},
then they also satisfy the constraints for the cycle P ′. One difference between
these constraints is that s %π t resp. s �π t is replaced by sµi %π ti resp.
sµi �π ti. Note that s %π t again implies sµi %π tµi %π ti by stability of
%π and by the fact that tµi rewrites to ti. Here, tµi % ti follows by Lemma
12 (iii), since all rules in Usµi

(tµi, π) ⊆ Us(t, π) are weakly decreasing (cf.
Lemma 12 (i)). Similarly, s �π t implies sµi �π ti.

The other difference is in the set of usable rules. But we have Usµi
(ti, π) ⊆

Usµi
(tµi, π) ⊆ Us(t, π) by Lemma 12 (ii) and (i). Therefore, we obtain U(P ′, π)

⊆ U(P, π).

• rewriting : We assume that DP (R)′ is the result of rewriting a dependency
pair s → t from DP (R) to s → t′ (i.e., t rewrites to t′ at some position p).
For soundness of our refined version of rewriting we adapt the proof of [12,
Thm. 18]. Let . . . , s → t, v → w, . . . be an innermost chain of pairs from
DP (R). Hence, there exists a substitution σ with tσ i→∗

R vσ and sσ, vσ are
normal forms. Thus, tσ is weakly innermost terminating. Due to the inner-
most reduction strategy, we can split up the reduction of tσ into two parts.
First, we reduce only on positions on or below p until t|pσ is a normal form u.
Afterwards we perform the remaining reduction steps from tσ[u]p to vσ. The
only rules applicable to t|pσ are U(t|pσ) and as U(t|pσ) is non-overlapping,
by [15, Thm. 3.2.11 (1a) and (4a)], t|pσ is confluent and terminating. With

17

t|p →R t′|p we obtain t|pσ →R t′|pσ. Hence, t′|pσ is terminating as well and
thus, it also reduces innermost to the same normal form u using the conflu-
ence of t|pσ. So we have t′σ = tσ[t′|pσ]p

i→∗
R tσ[u]p. Afterwards, we can apply

the same remaining steps as above that lead from tσ[u]p to vσ. Therefore
. . . , s → t′, v → w, . . . is an innermost chain as well. The proof for the com-
pleteness of rewriting is analogous to the proof of completeness of i-narrowing.

• instantiation: Soundness of instantiation is proved in [12, Thm. 20] (the
soundness of our refined version of i-instantiation is again due to the fact that
in innermost chains one only regards substitutions which instantiate all left-
hand sides of dependency pairs to normal forms). The completeness proofs
are analogous to the completeness proofs for t-narrowing and i-narrowing,
respectively. ut

By Thm. 16, these transformations never complicate (innermost) termination
proofs (but they may increase the number of constraints by producing similar
constraints that can be solved by the same argument filterings and reduction
pairs). So sometimes the runtime is increased by these transformations. On the
other hand, the transformations are often crucial for the success of the proof.

Example 17 In the following TRS [3], the minus-rules of Ex. 1 are extended
with

le(0, y) → true

le(s(x), 0) → false

le(s(x), s(y)) → le(x, y)

quot(x, s(y)) → if(le(s(y), x), x, s(y))

if(true, x, y) → s(quot(minus(x, y), y))

if(false, x, y) → 0

When trying to prove innermost termination, no simplification order satisfies
the constraints of Thm. 13 for the following cycle.

QUOT(x, s(y)) → IF(le(s(y), x), x, s(y)) (32)

IF(true, x, y) → QUOT(minus(x, y), y) (33)

The reason is that from the dependency pair constraints of this cycle we obtain

π(IF(true, x, s(y))) %

π(QUOT(minus(x, s(y)), s(y))) %

π(IF(le(s(y),minus(x, s(y))),minus(x, s(y)), s(y)))

where one of the constraints has to be strict. Hence, we have

π(IF(true, x, s(y))) � π(IF(le(s(y),minus(x, s(y))),minus(x, s(y)), s(y)))

18

From the minus-rules we see that an argument filtering π must not drop the first
argument of minus. Hence, by the subterm property we get π(minus(x, y)) % π(x).
This leads to

π(IF(true, x, s(y))) � π(IF(le(s(y), x), x, s(y))). (34)

In order to obtain a contradiction we first show the following property.

π(le(s(true), s(true))) % π(true) (35)

If π(le) = [], then using the first le-rule we can directly conclude that (35) holds.
Otherwise, by the last le-rule we get π(le(s(true), s(true))) % π(le(true, true)) and
π(le(true, true)) % π(true) by the subterm property.

Now, using (34), (35), and the substitution {x/s(true), y/true} we obtain the
desired contradiction.

π(IF(true, s(true), s(true))) �

π(IF(le(s(true), s(true)), s(true), s(true))) %

π(IF(true, s(true), s(true))).

On the other hand, when transforming the dependency pairs, the result-
ing constraints can easily be satisfied by simplification orders. Intuitively, x �
minus(x, y) only has to be satisfied if le(s(y), x) reduces to true. This argumen-
tation can be simulated using the transformations of Def. 15. By i-narrowing,
we perform a case analysis on how the le-term in (32) can be evaluated. In the
first narrowing, x is instantiated by 0. This results in a pair QUOT(0, s(y)) →
IF(false, 0, s(y)) which is not in a cycle. The other narrowing is

QUOT(s(x), s(y)) → IF(le(y, x), s(x), s(y)) (36)

which forms a new cycle with (33). Now we perform i-instantiation of (33) and
see that x and y must be of the form s(. . .). So (33) is replaced by the new pair

IF(true, s(x), s(y)) → QUOT(minus(s(x), s(y)), s(y)) (37)

that forms a cycle with (36). Finally, we do a rewrite step on (37) and obtain

IF(true, s(x), s(y)) → QUOT(minus(x, y), s(y)) (38)

The constraints from the resulting cycle {(36), (38)} (and from all other cycles)
can be solved by π(minus) = π(QUOT) = 1, π(IF) = 2, and the embedding order.

The crucial problem with the refinement of Def. 15 is that these transfor-
mations may be applied infinitely many times. Therefore, we have developed
restricted safe transformations which are guaranteed to terminate. Our experi-
ments on the collections of examples from [3, 9, 27] show that whenever the proof

19

succeeds using narrowing, rewriting, and instantiation, then applying these safe
transformations is sufficient.

A narrowing or instantiation step is safe if it reduces the number of pairs
in cycles of the estimated (innermost) dependency graph. For a set of pairs P,
SCC(P) denotes the set of maximal cycles built from pairs of P. Then, the trans-
formation is safe if ΣS∈SCC(P)|S| decreases. Moreover, it is also considered safe
if by the transformation step, all descendants of some original dependency pair
disappear from cycles. For every pair s → t, o(s → t) denotes the original depen-
dency pair whose repeated transformation led to s → t. Now a transformation is
also safe if {o(s → t) | s → t ∈

⋃

S∈SCC(P) S} decreases.
As an example, consider R = {f(a) → g(b), g(x) → f(x)}. The estimated

dependency graph has the cycle {F(a) → G(b), G(x) → F(x)}. Instantiation
transforms the second pair into G(b) → F(b). Now there is no cycle anymore,
since F(b) does not unify with F(a). Thus, this instantiation step is safe. Fi-
nally for each pair, one single narrowing and instantiation step which does not
satisfy the above requirements is also considered safe. Hence, the narrowing and
instantiation steps in Ex. 17 were safe as well.

As for termination, in innermost termination proofs we also benefit from con-
sidering the recursion hierarchy. So if R1, . . . ,Rn is a separation of the TRS
R and Ri >d Rj , then we show absence of innermost R-chains built from
DP (Rj) before dealing with DP (Ri). Now innermost rewriting a dependency
pair F (. . .) → . . . is safe if it is performed with rules that do not depend on f
(i.e., with g-rules where g <d f). The reason is that innermost termination of g
is already verified when proving innermost termination of f . So in Ex. 17, when
proving innermost termination of the QUOT-cycle, we may assume innermost
termination of minus and thus, the rewrite step from (37) to (38) was safe.

Definition 18 (Safe Transformations) Let Q result from a set P of pairs of
terms by transforming s → t ∈ P as in Def. 15. The transformation is safe if

(1) s → t was transformed by narrowing or instantiation and

• ΣS∈SCC(P)|S| > ΣS∈SCC(Q)|S|, or
• {o(s → t) | s → t ∈

⋃

S∈SCC(P) S}) {o(s → t) | s → t ∈
⋃

S∈SCC(Q) S}

(2) s → t was transformed by innermost rewriting with the rule l → r and
root(l) <d f where f] = root(s)

(3) s → t was transformed by narrowing and all previous steps which transformed
o(s → t) to s → t were not narrowing steps

(4) s → t was transformed by instantiation and all previous steps which trans-
formed o(s → t) to s → t were not instantiation steps

The following theorem proves that the repeated application of safe transfor-
mations is indeed terminating.

Theorem 19 (Termination) Let R have the separation R1, . . . ,Rn and P ⊆
DP (Ri). If there are no infinite innermost R-chains from DP (Rj) for all Rj

<d Ri, then any repeated application of safe transformations on P terminates.

20

Proof. We define a measure on sets of pairs P consisting of four components:

(a) |{o(s → t) | s → t ∈
⋃

S∈SCC(P) S}| (c) |P|

(b) ΣS∈SCC(P)|S| (d) P

These 4-tuples are compared lexicographically by the usual order on naturals for
components (a)-(c). For (d), we use the (multi)set extension of the innermost
rewrite relation of

⋃

Rj<dRi
Rj. Thus, we obtain a well-founded relation � where

P1 � P2 iff P1’s measure is greater than the measure of P2. Due to (a), (b), and
(d), any safe transformation of P with steps (1) or (2) decreases the measure of
P.

For a set of pairs P, let w(P) = 〈P¬n,¬i,Pn,¬i,P¬n,i,Pn,i〉. P¬n,¬i consists of
those s→ t∈P where no (n)arrowing or (i)nstantiation was used to transform
o(s→ t) to s→ t. Pn,¬i are the pairs where narrowing, but no instantiation was
used, etc. Every safe transformation step decreases w(P) lexicographically w.r.t.
�: Transformations with (1) or (2) decrease one component of w(P) w.r.t. � and
do not modify the others. Transformations with (3) or (4) reduce the size of one
component of w(P) (so the component decreases w.r.t. � according to (c)) and
increase the size of some component on its right-hand side. ut

After each transformation, the current cycle or SCC of the estimated (in-
nermost) dependency graph is re-computed. For this re-computation, one only
has to regard the former neighbors of the transformed pair in the old graph.
Only former neighbors may have arcs to or from the new pairs resulting from the
transformation. Regarding neighbors in the graphs also suffices when performing
the unifications required for narrowing and instantiation. In this way, the trans-
formations can be performed efficiently. Recall that one should always regard
SCCs first and afterwards, one builds new SCCs from the remaining pairs which
were not strictly decreasing (Sect. 2) [16]. Of course, these pairs may already
have been transformed during the (innermost) termination proof of the SCC. So
this approach has the advantage that one never repeats transformations for the
same dependency pairs.

