
Aachen
Department of Computer Science

Technical Report

HOR 2004
2nd International Workshop on
Higher-Order Rewriting

Delia Kesner and Femke van Raamsdonk and Joe Wells (eds.)

ISSN 0935–3232 � Aachener Informatik Berichte � AIB-2004- 03

RWTH Aachen � Department of Computer Science � June 2004

The publications of the Department of Computer Science of RWTH Aachen (Aachen University of
Technology) are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Preface

The First Workshop on Higher-Order Rewriting (HOR 2002) was held in July 2002 in Copenhagen,
Denmark, as part of the Federated Logic Conference (FLoC 2002).

This report contains the proceedings of the Second International Workshop on Higher-Order
Rewriting (HOR 2004), which was held on Wednesday June 2, 2004, in Aachen, Germany. HOR
2004 was part of the Federated Conference on Rewriting, Deduction, and Programming (RDP
2004), which was held from May 31 through June 5, 2004, in Aachen. RDP 2004 consisted of the
15th International Conference on Rewriting Techniques and Applications (RTA 2004) and various
workshops.

The aim of HOR is to provide an informal forum to discuss all aspects of higher-order rewriting.
We encourage in particular the presentation of work in progress. The topics of the workshop include
applications, foundations, frameworks, implementations, and semantics.

We are very grateful to Mariangiola Dezani-Ciancaglini (University of Torino, Italy) and Mark-
Oliver Stehr (University of Illinois at Urbana-Champaign, USA) for kindly accepting to give invited
talks at HOR 2004. We would like to thank them both for writing papers for these proceedings.

Finally, we would like to thank the organizing committee of RPD 2004, and in particular Jürgen
Giesl, for all help in the preparation of the workshop.

May 2004
Delia Kesner (Université Denis Diderot Paris 7, Paris, France)
Femke van Raamsdonk (Vrije Universiteit, Amsterdam, The Netherlands)
Joe Wells (Heriot-Watt University, Edinburgh, Scotland)

1

Contents

Part I: Invited Talks

� Intersection Types and Lambda Models
Mariangiola Dezani-Ciancaglini 4

� Higher-order rewriting via conditional first-order rewriting in the open calculus of constructions
Mark-Oliver Stehr 27

Part II: Regular Talks

� FD à la Mellies
Vincent van Oostrom 50

� Strong normalization in the rho-cube: the first-order system
Benjamin Wack 55

� Termination of simply-typed applicative term rewriting systems
Takahito Aoto and Toshiyuki Yamada 61

� Unification and matching modulo type isomorphism
Dan Dougherty and Carlos C. Martı́nez 66

� Pure type systems, cut and explicit substitutions
Romain Kervarc and Pierre Lescanne 72

� PSN implies SN
Emmanuel Polonovski 78

� Deriving strong normalization
Stéphane Lengrand 84

� Higher-order rewriting with types and arities
Jean-Pierre Jouannaud, Femke van Raamsdonk, and Albert Rubio 89

���

Vincent van Oostrom, Kees-Jan van de Looij, and Marijn Zwitserlood 93

2

Part I: Invited Talks

3

Inverse Limit Models as Filter Models

Fabio Alessi1, Mariangiola Dezani-Ciancaglini2?, and Furio Honsell1

1 Dipartimento di Matematica e Informatica, Via delle Scienze, 206 33100 Udine (Italy)
alessi,honsell@dimi.uniud.it

2 Dipartimento di Informatica, Corso Svizzera, 125 10149 Torino (Italy)dezani@di.unito.it

Abstract. Natural intersection type preorders are the type structures which agree with
the plain intuition of intersection type constructor as set-theoretic intersection operation
and arrow type constructor as set-theoretic function space constructor. In this paper we
study the relation between natural intersection type preorders and naturalλ-structures,
i.e. ω-algebraic latticesD with Galois connections given byF : D → [D → D] and
G : [D → D] → D. We prove on one hand that natural intersection type preorders in-
duces naturalλ-structures, on the other hand that naturalλ-structures admits presentations
through intersection type preorders. Moreover we give a concise presentations of classical
D∞ λ-models of untypedλ-calculus through suitable natural intersection type preorders
and prove that filterλ-models induced by them are isomorphic toD∞.

1 Introduction

Intersection type preorders can be viewed asdomain logicsfor ω-algerbraic lattices (see
[CDCHL84], [Abr91]). That means thatω-algebraic lattices can be defined in a syntactic
way through “axioms and rules” which involve intersection type preorders. This possi-
bility brings a nice consequence. The classical way to interpret a statement of the shape
M |= φ (the programM satisfies the propertyφ) in a semantic domainD is to viewM
as a point inD, andφ as a (suitable) subsetΦ of D, obtaining a membership judgment
in D: i.e.M |= φ is translated into[[M]]D ∈ Φ, where the interpretation function[[·]]
maps programs to elements ofD. The Stone duality perspective uses intersection type
preorders in order to “reverse” this point of view. Types are taken for setting up a basis
for the topology of the space (in algebraic terms: the meet-semilattice of coprime com-
pact open sets of the lattice under consideration). Points are not the building blocks of
the semantic domains, rather they are recovered asfilters of types. Following this view
M |= φ is translated in an “opposite” membership judgmentA ∈ [[M]]D, that is: “the
typeA (corresponding to the propertyφ and interpreted asΦ) is a member of the filter
(of properties) which sets up the whole interpretation ofM ”.

This view is fruitful in the following sense: the interpretation of a program is fully
determined when all the properties which the program satisfies are known. Since actu-
ally the syntactic way of defining lattices through intersection type preorders puts at dis-
posal a machinery (thetype assignment system) which allows to assign types/properties
to programs in a finitary way, the gain consists in the possibility of definining program

? Partially supported by EU within the FET - Global Computing initiative, project DART ST-2001-33477,
and by MURST Cofin’02 project McTati. The funding bodies are not responsible for any use that might
be made of the results presented here.

4

interpretations by answering the question:“which types can be assigned to programs by
the type assignment system?”, whose answer can in turn exploit useful technical results
on type assignment system (such as, for instance, the Generation Theorem at page 11).

Since, as mentioned, Stone duality is the mathematical framework where to settle
the relationship between intersection type preorders andω-algebraic complete lattices,
we now recall shortly some basics facts concerning it. A complete treatment can be
found in the milestone paper [Abr91].

LetX be a topological space with topologyΩ(X) (we recall thatΩ(X) is a frame,
that is a complete distributive lattice).

Define acompletely prime filteroverX1 as a subsetξ ⊆ Ω(X) such that (a, b range
overΩ(X)):

– X ∈ ξ;
– a ∈ ξ anda ⊆ b imply b ∈ ξ;
– a ∈ ξ andb ∈ ξ imply a ∩ b ∈ ξ;
–

⋃
i∈I ai ∈ ξ impliesai ∈ ξ for somei ∈ I.

LetPt(Ω(X)) be the set of all completely prime filters overΩ(X). The fundamental
result is that if we work in the categorySobof soberspaces, then we have bijections

(†) X ' Pt(Ω(X))

from which it follows an equivalence between the categoriesSobandLoc (this last one
is the opposite of the category of frames).

The importance of this result can be summarized as follows: given certain topologi-
cal spaces (the sober ones), one can forget points, since topology allows to recover them
completely.

Without entering the details of the rather involved definition of sober space (see
[Joh86]), we just recall that all algebraic domains used in denotational semantics enjoy
the property of being sober.

Intersection type preorders are particular structures which arise when restricting the
equivalence (†) above to the case of the categoryALG of ω-algebraic lattices endowed
with their Scott topology. In such a case, it is possible to exploit the following property
of the topology ofω-algebraic lattices:Ω(X) can be completely recoverd by the subsets
Cpr(Ω(X)) of the coprimecompact open sets (an open seta is coprime ifa ⊆ b ∪ c
implies a ⊆ b or a ⊆ c). The domainCpr(Ω(X)) turns out to be a meet-semilattice
(whence the meet-semilattice structure of intersection types) and it satisfies

Pt(Ω(X)) ' Filt(Cpr(Ω(X))),

whereFilt is the operation of taking filters (defined by dropping the last condition in the
definition above of completely prime filter). As a consequence of (†), anyω-algebraic
latticeX satisfies

X ' Filt(Cpr(Ω(X))).

1 Actually one can take completely prime filters over any complete latticeD, not just topologies.

5

A further step is to notice thatFilt(Cpr(Ω(X))) is isomorphic toKop(X), the subspace
of compact elements ofX, with the reverse ordering ofX. Thus the final form which
the “Stone duality” theory assumes when applied toω-algebraic lattices is expressed by
the isomorphism:

X ' Filt(Kop(X)).

This result is the foundation which guarantees the possibility of describingω-algebraic
lattices by means of intersection type preorders.

In the present paper we are mainly interested in a fine analysis of type preorders
which agree with the intuition that arrow type constructor corresponds to the set-theoretic
continuous function space constructor. We callnatural this kind of type preorders. Our
first result is to show that the semantic counterpart of natural type preorders areω-
algebraic latticesD endowed with pairs of continuous functionF : D → [D → D],
G : [D → D] → D which set up Galois connection:

F ◦G w Id[D→D] G ◦ F v IdD.

We callnaturalλ-structuresthis kind of lattices. We prove on one hand that the space
of filter on a natural type preorders is a naturalλ-structure. On the other hand natural
λ-structures can be presented via natural type preorders, that is

(iso) each naturalλ-structure is isomorphic, both as lattice and as applicative structure,
to the space of filters of a suitable natural type preorder.

Then we turn our attention toλ-models of untypedλ-calculus computed insideALG ,
built through the classical inverse limit technique (see [Sco72]). As a consequence of
(iso), for anyD∞ it is possible to build a filter structure isomorphic to it, but the con-
struction given in the proof of(iso) is not effective and uses a possibly countable amount
of redundant types (since it introduces a constant type for any compact element of the
domain). So we look for a more concise presentation ofD∞. Our second result is to
prove that the natural type preorder which induces a filterλ-model isomorphic toD∞,
starting fromD0, is exactly the natural type preorderfreely generatedby a type preorder
which inducesD0 together with the equalities which arise from encoding the initial pro-
jections.

This second isomorphism result could be obtained by adapting the technique of
[Abr91], Section 4. Our approach does not use the complex Abramsky’s machinery
(tailored for more general domains, the SFP’s ones) and allows to get a rather quick
isomorphism proof.

Finally, the organization of the paper. In Section 2 we recall some standard facts
onω-algebraic lattices, and introduce naturalλ-structures. Section 3 discusses type pre-
orders, filter structures and type assignment systems. In Section 4 we prove the two
isomorphism results which relate natural intersection type preorders with naturalλ-
structures. Finally, in Section 5, we give the effective and “concise” presentations of
D∞ λ-models via suitable natural intersection type preorders and show that the filter
structures induced by them are isomorphic toD∞’s.

6

2 Natural λ-structures

We start with a standard definition:

Definition 1. 1. If D is anω-algebraic complete lattice,[D → D] denotes the set of
continuous functions fromD toD, andK(D) the set of compact elements ofD.

2. If a, b ∈ D, thena⇒ b is the step function defined by

a⇒ b (d) = if a v d thenb else⊥.

Recall that the compact elements in the domain of continuous functions are exactly the
sups of finite sets of step functions between compact elements. Moreover we restate
some well know properties of continuous functions [GHK+80]. LetI be a finite set.

Proposition 1. 1. c ⇒ d v
⊔
i∈I(ai ⇒ bi) iff d v

⊔
i∈J bi whereJ = {i ∈ I | ai v

c}.
2. Each continuous functionf is the sup of the step functions between compact ele-

ments which are underf , i.e.

f =
⊔
{a⇒ b | a⇒ b v f, a andb compact}

=
⊔
{a⇒ b | b v f(a), a andb compact}.

Next definition introducesnaturalλ-structures. Naturalλ-structures set up a bridge
between domain theoreticλ-models andfilter structures: more precisely, they are the se-
mantic counterpart of those intersection type preorders (thenaturalones, see Definition
6) whose axioms agree with the intuition that the arrow type constructor corresponds to
the set-theoretic function space constructor.

Definition 2 (Natural λ-structure). Anaturalλ-structureis a triple〈D, FD, GD〉, where
D is anω-algebraic complete lattice, andFD : D → [D → D], GD : [D → D] → D
are Scott continuous functions such that〈FD, GD〉 sets up a Galois connection, i.e.:

1. FD ◦GD w Id[D→D];
2. GD ◦ FD v IdD.

Given a naturalλ-structure〈D, FD, GD〉 anda, b ∈ D, we will often writea · b as
short forFD(a)(b).

Example 1.An example of a naturalλ-structure is〈D♠, F♠, G♠〉, where

– D♠ is IN ∪ {⊥,>}, endowed with the order which is flat on natural numbers, and
moreover⊥ = m u n,> = m t n, for anym,n ∈ IN, m 6= n;

– F♠(a) = (⊥ ⇒ a) for anya ∈ D♠;
– G♠(f) = f(>) for anyf ∈ [D♠ → D♠].

〈D♠, F♠, G♠〉 is a naturalλ-structure. In fact

– G♠(F♠(a)) = G♠(⊥ ⇒ a) = (⊥ ⇒ a)(>) = a;
– F♠(G♠(f)) = (⊥ ⇒ f(>)) w f ,

7

henceF♠ andG♠ set up a Galois connection.

Naturalλ-structures areλ-structures as defined in [Plo93], Section 3.
The following properties of naturalλ-structures follow easily from their definitions.

Although they are almost immediate consequence of the fact that, from a categorical
point of view,FD is left adjoint ofGD, we will recall the direct proof.

Proposition 2. Let 〈D, FD, GD〉 be a naturalλ-structure.

1. GD maps always compact elements into compact elements.
2. FD determinesGD by

GD(f) = u{d | f v FD(d)}

for all continuous functionsf .
3. GD is additive,GD(f t g) = GD(f) tGD(g).

Proof. Notice that, by condition (2) of Definition 2,

(∗) GD(f) v GD(FD(d)) imply GD(f) v d.

1. We show that iff is compact thenGD(f) is compact, that is ifGD(f) v
⊔
z∈Z z,

whereZ is directed, thenGD(f) v z for somez ∈ Z.

GD(f) v
⊔
z∈Z z⇒ FD(GD(f)) v

⊔
z∈Z FD(z)

sinceFD is continuous
⇒ f v

⊔
z∈Z FD(z)

by condition (1) of Definition 2
⇒ ∃z ∈ Z.f v FD(z)

sincef is compact and{FD(z) | z ∈ Z} is directed
⇒ ∃z ∈ Z.GD(f) v GD(FD(z))

sinceGD is monotone
⇒ ∃z ∈ Z.GD(f) v z

by (*).

2. It sufficies to show thatGD(f) v d iff f v FD(d).

GD(f) v d⇒ FD(GD(f)) v FD(d) sinceFD is monotone
⇒ f v FD(d) by condition (1) of Definition 2

f v FD(d) ⇒ GD(f) v GD(FD(d)) sinceGD is monotone
⇒ GD(f) v d by (*).

3. We have

GD(f t g) v GD(FD(GD(f)) t FD(GD(g))) by condition (1) of Definition 2
v GD(FD(GD(f) tGD(g))) sinceFD is continuous
v GD(f) tGD(g) by condition (2) of Definition 2.

8

Naturalλ-structures provide interpretation to terms ofλ-calculus in a standard way:
interpretation of application is obtained by applyingFD to the interpretation of the term
M (in function position) in(MN); interpretation of abstraction is obtained by applying
GD to the function induced byλx.M . Notice that the possibility of interpretingλ-terms
just relies on the existence ofFD andGD, independently from the fact they set up a
Galois connection.

In the followingΛ denotes the set ofλ-terms,EnvD denotes the set of functions
Var→ D from term variables toD (term environments).

Definition 3. Let 〈D, FD, GD〉 be a naturalλ-structure. The interpretation[[]]D : Λ ×
EnvD → D is defined inductively onλ-terms as follows:

[[x]]Dρ = ρ(x);
[[MN]]Dρ = FD([[M]]Dρ)([[N]]Dρ);
[[λx.M]]Dρ = GD(λλd ∈ D.[[M]]Dρ[x:=d])

whereρ ranges over the set of term environmentsEnvD.

Example 2.Consider the naturalλ-structureD♠ defined in Example 1. Then for any
M ∈ Λ, [[(λx.x)M]]D

♠
ρ = >. In fact

[[(λx.x)]]D
♠

ρ = G♠(λλd ∈ D♠.d)
= G♠(

⊔
{a⇒ a | a ∈ D♠})

= (
⊔
{a⇒ a | a ∈ D♠})(>)

= >.

Therefore
[[(λx.x)M]]D

♠
ρ = F♠(>)([[M]]D

♠
ρ)

= (⊥ ⇒ >)([[M]]D
♠

ρ)
= >.

By the way notice that this proves that〈D♠, F♠, G♠〉 is not aλ-model, since, for anyy,
ρ such thatρ(y) = ⊥, it follows

[[(λx.x)y]]D
♠

ρ = >
6= ⊥
= [[y]]D

♠
ρ .

As well known, wheneverFD ◦ GD = Id[D→D], theλ-structure〈D, FD, GD〉 is a
λ-model, being a reflexive object in the cartesian closed category ofω-algebraic lattice
and continuous functions.

The notion of isomorphism betweenλ-structures is as expected: a lattice isomor-
phism which “commutes” withF andG.

Definition 4 (Isomorphism of natural λ-structures).Two naturalλ-structures〈D, FD, GD〉
and 〈E , FE , GE〉 are isomorphic if there exists a lattice isomorphismm : D → E such
that for anyd ∈ D andf ∈ [D → D]:

9

1. FE(m(d)) = m ◦ FD(d) ◦m−1,
2. m(GD(f)) = GE(m ◦ f ◦m−1).

It is easy to show that previous definition can be simplified.

Proposition 3. Two naturalλ-structures〈D, FD, GD〉 and〈E , FE , GE〉 are isomorphic
iff there exists a lattice isomorphismm : D → E such that

∀d, d′ ∈ D.m(d · d′) = m(d) ·m(d′).

Proof. First notice that condition (1) of Definition 4 is equivalent to the condition of
Proposition 3. So it is enough to prove that condition (1) of Definition 4 implies condi-
tion (2) of the same definition.

Proof ofGE(m ◦ f ◦m−1) v m(GD(f)).

GE(m ◦ f ◦m−1) v GE(m ◦ (FD(GD(f)) ◦m−1) by condition (1) of Definition 2
= GE(FE(m(GD(f)))) by condition (1) of Definition 4
v m(GD(f)) by condition (2) of Definition 2.

Before proving the other inequality, notice that in a symmetric way we can show

(\) GD(m−1 ◦ f ◦m) v m−1(GE(f)).

Proof ofGE(m ◦ f ◦m−1) w m(GD(f)).

m(GD(f)) = m(GD(m−1 ◦m ◦ f ◦m−1 ◦m))
v m(GD(m−1 ◦ (FE(GE(m ◦ f ◦m−1)) ◦m)) by condition (1) of Definition 2
= m(m−1(GE(FE(GE(m ◦ f ◦m−1))))) by (\)
= GE(m ◦ f ◦m−1) by condition (2) of Definition 2.

3 Natural filter structures

Intersection types, the building blocks for the filterλ-models, are syntactical objects
built by closing a given setCC of type atoms(constants), which contains the universal
typeΩ, under thefunction typeconstructor→ and theintersection typeconstructor∩.

Definition 5 (Intersection type language).Theintersection type languageoverCC, de-
noted byTT = TT(CC), is defined by the following abstract syntax:

TT = CC | TT → TT | TT ∩ TT.

Much of the expressive power of intersection type languages comes from the fact
that they are endowed with apreorder relation, which induces, on the set of types, the
structure of a meet semi-lattice with respect to intersection. We consider here a class of
preorder relations we call natural, for the general definition see [ADCH03].

Definition 6 (Natural intersection type preorder).

10

1. Anatural intersection type preorder (nitp)Σ is a pair (CCΣ ,≤Σ) whereCCΣ is a set
of type constants and≤Σ is a binary relation overTTΣ = TT(CCΣ) satisfying the
following set∇0 (“nabla-zero”) of axioms and rules:

(refl) A ≤ΣA (idem) A ≤ΣA ∩A

(inclL) A ∩B ≤ΣA (inclR) A ∩B ≤ΣB

(mon)
A ≤ΣA′ B ≤ΣB′

A ∩B ≤ΣA′ ∩B′
(trans)

A ≤ΣB B ≤ΣC
A ≤ΣC

(Ω) A ≤ΣΩ (Ω-η) Ω ≤ΣΩ → Ω

(→-∩) (A→ B) ∩ (A→ C) ≤ΣA→ B ∩ C (η)
A′ ≤ΣA B ≤ΣB′

A→ B ≤ΣA′ → B′

2. A recursive set∇ of axioms and rules of the shapeA ≤∇B overTT∇ = TT(CC∇)
is said to generate the nitpΣ∇ = (CC∇,≤∇) if A ≤∇B holds iff it can be derived
from the axioms and rules of∇∪∇0.

Axiom (Ω) states that each nitp has a maximal element.
The meaning of the last three axioms and rules can be grasped if we consider types

to denote subsets of a domain of discourse and we look at→ as the function space
constructor in the light of Curry-Scott semantics, see [Sco75]. Thus the typeA → B
denotes the set oftotal functions which map each element ofA into an element ofB.
Axiom (Ω-η) expresses the fact that all the objects in our domain of discourse are total
functions, i.e. thatΩ is equal toΩ → Ω [BCDC83]. This is so sinceΩ → Ω is the set
of functions which applied to an arbitrary element return again an arbitrary element.

The intended interpretation of arrow types motivates axiom (→-∩), which implies
that if a function mapsA into B, and the same function maps alsoA into C, then,
actually, it maps the wholeA into the intersection betweenB andC (i.e. intoB ∩ C),
see [BCDC83].

Rule(η) is also very natural in view of the set-theoretic interpretation. It implies that
the arrow constructor is contravariant in the first argument and covariant in the second
one. It is clear that if a function mapsA into B, and we take a subsetA′ of A and a
supersetB′ of B, then this function will map alsoA′ intoB′, see [BCDC83].

Notation.

– A ∼Σ B andA ∼∇ B will be short forA ≤ΣB ≤ΣA andA ≤∇B ≤∇A,
respectively.

– Since∩ is commutative and associative (modulo∼Σ), we shall write
⋂
i≤nAi for

A1 ∩ . . .∩An. Similarly we shall write∩i∈IAi, whereI denotes always a finite set.
Moreover we make the convention that∩i∈∅Ai isΩ.

Before going on, we give a simple lemma, whose proof is obtained combining rules
(→-∩) and (η).

11

Lemma 1. LetΣ be a nitp. Then, for anyI,Ai, Bi ∈ TTΣ (i ∈ I), we have:⋂
i∈I

(Ai → Bi) ≤Σ
⋂
i∈I

Ai →
⋂
i∈I

Bi.

We can devise semantic domains out of intersection types by means of an appropri-
ate notion of filter over a type preorder. This is a particular case of filter over a generic
meet semi-lattice (see [Joh86]).

Definition 7 (Σ-filters). AΣ-filter (or a filter overTTΣ) is a setX ⊆ TTΣ such that

1. Ω ∈ X;
2. ifA ≤ΣB andA ∈ X, thenB ∈ X;
3. ifA,B ∈ X, thenA ∩B ∈ X.

FΣ denotes the set ofΣ-filters.

GivenX ⊆ TTΣ , ↑X denotes theΣ-filter generated byX. ForA ∈ TTΣ , we write
↑A instead of↑{A}.

Proposition 4. The set ofΣ-filtersFΣ , ordered by subset inclusion, is anω-algebraic
complete lattice, where↑ Ω is the bottom, andTTΣ is the top. Moreover ifX,Y ∈ FΣ :

X t Y = ↑ (X ∪ Y);
X u Y = X ∩ Y.

If χ ⊆ FΣ is a directed set, then
⊔
χ =

⋃
χ.

The finite elements are exactly the principal filters.

It is possible to turn the space of filters into a naturalλ-structure.

Definition 8 (Filter structures).

1. Application · : FΣ ×FΣ → FΣ is defined as

X · Y =↑{B | ∃A ∈ Y.A→ B ∈ X}.

2. The mapsFΣ : FΣ → [FΣ → FΣ] andGΣ : [FΣ → FΣ] → FΣ are defined by:

FΣ(X) = λλY ∈ FΣ .X · Y ;
GΣ(f) = ↑ {A→ B | B ∈ f(↑ A)}.

The triple〈FΣ , FΣ , GΣ〉 is called thefilter structureinduced byΣ.

We now give a simple proposition whose results will be useful later on.

Proposition 5. 1. Eachf ∈ [FΣ → FΣ] satisfies

B ∈ f(↑ A) ⇐⇒ ↑ A⇒↑ B v f

and
f =

⊔
{↑ A⇒↑ B | B ∈ f(↑ A)}.

12

2. For allA,B ∈ TTΣ ,
B ∈ X· ↑ A iff A→ B ∈ X.

Proof. (1) Immediate by Proposition 1(2), taking into account that↑ A ⇒↑ B are all
and only the step functions in[FΣ → FΣ].
(2) (⇒) If B ∼Σ Ω thenΩ → Ω ≤ΣA → B by rule (η). SoA → B ∈ X by
definition ofΣ-filter (Definition 7). Otherwise by definition of application (Definition
8(1))B ∈ X· ↑ A iff B ∈↑ {D | ∃C ∈↑ A. C → D ∈ X}. Then there isI and types
Ci, Di such thatA ≤Σ

⋂
i∈I Ci,

⋂
i∈I Di ≤ΣB andCi → Di ∈ X for all i ∈ I by

definition ofΣ-filter (Definition 7). So we getA → B ∈ X by axiom (→-∩) and rule
(η).
(⇐) Trivial.

Arrow types allow to describe the functional behaviour of filters, as shown in the
next proposition which relates them with step functions,FΣ andGΣ .

Proposition 6.

1. For allX ∈ FΣ we getFΣ(X) =
⊔
{↑ A⇒↑ B | A→ B ∈ X}.

2. For allA,B ∈ TTΣ we getGΣ(↑ A⇒↑ B) =↑ (A→ B).

Proof. (1) LetΞ =
⊔
{↑ A⇒↑ B | A→ B ∈ X}. It suffices to show

D ∈ Ξ(↑ C) ⇔ D ∈ FΣ(X)(↑ C).

We first prove(⇐). If D ∈ FΣ(X)(↑ C), then, by Proposition 5(2), it followsC →
D ∈ X. From this fact andD ∈ (↑ C ⇒↑ D)(↑ C), a fortiori we get immediately
D ∈ Ξ(↑ C).
(⇒). If D ∈ Ξ(↑ C), then, by definition of step function, we get↑ C ⇒↑ D v Ξ. By
compactness of↑ C ⇒↑ D and Proposition 1(1), there existI finite set andAi, Bi ∈
TTΣ , such that∀i ∈ I, Ai → Bi ∈ X,

⊔
i∈I ↑ Ai ⊆↑ C, and↑ D ⊆

⊔
i∈I ↑ Bi. We

rewrite the previous three statements using the fact thatX is aΣ-filter and Proposition
4 as follows:
(a)

⋂
i∈I(Ai → Bi) ∈ X;

(b) C ≤Σ
⋂
i∈I Ai;

(c)
⋂
i∈I Bi ≤Σ D.

