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Abstract. We study the expressiveness of finite message-passing automata with
a priori unbounded channels and show them to capture exactly the class of MSC
languages that are definable in existential monadic second-order logic interpreted
over MSCs. Moreover, we prove the monadic quantifier-alternation hierarchy over
MSCs to be infinite and conclude that the class of MSC languages accepted
by message-passing automata is not closed under complement. Furthermore, we
show that satisfiability for (existential) monadic seconder-order logic over MSCs
is undecidable.

1 Introduction

A common design practice when developing communicating systems is to start
with drawing scenarios showing the intended interaction of the system to be.
The standardized notion of message sequence charts (MSCs, [7]) is widely used
in industry to formalize such typical behaviors.

An MSC depicts a single partially-ordered execution sequence of a system.
It defines a set of processes interacting with one another by communication
actions. In the visual representation of an MSC, processes are drawn as vertical
lines that are interpreted as time axes. A labeled arrow from one line to a second
corresponds to the communication events of sending and receiving a message.
Collections of MSCs are used to capture the scenarios that a designer might
want the system to follow or to avoid. Several specification formalisms have been
considered, such as high-level MSCs or MSC graphs [2, 13].

The next step in the design process usually is to derive an implementation
of the system to develop [5], preferably automatically. In other words, we are
interested in generating a distributed automaton realizing the behavior given in
form of scenarios. This problem asks for the study of automata models that are
suited for accepting the system behavior described by MSC specifications.

A common model that reflects the partially-ordered execution behavior of
MSCs in a natural manner are message-passing automata, MPAs for short. They
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consist of several components that communicate using channels. Several variants
of MPAs have been studied in the literature: automata with a single or multi-
ple initial states, with finitely or infinitely many states, bounded or unbounded
channels, and systems with a global or local acceptance condition.

We focus on MPAs with a priori unbounded channels where each compo-
nent employs a finite state space. Our model subsumes the one studied in [5]
where a local acceptance condition is used. It coincides with the one used in
[6, 9], although these papers characterize the fragment of channel-bounded au-
tomata. It extends the setting of [1, 11] in so far as we provide synchronization
messages and a global acceptance condition to have the possibility to coordinate
rather autonomous processes. Thus, our version covers most existing models of
communicating automata for MSCs.

A fruitful way to study properties of automata is to establish logical char-
acterizations. For example, finite word automata are known to be expressively
equivalent to monadic second-order (MSO) logic over words. More precisely, the
set of words satisfying some MSO formula can be defined by a finite automa-
ton and vice versa. Since then the study of automata models for generalized
structures such as graphs or, more specifically, labeled partial orders and their
relation to MSO logic has been a research area of great interest aiming at a
deeper understanding of their logical and algorithmic properties (see [15] for an
overview).

In this paper, we show that MPAs accept exactly those MSC languages that
are definable within the existential fragment of MSO (over MSCs), abbreviated
by EMSO. We recall that emptiness for MPAs is undecidable and conclude that
so is satisfiability for EMSO and universality for MSO logic.

Furthermore, we show that MSO is strictly more expressive than EMSO.
More specifically, the monadic quantifier-alternation hierarchy turns out to be
infinite. Thus, MPAs do not necessarily accept a set of MSCs defined by an
MSO formula. Furthermore, we use this result to conclude that the class of
MSC languages that corresponds to MPAs is not closed under complementation,
answering the question posed in [9].

MPAs with a priori unbounded channels have been rather used as a model
to implement a given (high-level) MSC specification [5]. Previous results lack
an algebraic or logical characterization of the corresponding class of languages.
They deal with MPAs and sets of MSCs that make use only of a bounded part
of the actually unbounded channel [6, 9]. More specifically, when restricting to
sets of so-called bounded MSCs, MSO captures exactly the class of those MSC
languages that correspond to some bounded MPA. Together with our results, it
follows that EMSO and MSO coincide on bounded MSC languages.

Organization of the Paper The next section introduces some basic notions and
recalls the definition of message sequence charts, monadic second-order logic,
and message-passing automata. Section 3 deals with the expressive equivalence
of message-passing automata and existential monadic second-order logic, while
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Section 4 studies the gap between monadic second-order formulas and their ex-
istential fragment.

2 Preliminaries

Let Σ be an alphabet. A (finite) Σ-labeled poset is a structure (E,≤, λ) such
that (E,≤) is a (finite, respectively) partially-ordered set and λ is a mapping
E → Σ, called labeling function. Henceforth, we will identify a labeled poset
with its isomorphism class. Given a Σ-labeled poset (E,≤, λ) and e, e′ ∈ E, we
say that e′ covers e, written e l e′, if e < e′ and, for all e′′ ∈ E, e < e′′ ≤ e′

implies e′′ = e′. Furthermore, for e ∈ E, we define ↓e := {e′ ∈ E | e′ ≤ e} to be
the downwards-closure of e. A linearization of M is a structure (E,≤′, λ) such
that ≤′ extends ≤ to a linear order. Depending on the context, (E,≤′, λ) can be
regarded as a word over Σ.

2.1 Message Sequence Charts

Forthcoming definitions are all made wrt. a fixed finite set Proc of at least two
processes. (Note that, however, in one proof, we assume the existence of at least
three processes.) We denote by Ch the set {(p, q) | p, q ∈ Proc, p 6= q} of reliable
FIFO channels. Thus, a message exchange is allowed between distinct processes
only. Let Act ! denote the set {p!q | (p, q) ∈ Ch} of send actions while Act ? denotes
the set {q?p | (p, q) ∈ Ch} of receive actions. Hereby, p!q and q?p are to be read
as p sends a message to q and q receives a message from p, respectively. They
are related in the sense that they will label communicating events of an MSC,
which are joint by a message arrow in its graphical representation. Accordingly,
let Com := {(p!q, q?p) | (p, q) ∈ Ch}. Observe that an action pθq (θ ∈ {!, ?}) is
performed by process p, which is indicated by P (pθq) = p. We let Act stand for
the union of Act ! and Act? and, for p ∈ Proc, set Act p to be the set {σ ∈ Act |
P (σ) = p}.

Let (E,≤, λ) be a finite Act-labeled poset. For p ∈ Proc, we define Ep to
be λ−1(Actp), i.e., the set of elements (also called events in the following) that
are labeled with an action performed by process p. Furthermore, let ≤p (<p) be
(the largest irreflexive subset of) ≤ ∩ (Ep × Ep) and set lp to be <p ∩ l. For
e, e′ ∈ E, we write e <c e

′ if both (λ(e), λ(e′)) ∈ Com and |↓e ∩ λ−1(λ(e))| =
|↓e′ ∩ λ−1(λ(e′))|. For e ∈ E, P (e) will serve as a shorthand for P (λ(e)).

Definition 1 (Message Sequence Chart). A message sequence chart (MSC)
is a finite Act-labeled poset (E,≤,λ) such that

– ≤p is a linear order for each p ∈ Proc,

– ≤= (
⋃

p∈Proc
≤p ∪ <c)

∗, and

– |λ−1(p!q)| = |λ−1(q?p)| for each (p, q) ∈ Ch.
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The set of MSCs is denoted by MSC. In general, a set of MSCs is called an MSC
language.

In other words, events on one and the same process line are linearly ordered,
and events on distinct process lines that are immediately concerned with each
other (wrt. l) are labeled with actions related by Com .

Given an MSC M = (E,≤,λ) and a process p ∈ Proc, the projection of
M on p, denoted by M � p, is the total order (Ep,≤p, λ|Ep

) where λ|Ep
is the

restriction of λ to Ep. Obviously, M � p can be regarded as a word over Act p.
For example, considering Figure 1, M � 1 is represented by (1!2)(1!2)(1!2)(1!3).
Projection can be extended towards MSC languages L defining, for p ∈ Proc,
L � p := {M � p | M ∈ L}. Note that an MSC is uniquely determined by one of
its linearizations and even by the collection of its projections.

2.2 (Existential) Monadic Second-Order Logic

Given a supply Var = {x, y, . . . , x1, x2, . . .} of individual variables and a supply
VAR = {X,Y, . . . ,X1, X2, . . .} of set variables, the syntax of monadic second-
order (MSO) formulas is defined by

ϕ ::= Lσ(x) | x ∈ X | x ≤ y | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ∃xϕ | ∀xϕ | ∃Xϕ | ∀Xϕ

where σ ∈ Act , x, y ∈ Var, and X ∈ VAR. Moreover, we allow the formulas
ϕ1 → ϕ2, x <c y, and, for p ∈ Proc, P (x) = p as abbreviations for ¬ϕ1 ∨ ϕ2,∨

(σ,τ)∈Com
(Lσ(x) ∧ Lτ (y)) ∧ x ≤ y ∧ ¬∃z(x < z ∧ z < y), and

∨
σ∈Actp

Lσ(x),

respectively, while x < y is a shorthand for x ≤ y ∧ ¬(y ≤ x) and x lp y is a
shorthand for

∨
p∈Proc

(P (x) = p ∧ P (y) = p) ∧ x < y ∧ ¬∃z(x < z ∧ z < y).

Let M = (E,≤, λ) be an MSC. Given an interpretation function I, which
assigns to an individual variable x an event I(x) ∈ E and to a set variable X a set
of events I(X) ⊆ E, the satisfaction relation M |=I ϕ for an MSO formula ϕ is
defined canonically. In particular, M |=I Lσ(x) if λ(I(x)) = σ and M |=I x ≤ y
if I(x) ≤ I(y), i.e., the predicate symbol ≤ is interpreted as the corresponding
partial-order relation ≤.

In the following, we usually consider MSO sentences, i.e., MSO formulas
without free variables, and accordingly replace |=I with |=. For an MSO sentence
ϕ, the MSC language of ϕ, denoted by L(ϕ), is the set of MSCs M with M |= ϕ.