6 Computing Argument Filterings

In the dependency pair approach we may apply an argument filtering π to a
set of constraints before starting an orientation attempt with a reduction pair.
However, the number of possible argument filterings is exponential in the ari-
ties of the function symbols. We now show how to search for suitable argument
filterings efficiently in the improved dependency pair approach of Thm. 9 and
Thm. 13. More precisely, for every cycle P, we show how to compute small sub-
sets Πt(P) and Π i(P) of argument filterings which contain all filterings which
could possibly satisfy the constraints for termination or innermost termination,
respectively. A corresponding algorithm was presented in [16] for termination

21

proofs w.r.t. Thm. 8. However, we now develop such an algorithm for the im-
proved versions of the dependency pair approach from Thm. 9 and Thm. 13.
In particular for innermost termination (Thm. 13), the algorithm is considerably
more involved since the set of constraints depends on the argument filtering used.
Moreover, instead of treating constraints separately as in [16], we process them
according to an efficient depth-first strategy.

Let RP be a class of reduction pairs describing the particular base order used
(e.g., RP may contain all LPOs with arbitrary precedences or all recursive path
orders with status, etc.). For any set of dependency pairs P, Π(P) denotes the
set of all argument filterings where at least one dependency pair in P is strictly
decreasing and the remaining ones are weakly decreasing w.r.t. some reduction
pair in RP . When referring to “dependency pairs”, we also permit pairs resulting
from dependency pairs by narrowing, rewriting, or instantiation.

We use the approach of [16] to consider partial argument filterings, i.e., fil-
terings which are only defined on a subset of the signature. For example, in a
term f(g(x), y), if π(f) = [2], then we do not have to determine π(g), since
all occurrences of g are filtered away. Thus, we leave argument filterings as
undefined as possible and permit the application of π to a term t whenever
π is sufficiently defined for t. More precisely, any partial argument filtering π
is sufficiently defined for a variable x. So the the domain of π may even be
empty, i.e., DOM (π) = ∅. An argument filtering π is sufficiently defined for a
term f(t1, . . . , tn) iff f ∈ DOM (π) and π is sufficiently defined for all ti with
i ∈ RegPosπ(f). An argument filtering is sufficiently defined for a set of terms
T iff it is sufficiently defined for all terms in T . To compare argument filter-
ings which only differ in their domain DOM , we introduce a relation “v”. Then
Π(P) should only contain v-minimal elements, i.e., if π ′ ∈ Π(P), then Π(P)
does not contain any π < π′. Of course, all argument filterings in Π(P) must be
sufficiently defined for the terms in the dependency pairs of P.

Definition 20 (v and Π(P)) For two (partial) argument filterings, we define
π v π′ iff DOM (π) ⊆ DOM (π′) and π(f) = π′(f) for all f ∈ DOM (π). For a
set P of dependency pairs, let Π(P) consist of all v-minimal elements of {π |
there is a (%,�) ∈ RP such that π(s) � π(t) for at least one s → t ∈ P and
π(s) % π(t) for all other s → t ∈ P}.

We now define a superset Π t(P) of all argument filterings where the con-
straints (a) and (b) for termination of the cycle P are satisfied by some reduc-
tion pair of RP . So only these argument filterings have to be regarded when
automating Thm. 9. To this end, we have to extend partial argument filterings.

Definition 21 (Ex f , Πt(P)) For a partial argument filtering π and f ∈ D,
Ex f (π) consists of all v-minimal argument filterings π ′ such that π v π′ and
such that there is a (%,�) ∈ RP with π′(l) % π′(r) for all l → r ∈ Rls(f). For
a set Π of filterings, let Ex f (Π) =

⋃

π∈Π Ex f (π). If P originates from DP (Ri)
by t-narrowing and t-instantiation and {f1, ..., fk} are R′

i’s defined symbols, then
Πt(P) = Ex fk

(...Ex f1
(Π(P))...).

22

We compute Π t(P) by depth-first search. So we start with some π ∈ Π(P)
and extend it to a minimal π′ such that the f1-rules are weakly decreasing.
Then π′ is extended such that the f2-rules are weakly decreasing, etc. Here, f1

is considered before f2 if f1 >d f2. When we have Π t(P)’s first element π1,
we check whether Constraints (a) and (b) of Thm. 9 are satisfiable with π1.
In case of success, we do not compute further elements of Π t(P). Only if the
constraints are not satisfiable with π1, we determine Π t(P)’s next element, etc.
The advantage of this approach is that Π(P) is usually rather small, since it only
contains argument filterings that satisfy a strict inequality.

For innermost termination, the set of constraints to be satisfied depends on
the argument filtering used. If f ≥d g, then when orienting the rules of f , we
do not necessarily have to orient the rules of g as well, since all occurrences of
g in f -rules may have been deleted by the argument filtering, cf. Thm. 13. To
formalize this, we define a relation “`P” on sets of argument filterings. Let us
extend RegPosπ to partial argument filterings by defining RegPosπ(f) = ∅ for
all f /∈ DOM (π). Now U(P, π) is also defined for partial filterings by simply
disregarding all subterms of function symbols where π is not defined.

For a partial argument filtering π, whenever Rls(f) is included in the usable
rules U(P, π) for the cycle P, then the relation “`P” can extend π in order
to make the f -rules weakly decreasing. We label each argument filtering by the
set of those function symbols whose rules are already guaranteed to be weakly
decreasing.

Definition 22 (`P) Each argument filtering π is labelled with a set G ⊆ D
and we denote a labelled argument filtering by πG. For sets of labelled argument
filterings, we define the relation “`P”: Π]{πG} `P Π ∪{π′

G∪{f} | π′ ∈ Ex f (π)},

if f ∈ D \ G and Rls(f) ⊆ U(P, π).

When proving innermost termination, we will only regard argument filterings
that result from Π(P) by applying `P -reductions as long as possible. In order to
prove that normal forms w.r.t. `P are unique, we need the following lemma. It
states that Ex f (π) always consists of pairwise incompatible argument filterings.
Here, two argument filterings π1 and π2 are compatible if π1(f) = π2(f) for all
f ∈ DOM (π1) ∩ DOM (π2), cf. [16].

Lemma 23 (Incompatibility) Let T be a finite set of terms.

(a) Let π, π1, π2 be (partial) argument filterings. Let π1, π2 be elements of {π′ |π v
π′ and π′ is sufficiently defined for T}, where π1 is a v-minimal element of
this set. If π1 and π2 are compatible, then π1 v π2.

(b) If π1, π2 ∈ Ex f (π) with π1 6= π2, then π1 and π2 are incompatible, i.e., Ex f (π)
consists of pairwise incompatible argument filterings.

(c) If Π consists of pairwise incompatible argument filterings, then Ex f (Π) con-
sists of pairwise incompatible argument filterings as well.

23

Proof. (a) We perform induction on T using the multiset version of the proper
subterm relation. If T = ∅, then the only minimal extension of π that is
sufficiently defined for T is π1 = π. Hence, π1 = π v π2.

Next let T = T ′] {x} for a variable x. Clearly, both π1 and π2 are also
sufficiently defined for T ′ and moreover, π1 is a minimal extension of π that
is sufficiently defined for T ′. Thus, the claim follows from the induction hy-
pothesis.

If T = T ′] {f(t1, . . . , tn)}, then f ∈ DOM (π1). Let T ′′ = T ′ ∪ {ti | i ∈
RegPosπ1

(f)}. Both π1 and π2 are sufficiently defined for T ′′ (for π2 this
follows from π2(f) = π1(f) by compatibility of π1 and π2). If π1 is a minimal
extension of π that is sufficiently defined for T ′′, then the claim is implied by
the induction hypothesis. Otherwise, we have f /∈ DOM (π) and we obtain
the following minimal extension π′

1 of π that is sufficiently defined for T ′′:
DOM (π′

1) = DOM (π1) \ {f} and π′
1(g) = π1(g) for all g ∈ DOM (π′

1). Then
the induction hypothesis implies π ′

1 v π2. Since π1 only differs from π′
1 on

the function symbol f and since π1(f) = π2(f), we obtain π1 v π2.

(b) Let π1, π2 ∈ Exf (π) be compatible. As both filterings are minimal extensions
of π that are sufficiently defined for the terms on left- or right-hand sides of
rules from Rls(f), we use (a) to conclude both π1 v π2 and π2 v π1, which
implies π1 = π2.

(c) Let π1 ∈ Ex f (π′
1) and π2 ∈ Ex f (π′

2), where π′
1, π

′
2 ∈ Π. If π′

1 = π′
2, then π1

and π2 are incompatible by (b). Otherwise π ′
1 6= π′

2, and by the assumption
about Π we obtain that π′

1 and π′
2 are incompatible. As π′

1 v π1 and π′
2 v π2,

this implies that π1 and π2 are incompatible as well. ut

The next theorem shows the desired properties of the relation `P .

Theorem 24 `P is terminating and confluent.

Proof. The termination of `P is obvious as the labellings increase in every `P -
step. Hence for confluence, it suffices to show local confluence. The only crucial
non-determinism in the definition of `P is the choice of f . Suppose that f0, f1 ∈
D \ G with f0 6= f1 and Rls(f0) ∪ Rls(f1) ⊆ U(P, π). This leads to two possible
reduction steps

Π] {πG} `P Π ∪ Π0, where Π0 = {π0
G∪{f0}

| π0 ∈ Ex f0
(π)}

Π] {πG} `P Π ∪ Π1, where Π1 = {π1
G∪{f1}

| π1 ∈ Ex f1
(π)}

Note that U(P, π) ⊆ U(P, πi) holds for all πi ∈ Ex fi
(π). Thus for all filterings

πi
G∪{fi}

∈ Πi, we have f1−i ∈ D \ (G ∪{fi}) and Rls(f1−i) ⊆ U(P, πi). Hence, we

can build the following reductions (where we also allow the application of Ex f

24

to labelled argument filterings by simply ignoring their labels).

Π ∪ Π0

|Π0|

` P (Π \ Π0) ∪
{

π′
G∪{f0,f1}

| π′ ∈ Ex f1
(Ex f0

(π))
}

|Π∩Π1|

` P (Π \ (Π0 ∪ Π1)) ∪
{

π′
G∪{f0,f1}

| π′ ∈ Ex f1
(Ex f0

(π))
}

∪
{

π′
G∪{f1,f0}

| π′ ∈ Ex f0
(Π ∩ Π1)

}

and

Π ∪ Π1

|Π1|

` P (Π \ Π1) ∪
{

π′
G∪{f1,f0}

| π′ ∈ Ex f0
(Ex f1

(π))
}

|Π∩Π0|

` P (Π \ (Π1 ∪ Π0)) ∪
{

π′
G∪{f1,f0}

| π′ ∈ Ex f0
(Ex f1

(π))
}

∪
{

π′
G∪{f0,f1}

| π′ ∈ Ex f1
(Π ∩ Π0)

}

where Ex f0
(Π∩Π1) ⊆ Ex f0

(Ex f1
(π)) and Ex f1

(Π∩Π0) ⊆ Ex f1
(Ex f0

(π)). Hence,
the missing step to finish this proof is to show Ex f0

(Ex f1
(π)) = Ex f1

(Ex f0
(π)).

Because of symmetry, it suffices to prove Ex f0
(Ex f1

(π)) ⊆ Ex f1
(Ex f0

(π)). To
this end, we only have to show that for every π01 ∈ Ex f0

(Ex f1
(π)) there exists a

π10 ∈ Ex f1
(Ex f0

(π)) with π10 v π01. The reason is that in an analogous way one
can show that for π10 there also exists a π′

01 ∈ Ex f0
(Ex f1

(π)) with π′
01 v π10.

Hence, we have π′
01 v π10 v π01 and by Lemma 23 (b) and (c), this implies

π′
01 = π10 = π01.