Using rule(η) and (b), (c) above, we get
⋂
i∈I Ai →

⋂
i∈I Bi ≤Σ C → D. This last

judgment, along with rule (trans) and Lemma 1, imply
⋂
i∈I(Ai → Bi) ≤Σ C → D.

By (a) above and the fact thatX is aΣ-filter, we getC → D ∈ X, henceD ∈
FΣ(X)(↑ C) by Proposition 5(2).
(2)

GΣ(↑ A⇒↑ B) = ↑ {C → D | D ∈ (↑ A⇒↑ B)(↑ C)} by definition ofGΣ

⊇ ↑ (A→ B).

GΣ(↑ A⇒↑ B) = ↑ {C → D | D ∈ (↑ A⇒↑ B)(↑ C)} by definition ofGΣ

= ↑ {C → D | C ≤ΣA andB ≤ΣD}
⊆ ↑ {C → D | A→ B ≤ΣC → D} by rule (η)
= ↑ (A→ B).

13

3.1 Interpreting λ-terms in filter structures

Any filter structureFΣ , being endowed with the two mappingsFΣ andGΣ , can be
turned into a domain where to interpretλ-calculus by using the interpretation function
[[]]F

Σ
as defined in Definition 3. In this subsection we will see how this interpretation

can be built by means of a suitabletype assignemnt system. The advantage of using
type assignment systems consists in the possibility of calculating term interpretation in
a finitary way, as filters of types that can be assigned to terms.

Definition 9 (Type assignment system).Theintersection type assignment systemrel-
ative to the nitpΣ, notationλ∩Σ , is a formal system for deriving judgements of the
form Γ `Σ M : A, where thesubjectM is an untypedλ-term, thepredicateA is in
TTΣ , andΓ is aΣ-basis. Its axioms and rules are the following:

(Ax)
(x :A) ∈ Γ
Γ `Σ x :A

(Ax-Ω) Γ `Σ M : Ω

(→ I)
Γ, x :A `Σ M : B

Γ `Σ λx.M : A→ B
(→ E)

Γ `Σ M : A→ B Γ `Σ N : A
Γ `Σ MN : B

(∩I)
Γ `Σ M : A Γ `Σ M : B

Γ `Σ M : A ∩B
(≤)

Γ `Σ M : A A ≤ΣB
Γ `Σ M : B

It is easy to verify that the following rules are admissible2 :

(≤ L)
Γ, x : A `M : B A′ ≤ΣA

Γ, x : A′ `M : B

(W)
Γ `M : B x 6∈ Γ
Γ, x : A `M : B

(S)
Γ, x : A `M : B x 6∈ FV (M)

Γ `M : B

We continue with a standard Generation Theorem, which is necessary for proving
the main result of this subsection.

Theorem 1 (Generation Theorem).

1. AssumeA 6∼ΣΩ. ThenΓ `Σ x : A iff (x :B) ∈ Γ andB ≤ΣA for someB ∈ TTΣ .
2. Γ `Σ MN : A iff Γ `Σ M : B → A, andΓ `Σ N : B for someB ∈ TTΣ .
3. Γ `Σ λx.M : A iff Γ, x :Bi `Σ M : Ci and

⋂
i∈I(Bi → Ci) ≤ΣA, for someI and

Bi, Ci ∈ TTΣ .

Proof. The proof of each (⇐) is easy. So we only treat (⇒).
(1) Easy by induction on derivations, since only the axioms (Ax),(Ax-Ω), and the

rules(∩I), (≤) can be applied. Notice that the conditionA 6∼ΣΩ implies thatΓ `Σ x :
A cannot be obtained just using axiom(Ax-Ω).

2 Recall that a rule isadmissiblein a system if, for each instance of the rule, if its premises are derivable
in the system then so is its conclusion.

14

(2) If A ∼Σ Ω we can chooseB ∼Σ Ω. Otherwise, the proof is by induction on
derivations. The only interesting case is whenA ≡ A1 ∩ A2 and the last applied rule is
(∩I):

(∩I)
Γ `Σ MN : A1 Γ `Σ MN : A2

Γ `Σ MN : A1 ∩A2
.

The conditionA6∼ΣΩ implies that we cannot haveA1 ∼Σ A2 ∼Σ Ω. We give the proof
for A1 6∼ΣΩ andA2 6∼ΣΩ, the other cases can be treated similarly. By induction there
areB1, B2 such that

Γ `Σ M : B1 → A1, Γ `Σ N : B1,
Γ `Σ M : B2 → A2, Γ `Σ N : B2.

ThenΓ `Σ M : (B1 → A1) ∩ (B2 → A2) and by rules(η), (→-∩):

(B1 → A1) ∩ (B2 → A2) ≤ΣB1 ∩B2 → A1 ∩A2 ≤ΣB1 ∩B2 → A.

We are done, sinceΓ `Σ N : B1 ∩B2 by rule (∩I) .
(3) The proof is very similar to the proof of Point (2). It is again by induction on

derivations and again the only interesting case is when the last applied rule is (∩I):

(∩I)
Γ `Σ λx.M : A1 Γ `Σ λx.M : A2

Γ `Σ λx.M : A1 ∩A2
.

By induction there areI,Bi, Ci, J,Dj , Gj such that

∀i ∈ I. Γ, x :Bi `Σ M : Ci,∀j ∈ J. Γ, x :Dj `Σ M : Gj ,⋂
i∈I(Bi → Ci) ≤ΣA1 &

⋂
j∈J(Dj → Gj) ≤ΣA2.

So we are done since(
⋂
i∈I(Bi → Ci)) ∩ (

⋂
j∈J(Dj → Gj)) ≤ΣA.

We are now in position for proving the main result of this subsection: in filter struc-
tures the interpretation of a term coincides with the set of types which are deducible for
it.

Theorem 2. Let 〈FΣ , FΣ , GΣ〉 be a filter structure. Then, for anyλ-termM and envi-
ronmentρ : Var→ FΣ ,

[[M]]Σρ = {A ∈ TTΣ | ∃Γ |= ρ. Γ `Σ M : A},

where[[]]Σ is the interpretation function[[]]F
Σ

andΓ |= ρ iff ρ(x : B) ∈ Γ implies
B ∈ ρ(x).

Proof. First notice thatΓ |= ρ andΓ ′ |= ρ imply (by definitions of|= and of filter)
Γ] Γ ′ |= ρ, where we use] to denote the union between bases defined by:

Γ1] Γ2 = {(x:τ) | (x:τ) ∈ Γ1 & x/∈Γ2} ∪
{(x:τ) | (x:τ) ∈ Γ2 & x/∈Γ1} ∪
{(x:τ1 ∩ τ2) | (x:τ1) ∈ Γ1 & (x:τ2) ∈ Γ2}.

15

Moreover notice that by rules (W) and (≤ L) if Γ `Σ M : A thenΓ] Γ ′ `Σ M : A
for all Γ ′. We can conclude that:

(♥) Γ |= ρ, Γ ′ |= ρ, andΓ `Σ M : A imply Γ] Γ ′ |= ρ andΓ] Γ ′ `Σ M : A.

We prove now the thesis by induction onM .
If M ≡ x, then

[[x]]Σρ = ρ(x)
= {A ∈ TTΣ | ∃B ∈ ρ(x). B ≤ΣA}
= {A ∈ TTΣ | ∃B ∈ ρ(x). x : B `Σ x : A} by Theorem 1(1)
= {A ∈ TTΣ | ∃Γ |= ρ. Γ `Σ x : A}.

If M ≡ NL, then

[[NL]]Σρ = [[N]]Σρ · [[L]]Σρ
= ↑ {C ∈ TTΣ | ∃B ∈ [[L]]Σρ .B → C ∈ [[N]]Σρ }

by definition of application
= {A ∈ TTΣ | ∃I,Bi, Ci. Bi → Ci ∈ [[N]]Σρ , Bi ∈ [[L]]Σρ ,⋂

i∈I Ci ≤ΣA}
by definition of filter

= {A ∈ TTΣ | ∃Γ |= ρ, I,Bi, Ci. Γ `Σ N : Bi → Ci,
Γ `Σ L : Bi,

⋂
i∈I Ci ≤ΣA}

by induction and(♥)
= {A ∈ TTΣ | ∃Γ |= ρ. Γ `Σ NL : A}

by Theorem 1(2) and rule(≤).

If M ≡ λx.N , then

[[λx.N]]Σρ = GΣ(λλX ∈ FΣ .[[N]]Σρ[x:=X])
= ↑ {B → C ∈ TTΣ | C ∈ [[N]]Σρ[x:=↑B]}

by definition ofGΣ

= {A ∈ TTΣ | ∃Γ |= ρ, I,Bi, Ci. Γ, x : Bi `Σ N : Ci,⋂
i∈I (Bi → Ci) ≤ΣA}

by induction and(♥)
= {A ∈ TTΣ | ∃Γ |= ρ. Γ `Σ λx.N : A}

by Theorem 1(3) and rule(≤).

4 Isomorphism results

In this section we will see that nitps are closely related to naturalλ-structures. On one
hand, any nitp induces a filter structure which is a naturalλ-structure. On the other
hand, for any naturalλ-structure〈D, FD, GD〉, it is possible to find a presentation of it
by means of a nitpΣ, i.e. 〈FΣ , FΣ , GΣ〉 and〈D, FD, GD〉 are isomorphic as natural
λ-structures. This kind of presentation is not always given by means of a recursive set

16

of axioms and rules, but it will be so in the case ofD∞ λ-models as shown in the final
section of the paper.

The correspondence between nitps and naturalλ-structures can be refined in a cat-
egorical setting, showing that both naturalλ-structures and nitps are objects of suitable
categories, which turn out to be equivalent. In the present paper we give instead a direct
proof.

We begin the present section by showing the first (easy) isomorphism result.

Theorem 3 (Isomorphism I).Each〈FΣ , FΣ , GΣ〉 is a naturalλ-structure.

Proof. We have just to prove thatFΣ andGΣ set up a Galois connection, that is

FΣ ◦GΣ w Id[FΣ→FΣ]

GΣ ◦ FΣ v IdFΣ .

The first inequality is given by:

FΣ(GΣ(f)) =
⊔
{↑ A⇒↑ B | A→ B ∈ GΣ(f)} by Proposition 6(1)

w
⊔
{↑ A⇒↑ B | B ∈ f(↑ A)} by definition ofGΣ

= f by Proposition 1(2).

For the second inequality we get

GΣ(FΣ(X)) = ↑ {A→ B | B ∈ FΣ(X)(↑ A)} by definition ofGΣ

= ↑ {A→ B | A→ B ∈ X} by Proposition 5(2)
⊆ X.

In the remaining of the present subsection we will prove the vice versa, i.e. that each
naturalλ-structure can be generated by a suitable nitp.

To eachλ-structure〈D, FD, GD〉 we associate a nitpΣDD. The preorder relation on
types takes into account both the partial order between compact elements ofD and the
mappingGD.

Definition 10. Let 〈D, FD, GD〉 be aλ-structure. We define:

1. CCDD = {ψc | c ∈ K(D)}, whereψ⊥ isΩ andψc is a fresh constant for each other
c ∈ K(D);

2. ≤DD⊆ TTDD × TTDD as the preorder relation generated by adding to∇0:

DD = {ψc ≤DD ψd | d v c} ∪ {ψc ∩ ψd ≤DD ψe | e = c t d}
∪{ψc → ψd ∼DD ψe | e = GD(c⇒ d)}

whereψc, ψd, ψe ∈ CCDD;
3. ΣDD = 〈CCDD,≤DD〉.

The nitpΣDD enjoys some useful properties.

Proposition 7. 1. For allA ∈ TTDD there isc ∈ K(D) such thatA ∼DD ψc.
2. For all ψc, ψd ∈ CCDD: ψc ≤DD ψd iff d v c;

17

3. For all ψc, ψd, ψe ∈ CCDD: ψe ≤DD ψc → ψd iff GD(c⇒ d) v e.

Proof. (1) By induction onA. LetB ∼DD ψb andC ∼DD ψc.
If A ≡ B ∩ C thenA ∼DD ψbtc.
If A ≡ B → C thenA ∼DD ψd whered = GD(b⇒ c).
For (2) definepp : TTDD → K(D) by:

pp(ψc) = c;
pp(A ∩B) = pp(A) t pp(B);
pp(A→ B) = GD(pp(A) ⇒ pp(B)).

It is easy to verify by induction on≤DD thatA ≤DD B impliespp(B) v pp(A). This
yieldsψc ≤DD ψd ⇒ d v c. The other implication is immediate by definition ofDD.

(3) follows from (2) sinceψc → ψd ∼DD ψGD(c⇒d).

Notice that the first two points of the above proposition imply that for each typeA
in TTDD there is exactly one compact elementc in D such thatA ∼DD ψc.

We define now a lattice isomorphism between the setFDD ofDD-filters overTTDD and
D.

Definition 11. The mappingm : FDD → D is defined by

m(X) =
⊔
ψc∈X

c.

It is not difficult to verify thatm(↑ ψc) = c and thatm is a lattice isomorphism between
FDD andD.

We show thatm commutes with application.

Lemma 2. m(X · Y) = m(X) ·m(Y).

Proof. By the continuity ofm and of application we need to consider only finite ele-
ments inFDD, i.e. using also Proposition 7(1) we only need to show:

m(↑ ψc· ↑ ψd) = m(↑ ψc) ·m(↑ ψd).

First notice that

ψc ≤DD ψd → ψb ⇔ GD(d⇒ b) v c by Proposition 7(3)
⇔ d⇒ b v FD(c) by condition (1) of Definition 2
⇔ b v FD(c)(d) by definition of step function
⇔ b v c · d by definition of application.

We get (using three times rule (η))

18

m(↑ ψc· ↑ ψd) = m(↑ {A | ψc ≤DD ψd → A})
by definition of application

= m(↑ {ψb | b ∈ K(D) andψc ≤DD ψd → ψb})
by Proposition 7(1)

=
⊔
{b ∈ K(D) | ψc ≤DD ψd → ψb}

by definition ofm
=

⊔
{b ∈ K(D) | b v c · d}

by above
= c · d
= m(↑ ψc) ·m(↑ ψd).

Finally we can give the second isomorphism result, whose proof follows immedi-
ately from the previous lemma and Proposition 3.

Theorem 4 (Isomorphism II). Let〈D, FD, GD〉 be a naturalλ-structure, then the nitp
ΣDD of Definition 10 is such that〈D, FD, GD〉 and〈FDD, FDD, GDD〉 are isomorphic.

5 D∞-λ-models and filterλ-models

Since allω-algebraic complete lattices which are extensionalλ-models are clearly nat-
ural λ-structures, Theorem 4 implies that any suchλ-model is isomorphic to a filter
λ-model. However the finitary logical description provided by the proof of Theorem 4
is rather opaque. In this section we show that in the special case ofD∞ inverse limit
λ-models, one can obtain far more concise type theoretic descriptions. Remarkably the
nitp which induces a filterλ-model isomorphic toD∞, starting fromD0, is exactly the
nitp freely generatedby a nitp which inducesD0 together with the equalities which arise
from encoding the initial projections.

First of all we fix some notations and recall the standardD∞ construction.

Definition 12. 1. LetD0 be anω-algebraic complete lattice and

〈i0, j0〉 : D0 → [D0 → D0]

be anembedding-projectionpair, i.e. i0 : D0 → [D0 → D0] and j0 : [D0 → D0] →
D0 satisfyi0 ◦ j0 v Id[D0→D0] and j0 ◦ i0 = IdD0 .

2. Define atower〈in, jn〉 : Dn → Dn+1 in the following way:

– Dn+1 = [Dn → Dn];
– in(f) = in−1 ◦ f ◦ jn−1 for anyf ∈ Dn;
– jn(g) = jn−1 ◦ g ◦ in−1 for anyg ∈ Dn+1.

3. The setD∞ is defined by

D∞ = {〈dn〉 | ∀n. dn ∈ Dn and jn(dn+1) = dn},

where〈dn〉 is short for〈dn〉n∈IN.
4. The ordering onD∞ is given by

19

〈dn〉 v 〈en〉 ⇔ ∀k. dk v ek.

5. Let〈Φm∞, Φ∞m〉 denotes the standard embedding-projection pair fromDm toD∞:
for anyd ∈ Dm, 〈dn〉 ∈ D∞,
Φm∞(d) = 〈. . . jm−2(jm−1(d)), jm−1(d), d, im(d), im+1(im(d)) . . .〉,
Φ∞m(〈dn〉) = dm.

6. LetΦmn : Dm → Dn beΦ∞n ◦ Φm∞.
7. LetF∞ : D∞ → [D∞ → D∞] be defined by

F∞(〈dn〉)(〈en〉) =
⊔
n∈IN Φn∞(dn+1(en)),

andG∞ : [D∞ → D∞] → D∞ by

G∞(f) =
⊔
n∈IN Φ(n+1)∞(Φ∞n ◦ f ◦ Φn∞).

Remark 1.From previous definition it follows easily that, ifn ≤ p ≤ k andd ∈ Dn,
e ∈ Dp, thenΦnp(d) v e iff Φnk(d) v Φpk(e) iff Φn∞(d) v Φp∞(e).

Theorem 5. ([Sco72])〈D∞, F∞, G∞〉 is aλ-model.

Next definition exhibits nitps which induce filterλ-models isomorphic toD∞ λ-
models. Notice the similarities with Definition 10. In particular, the equivalences be-
tween arrow types and constants are built in both cases by considering the action of the
compact element preserving map (GD in the case of Definition 10,i0 here). A differ-
ence with respect to Definition 10 is that we are forced to define such equivalences by
means of intersections and sups. The reason for this is that we do not have a constant for
each compact function, which could lead to an apparently smoother definition such as
in the case of Definition 10 (which actually yields a lot of redundant types), but rather
we represent a compact function as a sup of suitable step functions. Dually, in the nitp,
the compact function will be represented by the intersection of the arrow types which
correspond to the involved step functions.

Definition 13. Define:

1. CC∞ = {ψc | c ∈ K(D0)}, whereψ⊥ isΩ andψc is a fresh constant for each other
c ∈ K(D0);

2. ≤∞ as the preorder relation generated by adding to∇0:

∞ = {ψc ≤∞ ψd | d v c} ∪ {ψc ∩ ψd ∼∞ ψe | e = c t d}
∪{

⋂
j∈J(ψcj → ψdj) ∼∞ ψd | i0(d) =

⊔
j∈J(cj ⇒ dj)}

whereψc, ψd, ψe, cj , dj ∈ CC∞;
3. Σ∞ = 〈CC∞,≤∞〉.

The nitpΣ∞ enjoys some useful properties.

Lemma 3. 1.
⋂
i∈I ψci ∼∞ ψ⊔

i∈I ci
.

20

2.
⋂
i∈I(Ci → Di) ≤∞ A → B implies

⋂
i∈J Di ≤∞ B whereJ = {i ∈ I | A ≤∞

Ci}.

3. ↑
⋂
i∈I(Ci → Di)· ↑ A = ↑

⋂
i∈J Di whereJ = {i ∈ I | A ≤∞ Ci}.

Proof. (1) follows easily from Definition 13.
For (2) notice that by definition for each constantα ∈ CC∞ there is exactly one

judgement of the shapeα ∼∞
⋂
l∈L(ψd)(γ(α)

l → δ
(α)
l), whereγ(α)

l , δ
(α)
l ∈ CC∞.

We can prove by simultaneous induction on the definition of≤∞ two statements,
the first of which implies the thesis.

– if (
⋂
i∈I(Ai → Bi)) ∩ (

⋂
h∈H αh) ≤∞ (

⋂
j∈J(Cj → Dj)) ∩ (

⋂
k∈K βk), then for

eachj ∈ J : (
⋂
i∈I′ Bi) ∩ (

⋂
h∈H′(

⋂
l∈L(αh)′ δ

(αh)
l)) ≤∞ Dj whereI ′ = {i ∈ I |

Cj ≤∞ Ai},H ′ = {h ∈ H | ∃l ∈ L(αh)Cj ≤∞ γ
(αh)
l }, andL(αh)′ = {l ∈ L(αh) |

Cj ≤∞ γ
(αh)
l };

– if (
⋂
i∈I(Ai → Bi)) ∩ (

⋂
h∈H αh) ≤∞ (

⋂
j∈J(Cj → Dj)) ∩ (

⋂
k∈K βk), then for

eachk ∈ K,m ∈ L(βk) (
⋂
i∈I′ Bi) ∩ (

⋂
h∈H′(

⋂
l∈L(αh)′ δ

(αh)
l)) ≤∞ δ

(βk)
m where

I ′ = {i ∈ I | γ(βk)
m ≤∞ Ai}, H ′ = {h ∈ H | ∃l ∈ L(αh)γ

(βk)
m ≤∞ γ

(αh)
l }, and

L(αh)′ = {l ∈ L(αh) | γ(βk)
m ≤∞ γ

(αh)
l }.

For (3) the inclusion⊆ follows immediately from the definition of filter application.
We show the reverse inclusion.

B ∈↑
⋂
i∈I(Ci → Di)· ↑ A⇒ A→ B ∈↑

⋂
i∈I(Ci → Di)

by Proposition 5(2)
⇒

⋂
i∈I(Ci → Di) ≤∞ A→ B

by definition of filter
⇒

⋂
i∈J Di ≤∞ B whereJ = {i ∈ I | A ≤∞ Ci}

by (2).

The proof of the isomorphism will be postponed because several preliminary results
are needed. These are the subjects of Lemmata 4, 5 and 6.

First we classify the types inTT∞ according to the maximal number of nested arrow
occurrences they may contain.

Definition 14. 1. We define the maprankrk : TT∞ → IN by:

rk(ψc) = 0;
rk(A→ B) = max{rk(A), rk(B)}+ 1;
rk(A ∩B) = max{rk(A), rk(B)}.

2. LetTT∞n = {A ∈ TT∞ | rk(A) ≤ n}.

We can associate to each type inTT∞n an element inDn: this will be crucial for
defining the mapping which gives the desidered isomorphism (see Definition 16).

21

Definition 15. We define, for eachn ∈ IN, a mapwn : TT∞n → Dn by a double induction
onn and on the construction of types inTT∞:

wn(ψc) = Φ0n(c);
wn(A ∩B) = wn(A) t wn(B);
wn(A→ B) = wn−1(A) ⇒ wn−1(B).

The following property ofwn shows that no information is lost if we map a type into
anyDn with n greater than the rank of the type.

Lemma 4. For all A ∈ TT∞n and for allm, p ≥ nwe haveΦm∞(wm(A)) = Φp∞(wp(A)).

Proof. We show by induction on the definition ofwn thatwn+1(A) = in(wn(A)). Then
the desired equality follows from the definition of the functionΦ. The only interesting
case is whenA ≡ B → C. We get

wn+1(B → C) = wn(B) ⇒ wn(C) by definition
= in−1(wn−1(B)) ⇒ in−1(wn−1(C)) by induction
= in(wn−1(B) ⇒ wn−1(C)) by definition ofin

and of step function
= in(wn(B → C)) by Definition 15.

The mapswn reverse the order between types, as shown in the following lemma.

Lemma 5. Letn ≥ rk(A ∩B). ThenA ≤∞ B implieswn(B) v wn(A).

Proof. The proof is by induction on the definition of≤∞. We consider just the case
of rule (η). Let A ≡ C → D, B ≡ E → F , with E ≤∞ C, D ≤∞ F . Then
by inductionwn(C) v wn(E) andwn(F) v wn(D), hencewn(E) ⇒ wn(F) v
wn(C) ⇒ wn(D). Thus we get, by definition ofwn, wn+1(B) v wn+1(A), hence,
by Lemma 4,in(wn(B)) v in(wn(A)). By Remark 1 (sincein = Φn(n+1)) the thesis
follows.

Also the reverse implication of Lemma 5 holds.

Lemma 6. Let rk(A ∩B) ≤ n. Thenwn(B) v wn(A) impliesA ≤∞ B.

Proof. The proof is by induction onrk(A ∩B).
If rk(A ∩ B) = 0 we haveA ≡

⋂
i∈I ψci , B =

⋂
j∈J ψdj . Thenwn(B) v wn(A)

implies
⊔
j∈J Φ0n(dj) v

⊔
i∈I Φ0n(ci), that is, by Remark 1,

⊔
j∈J dj v

⊔
i∈I ci. By

Definition 13 and Lemma 3(1) it follows
⋂
i∈I ψci ≤∞

⋂
j∈J ψdj , henceA ≤∞ B.

Otherwise, let

A ≡ (
⋂
i∈I

ψci) ∩ (
⋂
l∈L

(Cl → Dl)), B ≡ (
⋂
h∈H

ψdh) ∩ (
⋂
m∈M

(Em → Fm))

whereψci ∼∞
⋂
j∈Ji(ψaj → ψbj), ψdh ∼∞

⋂
k∈Kh(ψek → ψfk). The last two equiva-

lences imply by Lemma 5 that for alln ≥ 1

wn(ψci) = wn(
⊔
j∈Ji

(ψaj ⇒ ψbj)), wn(ψdh) = wn(
⊔
k∈Kh

(ψek ⇒ ψfk)).

22

So we get⊔
h∈H(

⊔
k∈Kh wn(ψek) ⇒ wn(ψfk)) t (

⊔
m∈M wn(Em) ⇒ wn(Fm)) v⊔

i∈I(
⊔
j∈Ji wn(ψaj) ⇒ wn(ψbj)) t (

⊔
l∈Lwn(Cl) ⇒ wn(Dl)).

Now by definition of step function this implies that for eachh ∈ H, k ∈ Kh,

wn(ψfk) v
⊔
i∈I′

(
⊔
j∈J ′i

wn(ψbj)) t (
⊔
l∈L′

wn(Dl))

whereI ′ = {i ∈ I | ∃j ∈ Ji & wn(ψaj) v wn(ψek)}, J ′i = {j ∈ Ji | wn(ψaj) v
wn(ψek)}, L′ = {l ∈ L | wn(Cl) v wn(ψek)}.
Since all types involved in the two above judgments have ranks strictly less thanrk(A∩
B), by induction and by Lemma 3 we obtain

ψek ≤∞
⋂
i∈I′(

⋂
j∈J ′i

ψaj) ∩
⋂
l∈L′ Cl,⋂

i∈I′(
⋂
j∈J ′i

ψbj) ∩
⋂
l∈L′ Dl ≤∞ ψfk .