Given an MSO formula ϕ, the notation ϕ(x1, . . . , xm, X1, . . . , Xn) shall in-
dicate that at most the variables x1, . . . , xm, X1, . . . , Xn occur free in ϕ. An
MSO formula is called an existential MSO (EMSO) formula if it is of the form
∃X1 . . . ∃Xnϕ(X1, . . . , Xn, Y ) where Y is a block of second-order variables and
ϕ(X1, . . . , Xn, Y ) is a first-order formula, i.e., it contains no set quantifiers. In
general, an MSO formula of the form ∃X1∀X2 . . . ∃/∀Xkϕ(X1, . . . , Xk, Y ) with
first-order kernel ϕ(X1, . . . , Xk, Y ) is called a Σk-formula (again, Xi and Y are
blocks of second-order variables). The language of a Σk-sentence is called Σk-
definable. Note that the sets of Σ1- and EMSO formulas coincide. We will show
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in a subsequent section that the monadic quantifier-alternation hierarchy is in-
finite when formulas are interpreted over MSCs, resuming a result by Matz and
Thomas, who proved infinity of the hierarchy for grids [10]. In other words, the
more alternation depth second-order quantification allows, the more expressive
formulas become. However, it will turn out that, to cover the feasible area of re-
alizable MSC languages (in terms of message-passing automata), we can restrict
to EMSO-definable MSC languages. An MSC language L is called EMSO-/MSO-
definable if L = L(ϕ) for some EMSO/MSO sentence ϕ, respectively. The class
of EMSO-definable MSC languages is denoted by EMSO, the class of MSO-
definable MSC languages by MSO.

Example 1. Let L be the set of MSCs whose linearizations are of the form
(1!2)m(1!3)(3?1)(3!2)(2?3)(2?1)m , m ∈ IN. Thus, Figure 1 depicts an MSC con-
tained in L. Indeed, L is EMSO-definable (it is even definable by a first-order
sentence). Note that L can also be recognized by some simple message-passing
automaton as illustrated in the following section. So let ϕ be the conjunction of
the formulas ϕ1, ϕ2, and ϕ3, which describe the behavior of processes 1, 2, and
3, respectively, and are given as follows:

ϕ1 = ∃x( L1!3(x)
∧ ∀y(P (y) = 1 ∧ y < x→ L1!2(y))
∧ ∀y(P (y) = 1 ∧ x ≤ y → y = x))

ϕ2 = ∃x( L2?3(x)
∧ ∀y(P (y) = 2 ∧ x < y → L2?1(y))
∧ ∀y(P (y) = 2 ∧ y ≤ x→ y = x))

ϕ3 = ∃x∃y( L3?1(x)
∧ L3!2(y)
∧ x lp y
∧ ∀z(P (z) = 3 ∧ z ≤ x→ z = x)
∧ ∀z(P (z) = 3 ∧ y ≤ z → z = y))

In fact, it holds L(ϕ) = L. Note that, as L is a set of total orders that can be
considered as a nonregular word language over Act , L is not MSO-definable when
MSO formulas are interpreted over arbitrary words. However, as we interpret
ϕ over MSCs, only those words have to be considered that are linearizations
of MSCs. Accordingly, ϕ is rather meant to define total orders generated by
the regular expression (1!2)∗(1!3)(3?1)(3!2)(2?3)(2?1)∗ while only restricting to
MSCs rules out posets that are not valid MSCs.

2.3 Message-Passing Automata

In this section, we study distributed automata, called message-passing automata,
which, as we will see, generate MSC languages in a natural manner.
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1 2 3

M :

Fig. 1. An EMSO-definable MSC language

A message-passing automaton is a collection of finite-state machines that
share one global initial state and several global final states. The machines are
connected pairwise with a priori unbounded reliable FIFO buffers. The transi-
tions of each component are labeled with send or receive actions. A send action
p!q puts a message at the end of the channel from p to q. A receive action can
be taken provided the requested message is found in the channel. To extend the
expressive power, message-passing automata can send certain synchronization
messages. Let us be more precise:

Definition 2 (Message-Passing Automaton). A message-passing automa-
ton (MPA) is a structure A = ((Ap)p∈Proc ,D, s

in , F ) such that

– D is a nonempty finite set of synchronization messages (or data),

– for each p ∈ Proc, Ap is a pair (Sp,∆p) where

• Sp is a nonempty finite set of (p-)local states and

• ∆p ⊆ Sp × Actp ×D × Sp is the set of (p-)local transitions,

– sin ∈
∏

p∈Proc
Sp is the global initial state, and

– F ⊆
∏

p∈Proc
Sp is the set of global final states.

Given a global state s = (sp)p∈Proc ∈
∏

p∈Proc
Sp of A, s[p] will in the following

refer to sp. An MPA with set of synchronization messages {◦, •} is illustrated in
Figure 2. Note that its MSC language cannot be recognized by some MPA with
only one synchronization message (even if we allowed infinite local state spaces).

We now define the behavior of message-passing automata and, in doing so,
adhere to the style of [9]. In particular, an automaton will run on MSCs rather
than on linearizations of MSCs, allowing for its distributed behavior. Let A =
((Ap)p∈Proc ,D, s

in , F ), Ap = (Sp,∆p), be an MPA and M = (E,≤,λ) be an
MSC. For a function r : E →

⋃
p∈Proc

Sp, we define, provided E 6= ∅, r− : E →⋃
p∈Proc

Sp to map an event e ∈ E onto sin [P (e)] if e is minimal wrt. ≤P (e) and,
otherwise, onto r(e′) where e′ ∈ EP (e) is the unique event with e′ lP (e) e. A run
of A on M is a pair (r,m) of mappings r : E →

⋃
p∈Proc

Sp with r(e) ∈ SP (e) for
each e ∈ E and m : <c → D such that, for any e, e′ ∈ E, e <c e

′ implies

– (r−(e), λ(e),m((e, e′)), r(e)) ∈ ∆P (e) and

– (r−(e′), λ(e′),m((e, e′)), r(e′)) ∈ ∆P (e′).
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1!2, ◦

2?1, •

1?2, ◦

2!1, ◦1!2, • 1?2, ◦

2?1, ◦ 2!1◦

A1: A2:

Fig. 2. A message-passing automaton

For p ∈ Proc, let fp denote sin [p] if Ep is empty. Otherwise, let fp denote
r(e) where e ∈ Ep is the maximal event wrt. ≤p. We call (m, r) accepting if
(fp)p∈Proc ∈ F .

For an MPA A, we denote by L(A) := {M ∈ MSC | there is an accepting
run of A on M} the language of A. Let furthermore L(MPA) := {L ⊆ MSC |
there is an MPA A such that L(A) = L} denote the class of languages that are
realizable as MPAs.

Remark 1. The emptiness problem for MPAs is undecidable.

Proof. Several decidability questions were studied for communicating finite-state
machines, a slightly different variant of MPAs. Among them, (a problem related
to) the emptiness problem for communicating finite-state machines turned out
to be undecidable [3]. Their proof can be easily adapted towards MPAs.

3 The Expressiveness of Message-Passing Automata

We now turn towards one of our main results and first show that an MPA can
be effectively transformed into an equivalent EMSO sentence.

Lemma 1. L(MPA) ⊆ EMSO

Proof. Let N ≥ 1 and let A = ((Ap)p∈Proc , {1, . . . , N}, sin , F ), Ap = (Sp,∆p),
be an MPA. We assume F 6= ∅. Note that Ap, once equipped with an initial
state s ∈ Sp and a set of final states Fp ⊆ Sp, can be considered as a finite word
automaton generating a regular word language over Act p × {1, . . . , N} (which
can be seen as a regular set of (Act p × {1, . . . , N})-labeled total orders) in the
obvious manner. In case that N = 1, we even understand Ap to recognize a word
language over Actp ignoring the respective message component in the transition
relation ∆p.

Our aim is to exhibit an EMSO sentence Ψ such that L(Ψ) = L(A). It is well-
known that the class of word languages that are EMSO-definable (wrt. EMSO
formulas over total orders or words) coincides with the class of regular word
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languages. Clearly, L(A) =
⋃

s∈F L(((Ap)p∈Proc , {1, . . . , N}, sin , {s})). So let, for
each global final state s ∈ F and each process p ∈ Proc,

ϕ(s, p) = ∃Xs,p
1 . . . ∃Xs,p

ns,p
ψs,p(Xs,p

1 , . . . , Xs,p
ns,p

)

be an EMSO sentence (over words) with first-order kernel ψs,p such that ϕ(s, p)
defines the language of the finite (word) automaton Ap with initial state sin [p]
and set of final states {s[p]}. The EMSO formula Ψ now requires the existence of
an assignment of synchronization messages to the events that, on the one hand,
respects that communication events have to be equally labeled and, on the other
hand, meets the restrictions imposed by the formulas ϕ(s, p) for at least one final
state s ∈ F . It is given by

Ψ = ∃X1 . . . ∃XN ∃X
∨

s∈F

(
partition(X1, . . . , XN ) ∧

consistent(X1, . . . , XN ) ∧
∧

p∈Proc
processs,p(X1, . . . , XN , X

s,p
1 , . . . , Xs,p

ns,p
)
)

where X is the block of all the second-order variables X s,p
i .