Let π01 ∈ Ex f0
(Ex f1

(π)). By the definition of Ex , there must be a π1 ∈
Ex f1

(π) and a reduction pair (%,�) ∈ RP with π1 v π01 and π01(l) % π01(r)
for all l → r ∈ Rls(f0). As π1 ∈ Ex f1

(π), we may conclude in the same way that
π v π1 and π1(l) %′ π1(r) for all f1-rules and some reduction pair (%′,�′) ∈ RP .
Since π v π01 and since the f0-rules can be oriented in a weakly decreasing way
using π01, there exists a π0 ∈ Ex f0

(π) with π v π0 v π01 such that the f0-
rules can also be oriented using π0. Since π0 v π01 and since the f1-rules can be
oriented with π01, there is a π10 ∈ Ex f1

(π0) with π0 v π10 v π01 such that π10

also permits an orientation of the f1-rules. As explained above, this suffices to
prove Ex f0

(Ex f1
(π)) ⊆ Ex f1

(Ex f0
(π)). ut

Now we can define the set of argument filterings that are regarded for inner-
most termination proofs.

Definition 25 (Π i(P)) Let Nf `P
(Π) denote the normal form of Π w.r.t. `P .

Then we define Π i(P) = Nf `P
({π � | π ∈ Π(P)}).

To compute Π i(P), we again start with some π ∈ Π(P). Now π only has
to be extended in order to make the rules for a symbol f weakly decreasing if
the f -rules are contained in U(P, π). If by this extension, the rules for some new
symbol g become usable, then a subsequent extension with Ex g is also necessary,
etc.

25

Thm. 26 states that by Π t(P) (resp. Π i(P)), one indeed obtains all argument
filterings which could possibly solve the dependency pair constraints. Here, P
may also result from narrowing, rewriting, and instantiating dependency pairs.
In this way the set of argument filterings is reduced dramatically and thus,
efficiency is increased. For example, for a TRS from [3, Ex. 3.11] computing
quicksort, Π t(P) reduces the number of argument filterings from more than 26
million to 3734 and with Π i(P) we obtain a reduction from more than 1.4 million
to 783.

Theorem 26 Let P be a cycle. If the constraints (a) and (b) of Thm. 9 for
termination are satisfied for some reduction pair from RP and argument filtering
π, then π′ v π for some π′ ∈ Πt(P). If the constraints (c) and (d) of Thm. 13
for innermost termination are satisfied for some reduction pair from RP and
argument filtering π, then π′ v π for some π′ ∈ Πi(P).

Proof. Let π be an argument filtering and let (%,�) ∈ RP be a reduction pair
that solve the constraints (a) and (b) from Thm. 9 or the constraints (c) and (d)
from Thm. 13 for a cycle P, respectively.

We first consider the termination case. There must be a minimal argument
filtering π0 ∈ Π(P) with π0 v π that solves the constraints in (a) using (%,�).
Let P originate from DP (Ri), where R′

i has the defined symbols {f1, . . . , fk}.
As π0 v π and π(l) % π(r) for all f1-rules l → r, there must be a filtering
π1 ∈ Ex f1

(π0) with π1 v π. We continue in this way and obtain an argument
filtering πk ∈ Ex fk

(. . . Ex f1
(Π(P)) . . .) = Π t(P) with πk v π.

In the innermost case, let Π(P) = Π0 `P Π1 `P . . . `P Πn = Πi(P) be a
`P -reduction to normal form. We show that for all 0 ≤ j ≤ n there is a πj ∈ Πj

with πj v π by induction on j. For j = 0, since π solves the constraints in (c), by
definition there is again a minimal argument filtering π0 ∈ Π(P) with π0 v π.
For j > 0, we assume that there is a πj−1 ∈ Πj−1 with πj−1 v π. Thus, we either
have πj−1 ∈ Πj as well or else, Πj results from Πj−1 by replacing πj−1 by all
elements of Ex f (πj−1) for some f with Rls(f) ⊆ U(P, πj−1). Since πj−1 v π, we
have U(P, πj−1) ⊆ U(P, π) and thus, π also makes the f -rules weakly decreasing.
This implies that there must be a πj ∈ Ex f (πj−1) ⊆ Πj with πj v π. ut

The converse directions of this theorem do not hold, since in the computation
of Πt(P) and Π i(P), when extending argument filterings, one does not take the
orders into account. So even if Ex f (Ex g(. . .)) 6= ∅, it could be that there is no
reduction pair such that both f - and g-rules are weakly decreasing w.r.t. the
same reduction pair.

The technique of this section can be extended by storing both argument filter-
ings and corresponding parameters of the order in the sets Π(P) and Ex f (. . .).
For example, if RP is the set of all LPOs, then Π(P) would now contain all
(minimal) pairs of argument filterings π and precedences such that π(s) �lpo π(t)
resp. π(s) %lpo π(t) holds for s → t ∈ P. When extending argument filterings,
one would also have to extend the corresponding precedence. Of course, such

26

an extension is only permitted if the extended precedence is still irreflexive (and
hence, well founded). Then, Π t(P) (resp. Π i(P)) is non-empty iff the constraints
for (innermost) termination are satisfiable for P. Thus, after computing Π t(P)
resp. Π i(P), no further checking of orders and constraints is necessary anymore.
This variant is particularly suitable for orders with few parameters like LPO.

7 Heuristics

Now we present heuristics to improve the efficiency of the approach. They concern
the search for argument filterings (Sect. 7.1) and for base orders (Sect. 7.2 and
7.3). In contrast to the improvements of the preceding sections, these heuristics
affect the power of the method, i.e., there exist examples whose (innermost)
termination can no longer be proved when following the heuristics.

7.1 Type Inference for Argument Filterings

In Sect. 6, we have shown how to reduce the set of possible argument filterings
by removing filterings which cannot satisfy the constraints for (innermost) ter-
mination using dependency pairs. However, since the resulting sets Π t(P) and
Πi(P) can still be large, it is often advantageous to reduce them even further.
To this end, we have developed the following heuristic based on type inference.

In natural examples, termination of a function is usually due to the decrease
of arguments of the same type. Of course, this type may be different for the
different functions in a TRS. So we use a (monomorphic) type inference algorithm
to transform a TRS into a sorted TRS (i.e., a TRS with rules l → r where l and
r are well-typed terms of the same type). As a good heuristic to reduce the set
of possible argument filterings further, one can require that for every symbol
f , either no argument position is eliminated or all non-eliminated argument
positions are of the same type. In other words, if f is n-ary, then π(f) = [1, . . . , n],
π(f) ∈ {1, . . . , n}, or π(f) = [i1, . . . , ik] where the argument positions i1, . . . , ik
all have the same type. Our experiments show that all examples in the collections
of [3, 9, 27] that can be solved using LPO as a base order can still be solved when
using this heuristic.

7.2 Embedding Order for Dependency Pairs

To increase efficiency in our depth-first algorithm of Sect. 6, a successful heuristic
is to only use the embedding order when orienting the constraints π(s) � π(t)
and π(s) % π(t) for dependency pairs s → t. Only for constraints of the form
π(l) % π(r) for rules l → r, one may apply more complicated quasi-orders e.g.,
LPO, RPO(S), or polynomial orders. The advantage of this approach is that now
Π(P) is much smaller than when using more powerful orders. Thus, the depth-
first search starting with Π(P) can be performed very quickly. Our experiments
show that due to the improvements in Sect. 3 and 4, this heuristic succeeds for
more than 96 % of those examples from [3, 9, 27] where a full LPO was successful,
while reducing runtimes by at least 58 %.

27

7.3 Bottom-Up Heuristic

To determine argument filterings in Sect. 6, we start with the dependency pairs
and treat the constraints for rules afterwards, where f -rules are considered before
g-rules if f >d g. In contrast, now we suggest a bottom-up approach which starts
with determining an argument filtering for constructors and then moves upwards
through the recursion hierarchy where g is treated before f if f >d g. While in
Sect. 6, we determined sets of argument filterings, now we only determine one
single argument filtering, even if several ones are possible. To obtain an efficient
technique, no backtracking takes place, i.e., if at some point one selects the
“wrong” argument filtering, then the proof can fail.

More precisely, we first guess an argument filtering π which is only defined
for constructors. For every n-ary constructor c we define π(c) = [1, . . . , n] or
we let π filter away all argument of c that do not have the same type as c’s
result. Afterwards, for every function symbol f , we try to extend π on f such
that π(l) % π(r) for all f -rules l → r. We consider functions according to the
recursion hierarchy >d. So when extending π on f , π is already defined on all
g <d f . Among the extensions of π which permit an orientation of the f -rules, we
choose π(f) such that it eliminates as many arguments of f as possible. Of course,
this is just one of the potential argument filterings for f . If we have chosen the
“wrong” argument filtering for f , the (innermost) termination proof might fail,
although there would have been a solution with a different argument filtering. If
we are not able to orient the rules of f , then we mark f as not orientable. Finally,
after having treated all rules, the filtering is extended to the tuple symbols by
trying to orient the dependency pairs as well (where at least one dependency
pair must be strictly decreasing). Of course, this extension is done separately for
every SCC or cycle, respectively.

In termination proofs, if f ∈ Rj is not orientable, then all symbols in
Ri ≥d Rj as well as all dependency pairs resulting from Ri ≥d Rj are also
not orientable. In innermost termination proofs, if f is not orientable, then a
symbol that depends on f can still be orientable if one can extend the argu-
ment filtering in such a way that all occurrences of f in its rules are eliminated.
Similarly, dependency pairs can still be orientable if the argument filtering elimi-
nates all occurrences of f . Thus, here the bottom-up approach has the advantage
that we already know that certain argument positions must be eliminated when
extending the argument filtering to new function symbols.

This algorithm can also be modified by determining both the argument filter-
ing and the reduction pair step by step. For example, a successful option is to use
linear polynomial orders with coefficients 0 and 1. By permitting the coefficient
0, polynomial orders can also perform argument filtering, i.e., one does not have
to use any extra argument filterings anymore. Again we consider two possibili-
ties for the interpretation of constructors. One possibility is to map every n-ary
constructor c(x1, . . . , xn) to the polynomial 1 + x1 + . . . + xn if n > 0 and to 0,
otherwise. The other possibility is to map every constructor c(x1, . . . , xn) to the
polynomial 1 + xi1 + . . . + xik if i1, . . . , ik are the argument positions with the

28

same type as c’s result and k > 0. Otherwise, c is mapped to 0. When extend-
ing the polynomial interpretation to a function f , we have already determined
the polynomial interpretation for all symbols g <d f . Then, we try to find a
minimal polynomial for f such that the f -rules are weakly decreasing (i.e., as
many coefficients as possible should be 0). The combination of the bottom-up
algorithm with other orders (e.g., LPO) works in a similar way. Here, one always
determines a minimal precedence which may be extended when proceeding to
the next function symbol in the recursion hierarchy.

The bottom-up algorithm reduces the search space enormously. The number
of TRSs from [3, 9, 27] where the bottom-up algorithm succeeds is 94 % of the
number achieved by the full dependency pair approach with LPO, but runtime
is reduced to less than 18 %.

8 Conclusion and Implementation in the System AProVE

We have presented improvements of the dependency pair approach which sig-
nificantly reduce the sets of constraints π(l) % π(r) for both termination and
innermost termination proofs. Moreover, we extended the applicability of de-
pendency pair transformations and developed a criterion to ensure that their
application is terminating without compromising the power of the approach in
almost all examples. To implement the approach, we have given an algorithm for
computing argument filterings which is tailored to the improvements presented
before. Finally, we have developed heuristics to increase efficiency which proved
successful in large case studies.