Therefore we haveA ≤∞ ψek → ψfk for eachh ∈ H, k ∈ Kh. In a similar way we
can prove thatA ≤∞ Em → Fm, for anym ∈M . Putting together these results we get
A ≤∞ B.

We can now prove the isomorphism between〈D∞, F∞, G∞〉 and〈F∞, F∞, G∞〉.
First we give the isomorphism map.

Definition 16. Letm̂ be the unique continuous extension of the mappingm : K(F∞) →
K(D∞) defined by

m(↑ A) = Φr∞(wr(A)),

wherer = rk(A).

Notice that by Lemma 4 we havem(↑ A) = Φn∞(wn(A)) for all n ≥ rk(A). This will
be freely used in the proof of Theorem 6.

We recall that (see [Sco72])

1. F∞ ◦G∞ = Id[D∞→D∞];
2. G∞ ◦ F∞ = IdD∞ .

On the other hand,〈F∞, F∞, G∞〉 is a naturalλ-structure. So both〈D∞, F∞, G∞〉 and
〈F∞, F∞, G∞〉 are naturalλ-structures.

Theorem 6. The naturalλ-structures〈D∞, F∞, G∞〉 and〈F∞, F∞, G∞〉 are isomor-
phic.

Proof. The mappingm is monotone and injective by Lemmas 5 and 6, hencem̂ is so.
We prove surjection overD∞ by induction onn, by showing that eachwn is surjective
onDn. Surjection ofw0 is obvious by definition ofw0 and of the nitpΣ∞.

23

Let f ∈ Dn+1. By Proposition 1(2) there existI and ai, bi ∈ Dn such thatf =⊔
i∈I(ai ⇒ bi). By induction there exist typesAi, Bi such that for alli ∈ I, wn(Ai) =

ai andwn(Bi) = bi. Therefore

wn+1(
⋂
i∈I(Ai → Bi)) =

⊔
i∈I(wn(Ai) ⇒ wn(Bi))

=
⊔
i∈I(ai ⇒ bi)

= f

We have so proved that eachwn is surjective. This impliesm is surjective onto compact
elements ofD∞, hencem̂ : F∞ → D∞ is surjective.

From Lemma 6 it follows thatm−1 is monotone, hencêm−1 is continuous (by def-
inition). We have finally to prove that̂m commutes with application. Since it is enough
to prove the thesis on compact elements, that is on principal filters ofF∞, we are left to
prove that for anyA,B ∈ TT∞

m(↑ A· ↑ B) = m(↑ A) ·m(↑ B).

Let A,B ∈ TT∞, A ∼∞
⋂
i∈I(Ci → Di), J = {i ∈ I | B ≤∞ Ci}, andn any

natural number greater thanrk(A ∩B). Then by the definition ofΦn∞ and Lemmas 5,
6 we get

([)J = {i ∈ I | Φn∞(wn(Ci)) v Φn∞(wn(B))}.

m(↑ A· ↑ B) = m(↑
⋂
i∈J Di) by Lemma 3(3)

= Φn∞(wn(
⋂
i∈J Di)) by definition ofm

=
⊔
i∈J Φn∞(wn(Di))

by definition ofwn and addittivity ofΦn∞
=

⊔
i∈I(Φn∞(wn(Ci)) ⇒ Φn∞(wn(Di))) · Φn∞(wn(B))

by definition of step function and([)
=

⊔
i∈I Φ(n+1)∞(wn(Ci) ⇒ wn(Di)) · Φn∞(wn(B))

by definition ofΦn∞
= Φ(n+1)∞(wn+1(

⋂
i∈I(Ci → Di))) · Φn∞(wn(B))

by definition ofwn
= m(↑ A) ·m(↑ B) by definition ofm.

This completes the proof that〈D∞, F∞, G∞〉 and〈F∞, F∞, G∞〉 are isomorphic as
naturalλ-structures, hence asλ-models.

(ω-Scott) Ω → ω ∼ ω (ω-Park) ω → ω ∼ ω

(ωϕ) ω ≤Σϕ (ϕ → ω) ϕ → ω ∼ ω

(ω → ϕ) ω → ϕ ∼ ϕ (I) (ϕ → ϕ) ∩ (ω → ω) ∼ ϕ

Fig. 1.Possible Axioms and Rules concerning≤Σ .

24

CCSc = {Ω, ω} Sc = {(ω-Scott)}

CCPa = {Ω, ω} Pa = {(ω-Park)}

CCCDZ = {Ω, ϕ, ω} CDZ = {(ωϕ), (ϕ → ω), (ω → ϕ)}

CCHR = {Ω, ϕ, ω} HR = {(ωϕ), (I), (ω → ϕ)}

Fig. 2.Type Theories: constants, axioms and rules.

Figure 1 lists axioms and rules used in Figure 2 to define nitps which induce filterλ-
models isomorphic to well known inverse limitλ-models. We shall denote such theories
asΣ∇, with various different names∇ corresponding to the initials of the authors who
have first considered theλ-model induced by such a theory. For each suchΣ∇ we
specify in Figure 2 the nitpΣ∇ = (CC,≤∇) by giving the set of constantsCC∇ and the
set∇ of extra axioms and rules.

As particular cases of Theorem 6 we get that Scottλ-model as defined in [Sco72] is
isomorphic to the filterλ-model induced by the nitpΣSc and Parkλ-model as defined
in [Par76] is isomorphic to the filterλ-model induced by the nitpΣPa.

The construction of Theorem 6 was first discussed in [CDCHL84]. Other relevant
references are [CDCZ87], which presents the filterλ-model induced by the nitpΣCDZ ,
[HRDR92], where the filterλ-models induced by the nitpsΣPa, ΣHR and otherλ-
models are considered, and [Ale91], [DGH93], [Plo93], where the relation between
λ-structures and nitps is studied.

Results similar to Theorem 6 can be given also for other, non-extensional, inverse
limit λ-models, obtained as solutions of domain equations involving also other functors.
For instance one can consider thelifted space of functions[→]⊥, the space ofstrict
functions[→⊥], aproduct[→]×A, or asum[→]+Awith a setA of atoms, and so on.
In all such cases one gets concise type theoretic descriptions of theλ-models obtained
as fixed points of such functors corresponding to suitable choices ofG [CDL83]. At
least the following result is worthwhile mentioning in this respect, see [CDCHL84] for
a proof. We define [BCDC83]

CCBCD = {Ω} ∪ CC∞ BCD = {(Ω-η)}

whereCC∞ is an infinite set of fresh (i.e. different fromΩ,φ, ω) constants.

Proposition 8. The filterλ-model induced byΣBCD is isomorphic to〈D, F,G〉, where
D is the initial solution of the domain equation[D → D] × P(CC∞) ≡ D, the pair
〈F,G〉 set up a Galois connection andG is the map which picks always the minimal
element in the extensionality classes of all functions.

References

[Abr91] Samson Abramsky. Domain theory in logical form.Ann. Pure Appl. Logic, 51(1-2):1–77,
1991.

25

[ADCH03] Fabio Alessi, Mariangiola Dezani-Ciancaglini, and Furio Honsell. A complete characteriza-
tion of complete intersection-type preorders.ACM TOCL, 4(1):120–147, 2003.

[Ale91] Fabio Alessi.Strutture di tipi, teoria dei domini e modelli del lambda calcolo. PhD thesis,
Torino University, 1991.

[BCDC83] Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A filter lambda model
and the completeness of type assignment.J. Symbolic Logic, 48(4):931–940 (1984), 1983.

[CDCHL84] Mario Coppo, Mariangiola Dezani-Ciancaglini, Furio Honsell, and Giuseppe Longo. Ex-
tended type structures and filter lambda models. In G.Lolli, G.Longo, and A.Marcja, editors,
Logic Colloquium ’82, pages 241–262, Amsterdam, 1984. North-Holland.

[CDCZ87] Mario Coppo, Mariangiola Dezani-Ciancaglini, and Maddalena Zacchi. Type theories, normal
forms, andD∞-lambda-models.Inform. and Comput., 72(2):85–116, 1987.

[CDL83] Mario Coppo, Mariangiola Dezani, and Giuseppe Longo. Applicative information systems.
In G.Ausiello and M.Protasi, editors,CAAP’83, Trees in Algebra and Programming, pages
35–64. Springer-Verlag, Berlin, 1983.

[DGH93] Pietro Di Gianantonio and Furio Honsell. An abstract notion of application. In Marc Bezem
and Jan F. Groote, editors,TLCA’93, Typed lambda calculi and applications, number 664 in
LNCS, pages 124–138. Springer-Verlag, 1993.

[GHK+80] Gerhard K. Gierz, Karl Heinrich Hofmann, Klaus Keimel, Lawson Jimmie D., Michael W.
Mislove, and Dana S. Scott.A Compendium of Continuous Lattices. Springer-Verlag, Berlin,
1980.

[HRDR92] Furio Honsell and Simona Ronchi Della Rocca. An approximation theorem for topological
lambda models and the topological incompleteness of lambda calculus.J. Comput. System
Sci., 45(1):49–75, 1992.

[Joh86] Peter T. Johnstone.Stone Spaces. Cambridge University Press, Cambridge, 1986. Reprint of
the 1982 edition.

[Par76] David Park. TheY-combinator in Scott’sλ-calculus models (revised version). Theory of
Computation Report 13, Department of Computer Science, University of Warick, 1976.

[Plo93] Gordon D. Plotkin. Set-theoretical and other elementary models of theλ-calculus.Theoret.
Comput. Sci., 121(1-2):351–409, 1993.

[Sco72] Dana S. Scott. Continuous lattices. In F.W.Lawvere, editor,Toposes, Algebraic Geometry and
Logic, volume 274 ofLecture Notes in Mathematics, pages 97–136, Berlin, 1972. Springer-
Verlag.

[Sco75] Dana S. Scott. Open problem. In C. Böhm, editor,Lambda Calculus and Computer Science
Theory, volume 37 ofLecture Notes in Computer Science, page 369. Springer-Verlag, Berlin,
1975.

26

Higher-Order Rewriting
via Conditional First-Order Rewriting
in the Open Calculus of Constructions

Mark-Oliver Stehr?

University of Illinois at Urbana-Champaign
The Thomas M. Siebel Center for Computer Science
Urbana, IL 61801-2302, USA
stehr@uiuc.edu

Abstract. Although higher-order rewrite systems (HRS) seem to have a first-order flavor, the direct trans-
lation into first-order rewrite systems, using e.g. explicit substitutions, is by no means trivial. In this paper,
we explore a two-stage approach, by showing how higher-order pattern rewrite systems, and in fact a
somewhat more general class, can be expressed by conditional first-order rewriting in the open calculus of
constructions (OCC), which itself has been presented and implemented using explicit substitutions. The key
feature of OCC that we exploit is that conditions are allowed to contain quantifiers and equations which
can be solved using first-order matching. The way we express HRS works in spite of the fact that structural
equality of OCC does not subsume α-conversion. Another topic that we touch upon in this paper is the use
of higher-order abstract syntax in a classical framework like OCC, because it is often used in connection
with higher-order rewriting.

1 Introduction

Higher-order rewriting in the general sense aims to generalize first-order rewriting to the
higher-order case, that is to allow patterns that contain binders and to perform rewriting
modulo a substitution calculus that correctly handles instantiation of such binders [33].
Two natural frameworks have evolved, namely combinatory reduction systems (CRS) [15]
and higher-order rewrite systems (HRS) [23], called pattern rewrite systems in [19,24], and
both formalisms have been shown to have essentially the same expressive power [32]. In the
case of higher-order rewrite systems (HRS), the underlying substitution calculus is simply
typed λ-calculus with β-reduction and restricted η-expansion.

The main objective of this paper is to explore how HRS can be expressed by conditional
first-order rewriting in the open calculus of constructions (OCC) [29]. OCC is an equational
type theory with dependent types, but its operational semantics is based on first-order
rewriting and goal-oriented proof search. Built-in higher-order features, such as β-reduction
are mapped to first-order rewriting using CINNI [29,28], a calculus of substitutions with
named and indexed variables. OCC was designed to integrate two lines of research, which
are: (1) λ-calculi with dependent types in the style of Martin-Löf’s type theory [25] and
the calculus of constructions [7], and (2) algebraic specification languages in the style of
membership equational logic [4] and rewriting logic [20] as implemented in Maude [6].

The simulation of HRS in OCC is possible thanks the operational semantics of condi-
tional computational equations in OCC, but we will see that there is still a gap between
? Support by ONR Grant N00014-02-1-0715 is gratefully acknowledged.

27

the two approaches, which is caused by the more extensional nature of our representation,
and requires assumptions about the strategy used to solve conditions. We decided to make
such assumptions syntactically explicit using the concept of matching equations [5]. There is
some related work in this direction, namely [3,10], where explicit substitutions calculi based
on de Bruijn indices are directly used to represent higher-order concepts. Our approach,
on the other hand, proceeds in two stages: HRS are represented in OCC, which provides a
notion of essentially first-order rewriting (with β-reduction, but without η- and even with-
out α-conversion), and OCC has itself been presented and implemented using CINNI, that
is explicit substitutions with names. Another closely related line of work, from which the
idea of higher-order patterns originated, is the work on higher-order logic programming, see
e.g. [21], which is based on the more powerful concept of (higher-order) unification (modulo
α-conversion), rather than matching (without α-conversion) which we use in this paper.

Last but not least, we address how the operational semantics of OCC, which supports
both equations and predicates, can be used to overcome certain semantic issues concerned
with the use of higher-order abstract syntax, which is often used together with higher-
order rewriting. In this paper we use a particular predicative instance of OCC,1 that is an
instance with a fixed predicative hierarchy of universes and a straightforward set-theoretic
and operational semantics. To illustrate the capabilities of OCC we employ a new version of
the OCC prototype that supports all the features needed in this paper (especially conditions
with quantifiers and matching equations) and will be made publicly available in the near
future.

2 Preliminaries

For a uniform way to deal with binding in the presentation of OCC we use CINNI [29,28],
a generic calculus of explicit substitutions that generalizes Lescanne’s λυ [2] and can be
instantiated to the syntax of nearly arbitrary object languages. We say that the syntax of an
object language is a CINNI syntax if there is a distinguished sort of names and all variables,
i.e. referencing occurrences of names, are of the form Xi for a name X and an index i ∈
N. The idea is that Xi refers to the X-binder that can be reached on the way towards
the outermost position after skipping i X-binders. Hence, X0 (wich we simply write as X
if there is no danger of confusion) refers to the innermost encompassing X-binder. Given
the CINNI syntax L of a language we use CINNIL to denote the instantiation of CINNI
to the syntax of L. The language of CINNIL extends L by simple substitutions [X:=M],
shift substitutions ↑X, and lift substitutions ⇑XS, and a notion of substitution application,
written S M , assuming that S ranges over substitutions and M ranges over terms. The
equations of CINNIL define the semantics of these substitutions and have been shown to be
strongly normalizing. Since substitutions can always be eliminated using these equations,
each CINNIL term is equivalent to a unique L term. We use this as a justification for
introducing the general convention to identify CINNIL terms that are equivalent by virtue
of the equational theory of CINNIL throughout the present paper. Note, however, that this
1 A slight difference to [29] is that we allow reduction under binders, a feature that is implemented in the

new version of the OCC prototype.

28

convention does not imply that α-equivalent terms are identified. In fact, a key point in the
design of OCC is that in spite of the use of names there is no need for the assumption of
α-equality to define a notion of reduction.

We use [] to denote the empty list and a comma to denote list concatenation. We
sometimes indicate the length of a list with a superscript. Therefore, Xn denotes a list of
n elements. We write Xi (or Xn

i) for the i-th element of X. We abbreviate constructions
over all elements in a list as constructions over the list itself: for example, we may write
(M Nn) for (M N1 . . . Nn), and {Xn : Un} for {Xn

1 : Un
1 } . . . {Xn

n : Un
n }.

3 The Open Calculus of Constructions

The open calculus of constructions (OCC) is a family of type theories that are concerned
with three classes of terms: elements, types and universes. Types serve as an abstraction
for collections of elements, and universes as an abstraction for collections of types.

OCC is parameterized by OCC signatures defining the universe structure. In this pa-
per we use a fixed signature Σ = (S,Sp, Prop, :,R,≤) with predicative universes Sp =
{Type, Type1, Type2, . . . }, which form a cumulative predicative hierarchy, and we add a
propositional universe at the bottom by defining S = {Prop} ∪ Sp. This means that we
have Prop : Type : Type1 : Type2 . . . , a subtyping relation Prop ≤ Type ≤ Type1 ≤
Type2 . . . (also called subuniverse relation), and (s, s′, s′′) ∈ R for all s, s′ ∈ S, where s′′ is
the least upper bound w.r.t. ≤ in Sp (not in S).2

The formal system of OCC is designed to make sense under the propositions-as-types
interpretation, where propositions are interpreted as types and proofs are interpreted as ele-
ments of these types. Since in OCC there is no a priori distinction between terms and types,
and furthermore between types and propositions, we use all these notions synonymously.

OCC has the standard constructs known from pure type systems (cf. [1,29,30]) and a
few additional ones. An OCC term can be one of the following: a universe s, a variable Xi

(CINNI syntax), a typed λ-abstraction [X : S]M , a dependent function type {X : S}T , a
type assertion M : T , an ε-construct ε A to denote an irrelevant proof of a proposition A,
a propositional equality M = N , or one of three flavors of operational propositions, written
as || A, !! A, or ?? A. Here and in following we usually use M , N , P , Q, S, T , U , V , A, and
B to range over OCC terms, and X, Y , Z to range over names. Operational propositions
can either be structural propositions designated by || (built into the term representation),
computational propositions designated by !! (used for reduction), or an assertional propo-
sitions designated by ?? (used for goal-directed proof search). Subsequently, we use τ to
range over these three flavors {||, !!, ??}.

OCC contexts are lists of declarations of the form X : S. The empty context is written
as []. Typically, we use Γ to range over OCC contexts. An OCC specification is simply an
OCC context Γ in this paper.

2 The effect of this choice of R, a standard parameter for pure type systems [1], is that for arbitrary types
S : s (in a context Γ) and T : s′ (in a context Γ, X : S) with s, s′ ∈ S we can form the dependent type
{X : S}T : s′′ (in Γ) for s′′ = s t s′. Note that Prop is not closed under formation of dependent types,
and hence it is not impredicative in this paper !

29

3.1 Model-theoretic Semantics

Since we are working with a predicative instance of OCC, it is straightforward to define
a model-theoretic semantics based on classical set theory with suitable universes [29]. A
similar semantics has been used for Martin-Löf’s type theory [8,9] and for predicative uni-
verses of the extended calculus of constructions (ECC) [17] and the calculus of inductive
constructions CIC [34].

A set-theoretic universe3 is a set that is closed under the standard constructions of
Zermelo-Fraenkel set theory with the axiom of choice (ZFC) [22,27].

In this paper we work with a fixed but arbitrary OCC frame for Σ, i.e. a family of sets
(Us)s∈S and satisfies the following conditions: For the OCC universe s = Prop we require
Us = {∅, {•}}, that is the propositional universe is simply interpreted as the Boolean set
{F,T}, with F = ∅ and T = {•} (T is inhabited by • as a proof). Additionally, for each
predicative OCC universe s ∈ Sp we require a classical set-theoretic universe Us, such that
s ≺ s′ implies Us ∈ Us′ for all OCC universes s, s′ ∈ S. We immediately observe that in
each OCC frame s : s′ implies Us ∈ Us′ , and that s ≤ s′ implies Us ⊆ Us′ for all s, s′ ∈ S,
which means that the cumulative hierarchy of OCC universes is strictly reflected in the set-
theoretic semantics, i.e. by set-theoretic membership and inclusion. We furthermore define
the set U =

⋃ {Us | s ∈ S}. In the semantics of OCC we will use the sets in U to interprete
types, and the elements in

⋃U to interprete arbitrary terms. To construct an OCC frame
for a fixed OCC signature we can use well-known axiomatic extensions of ZFC which are
sufficiently strong to interprete all OCC universes (see [29] for details).

Given an OCC frame we have to define the interpretation of OCC terms, OCC contexts,
and finally OCC judgements. To this end, we first extend the original definition of OCC
terms/context to enriched OCC terms/context by adding a new term constructor σ with⋃U as its domain so that enriched OCC terms are defined by the same syntax as OCC
terms but extended by constructs σ(α) for all α ∈ ⋃U . We usually leave σ implicit, writing
α instead of σ(α). Also, we define enriched CINNIOCC terms/contexts in complete analogy
to CINNIOCC terms/contexts, again with the general convention to identify them if they
are equivalent by virtue of CINNIOCC.

We first define a partial interpretation [[−]]. It is a partial function on closed enriched
terms which is subsequently extended to enriched contexts, and we generally assume that it
is undefined for all cases not covered by the definitions below.4 We begin with the definition
of [[−]] for closed enriched OCC terms:

[[α]] = α

[[s]] = Us

[[M N]] = [[M]]([[N]])
[[[X : S]M]] = λα ∈ [[S]] . [[[X:=α]M]] if [[S]] ∈ U
[[{X : S}T]] = Π α ∈ [[S]] . [[[X:=α]T]] if [[S]] ∈ U

3 called Z-F universe in [22] and just universe in [18]
4 We also make use of the standard convention that a set-theoretic formula can only hold and a set-theoretic

expression can only be defined if all its subexpressions are defined.

30

[[M : S]] = [[M]] if [[M]] ∈ [[S]] ∈ U
[[M = N]] = T if [[M]] = [[N]] and [[M]], [[N]] ∈ ⋃U
[[M = N]] = F if [[M]] 6= [[N]] and [[M]], [[N]] ∈ ⋃U

[[ε A]] = a unique element of [[A]] if [[A]] 6= ∅ and [[A]] ∈ U
[[τ P]] = [[P]] if [[P]] ∈ U

On the right hand side of the equations for [[[X : S]M]] and [[{X : S}T]] we have used the
set-theoretic λ-abstraction and the set-theoretic dependent function space: λx ∈ S . t(x)
denotes the total function f with domain S defined by f(x) = t(x) for all x ∈ S, and Π x ∈
S . T (x) denotes the set of all functions f with domain S with the property that f(x) ∈
T (x) for all x ∈ S.

The uniqueness requirement in the definition of ε A can be realized by choosing an
element that is minimal w.r.t. a fixed well-founded total order. The term εA is used to
denote an unspecified proof of A if A can be proved by means of the operational semantics.
Concerning the interpretation [[τ P]] of operational propositions, we can see that the set-
theoretic semantics abstracts from their operational nature which is specified by τ .

The partial interpretation [[−]] of closed enriched OCC contexts is defined by sets of
tuples of the form (α1, α2, . . . , αn) = (α1, (α2, (. . . , (αn, ())))) as follows.

[[[]]] = {()}
[[X : S, Γ]] = Σ α ∈ [[S]] . [[[X:=α]Γ]] if [[S]] ∈ U

Here we use the set-theoretic dependent sum Σ x ∈ S . T (x) to denote the set of pairs (x, y)
satisfying x ∈ S and y ∈ T (x). Given an OCC specification Γ = Zn : Sn, a model of Γ is
simply a tuple γn ∈ [[Γ]].

3.2 Formal System and Operational Semantics

The operational semantics of OCC is explained in terms of the formal system of OCC. It
is a direct generalization of the operational semantics of membership equational logic [4] as
implemented in Maude [6].

The formal system of OCC defines derivability of OCC judgements Γ ` J . For brevity
we only give an informal explanation of all judgements and their intuitive operational
meaning.

• The type inference judgement Γ ` M →: S asserts that the term M is an element of the
inferred type S in the context Γ . Operationally, Γ and M are given and S is obtained
by syntax-directed type inference and possible reduction using computational equations
modulo the structural equations of Γ .

• The typing judgement Γ ` M : S asserts that M is an element of type S in the context
Γ . Operationally, Γ , M and S are given and verifying Γ ` M : S amounts to type
checking. Type checking is always reduced to type inference and the verification of an
assertional subtyping judgement.

31

• The structural equality judgement Γ ` || (M = N) is used to express that M and N are
considered to be structurally equal elements in the context Γ . Operationally, structural
equality is realized by a suitable term representation so that structurally equal terms
cannot be distinguished when they participate in computations.

• The computational equality judgement Γ ` !! (M = N) is the judgement that defines
the notion of reduction for the simplification of terms. The judgement states that the
element M can be reduced to the element N in the context Γ . Operationally, Γ and
M are given and N is the result of reducing M using the computational equations in
Γ modulo the structural equations in Γ . Computational equality subsumes β-reduction
(CINNI-based) and as an extension of [29] we add rules for reduction under binders.

• The assertional judgement Γ ` ?? A states that A is provable by means of the operational
semantics in the context Γ . Operationally, Γ and A are given and the judgement is
verified by a combination of reduction using the computational equations and exhaustive
goal-oriented search using the assertional propositions in Γ . Both processes take place
modulo the structural equations in Γ . It is important to point out that assertional
equality subsumes α-conversion, but structural and computational equality do not.

• The assertional equality judgement Γ ` ?? (M = N) states that M and N are assertion-
ally equal in Γ , a notion that treats equality as a predicate and subsumes the structural
and computational equality judgements. Operationally, Γ , M and N are given and the
judgement is verified like other assertional judgements in a goal-oriented fashion.

• The assertional subtyping judgement Γ ` ?? (S ≤ T) subsumes the assertional equality
judgement and states that S is a subtype of T in Γ as a consequence of the cumulativity
of the universe hierarchy. Operationally, Γ , S and T are given and the judgement is
verified like other assertional judgements in a goal-oriented fashion.

All these judgements are interdependent. For instance, computational equations can
have conditions giving rise to assertional judgements. Conversely, solving assertional judge-
ments may apart from exhaustive proof search involve simplification using computational
equations. Both computational equations and assertional propositions can be universally
quantified, and like in higher-order logic programming [21] their conditions can again in-
volve universal quantifiers. A universally quantified condition {X : A}B gives rise to a goal
Γ ` ??{X : A}B. To solve such goals, OCC has an inference rule (corresponding the the
introduction rule for universal quantifiers) which reduces the goal Γ ` ??{X : A}B to Γ, X :
A ` ??B, that is the subject B needs to be proved for a symbolic X : A.

Conditions can contain other logical operators that can be specified inside OCC, such
as conjunction or existential quantifiers. We assume that this is done in an initial context
that we do not make explicit in the reminder of this paper. It should contain at least the
following logical constants, operators, and introduction rules:

False : Prop .

True : Prop .

True_intro : ?? True .

Not : Prop -> Prop .

Not_intro : {A : Prop}(A -> False) -> (Not A) .

32

And : Prop -> Prop -> Prop .

And_intro : ?? {A,B : Prop} A -> B -> (And A B) .

Ex : {T : Type} (T -> Prop) -> Prop .

Ex_intro : ?? {T : Type}{x : T}{P : (T -> Prop)} (P x) -> (Ex T P) .

To cover a wide range of implementations, the formal system of OCC leaves open how
operational propositions are instantiated. Typically, this will be done by matching, but
variables that cannot be determined in this way are instantiated by metavariables with the
hope that they can be solved later.