The formula partition(X1, . . . , XN ) ensures that the variables X1, . . . , XN

define a mapping from the set of events of an MSC to the set of synchronization
messages {1, . . . , N}:

partition(X1, . . . , XN ) =


∀x

∨

i∈{1,...,N}

x ∈ Xi


∧


∀x

∧

1≤i<j≤N

¬(x ∈ Xi ∧ x ∈ Xj)




Then consistent(X1, . . . , XN ) guarantees the mapping is consistent, i.e., a send
event and its corresponding receive event are equally labeled wrt. the alphabet
of synchronization messages:

consistent(X1, . . . , XN ) = ∀x∀y


x <c y →

∨

i∈{1,...,N}

(x ∈ Xi ∧ y ∈ Xi)




For s ∈ F and p ∈ Proc, the formula processs,p(X1, . . . , XN , X
s,p
1 , . . . , Xs,p

ns,p) =
||ψs,p||p ensures that the total order that process p induces wrt. an MSC corre-

sponds to what the word automaton Ap with initial state sin [p] and set of final
states {s[p]} recognizes. It is a kind of projection of the formula ψs,p on p and in-
ductively derived from ψs,p as follows (recall that ψs,p is the kernel of a first-order
formula interpreted over words (or total orders) from (Act p × {1, . . . , N})∗):

– ||L(σ,n)(x)||p = Lσ(x) ∧ x ∈ Xn

– ||x ∈ X||p = x ∈ X
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– ||x ≤ y||p = x ≤ y

– ||¬ϕ||p = ¬||ϕ||p
– ||ϕ ∨ ψ||p = ||ϕ||p ∨ ||ψ||p
– ||ϕ ∧ ψ||p = ||ϕ||p ∧ ||ψ||p
– ||∃xϕ||p = ∃x(P (x) = p ∧ ||ϕ||p)
– ||∀xϕ||p = ∀x(P (x) = p→ ||ϕ||p)

Note that, though Ψ allows the set variables X s,p
i to range over arbitrary subsets

of events, in ||ψs,p||p, their interpretation is restricted to elements of process p. �

Example 1 provides an EMSO sentence (even a first-order sentence) that
reflects the principle of the above construction and defines an MSC language
recognized by some simple MPA with one synchronization message and local
acceptance condition where process 1 performs a sequence (1!2)m(1!3) before it
stays in a final state, process 2, similarly, reads sequences of the form (2?3)(2?1)m ,
and the language of process 3 contains (3?1)(3!2) only.

Theorem 1. The following two problems are undecidable:

(a) Satisfiability for EMSO sentences over MSC
(b) Universality for MSO sentences over MSC

Proof. Using Remark 1 and Lemma 1, we obtain Theorem 1 (a). Theorem 1 (b)
follows from an easy reduction from the satisfiability problem. �

In fact, any EMSO-definable MSC language is realizable as an MPA and, vice
versa, any MSC language recognized by some MPA has an appropriate EMSO
counterpart.

Theorem 2. L(MPA) = EMSO

From Theorem 2, it follows that, restricting to bounded [6] MSC languages,
EMSO- and MSO-definability coincide, refining a result by Henriksen et al. [6].
We leave as an open problem whether EMSO- and MSO-definability still coincide
if we restrict to finitely-generated languages [6]. Due to results by Morin [11], this
is the case if any connected high-level MSC is realizable as an MPA. Genest et al.
provide an algorithm that realizes a locally-cooperative high-level MSC in terms
of an MPA with local acceptance condition [5]. However, EMSO- and MSO-
definability do not coincide for the whole class of MSC languages, which will be
shown in the following section.

The rest of this section is dedicated to the proof of Theorem 2.

Proof. It remains to show inclusion from right to left.

Graph acceptors [15], an automata-theoretic generalization of finite automata
to labeled graphs and, in particular, labeled posets, are known to be equivalent
to EMSO logic wrt. expressiveness. So, given an EMSO formula interpreted over
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Act -labeled posets, we can assume the existence of an equivalent graph accep-
tor GA, which, in turn, will be translated into an MPA A that captures the
application of GA to MSCs, i.e., L(A) = L(GA) ∩ MSC.

Let R be a natural and Σ be an alphabet. For a Σ-labeled poset (E,≤, λ) and
elements e, e′ ∈ E, the distance d(e′, e) from e to e′ is ∞ if (e, e′) 6∈ (≤ ∪ ≤−1)∗

and, otherwise, the minimal natural number k such that there is a sequence of
elements e0, . . . , ek ∈ E with e0 = e, ek = e′, and ei l ei+1 or ei+1 l ei for each
i ∈ {0, . . . , k−1}. An R-sphere over Σ is a nonempty Σ-labeled poset (E,≤,λ, γ)
together with a designated sphere center γ ∈ E such that, for any e ∈ E, d(e, γ) ≤
R. For a Σ-labeled poset M = (E,≤, λ) and e ∈ E, let isM,R(e) denote the R-
sphere (E ′,≤′, λ′, e) of M induced by e, i.e., E ′ = {e′ ∈ E | d(e′, e) ≤ R} and
≤′ = (l ∩ (E′ ×E′))∗.

1!2 2?1 1!2 2?1

1!2

1!2

1!2

2?1 1!2

1!2

2?1

1!2

1!2 2?1 1!2 2?1

2?1

1!2

2?1

2?1 1!2

2?1

2?1

2?1

Fig. 3. A graph acceptor

A graph acceptor over Act is a structure GA = (Q,R,S,Occ) where Q is a
nonempty finite set of states, R ∈ IN, S is a finite set of R-spheres over Act ×Q
(where we identify isomorphic structures so that, more precisely, we deal with a
set of isomorphism classes), and Occ is a boolean combination of conditions of
the form “sphere g ∈ S occurs at least ≥ n times” where n ∈ IN. Let max(Occ)
denote the least threshold n such that Occ does not distinguish occurrence num-
bers ≥ n. A run of GA on an Act -labeled poset M = (E,≤,λ) is a mapping
ρ : E → S for which there is µ : E → Q—inducing an extended labeling function
(λ, µ) : E → Act×Q of M—such that, for each e ∈ E, is (E,≤,(λ,µ)),R(e) is isomor-
phic to ρ(e). We call ρ accepting if it satisfies the constraints imposed by Occ.
The language of GA, denoted by L(GA), is the set of Act -labeled posets on which
there is an accepting run of GA. (Recall that we consider graph acceptors running
on posets only.) For example, consider the graph acceptor GA = (Q,R,S,Occ)
where Q is a singleton, R = 1, S is given by the 1-spheres shown in Figure 3
(where the center of a sphere is depicted as a rectangle and the states are re-

12



moved from the labelings), and Occ is true. We easily verify that L(GA) ∩ MSC
is the set of MSCs in which each event is labeled either with 1!2 or with 2?1.
Figure 4 provides an example run of GA. Note that, however, L(GA) can also be
recognized by a graph acceptor equipped with 0-spheres.

We proceed by translating any graph acceptor GA over Act into an MPA
A such that L(A) = L(GA) ∩ MSC, which proves the theorem. So let GA =
(Q,R,S,Occ) be a graph acceptor over Act . Without loss of generality, we as-
sume that, for each R-sphere (E,≤, λ, γ) ∈ S, there is an MSC M = (E ′,≤′, λ′)
(with extended labeling function λ′ : E′ → Act × Q) and e′ ∈ E′ such that
(E,≤,λ, γ) ∼ isM,R(e′). Because, to become part of a run on an MSC M , an R-
sphere has to be embedded into M . In this sense, the poset illustrated in Figure
5 (a) (again, states are omitted) is a sphere (it can be complemented by a 1!3-
labeled event arranged in order between the two other events of process 1), while
the partial order illustrated aside is not a sphere, as it will never be part of a run
on some MSC. This is essential in the proof. Let maxE := max{|E| | (E,≤,λ, γ) ∈
S} and let S

+ be the set of extended R-spheres, i.e., the set of structures
((E,≤, λ, γ, e), i) where (E,≤, λ, γ) ∈ S, e ∈ E, and i ∈ {1, . . . , 4 · maxE + 1}.

1!2

1!2

2?1

1!2

2?1

2?1

1!2

1!2

2?1

1!2

2?1

2?1

1!2

1!2

2?1

1!2

2?1

2?1

1!2

1!2

2?1

1!2

2?1

2?1

Fig. 4. The run of a graph acceptor

The idea in the following is that, roughly speaking, A guesses a tiling of the
MSC to be read and then verifies that the tiling corresponds to an accepting
run of GA. Accordingly, a local state of A holds a set of active R-spheres, i.e.,
a set of spheres that play a role in its immediate environment of distance at
most R. Each local state s (apart from the initial states, as we will see) carries
exactly one extended R-sphere ((E,≤,λ, γ, e), i) with γ = e, which means that
a run of GA assigns (E,≤, λ, γ) to the event that corresponds to s. To establish
isomorphism between (E,≤,λ, γ) and the R-sphere induced by s, s refers/obtains
its obligations in form of an extended R-sphere ((E,≤, λ, γ, e′), i) to/from its
immediate neighbors, respectively. For example, provided e is labeled with a
send action and there is e′ ∈ E with e <c e

′, the message to be sent in state s
will contain ((E,≤, λ, γ, e′), i), which, in turn, the receiving process understands
as a requirement to be satisfied. A state may hold several instances of one and
the same R-sphere, which then refer to distinct states/events as corresponding
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sphere center. Those instances will be distinguished by means of the natural i.
The benefit of i will become clear before long.

For p ∈ Proc, we define Sp := {(E,≤, λ, γ) ∈ S | P (γ) = p} and S
+
p :=

{((E,≤, λ, γ, e), i) ∈ S
+ | P (e) = p}. Let us now turn towards the construction

of A = ((Ap)p∈Proc ,D, s
in , F ), Ap = (Sp,∆p), which is given as follows: For

p ∈ Proc, a local state of Ap is a pair (S, ν) where

– ν is a mapping Sp → {0, . . . ,max(Occ)} (let in the following ν0
p denote the

function that maps each R-sphere g ∈ Sp to 0) and
– S is either the empty set or it is a subset of S

+
p such that

• there is exactly one extended R-sphere ((E,≤, λ, γ, e), i) ∈ S with γ = e
(whose component (E,≤, λ, γ) we identify by ς(S) from now on) and

• for any two ((E,≤, λ, γ, e), i), ((E ′ ,≤′, λ′, γ′, e′), i′) ∈ S,
(a) λ(e) = λ′(e′) (so that we can assign a unique label λ(S) ∈ Act ×Q to

S) and
(b) if (E,≤, λ, γ) ∼ (E ′,≤′, λ′, γ′) and i = i′, then e = e′.