We implemented these results in the system AProVE (Automated Program
Verification Environment), which is available at http://www-i2.informatik.

rwth-aachen.de/AProVE. The tool is written in Java and proofs can be per-
formed both in a fully automated or in an interactive mode via a graphical user
interface. To combine the heuristics of Sect. 7, for every SCC P, AProVE offers
the following combination algorithm which uses the heuristics as a pre-processing
step and only calls the full dependency pair approach for cycles where the heuris-
tics fail:

1. Safe transformations with Cases (1) and (2) of Def. 18
2. Bottom-up heuristic of Sect. 7.3
3. Heuristics of Sect. 7.1 and Sect. 7.2 with LPO as base order
4. Remaining safe transformations according to Def. 18.

If at least one transformation was applied, go back to 1.
5. Full dependency pair approach with RPO as base order

When the constraints for the SCC are solved, the algorithm is called recur-
sively with the SCCs of those remaining pairs which were only weakly decreasing.
We tested the combination algorithm on the collections of [3, 9, 27] (108 TRSs
for termination, 151 TRSs for innermost termination). Our system succeeded
on 96.6 % of the innermost termination examples (including all of [3]) and on

29

93.5 % of the examples for termination. The automated proof for the whole col-
lection took 80 seconds for innermost termination and 27 seconds for termination.
These results indicate that the contributions of the paper are indeed very useful
in practice.

References

1. T. Arts. System description: The dependency pair method. In Proc. 11th RTA, LNCS
1833, pages 261–264, 2000.

2. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theoretical
Computer Science, 236:133–178, 2000.

3. T. Arts and J. Giesl. A collection of examples for termination of term rewriting using
dependency pairs. Technical Report AIB-2001-09, RWTH Aachen, 2001. Available from
http://aib.informatik.rwth-aachen.de.

4. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
1998.

5. C. Borralleras, M. Ferreira, and A. Rubio. Complete monotonic semantic path orderings.
In Proc. 17th CADE, LNAI 1831, pages 346–364, 2000.

6. E. Contejean, C. Marché, B. Monate, and X. Urbain. Cime version 2, 2000. Available from
http://cime.lri.fr.

7. N. Dershowitz. Orderings for term-rewriting systems. Theoretical Computer Science,
17:279–301, 1982.

8. N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation, 3:69–116,
1987.

9. N. Dershowitz. 33 examples of termination. In Proc. French Spring School of Theoretical
Computer Science, LNCS 909, pages 16–26, 1995.

10. N. Dershowitz, N. Lindenstrauss, Y. Sagiv, and A. Serebrenik. A general framework for
automatic termination analysis of logic programs. Applicable Algebra in Engineering, Com-
munication and Computing, 12(1,2):117–156, 2001.

11. O. Fissore, I. Gnaedig, and H. Kirchner. Cariboo: An induction based proof tool for termi-
nation with strategies. In Proc. 4th PPDP, pages 62–73. ACM, 2002.

12. J. Giesl and T. Arts. Verification of Erlang processes by dependency pairs. Applicable
Algebra in Engineering, Communication and Computing, 12(1,2):39–72, 2001.

13. J. Giesl, T. Arts, and E. Ohlebusch. Modular termination proofs for rewriting using de-
pendency pairs. Journal of Symbolic Computation, 34(1):21–58, 2002.

14. B. Gramlich. On proving termination by innermost termination. In Proc. 7th RTA, LNCS
1103, pages 97–107, 1996.

15. B. Gramlich. Termination and Confluence Properties of Structured Rewrite Systems. PhD
thesis, Universität Kaiserslautern, Germany, 1996.

16. N. Hirokawa and A. Middeldorp. Automating the dependency pair method. In Proc. 19th
CADE, LNAI 2741, 2003.

17. N. Hirokawa and A. Middeldorp. Tsukuba termination tool. In Proc. 14th RTA, LNCS
2706, pages 311–320, 2003.

18. G. Huet and J.-M. Hullot. Proofs by induction in equational theories with constructors.
Journal of Computer and System Sciences, 25:239–299, 1982.

19. S. Kamin and J. J. Lévy. Two generalizations of the recursive path ordering. Unpublished
Manuscript, University of Illinois, IL, USA, 1980.

20. D. Knuth and P. Bendix. Simple word problems in universal algebras. In J. Leech, editor,
Computational Problems in Abstract Algebra, pages 263–297. Pergamon, 1970.

21. K. Kusakari, M. Nakamura, and Y. Toyama. Argument filtering transformation. In Proc.
1st PPDP, LNCS 1702, pages 48–62, 1999.

22. D. Lankford. On proving term rewriting systems are Noetherian. Technical Report MTP-3,
Louisiana Technical University, Ruston, LA, USA, 1979.

30

23. C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle for program
termination. In Proc. POPL ’01, pages 81–92, 2001.

24. A. Middeldorp. Approximating dependency graphs using tree automata techniques. In
Proc. IJCAR 2001, LNAI 2083, pages 593–610, 2001.

25. E. Ohlebusch. Hierarchical termination revisited. Information Processing Letters,
84(4):207–214, 2002.

26. E. Ohlebusch, C. Claves, and C. Marché. TALP: A tool for the termination analysis of logic
programs. In Proc. 11th RTA, LNCS 1833, pages 270–273, 2000.

27. J. Steinbach. Automatic termination proofs with transformation orderings. In Proc. 6th
RTA, LNCS, pages 11–25, 1995. Full version appeared as Technical Report SR-92-23,
Universität Kaiserslautern, Germany.

28. J. Steinbach. Simplification orderings: History of results. Fundamenta Informaticae, 24:47–
87, 1995.

29. R. Thiemann and J. Giesl. Size-change termination for term rewriting. In Proc. 14th RTA,
LNCS 2706, pages 264–278, 2003.

30. Y. Toyama. Counterexamples to the termination for the direct sum of term rewriting
systems. Information Processing Letters, 25:141–143, 1987.

31. X. Urbain. Automated incremental termination proofs for hierarchically defined term
rewriting systems. In Proc. IJCAR 2001, LNAI 2083, pages 485–498, 2001.

A Empirical Results

We have implemented the results of this paper in our system AProVE and the
following tables show the success rate and runtimes for the different techniques
and heuristics. We have tested the system on the examples of [3, 9, 27] (108
TRSs for termination, 151 TRSs for innermost termination). In the tables, “S”
stands for examples of Steinbach’s collection [27] and “D” denotes examples
of Dershowitz [9]. The remaining examples are taken from Chapter 3 and 4 of
the collection of Arts and Giesl [3]. However for termination proofs, we did not
regard the TRSs from Chapter 4 of [3], since many of them are only innermost
terminating, but not terminating. Since some TRSs occur in several of these
collections, we only consider each TRS once (for that reason, examples of [9] and
[27] are not reconsidered if they also appear in [3]).

We have used AProVE in the following different settings:

– Normal is the method of Sect. 3 – 6 with reduction pairs based on LPO or
the embedding order. For the LPO we allow different symbols to be equal in
the precedence. Moreover, when computing the sets Π t(P) and Π i(P), we
determine both the argument filterings and the precedences of the LPO, as
illustrated at the end of Sect. 6. However, in this setting, we do not apply
the heuristics of Sect. 7.

– Old is like Normal, but it uses Thm. 8 instead of Thm. 9 and 13.
– Type is like Normal, but it uses the type inference heuristic of Sect. 7.1.
– Emb is like Normal, but it applies the heuristic to use the embedding order

for dependency pairs (Sect. 7.2).
– Bottom-Up uses the bottom-up heuristic of Sect. 7.3 where we determine both

the argument filtering and the reduction pair step by step. Here, for every
SCC or cycle, the bottom-up algorithm may be applied several times. For

31

example, one may use linear polynomial orders with coefficients 0 and 1, but
if the constraints are not satisfied with the first possibility for interpreting
constructors, then one can try the other possibility as illustrated in Sect. 7.3.
In a similar way, one can use LPO instead of polynomial orders and regard
the two possibilities for filtering constructors (no elimination of arguments
or a filtering determined by type inference). Finally, it is also possible to
combine both kinds of reduction pairs by first checking the two possibilities
with polynomial orders and then checking the two possibilities with LPO,
if the constraints for this cycle have not yet been solved. In this way, we
obtained 3 different versions of the bottom-up algorithm where in the last
version, the bottom-up algorithm may be applied at most four times for each
cycle or SCC, respectively.

– Combi is the combination algorithm of Sect. 8 where we used the last version
of the bottom-up algorithm described above.

The next two tables summarize the results of our experiments. In the “Power”
column we give the number of examples where the proof attempt was successful.
In square brackets we indicate the percentage of these examples compared to
the number of all examples in the collection. In the “Time” column we give the
overall runtime for running the system on all examples of the collection (also on
the ones where the proof attempt failed). For each example we used a time-out
of 30 seconds. The average time required for each example is given in square
brackets. The detailed results of our experiments can be found at the end of this
appendix.

Algorithm Order Power Time

Termination

Old EMB 52 [48.1 %] 110.8 s [1.0 s]
Normal EMB 64 [59.2 %] 113.1 s [1.0 s]

Old LPO 81 [75.0 %] 320.0 s [2.9 s]
Normal LPO 85 [78.7 %] 246.3 s [2.2 s]

Innermost Termination

Old EMB 100 [66.2 %] 213.5 s [1.4 s]
Normal EMB 121 [80.1 %] 152.4 s [1.0 s]

Old LPO 128 [84.7 %] 412.1 s [2.7 s]
Normal LPO 131 [86.7 %] 353.9 s [2.3 s]

The above table illustrates the usefulness of the results from Sect. 3 and 4
and shows that Thm. 9 and 13 indeed improve upon Thm. 8 in practice. If one
uses simple reduction pairs like the embedding order where orientability can be
checked very efficiently, then compared to Thm. 8, Thm. 9 and 13 increase power
by more than 20 % on the examples from [3, 9, 27]. For innermost termination,
runtimes are decreased by about 28 %, while for termination one keeps approxi-
mately the same runtimes. If the reduction pairs are more complex (i.e., LPO),

32

then Thm. 9 and 13 significantly reduce runtime (by about 23 % for termination
and about 14 % for innermost termination), while power is increased moderately.

Algorithm Orders Power Time

Termination

Normal LPO 85 [78.7 %] 246.3 s [2.2 s]
Type LPO 85 [78.7 %] 226.1 s [2.0 s]
Emb LPO 82 [75.9 %] 104.1 s [0.9 s]

Bottom-Up LPO 66 [61.1 %] 76.9 s [0.7 s]
Bottom-Up Polo 75 [69.4 %] 25.4 s [0.2 s]
Bottom-Up Polo, LPO 80 [74.0 %] 27.2 s [0.2 s]

Combi 101 [93.5 %] 28.4 s [0.2 s]

Innermost Termination

Normal LPO 131 [86.7 %] 353.9 s [2.3 s]
Type LPO 131 [86.7 %] 316.3 s [2.0 s]
Emb LPO 128 [84.7 %] 137.2 s [0.9 s]

Bottom-Up LPO 113 [74.8 %] 115.7 s [0.7 s]
Bottom-Up Polo 125 [82.7 %] 60.6 s [0.4 s]
Bottom-Up Polo, LPO 126 [83.4 %] 63.2 s [0.4 s]

Combi 146 [96.6 %] 86.1 s [0.5 s]

This table illustrates the usefulness of the heuristics of Sect. 7 and the com-
bination algorithm described in Sect. 8. The results show that the type inference
heuristic on its own does not improve the performance very much, but it also
does not reduce the set of examples where the method is successful. With the
embedding order heuristic from Sect. 7.2 we only lose a few examples in com-
parison to the full algorithm, but we need less than half of the time. Using the
bottom-up heuristics, there exist several examples where we are no longer able
to prove (innermost) termination, but we are at least three times faster than
with the full approach. We also see that using simple polynomial orders for the
bottom-up heuristic is fast and successful. Finally, with the combined algorithm,
we obtain the best of all methods. The algorithm is almost as fast as the bottom-
up algorithm and we get a success rate of over 93 % for the examples from the
collections of [3, 9, 27].