The formal system has been shown to be sound w.r.t. to the classical set-theoretic se-
mantics given earlier [29], a result that immediately implies consistency of the formal system
as a logic, i.e. under the propositions-as-types interpretation. To formulate the soundness
result, we first define validity of OCC judgements, based on the partial interpretation [[−]]
of enriched OCC terms. For arbitrary set-theoretic expressions α, we use the abbreviation
↓α to express that α is defined. We assume that the validity predicate is false in all cases
not covered by the following definition.

|= M →: S if [[M]] ∈ [[S]]
|= M : S if ↓[[S]] implies [[M]] ∈ [[S]]
|= ?? A if ↓[[A]] implies [[A]] 6= ∅

|= ?? (M = N) if (↓[[M]] and ↓[[N]]) implies [[M]] = [[N]]
|= ?? (S ≤ T) if (↓[[S]] and ↓[[T]]) implies [[S]] ⊆ [[T]]
|= || (M = N) if (↓[[M]] or ↓[[N]]) implies [[M]] = [[N]]
|= !! (M = N) if ↓[[M]] implies [[M]] = [[N]]

Γ |= J if ↓[[Γ]] implies |= [Zn:=γn] J for all γn ∈ [[Γ]]

where Γ is of the form Zn : Sn.

Theorem 1 (Soundness).
For each derivable OCC judgement Γ ` J we have Γ |= J .

As a simple corollary we obtain consistency of the formal system, i.e., that we cannot
prove the absurd proposition ⊥s = {X : s}X for any universe s in the empty context.

Corollary 1 (Consistency). The formal system of OCC is consistent,
i.e., [] ` M : ⊥s is not derivable for any M , s.

By fixing the signature at the beginning of this section, we have introduced a particular
instance of OCC. The full version of OCC [29] includes (nonequational) rewrite judgements
and generalizes rewriting logic [20], a logic for the specification of distributed systems. We
have omitted these judgements in our presentation of OCC, because we focus on purely
equational rewriting in this paper.

33

4 Higher-Order Rewriting via First Order-Rewriting

A simple example of higher-order rewriting that can be treated entirely as first order rewrit-
ing is the following. We introduce a parameterized type of finite multisets with three con-
structors and the standard structural axioms of a commutative monoid. For better read-
ability, we write {T | Type} instead of {T : Type}, a way of expressing that this argument
is implicit and should be inferred.

fms : Type -> Type .

empty : {T | Type} (fms T) .

single : {T | Type} T -> (fms T) .

union : {T | Type} (fms T) * (fms T) -> (fms T) .

assoc : || {T : Type}{l1,l2,l3 : (fms T)}

(union (l1,(union (l2,l3)))) = (union ((union (l1,l2)),l3)) .

comm : || {T : Type}{l1,l2 : (fms T)}

(union (l1,l2)) = (union (l2,l1)) .

id : || {T : Type}{l : (fms T)}

(union (l,empty)) = l .

Now the higher-order function map, which applies a function to each element of a given
multiset, can be naturally specified using computational equations:

map : {U,V | Type} (U -> V) -> (fms U) ->(fms V) .

map-empty : !! {U,V : Type}{f : (U -> V)}

(map f empty) = empty .

map-cons : !! {U,V : Type}{f : (U -> V)}{x : U}{l : (fms U)}

(map f (union (l,(single x)))) = (union ((map f l),(single (f x)))) .

With red the OCC prototype reduces the given term in the current context according to
the computational equality judgement until it cannot be further reduced:

red (map ([x : nat] (suc x))

(union ((single 0),union((single 1),(single 2))))) .

result: (union ((single 1),(single 2),(single 3)))

Although these features are not the main topic of this paper, this examples also shows how
OCC allows us to express polymorphism and rewriting modulo structural axioms.

4.1 Conditional Higher-Order Rewriting

An example using the expressive power of conditional higher-order rewriting is the following
function select which selects elements from a multiset satisfying a certain predicate, i.e.
an element of type (T -> Prop).

select : {T | Type} (T -> Prop) -> (fms T) -> (fms T) .

select-empty : !! {T : Type}{P : (T -> Prop)}

34

(select P empty) = empty .

select-single-1 : !! {T : Type}{P : (T -> Prop)}{x : T}{l : (fms T)}

(P x) -> (select P (union (l,(single x)))) =

(union ((select P l),(single x))) .

select-single-2 : !! {T : Type}{P : (T -> Prop)}{x : T}{l : (fms T)}

(Not (P x)) -> (select P (union (l,(single x)))) =

(select P l) .

Note how the predicate P is passed as an argument and used in the condition. The following
execution shows that β-reduction can be involved in solving conditions, apart from the
exhaustive goal-oriented search, which takes into account the assertional inequality axiom.

A : Type . a : A . b : A .

not-eq-a-b : ?? (Not (a = b)) .

red (select ([x : A](x = b)) (union ((union ((single a),(single b))),(single a)))) .

result: (single b)

4.2 Dealing with Binders in Patterns

Since computational equations do not operate modulo α-equality, binders in patterns, like
in the following equation, are useless. For instance, the following naive representation of
a higher-order rewrite rule in OCC would take the name of the bound variable on the
left-hand side seriously:

map-id : !! {T : Type}{l : (fms T)}(map ([x : T] x) l) = l .

red (map ([x : nat] x) empty) .

result: empty

red (map ([y : nat] y) empty) .

result: (map ([y : nat] y) empty)

Fortunately, we can express this equation in a semantically equivalent way (in the model-
theoretic sense) by using the power of universally quantified conditions:

map-id : !! {T : Type}{id : T -> T}{l : (fms T)}

({X : T} ((id X) = X)) -> (map id l) = l .

l : (fms nat) .

red (map ([x : nat] x) l) .

result: l

The universal quantifier in the condition operationally amounts to a fresh variable X that
can be used to symbolically verify (id X) = X, in this case using the built-in β-reduction.

35

4.3 Rewriting Higher-Order Abstract Syntax

Higher-order abstract syntax [26] has been proposed as a systematic approach to represent
the abstract syntax of languages with binding constructs in logical frameworks such as LF
[12]. The main idea is to represent the binding constructs of the object language using
binding constructs of the metalanguage, i.e. to aim at a shallow embedding. The advantage
of using higher-order abstract syntax is that α-equality is inherited from the metalanguage
and substitution corresponds to β-reduction.

In the following we use terms of the untyped λ-calculus with a single constant as an
example. Using the original approach [26] a type of terms would be specified as follows:

term : Type .

const : term .

app : term -> term -> term .

abs : (term -> term) -> term .

For instance, the untyped λ-term λx.λy.x would be represented as

(abs ([x : term] (abs ([y : term] x))))

in the context of this specification.
To give a first example how this representation can be used operationally, we specify an

equality predicate by the following conditional assertional axioms:

eq : term -> term -> Prop .

eq_0 : ?? {M : term} (M = M) -> (eq M M) .

eq_1 : ?? {M,N,M’,N’ : term} (eq M M’) -> (eq N N’) -> (eq (app M N) (app M’ N’)) .

eq_2 : ?? {B,B’ : term -> term} ({M : term}(eq (B M) (B’ M))) -> (eq (abs B) (abs B’)) .

With ver the OCC prototype tries to solve the assertional judgement corresponding to the
given proposition in the current context:

ver (eq (abs ([y : term] y)) (abs ([x : term] x))) .

all goals solved

To accommodate for the equational nature of the λ-calculus, the specification can be
extended by a computational equation for β-reduction and by an assertional equality for
η-conversion:

beta : !! {B : (term -> term)}{M : term} (app (abs B) M) = (B M) .

red (app (abs ([x : term] x)) (abs ([x : term] x))) .

result: (abs ([x : term] x))

eta : ?? {B : (term -> term)}{F : term} ({X : term} ((app F X) = (B X))) -> (abs B) = F .

ver ((abs ([x : term] (app const x))) = const) .

all goals solved

36

Alternatively, we could specify η-conversion using a computational equation rather then
using an assertional equality:

eta : !! {B : (term -> term)}{F : term} ({X : term} ((app F X) = (B X))) -> (abs B) = F .

red (abs ([x : term] (app const x))) .

result: const

red (abs ([x : term] (app x x))) .

result: (abs ([x : term] ((app x) x)))

Notice that the conclusion (abs B) = F of eta has a variable F on the right which does not
appear on the left hand side of the conclusion. Operationally, F can be determined by the
condition (app F X) = (B X) using pattern matching, i.e. by reducing (B X) and matching
against the pattern (app F X). In general, solving goals with metavariables variables (like
F in this case) may require unification (or more generally narrowing), but for all purposes
of this paper matching is sufficient. Note also that nothing happened in the last reduction,
because it would require binding F to X which is not in the scope of F.

4.4 Rewriting with Nested Binders

The binding structure of patterns is not always as simple as in the above example of λ-
calculus. Consider the following fragment of classical higher-order logic:

implies : bool -> bool -> bool .

all : (bool -> bool) -> bool .

ex : (bool -> bool) -> bool .

We want to formulate the higher-order rewrite rule, naively represented in OCC as
eq : !! {P : bool -> bool -> bool}

(implies (ex [X : bool] (all [Y : bool] (P X Y)))

(all [Y : bool] (ex [X : bool] (P X Y)))) = true .

in a way that captures its actual meaning in HRS. Obviously, we need to get rid of all binders
in the pattern on the left hand side. A naive attempt, which introduces local variables X and
Y using quantifiers in the condition and decomposes the formula using matching equations,
might look like this:

eq : !! {L,L’,R,R’ : (bool -> bool)}

({X,Y : bool} (And (And ((all L’) = (L X))

((ex R’) = (R Y)))

((L’ b) = (R’ X)))) ->

(implies (ex L) (all R)) = true .

red (implies (ex [x : bool] (all ([y : bool] true)))

(all [y : bool] (ex ([x : bool] true)))) .

result: true

red (implies (ex [x : bool] (all ([y : bool] x)))

(all [y : bool] (ex ([x : bool] x)))) .

result: ((implies (ex ([x : bool] (all ([y : bool] x)))))

(all ([y : bool] (ex ([x : bool] x)))))

37

Unfortunately, the second reduction does not give the desired result. The core of the problem
is that the only potential solution for L’ in (all L’) = (L X) requires L’ to contain X,
but this is impossible, because L’ is outside of the scope in which X is known. The correct
representation needs to allow the dependency of L’ on X, which can be achieved using an
existential quantifier inside the condition:

eq : !! {L,R : (bool -> bool)}

({X,Y : bool}

(Ex (bool -> bool) [L’ : (bool -> bool)]

(Ex (bool -> bool) [R’ : (bool -> bool)]

(And (And ((all L’) = (L X))

((ex R’) = (R Y)))

((L’ Y) = (R’ X)))))) ->

(implies (ex L) (all R)) = true .

red (implies (ex [x : bool] (all ([y : bool] true)))

(all [y : bool] (ex ([x : bool] true)))) .

result: true

red (implies (ex [x : bool] (all ([y : bool] x)))

(all [y : bool] (ex ([x : bool] x)))) .

result: true

4.5 Higher-Order Rewrite Systems

Generalizing the ad hoc approach of the previous section, we now define a translation from
HRS into OCC. Since HRS are based on simply typed λ-calculus, we assume in the following
that all term variables are restricted to terms or types (depending on the context) of the
simply typed λ-calculus, which both constitute terms in OCC.

A higher-order rewrite system (HRS) is a set of rewrite rule of the form LHS → RHS,
where LHS and RHS are long βη-normal forms, and LHS is a higher order-pattern,
and not a free variable. A higher-order pattern is a term in β-normal form satisfying the
condition that in each free variable application, i.e. in a subterm term (P M1 . . .Mn) with
P free in LHS, all M1 . . . , Mn are η-equivalent to distinct bound variables of LHS. For
simplicity we assume that all bound variables are distinct. We write M →R M ′ to express
that M and M ′ are terms in βη-normal form and there is a rule LHS → RHS in R, a
position p in M , and a substitution θ such that M/p = θ(LHS), M ′ = RHS[θ(RHS)]p.
Here, substitution application is defined by θ(N) = (([Xn : Sn]N)Pn) lη

β for a substitution
θ mapping typed variables Xn : Sn to terms Pn. For further details we refer to [24].

We start with the naive representation of a HRS in OCC, i.e. a context where each HRS
rewrite rule LHS → RHS is represented as a universally quantified unconditional equation
of the form

eq : !! {Zz : W z} LHS = RHS,

where LHS and RHS are of the same base type, the free variables of RHS are a subset of
the free variables Zz (which have types W z) of LHS, and LHS is a higher-order pattern.

38

Obviously, the requirement that LHS is of base type implies that LHS cannot be a
λ-abstraction [X : S]M itself. Furthermore, by the definition of higher-order patterns a free
variable application can occur only under a binder.

The translation proceeds in three steps. The first step brings the HRS into left-linear
form, and the remaining two steps successively eliminate binders in patterns. Each equation
of the naive representation is translated into a conditional equation of the form

eq : !! {Zz : W z} {P p : Up} C → D → LHS = RHS,

where the condition C is of the form {Xx : Sx} ∃[Qq : V q] (C1 ∧ C2 ∧ . . . ∧ Cc) with
C1, . . . , Cc being equations (used to express matching constraints), and D is of the form
(D1 ∧ D2 ∧ . . . ∧ Dd) with D1, . . . , Dd being possibly universally quantified equations
(used to express left-linearity constraints). The order of quantifiers is not essential, except
that in the condition C the existential quantifiers should be in the scope of the universal
quantifiers.

1. As long as there is an free variable P occurring more than once in LHS do the following:

• Choose a fresh variable P ′.
• Replace the second leftmost P in LHS by P ′.
• Add a universally quantified condition {Y y : T y}(P Y y) = (P ′ Y y),

assuming that P has the type T y → T , with T being a base type.

2. As long as there is a λ-abstraction in LHS do the following:

• Choose a fresh variable P .
• Replace the leftmost subterm [X : S]M in LHS by P .
• Add an outer universal quantifier {P : U}, with U being the type of [X : S]M .
• Add an equation [X : S]M = P to the condition.

3. As long as the condition contains an equation PAT = N such that PAT contains a
λ-abstraction choose the leftmost such equation and do the following:

(a) If PAT is a λ-abstraction then:
• Replace the leftmost condition of the form [X : S]M = N by M = (N X).
• Add an outer universal quantifier {X : S} to the condition.

(b) If PAT contains a λ-abstraction as a proper subterm then:
• Choose a fresh variable Q.
• Replace the leftmost subterm [X : S]M in PAT by Q.
• Add an inner existential quantifier ∃[Q : V] to the condition,

with V being the type of [X : S]M .
• Add an equation [X : S]M = Q to the condition.

Let us apply this translation to our previous example. For brevity, we sometimes combine
two steps in one. Note that the first step makes the rule left-linear:

39

eq : !! {P : bool -> bool -> bool}

(implies (ex [X : bool] (all [Y : bool] (P X Y)))

(all [Y : bool] (ex [X : bool] (P X Y)))) = true .

eq : !! {P,P’ : bool -> bool -> bool}

({X,Y : bool} (P X Y) = (P’ X Y)) ->

(implies (ex [X : bool] (all [Y : bool] (P X Y)))

(all [Y : bool] (ex [X : bool] (P’ X Y)))) = true .

eq : !! {P,P’ : bool -> bool -> bool}{L,R : bool ->bool}

(And (([X : bool] (all [Y : bool] (P X Y))) = L)

(([Y : bool] (ex [X : bool] (P’ X Y))) = R)) ->

({X,Y : bool} (P X Y) = (P’ X Y)) ->

(implies (ex L) (all R)) = true .

eq : !! {P,P’ : bool -> bool -> bool}{L,R : bool ->bool}

({X : bool}{Y : bool}

(And ((all [Y : bool] (P X Y)) = (L X))

((ex [X : bool] (P’ X Y)) = (R Y)))) ->

({X,Y : bool} (P X Y) = (P’ X Y)) ->

(implies (ex L) (all R)) = true .

eq : !! {P,P’ : bool -> bool -> bool}{L,R : bool -> bool}

({X : bool}{Y : bool}

(Ex (bool -> bool) [L’ : bool -> bool]

(Ex (bool -> bool) [R’ : bool -> bool]

(And (And ((all L’) = (L X))

((ex R’) = (R Y)))

(And (([Y : bool] (P X Y)) = L’)

(([X : bool] (P’ X Y)) = R’)))))) ->

({X,Y : bool} (P X Y) = (P’ X Y)) ->

(implies (ex L) (all R)) = true .

eq : !! {P,P’ : bool -> bool -> bool}{L,R : bool -> bool}

({X : bool}{Y : bool}

(Ex (bool -> bool) [L’ : bool -> bool]

(Ex (bool -> bool) [R’ : bool -> bool]

(And (And ((all L’) = (L X))

((ex R’) = (R Y)))

(And ((P X Y) = (L’ Y))

((P’ X Y) = (R’ X))))))) ->

({X,Y : bool} (P X Y) = (P’ X Y)) ->

(implies (ex L) (all R)) = true .

The last equation is operationally equivalent to our running ad hoc solution of Section 4.4,
but it is more general, because it would also allow the use of P on the right hand side. In
the goals generated by the last two conditions (P X Y) = (L’ Y) and (P’ X Y) = (R’ X)
the variables P and P’ become metavariables, and they have trivial solutions, namely
[X : bool][X : bool] (L’ Y) and [X : bool][X : bool] (R’ X). So in cases like this,
where the pattern is a free variable application, there is not even a need for matching.

40

The general way to express this is to perform matching modulo β0, a trivial form of
β-conversion generated by ([X : T]M)X = M . The more general idea of unification modulo
β0 to deal with higher-order patterns is well-studied [21], but here we use β0 in an even more
restricted sense that does not admit α-conversion. In general, β0-conversion is needed to
solve matching equations of the form (P X1 . . . Xn) := M with a free variable application
as the pattern.5 The solution in this case is simply P = [Xx : Sx]M for suitable types Sx.
Because of the trivial nature of β0 we consider it as a structural equation for the reminder
of this paper, that is we identify β0-equivalent terms.

Another example that illustrates the translation is the following:

f : ((nat -> nat) -> nat) -> nat .

eq : !! {F : (nat -> nat) -> nat}

(f ([X : nat -> nat] (F ([Z : nat] (X Z))))) = (F ([Y : nat] Y)) .

eq : !! {F : (nat -> nat) -> nat}{L : ((nat -> nat) -> nat)}

(([X : nat -> nat] (F ([Z : nat] (X Z)))) = L) ->

(f L) = (F ([Y : nat] Y)) .

eq : !! {F : (nat -> nat) -> nat}{L : ((nat -> nat) -> nat)}

({X : nat -> nat} (((F ([Z : nat] (X Z)))) = (L X))) ->

(f L) = (F ([Y : nat] Y)) .

eq : !! {F : (nat -> nat) -> nat}{L : ((nat -> nat) -> nat)}

({X : nat -> nat} (Ex (nat -> nat) [L’ : nat -> nat]

(And (((F L’)) = (L X))

(([Z : nat] (X Z)) = L’)))) ->

(f L) = (F ([Y : nat] Y)) .

eq : !! {F : (nat -> nat) -> nat}{L : ((nat -> nat) -> nat)}

({X : nat -> nat}{Z : nat} (Ex (nat -> nat) [L’ : nat -> nat]

(And (((F L’)) = (L X))

((X Z) = (L’ Z))))) ->

(f L) = (F ([Y : nat] Y)) .

F : (nat -> nat) -> nat .

red (f ([x : nat -> nat] (F ([z : nat] (x z))))) .

result: (F ([Y : nat] Y))

Note that the goal generated by the last condition (X Z) = (L’ Z) will not contain any
metavariables.

The next theorem makes precise the statement that HRS can be simulated in OCC. Since
HRS require us to go to long βη-normal form (which may require the traditional implicit
use of α-conversion) before applying a rule,6 and OCC does not have α- and η-conversion
5 In the goals generated by matching equations P is a metavariable possibly subject to certain substitutions,

but due to the structure of our representation of HRS in OCC all dependencies are explicit in X1, . . . , Xn

so that these substitutions can be eliminated.
6 To be precise we should distinguish between two notions of β-reduction: HRS uses the standard one which

allows α-conversion, and OCC uses CINNI and hence preserves names [30].

41

(at the structural and computational level), we allow for some extra αη-conversion after the
simulation step. We do not explicitly mention the trivial β0-conversion, because according
to our convention it is always part of the structural equality of OCC.

Theorem 2. Let R be an arbitrary HRS and ΓR the OCC context obtained by our trans-
lation of R, and let M and M ′ be terms in the simply typed λ-calculus. Then

M lη
β →R M ′ ⇒ ∃M ′′ . ΓR ` !!(M =R M ′′) in OCC ∧ M ′′ ≡αη M ′,

where ΓR ` !!(M =R M ′) means ΓR ` !!(M = M ′) with the restriction that (disregarding
goals arising from conditions) it is generated by an application of one of the computational
equations in ΓR, preceeded or followed by any number of OCC β-reduction steps.

Proof Sketch. Consider an extension OCCαη of OCC with structural α- and η-equality.
Let Γ1 be the naive representation of R in OCC, and let Γ1, Γ2, . . . , Γn=ΓR be the sequence
of OCC contexts obtained by our translation. Since β0-equivalent terms are identified we
can show that

M lη
β →R M ′ ⇒ Γ1 ` !!(M =R M ′) in OCCαη.

Furthermore, it can be easily verified that each of the steps of our translation, namely
(1), (2), (3a), and (3b) preserves computational equality in the sense that for all i, i+1 ∈
{1, . . . , n} we have

Γi ` !!(M =R M ′) in OCCαη ⇒ Γi+1 ` !!(M =R M ′) in OCCαη.

As a consequence we obtain

M lη
β →R M ′ ⇒ ΓR ` !!(M =R M ′) in OCCαη.

However, in the final result ΓR of the translation we do not make use of binders on the left
hand side of the computational equations so that, disregarding the process of solving con-
ditions, in the derivation of ΓR ` !!(M =R M ′) all α- and η-conversions can be postponed.
Furthermore, for each solution of a condition of ΓR in OCCαη there is an αη-equivalent
solution that does not require structural α- or η-conversion and hence is a solution in OCC.
Therefore we have

ΓR ` !!(M =R M ′) in OCCαη ⇒ ∃M ′′ . ΓR ` !!(M =R M ′′) in OCC and M ′′ ≡αη M ′.

4.6 Matching Equations

Given the previous theorem an obvious question is whether each application of a compu-
tational equation in the OCC representation to a simply typed λ-term (in long βη-normal
form) can be simulated by the original HRS in some reasonable sense, but it can be easily
shown that this is not the case. Consider the following example:

T : Type . a, b, c : T .

h : (T -> T) -> T .

eq-1 : !! a = b .

eq-2 : !! (h ([x : T] a)) = c .

42

In a HRS with these two rules the term (h ([x : T] b)) does not reduce, but if we
apply our translation, which only affects eq-2, a reduction is possible:

eq-2 : !! {P : T -> T} ({X : T} (a = (P X))) -> (h P) = c .

red (h ([x : T] b)) .

result: c

This example might suggest that it would be sufficient to assume that the left hand sides
of all equations of the HRS are normalized w.r.t. the HRS itself, but a slightly modified
example shows that this is not sufficient:

f : T -> T . g : T -> T .

eq-1 : !! (f a) = (g b) .

eq-2 : !! {Z : T} (h ([x : T] (f Z))) = c .

The term (h ([x : T] (g b))) is not reducible in this HRS, but applying our trans-
lation replaces eq-2 by the following equation, which can be potentially (according to the
formal system of OCC) instantiated with Z bound to a, so that (h ([x : T] (g b)))
becomes reducible.

eq-2 : !! {P : T -> T} {Z : T} ({X : T} (f Z) = (P X)) -> (h P) = c .

For applications in theorem proving it seems actually beneficial to have a less constrained
reduction relation as long as it is not the source of nontermination and consistent with the
model-theoretic semantics, which in some sense serves as an upper bound for computational
equality and operational propositions in general. For instance, in an OCC based proof
assistant the theorem (h ([x : T] b)) = c can be automatically proved in our first OCC
representation of out first counterexample but not in the original HRS, although it obviously
holds. On the other hand, to transfer termination arguments from HRS to their OCC
representation we need some form of simulation in the opposite direction. Unfortunately,
there does not seem to be an easy way to strengthen the theorem without restrictions on
the strategy used to solve conditions. For instance, in the second conterexample, solving the
condition by matching cannot result in Z being bound to a, but the use of narrowing would
allow this solution.

Since such restrictions are not desirable for all purposes we introduce the concept of a
matching equation PAT := M , which is simply an ordinary equality PAT = M , but with
the operational restriction that reduction is never applied on its left hand side (except for
trivial β0-steps that we included in our structural equality).

Now we redefine our translation such that each equation PAT = M introduced in the
condition by the steps (2) or (3) becomes a matching equation PAT := M . The following
theorem states: (1) that our previous result remains valid, and (2) that a simulation in the
opposite direction is possible as well. Regarding (2), it is noteworthy that a single step in
OCC can give rise to several steps in HRS, because an arbitrary number of reductions can
be hidden in the process of solving conditions. Furthermore, we need to be more relaxed by
allowing extra β-conversion steps after the HRS reduction, because HRS force us to go to
long βη-normal form before a rule can be applied.

43

Theorem 3. Let R be an arbitrary HRS and ΓR the OCC context obtained by our (rede-
fined) translation of R, and let M and M ′ be terms in the simply typed λ-calculus. Then

1. M lη
β →R M ′ ⇒ ∃M ′′ . ΓR ` !!(M =R M ′′) in OCC ∧ M ′′ ≡αη M ′, and

2. ΓR ` !!(M =R M ′) in OCC ⇒ ∃M ′′ . M lη
β →+

R M ′′ ∧ M ′′ ≡αβη M ′.

Proof Sketch. The proof of (1) is the same as the proof of the previous theorem, except
that the implication

Γi ` !!(M =R M ′) in OCCαη ⇒ Γi+1 ` !!(M =R M ′) in OCCαη.

needs to be reverified for the three steps of our translation, taking into account that reduc-
tion is not possible on the left hand side of goals corresponding to matching equations.

The proof of (2) essentially reverses the reasoning of (1). Obviously,

ΓR ` !!(M =R M ′) in OCC ⇒ ΓR ` !!(M =R M ′) in OCCαη.

Furthermore, it can be easily verified that each of the steps of our translation, namely
(1), (2), (3a), and (3b) preserves the computational equality in the sense that for all i, i−1 ∈
{n, . . . , 1} we have

Γi ` !!(M =R M ′) in OCCαη ⇒ Γi−1 ` !!(M =+
R M ′) in OCCαη.