The set D of synchronization messages is the cartesian product 2
�

+

× 2
�

+

.
Roughly speaking, the first component of a message contains obligations the
receiving state/event has to satisfy, while the second component imposes require-
ments that must not be satisfied by the receiving process to ensure isomorphism.
We now turn towards the definition of ∆p and define ((S, ν), σ, (P,N ), (S ′ , ν ′)) ∈
∆p if the following hold:

1. λ(S ′) = (σ, q) for some q ∈ Q.
2. For any ((E,≤, λ, γ, e), i) ∈ S and e′ ∈ Ep, if ((E,≤, λ, γ, e′), i) ∈ S ′, then
e lp e

′.
3. For any ((E,≤, λ, γ, e), i) ∈ S ′, if S 6= ∅ and e is minimal in (Ep, <p), then
d(e, γ) = R.

4. For any ((E,≤, λ, γ, e), i) ∈ S, if e is maximal in (Ep, <p), then d(e, γ) = R.
5. For any ((E,≤, λ, γ, e), i) ∈ S ′, if e is not minimal in (Ep, <p), then we have

((E,≤, λ, γ, e−), i) ∈ S where e− ∈ Ep is the unique event with e− lp e.
6. For any ((E,≤, λ, γ, e), i) ∈ S, if e is not maximal in (Ep, <p), then we have

((E,≤, λ, γ, e+), i) ∈ S ′ where e+ ∈ Ep is the unique event such that e lp e
+.

7. (i) In case that σ = p!q for some q ∈ Proc:
(a) for any ((E,≤, λ, γ, e), i) ∈ S ′ and any e′ ∈ E, if e <c e

′, then we have
((E,≤, λ, γ, e′), i) ∈ P,

(b) for any ((E,≤, λ, γ, e), i) ∈ S ′ and any e′ ∈ E, if e 6<c e
′, then we have

((E,≤, λ, γ, e′), i) ∈ N , and
(c) for any ((E,≤, λ, γ, e), i) ∈ P, there is e′ ∈ E such that e′ <c e and

((E,≤, λ, γ, e′), i) ∈ S ′.
(ii) In case that σ = p?q for some q ∈ Proc:

(a) P ⊆ S ′,
(b) N ∩ S ′ = ∅, and
(c) for any ((E,≤, λ, γ, e′), i) ∈ S ′, if there is e ∈ E with e <c e

′, then
((E,≤, λ, γ, e′), i) ∈ P.
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8. ν ′ = ν[ς(S ′)/min{ν(ς(S ′)) + 1,max(Occ)}] (i.e., ν ′ maps ς(S ′) to the mini-
mum of ν(ς(S ′)) + 1 and max(Occ) and, otherwise, coincides with ν).

Furthermore, sin = ((∅, ν0
p ))p∈Proc and, for (Sp, νp) ∈ Sp, ((Sp, νp))p∈Proc ∈ F if

the union of mappings νp satisfies the requirements imposed by Occ and, for all
p ∈ Proc and ((E,≤, λ, γ, e), i) ∈ Sp, e is maximal in (Ep, <p).

2!3

1!2

1!2

2?1

2?1

3?2

3?1

(a)

2?1

1!2

1!2

2?1

2?1

(b)

Fig. 5. The sphere(s) of a graph acceptor

Claim 1. L(A) = L(GA) ∩ MSC

Proof of Claim 1. “⊇”: Let ρ : Ẽ → S be an accepting run of GA on an MSC
M = (Ẽ, ≤̃, λ̃).

Claim 2. There is a mapping iM,ρ : Ẽ → {1, . . . , 4 · maxE + 1} such that, for

any e, e′, e0, e
′
0 ∈ Ẽ with ρ(e) = ρ(e′), e 6= e′, d(e0, e) ≤ R, and d(e′0, e

′) ≤ R, if
e0 l̃ e′0 or e′0 l̃ e0 or e0 = e′0, then iM,ρ(e) 6= iM,ρ(e

′).

Proof of Claim 2. We can reduce the existence of iM,ρ to the existence of a graph
coloring. Recall some basic definitions: A graph G is a structure (V,Arcs) where
V is a finite set of vertices and Arcs ⊆ V ×V is a set of arcs. For a natural n ≥ 1, a
graph G = (V,Arcs) is called n-colorable if there is a mapping χ : V → {1, . . . , n}
such that (u, v) ∈ Arcs implies χ(u) 6= χ(v) for any two nodes u, v ∈ V (we then
say that G is n-colored by χ). Furthermore, for d ∈ IN, G is said to be of degree d if
d = max{|Arcs(u)| | u ∈ V } where, for u ∈ V , Arcs(u) = {v ∈ V | (u, v) ∈ Arcs
or (v, u) ∈ Arcs}. It is easy to show that, for any d ∈ IN and any graphG of degree
d, G is (d + 1)-colorable. The mapping iM,ρ can now be constructed as follows:

Let G be the graph (Ẽ,Arcs) where, for any e, e′ ∈ Ẽ, (e, e′) ∈ Arcs iff e 6= e′,
ρ(e) = ρ(e′), and there is e0, e

′
0 ∈ Ẽ with d(e0, e) ≤ R, d(e′0, e

′) ≤ R, and (e0 l̃ e′0
or e′0 l̃ e0 or e0 = e′0). As G is of degree not greater than 4·maxE (for each e ∈ Ẽ,

there are at most four distinct events e′ ∈ Ẽ such that e l̃ e′, e′ l̃ e, or e = e′),
it can be (4 ·maxE +1)-colored by some mapping χ : Ẽ → {1, . . . , 4 ·maxE +1}.
Now set iM,ρ to be χ. This concludes the proof of Claim 2. Now let iM,ρ be the

15



mapping from the above construction. For g ∈ S and e ∈ Ẽ, let furthermore
leM (g, e) = |{e′ ∈ ẼP (e) | e′ ≤̃P (e) e, g ∼ ρ(e′)}|. For ease of notation, we

assume that, for each e ∈ Ẽ, ρ(e) is exactly isM,R(e) where the labeling function
is replaced with the corresponding extended mapping induced by ρ. When we
define mappings with domain Ẽ, we will suppose that Ẽ is nonempty, as those
mappings are otherwise not significant. Let the mapping r : Ẽ →

⋃
p∈Proc

Sp be

given as follows: for e ∈ Ẽ, we define r(e) = (S, ν) where

1. ((E,≤, λ, γ, e0), i) ∈ S iff there is an event e′ ∈ Ẽ such that d(e′, e) ≤ R,
(E,≤, λ, γ, e0) ∼ (ρ(e′), e), and i = iM,ρ(e

′), and
2. for g ∈ S, ν(g) = min{leM (g, e),max(Occ)}.

For e ∈ Ẽ, we first verify that, in fact, r(e) = (S, ν) is a valid state of A. So
suppose there are extended R-spheres ((E,≤, λ, γ, e0), i), ((E

′,≤′, λ′, γ′, e′0), i
′) ∈

S. Of course, it holds λ(e0) = λ(e′0). Assume now that both γ = e0 and γ′ = e′0.
But then the requirements (E,≤, λ, γ, γ) ∼ (ρ(e), e) and (E ′,≤′, λ′, γ′, γ′) ∼
(ρ(e), e) imply (E,≤, λ, γ, γ) ∼ (E ′,≤′, λ′, γ′, γ′). In particular, it holds ς(S) =
(E,≤,λ, γ) ∼ ρ(e). Furthermore, i = i′ = iM,ρ(e). Now assume that (E,≤, λ, γ) ∼

(E′,≤′, λ′, γ′) and i = i′. There are events e1, e2 ∈ Ẽ such that d(e1, e) ≤ R,
d(e2, e) ≤ R, (E,≤, λ, γ, e0) ∼ (ρ(e1), e), (E,≤, λ, γ, e′0) ∼ (ρ(e2), e), and i =
iM,ρ(e1) = iM,ρ(e2). Clearly, we have ρ(e1) ∼ ρ(e2). Furthermore, e1 = e2 and,
consequently e0 = e′0. Because e1 6= e2, according to Claim 2, implies iM,ρ(e1) 6=
iM,ρ(e2), which contradicts the premise.

Let m : <̃c → D map a pair (es, er) ∈ <̃c onto (P,N ) where (set (S, ν) to be
r(es)) P = {((E,≤, λ, γ, e′0), i) ∈ S

+ | there is e0 ∈ E with ((E,≤, λ, γ, e0), i) ∈
S and e0 <c e

′
0} and N = {((E,≤, λ, γ, e′0), i) ∈ S

+ | there is e0 ∈ E such that
((E,≤, λ, γ, e0), i) ∈ S and e0 6<c e

′
0}. In the following, we verify that (r,m) is

a run of A on M . For any distinct processes p, q ∈ Proc, e ∈ Ẽp, and er ∈ Ẽq

with e <̃c er, we check that (r−(e), λ(e),m((e, er )), r(e)) ∈ ∆p. So set (S, ν) to
be r−(e) and (S ′, ν ′) to be r(e).

1. Of course, λ(S ′) = (λ̃(e), q) for some q ∈ Q.
2. Let ((E,≤, λ, γ, e0), i) ∈ S and ((E,≤, λ, γ, e′0), i) ∈ S ′ for some e′0 ∈ Ep

and let e− ∈ Ẽp such that e− l̃p e (as S 6= ∅, such an e− must exist).