The following tables give the detailed runtimes (in seconds, where “∞” de-
notes a time-out after 30 seconds) and results for the examples (where “OK”
means that the proof succeeded and “-” means that the proof failed).

33

Table 1. Termination

Algorithm Old Normal Old Normal
Orders EMB EMB LPO LPO

3.1 0.5 OK 0.6 OK 0.1 OK 0.6 OK
3.2 0.1 OK 0.1 OK 0.1 OK 0.1 OK
3.3 0.8 - 0.7 - 0.6 OK 0.5 OK
3.4 0.0 - 0.0 - 0.5 OK 0.1 OK
3.5 1.6 - 0.5 OK 1.8 OK 1.7 OK
3.5a 1.9 - 0.6 OK 2.1 OK 2.0 OK
3.5b 0.6 - 1.6 - 6.2 OK 5.1 OK
3.6 3.7 - 3.7 - ∞ [-] ∞ [-]
3.6a 2.2 - 2.3 - ∞ [-] 27.0 -
3.6b 0.6 - 1.9 - ∞ [-] ∞ [-]
3.7 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.8 0.1 OK 0.1 OK 0.1 OK 0.1 OK
3.8a 0.2 OK 0.2 OK 0.2 OK 0.2 OK
3.8b 0.6 - 0.7 - 1.5 OK 0.7 OK
3.9 2.2 - 0.4 OK 1.1 OK 0.6 OK
3.10 2.9 - 12.4 - ∞ [-] ∞ [-]
3.11 1.5 - 1.0 OK 3.2 OK 2.2 OK
3.12 0.3 - 0.3 - 1.2 - 1.1 -
3.13 ∞ [-] ∞ [-] ∞ [-] ∞ [-]
3.14 1.7 - 1.7 - 2.3 OK 1.6 OK
3.15 0.0 - 0.0 - 0.0 - 0.0 -
3.16 0.0 - 0.0 - 0.1 OK 0.1 OK
3.17 0.1 - 0.0 - 2.4 OK 1.6 OK
3.17a 0.5 - 0.0 - ∞ [-] ∞ [-]
3.18 0.0 - 0.1 - 0.3 OK 0.1 OK
3.19 0.1 - 0.0 - 0.4 OK 0.2 OK
3.20 0.1 OK 0.1 OK 0.3 OK 0.3 OK
3.21 0.1 OK 0.1 OK 0.7 OK 0.6 OK
3.22 0.1 - 0.0 - 0.4 - 3.7 -
3.23 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.24 0.2 - 0.2 - 0.2 - 0.2 -
3.25 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.26 0.1 - 0.1 - 0.0 OK 0.0 OK
3.27 0.1 - 0.1 - 0.0 OK 0.0 OK
3.28 0.1 - 0.1 - 0.2 OK 0.2 OK
3.29 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.30 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.31 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.32 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.33 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.34 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.35 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.36 0.7 - 0.5 OK 0.4 OK 0.4 OK
3.37 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.38 0.2 - 0.2 OK 0.8 OK 0.7 OK
3.39 0.1 - 0.4 - 0.6 - 0.8 -
3.40 0.1 - 1.3 - 0.7 - 3.4 -

34

Algorithm Old Normal Old Normal
Orders EMB EMB LPO LPO

3.41 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.42 0.2 OK 0.1 OK 0.2 OK 0.2 OK
3.43 0.0 OK 0.0 OK 0.1 OK 0.1 OK
3.44 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.45 0.0 OK 0.0 OK 0.1 OK 0.0 OK
3.46 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.47 0.0 OK 0.0 OK 0.1 OK 0.1 OK
3.48 0.0 - 0.0 - 4.2 OK 2.2 OK
3.49 0.1 - 0.1 - 0.2 - 0.2 -
3.50 0.0 - 0.0 OK 0.0 OK 0.0 OK
3.51 0.0 - 0.0 - 0.5 OK 0.1 OK
3.52 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.53 2.0 - 2.1 - 3.1 - 3.1 -
3.53a 0.0 - 0.1 - 0.0 - 0.0 -
3.53b 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.54 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.55 2.0 - 1.2 OK 5.5 OK 4.5 OK
3.56 0.1 - 0.1 OK 0.2 - 0.1 OK
3.57 0.1 - 0.0 - ∞ [-] 1.3 OK
S.1 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.2 0.1 OK 0.1 OK 6.0 OK 5.7 OK
S.3 0.1 OK 0.1 OK 0.0 OK 0.0 OK
S.4 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.5 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.6 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.7 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.10 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.11 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.12 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.14 0.1 - 0.1 - 1.5 - 1.5 -
S.15 0.1 - 0.1 - 0.1 - 0.1 -
S.17 0.1 - 0.1 - 0.2 - 0.2 -
S.18 0.0 - 0.0 - 0.0 - 0.0 -
S.22 0.1 OK 0.1 OK 0.2 OK 0.2 OK
S.24 1.3 - 0.3 OK 28.7 - 3.3 OK
S.25 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.26 4.1 - 0.5 OK 12.0 - 1.1 OK
S.27 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.28 0.0 - 0.0 - 0.2 - 0.1 -
S.29 0.1 OK 0.1 OK 0.1 OK 0.1 OK
S.30 0.1 OK 0.1 OK 0.1 OK 0.1 OK
S.31 2.2 OK 2.2 OK 3.8 OK 3.8 OK
D.1 0.0 OK 0.0 OK 0.0 OK 0.0 OK
D.2 0.0 OK 0.0 OK 0.0 OK 0.0 OK
D.3 0.0 OK 0.0 OK 0.0 OK 0.0 OK
D.6 0.0 - 0.0 - 0.0 OK 0.0 OK
D.7 0.0 OK 0.0 OK 0.0 OK 0.0 OK
D.8 0.1 OK 0.1 OK 0.1 OK 0.1 OK

35

Algorithm Old Normal Old Normal
Orders EMB EMB LPO LPO

D.9 0.0 - 0.0 - 0.0 OK 0.0 OK
D.11 0.6 OK 0.6 OK 0.6 OK 0.6 OK
D.12 0.0 - 0.0 - 0.0 - 0.0 -
D.13 0.0 - 0.0 - 0.1 - 0.1 -
D.17 0.0 - 0.0 - 0.1 OK 0.1 OK
D.18 0.0 OK 0.0 OK 0.0 OK 0.0 OK
D.20 ∞ [-] ∞ [-] 1.1 OK 1.0 OK
D.21 0.1 OK 0.1 OK 0.1 OK 0.1 OK
D.28 0.1 - 0.0 - 0.0 OK 0.0 OK
D.29 0.5 - 0.1 OK 0.1 OK 0.1 OK
D.30 7.4 - 7.4 - 0.5 OK 0.5 OK
D.32 0.4 OK 0.4 OK 0.8 OK 1.1 OK
D.33 0.2 - 0.3 - 6.9 - 4.2 -

Sum: 110 52 113 64 320 81 246 85
Avg/%: 1.0 48.1 1.0 59.2 2.9 75.0 2.2 78.7

36

Table 2. Innermost Termination

Algorithm Old Normal Old Normal
Orders EMB EMB LPO LPO

3.1 0.5 OK 0.5 OK 0.6 OK 0.6 OK
3.2 0.1 OK 0.1 OK 0.1 OK 0.1 OK
3.3 0.8 - 0.7 - 0.6 OK 0.4 OK
3.4 0.8 - 0.2 OK 0.2 OK 0.2 OK
3.5 1.5 - 0.5 OK 1.8 OK 1.7 OK
3.5a 1.9 - 0.6 OK 2.1 OK 2.1 OK
3.5b 0.6 - 1.6 - 6.0 OK 5.1 OK
3.6 3.7 - 3.7 - ∞ [-] ∞ [-]
3.6a 2.2 - 2.3 - 28.9 - 27.0 -
3.6b 0.7 - 1.9 - ∞ [-] ∞ [-]
3.7 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.8 0.1 OK 0.1 OK 0.1 OK 0.1 OK
3.8a 0.2 OK 0.2 OK 0.2 OK 0.2 OK
3.8b 0.6 - 0.7 - 1.5 OK 0.7 OK
3.9 2.2 - 0.4 OK 1.1 OK 0.6 OK
3.10 2.7 - 12.5 - ∞ [-] ∞ [-]
3.11 1.5 - 1.0 OK 3.3 OK 2.3 OK
3.12 0.3 - 0.3 - 1.1 - 1.1 -
3.13 ∞ [-] ∞ [-] ∞ [-] ∞ [-]
3.14 1.7 - 1.7 - 1.7 OK 1.6 OK
3.15 0.0 - 0.0 - 0.0 - 0.0 -
3.16 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.17 1.0 - 0.9 - 1.8 OK 1.8 OK
3.17a 2.7 - 2.6 - ∞ [-] ∞ [-]
3.18 1.3 - 0.2 OK 0.2 OK 0.2 OK
3.19 1.4 - 0.3 OK 0.2 OK 0.2 OK
3.20 0.1 OK 0.1 OK 0.3 OK 0.3 OK
3.21 0.1 OK 0.1 OK 0.6 OK 0.6 OK
3.22 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.23 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.24 0.2 - 0.2 - 0.2 - 0.2 -
3.25 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.26 0.2 - 0.3 - 0.0 OK 0.0 OK
3.27 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.28 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.29 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.30 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.31 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.32 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.33 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.34 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.35 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.36 0.7 - 0.5 OK 0.4 OK 0.4 OK
3.37 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.38 0.2 - 0.1 OK 0.9 OK 0.7 OK
3.39 0.1 OK 0.1 OK 0.2 OK 0.1 OK
3.40 0.2 OK 0.2 OK 0.2 OK 0.2 OK

37

Algorithm Old Normal Old Normal
Orders EMB EMB LPO LPO

3.41 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.42 0.1 OK 0.1 OK 0.2 OK 0.2 OK
3.43 0.0 OK 0.0 OK 0.1 OK 0.1 OK
3.44 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.45 0.0 OK 0.0 OK 0.1 OK 0.0 OK
3.46 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.47 0.1 OK 0.0 OK 0.0 OK 0.1 OK
3.48 6.3 - 6.0 - 2.8 OK 1.4 OK
3.49 0.1 - 0.1 - 0.2 - 0.3 -
3.50 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.51 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.52 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.53 2.0 - 2.0 - 3.0 - 3.1 -
3.53a 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.53b 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.54 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.55 2.1 - 1.2 OK 5.5 OK 4.5 OK
3.56 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.57 1.4 - 1.2 - 2.0 OK 2.1 OK
4.1 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.2 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.3 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.4 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.4a 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.5 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.6 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.7 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.8 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.9 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.10 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.11 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.12 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.12a 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.13 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.14 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.15 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.16 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.17 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.18 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.19 0.1 OK 0.1 OK 0.1 OK 0.1 OK
4.20 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.20a 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.21 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.22 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.23 0.2 - 0.1 OK 0.1 OK 0.2 OK
4.25 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.26 0.8 - 0.8 OK 1.9 OK 1.8 OK
4.27 0.1 OK 0.1 OK 0.1 OK 0.1 OK