The use of =+
R instead of =R on the right hand side is needed only for the steps (1) and

(2), because terms that appear in the condition are moved to the left hand side of the
computational equation so that computations required to solve the condition need to be
performed before the equation is applied. Furthermore, it is easy to see that

Γ1 ` !!(M =R M ′) in OCCαη ⇒ ∃M ′′ . M lη
β →R M ′′ ∧ M ′′ ≡αβη M ′,

and by postponing α- and η-conversion we obtain

Γ1 ` !!(M =+
R M ′) in OCCαη ⇒ ∃M ′′ . M lη

β →+
R M ′′ ∧ M ′′ ≡αβη M ′.

Although this theorem does not require confluence or termination properties it should
be clear that each implementation of OCC assumes (equational) confluence and termination
for terms involved in actual computations. Recall, however, that the consistency of OCC is
established completely independent of such assumptions.

4.7 Beyond Higher-Order Patterns

Last but not least, we show that our translation cannot only be applied to HRS, but actually
covers a more general class. The following equation does not fit into the restricted form of
HRS or CRS, because H is applied to a pattern which is not simply a variable. As pointed
out in e.g. [16] it might be desirable to extend HRS/CRS to include rules like this.

44

f : (nat -> nat) -> nat . g : (nat -> nat) -> nat .

eq : !! {H : nat -> nat}

(f ([X : nat] (H (suc X)))) = (g ([X : nat] (H X))) .

eq : !! {H : nat -> nat}{L : nat -> nat}

([X : nat] (H (suc X))) := L ->

(f L) = (g ([X : nat] (H X))) .

eq : !! {H : nat -> nat}{L : nat -> nat}

({X : nat} (H (suc X)) := (L X)) ->

(f L) = (g ([X : nat] (H X))) .

red (f ([x : nat] (suc (suc x)))) .

result: (g ([X : nat] (suc X)))

5 Higher-Order Abstract Syntax in a Classical Setting

We cannot consider the higher-order abstract syntax specification of Section 4.3 as an
inductive definition, because of the negative occurrence of term in the argument type of
abs. Another well-known problem with the specification above is that the assumption of
a standard elimination principle would allows us to construct elements in term that do
not represent terms in the λ-calculus, and the same problem occurs with the induction
principle if we assume the axiom of unique choice [13]. An even more serious problem with
that specification appears if we need β-equality for the represented λ-terms. Our addition
of β-equality as an axiom requires abs to be injective, which is clearly impossible, or more
precisely the specification does not have a model under a classical set-theoretic semantics.

In view of these difficulties it is not immediately clear how the idea of higher-order
abstract syntax could be fruitfully used under a classical set-theoretic semantics. Obviously
the full set-theoretic function space (term -> term), which is used as a domain of abs,
contains functions that do not represent the body of a λ-abstraction. If we wish to maintain
the computational benefits of higher-order abstract syntax, a possible solution is to refine
the previous specification and to be precise about what elements of term and term -> term
are suitable representatives of terms and abstraction bodies. To capture this information
we specify two predicates term? and body? as follows. The main idea behind the last axiom
below is that a function in term -> term represents a body if it is uniform in the sense
that it respects each conceivable (partial) congruence eq.

term?_ax_1 : ?? (term? const) .

term?_ax_2 : ?? {M,N : term} (term? M) -> (term? N) -> (term? (app M N)) .

term?_ax_3 : ?? {B : term -> term} (body? B) -> (term? (abs B)) .

body?_eq : ?? {B : term -> term}

({X,Y : term}{eq : term -> term -> Prop}

(?? (eq const const)) ->

(?? {M,N,M’,N’ : term}

(eq M M’) -> (eq N N’) ->

(eq (app M N) (app M’ N’))) ->

45

(?? {B,B’ : term -> term}

({X,Y : term}(eq X Y) -> (eq (B X) (B’ Y))) ->

(eq (abs B) (abs B’))) ->

(?? (eq X Y)) -> (eq (B X) (B Y))) ->

(body? B) .

ver (term? (abs ([x : term] (abs ([y : term] x))))) .

all goals solved

Notice that the condition ({X,Y : term}{eq : term -> term -> Prop} ...) of the op-
erational assertion body?_ax has a universal quantifier which operationally amounts to the
generation of fresh variables X,Y, and eq, for which the condition ... is verified.

The only change w.r.t. to our previous representation of β- and η-equality is the need for
a few extra conditions. For instance, the computational equation for β-reduction becomes:

beta : !! {B : (term -> term)}{M : term} (body? B) -> (term? M) ->

((app (abs B) M) := (B M)) .

red (app (abs ([x : term] x)) (abs ([x : term] x))) .

result: (abs ([x : term] x))

Initial models of this specification can be constructed, e.g. using an approach similar to
[11] based on de Bruijn indices.

6 Conclusion

In all our examples the use of conditional equations allows us to avoid binding constructs in
patterns. The patterns that we use on the left hand side of computational and assertional
equations are essentially first-order, meaning that they constitute a very simple form of
higher-order patterns that for all nontrivial cases can be solved by first-order matching.
It seems that this rather modest approach constitutes an interesting intermediate stage
between purely first-order rewriting and the notationally more convenient higher-order ap-
proaches to rewriting. We have shown that the most commonly used HRS can be simulated
in OCC, and a simulation in the opposite direction is possible under some natural restric-
tion on the strategy that is employed to solve conditions. This restriction corresponds to
the concept of matching equations, which can be found in the recent version of Maude [5]
and have also been implemented in the new version of the OCC prototype. We furthermore
found that our translation applies to a class that is somewhat more general than HRS, but
the precise characterization of this class is left as future work.

We have also illustrated that rewriting in OCC is more general for various other reasons,
the increased generality of the type system, the possible use of structural equations, the use
of conditions giving rise to assertional propositions with an operational semantics based on
goal-oriented proof search and equational simplification. The latter has been used to deal
with higher-order abstract syntax in a classical framework in a way that seems to be beyond
the capabilities of HRS.

46

The underlying assumption of this paper is that HRS are interpreted as the specifica-
tion of an equational theory, similar to the spirit of higher-order algebraic specifications
[14]. A less abstract interpretation of HRS is to consider them as the specification of a
transition system, similar to the rewrite rules of rewriting logic [20]. Some recent work on
representing π-calculus using higher-order abstract syntax [31] suggests that this interpre-
tation might be useful for symbolic analysis of systems at a level more abstract (because
it does not distinguish α-equivalent states) than a naive first-order representation. In OCC
this would amount to using computational rewrite axioms rather than computational equa-
tions. Furthermore, in this case the higher-order rewrite rules cannot impact the solutions
of equational conditions, which should make the correspondence to HRS even easier to
establish.7

References

1. H. P. Barendregt. Lambda-calculi with types. In S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum,
editors, Background: Computational Structures, volume 2 of Handbook of Logic in Computer Science.
Claredon Press, Oxford, 1992.

2. Z. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. λυ, a calculus of explicit substitutions which
preserves strong normalisation. Journal of Functional Programming, 6(5):699–722, September 1996.

3. E. Bonelli, D. Kesner, and A. Rı́os. From higher-order to first-order rewriting. In Proceedings of
the 12th International Conference on Rewriting Techniques and Applications (RTA’01), Utrecht, The
Netherlands, June 2001, volume 2051 of LNCS, pages 47–62. Springer-Verlag, 2001.

4. A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in membership equational
logic. Theoretical Computer Science, 236:35–132, 2000.

5. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. Quesada. Towards Maude
2.0. In K. Futatsugi, editor, The 3rd International Workshop on Rewriting Logic and its Applications,
Kanazawa City Cultural Hall, Kanzawa, Japan, September 18–20, 2000, Proceedings, volume 36 of Elec-
tronic Notes in Theoretical Computer Science, pages 297 – 318. Elsevier, 2000. http://www.elsevier.
nl/locate/entcs/volume36.html.

6. Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-Oliet, José Meseguer,
and José F. Quesada. Maude: Specification and programming in rewriting logic. Theoretical Computer
Science, 2001.

7. T. Coquand and G. Huet. The calculus of constructions. Information and Computation, 76(2/3):95–120,
1988.

8. P. Dybjer. Inductive sets and families in Martin-Löf’s type theory and their set-theoretic semantics. In
Logical Frameworks, pages 280–306. Cambridge University Press, 1991.

9. P. Dybjer and A. Setzer. A finite axiomatization of inductive-recursive definitions. In J.-Y. Girard,
editor, Typed Lambda Calculi and Applications. Proceedings of TLCA’99, L’Aquila, Italy, volume 1581
of LNCS, pages 129 – 146. Springer-Verlag, 1999.

10. T. Hardin G. Dowek, C. Kirchner, and F. Pfenning. Unification via explicit substitutions: The case
of higher-order patterns. In M. Maher, editor, Proceedings of the Joint International Conference and
Symposium on Logic Programming, Bonn, Germany, September 1996, pages 259–273. MIT Press, 1996.

11. A. D. Gordon and T. Melham. Five axioms of alpha-conversion. In J. von Wright, J. Grundy, and J. Har-
rison, editors, Theorem Proving in Higher Order Logics, 9th International Conference, TPHOLs’96,
Turku, Finland, August 26-30, 1996, Proceedings, volume 1125, pages 173–190. Springer-Verlag, 1996.

12. R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. In Second Annual Symposium
on Logic in Computer Science, Ithaca, New York, 22–25 June 1987, Proceedings, pages 193–204. IEEE,
1987.

7 Suitable congruence rules for computational rewrite judgements in OCC are needed, however, to allow
the comparison with HRS on an equal footing.

47

13. M. Hoffmann. Semantical analysis of higher-order abstract syntax. In 14th Annual Symposium on Logic
in Computer Science, Trento, Italy, 2–5 July 1999, Proceedings, pages 214–224. IEEE, July 19901999.

14. J.-P. Jouannaud. Executable higher-order algebraic specifications. In C. Choffrut and M. Jantzen,
editors, STACS 91, 8th Annual Symposium on Theoretical Aspects of Computer Science, Hamburg,
Germany, February 14-16, 1991, Proceedings, volume 480 of LNCS. Springer, 1991.

15. J. W. Klop. Combinatory Reduction Systems. PhD thesis, Rijksuniversiteit Utrecht, June 1980. Math-
ematical Centre Tracts 127.

16. J. W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduction systems: introduction
and survey. Theoretical Computer Science, 121(1–2):279–308, December 1993.

17. Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. International Series of
Monographs on Computer Science. Oxford University Press, 1994.

18. S. MacLane. Categories for the Working Mathematician, volume 5 of Graduate Texts in Mathematics.
Springer-Verlag, 1971.

19. R. Mayr and T. Nipkow. Higher-order rewrite systems and their confluence. Theoretical Computer
Science, 192(1):3–29, 1998.

20. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical Computer
Science, 96:73–155, 1992.

21. D. Miller. A logic programming language with lambda-abstraction, function variables, and simple
unification. Journal of Logic and Computation, 1(4):497 – 536, 1991.

22. Y. Moschovakis. Notes on set theory. Springer-Verlag, 1994.
23. T. Nipkow. Higher-order critical pairs. In Sixth Annual IEEE Symposium on Logic in Computer Science,

Amsterdam, The Netherlands, 15–18 July 1991, Proceedings. IEEE, 1991.
24. Tobias Nipkow and Christian Prehofer. Higher-order rewriting and equational reasoning. In W. Bibel

and P. Schmitt, editors, Automated Deduction — A Basis for Applications. Volume I: Foundations,
volume 8 of Applied Logic Series, pages 399–430. Kluwer, 1998.

25. K. Petersson, J. Smith, and B. Nordstroem. Programming in Martin-Löf ’s Type Theory. An Introduc-
tion. International Series of Monographs on Computer Science. Oxford: Clarendon Press, 1990.

26. F. Pfenning and C. Elliott. Higher-order abstract syntax. In Proceedings of the ACM SIGPLAN’88
Conference on Programming Language Design and Implementation (PLDI), Atlanta, Georgia, 22-24
June 1988, SIGPLAN Notices 23(7), pages 199–208, 1988.

27. J. R. Shoenfield. Axioms of set theory. In J. Barwise, editor, Handbook of Mathematical Logic, pages
321–344. North-Holland, 1977.

28. M.-O. Stehr. CINNI – A Generic Calculus of Explicit Substitutions and its Application to λ-, σ- and π-
calculi. In K. Futatsugi, editor, The 3rd International Workshop on Rewriting Logic and its Applications,
Kanazawa City Cultural Hall, Kanzawa, Japan, September 18–20, 2000, Proceedings, volume 36 of
Electronic Notes in Theoretical Computer Science, pages 71 – 92. Elsevier, 2000. http://www.elsevier.
nl/locate/entcs/volume36.html.

29. M.-O. Stehr. Programming, Specification, and Interactive Theorem Proving — Towards a Unified
Language based on Equational Logic, Rewriting Logic, and Type Theory. Doctoral Thesis, Universität
Hamburg, Fachbereich Informatik, Germany, 2002. http://www.sub.uni-hamburg.de/disse/810/.

30. M.-O. Stehr and J. Meseguer. Pure type systems in rewriting logic. In From Object-Orientation to
Formal Methods: Dedicated to The Memory of Ole-Johan Dahl, volume 2635 of LNCS. Springer-Varlag,
2004.

31. A. Tiu and D. Miller. A proof search specification of the π-calculus. April 2004.
32. V. van Oostrom and F. van Raamsdonk. Comparing combinatory reduction systems and higher-order

rewrite systems. In Proceedings of the International Workshop on Higher-Order Algebra, Logic, and Term
Rewriting (HOA ’93), Amsterdam, September 1993, volume 816 of LNCS, pages 276 – 304. Springer-
Verlag, 1993.

33. F. van Raamsdonk. Confluence and normalization for higher order rewriting. PhD thesis, Vrije Univer-
siteit, Amsterdam, 1996.

34. B. Werner. Sets in types, types in sets. In M. Abadi and T. Ito, editors, Theoretical Aspects of
Computer Software, Third International Symposium, TACS’97, Sendai, Japan, September 23–26, 1997,
Proceedings, volume 1281 of LNCS. Springer-Verlag, 1997.

48

Part II: Regular Talks

49

FD à la Melliès

Vincent van Oostrom

Department of Philosophy, Universiteit Utrecht, The Netherlands
Vincent.vanOostrom@phil.uu.nl

Abstract. As observed by Hyland, the Finite Developments Theorem follows from the fact that the resid-
uals of a redex will never nest one another along a development. We generalise this method to combinatory
reduction systems by replacing nesting by Melliès’ holding relation.

1 Introduction

A development is a rewrite sequence along which only residuals of redexes in its source are
contracted. The Finite Developments Theorem (FD) states that all developments terminate.
Various proofs of FD for various rewriting formats can be found in the literature. In this
note, we analyse a proof due to Hyland [1] for the λ-calculus and extend it to Klop’s
combinatory reduction systems.

The problem in proving FD is to control the way in which residuals may replicate one
another. To that end, we introduce a ‘may replicate’ relation between residuals, which
should be preserved by rewriting. In particular, the residuals of one and the same redex
should never be related to one another.

Definition 1 A binary relation on redex(occurrenc)es is called parting for a class of rewrit-
ing systems, if it can never be satisfied by the residuals of any redex along any rewrite
sequence.

Once an appropriate such relation has been found, the idea is to weigh a redex by the
redexes which it may replicate, and show that the total weight decreases along any rewrite
step.

We assume the reader to be familiar with the basic syntactic rewrite theory of first-order
term rewriting systems (TRSs), the lambda calculus (Λ), combinatory reduction systems
(CRSs), and higher-order pattern rewriting systems (PRSs), in particular with residuals and
developments [6].

2 λ-calculus

For the λ-calculus, the above can be instantiated with the nesting relation. A redex is said
to nest another redex if the latter is a proper subterm of the former. Parting of nesting is
known as the disjointness property (DP [2, Def. I.4.3.1]).

Remark 2 1. Nesting is trivially parting for TRSs since subterms can only be duplicated,
not nested, by performing a rewrite step [2, Rem. I.4.3.2].

2. As remarked there as well, nesting is non-parting for the lambda calculus, hence for
PRSs, as witnessed by the rewrite sequence (λx.xx)λy.R(y) →β (λy.R(y))λy.R(y) →β

R(λy.R(y)), where R(M) =def (λx.M)N . Note that in the second step of this sequence
a redex created in the first step has been contracted.

50

As shown in [1] contraction of a created redex, as in the second item of the remark, is
necessary in order to nest residuals of a redex. We present a simple proof of this fact,
employing the following well-known formalisation of developments for the λ-calculus.

Definition 3 The set Λ of underlined lambda terms is defined by:

(var) x ∈ Λ, for all (countable many) variables x,
(app) M , N ∈ Λ =⇒ MN ∈ Λ,
(abs) M ∈ Λ =⇒ λx.M ∈ Λ,
(beta) M , N ∈ Λ =⇒ (λx.M)N ∈ Λ.

The rewrite relation on Λ is generated by the rule: β: (λy.P)Q → P [y 7→Q].

A development in the ordinary lambda calculus Λ is defined as a rewrite sequence in the
underlined lambda calculus Λ from which the underlining has been removed. We want to
prove that nesting is parting for Λ. Let P denote the subset of Λ for which nesting is parting.

Lemma 4 ([1]) Λ = P.

Proof One proves for all Λ-terms M and substitutions σ mapping the free variables of M
to terms in P, it holds that Mσ ∈ P, by induction on the derivation of M ∈ Λ, from which
the lemma follows taking the identity for σ (variables are in P). The only interesting case
is for underlined beta redexes.

(beta) ((λx.M)N)σ = (λx.Mσ)Nσ. Mσ and Nσ are in P by the induction hypothe-
sis, so a non-P rewrite sequence must be of the form (λx.Mσ)Nσ ³β (λx.M ′)N ′ →β

M ′[x7→N ′] ³ Since (by the substitution lemma) (λx.Mσ)Nσ →β Mσ[x 7→Nσ] ³β

M ′[x7→N ′] and the middle term is in P by the induction hypothesis, it suffices to show P
is reflected by the first step. For this, the only problem might be that redexes in distinct
copies of Nσ eventually get nested, but since no variable in any copy is bound by a
lambda outside it the copies remain non-nested, hence the residuals in them as well.
(Formally one shows that if Mσ →β M̂ , then M̂ = M ′σ′ and either M →β M ′, σ = σ′

or M = M ′ρ, ρ; σ →β σ′ for renaming ρ.) ¤

Remark that substituting SN (strong normalisation) for P yields the proof of FD à la Tait
for Λ as presented in [7].1 Here we focus, as outlined in the introduction, on an alternative
way to derive FD, using the lemma as a black box. The proof is originally due to Micali
(see [2, Lem. I.4.3.3]). We give an account of that proof replacing his multiset argument by
an appeal to recursive path orders (RPO).

Proof (of FD) Λ-terms are interpreted as first-order terms via the mapping T defined by

T (x) =def c

T (MN) =def @(T (M), T (N))
T (λx.M) =def T (M)

T ((λx.M)N) =def i(T (M), T (N))

where the weight i of an underlined beta redex (λx.M)N is the number of distinct residuals
(i.e. residuals of initially distinct redexes) it nests. By choosing the precedence j > i > @, c,
for all j > i, we have M →β N =⇒ T (M) >RPO T (N), since by P the weight of a redex
is always larger than the weight of all redexes it nests, from which FD follows. ¤
1 The proof of FD is actually simpler than the proof of DP since the reflection argument is not needed. It

is the shortest proof we know of.

51

3 Combinatory reduction systems

The problem we are faced with is to find a relation which is parting for developments in
combinatory reduction systems. We will show that the notion of gripping as introduced by
Melliès, in his abstract approach to FD [3], meets the requirements.

Remark 5 In the case of CRSs nesting is non-parting even for developments as remarked
in [2, Rem. II.2.13], and witnessed by the CRS:

µ([x]Z(x)) → Z(µ([x]Z(x)))
a(x) → b(x)

After the step µ([x]a(x)) → a(µ([x]a(x))) the residual of the a-redex on the left nests the
one on the right.

A redex is said to grip another redex if the latter nests a variable bound by the (pattern
of the) former. Holding is the transitive closure of gripping. (In the initial term of previous
example, the µ-redex holds the a-redex.)

Remark 6 Holding is trivially parting for TRSs, but is non-parting for Λ, hence for PRSs,
as witnessed by the reduction (λx.xx)λy.R(y) →β (λy.R(y))λy.R(y) →β R(λy.R(y)) →β

(λx.R(x))N , where R(M) =def (λx.Mx)N .

We prove that holding is parting for developments in CRSs. To that end, the definition of
underlined system is generalised to Nipkow’s pattern rewrite systems (PRSs), hence applies
to CRSs as the latter are a special case of the former.

Definition 7 The underlined version P of a PRS P is:

1. The alphabet of P is the alphabet of P extended with a function symbol l → r of type θ
for any rule l → r of type θ in P.

2. For rule l → r in P, there’s a rule l → r → r in P.

Let P denote the subset of P for which holding is parting, and P→ its subset consisting
of terms of the form X.a(M) such that a(M)σ ∈ P for every substitution σ ∈ P→ (on a
subset of X). This is well-defined since the types of the terms in σ are smaller than the type
of X.a(M). The set Pn is obtained by bounding substitutions by order n in the definition
of P→.

Lemma 8 Let P be a CRS, then every P term is in P.

Proof We prove that every X.a(M) such that X is a vector of metavariables and a(M) a
metaterm (in CRS-jargon) is in P2, i.e. that for any substitution (substitute in CRS jargon)
σ ∈ P1, a(M)σ ∈ P by induction, first on the number of underlined symbols and then
on the number of head symbols in the term, from which the lemma follows by taking the
identity for σ (variables are trivially in P1, hence we may also assume that X is the domain
of σ)2. By induction hypothesis we know that X.Mi ∈ P2 for every Mi among M . The
proof is by cases on a, the only interesting case being the rule case.

2 In fact, this shows P for underlined CRS metaterms implying P for underlined CRS terms.

52

(rule) If a is an underlined symbol l → r for some rule l → r of P, then since its arguments
are in P2 by the induction hypothesis, a rewrite sequence witnessing non-P must look
like l → r(Mσ) ³ l → r(M 0) → r(M 0) → Since (by the substitution lemma)
l → r(Mσ) → r(Mσ) ³ r(M 0) and the middle term is in P by the induction hypothesis,
it suffices to show P is reflected by the first step. For this, the only problem might be
that redexes in distinct copies of some Mi

σ eventually hold one another, but since no
second-order variable in Mi

σ is bound by a λ outside it,3 the copies remain non-holding,
hence the residuals in them as well. (Formally one shows that if Mσ → M̂ for non-
underlined metaterm M , substitute σ, and (underlined) term M̂ , then M̂ = M ′σ′ with
M = M ′ρ, and ρ; σ → σ′ for renaming ρ.) ¤

Again, substituting SN for P (and omitting the reflection argument) yields a proof of FD
for CRSs (cf. [6]). Here we focus, as outlined in the introduction, on an alternative way to
derive FD for CRSs, using the lemma as a ,4 which is due to Melliès [3]. We present a
slight modification of that proof replacing his multiset argument by an appeal to RPO.

Proof (of FD) P-terms are interpreted as first-order terms via the mapping T .

T (X.Y (M)) =def c(T (M))
T (X.f(M)) =def f(T (M))

T (X.l → r(M)) =def i(T (M))

where the weight i is the number of distinct redexes the redex l → r(M) holds5. Taking
the precedence j > i > f, c, for all j > i, we show that M → N =⇒ T (M) >RPO T (N).
The correspondence between this proof and the proof in [4, Ch. 3], based on a number of
axioms (A,B,C,fd-1,fd-2,fd-3,fd-4,Z-1, and Z-2), is illustrated by decorating the proof steps
with the corresponding axioms.6

One shows: M = C[lσ] → C[rσ] = N =⇒ CT [lσT
T] >RPO C ′

T [rσ′T
T], for some CT ≥RPO

C ′
T , lT >RPO rT , and σT ≥RPO σ′T . This decomposition is achieved as follows:

(Ctx) We can take for CT and C ′
T just the parts of the first-order terms (T (M) and

T (N)) corresponding to the context C, in which weights can only decrease by rewriting
due to P (Axiom fd-3), hence CT ≥RPO C ′

T .
(Rule) For lT , we take that part of the first-order term which corresponds to the redexes
which are held by l, and for rT the descendant of that part. Firstly, we show that the so-
constructed parts are convex. For lT this is clear since redexes inbetween the contracted
redex and a redex held by it, are held as well (Axiom fd-4). For rT this holds since for a
residual u′ of u above a residual v′ of a redex v in lT , we must have that either u itself
is held by the contracted redex and belongs to lT so u′ belongs to rT (Axiom fd-2), or
u belongs to CT and u′ belongs to C ′

T . By P (Axiom Z-1), the weights of all residuals
in rT are strictly dominated by the weight of the left-hand side lT , hence lT >RPO rT .

(Sub) For σT and σ′T , the remaining parts of the first-order terms are collected. Since
none of the subterms in σT is held by the contracted redex, its descendants can only

3 This is exactly what fails to be true in third-order PRSs.
4 Actually, the FD proof for CRSs in [4, Sec. 7.3.3] is based on the (weaker) property that gripping is

acyclic.
5 Formally c and the is have to be indexed by the number of arguments they take.
6 The correspondence is not exact (the axioms are much more abstract, e.g. they only concern redexes and

their residuals, but the RPO proof employs terms containing non-redex function symbols as well), hence
some proofsteps here are not essential, and are not backed up by an axiom in the abstract approach.

53

have been duplicated (Axiom FD-1), and the weights of the redexes in them has not
changed, hence σT ≥RPO σ′T . ¤

4 Pattern rewrite systems?

Surprisingly, holding need not be parting for developments in orthogonal PRSs in general.
Consider the underlined version of the following (orthogonal) PRS:

g(M.N.X(x.M(x), N)) →γ X(y.X(x.y, I), I)
(λx.M(x))N →β M(N)

(where λ and g are unary function symbols and the binary application operator @ is
dropped from the left-hand side of the β-rule as in combinatory logic.) After the step
g(M.N.(λx.M(x)N)) →γ (λx.(λy.x)I)I the residual of the β-redex on the left holds the
one on the right. This example shows at the same time that the axioms for FD of [4, Ch. 3],
are not verified in general by (non-second-order) PRSs.7

Since the direct inductive proof of FD above generalises without effort to PRSs [6],
one could expect to lift the typical (combinatorial) second-order property of gripping to
a (logical) property which holds for all orders, and show that that property is parting for
developments in any orthogonal PRS. We leave this to further research.

5 Conclusion

We’ve indicated some relationships between different approaches to the finiteness of de-
velopments theorem. The axiomatic approach due to Melliès which is known to apply to
CRSs [4], was shown not to apply (without further ado) to PRSs. This is somewhat sur-
prising considering the close correspondence between CRSs and HRSs as established in [5],
but as remarked there as well, although CRSs and PRSs have the same ‘matching power’,
the latter have more ‘rewriting power’. From a technical point of view, properties need to
be defined (and checked) for CRSs only up to order 2 (their substitution calculus is second-
order),8 whereas for PRSs they need to be defined for any order (their substitution calculus
is simply typed lambda calculus).