There is e−
′
, e′ ∈ Ẽ such that d(e−

′
, e−) ≤ R, d(e′, e) ≤ R, (E,≤,λ, γ, e0) ∼

(ρ(e−
′
), e−), (E,≤, λ, γ, e′0) ∼ (ρ(e′), e), and i = iM,ρ(e

−′
) = iM,ρ(e

′). We just
have to show e−

′
= e′, as then (E,≤, λ, γ, e0) ∼ (ρ(e′), e−), (E,≤, λ, γ, e′0) ∼

(ρ(e′), e), and e− l̃p e imply e0 lp e
′
0. Because e−

′
6= e′, according to Claim

2, implies iM,ρ(e
′) 6= iM,ρ(e), which leads to a contradiction.

3. Suppose S 6= ∅ and suppose there is ((E,≤, λ, γ, e0), i) ∈ S ′ with e0 minimal
in (Ep, <p). There is e′ ∈ Ẽ such that d(e′, e) ≤ R and (E,≤, λ, γ, e0) ∼

(ρ(e′), e). As S 6= ∅, e is not minimal in (Ẽp, <̃p) and, consequently, d(γ, e0) =

d(e′, e) = R (if d(e′, e) < R, e would have to be minimal in (Ẽp, <̃p)).

4. Let ((E,≤, λ, γ, e0), i) ∈ S with e0 maximal in (Ep, <p) and let e− ∈ Ẽp such

that e− l̃p e. Furthermore, as r−(e) = r(e−), there is e−
′ ∈ Ẽ such that both
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d(e−
′
, e−) ≤ R and (E,≤, λ, γ, e0) ∼ (ρ(e−

′
), e−). As e− is not maximal in

(Ẽp, <̃p), d(e0, γ) = d(e−
′
, e−) = R (analogously to 3., if d(e−

′
, e−) < R, e−

would have to be maximal in (Ẽp, <̃p)).
5. Suppose there is an extended R-sphere ((E,≤, λ, γ, e0), i) ∈ S ′ with e0 not

minimal in (Ep, <p). Let e−0 ∈ E such that e−0 lp e0. As r(e) = (S ′, ν ′),

there is e′ ∈ Ẽ with d(e′, e) ≤ R such that (E,≤, λ, γ, e0) ∼ (ρ(e′), e) and
i = iM,ρ(e

′). As a consequence, e is not minimal in (Ẽp, <̃p) so that there

is e− ∈ Ẽ with e− l̃p e. As furthermore d(e′, e−) = d(γ, e−0 ) ≤ R and
(E,≤, λ, γ, e−0 ) ∼ (ρ(e′), e−), it holds ((E,≤, λ, γ, e−0 ), i) ∈ S.

6. Suppose there is an extended R-sphere ((E,≤, λ, γ, e0), i) ∈ S (then e is not
minimal in (Ẽp, <̃p), so let e− ∈ Ẽp such that e− l̃p e) with e0 not maximal in
(Ep, <p). Let e+0 ∈ E such that e0 lp e

+
0 . As we have r−(e) = r(e−) = (S, ν),

there exists e−
′
∈ Ẽ with d(e−

′
, e−) ≤ R, (E,≤, λ, γ, e0) ∼ (ρ(e−

′
), e−), and

i = iM,ρ(e
−′

). Since then d(e−
′
, e) = d(γ, e+0 ) ≤ R and also (E,≤, λ, γ, e+0 ) ∼

(ρ(e−
′
), e), we have ((E,≤, λ, γ, e+0 ), i) ∈ S ′.

7. Let P,N ⊆ S
+ such that m((e, er)) = (P,N ).

(a) Let ((E,≤, λ, γ, e0), i) ∈ S ′ and e′0 ∈ E. According to the definition of m,
e0 <c e

′
0 implies ((E,≤, λ, γ, e′0), i) ∈ P.

(b) Let ((E,≤, λ, γ, e0), i) ∈ S ′ and e′0 ∈ E. According to the definition of m,
e0 6<c e

′
0 implies ((E,≤, λ, γ, e′0), i) ∈ N .

(c) Let ((E,≤, λ, γ, e0), i) ∈ P. Then, due to the definition of P, there is
e′0 ∈ E with e′0 <c e0 and ((E,≤, λ, γ, e′0), i) ∈ S.

8. As ς(S ′) ∼ ρ(e) and |{e′ ≤̃p e | ς(S ′) ∼ ρ(e′)}| = |{e′ <̃p e | ς(S ′) ∼
ρ(e′)}|+1, we have ν ′(ς(S ′)) = min{|{e′ <̃p e | ς(S

′) ∼ ρ(e′)}|+1,max(Occ)}.
Furthermore, ν ′(g) = ν(g) if g 6= ς(S ′).

Verifying (r−(e), λ(e),m((es, e)), r(e)) ∈ ∆p for any e ∈ Ep and es ∈ E with
es <̃c e differs from the above scheme only in point 7. (set (S, ν) to be r(es) and
(S ′, ν ′) to be r(e) and let P,N ⊆ S

+ such that m((es, e)) = (P,N )):

7. (a) Suppose there is ((E,≤, λ, γ, e′0), i) ∈ P. Then there exists e0 ∈ E with
((E,≤, λ, γ, e0), i) ∈ S and e0 <c e′0. Due to ((E,≤, λ, γ, e0), i) ∈ S,

there is e′s ∈ Ẽ with d(e′s, es) ≤ R, (E,≤, λ, γ, e0) ∼ (ρ(e′s), es), and i =
iM,ρ(e

′
s). As then d(e′s, e) = d(γ, e′0) ≤ R and (E,≤, λ, γ, e′0) ∼ (ρ(e′s), e),

((E,≤, λ, γ, e′0), i) ∈ S ′.
(b) Suppose there is ((E,≤, λ, γ, e′0), i) ∈ N ∩ S ′. Then there is e0 ∈ E with

((E,≤, λ, γ, e0), i) ∈ S and e0 6<c e′0. Due to ((E,≤, λ, γ, e0), i) ∈ S,

there is e′s ∈ Ẽ satisfying d(e′s, es) ≤ R, (E,≤, λ, γ, e0) ∼ (ρ(e′s), es),
and i = iM,ρ(e

′
s). Due to ((E,≤, λ, γ, e′0), i) ∈ S ′, there is also e′ ∈ Ẽ

with d(e′, e) ≤ R, (E,≤, λ, γ, e′0) ∼ (ρ(e′), e), and i = iM,ρ(e
′). Suppose

e′s 6= e′. But then, as ρ(e′s) ∼ ρ(e′), iM,ρ(e
′
s) 6= iM,ρ(e

′), which leads to a
contradiction. Now suppose e′s = e′. But then es <̃c e implies e0 <c e

′
0,

also contradicting the premise.
(c) Suppose there is ((E,≤, λ, γ, e′0), i) ∈ S ′ and e0 ∈ E with e0 <c e′0.

Then there is e′ ∈ Ẽ with d(e′, e) ≤ R, (E,≤, λ, γ, e′0) ∼ (ρ(e′), e), and
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i = iM,ρ(e
′). As d(e′, es) = d(γ, e0) ≤ R and (E,≤, λ, γ, e0) ∼ (ρ(e′), es),

it holds ((E,≤, λ, γ, e0), i) ∈ S and, thus, ((E,≤, λ, γ, e′0), i) ∈ P.

In the following, we verify that (r,m) is accepting. So set, given p ∈ Proc, (Sp, νp)

to be (∅, ν0
p ) if Ẽp is empty and, otherwise, (Sp, νp) to be r(ep) where ep ∈ Ẽp

is the maximal event wrt. ≤̃p. Clearly, the union of mappings νp carries, for
each g ∈ S, the number of occurrences of g in ρ. Furthermore, for all p ∈ Proc
and ((E,≤, λ, γ, e0), i) ∈ Sp, e0 is maximal in (Ep, <p). Because suppose there is

e′0 ∈ E with e0 lp e
′
0. But then, as there exists no e+ ∈ Ẽ satisfying ep l̃p e

+,

there is no e′ ∈ Ẽ either with d(e′, ep) ≤ R such that (E,≤, λ, γ, e0) ∼ (ρ(e′), ep),
which contradicts the definition of r.

“⊆”: Let (r,m) be an accepting run of A on an MSC M = (Ẽ, ≤̃, λ̃). Then
ρ : Ẽ → S with ρ(e) = g if there is S and ν such that r(e) = (S, ν) and g = ς(S)
turns out to be an accepting run of GA on M . For ((E,≤, λ, γ, e0), i) ∈ S

+ and
e ∈ Ẽ, we sometimes write ((E,≤, λ, γ, e0), i) ∈ r(e) if there is S and ν such that
r(e) = (S, ν) and ((E,≤, λ, γ, e0), i) ∈ S.

Claim 3. For each e ∈ Ẽ, ((E,≤, λ, γ, ē), i) ∈ r(e), and d ∈ IN, if there is a
sequence of events e0, . . . , ed ∈ E such that e0 = ē and, for each k ∈ {0, . . . , d−1},
ek l ek+1 or ek+1 l ek, then there is a unique sequence of events ê0, . . . , êd ∈ Ẽ
with

– ê0 = e,

– for each k ∈ {0, . . . , d}, ((E,≤, λ, γ, ek), i) ∈ r(êk), and

– for each k ∈ {0, . . . , d−1}, êk l̃ êk+1 iff ek l ek+1 and êk+1 l̃ êk iff ek+1 l ek.