38

Algorithm Old Normal Old Normal
Orders EMB EMB LPO LPO

4.28 0.1 OK 0.1 OK 0.1 OK 0.1 OK
4.29 1.0 - 1.0 OK 8.5 OK 7.1 OK
4.30 1.3 - 1.1 OK 4.8 OK 4.7 OK
4.30a 0.1 OK 0.1 OK 0.1 OK 0.2 OK
4.30b 1.3 - 1.2 OK 5.1 OK 6.3 OK
4.30c 2.9 - 2.9 - 23.4 - 29.4 -
4.31 0.2 OK 0.2 OK 2.2 OK 2.2 OK
4.32 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.33 0.2 OK 0.2 OK 0.2 OK 0.2 OK
4.34 0.7 - 0.7 - 0.6 OK 0.3 OK
4.35 ∞ [-] 8.2 OK ∞ [-] ∞ [-]
4.36 2.7 - 3.0 OK ∞ [-] 9.6 OK
4.37 0.1 OK 0.0 OK 0.0 OK 0.0 OK
4.37a 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.1 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.2 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.3 0.0 OK 0.0 OK 0.0 OK 0.1 OK
S.4 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.5 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.6 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.7 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.10 0.1 OK 0.0 OK 0.0 OK 0.0 OK
S.11 0.1 OK 0.0 OK 0.0 OK 0.0 OK
S.12 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.14 0.4 OK 0.2 OK 0.1 OK 0.2 OK
S.15 0.1 - 0.1 - 0.2 - 0.1 -
S.17 0.7 - 0.5 - 0.8 - 0.8 -
S.18 0.1 - 0.0 - 0.0 - 0.0 -
S.22 0.2 OK 0.1 OK 0.1 OK 0.2 OK
S.24 2.1 - 0.2 OK 28.1 - 3.1 OK
S.25 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.26 9.4 - 0.6 OK 12.0 - 1.2 OK
S.27 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.28 0.1 - 0.1 - 0.2 - 0.2 -
S.29 0.1 OK 0.1 OK 0.1 OK 0.1 OK
S.30 0.1 OK 0.1 OK 0.1 OK 0.1 OK
S.31 ∞ [-] 2.2 OK 3.7 OK 3.8 OK
D.1 0.0 OK 0.0 OK 0.0 OK 0.0 OK
D.2 0.0 OK 0.0 OK 0.0 OK 0.0 OK
D.3 0.0 OK 0.0 OK 0.0 OK 0.0 OK
D.6 0.0 OK 0.0 OK 0.0 OK 0.0 OK
D.7 0.0 OK 0.0 OK 0.0 OK 0.0 OK
D.8 0.1 OK 0.1 OK 0.1 OK 0.1 OK
D.9 0.0 OK 0.0 OK 0.0 OK 0.0 OK
D.11 1.0 OK 0.9 OK 0.5 OK 0.6 OK
D.12 0.1 - 0.1 - 0.1 - 0.1 -
D.13 0.8 - 0.6 - 0.9 - 0.9 -
D.17 2.2 OK 0.1 OK 0.1 OK 0.1 OK

39

Algorithm Old Normal Old Normal
Orders EMB EMB LPO LPO

D.18 0.0 OK 0.0 OK 0.0 OK 0.0 OK
D.20 ∞ [-] ∞ [-] 1.9 OK 2.0 OK
D.21 0.1 OK 0.1 OK 0.1 OK 0.1 OK
D.28 0.0 OK 0.0 OK 0.0 OK 0.0 OK
D.29 0.5 - 0.1 OK 0.1 OK 0.1 OK
D.30 7.4 - 7.4 - 0.5 OK 0.5 OK
D.32 0.4 OK 0.4 OK 0.8 OK 1.1 OK
D.33 7.2 - 7.1 - ∞ [-] ∞ [-]

Sum: 213 100 152 121 412 128 353 131
Avg/%: 1.4 66.2 1.0 80.1 2.7 84.7 2.3 86.7

40

Table 3. Termination

Algorithm Normal Type Emb Bottom-Up Bottom-Up Bottom-Up Combi
Orders LPO LPO LPO LPO Polo Polo, LPO

3.1 0.6 OK 0.6 OK 0.6 OK 0.6 OK 0.5 OK 0.6 OK 0.5 OK
3.2 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.0 OK
3.3 0.5 OK 0.4 OK 0.3 OK 0.2 OK 0.2 OK 0.2 OK 0.1 OK
3.4 0.1 OK 0.1 OK 0.2 OK 0.0 - 0.0 - 0.1 - 0.1 OK
3.5 1.7 OK 1.6 OK 0.6 OK 0.2 OK 0.2 OK 0.2 OK 0.1 OK
3.5a 2.0 OK 1.4 OK 0.7 OK 0.2 OK 0.2 OK 0.2 OK 0.1 OK
3.5b 5.1 OK 2.3 OK 0.9 OK 0.3 OK 0.3 OK 0.3 OK 0.2 OK
3.6 ∞ [-] ∞ [-] 4.1 - 2.9 - 0.3 OK 0.3 OK 0.2 OK
3.6a 27.0 - 17.6 - 2.6 - 2.2 - 0.2 OK 0.3 OK 0.3 OK
3.6b ∞ [-] ∞ [-] 15.8 - 3.2 - 0.4 OK 0.4 OK 0.3 OK
3.7 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.8 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK
3.8a 0.2 OK 0.2 OK 0.2 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK
3.8b 0.7 OK 0.6 OK 0.5 OK 0.3 OK 0.3 OK 0.3 OK 0.2 OK
3.9 0.6 OK 0.6 OK 0.4 OK 0.3 OK 0.3 OK 0.3 OK 0.2 OK
3.10 ∞ [-] ∞ [-] 13.2 - 10.5 - 1.5 OK 1.5 OK 1.4 OK
3.11 2.2 OK 2.0 OK 1.2 OK 0.7 OK 0.6 OK 0.7 OK 0.5 OK
3.12 1.1 - 1.1 - 0.5 - 0.2 - 0.1 OK 0.1 OK 0.0 OK
3.13 ∞ [-] ∞ [-] ∞ [-] ∞ [-] 0.8 OK 0.8 OK 0.8 OK
3.14 1.6 OK 1.6 OK 1.7 - 1.1 OK 0.1 OK 0.1 OK 0.1 OK
3.15 0.0 - 0.0 - 0.0 - 0.0 - 0.0 OK 0.0 OK 0.0 OK
3.16 0.1 OK 0.1 OK 0.1 OK 0.0 OK 0.0 - 0.1 OK 0.0 OK
3.17 1.6 OK 1.7 OK 0.7 OK 0.4 - 0.1 OK 0.1 OK 0.1 OK
3.17a ∞ [-] ∞ [-] 4.8 - 0.6 - 0.1 OK 0.1 OK 0.1 OK
3.18 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 - 0.1 OK 0.1 OK
3.19 0.2 OK 0.2 OK 0.2 OK 0.1 OK 0.0 - 0.2 OK 0.2 OK
3.20 0.3 OK 0.3 OK 0.1 OK 0.1 OK 0.0 OK 0.0 OK 0.0 OK
3.21 0.6 OK 0.6 OK 0.1 OK 0.1 - 0.1 - 0.1 - 0.3 OK
3.22 3.7 - 3.8 - 0.4 - 0.1 - 0.1 - 0.2 - 3.3 -
3.23 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.24 0.2 - 0.2 - 0.2 - 0.2 - 0.0 OK 0.0 OK 0.0 OK
3.25 0.0 OK 0.0 OK 0.0 OK 0.1 - 0.1 - 0.1 - 0.1 OK
3.26 0.0 OK 0.0 OK 0.1 - 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.27 0.0 OK 0.0 OK 0.0 OK 0.1 - 0.1 - 0.1 - 0.1 OK
3.28 0.2 OK 0.1 OK 0.2 OK 0.0 - 0.0 - 0.1 - 0.6 OK
3.29 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.30 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.31 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.32 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.33 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.34 0.0 OK 0.0 OK 0.0 OK 0.0 - 0.0 - 0.0 - 0.0 OK
3.35 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.36 0.4 OK 0.4 OK 0.5 OK 0.5 OK 0.1 OK 0.1 OK 0.1 OK
3.37 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.38 0.7 OK 0.7 OK 0.2 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK
3.39 0.8 - 0.8 - 0.5 - 0.3 - 0.2 OK 0.3 OK 0.3 OK
3.40 3.4 - 3.4 - 1.4 - 1.1 - 0.4 OK 0.4 OK 0.5 OK

41

Algorithm Normal Type Emb Bottom-Up Bottom-Up Bottom-Up Combi
Orders LPO LPO LPO LPO Polo Polo, LPO

3.41 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.1 OK 0.0 OK 0.0 OK
3.42 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK
3.43 0.1 OK 0.1 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.44 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.45 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.1 OK
3.46 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.47 0.1 OK 0.1 OK 0.2 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.48 2.2 OK 1.6 OK 1.1 - 0.0 - 0.0 - 0.1 - 2.3 OK
3.49 0.2 - 0.1 - 0.1 - 0.0 - 0.1 - 0.1 - 0.1 OK
3.50 0.0 OK 0.0 OK 0.0 OK 0.0 - 0.0 - 0.0 - 0.0 OK
3.51 0.1 OK 0.1 OK 0.1 OK 0.0 - 0.0 - 0.1 - 0.1 OK
3.52 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.53 3.1 - 3.2 - 2.1 - 1.9 - 0.4 OK 0.4 OK 0.3 OK
3.53a 0.0 - 0.0 - 0.0 - 0.1 - 0.0 OK 0.0 OK 0.0 OK
3.53b 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.54 0.0 OK 0.0 OK 0.0 OK 0.1 - 0.1 - 0.1 - 0.0 OK
3.55 4.5 OK 3.2 OK 1.4 OK 0.9 OK 0.8 OK 0.8 OK 0.7 OK
3.56 0.1 OK 0.1 OK 0.1 OK 0.0 - 0.0 - 0.0 - 0.1 OK
3.57 1.3 OK 1.5 OK 0.9 OK 0.3 - 0.1 - 0.4 - 0.2 OK
S.1 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.2 5.7 OK 3.3 OK 1.5 OK 0.0 - 0.0 - 0.0 - 0.7 OK
S.3 0.0 OK 0.1 OK 0.0 OK 0.1 OK 0.1 OK 0.1 OK 0.0 OK
S.4 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.5 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.6 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.7 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.10 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.11 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.12 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.14 1.5 - 1.5 - 0.1 - 0.1 - 0.0 - 0.1 - 0.8 -
S.15 0.1 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1 - 0.2 -
S.17 0.2 - 0.1 - 0.1 - 0.0 - 0.0 - 0.0 - 0.2 -
S.18 0.0 - 0.0 - 0.0 - 0.1 - 0.1 - 0.1 - 0.1 OK
S.22 0.2 OK 0.2 OK 0.1 OK 0.2 OK 0.1 OK 0.2 OK 0.2 OK
S.24 3.3 OK 2.7 OK 0.4 OK 0.2 OK 0.2 OK 0.2 OK 0.1 OK
S.25 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.26 1.1 OK 1.2 OK 0.6 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK
S.27 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.28 0.1 - 0.1 - 0.0 - 0.0 - 0.0 - 0.0 - 0.5 -
S.29 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.0 OK 0.1 OK
S.30 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK
S.31 3.8 OK 2.8 OK 2.6 OK 0.9 - 0.8 - 0.9 - 1.6 OK
D.1 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
D.2 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
D.3 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
D.6 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 - 0.0 OK 0.0 OK
D.7 0.0 OK 0.0 OK 0.0 OK 0.0 - 0.0 - 0.0 - 0.0 OK
D.8 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK

42

Algorithm Normal Type Emb Bottom-Up Bottom-Up Bottom-Up Combi
Orders LPO LPO LPO LPO Polo Polo, LPO

D.9 0.0 OK 0.0 OK 0.0 OK 0.0 - 0.0 - 0.0 - 0.0 OK
D.11 0.6 OK 0.6 OK 0.6 OK 1.0 OK 0.5 OK 0.5 OK 0.5 OK
D.12 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.1 - 0.4 OK
D.13 0.1 - 0.1 - 0.1 - 0.0 - 0.0 - 0.1 - 0.3 -
D.17 0.1 OK 0.1 OK 0.0 OK 0.0 OK 0.0 - 0.1 OK 0.0 OK
D.18 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
D.20 1.0 OK 1.0 OK 0.9 OK 0.9 OK 0.9 OK 0.9 OK 0.9 OK
D.21 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.2 OK 0.1 OK 0.0 OK
D.28 0.0 OK 0.0 OK 0.0 OK 0.0 - 0.0 - 0.0 - 0.1 OK
D.29 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.0 OK
D.30 0.5 OK 0.5 OK 0.3 OK 7.3 - 7.3 - 7.4 - 0.3 OK
D.32 1.1 OK 0.7 OK 0.7 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK
D.33 4.2 - 3.3 - 1.1 - 0.1 - 0.1 - 0.1 - 2.0 -

Sum: 246 85 226 85 104 82 76 66 25 75 27 80 28 101
Avg/%: 2.2 78.7 2.0 78.7 0.9 75.9 0.7 61.1 0.2 69.4 0.2 74.0 0.2 93.5

43

Table 4. Innermost Termination

Algorithm Normal Type Emb Bottom-Up Bottom-Up Bottom-Up Combi
Orders LPO LPO LPO LPO Polo Polo, LPO

3.1 0.6 OK 0.7 OK 0.6 OK 0.6 OK 0.5 OK 0.6 OK 0.5 OK
3.2 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.0 OK
3.3 0.4 OK 0.4 OK 0.3 OK 0.2 OK 0.2 OK 0.2 OK 0.1 OK
3.4 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.1 OK 0.2 OK 0.1 OK
3.5 1.7 OK 1.6 OK 0.6 OK 0.2 OK 0.2 OK 0.2 OK 0.1 OK
3.5a 2.1 OK 1.4 OK 0.7 OK 0.2 OK 0.2 OK 0.2 OK 0.1 OK
3.5b 5.1 OK 2.3 OK 0.9 OK 0.3 OK 0.3 OK 0.3 OK 0.2 OK
3.6 ∞ [-] ∞ [-] 4.1 - 2.8 - 0.3 OK 0.3 OK 0.2 OK
3.6a 27.0 - 17.6 - 2.5 - 2.2 - 0.4 OK 0.3 OK 0.3 OK
3.6b ∞ [-] ∞ [-] 15.3 - 3.2 - 0.4 OK 0.4 OK 0.3 OK
3.7 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.8 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK
3.8a 0.2 OK 0.2 OK 0.2 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK
3.8b 0.7 OK 0.6 OK 0.6 OK 0.3 OK 0.3 OK 0.3 OK 0.2 OK
3.9 0.6 OK 0.6 OK 0.5 OK 0.3 OK 0.3 OK 0.2 OK 0.2 OK
3.10 ∞ [-] ∞ [-] 12.9 - 10.6 - 1.5 OK 1.5 OK 1.3 OK
3.11 2.3 OK 1.9 OK 1.2 OK 0.7 OK 0.6 OK 0.7 OK 0.5 OK
3.12 1.1 - 1.1 - 0.4 - 0.2 - 0.1 OK 0.1 OK 0.0 OK
3.13 ∞ [-] ∞ [-] ∞ [-] ∞ [-] 0.8 OK 0.8 OK 0.7 OK
3.14 1.6 OK 1.6 OK 1.7 - 1.1 OK 0.1 OK 0.2 OK 0.1 OK
3.15 0.0 - 0.0 - 0.0 - 0.0 - 0.0 OK 0.0 OK 0.0 OK
3.16 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.1 OK
3.17 1.8 OK 1.7 OK 0.8 OK 0.6 - 0.1 OK 0.1 OK 0.1 OK
3.17a ∞ [-] ∞ [-] 3.8 - 1.3 - 0.3 OK 0.3 OK 0.3 OK
3.18 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.1 OK
3.19 0.2 OK 0.2 OK 0.2 OK 0.3 OK 0.2 OK 0.2 OK 0.2 OK
3.20 0.3 OK 0.3 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.0 OK
3.21 0.6 OK 0.6 OK 0.1 OK 0.1 - 0.1 - 0.1 - 0.3 OK
3.22 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.23 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.24 0.2 - 0.2 - 0.2 - 0.2 - 0.0 OK 0.0 OK 0.0 OK
3.25 0.0 OK 0.1 OK 0.0 OK 0.1 - 0.1 - 0.1 - 0.1 OK
3.26 0.0 OK 0.0 OK 0.3 - 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.27 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.28 0.0 OK 0.1 OK 0.1 OK 0.1 - 0.1 - 0.1 - 0.2 OK
3.29 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.30 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.31 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.32 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.33 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.34 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.35 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.36 0.4 OK 0.4 OK 0.6 OK 0.5 OK 0.1 OK 0.1 OK 0.1 OK
3.37 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.38 0.7 OK 0.7 OK 0.2 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK
3.39 0.1 OK 0.1 OK 0.2 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK
3.40 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.1 OK

44

Algorithm Normal Type Emb Bottom-Up Bottom-Up Bottom-Up Combi
Orders LPO LPO LPO LPO Polo Polo, LPO

3.41 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.42 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.3 OK 0.2 OK
3.43 0.1 OK 0.1 OK 0.0 OK 0.0 OK 0.0 OK 0.1 OK 0.1 OK
3.44 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.45 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.1 OK 0.0 OK 0.1 OK
3.46 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.47 0.1 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.48 1.4 OK 0.8 OK 6.5 - 5.2 - 5.4 - 5.4 - 20.9 OK
3.49 0.3 - 0.2 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1 OK
3.50 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.51 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.52 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.53 3.1 - 3.1 - 2.2 - 1.9 - 0.4 OK 0.4 OK 0.4 OK
3.53a 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.53b 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
3.54 0.0 OK 0.0 OK 0.0 OK 0.1 - 0.1 - 0.1 - 0.1 OK
3.55 4.5 OK 3.2 OK 1.4 OK 0.9 OK 0.8 OK 0.8 OK 0.6 OK
3.56 0.0 OK 0.0 OK 0.0 OK 0.1 - 0.0 - 0.1 - 0.1 OK
3.57 2.1 OK 2.1 OK 1.2 OK 0.9 - 0.6 OK 0.4 OK 0.5 OK
4.1 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.2 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.3 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.4 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.4a 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.5 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.6 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.7 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.8 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.9 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.10 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.11 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.12 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.12a 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.13 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.14 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.15 0.0 OK 0.0 OK 0.0 OK 0.0 - 0.0 - 0.0 - 0.0 OK
4.16 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.17 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.18 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.19 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.0 OK 0.0 OK 0.0 OK
4.20 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.20a 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.21 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.22 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.23 0.2 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.0 OK
4.25 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.26 1.8 OK 1.2 OK 0.9 OK 0.6 OK 0.2 OK 0.7 OK 0.7 OK
4.27 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.0 OK

45

Algorithm Normal Type Emb Bottom-Up Bottom-Up Bottom-Up Combi
Orders LPO LPO LPO LPO Polo Polo, LPO

4.28 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK
4.29 7.1 OK 4.9 OK 1.1 OK 0.9 OK 0.5 OK 0.9 OK 1.0 OK
4.30 4.7 OK 3.4 OK 1.4 OK 0.7 OK 0.3 OK 0.6 OK 0.9 OK
4.30a 0.2 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.2 OK 0.1 OK
4.30b 6.3 OK 5.3 OK 1.5 OK 1.0 OK 0.5 OK 0.9 OK 1.0 OK
4.30c 29.4 - 19.9 - 3.4 - 3.0 - 0.8 OK 1.2 OK 1.3 OK
4.31 2.2 OK 2.2 OK 0.2 OK 0.2 OK 0.1 OK 0.2 OK 0.2 OK
4.32 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
4.33 0.2 OK 0.2 OK 0.2 OK 0.2 OK 0.1 OK 0.1 OK 0.1 OK
4.34 0.3 OK 0.3 OK 1.0 - 0.5 - 0.5 - 0.5 - 1.2 OK
4.35 ∞ [-] ∞ [-] 5.7 OK 20.6 - 20.9 - 20.4 - 5.3 OK
4.36 9.6 OK 4.3 OK 6.6 OK 0.9 OK 0.8 OK 0.8 OK 0.7 OK
4.37 0.0 OK 0.0 OK 0.0 OK 0.1 - 0.0 - 0.1 - 0.1 OK
4.37a 0.0 OK 0.0 OK 0.0 OK 0.1 - 0.0 - 0.1 - 0.1 OK
S.1 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.2 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.3 0.1 OK 0.1 OK 0.1 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.4 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.5 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.6 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.7 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.10 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.11 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.12 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.14 0.2 OK 0.2 OK 0.2 OK 0.2 - 0.1 - 0.2 - 0.2 OK
S.15 0.1 - 0.1 - 0.1 - 0.2 - 0.2 - 0.2 - 0.3 -
S.17 0.8 - 0.7 - 0.6 - 0.4 - 0.4 - 0.5 - 0.8 -
S.18 0.0 - 0.0 - 0.0 - 0.0 - 0.1 - 0.1 - 0.1 OK
S.22 0.2 OK 0.2 OK 0.2 OK 0.1 OK 0.1 OK 0.2 OK 0.1 OK
S.24 3.1 OK 2.4 OK 0.2 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK
S.25 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.26 1.2 OK 1.2 OK 0.6 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK
S.27 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
S.28 0.2 - 0.2 - 0.1 - 0.1 - 0.0 - 0.1 - 0.5 -
S.29 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK
S.30 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK
S.31 3.8 OK 2.8 OK 2.5 OK 0.9 - 0.8 - 0.9 - 1.6 OK
D.1 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
D.2 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
D.3 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
D.6 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
D.7 0.0 OK 0.0 OK 0.0 OK 0.0 - 0.0 - 0.0 - 0.0 OK
D.8 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK
D.9 0.0 OK 0.0 OK 0.0 OK 0.0 - 0.0 - 0.0 - 0.0 OK
D.11 0.6 OK 0.6 OK 0.6 OK 1.4 OK 0.9 OK 0.9 OK 0.5 OK
D.12 0.1 - 0.1 - 0.1 - 0.1 - 0.1 - 0.2 - 0.1 OK
D.13 0.9 - 0.8 - 0.7 - 0.1 - 0.1 - 0.1 - 0.9 -
D.17 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 - 0.1 OK 0.1 OK

46

Algorithm Normal Type Emb Bottom-Up Bottom-Up Bottom-Up Combi
Orders LPO LPO LPO LPO Polo Polo, LPO