References

1. J.M.E. Hyland. A simple proof of the Church-Rosser theorem, 1973. Typescript.
2. J.W. Klop. Combinatory Reduction Systems. Proefschrift, Rijksuniversiteit Utrecht, 1980.
3. P.-A. Melliès. An abstract finite developments theorem. Unpublished, 1993.
4. P.-A. Melliès. Description Abstraite des Systèmes de Réécriture. Thèse de doctorat, Université Paris VII,

1996.
5. V. van Oostrom and F. van Raamsdonk. Comparing combinatory reduction systems and higher-order

rewrite systems. pp. 276–304, HOA’93, 1993.
6. Terese. Term Rewriting Systems. Cambridge University Press, 2003.
7. V. van Oostrom. Take five. Technical Report IR-406, Vrije Universiteit, Amsterdam, June 1996.

7 To be precise, the axioms fd-3 and either acyclicity of gripping or axiom Z-1 cannot hold at the same
time.

8 CRSs are second-order in the precise sense that embedding them into PRSs as in [5] yields rules having
variables ranging over first-order functions (of type o → · · · → o) at the highest.

54

Strong Normalization in the ρ-cube:
the Simply-Typed System

Benjamin Wack

LORIA & Université Henri Poincaré, Nancy, France
Benjamin.Wack@loria.fr

1 Introduction

The rewriting calculus (or ρ-calculus) embeds the λ-calculus and the rewriting in a single
formalism. It endows all the basic ingredients of the rewriting with a status of first-class
citizens. In [4], a collection of type systems for the ρ-calculus was presented, extending
Barendregt’s λ-cube to a ρ-cube. For these type systems and for the similar formalism of
P 2TS, the basic typing properties have been studied in [2,5]. Still, strong normalization did
remain an open problem for the type systems of the ρ-cube.

In this paper, we give a first positive answer to this problem. Together with the consis-
tency of normalizing terms, already proved in [2], this result makes the ρ-calculus a good
candidate for a proof-term language integrating deduction and computation.

Conventions and notations Generally, the reader can assume that every capital letter de-
notes an object belonging to the ρ-calculus, and every small letter denotes an object belong-
ing to the λ-calculus. Syntactic equivalence of terms will be denoted by ≡. If a substitution
θ has domain X1 . . . Xn and ∀i, θ(Xi) ≡ Ai, we will also write it [X1 := A1 . . . Xn := An].
To denote a tuple of terms B1 . . . Bn, we will use the vector notation

−→
B . To avoid confusion

between arrows, we will use the symbol _ for the abstraction arrow of the ρ-calculus (which
is the same for terms and types).

2 The languages

2.1 The rewriting calculus and the ρ-cube

The syntax of the ρ-calculus extends that of the typed λ-calculus with structures and
patterns [4]. Several choices can be made for the set of patterns P : in this paper, we only
consider algebraic patterns, whose shape is defined below.

Signature Σ ::= ∅ | Σ, f : A

Context Γ ::= ∅ | Γ, X : A

Pattern P ::= X | f•−→P
Term A ::= f | X | P _∆ A | [P ¿∆ A]A | A•A | A; A

The notion of free variables can be adapted for the ρ-calculus: in an abstraction P _∆ B,
all the variables appearing in the pattern P are bound. Similarly, in [P ¿∆ B]A, the vari-
ables of P are bound and may occur in A. Extending Church’s notation, the context ∆

55

contains the type declarations of the variables appearing in P . As usual, we work mod-
ulo α-conversion and we adopt Barendregt’s “hygiene-convention” [1], i.e. free and bound
variables have different names.

The ρ-calculus features pattern abstractions whose application requires solving matching
problems. For the purpose of this paper, we consider only syntactic matching:

(ρ) (P _∆ A)•B →ρ [P ¿∆ B]A

(σ) [P ¿∆ B]A →σ Aθ(P¿B) if Pθ(P¿B) ≡ B

(δ) (A; B)•C →δ A•C; B•C

Let us briefly recall the various type systems that were proposed so far for the ρ-calculus:

• In [3], a first strongly normalizing type system was introduced; however, the proof of
normalization is based on a heavy restriction over the types of constants.

• In [6], we studied another type system allowing a broader class of constants and enforcing
subject reduction, but also allowing to typecheck some terms with infinite reductions.

• The type systems of [4,2] were inspired from Barendregt’s λ-cube, and were designed
for logical purposes. Until now, strong normalization was an open problem for these
systems. Here, we show this property for a slight variation of [4]. The simply-typed
system is recalled in Fig. 1. However, this is not a standard simply-typed system, in the
sense that patterns occur in the (left-hand sides of the) types; it would not be equivalent
to write “arrow-types” like in the simply-typed λ-calculus.

Σ, Γ ρ̀ A : Φ Σ, Γ ρ̀ B : Φ

Σ, Γ ρ̀ A; B : Φ
(Struct)

Σ, Γ ρ̀ A : Ψ Σ, Γ ρ̀ Φ : ∗ Φ=ρσδΨ

Σ, Γ ρ̀ A : Φ
(Conv)

Σ, Γ ρ̀ Φ : ∗ α 6∈ Dom(Σ, Γ)

Σ, Γ, α:Φ ρ̀ α : Φ
(Atom)

Σ, Γ ρ̀ A : Φ Σ, Γ ρ̀ Ψ : ∗ α 6∈ Dom(Σ, Γ)

Σ, Γ, α:Ψ ρ̀ A : Φ
(Weak)

Σ, Γ, ∆ ρ̀ A : Φ Σ, Γ ρ̀ P _∆ Φ : ∗
Σ, Γ ρ̀ P _∆ A : P _∆ Φ

(Abs)
(above α can be X or f)

Σ, Γ ρ̀ A : P _∆ Φ Σ, Γ ρ̀ [P ¿∆ B]Φ : ∗
Σ, Γ ρ̀ A•B : [P ¿∆ B]Φ

(App)
Σ, Γ, ∆ ρ̀ A : Φ Σ, Γ ρ̀ [P ¿∆ B]Φ : ∗

Σ, Γ ρ̀ [P ¿∆ B]A : [P ¿∆ B]Φ
(DMC)

∀(X:Ψ) ∈ ∆, Σ, Γ, ∆ ρ̀ Ψ : ∗ Σ, Γ, ∆ ρ̀ P : Ψ0 Σ, Γ, ∆ ρ̀ Φ : ∗
Σ, Γ ρ̀ P _∆ Φ : ∗ (Prod)

∀(X:Ψ) ∈ ∆, Σ, Γ, ∆ ρ̀ Ψ : ∗ Σ, Γ, ∆ ρ̀ P : Ψ0 Σ, Γ ρ̀ B : Ψ0 Σ, Γ, ∆ ρ̀ Φ : ∗
Σ, Γ ρ̀ [P ¿∆ B]Φ : ∗ (DMCSort)

Fig. 1. The simply-typed system of the ρ-cube

Theorem 1 (Subject reduction) If Γ ρ̀ A : Φ and A 7→→ρσδ A′, then Γ ρ̀ A′ : Φ.

Notice that the λ-calculus is directly embedded in the ρ-calculus, by considering only vari-
ables for patterns. The systems of the ρ-cube are also a conservative extension of the λ-cube.

56

2.2 The System Fω

The type system Fω was first introduced and studied by Girard; it allows one to define
terms depending on terms, terms depending on types and types depending on types. For a
detailed presentation, the interested reader can refer to [1].

Kinds k ::= ∗ | k → k
Types τ ::= β | Π(x : τ).τ | λ(β : k).τ | ττ
Terms M ::= x | λ(x : τ).M | M M | λ(β : k).M | Mτ

Theorem 2 (Subject reduction) If Γ `Fω t : σ and t 7→→β t′, then Γ `Fω t′ : σ.

Theorem 3 (Strong normalization) If Γ `Fω t : σ, then t is strongly normalizing.

3 Untyped encoding

We begin with translating the untyped ρ-terms with algebraic patterns into untyped λ-
terms. We use the following notations: S is the number of symbols appearing in the (arbi-
trarily ordered) signature. The ith symbol of Σ is denoted by fi. To build the encoding of
pattern matching, we need three conditions about constants and structures:

1. each constant fi has a “maximal” arity αi, in the sense that fi has at most αi arguments
(used when translating a constant);

2. in every matching equation fi
•P1

• . . . •Pp ¿ fj
•B1

• . . . •Bq, we have αi − p = αj − q
(used when translating an abstraction);

3. each term (A; B) has a maximal arity α (used when translating a structure).

This notion of arity can be properly defined using types: as in the λ-calculus, the type of a
term bounds the number of arguments it can take. The translation is given in Fig. 2.

JX K 4
= X

J fi K 4
= λx1 . . . λxαi . (λz1 . . . λzS .(zi x1 . . . xαi))

JA; B K 4
= λx1 . . . λxα.

��
λz.(JA Kx1 . . . xα)

�
(JB Kx1 . . . xα)

�
JX _ A K 4

= λX.JA K
J (fi

•P1
• . . . •Pp) _ A K 4

= λy.(y x⊥ . . . x⊥| {z }
(αi−p)

x⊥ . . . x⊥| {z }
(i−1)

JP1 _ . . . Pp _ x′p+1 _ . . . x′αi
_ A K x⊥ . . . x⊥| {z }

(S−i)

)

JA•B K 4
= JA KJB K

J [P ¿ B]A K 4
= the term obtained by head-β-reducing J (P _ A)•B K

Fig. 2. Untyped term translation

Theorem 4 (Faithful reductions) For any ρ-terms A and B, if A 7→ρσδ B, then
JA K 7→→βJB K in at least one step.

57

The most interesting case is the simulation of a successful σ-reduction. An example is given
in Fig. 3. The translated reduction is:

(Y _ (f•X _ X)•Y)•(f•a) 7→ρ (Y _ [f•X ¿ Y]X)•(f•a)

7→ρ [Y ¿ f•a][f•X ¿ Y]X

7→σ [f•X ¿ f•a]X

7→σ a

JY_(f•X_X)•Y Kz }| {
(λY.

� J f•X_X Kz }| {
(λy.(yx⊥(λX.X))) Y

�
)
� J f Kz }| {

(λx1.λz1λz2.(z2x1))

J a Kz }| {
(λu1λu2.u1)

�
7→β

�
λY.(Y x⊥(λX.X))

��
(λx1.λz1λz2.(z2x1))(λu1λu2.u1)

�
7→β

�
λY .(Y x⊥(λX.X))

��
λz1λz2.(z2(λu1λu2.u1))

�
7→β

�
λz1λz2.(z2(λu1λu2.u1))

�
x⊥(λX.X)

7→β

�
λz2.(z2(λu1λu2.u1))

�
(λX.X)

7→β (λX.X)(λu1λu2.u1)

7→β (λu1λu2.u1)

= J a K

Fig. 3. Translation of a successful delayed matching

One can notice that the untyped translation also has a an interest in the translation
of term rewriting systems into the λ-calculus. Indeed, some classes of TRS together with a
given strategy can be automatically translated into the ρ-calculus (see for instance [6] for
convergent TRS). Thus, we can design a two-step translation from (a subclass of) TRS into
the λ-calculus via the ρ-calculus. We will not treat this matter further in this paper, since
we are mainly interested in proving strong normalization for the ρ-calculus.

4 Recovering types in the translation

Here, instead of translating a term into a term, we translate a typed term into a (typable)
term. By lack of space, we do not give the full typed translation, but we give examples for
two key constructs appearing in the typed translation, explaining why System Fω is needed.

4.1 Typing the translation of a constant

Let us start from the untyped translation in order to explain the modifications we have to
make. We suppose S = 2 and Σ = {f : X1 _X1:σ1 Ξ , g : Ξ}. We have then:

` J f K = λX1. (λz1λz2.(z1 X1)) : σ1 → (σ1 → β) → (σ1 → β) → β
x⊥ : τ ` J f•X1 _ A K = λy.(y

�
λX1.JA K� x⊥) : ((σ1 → τ) → (σ1 → τ) → γ) → γ

where τ is the type of JA K.

58

Therefore, the λ-term J f •X1 _ A K (J f KJB1 K) has a valid type only if τ = β = γ. The
type variables β and γ should be changed to the return type of the function which will be
applied to J f •B1 K. Since it is impossible to guess what function will be applied to a given
term, we introduce the polymorphism of Girard’s System F in the target language:

` J f K = λX1.λβ.(λz1λz2.(z1X1)) : σ1 → Π(β : ∗).�(σ1 → β) → (σ1 → β) → β
�

x⊥ : Π(ι : ∗).ι ` J f•X1 _ A K = λy.(y τ
�
λX1.JA K� x⊥) :

�
Π(β : ∗). ((σ1 → β) → (σ1 → β) → β)

�→ τ

Another interest of polymorphism is that the variable x⊥ with type Π(ι : ∗).ι can
be used whenever we want a placeholder with an arbitrary type: if JΓ K `Fω σ : ∗, then
JΓ K `Fω x⊥σ : σ. With this simple manipulation, the use of x⊥ we had made in the untyped
translation becomes compatible with typing.

4.2 Typing a variable

The translation of some terms can have can have many different types, even if they have
the same type in the ρ-calculus. Consider the following examples:

(Ξ : ∗), (X : Y _Y :Ξ Ξ) ρ̀ X : Y _Y :Ξ Ξ

(Ξ : ∗) ρ̀ Y _Y :Ξ Y : Y _Y :Ξ Ξ
(Ξ : ∗), (f : Y _Y :Ξ Ξ) ρ̀ f : Y _Y :Ξ Ξ

The two ρ-terms Y _ Y and f can instantiate X since they have the same type.
However, the typed translation gives:

`Fω λ(βY : ∗).λ(Y : βY).Y : βY → βY

`Fω J f K : βY → Π(β : ∗).�(βY → β) → β
�

We see that the return type can differ, but always uses βY . This leads us into using types
depending on types: we add a type variable βX (with kind ∗ → ∗) corresponding to the term
variable X, and we give JX K the type βY → βXβY . The types of the instantiated variable
and of the term can then be made equal by suitably instantiating βX ; in our examples, for
Y _ Y we take βX := λ(γ : ∗).γ and for f we take βX := λ(γ : ∗).Π(β : ∗).((γ → β) → β

)
.

5 Strong normalization

Strong normalization is shown by Theorem 4 and by the well-typedness of the encoding:

Theorem 5 (Well-typed translation) If Σ, Γ ρ̀ A : Φ, then ∃τ, JΓ K `Fω JA K : τ .

Theorem 6 (Strong normalization) If Σ, Γ ρ̀ A : Φ then A is strongly normalizing.

59

6 Conclusion and perspectives

We have proved strong normalization of the ρ-calculus in the simply-typed system of the
ρ-cube. The proof relies on a translation from the ρ-calculus into System Fω. First, we have
encoded untyped pattern matching in the λ-calculus, ensuring that every ρσδ-reduction is
translated into (at least) one β-reduction. Then we have shown that the typing mechanisms
of the ρ-calculus can be reproduced only with the expressive power of System Fω, which is
rather surprising since we only deal with the simply-typed system of the ρ-cube. It hints
that the expressive power of the ρ-calculus could be greater than the one of the λ-calculus.

The property of strong normalization is finally proved by contradiction: a typed ρ-term
translates into a typed λ-term, which can have only finite reductions.

One development of this work would be to extend the proof to the other type systems
of the ρ-cube. In the long term, we could use the ρ-calculus as the basis for a proof assis-
tant combining the λ-calculus (for deduction) and the rewriting (for computation). Strong
normalization is a stepstone for this work, since logical soundness is related to termination.

Long version: http://www.loria.fr/~wack/papers/rhoSN.ps.gz

References

1. H. P. Barendregt. Lambda calculi with types. In S. Abramsky, D.M. Gabbay, and T.S.E. Maibaum,
editors, Handbook of Logic in Computer Science. Clarendon Press, 1992.

2. G. Barthe, H. Cirstea, C. Kirchner, and L. Liquori. Pure Patterns Type Systems. In Principles of
Programming Languages - POPL2003, New Orleans, USA. ACM, January 2003.

3. H. Cirstea and C. Kirchner. The typed rewriting calculus. In Third International Workshop on Rewriting
Logic and Application, Kanazawa (Japan), September 2000.

4. H. Cirstea, C. Kirchner, and L. Liquori. The Rho Cube. In F. Honsell, editor, Foundations of Software
Science and Computation Structures, volume 2030 of Lecture Notes in Computer Science, pages 166–180,
Genova, Italy, April 2001.

5. H. Cirstea, C. Kirchner, L. Liquori, and B. Wack. The rewriting calculus : some results, some problems. In
D. Kesner, F. van Raamsdonk, and T. Nipkow, editors, The first international workshop on Higher-Order
Rewriting, Copenhagen, Denmark, July 2002. FLoC’02. LORIA Internal research report A02-R-470.

6. H. Cirstea, L. Liquori, and B. Wack. Rewriting calculus with fixpoints: Untyped and first-order systems.
In TYPES’03, volume 3085 of Lecture Notes in Computer Science, Torino, 2004.

60

Termination of Simply-Typed Applicative TRSs

Takahito Aoto1 and Toshiyuki Yamada2

1 Research Institute of Electrical Communication, Tohoku University, Japan
aoto@nue.riec.tohoku.ac.jp

2 Faculty of Engineering, Mie University, Japan
toshi@cs.info.mie-u.ac.jp

Abstract. Applicative term rewriting system handles terms having a tree structure with a function symbol
or a variable at every leaf node and a unique application symbol at every internal node. Because of this term
structure, direct application of standard termination proof methods, such as recursive path orderings, are
often ineffective for applicative term rewriting systems. In this paper, we introduce a simply-typed version
of applicative term rewriting systems and present a termination proof method for simply-typed applicative
term rewriting systems.

1 Introduction

Applicative term rewriting system (TRS) is a popular encoding in term rewriting which can
deal with higher-order functions. It is a first-order TRS where terms have a tree structure
consisting of a function symbol or a variable at every leaf node and a unique application
symbol at every internal node. For example, the higher-order function map, is expressed as
the following applicative TRS:

(map’F)’nil → nil
(map’F)’((cons’x)’xs) → (cons’(F ’x))’((map’F)’xs)

where “ ’ ” denotes the infix application symbol.
In an applicative term formulation, such as above, all subterms except constants and

variables have the same leading symbol. This makes a contrast with the usual functional
term formulation, such as map(F, cons(x, xs)). In applicative TRS, direct application of
standard termination proof methods, such as recursive path orderings [4] and the depen-
dency pair technique [3], is ineffective. This is because these techniques make use of the
difference of leading function symbols.

In this paper, we introduce a simply-typed version of applicative TRSs and present
a proof method for their termination. We give a transformation from applicative TRSs
to TRSs in functional form for which standard termination proof methods are effectively
applied.

2 Simply-Typed Applicative TRSs

For a set B of basic types, the set of simple types is the smallest set ST(B) such that (1) B ⊆
ST(B), and (2) τ → ρ ∈ ST(B) whenever τ, ρ ∈ ST(B). The set ST(B) is abbreviated to
ST. As usual we assume → is right-associative and omit unnecessary parentheses. Based on
this abbreviation, each simple type τ is uniquely represented by τ1 → τ2 → · · · → τk → τ0

with τ1, . . . , τk ∈ ST(B) and τ0 ∈ B, where k is called the arity of τ and denoted by arity(τ).
Each function symbol or variable is associated with its type. The sets of function symbols

and variables of type τ are denoted by Στ and V τ . The sets of all function symbols and
variables are denoted by Σ and V . The arity of a function symbol f ∈ Στ is defined as

61

arity(f) = arity(τ). Apart from members of Σ, we assume that there is a binary infix
function symbol “ ’ ” called an application symbol . The set ATST(Σ, V)τ of simply-typed
applicative terms of type τ is defined as follows: (1) Στ ∪ V τ ⊆ ATST(Σ,V)τ , and (2) if
s ∈ ATST(Σ, V)τ→ρ and t ∈ ATST(Σ, V)τ then (s’t) ∈ ATST(Σ, V)ρ. Each simply-typed
applicative term has a unique type and thus τ is also referred to as the type of s (denoted
by type(s)). The arity of a simply-typed applicative term s is defined by its type. The
set of all simply-typed applicative terms is denoted by ATST(Σ, V) or ATST. The set of
variables occurring in a term t is written as V(t). A term without variables is said to
be ground . We assume the application symbol “ ’ ” is left-associative and usually omit
unnecessary parentheses as well as the outermost one. Based on this abbreviation, each
term s is uniquely represented as a’s1’ · · · ’sn for some a ∈ Σ ∪ V and s1, . . . , sn ∈ ATST,
where a is called the head of the term s and denoted by head(s). A substitution is a mapping
σ : V → ATST(Σ, V) that satisfies the following conditions: (1) Dom(σ) = {x | σ(x) 6= x}
is finite, and (2) for each x ∈ Dom(σ), x and σ(x) have the same type. The homomorphic
extension of σ to ATST(Σ, V) is also denoted by σ. As usual, σ(t) is written as tσ. A
substitution is ground if σ(x) is ground for any x ∈ Dom(σ).

A pair of simply-typed applicative terms written as l → r is a simply-typed applicative
rewrite rule when (1) l and r have the same type, (2) head(l) ∈ Σ, and (3) V (r) ⊆ V (l). A
triple 〈B, Σ, R 〉 consisting of a set B of basic types, a set Σ of function symbols, and a set
R of rewrite rules is called a simply-typed applicative TRS (SATRS, for short). The rewrite
relation →R induced by an SATRS R = 〈B, Σ,R 〉 is the smallest relation over ATST(Σ, V)
satisfying the following conditions: (1) lσ →R rσ for all l → r ∈ R and for all substitutions
σ, and (2) if s →R t then (u1’s) →R (u1’t) and (s’u2) →R (t’u2) for any u1 and u2. An
SATRS R is terminating if there is no infinite reduction sequences s0 →R s1 →R · · · .
Example 1 (simply-typed applicative rewriting). Let R = 〈B,Σ, R 〉 be an SATRS where
B = {N, L}, Σ = {0N, sN→N, idN→N, addN→N→N, nilL, consN→L→L, map(N→N)→L→L}, and

R =





id’x → x
add’0 → id add’(s’x)’y → s’(add’x’y)
map’F ’nil → nil map’F ’(cons’x’xs) → cons’(F ’x)’(map’F ’xs)

Here is a rewrite sequence of R:

map’(add’0)’(cons’(s’0)’nil) →R map’id’(cons’(s’0)’nil) →R cons’(id’(s’0))’(map’id’nil)
→R cons’(s’0)’(map’id’nil) →R cons’(s’0)’nil

3 Removing Head Variables by Cover Instantiation

An applicative term can be translated into the corresponding term in functional form if
there is no variable at any head position. In this section, we introduce a transformation on
SATRSs for removing head variables.

Each rewrite rule can be transformed into an equivalent set of instantiated rules if every
variable is instantiated by appropriate terms which cover all instances. Such instantiation
can be used to remove head variables in an SATRS.

Definition 1 (cover instantiation). Let l → r be a rewrite rule and xτ a variable in l.
A set S of terms of type τ is a coverset with respect to l → r and x if (1) every ground
term tτ can be expressed as the form t = sσ for some s ∈ S and substitution σ, and

62

(2) V(s) ∩ (V(l) \ {x}) = ∅ for every s ∈ S. A mapping ψ : V → P(ATST) is a covermap
with respect to l → r if (1) its domain includes V(l), (2) ψ(x) is a coverset with respect to
l → r and x for every x ∈ V(l), and (3) ψ(x) and ψ(y) do not share the same variable for
different variables x and y. Let ψ be a covermap with respect to l → r. This covermap is
used to transform the rewrite rule into a set of its instances as follows:

Inst(l → r, ψ) = {lσ → rσ | ∀x ∈ V(l) σ(x) ∈ ψ(x)}
Let R = 〈B,Σ, R 〉 be an SATRS. An indexed set of mappings Ψ = {ψl→r | l → r ∈ R} is
a covermap system with respect to R if each ψl→r is a covermap with respect to l → r. A
covermap system is used to transform R into a set of instantiated rewrite rules as follows:

Inst(R, Ψ) =
⋃

l→r∈R

Inst(l → r, ψl→r)

Definition 2 (head variable). The set of head variables in a term t is defined as follows:

HV(a) = ∅ if a ∈ Σ ∪ V
HV(f ’t) = HV(t) if f ∈ Σ
HV(x’t) = {x} ∪HV(t) if x ∈ V
HV(s’t) = HV(s) ∪HV(t) otherwise

Lemma 1 (removing head variables). Let R = 〈B, Σ, R 〉 be an SATRS. Suppose a
covermap system Ψ = {ψl→r | l → r ∈ R} satisfies the properties that, for all rewrite rules
l → r ∈ R, (1) HV(ψl→r(x)) = ∅ for any x ∈ V(l), and (2) V ∩ ψl→r(x) = ∅ for any
x ∈ HV(l)∪HV(r). Define R′ = Inst(R, Ψ) and R′ = 〈B, Σ,R′〉. Then, s →R t if and only
if s →R′ t for all ground terms s and t. Moreover, none of rewrite rules in R′ contain a
head variable.

Because instantiated rewrite rules can simulate only ground rewrite steps, existence of
a ground term of types in concern is required.

Definition 3 (ground term existence condition). Let R = 〈B, Σ, R 〉 be an SATRS.
We say R satisfies the ground term existence condition (GTEC) if the following conditions
are satisfied: (1) for every variable x appearing in R, there exists a ground term with the
same type as x, and (2) for every function symbol f ∈ Σ of type τ1 → · · · → τn → ρ
(ρ ∈ B), there exists ground terms ui of type τi for any i = 1, . . . , n.

Lemma 2 (termination by cover instantiation). Let R = 〈B,Σ, R 〉 be an SATRS sat-
isfying GTEC and Ψ be a coverset system with respect to R. Define R′ = 〈B, Σ, Inst(R,Ψ)〉.
If R′ is terminating then R is terminating.

Based on the observations so far, we define a transformation on SATRSs for removing
head variables which preserves non-termination property.

Definition 4 (transformation HVI). Let R = 〈B,Σ, R 〉 be an SATRS. The covermap
system for head variable instantiation ΨHVI = {ψl→r}l→r∈R is defined as

ψl→r(x) =
{{f ’x1’ · · · ’xn | f ∈ Σ, type(f) = τ1 → · · · → τn → type(x)} if x ∈ HV(l) ∪HV(r)
{x} otherwise

for all x ∈ V(l) where x1, · · · , xn are pairwise distinct fresh variables. The transformation
HVI is defined as:

HVI(R) = 〈B, Σ, Inst(R, ΨHVI)〉

63

Example 2 (transformation HVI). Let R = 〈B, Σ,R 〉 be the SATRS given in Example 1.
Then the transformed set of rewrite rules of HVI(R) are





id’x → x
add’0 → id
add’(s’x)’y → s’(add’x’y)
map’F ’nil → nil
map’s’(cons’x’xs) → cons’(s’x)’(map’s’xs)
map’id’(cons’x’xs) → cons’(id’x)’(map’id’xs)
map’(add’y)’(cons’x’xs) → cons’(add’y’x)’(map’(add’y)’xs)

Lemma 3 (properties of transformation HVI). Let R = 〈B,Σ, R 〉 be an SATRS
satisfying GTEC. If HVI(R) is terminating then R is terminating. Moreover, all rewrite
rules in HVI(R) do not contain any head variables in both hand sides.