Proof of Claim 3. We proceed by induction. Obviously, the statement holds for
d = 0. Now assume there is a sequence of events e0, . . . , ed, ed+1 ∈ E such that
e0 = ē and, for each k ∈ {0, . . . , d}, ek l ek+1 or ek+1 l ek. By induction
hypothesis, there is a unique sequence of events ê0, . . . , êd ∈ Ẽ with

– ê0 = e,

– for each k ∈ {0, . . . , d}, ((E,≤, λ, γ, ek), i) ∈ r(êk) (in particular, λ(ek) =
(λ̃(êk), q) for some q ∈ Q), and

– for each k ∈ {0, . . . , d − 1}, êk l̃ êk+1 iff ek l ek+1 (which implies, for one
thing, êk <̃c êk+1 iff ek <c ek+1) and êk+1 l̃ êk iff ek+1 l ek.

Suppose that

– ed lp ed+1 for some p ∈ Proc. As ed is not maximal in (Ep, <p), r(êd)

cannot be part of a final state so that there is a (unique) event êd+1 ∈ Ẽ
with êd l̃p êd+1. Furthermore, due to item 6. from the definition of ∆p,
((E,≤, λ, γ, ed+1), i) ∈ r(êd+1).

– ed+1 lp ed for some p ∈ Proc. As ed is not minimal in (Ep, <p), there is,

according to item 5. from the definition of ∆p, a (unique) event êd+1 ∈ Ẽ
with êd+1 l̃p êd and ((E,≤, λ, γ, ed+1), i) ∈ r(êd+1).
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– ed <c ed+1. There is a (unique) event êd+1 ∈ Ẽ with êd <̃c êd+1. Set (P,N )
to be m((êd, êd+1)). According to item 7. (i) (a) from the definition of ∆p,
((E,≤, λ, γ, ed+1), i) ∈ P. With 7. (ii) (a), it follows ((E,≤, λ, γ, ed+1), i) ∈
r(êd+1).

– ed+1 <c ed. There is a (unique) event êd+1 ∈ Ẽ with êd+1 <̃c êd. Set (P,N )
to be m((êd+1, êd)). According to item 7. (ii) (c) from the definition of ∆p,
((E,≤,λ, γ, ed), i) ∈ P. With 7. (i) (c), it follows ((E,≤, λ, γ, ed+1), i) ∈
r(êd+1).

This concludes the proof of Claim 3.

Let µ : Ẽ → Q be given by µ(e) = q if there is S, ν, and σ such that r(e) =
(S, ν) and λ(S) = (σ, q). We have to show that, for each e ∈ Ẽ, is

(
�

E,
�

≤,(
�

λ,µ)),R
(e)

is isomorphic to ρ(e). So let e ∈ Ẽ and set (E,≤, λ, γ) to be ρ(e) and i ∈
{1, . . . , 4 · maxE + 1} to be the unique element with ((E,≤, λ, γ, γ), i) ∈ r(e).

Claim 4. For each d ∈ {0, . . . , R}, there is an isomorphism

h : is
(

�

E,
�

≤,(
�

λ,µ)),d
(e) → is (E,≤,λ),d(γ)

such that, for each ê ∈ Ẽ with d(ê, e) ≤ d, ((E,≤, λ, γ, h(ê)), i) ∈ r(ê).

Proof of Claim 4. We proceed by induction. The statement holds for d = 0. Now
assume d < R and there is an isomorphism h : is

(
�

E,
�

≤,(
�

λ,µ)),d
(e) → is (E,≤,λ),d(γ)

such that, for each ê ∈ Ẽ with d(ê, e) ≤ d, ((E,≤, λ, γ, h(ê)), i) ∈ r(ê).

Extended sphere simulates MSC Suppose there is ê1, ê
′
1, ê2, ê

′
2 ∈ Ẽ such that

d(ê1, e) = d(ê2, e) = d, d(ê′1, e) = d(ê′2, e) = d + 1, (ê1 l̃ ê′1 or ê′1 l̃ ê1) and
(ê2 l̃ ê′2 or ê′2 l̃ ê2). Furthermore, suppose (let e1 and e2 denote h(ê1) and
h(ê2), respectively)

– ê1 l̃p ê
′
1 for some p ∈ Proc. As d(ê1, e) < R, we have d(e1, γ) < R. Due to

item 4. from the definition of ∆p, e1 is not maximal in (Ep, <p) so that there
is e′1 ∈ E with e1 lp e

′
1 and, due to item 6. and ((E,≤, λ, γ, e1), i) ∈ r(ê1),

((E,≤, λ, γ, e′1), i) ∈ r(ê′1).

– ê′1 l̃p ê1 for some p ∈ Proc. As d(ê1, e) is less than R, so is d(e1, γ). Due to
item 3. from the definition of ∆p, e1 is not minimal in (Ep, <p) so that there
is e′1 ∈ E with e′1 lp e1 and, due to item 5. and ((E,≤, λ, γ, e1), i) ∈ r(ê1),
((E,≤, λ, γ, e′1), i) ∈ r(ê′1).

– ê1 <̃c ê
′
1. Set (P,N ) to bem((ê1, ê

′
1)). As d(ê1, e) < R and, thus, d(e1, γ) < R,

there is e′1 ∈ E such that e1 <c e′1. (This is because (E,≤, λ, γ) can be
embedded into some MSC.) According to item 7. (i) (a) from the definition
of ∆p, ((E,≤, λ, γ, e′1), i) ∈ P. Due to item 7. (ii) (a), it then follows from
((E,≤, λ, γ, e1), i) ∈ r(ê1) that ((E,≤, λ, γ, e′1), i) ∈ r(ê′1).

– ê′1 <̃c ê1. Set (P,N ) to be m((ê′1, ê1)). As d(ê1, e) < R and, consequently,
d(e1, γ) < R, there is also e′1 ∈ E such that e′1 <c e1. (Recall that (E,≤, λ, γ)
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can be embedded into some MSC.) According to item 7. (ii) (c) from the
definition of ∆p, ((E,≤, λ, γ, e1), i) ∈ P. Due to item 7. (i) (c), it then follows
that ((E,≤, λ, γ, e′1), i) ∈ r(ê′1).

Thus, depending on ê′1, we obtain from e1 a unique event e′1 ∈ E, which we
denote by h′(ê′1). According to the above scheme, we obtain from e2 a unique
event e′2 ∈ E, denoted by h′(ê′2). It holds d(e′1, γ) = d(e′2, γ) = d+1. Now suppose

– ê′1 l̃p ê′2 for some p ∈ Proc. As already ((E,≤, λ, γ, e′1), i) ∈ r(ê′1) and
((E,≤,λ, γ, e′2), i) ∈ r(ê′2), it follows from item 2. of the definition of ∆p

that e′1 lp e
′
2.

– ê′1 <̃c ê
′
2. Set (P,N ) to be m((ê′1, ê

′
2)) and suppose e′1 <c e

′
2 does not hold.

But then, according to items 7. (i) (b) and 7. (ii) (b) from the definition
of ∆p, ((E,≤, λ, γ, e′2), i) ∈ N and ((E,≤, λ, γ, e′2), i) 6∈ r(ê′2), resulting in a
contradiction.

– ê′1 = ê′2. Then ((E,≤, λ, γ, e′1), i) ∈ r(ê′1) and ((E,≤, λ, γ, e′2), i) ∈ r(ê′1) im-
plies e′1 = e′2 (otherwise, r(ê′1) would not be a valid state of A).

The cases ê′2 l̃p ê
′
1 and ê′2 <̃c ê

′
1 are handled analogously.

MSC simulates extended sphere Suppose there is e1, e
′
1, e2, e

′
2 ∈ E such that

d(e1, γ) = d(e2, γ) = d, d(e′1, γ) = d(e′2, γ) = d + 1, (e1 l e′1 or e′1 l e1) and
(e2 l e′2 or e′2 l e2). We now proceed as in the proof of Claim 3. So suppose (let
ê1 and ê2 denote h−1(e1) and h−1(e2), respectively)

– e1 lp e
′
1 for some p ∈ Proc. As e1 is not maximal in (Ep, <p), r(ê1) cannot

be part of a final state so that there is ê′1 ∈ Ẽ with ê1 l̃p ê
′
1. Furthermore,

due to item 6. from the definition of ∆p, ((E,≤, λ, γ, e′1), i) ∈ r(ê′1).
– e′1 lp e1 for some p ∈ Proc. As e1 is not minimal in (Ep, <p) there is,

according to item 5. from the definition of ∆p, ê
′
1 ∈ Ẽ with ê′1 l̃p ê1 and

((E,≤, λ, γ, e′1), i) ∈ r(ê′1).

– e1 <c e′1. There is ê′1 ∈ Ẽ with ê1 <̃c ê′1. Set (P,N ) to be m((ê1, ê
′
1)).

According to item 7. (i) (a) from the definition of ∆p, ((E,≤, λ, γ, e′1), i) ∈ P.
With 7. (ii) (a), it follows ((E,≤, λ, γ, e′1), i) ∈ r(ê

′
1).

– e′1 <c e1. There is ê′1 ∈ Ẽ with ê′1 <̃c ê1. Set (P,N ) to be m((ê′1, ê1)).
According to item 7. (ii) (c) from the definition of ∆p, ((E,≤, λ, γ, e1), i) ∈ P.
With 7. (i) (c), it follows ((E,≤, λ, γ, e′1), i) ∈ r(ê′1).