D.18 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK 0.0 OK
D.20 2.0 OK 1.9 OK 1.9 OK 1.8 OK 1.8 OK 1.9 OK 1.7 OK
D.21 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.0 OK
D.28 0.0 OK 0.0 OK 0.0 OK 0.0 - 0.0 - 0.0 - 0.0 OK
D.29 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK 0.0 OK
D.30 0.5 OK 0.5 OK 0.3 OK 7.3 - 7.3 - 7.4 - 0.3 OK
D.32 1.1 OK 0.7 OK 0.7 OK 0.1 OK 0.1 OK 0.1 OK 0.1 OK
D.33 ∞ [-] ∞ [-] 7.5 - 0.2 - 0.2 - 0.2 - ∞ [-]

Sum: 353 131 316 131 137 128 115 113 60 125 63 126 86 146
Avg/%: 2.3 86.7 2.0 86.7 0.9 84.7 0.7 74.8 0.4 82.7 0.4 83.4 0.5 96.6

47

Aachener Informatik-Berichte

This is a list of recent technical reports. To obtain copies of technical reports

please consult http://aib.informatik.rwth-aachen.de/ or send your request

to: Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,

Email: biblio@informatik.rwth-aachen.de

95-11 ∗ M. Staudt / K. von Thadden: Subsumption Checking in Knowledge

Bases

95-12 ∗ G.V. Zemanek / H.W. Nissen / H. Hubert / M. Jarke: Requirements

Analysis from Multiple Perspectives: Experiences with Conceptual Mod-

eling Technology

95-13 ∗ M. Staudt / M. Jarke: Incremental Maintenance of Externally Material-

ized Views

95-14 ∗ P. Peters / P. Szczurko / M. Jeusfeld: Business Process Oriented Infor-

mation Management: Conceptual Models at Work

95-15 ∗ S. Rams / M. Jarke: Proceedings of the Fifth Annual Workshop on

Information Technologies & Systems

95-16 ∗ W. Hans / St. Winkler / F. Sáenz: Distributed Execution in Functional

Logic Programming

96-1 ∗ Jahresbericht 1995

96-2 M. Hanus / Chr. Prehofer: Higher-Order Narrowing with Definitional

Trees

96-3 ∗ W. Scheufele / G. Moerkotte: Optimal Ordering of Selections and Joins

in Acyclic Queries with Expensive Predicates

96-4 K. Pohl: PRO-ART: Enabling Requirements Pre-Traceability

96-5 K. Pohl: Requirements Engineering: An Overview

96-6 ∗ M. Jarke / W. Marquardt: Design and Evaluation of Computer–Aided

Process Modelling Tools

96-7 O. Chitil: The ς-Semantics: A Comprehensive Semantics for Functional

Programs

96-8 ∗ S. Sripada: On Entropy and the Limitations of the Second Law of Ther-

modynamics

96-9 M. Hanus (Ed.): Proceedings of the Poster Session of ALP’96 — Fifth

International Conference on Algebraic and Logic Programming

96-10 R. Conradi / B. Westfechtel: Version Models for Software Configuration

Management

96-11 ∗ C. Weise / D. Lenzkes: A Fast Decision Algorithm for Timed Refinement

96-12 ∗ R. Dömges / K. Pohl / M. Jarke / B. Lohmann / W. Marquardt: PRO-

ART/CE∗ — An Environment for Managing the Evolution of Chemical

Process Simulation Models

96-13 ∗ K. Pohl / R. Klamma / K. Weidenhaupt / R. Dömges / P. Haumer /

M. Jarke: A Framework for Process-Integrated Tools

48

96-14 ∗ R. Gallersdörfer / K. Klabunde / A. Stolz / M. Eßmajor: INDIA — Intel-

ligent Networks as a Data Intensive Application, Final Project Report,

June 1996

96-15 ∗ H. Schimpe / M. Staudt: VAREX: An Environment for Validating and

Refining Rule Bases

96-16 ∗ M. Jarke / M. Gebhardt, S. Jacobs, H. Nissen: Conflict Analysis Across

Heterogeneous Viewpoints: Formalization and Visualization

96-17 M. Jeusfeld / T. X. Bui: Decision Support Components on the Internet

96-18 M. Jeusfeld / M. Papazoglou: Information Brokering: Design, Search and

Transformation

96-19 ∗ P. Peters / M. Jarke: Simulating the impact of information flows in

networked organizations

96-20 M. Jarke / P. Peters / M. Jeusfeld: Model-driven planning and design

of cooperative information systems

96-21 ∗ G. de Michelis / E. Dubois / M. Jarke / F. Matthes / J. Mylopoulos

/ K. Pohl / J. Schmidt / C. Woo / E. Yu: Cooperative information

systems: a manifesto

96-22 ∗ S. Jacobs / M. Gebhardt, S. Kethers, W. Rzasa: Filling HTML forms

simultaneously: CoWeb architecture and functionality

96-23 ∗ M. Gebhardt / S. Jacobs: Conflict Management in Design

97-01 Jahresbericht 1996

97-02 J. Faassen: Using full parallel Boltzmann Machines for Optimization

97-03 A. Winter / A. Schürr: Modules and Updatable Graph Views for PRO-

grammed Graph REwriting Systems

97-04 M. Mohnen / S. Tobies: Implementing Context Patterns in the Glasgow

Haskell Compiler

97-05 ∗ S. Gruner: Schemakorrespondenzaxiome unterstützen die paargramma-

tische Spezifikation inkrementeller Integrationswerkzeuge

97-06 M. Nicola / M. Jarke: Design and Evaluation of Wireless Health Care

Information Systems in Developing Countries

97-07 P. Hofstedt: Taskparallele Skelette für irregulär strukturierte Probleme

in deklarativen Sprachen

97-08 D. Blostein / A. Schürr: Computing with Graphs and Graph Rewriting

97-09 C.-A. Krapp / B. Westfechtel: Feedback Handling in Dynamic Task Nets

97-10 M. Nicola / M. Jarke: Integrating Replication and Communication in

Performance Models of Distributed Databases

97-13 M. Mohnen: Optimising the Memory Management of Higher-Order

Functional Programs

97-14 R. Baumann: Client/Server Distribution in a Structure-Oriented Data-

base Management System

97-15 G. H. Botorog: High-Level Parallel Programming and the Efficient Im-

plementation of Numerical Algorithms

98-01 ∗ Jahresbericht 1997

49

98-02 S. Gruner/ M. Nagel / A. Schürr: Fine-grained and Structure-oriented

Integration Tools are Needed for Product Development Processes

98-03 S. Gruner: Einige Anmerkungen zur graphgrammatischen Spezifikation

von Integrationswerkzeugen nach Westfechtel, Janning, Lefering und

Schürr

98-04 ∗ O. Kubitz: Mobile Robots in Dynamic Environments

98-05 M. Leucker / St. Tobies: Truth — A Verification Platform for Distributed

Systems

98-07 M. Arnold / M. Erdmann / M. Glinz / P. Haumer / R. Knoll / B.

Paech / K. Pohl / J. Ryser / R. Studer / K. Weidenhaupt: Survey on

the Scenario Use in Twelve Selected Industrial Projects

98-08 ∗ H. Aust: Sprachverstehen und Dialogmodellierung in natürlichsprach-

lichen Informationssystemen

98-09 ∗ Th. Lehmann: Geometrische Ausrichtung medizinischer Bilder am

Beispiel intraoraler Radiographien

98-10 ∗ M. Nicola / M. Jarke: Performance Modeling of Distributed and Repli-

cated Databases

98-11 ∗ A. Schleicher / B. Westfechtel / D. Jäger: Modeling Dynamic Software

Processes in UML

98-12 ∗ W. Appelt / M. Jarke: Interoperable Tools for Cooperation Support

using the World Wide Web

98-13 K. Indermark: Semantik rekursiver Funktionsdefinitionen mit Strikt-

heitsinformation

99-01 ∗ Jahresbericht 1998

99-02 ∗ F. Huch: Verifcation of Erlang Programs using Abstract Interpretation

and Model Checking — Extended Version

99-03 ∗ R. Gallersdörfer / M. Jarke / M. Nicola: The ADR Replication Manager

99-04 M. Alpuente / M. Hanus / S. Lucas / G. Vidal: Specialization of Func-

tional Logic Programs Based on Needed Narrowing

99-07 Th. Wilke: CTL+ is exponentially more succinct than CTL

99-08 O. Matz: Dot-Depth and Monadic Quantifier Alternation over Pictures

2000-01 ∗ Jahresbericht 1999

2000-02 Jens Vöge / Marcin Jurdzinski: A Discrete Strategy Improvement Algo-

rithm for Solving Parity Games

2000-04 Andreas Becks / Stefan Sklorz / Matthias Jarke: Exploring the Semantic

Structure of Technical Document Collections: A Cooperative Systems

Approach

2000-05 Mareike Schoop: Cooperative Document Management

2000-06 Mareike Schoop / Christoph Quix (eds.): Proceedings of the Fifth In-

ternational Workshop on the Language-Action Perspective on Commu-

nication Modelling

2000-07 ∗ Markus Mohnen / Pieter Koopman (Eds.): Proceedings of the 12th In-

ternational Workshop of Functional Languages

50

2000-08 Thomas Arts / Thomas Noll: Verifying Generic Erlang Client-Server

Implementations

2001-01 ∗ Jahresbericht 2000

2001-02 Benedikt Bollig / Martin Leucker: Deciding LTL over Mazurkiewicz

Traces

2001-03 Thierry Cachat: The power of one-letter rational languages

2001-04 Benedikt Bollig / Martin Leucker / Michael Weber: Local Parallel Model

Checking for the Alternation Free mu-Calculus

2001-05 Benedikt Bollig / Martin Leucker / Thomas Noll: Regular MSC Lan-

guages

2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-

Order Logic

2001-07 Martin Grohe / Stefan Wöhrle: An Existential Locality Theorem

2001-08 Mareike Schoop / James Taylor (eds.): Proceedings of the Sixth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2001-09 Thomas Arts / Jürgen Giesl: A collection of examples for termination of

term rewriting using dependency pairs

2001-10 Achim Blumensath: Axiomatising Tree-interpretable Structures

2001-11 Klaus Indermark / Thomas Noll (eds.): Kolloquium Programmier-

sprachen und Grundlagen der Programmierung

2002-01 ∗ Jahresbericht 2001

2002-02 Jürgen Giesl / Aart Middeldorp: Transformation Techniques for

Context-Sensitive Rewrite Systems

2002-03 Benedikt Bollig / Martin Leucker / Thomas Noll: Generalised Regular

MSC Languages

2002-04 Jürgen Giesl / Aart Middeldorp: Innermost Termination of Context-

Sensitive Rewriting

2002-05 Horst Lichter / Thomas von der Maßen / Thomas Weiler: Modelling

Requirements and Architectures for Software Product Lines

2002-06 Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party

Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic

Finite Automata

2002-07 Jörg Dahmen: Invariant Image Object Recognition using Gaussian Mix-

ture Densities

2002-08 Markus Mohnen: An Open Framework for Data-Flow Analysis in Java

2002-09 Markus Mohnen: Interfaces with Default Implementations in Java

2002-10 Martin Leucker: Logics for Mazurkiewicz traces

2002-11 Jürgen Giesl / Hans Zantema: Liveness in Rewriting

2003-01 ∗ Jahresbericht 2002

2003-02 René Thiemann / Jürgen Giesl: Size-Change Termination for Term

Rewriting

2003-03 Jürgen Giesl / Deepak Kapur: Deciding Inductive Validity of Equations

51

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

52