4 Translation to Functional Form

In this section, we introduce a translation from an SATRS to a TRS.

Definition 5 (translation FF). Let R = 〈B, Σ,R 〉 be an SATRS where all rules contain
no head variables. The set of function symbols in functional form is defined as

FF(Σ) = {fk | f ∈ Σ, 0 ≤ k ≤ arity(f)}

where the arity of fk is k. For each applicative term s ∈ ATST(Σ, V) without head variables,
its functional form FF(s) ∈ T(FF(Σ), V) is defined as follows:

FF(a’t1’ · · · ’tn) =
{

an(FF(t1), . . . ,FF(tn)) if a ∈ Σ
a if a ∈ V

Note here that a ∈ V implies n = 0 by the absence of head variable. The set of rules and
the rewrite system are translated as follows:

FF(R) = { FF(l’x1’ · · · ’xk) → FF(r’x1’ · · · ’xk) | l → r ∈ R, 0 ≤ k ≤ arity(l) }
FF(R) = 〈FF(Σ),FF(R)〉

where x1, · · · , xn are pairwise distinct fresh variables.

Example 3 (translation FF). Let B, Σ, and R be the ones in Example 1. Then, we have
FF(map’(add’0)’(cons’(s’0)’nil)) = map2(add1(00), (cons2(s1(00), nil0))). The set FF(HVI(R))
is 




id1(x) → x
add1(00) → id0

add2(00, x) → id1(x)
add2(s1(x), y) → s1(add2(x, y))
map2(F, nil0) → nil0
map2(s0, cons2(x, xs)) → cons2(s1(x),map2(s0, xs))
map2(id0, cons2(x, xs)) → cons2(id1(x),map2(id1, xs))
map2(add1(y), cons2(x, xs)) → cons2(add2(y, x), map2(add1(y), xs))

64

Lemma 4 (simulation of rewriting). Let R = 〈B, Σ, R 〉 be an SATRS where every
rewrite rule contains no head variables. Let s and t be ground simply-typed applicative
terms. Then s →R t implies FF(s) →FF(R) FF(t).

Theorem 1 (soundness of FF ◦ HVI). Let R = 〈B, Σ, R 〉 be an SATRS satisfying
GTEC. If FF(HVI(R)) is terminating then R is terminating.

Example 4 (termination proof I). Let R be the SATRS in Example 1. Then FF(HVI(R))
is the one in Example 3. Its termination is shown by the recursive path ordering with
the precedence add1 > id0; map2 > add2, cons2 > id1, s1. Therefore, by Theorem 1, R is
terminating.

Example 5 (termination proof II). Let R = 〈B, Σ, R 〉 be an SATRS where B = {N},
Σ = {0N, sN→N, addN→N→N, multN→N→N, rec(N→N→N)→N→N→N, factN→N} and

R =





add’0’y → y add’(s’x)’y → s’(add’x’y)
mult’0’y → 0 mult’(s’x)’y → add’(mult’x’y)’y
rec’F ’x’0 → x rec’F ’x’(s’y) → F ’(s’y)’(rec’F ’x’y)
fact → rec’mult’(s’0)

Termination of FF(HVI(R)) is shown by using the lexicographic path ordering [5]. We note
that termination of this SATRS can not be shown by other termination proof methods for
lambda-free higher-order TRSs such as [6], [7] or (the product-free fragments of) [1], [2],
[8], [9].

Acknowledgments

The authors thank Mario Rodŕıguez-Artalejo for his comments, by which our translation
FF is inspired.

References

1. T. Aoto and T. Yamada. Proving termination of simply typed term rewriting systems automatically.
IPSJ Transactions on Programming, 44(SIG 4 PRO 17):67–77, 2003. In Japanese.

2. T. Aoto and T. Yamada. Termination of simply typed term rewriting systems by translation and
labelling. In Proceedings of the 14th International Conference on Rewriting Techniques and Applications
(RTA’03), volume 2706 of Lecture Notes in Computer Science, pages 380–394, 2003.

3. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theoretical Computer
Science, 236:133–178, 2000.

4. N. Dershowitz. Orderings for term-rewriting systems. Theoretical Computer Science, 17:279–301, 1982.
5. S. Kamin and J.-J. Lévy. Two generalizations of the recursive path ordering. Unpublished manuscript,

University of Illinois, 1980.
6. K. Kusakari. On proving termination of term rewriting systems with higher-order variables. IPSJ

Transactions on Programming, 42(SIG 7 PRO 11):35–45, 2001.
7. K. Kusakari. Higher-order path orders based on computability. IEICE Transactions on Information

and Systems, E87–D(2):352–359, 2003.
8. M. Lifantsev and L. Bachmair. An lpo-based termination ordering for higher-order terms without λ-

abstraction. In Proceedings of the 11th International Conference Theorem Proving in Higher Order
Logics (TPHOLs’98), volume 1479 of Lecture Notes in Computer Science, pages 277–293. Springer-
Verlag, 1998.

9. Y. Toyama. Termination of S-expression rewriting systems: Lexicographic path ordering for higher-order
terms. In Proceedings of the 15th International Conference on Rewriting Techniques and Applications
(RTA’04), to appear.

65

Unification and Matching Modulo Type Isomorphism

Dan Dougherty1 and Carlos C. Martı́nez2

1 Worcester Polytechnic Institute,
Department of Computer Science,
Worcester, MA 01609 USA
dd@cs.wpi.edu

2 Wesleyan University,
Department of Mathematics and Computer Science,
Middletown, CT 06459 USA
cmartinez@wesleyan.edu

Abstract. We present some initial results in an investigation of higher-order unification and matching in the presence of type
isomorphism.

1 Introduction

Two simple typesS and T are isomorphic if their interpretations are isomorphic in every model of the
simply-typedλ-calculus, or equivalently, if there exist termsf : S→T andg : T→S, such thatg◦ f and
f ◦g are eachβη-convertible with the identity.

The study of type isomorphism is currently an active area of research, well-represented in Roberto di
Cosmo’s book [DC95]. There are connections with logic (cf Tarski’s “high school algebra problem”), with
category theory [FCB02], and with information retrieval in software libraries [Rit90,Rit91,RT91,ZW93].

Some of the most interesting work concerns polymorphic type disciplines but our focus here will be
restricted to simple types. Indeed, in this preliminary reportwe consider arrow-types only,in particular we
exclude product and unit types. Much of complexity of type isomorphism per se is avoided in this setting,
but the novel issues surrounding unification and matching still arise, as we will see. We also work only with
pure terms (ie, with no constants).

It is natural to want be sensitive to type isomorphism when one is doing higher-order rewriting, in par-
ticular if we are interested in code querying or transformation. For example, suppose one wants to perform
a code transformation with a certain function-pattern of type(A→B→C). The use of standard higher-
order matching allows us to ignore thenamesof the arguments in a code fragment potentially matching the
pattern. But theorder in which these parameters appear in the code is significant, since it determines the
code’s type. Since the type(B→A→C) is isomorphic to the original(A→B→C), a code fragment of the
this type may very well be a candidate that we want to consider. So it seems that a more refined tool than
standard higher-order matching would be useful.

Indeed, what we require is a richer notion of matching which accepts a match as long as the term being
matched isthe same as the target term modulo a type isomorphism. That is, type isomorphism induces a
notion of equality on terms, more lenient than equality moduloβη, and it is this equality that we will want
to guide our matching. To our knowledge this relation on terms — which we call “term isomorphism” for
want of a better phrase — has not been explored in the published literature.

Definition 1. Givens : Sandt : T, we say thats andt areterm isomorphic, writtens' t, if there is a type
isomorphismp : S→T with ps= t.

Here and below, the equality symbol “=” denotes convertibility moduloβ andη.

66

In addition to higher-order matching it is also natural to consider higher-orderunificationmodulo type
isomorphism, for example in the context of higher-order logic programming, whenλ-terms are ubiquitous
as data structures, and type isomorphism induces a natural equivalence on this data.

In fact the problems we face and the solutions we propose arise equally in unification and in matching.
So for simplicity in this abstract we focus on unification: our goal is to explore algorithms to solve the
following problem.

Unification modulo Type Isomorphism
INPUT: Two termssandt, of isomorphic types

OUTPUT: A substitutionθ such thatθs' θt

2 A naive algorithm

We first note that the consideration of type isomorphism does not have any consequences as to decidability.
Dezani [DC76] defined the notion offinite hereditary permutation, which is a term of the following

form:

λzx1 . . .xn .z(p1xπ(1)) . . .(pnxπ(n))

whereπ is a permutation of[1..n] and eachpi is a finite hereditary permutation, and proved that a normal-
izable untyped termp is invertible iff it is a finite hereditary permutation.

Any finite hereditary permutation is typable. So, as observed in [BCL92], a termp : A→B is a type
isomorphism iff its type-erasure is a finite hereditary permutation.

It is not hard to see that at any typeA→B there are only finitely many finite terms whose type-erasures
are hereditary permutations. So we have the following

Proposition 2. For each pair of typesS and T there are finitely many type isomorphismsp : S→T, and
these can be effectively generated givenSandT.

In this way we can reduce any unification/matching problem modulo type isomorphism to finitely many
similar standard problems.

Definition 3 (Naive algorithm). Givens: Sandt : T as an instance of the problem of unification or match-
ing modulo type isomorphism, the naive algorithm for the problem is:

For each type isomorphismp from S to T, generate the standard problemps= t. If any of these
problems is solvable, return that solution; otherwise return failure.

Proposition 4. The algorithm of Definition 3 is sound and complete relative to the soundness and com-
pleteness of the standard algorithms used.

In particular, at any type where the classical higher-order matching is decidable, the problem of match-
ing modulo type isomorphism is decidable. Also, unification of higher-order patterns [Mil91] modulo type
isomorphism is decidable.

This is reassuring, but since there can be exponentially many finite hereditary permutations at a given
pair of types, such a generate-and-test algorithm is clearly not practical. We want to “build-in” (in the sense
of [Plo72]) type isomorphism to the matching algorithm.

67

3 Building in type isomorphism

Consider a set of standard transformations for pure higher-order unification, such as described in [GS89]:
Imitation, Projection, Variable Elimination, and Decomposition. The idea here is to enhance this set of
transformations so that in addition to gradually building up an answer substitution as a problem is solved,
we also build up a finite hereditary permutation that serves as part of the witness to the problem’s solution.

The main work in unification transformations is the “guessing” component, where substitutions are
generated and propagated. These are represented in higher-order unification by the Imitation, Projection,
and Variable Elimination transformations. There is another transformation — Decomposition — which
breaks a problem into subproblems or recognizes that the current problem is not solvable and reports failure.

(Traditional) Decomposition

E ; (λx.xe
−→t .= λyx.xd

−→u)
E ; (λx. t1

.= λx.u1) ; . . . ; (λx. tk
.= λx.uk)

if e= d, else fail

Perhaps surprisingly, with a little work one can see that in defining transformations for higher-order
unification modulo type isomorphism Imitation, Projection, and Variable Elimination need not be changed
at all. That is, the complexity of considering type isomorphism is completely reflected in the need for a
refinement of the Decomposition transformation.

This is because the soundness of the Decomposition transformation is the embodiment of a basic fact
aboutequalitybetween terms: by the Church-Rosser theoremλx.xe

−→t andλyx.xd
−→u areβη-equal if and

only if e= d and corresponding arguments are equal. This is false when the equality in question is'.
So we see that the essence of building in type isomorphisms to the unification algorithm is to have a

good characterization of when an equation isvalid (as opposed to unifiable) modulo type isomorphism.
That is, we are led to seek an incremental analysis of term isomorphism.

4 Characterizing term isomorphism

4.1 Labelled trees

In order to analyze the combinatorics of term isomorphism it is convenient to abstract away from variable
binding and work with ordinary labelled trees. In fact we work with partially labelled trees and partial
functions between trees in anticipation of the facts that terms with free variables will correspond to trees
which are not fully labelled.

Definition 5. Let L be a set oflabelstogether with an arity functionarity : L →N. A labelled treeT is
a tree domainT and a partial maplabel: T→L such that forα ∈ domain(label) the number of children
of α is arity(label(α)). Furthermore, a labelled tree comes with an arity-consistent equivalence relation≈
defined on its set of labels.

The definition of labelled tree mapping below is somewhat tedious; the informal idea is as follows.
Labelled trees are isomorphic if they are isomorphic modulo permuting the order of the children of a
node — except that nodes with equivalent labels must have their children permuted in the same way. See
Example 7 below.

Definition 6. Let T andU be tree domains. Apartial tree mappingΦ : T→U is a pair(Φa,Φp) such that

– Φa is a partial function fromT to U whose domain is a subtree ofT,
– Φp(α) is a permutation of[1..arity(α)] for eachα ∈ domain(Φa), and

68

– Φa maps thei-th child of α to theΦp(α)(i)-th child of Φa(α). That is,Φa(α · i) = Φa(α) ·Φp(α)(i).

If T andU are labelled trees, apartial labelled tree mappingfrom T to U is a partial tree mappingΦ
defined on labelled addresses ofT satisfying

– label(α) = label(β) implieslabel(Φa(α)) = label(Φa(β)), and
– label(α)≈ label(β) impliesΦp(α) = Φp(β).

The labelled treesT andU areisomorphicas labelled trees if there is a labelled tree homomorphism
Φ from T to U with Φa a bijection between the nodes ofT andU.

Example 7.
a

b a

c d

a’

a’

d’ c’

b’

a’

a’

c’ d’

b’

The first and second labelled trees above are isomorphic; the first and third labelled trees arenot isomorphic.

Remark 8.If T andU are labelled trees with disjoint label setsL andL ′, a partial tree mappingΦ : T →
U induces a unique partial mapping fromL to L ′ in an obvious way. We say that this mapping on labels
is induced byΦ.

4.2 Labelled trees for terms

We first need some notation allowing us to track relationships among bound-variable occurrences in a Böhm
tree.

Definition 9. Let t : T be a pure term. We letBT(t) denote the B̈ohm tree fort. In BT(t) we make the
following definitions.

If the node at addressα has binderλx1 . . .λxn and head variabley then we say thaty has anoccurrence
at addressα and for eachi we say that bound variablexi is introducedat addressα, at indexi.

We assume that whenever one or more Böhm trees are under consideration no name is used for both a
free and bound variable, and no bound variable name is introduced in more than one place.

Note the distinction between the introduction of a bound variable and an occurrence of a variable
(in particular an introduction is not an occurrence). Note also that a variable may have any number of
occurrences, but it is only introduced at one address and index.

Now, given a termt, we defineLT(t), the labelled tree associated tot, essentially by forgetting the
binders in the B̈ohm tree fort (so thatLT(t) will fail to have a label at those tree addresses with free
variables). The precise definition is Definition 10 below. By using bound-variable names fromBT(t) as
our labels we are of course not determining the labels ofLT(t) uniquely. But since we have adopted a
convention that B̈ohm trees always obey our strong variable conventions about not reusing variable names,
the differences in labelled trees we obtain for a term are identical up to renaming of labels. Indeed it will
often be convenient to be able to assume that the labels of a given pair of trees are disjoint.

Definition 10. The underlying tree ofLT(t) is the underlying tree ofBT(t). If there is a bound-variable
occurrence atα in BT(t) the label inLT(t) at addressα is that bound variable name.

The relation≈ is the smallest equivalence relation satisfying:x≈ y if

– x is introduced inBT(t) at addressαa, indexi

69

– y is introducedBT(t) at addressα′a, indexi, and
– label(α)≈ label(α′)

Theorem 11. Lett : T andu : U be terms of isomorphic type. Thent ' u if and only ifLT(t) andLT(u) are
isomorphic labelled trees.

5 The transformations

Theorem 11 allows us to define transformations for higher-order unification under type isomorphism; as
described earlier the key is defining a sound Decomposition transformation.

A systemE B Λ | σ is given by a setE of equations, a partial mappingΛ on labels, and a substitution
σ. Λ and σ denote the label mapping and answer substitutions computed “so far”. Transformations are
presented as inference rules for deriving systems. Ife is an equation, the notationE;e is shorthand for
E∪e.

In this short abstract we only present the transformations which are different from the standard ones.

Fail
E ; (λx.xe

−→t .= λy.yd
−→u) B Λ | σ

Fail

if the type ofxe is not isomorphic to the type ofyd.
We note that using the techniques of [ZGC03], failure can be detected in constant time, after a linear-

time preprocessing step on the types of the original terms.

Decomposition

E ; (λx.xe
−→t .= λy.yd

−→u) B Λ | σ
E ; (λx. t1

.= λy.uπ(1)) ; . . . ; (λx. tk
.= λy.uπ(k)) B Λ+ | σ

if Λ+ is a consistent label mapping

whereΛ+ is Λ∪{xe 7→ yd}. The condition “Λ+ is a consistent label mapping” means thatΛ+ is induced
by a set of partial labelled tree mappings between (the labelled trees for) the terms on the left-hand and
right-hand sides of the equations in the system.

It is possible that no permutationπ allows Λ to be extended to a consistent mapping by mappingxe

to yd. In this case the procedure fails at this point. The decomposition can succeed either becauseΛ itself
determines the decompositionπ, or because some label≈ with xe or with yd was already bound byΛ, or
that no label was≈ with eitherxe or yd and so we had freedom to extendΛ by {xe 7→ yd}.

Theorem 12. Replacing the traditional Decomposition transformation by the Decomposition and Fail
transformations above yields a sound and complete set of transformations for higher-order unification
and matching modulo type isomorphism. In fact the result of a successful sequence of transformations also
yields the finite hereditary permutation witnessing the term-isomorphism between the instantiated terms.

6 Ongoing work

This is a preliminary report, most of the interesting work remains to be done.
Of course we need to incorporate product types into our setting. We do not anticipate any conceptual

challenges here, but the algorithmic complexity of working with the types is known to increase due to the
fact that products allow more succinct representations of types.

70

The most important task before us is to derive efficient algorithms to guide the Decomposition trans-
formation defined above. We need to explore the problem of determining when two labelled trees are iso-
morphic and in particular we require a top-down algorithm (an “online algorithm” in algorithms parlance)
in order to be applicable to trees that are being generated during the unification process. Inspired by the
results of Zibin, Gil and Considine in [ZGC03] we hope to find algorithms which will ultimately lead to
unification and matching procedures which incur only a modest performance penalty for treating the more
flexible notion of equality modulo type isomorphism.

It will be important to derive complexity results and to do empirical studies of the performance of our
algorithms in cases known to be decidable, such as matching at low orders and unification of patterns.

References

[BCL92] Kim B. Bruce, Roberto Di Cosmo, and Giuseppe Longo. Provable isomorphisms of types.Mathematical Structures in
Computer Science, 2(2):231–247, 1992.

[DC76] Mariangiola Dezani-Ciancaglini. Characterization of normal forms possesing an inverse in theλβη-calculus.Theoretical
Computer Science, 2:323–337, 1976.

[DC95] Roberto Di Cosmo.Isomorphisms of types: fromλ-calculus to information retrieval and language design. Progress in
Theoretical Computer Science. Birkhauser, 1995. ISBN-0-8176-3763-X.

[FCB02] Marcelo Fiore, Roberto Di Cosmo, and Vincent Balat. Remarks on isomorphisms in typed lambda calculi with empty
and sum types. InLogic in Computer Science, pages 147–156, Los Alamitos, CA, USA, July 22–25 2002. IEEE Com-
puter Society.

[GS89] J. H. Gallier and W. Snyder. Higher-order unification revisited: complete sets of transformations.Journal of Symbolic
Computation, 8:101–140, 1989.

[Mil91] Dale Miller. A logic programming language with lambda-abstraction, function variables, and simple unification.Journal
of Logic and Computation, 1(4):497–536, 1991.

[Plo72] Gordon Plotkin. Building in equational theories. In B. Meltzer and D. Mitchie, editors,Machine Intelligence, volume 7,
pages 73–90. Edinburgh University Press, 1972.

[Rit90] M. Rittri. Retrieving library identifiers via equational matching of types. In M. E. Stickel, editor,10th International
Conference on Automated Deduction, pages 603–617. Springer, Berlin, Heidelberg, 1990.

[Rit91] Mikael Rittri. Using types as search keys in function libraries.Journal of Functional Programming, 1(1):71–89, 1991.
[RT91] C. Runciman and I. Toyne. Retrieving re-usable software components by polymorphic type.jfp, 1(2):191–211, 1991.
[ZGC03] Yoav Zibin, Yossi Gil, and Jeffrey Considine. Efficient algorithms for isomorphisms of simple types. InProceedings of

the 30th ACM Symposium on Principles of Programming Languages (POPL 2003), pages 160–171. ACM Press, 2003.
[ZW93] Amy Moormann Zaremsky and Jeannette M. Wing. Signature matching: a key to reuse. InFirst ACM SIGSOFT

Symposium on Foundations of Software Engineering, pages 182–190, 1993. ISBN:0-89791-625-5.

71

Pure Type Systems, Cut and Explicit Substitutions

Romain Kervarc and Pierre Lescanne

École Normale Supérieure de Lyon – Laboratoire de l’Informatique du Parallélisme
46 allée d’Italie, 69364 Lyon cedex 07, France
romain.kervarc@ens-lyon.fr, pierre.lescanne@ens-lyon.fr

Abstract Pure type systems are a general formalism allowing to represent many type systems – in particular, Baren-
dregt’sλ-cube, including Girard’s systemF , dependent types, and the calculus of constructions. We built a variant of
pure type systems by adding a cut rule associated to an explicit substitution in the syntax, according to the Curry-Howard-
de Bruijn correspondence. The addition of the cut requires the addition of a new rule for substitutions, with which we are
able to show type correctness and subject reduction for all explicit systems. Moreover, we proved that the explicitλ-cube
obtained this way is strongly normalizing.

1 Introduction

The calculus of constructions was designed by Coquand and Huet [7] as an extension of Girard’s
systemF [11] in order to provide a general typed language for proof assistants based onλ-calculus.
It was decomposed according to the different dependency kinds (type on type, term on type, type on
term) in the formalism of pure type systems (PTS in short) into the so-calledλ-cube by Barendregt
in [3] (to which the reader may refer for a general presentation), starting from simple types and
adding a kind of dependency (i.e. an axiom between sorts) on each edge to culminate at the calculus
of constructions (cf. figure below).

λ 2λ F λ P 2

λ ωλ F ω λ P ω λ C

=

= =

λ λ P

λ ω λ P ω

Been based on theλ-calculus, the cube misses two key points. On the computational side, the
λ-calculus does not give a complete account of the substitution since it is described in the meta-
theory. Making it a first-class citizen yields calculi known ascalculi of explicit substitutionforking
into two main families, namely with de Bruijn indices [1,17] and with explicit names [6,10]. On the
logical side, it misses the importantcut rule, which comes naturally as the typing rule for explicit
substitution. Unlike Verstergaard and Wells [19] who advocate for de Bruijn indices when dealing
with cut, we have chosen to consider the calculus with explicit namesλx due to Bloo and Rose [6].

Following Bloo [5], we designed a variant of PTS that we callexplicit pure type systems(EPTS
in short) as he does, although our system is slightly different from his: ourcut rule uses explicit
substitution in both subject and predicate, and we have a new rule calledxpand, which was needed

72

for subject reduction and is an avatar of thedrop rule of Lengrandet al. in [16]. So with all these
rules, we are able to prove correctness and subject reduction forexplicit pure type systems. With
axioms on sorts we build a cube similar to Barendregt’s cube forλ-calculus; thus the main result of
this paper is a proof of its strong normalization.
Related works. Other approaches considering cuts are Di Cosmo and Kesner [8] and Di Cosmo,
Kesner and Polonovski [9], Verstergaard and Wells [19] and Herbelin [13]. In [18], Muñoz studies
dependent types and explicit substitutions. Those approaches do not consider the whole cube and
they are all but [13] and part of [9] in the framework of de Bruijn indices. Note also that Lengrand
et al. [16], speak about cut. Anyway the closest work related to ours is this of Bloo [4,5], but he
considers only explicit substitution in terms, not in types.

2 Explicit pure type systems

2.1 Syntax, reduction and typing

The basic definition of pure type systems remains unchanged: a pure type system is a triple(S , A , R)
of sorts, axioms (pairs of sorts) and rules (triples of sorts).

Definition 2.1: λTx-calculus
Let T = (S ,A ,R) be a PTS. Forσ ∈ S , let Uσ be an infinite countable set of variables ofnatureσ.
The setEx(T) of T-expressions (with explicit substitutions)is defined by:
R E ::=σ x | σ | E E | λσx:E.E | Πσx:E.E | E〈σx:=E〉 ; σx ∈ Uσ ; σ ∈ S R
Knowing that inM〈x:=N〉, x is bound inM but not inN, the notion ofαx-equivalenceis defined as
usual, and the quotient setΛTx = Ex(T)/ αx≡ is the set of the terms of theλTx-calcul, to which the
operations ofEx(T) can be canonically extended. In the rest of this section, we will forget about
sort decoration for variables.

The setsbv(M) andfv(M) of theboundandfreevariables ofM are defined as usual.
The setav(M) of theavailablevariables ofM is defined as in [16]; this notion is more relevant than
free variables for terms with substitution. In what follows we shall as usual consider terms up to
α-conversion and use Barendregt’s convention.

The notion of reduction can now be defined:
Definition 2.2: βx-reduction in explicit PTS

One considers the following reduction rules:
(B) (λx:A.B)C B−→ B〈x:=C〉

(quant)(Πy:A.B)〈x:=C〉 X−→ Πy:A〈x:=C〉.B〈x:=C〉 (var) y〈x:=N〉 X−→ y if x 6= y
(abs) (λy:A.B)〈x:=C〉 X−→ λy:A〈x:=C〉.B〈x:=C〉 (gc) M〈x:=N〉 X−→ M if x/∈av(M)
(app) (AB)〈x:=C〉 X−→ A〈x:=C〉B〈x:=C〉 (subst)x〈x:=N〉 X−→ N

Thex-reduction, denoted x−→, is defined as the reduction relation induced byX−→, which is called
head-x-reduction. Theβx-reduction,

βx−→, is defined as the reduction relation induced byX−→ and
B−→. Here we make use of the (gc) rule instead of the (var) rule on its own. In fact this does not

make much difference.
Definition 2.3: Typing in explicit PTS

A type assertionis a couple denotedM : N whereM, the subject, belongs toΛTx and N, the
predicate, belongs toΛTx= ΛTx]{

∫
}. The additional

∫
element, namedpseudo-sort, is a special

73

type introduced for reasons explained afterwards.S is the disjoint unionS] {
∫
} and A is the

disjoint unionA]{(σ,
∫
)/σ ∈ S}.