According to the above scheme, we obtain from ê2 a unique event ê′2. Now suppose

– e′1 lp e′2 for some p ∈ Proc. Assume ê′1 6l̃p ê′2. According to the defini-
tion of the set of states of A, e′1 6= e′2, ((E,≤, λ, γ, e′1), i) ∈ r(ê′1), and
((E,≤,λ, γ, e′2), i) ∈ r(ê′2) implies ê′1 6= ê′2. But then, following the scheme

depicted in Figure 6, we can construct an infinite sequence x1, x2, . . . ∈ Ẽ
inducing an infinite set of (pairwise distinct) events: Suppose ê′1 <̃p ê

′
2. (The

other case is handled analogously.) Set x1 ∈ Ẽ to be the unique event satis-
fying ê′1 l̃p x1. We have ((E,≤, λ, γ, e′2), i) ∈ r(x1) and x1 <̃p ê

′
2. According
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to Claim 3, there is x2 ∈ Ẽ such that ((E,≤, λ, γ, γ), i) ∈ r(x2) and x2 <̃ e.
(There is a path in (E,≤, λ) from e′2 to γ that, according to Claim 3, takes
M from ê′2 to e. Apply this path to x1 yielding a path to a unique event

x2 ∈ Ẽ with ((E,≤,λ, γ, γ), i) ∈ r(x2). From x1 <̃p ê′2, it easily follows

that x2 <̃ e.) Similarly, there is x3 ∈ Ẽ with ((E,≤, λ, γ, e′1), i) ∈ r(x3)

and x3 <̃p ê′1. Now let x4 ∈ Ẽ be the unique event such that x3 l̃p x4

and ((E,≤, λ, γ, e′2), i) ∈ r(x4) (as already ((E,≤, λ, γ, e′1), i) ∈ r(ê′1), it

holds x4 <̃p ê′1) and let, again following Claim 3, x5 ∈ Ẽ be an event

with ((E,≤, λ, γ, γ), i) ∈ r(x5) and x5 <̃ x2 and x6 ∈ Ẽ be an event with
((E,≤, λ, γ, e′1), i) ∈ r(x6) and x6 <̃p x3. Continuing this scheme yields an
infinite set of events, contradicting the premise that we deal with finite MSCs.

– e′1 <c e
′
2. Assuming ê′1 6<̃c ê

′
2, we proceed according to the very same scheme

as in case e′1 lp e
′
2 to generate an infinite sequence x1, x2, . . . ∈ Ẽ inducing

an infinite set of events, i.e., set x1 ∈ Ẽ to be the unique event such that
ê′1 <̃c x1 and ((E,≤, λ, γ, e′2), i) ∈ r(x1). Assuming x1 <̃ ê′2, we can find

x2 ∈ Ẽ with ((E,≤, λ, γ, γ), i) ∈ r(x2) and x2 <̃ e and so on.
– e′1 = e′2. Again, assuming ê′1 6= ê′2, we can generate an infinite sequence

x1, x2, . . . ∈ Ẽ inducing an infinite set of events as follows: Suppose ê′1 <̃ ê′2.

According to Claim 3, we can find x1 ∈ Ẽ such that ((E,≤, λ, γ, γ), i) ∈ r(x1)
and x1 <̃ e. Furthermore, there is x2 ∈ Ẽ satisfying ((E,≤, λ, γ, e′1), i) ∈ r(x2)
and x2 <̃ ê′1 and so on.

�

e′2

x1

�

e′1

x4

x3

x3

e

x2

x5

((E,≤, λ, γ, e′2), i)

((E,≤, λ, γ, e′2), i)

((E,≤, λ, γ, e′1), i)

((E,≤, λ, γ, e′2), i)

((E,≤, λ, γ, e′1), i)

((E,≤, λ, γ, e′1), i)

((E,≤, λ, γ, γ), i)

((E,≤, λ, γ, γ), i)

((E,≤, λ, γ, γ), i)

Fig. 6. An infinite sequence of events

The cases e′2 lp e
′
1 and e′2 <c e

′
1 are handled analogously. From the above results,

we conclude that the mapping ĥ : is
(

�

E,
�

≤,(
�

λ,µ)),d+1
(e) → is(E,≤,λ),d+1(γ) given by

ĥ(ê) =

{
h(ê) if d(ê, e) ≤ d
h′(ê) if d(ê, e) = d+ 1
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(for ê ∈ Ẽ with d(ê, e) ≤ d+ 1) is an isomorphism satisfying, for any ê ∈ Ẽ with
d(ê, e) ≤ d+ 1, ((E,≤, λ, γ, ĥ(ê)), i) ∈ r(ê). This concludes the proof of Claim 4.

As ((Sp, νp))p∈Proc ∈ F only if the union of mappings νp is a model of Occ,
an accepting run of A makes sure that the number of occurrences of an R-sphere
meets the obligations imposed by GA. This concludes the proof of Claim 1. �

4 Beyond Realizability

In this section, we show that MSO logic over MSCs is strictly more expressive
than EMSO. Together with the results of the previous section, this will be used
to show that MPAs cannot be complemented in general. More specifically, we
show that quantifier-alternation forms a hierarchy:

Theorem 3. The monadic quantifier-alternation hierarchy over MSC is infi-
nite.

Proof. Matz and Thomas proved infinity of the monadic quantifier-alternation
hierarchy over grids [10]. We show how grids can be encoded into MSCs and then
rewrite their result in terms of MSCs.

For a positive natural n ∈ IN≥1, we use in the following [n] as a shorthand for
{1, . . . , n}. Given positive naturals m,n ∈ IN≥1, the (m,n)-grid g(m,n) (with
m columns and n rows) is the structure g(m,n) := ([m] × [n], S1, S2) where
S1, S2 ⊆ ([m] × [n])2 contain the pairs ((i, j), (i + 1, j)) with i + 1 ≤ m and
j ≤ n and, respectively, ((i, j), (i, j + 1)) with i ≤ m and j + 1 ≤ n. A relation
R ⊆ IN≥1×IN≥1 may be represented by the grid language {g(m,n) | (m,n) ∈ R}.
As a unary function f : IN≥1 → IN≥1 can be considered as a binary relation, we
define the grid language G(f) of f to be the set {g(f(n), n) | n ∈ IN≥1}. A grid
g(m,n) can be folded to an MSC M(m,n) as exemplarily shown in Figure 8.
Formally, M(m,n) is given by its projections as follows:

M(m,n) � 1 =





(1!2)n−1(1!3)
[
((1?2)(1!2))n−1 (1?3)(1!3)

](m−1)/2
if m is odd

(1!2)n−1(1!3)
[
((1?2)(1!2))n−1 (1?3)(1!3)

](m/2)−1
(1?2)n−1(1?3)

if m is even

M(m,n) � 2 =





[
((2?1)(2!1))n−1 (2?3)(2!3)

](m−1)/2
(2?1)n−1(2?3) if m is odd

[
((2?1)(2!1))n−1 (2?3)(2!3)

]m/2
if m is even

M(m,n) � 3 =

{
((3?1)(3!2)(3?2)(3!1)) (m−1)/2 (3?1)(3!2) if m is odd

((3?1)(3!2)(3?2)(3!1))m/2 if m is even

A similar encoding is used by Kuske [8], who proves infinity of the monadic
quantifier-alternation hierarchy for certain pomsets over at least two processes.
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However, considering MSCs, things become more complicated. In particular, we
need to introduce a third process to obtain distinguished labelings of events that
mark the end of a column in the grid to be encoded. By the type of an event, we
furthermore recognize which event really corresponds to the grid’s node, namely
those that are labelled with a send action performed by process 1 or 2. EMSO-
definability of the set of all grid encodings, which is needed in the proof, is
witnessed by a corresponding MPA.

1!2

1!2

1!3

1?2

1!2

1?2

1!2

1?3

1!3

1?2

1!2

1?2

1!2

1?3

1!3

2?1

2!1

2?1

2!1

2?3

2!3

2?1

2!1

2?1

2!1

2?3

2!3

2?1

2?1

2?3

(1, 1)

(1, 2)

(1, 3)

(3, 1)

(3, 2)

(3, 3)

(5, 1)

(5, 2)

(5, 3)

(2, 1)

(2, 2)

(2, 3)

(4, 1)

(4, 2)

(4, 3)

3!1 3?2

3!1 3?2

3?1

3!2

3?1

3!2

3?1

3!2

Fig. 7. Folding the (5, 3)-grid

A grid language G defines the MSC language L(G) := {M(m,n) | g(m,n) ∈
G}. For a function f : IN≥1 → IN≥1, we furthermore write L(f) as a shorthand
for the MSC language L(G(f)). We now closely follow [15], which resumes the
result of [10]. So let, for k ∈ IN, the functions sk, fk : IN≥1 → IN≥1 be inductively
defined via s0(n) = n, sk+1(n) = 2sk(n), f0(n) = n, and fk+1(n) = fk(n) · 2fk(n).

Claim 5. For each k ∈ IN, the MSC language L(fk) is Σ2k+3-definable.

Proof of Claim 5. We show that, for any k ≥ 1, if a grid language G is Σk-
definable (over grids), then L(G) is Σk-definable (over MSCs). The claim then
follows from the fact that any grid language G(fk) is Σ2k+3-definable [15].

So let k ∈ IN≥1. Figure 8 shows the MPA AGF , which recognizes the set of
all possible grid foldings. As the part of process 3 is the easy one, it is omit-
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ted. Note that synchronization messages are only needed when processes 1 and
2 synchronize. For clarity, ε-transitions are employed, which can easily be elim-
inated without affecting the recognized language. Note that a global final state
is depicted by a dashed line. Moreover, its labelling indicates, which grid fold-
ings it accepts, while m and n range over IN and IN≥1, respectively. Accord-
ing to Lemma 1, let ϕGF = ∃XψGF (X) be an EMSO sentence (over MSCs)
with first-order kernel ψGF (X) that defines the language of AGF . Let further-
more ϕ = ∃Y1∀Y2 . . . ∃/∀Ykϕ

′(Y1, . . . , Yk) be a Σk-sentence (over grids) where
ϕ′(Y1, . . . , Yk) contains no set quantifiers. Without loss of generality, ϕGF and
ϕ employ distinct sets of variables. We now determine the Σk-sentence Ψϕ over
MSCs with L(Ψϕ) = L(G(ϕ)) (where G(ϕ) is the set of models of ϕ interpreted
over grids), i.e., the foldings of G(ϕ) form exactly the MSC language defined by
Ψϕ. So let Ψϕ be given by

∃X∃Y1∀Y2 . . . ∃/∀Yk(ψGF (X) ∧ ‖ϕ′(Y1, . . . , Yk)‖)

where ‖ϕ′(Y1, . . . , Yk)‖ is inductively derived from ϕ′(Y1, . . . , Yk) as follows:

– ‖S1(x, y)‖ = L1!2(x) ∧ L2!1(y) ∧ ∃z(x <c z ∧ z lp y)
∨ L2!1(x) ∧ L1!2(y) ∧ ∃z(x <c z ∧ z lp y)
∨ L1!3(x) ∧ L2!3(y) ∧
∃z∃z′∃z′′(x <c z ∧ z lp z

′ ∧ z′ <c z
′′ ∧ z′′ lp y)

∨ L2!3(x) ∧ L1!3(y) ∧
∃z∃z′∃z′′(x <c z ∧ z lp z

′ ∧ z′ <c z
′′ ∧ z′′ lp y)

– ‖S2(x, y)‖ = L1!2(x) ∧ (
∨

σ∈Act
! Lσ(y)) ∧ (x lp y ∨ ∃z(x lp z ∧ z lp y))

∨ L2!1(x) ∧ ∃z(x lp z ∧ z lp y)
– ‖x ∈ X‖ = x ∈ X
– ‖¬ϕ‖ = ¬‖ϕ‖
– ‖ϕ ∨ ψ‖ = ‖ϕ‖ ∨ ‖ψ‖
– ‖ϕ ∧ ψ‖ = ‖ϕ‖ ∧ ‖ψ‖
– ‖∃xϕ‖ = ∃x((

∨
σ∈{1!2,2!1,1!3,2!3} Lσ(x)) ∧ ‖ϕ‖)

– ‖∀xϕ‖ = ∀x((
∨

σ∈{1!2,2!1,1!3,2!3} Lσ(x)) → ‖ϕ‖)

Similarly to the proof of Lemma 1, the above inductive derivation makes sure
that only elements that correspond to grid nodes are assigned to the variables
Y1, . . . , Yk. This concludes the proof of Claim 5.

Claim 6. Let f : IN≥1 → IN≥1 be a function. If L(f) is Σk-definable (over MSCs)
for some k ≥ 1, then f(n) is in sk(O(n)).

Proof of Claim 6. Again, the proof is an adaption of the proof of [15]. So let
k ≥ 1 and let in the following the events of an MSC (E,≤, λ) be labelled with
elements from Act × {0, 1}i for some i ∈ IN≥1, i.e., λ : E → Act × {0, 1}i.
But note that the type of an event still depends on the type of its commu-
nication action only. Let furthermore ϕ(Y1, . . . , Yi) be a Σk-formula defining a
set of MSCs over the new label alphabet that are foldings of grids. For a fixed
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column length n ≥ 1, we will build a nondeterministic finite word automaton
An over (Act × {0, 1}i)n with sk−1(c

n) states (for some constant c) that reads
grid-folding MSCs column by column and is equivalent to ϕ(Y1, . . . , Yi) wrt.
grid foldings with column length n. Column here means a sequence of com-
munication actions, each provided with an additional label, that represents a
column in the corresponding grid. For example, running on the MSC M(5, 3)

1!2, #col

1!3

ε

1?2, ◦

1?3

ε
1?2, ◦

1!2, ◦
1?3

1!3

ε

1?2, •

1?3

ε
1?2, •

1!2, •
1?3

1!3

ε

ε

2?1, #col

2?3

2?3

2!3

ε

2?1, ◦

2?3

ε

2?1, •

2?3

ε

2?1, #col

2!1, ◦

2?3

2!3

ε

2?1, ◦

2!1, •

2?3

ε

2?1, •

2!1, ◦

ε

(1, n)

(4m + 2, n)

(4m + 3, n)

(4m + 4, n)

(4m + 5, n)

Fig. 8. A message-passing automaton regognizing GF

shown in Figure 7, A3 first reads the letter [(1!2)2(1!3)(3?1)(3!2)] (recall that
each action is still provided with an extra labelling, which we omit here for the
sake of clarity), then continues reading [((2?1)(2!1))2(2?3)(2!3)(3?2)(3!1)] and
so on. Then the shortest word accepted by An has length ≤ sk−1(c

n) so that, if
ϕ(Y1, . . . , Yi) defines an MSC language L(f) for some f , we have f(n) ∈ sk(O(n)).
Let us now turn to the construction of An. The formula ϕ(Y1, . . . , Yi) is of the
form ϕ(Y1, . . . , Yi) = ∃Xk∀Xk−1 . . . ∃/∀X1ψ(Y1, . . . , Yi, Xk, . . . , X1) or, equiva-
lently, ϕ(Y1, . . . , Yi) = ∃Xk¬∃Xk−1 . . .¬∃X1ψ

′(Y1, . . . , Yi, Xk, . . . , X1). We pro-
ceed by induction on k. For k = 1, ϕ(Y1, . . . , Yi) is an EMSO formula. Ac-
cording to [15], its MSC language (consisting of MSCs with extended label-
ings) coincides with the MSC language of some graph acceptor. The transfor-
mation from graph acceptors to MPAs from the proof of Theorem 2 can be
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easily adapted to handle the extended labeling. Thus, ϕ(Y1, . . . , Yi) defines a
language that is realizable by an MPA A = ((Ap)p∈Proc ,D, s

in , F ). The au-
tomaton An can now be gained from A using a part of its global transition
relation =⇒A ⊆ (SA × CA) × ((Act × {0, 1}i) × D) × (SA × CA) (as it is de-
fined, for example, in [6]) where SA is the cartesian product of the local state
spaces of A and CA := {χ | χ : Ch → (D ] {⊥})n} is the set of possi-
ble channel contents. Note that only a bounded number of channel contents
has to be considered, as the set of grid foldings with column length n forms a
max{1, n− 1}-bounded MSC language (cf. [6] for the definition of boundedness).
Due to |SA×CA| ≤ (|SA| · (|D|+1))|Ch |·n ≤ cn for some constant c, cn = s0(c

n) is
an upper bound for the number of states of An, which only depends on the au-
tomaton A and, thus, on ϕ(Y1, . . . , Yi). The induction steps respectively involve
both a complementation step (for negation) and a projection step (concerning
existential quantification). While the former increases the number of states ex-
ponentially, the latter leaves it constant so that, altogether, the required number
of states is obtained. This concludes the proof of Claim 6.

As fk+1(n) is not in sk(O(n)), it follows from Claims 5 and 6 that the hier-
archy of classes of Σk-definable MSC languages (k = 1, 2, . . .) is infinite. �

As a consequence, we get the answer to two open questions, which have been
raised by Kuske [9].

Corollary 1. L(MPA) $ MSO

As L(MPA) = EMSO, it follows directly that the complement L := {M ∈
MSC | M 6∈ L} of an MSC language L ∈ L(MPA), is not necessarily contained
in L(MPA), too [14].

Theorem 4. L(MPA) is not closed under complement.

5 Conclusion

We have studied the classes of MSC languages that correspond to MSO logic,
EMSO logic, and MPAs. We have shown that MPAs are expressively equivalent to
EMSO logic. Furthermore, we proved that the class of MSC languages definable
in MSO logic is strictly larger. Consequently, MPAs cannot be complemented in
general. This question was raised in [9].

Since emptiness for MPAs is undecidable, we further conclude that satisfia-
bility for EMSO and MSO and universality for MSO formulas are undecidable.

Figure 9 summarizes some of the results of this paper. Thus, for bounded
languages, MSO and EMSO coincide and capture exactly the class of languages
realizable by bounded [6] MPAs.

It remains to compare the nondeterministic automata model with a deter-
ministic one in the unbounded setting. In [12, 9], it was shown that deterministic
MPAs suffice to realize regular bounded MSC languages. This question was also
addressed in [4] regarding the related model of asynchronous cellular automata
for pomsets without autoconcurrency.
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2000-02 Jens Vöge / Marcin Jurdzinski: A Discrete Strategy Improvement Algo-

rithm for Solving Parity Games

2000-04 Andreas Becks / Stefan Sklorz / Matthias Jarke: Exploring the Semantic

Structure of Technical Document Collections: A Cooperative Systems

Approach

2000-05 Mareike Schoop: Cooperative Document Management

2000-06 Mareike Schoop / Christoph Quix (eds.): Proceedings of the Fifth In-

ternational Workshop on the Language-Action Perspective on Commu-

nication Modelling

2000-07 ∗ Markus Mohnen / Pieter Koopman (Eds.): Proceedings of the 12th In-

ternational Workshop of Functional Languages

2000-08 Thomas Arts / Thomas Noll: Verifying Generic Erlang Client-Server

Implementations

2001-01 ∗ Jahresbericht 2000

2001-02 Benedikt Bollig / Martin Leucker: Deciding LTL over Mazurkiewicz

Traces

2001-03 Thierry Cachat: The power of one-letter rational languages

2001-04 Benedikt Bollig / Martin Leucker / Michael Weber: Local Parallel Model

Checking for the Alternation Free mu-Calculus

2001-05 Benedikt Bollig / Martin Leucker / Thomas Noll: Regular MSC Lan-

guages

2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-

Order Logic
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2003-04 Jürgen Giesl / René Thiemann / Peter Schneider-Kamp / Stephan Falke:

Improving Dependency Pairs
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