Typing contextare finite ordered sequences (just as in PTS) with predicates inΛTx.
Type judgements, of the formΓ ` TM : N, are derived from the inference rules enounced in table 1
below. IndexT will be omitted in non-ambiguous cases.

(σ, τ) ∈ A
` σ : τ

(axiom)
Γ `A:ρ Γ,x:A `B:σ (ρ,σ,τ)∈R ;x/∈dom(Γ)

Γ ` Πx:A.B : τ
(rule)

Γ ` A : σ x /∈ dom(Γ)
Γ, x:A ` x:A

(hypothesis)
Γ ` A : B Γ `C : σ x /∈ dom(Γ)

Γ, x : C ` A : B
(weakening)

Γ ` (Πx:A.B):σ Γ, x:A ` M:B x /∈ dom(Γ)
Γ ` λx:A.M : (Πx:A.B)

(Π - I)
Γ ` M : (Πx:A.B) Γ ` N : A

Γ ` MN : B〈x:=N〉
(Π - E)

Γ, x : A ` M : B Γ ` N : A
Γ ` M〈x:=N〉 : B〈x:=N〉

(cut)

Γ ` M:B ∆ ` N:A P〈x:=N〉 X
head→ M

Γ ` P〈x:=N〉 : B
(xpand)

Γ ` M : A Γ ` B : σ A
βx
≡B

Γ ` M : B
(conversion)

Table 1.Typing rules for EPTS

Explicit PTS contain two new rules with respect to PTS. (cut) corresponds to Bloo’s (substitu-
tion) rule in [4] with substitution in both subject and predicate (i.e. term and type expression). It is
the version with explicit names of Muñoz’s (ClosΠ) rule in [18]. (xpand) is a not so straightforward
generalization of the (drop) rule introduced in [16].

Well-formedness and reduction and equivalence between contexts are defined as usual.

2.2 The “pseudo-sort” type

The need for the extra pseudo-type
∫

comes from the fact that inλTx, we apply substitutions
not only to term expressions, but also to type expressions – whereas for instance Bloo, in [4],
only applies explicit substitution to assertion subjects (i.e. term expressions), and not to assertion
predicates (i.e. type expressions). This choice implies the possible apparition of types of the form
σ〈x1:=N1〉 . . .〈xk:=Nk〉, which in fact is the same as sortσ.
We therefore wished to extend the PTS (conversion) rule:Γ ` M:A Γ ` B:σ A

βx
≡B

Γ ` M:B in order to be
able to swap typesA andB in case they both represent (i.e. areβx-equivalent to) a same sortσ.

The premiseΓ ` B : σ of the (conversion) rule ensures that only correct types are used. The
problem is how to extend it enough to allow to swapA andB and nevertheless preserve the cor-
rectness. It turned out that the most appropriate solution was to accept thatB might be of the
form τ〈x1:=N1〉 . . .〈xk:=Nk〉 provided that allNi should be typable. As a solution we introduce
the pseudo-sort

∫
, which intuitively means “disguised sort”, but should not be included in the set of

sorts, because it is well-known that type systems with the sort of all sorts are not consistent. We will
manipulate

∫
like a sort using (axiom) and (xpand), but we insist that

∫∫∫
is no sort, since it appears

74

nowhere in the set of rules nor in a context type assertion. This solution is in fact very appropriate
from the point of view of type correction.

2.3 The (xxxpand) rule

The introduction of this rule answers a specific identification problem linked with explicit substitu-
tions. On the one hand, this rule generalizes the (drop) rule (cf. [16]), which enables to type some
terms likeyz〈x:=zy〉. On the other hand, and this is the main reason of introduction of this rule, it
solves the following problem: it is sometimes needed to invert the discarding order of two hypothe-
ses, e.g.x : A andy : B, but thenx may well occur free inB. In the case of implicit substitutions,
a subsitution lemmasolves the problem by establishing that ifΓ, y : D, ∆ ` M : N andΓ `C : D,
thenΓ, ∆[C/y] ` M[C/y] : N[C/y]. But this lemma does not hold for explicit substitutions, two terms
equal up tox-conversion are then notsyntacticallyequal. It is therefore necessary to lift the substitu-
tions, and the (xpand) rule does it. In particular, (xpand) allows us to prove the subject reduction for
general pure type systems with explicit substitution, unlike Bloo [4,5], who has a counter-example:
R (λx:a.(λz:a.z)x)〈a:=b〉 βx−→→head λx:b.((λz:a.z)x)〈a:=b〉. R

One could object that the following rule is not satisfactory from the point of view of type infer-
ence, because it performs a kind of subject expansion. But in fact this is not the case, as for type
inference rules must be read upward: this rule simply allows to “push” the explicit substitution in-
ward enough to be able to type the term – which solves Bloo’s problem. Moreover, this corresponds
to the intuitive perception of explicit systems as lazy systems, where substitutions are not performed
when not needed.

In the conclusion of [18], Muñoz writes about problems related to a rule that he calls (ClosΠ),
which is in the framework ofλσ-like calculi of explicit substitution our cut rule. The problems
which he mentions are solved by (xpand).

3 Properties of explicit PTS

3.1 Type derivation lemmas

Lemma 3.1: Initialization
For anyΓ well-formed: if (σ : τ) ∈ A , thenΓ ` σ : τ and if (x : A) ∈ Γ, thenΓ ` x : A.

Lemma 3.2:Weakening
Let Γ and∆ be contexts,A, B be terms ofΛTx such thatΓ ⊆ ∆, ∆ be well-formed andΓ ` A : B.
Then∆ ` A : B.

Lemma 3.3:Generation
Let Γ be a context,M, T be terms ofΛTx. If Γ ` M:T, then:

(i) M = σ∈S ⇒ ∃τ∈S ,T
βx
≡τ∧ (σ : τ)∈A

(ii) M = x∈U ⇒ ∃τ∈S ,∃U∈ΛTx,Γ `U : τ∧ (x : U)∈Γ∧T
βx
≡U

(iii) M = Πx:A.B ⇒ ∃(ρ,σ,τ)∈R ,Γ ` A : ρ∧Γ,x : A ` B : σ∧T
βx
≡τ

(iv) M = λx:A.B ⇒ ∃σ∈S ,∃C∈ΛTx,Γ ` (Πx:A.C):σ∧Γ,x:A ` B:C∧T
βx
≡Πx:A.C

(v) M = AB ⇒ ∃C,D∈ΛTx,Γ ` A : (Πx:C.D)∧Γ ` B : C∧T
βx
≡D〈x:=B〉

(vi) M = A〈x:=B〉 ⇒ ∃C∈ΛTx,D∈ΛTx,Γ,x : C ` A : D∧Γ ` B : C∧T
βx
≡D〈x:=B〉

∨ ∃∆,∃C,D,E∈ΛTx,Γ ` E:D∧∆ ` B:C∧A〈x:=B〉 X→E∧T
βx
≡D

75

3.2 Type correctness and subject reduction

Theorem 3.4:Type correctness
Let k ∈ N be an integer,Γ be a context,A, B be two terms ofΛTx such thatΓ ` A : B. Then
∃σ ∈ S , Γ ` B : σ.

Theorem 3.5:Subject reduction
Let Γ, Γ′ be contexts andA, A′, B be three terms ofΛTx such thatΓ ` A : B, Γ βx−→→ Γ′ and
A

βx−→→ A′. ThenΓ′ ` A′ : B.

4 Strong normalization for the explicit λ-cube

In this part we will only consider EPTS from theλ-cube, that is, with the following sorts and axioms:
S = {∗, �} andA = {∗ : �} and rules amongR e

S = {[∗, ∗], [∗, �], [�, ∗], [�, �]}. To show that
thess systems are strongly normalizing, it is enough to show thatλCx is, as:

Lemma 4.1:
Let T be an EPTS of theλ-cube. LetΓ, A, B be such thatΓ `TA : B. ThenΓ ` λCxA : B.

The proof of strong normalization inλCx is achieved through a two-step reduction:

(i) show thatλCx is strongly normalizing ifλωx is;
(ii) show thatλωx is strongly normalizing ifF x is.

F x is an adaptation toλx of Girard’s systemF (cf. [12]), which we defined in a former work [14]
and proved to be strongly normalizing.And hence the theorem holds:

Theorem 4.2:Strong normalization for theλx-cube
All pure type systems of the explicitλ-cube are strongly normalizing.

5 Conclusion

We have studied explicit pure type systems (EPTS) which are an extension of pure type systems
(PTS) whereλ-calculus is replaced by the calculus of explicit substitutionλx.

We have defined in these EPTS an equivalent of Barendregt’sλ-cube and we have proven that
the explicit pure type systems of this cube fulfillsubject reductionand arestrongly normalizing. We
claim that our EPTS are the simplest and the most complete extensions of PTS with mechanisms
for internalized substitution.

References

1. M. Abadi, L. Cardelli, P.-L. Curien, J.-J. Lévy. Explicit substitutions. InProc. of 17th ACM Symposium on Principles
of Programming Languages, pages 31–46, San Francisco, California, U.S.A.,. ACM.

2. H. Barendregt.Lambda-calculus, its Syntax and its Semantics. Elsevier Science Publishers B.V. (North Holland),
Amsterdam,.

3. H. Barendregt. Lambda calculi with types. In S. Abramsky, D. Gabbay, T. Maibaum, editors,Handbook of Logic
in Computer Science, volume 2 (Background: Computational Structures), pages 117–309. Oxford University Press,
.

4. R. Bloo. Preservation of Termination for Explicit Substitution. Proefschrift ter verkrijging van de graad van Doctor,
Technische Universiteit Eindhoven, Oct..

76

5. R. Bloo. Pure type systems with explicit substitution.Mathematical Structures in Computer Science, 11(1):3–19,
Feb..

6. R. Bloo, K. H. Rose. Preservation of strong normalisation in named lambda-calculi with explicit substitution and
garbage collection. InCSN ’95, pages 62–72,.

7. T. Coquand, G. Huet. The Calculus of Constructions.Information and Computation, 76(2):95–120,.
8. R. Di Cosmo, D. Kesner. Strong normalization of explicit substitutions via cut elimination in proof nets. InProc.

of 12th IEEE Symposium on Logic in Computer Science, pages 35–46, Warsaw, Poland,. Warsaw University,
IEEEC Society Press.

9. R. Di Cosmo, D. Kesner, E. Polonovski. Proof nets and explicit substitutions.Mathematical Structures in Computer
Science, 13(3):409–450, June.

10. D. Dougherty, P. Lescanne. Reduction, intersection types and explicit substitutions.Mathematical Structures in
Computer Science, 13(1):55–85,.

11. J.-Y. Girard. Interprétation fonctionnelle et élimination des coupures de l’arithmétique d’ordre supérieur. thèse de
doctorat, Université Paris VII, June.

12. J.-Y. Girard, Y. Lafont, P. Taylor.Proofs and Types. Cambridge University Press,.
13. H. Herbelin. Explicit substitutions and reducibility.Journal of Logic and Computation, 11(3):29–449,.
14. R. Kervarc. Substitutions explicites dans leλ-cube. Rapport de DÉA, École normale supérieure de Lyon, July.

LIP DÉA Report Nr. 2002-04.
15. J.-L. Krivine. Lambda-calcul, types et modèles. Masson, Paris,.
16. S. Lengrand, P. Lescanne, D. Dougherty, M. Dezani-Ciancaglini, S. van Bakel. Intersection types for explicit sub-

stitutions.Information and Computation, 189(1):17–42,.
17. P. Lescanne. Fromλσ to λv: a journey through calculi of explicit substitutions. InProc. of 21th ACM Symposium

on Principles of Programming Languages, pages 60–69, Portland, Oregon, U.S.A.,. ACM.
18. C. Muñoz. Dependent types, explicit substitutions.Mathematical Structures in Computer Science, 11(1):91–129,

.
19. R. Vestergaard, J. B. Wells. Cut rules and explicit substitutions.Mathematical Structures in Computer Science,

11(1):131–168,.

77

PSN Implies SN

Emmanuel Polonovski

PPS, CNRS - Université Paris 7
Emmanuel.Polonovski@pps.jussieu.fr

Abstract. In the framework of explicit subsitutions there is two termination properties: preservation of
strong normalization (PSN), and strong normalization (SN). Since there are not easily proved, only one of
them is usually established (and sometimes none). We propose here a connection between them which helps
to get SN when one already has PSN. For this purpose, we formalize a general proof technique of SN which
consists in expanding substitutions into “pure” λ-terms and to inherit SN of the whole calculus by SN of
the “pure” calculus and by PSN. We apply it successfully to a large set of calculi with explicit substitutions,
allowing us to establish SN, or, at least, to trace back the failure of SN to that of PSN.

1 Introduction

Calculi with explicit substitutions were introduced [1] as a bridge between λ-calculus [7]
and concrete implementations of functional programming languages. Those calculi intend
to refine the evaluation process by proposing reduction rules to deal with the substitution
mechanism – a meta-operation in the traditional λ-calculus. It appears that, with those
new rules, it was much harder (and sometimes impossible) to get termination properties.
The two main termination properties of calculi with explicit substitutions are:

• Preservation of strong normalization (PSN), which says that if a pure term (i.e.
without explicit substitutions) is strongly normalizing (i.e. cannot be infinitely reduced)
in the pure calculus (i.e. the calculus without explicit substitutions), then this term is
also strongly normalizing with respect to the calculus with explicit substitutions.

• Strong normalization (SN), which says that, with respect to a typing system, every
typed term is strongly normalizing in the calculus with explicit substitutions, i.e. every
terms in the subset of typed terms cannot be infinitely reduced.

These two properties are not redundant, and Fig. 1 shows the differences between them.
PSN says that the horizontally and diagonally hatched rectangle is included in the diag-
onally hatched rectangle. SN says that the vertically hatched rectangle is included in the
diagonally hatched rectangle. Even if they work on a different set of terms, there is a com-
mon part: the vertically and horizontally hatched rectangle, wich represent the typed pure
terms.

SN and PSN are both termination properties, although their proofs are not always
clearly related: sometimes SN is shown independently of PSN (directly, by simulation, etc.,
see for example [12,11]), sometimes SN proofs uses PSN (see for example [4]). We present
here a general proof technique of SN via PSN, initially suggested by H. Herbelin, which
uses that common part of typed pure terms.

In section 2, we formalize the technique and in section 3 we summarize the results we
achieved by applying it to a set of calculi. This set has been choosen for the variety of

78

Terms with
explicit substitutions

Typed terms

Strongly normalizing terms

Pure terms

Typed pure terms

Strongly normalizing pure terms

Fig. 1. Normalization properties of terms with and without explicit substitutions

their definitions: with or without De Bruijn indices, unary or multiple substitutions, with
or without composition of substitutions, and even a symmetric non-deterministic calculus.
In the last section, we briefly talk about perspectives in this framework.

2 Proof Technique

The idea of this technique is the following. Let t be a typed term with explicit substitutions
for which we want to show termination. With the help of its typing judgment, we build a
typed pure term t′ which can be reduced to t. For that purpose, we expand the substitutions
of t into redexes. We call this expansion Ateb (the opposite of Beta which is usually the
name of the rule which creates explicit substitutions). Then, with SN of the pure calculus
and PSN, we can export the strong normalization of t′ (in the pure calculus) to t (in the
calculus with explicit substitutions).

In practice, this sketch will only apply in some cases, and some others will require some
adjustment to this technique. For our technique to work, we need that the Ateb expansion
satisfies some properties. The first one is always easily checked.

Property 1 (Preservation of typability). If t is typable, with respect to a typing system T ,
in the calculus with explicit substitution, then Ateb(t) is typable, with respect to a typing
system T ′ (possibly T ′ = T) in the pure calculus.

Only some calculi can exhibit an Ateb function which satisfies the second one.

Property 2 (Initialization). Ateb(t) reduces to t in zero or more steps in the calculus with
explicit substitutions.

If we can get it, then we use the direct proof to be presented in section 2.1. Otherwise,
we need to use the simulation proof to be presented in section 2.2. In the sequel, SN will be
the set of strongly normalizing pure terms and SN x will be the set of strongly normalizing
terms of the calculus with explicit substitutions.

79

2.1 Direct proof

We can immediately establish the theorem.

Theorem 1. For all typing systems T and T ′ such that, in the pure calculus, all typable
terms with respect to T are strongly normalizing, if there exists a function Ateb from explicit
substitution terms to pure terms satisfying properties 1 and 2 then PSN implies SN (with
respect to T ′).

Proof. For every typed term t of the calculus with explicit substitution, Ateb(t) is a pure
typed term (by property 1). By the strong normalization hypothesis of the typed pure
calculus, we have Ateb(t) ∈ SN . By hypothesis of PSN we obtain that Ateb(t) is in SN x.
By property 2, we get Ateb(t) →∗ t, which gives us directly t ∈ SN x.

2.2 Simulation proof

We must relax some constraints on Ateb. We will try to find an expansion of t to t′ such
that t′ reduces to a term u and there exists a relation R with uRt. The choosen relation
must, in addition, enable a simulation of the reductions of t by the reduction of u. If it is
possible, we can infer strong normalization of t from strong normalization of u.

To proceed with the simulation, we first split the reduction rules of the calculus with
explicit substitutions into two disjoints sets. The set R1 contains rules which are trivially
terminating, and R2 contains the others. Secondly, we build a relation R which satisfies the
following properties.

Property 3 (Initialisation). For every typed term t, there exists a term uRt such that
Ateb(t) reduces in 0 or more steps to u in the calculus with explicit substitutions.

Property 4 (Simulation ∗). For every term t, if t →R1 t′ then, for every uRt, there exists u′

such that u →∗ u′ and u′Rt′.

Property 5 (Simulation +). For every term t, if t →R2 t′ then, for every uRt, there exists
u′ such that u →+ u′ and u′Rt′.

We display those properties as diagrams :

Initialisation

t
↙ R

Ateb(t) →∗ u

Simulation ∗

t →R1 t′

R R
u →∗ u′

Simulation +

t →R2 t′

R R
u →+ u′

With this material, we can establish the theorem.

Theorem 2. For all typing systems T and T ′ such that, in the pure calculus, all typable
terms with respect to T are strongly normalizing, if there exists a function Ateb from explicit
substitution terms to pure terms and a relation R on explicit substitutions terms satisfying
properties 1, 3, 4 and 5 then PSN implies SN (with respect to T ′).

80

Proof. We prove it by contradiction. Let t be a typed term with explicit substitutions which
can be infinitly reduced. By property 3 there exists a term u such that Ateb(t) →∗ u, and
Ateb(t) is a pure typed term (by property 1). By the strong normalization hypothesis of the
typed pure calculus, we have Ateb(t) ∈ SN . By hypothesis of PSN we obtain that Ateb(t)
is in SN x and it follows that u ∈ SN x.

By property 3, we also have uRt, and, with properties 4 and 5, we can build an infinite
reduction from u, contradicting the strong normalization of u.

3 Results

3.1 λx-calculus

The λx-calculus [6,5] is probably the simplest calculus with explicit substitutions. It only
makes the subtitution explicit. Since this calculus provides no rules to deal with substitu-
tions composition, it preserves strong normalization. It is for this calculus that the technique
has been originately used by Herbelin. Therefore, we can without surprises apply the direct
proof to get strong normalization.

3.2 λυ-calculus

The λυ-calculus [16,3] is the De Bruijn counterpart of λx. As λx, it has no composition
rules, and therefore satisfies PSN. For this calculus, we must use the simulation proof to
deal with indices modification operators. We succeed to use it and it is, as far as we know,
the first proof of SN for a simply typed version of λυ (see [19]).

3.3 λws-calculus

The λws-calculus [13,9,10] introduces an explicit weakening operator, which allows to pre-
serve strong normalization even with composition rules. It has already been shown to be
SN [12]. We fail to apply the technique, due to the explicit weakening operator combined
with the rigidity of the typing environment one usually has in calculi with De Bruijn indices.

3.4 λwsn-calculus

In [12] a named version of λws was proposed. In current work, we developed a new version
of this calculus : λwsn. We already have a SN proof for this calculus, almost similar to the
original one, and this technique can be applied, using the direct proof. We cannot conclude
to SN by this way, since PSN has not yet been shown (see [19]).

3.5 λσ-calculus

The well known λσ-calculus [1] does not have either PSN nor SN, as shown in [17]. However,
we can successfully apply our technique, using the simulation proof. It does not gives us
SN, but it reduces the SN problem to that of PSN. If someone proposes a strategy which
preseves strong normalization, our work will give immediately a SN proof.

81

3.6 λσn-calculus

Introduced in the same work [1], the named version of λσ suffers the same problem con-
cerning PSN. We can also apply the simulation proof to it, and conclude similarly.

3.7 λµµ̃x-calculus

The λµµ̃-calculus [8,14] is a symmetric version of the λµ-calculus [18]. As for symmetric
λ-calculus [2], the symmetry raises difficulties in normalization proofs. We can build an
explicit substitutions version “à la” λx : λµµ̃x. In [20], we apply successfully the technique,
by direct proof, to show its strong normalization.

4 Perspectives

It seems that this technique can be used for many calculi with explicit substitutions. Its
application on named calculi is easy, in general, and leads to a simple direct proof. For
some others, as for calculi with De Bruijn indices, we must use the simulation proof, which
tend to be not so easy. Further work includes its application to the λws-calculus and to the
λlxr-calculus [15].

References

1. Abadi, M., Cardelli, L., Curien, P.-L., Lévy, J.-J.: Explicit Substitutions. Journal of Functional Pro-
gramming (1991).

2. Barbanera, F., Berardi, S.: A symmetric lambda-calculus for classical program extraction. Proceedings
of TACS’94 (1994), Springer-Verlag LNCS 789, 495–515.

3. Benaissa, Z.-E.-A., Briaud, D., Lescanne, P., Rouyer-Degli, J.: λυ, a calculus of explicit substitutions
which preserves strong normalisation. Journal of Functional Programming (1996).

4. Bloo, R.: Preservation of Termination for Explicit Substitutions. PhD thesis, Eindhoven University
(1997).

5. Bloo, R., Geuvers, H.: Explicit Substitution: on the Edge of Strong Normalisation. Theoretical Computer
Science (TCS 1999), 211, 375–395.

6. Bloo, R., Rose, K.: Preservation of strong normalization in named lambda calculi with explicit sub-
stitution and garbage collection. In Computing Science in the Netherlands, pages 62-72. Netherlands
Computer Science Research Foundation, 1995.

7. Church, A.: The Calculi of Lambda Conversion. Princeton Univ. Press (1941).
8. Curien, P.-L., Herbelin, H.: The duality of computation. Proceedings of ICFP’00 (2000), ACM Press,

233–243.
9. David, R., Guillaume, B.: The λl-calculus. In D. Kesner, editor, Proceedings of the 2nd Workshop on

Explicit Substitutions: Theory and Applications to Programs and Proofs, pages 2-13, July 1999.
10. David, R., Guillaume, B.: A λ-calculus with explicit weakening and explicit substitution. Mathematical

Structures in Computer Science, 11, 2001.
11. David, R., Guillaume, B.: Strong Normalisation of the Typed λws-calculus. In Proceedings of the 17th

International Worshop Computer Science Logic (CSL 2003), volume 2803 of Lecture Notes in Computer
Science, pages 155-168. Springer, Vienna, 2003.

12. Di Cosmo, R., Kesner, D., Polonovski, E.: Proof nets and explicit substitutions. In J. Tiuryn, editor,
Foundations of Software Science and Computation Structures (FOSSACS 2000), volume 1784 of Lecture
Notes in Computer Science, pages 63-81. Springer-Verlag, Mar. 2000.

13. Guillaume, B.: Un calcul de substitution avec étiquettes. PhD thesis, Université de Savoie (1999).

82

14. Herbelin, H.: Explicit substitutions and reducibility. Journal of Logic and Computation (2001), 11,
429–449.

15. Kesner, D., Lengrand, S.: Broadening the horizon of the explicit substitution paradigm via a logical
model. Submitted paper (2004).

16. Lescanne, P.: From lambda-sigma to lambda-upsilon: a journey through calculi of explicit substitutions.
In 21st ACM Symposium on Principles of Programming Languages (POPL’94), 16-19 Janvier 1994,
Portland, Oregon, pp 60-69.

17. Mellies, P.-A.: Typed λ-calculi with explicit substitutions may not terminate. Proceedings of TLCA’95
(1995), Springer LNCS, 902, 328–334.

18. Parigot, M.: λµ-calculus: An algorithmic interpretation of classical natural deduction. Proceedings of
LICS’93 (1993), Computer Society Press, 39–46.

19. Polonovski, E.: Substitutions explicites, logique et normalisation. PhD thesis, Université Paris 7, (2004).
In preparation.

20. Polonovski, E.: Strong normalization of λµµ̃-calculus with explicit substitutions. In Proceedings of
Foundations of Software Science and Computation Structures (FOSSACS 2004), LNCS 2987, Mar.
2004.

83

Deriving Strong Normalisation

Stéphane Lengrand

School of Computer Science, University of St Andrews, United Kingdom.
PPS, Université Paris 7, France. lengrand@pps.jussieu.fr
WWW home page: http://www.pps.jussieu.fr/lengrand/

Abstract We present a somewhat general technique to derive the strong normalisation of some specific
terms of various calculi with explicit substitutions from the strong normalisation of some (well-chosen) λ-
terms. One main application of the method is proving the Preservation of Strong Normalisation (PSN) of
various explicit substitution calculi and the strong normalisation of the Cut-elimination in various sequent
calculi.

• The notion of PSN concerns syntactic extensions of λ-calculus with their own reduction
systems and states that if a λ-term is strongly normalising for the β-reduction, then it is
still strongly normalising when considered as a term of the extended calculus undergoing
its corresponding reduction system. Such extensions of λ-calculus are explicit reduction
calculi like λx [BR95], the reduction system of which reduces β-redexs and evaluate the
explicit substitutions.
The definition of the PSN property can be slightly generalised for calculi in which λ-
calculus can be embedded (by a one-to-one translation, say A), and the embedding
need not be the identity/inclusion. In that case PSN states that if a λ-term is strongly
normalising, then its encoding is also strongly normalising. This is the case for the
explicit substitution calculus λlxr introduced in [KL04] which requires terms to be linear
and hence is not a syntactic extension of λ-calculus.

λx

λ

λlxr

λ
A() +3

• Another application is deriving the strong normalisation of Cut-elimination in intuition-
istic sequent calculus. When using a term-assignment system to denote proofs of sequent
calculus, the Cut-rule is actually the typing rule of a term constructor that very much
looks like an explicit substitution, so that Cut-elimination consists in fully propagating
this “explicit substitution” operator.

1 The idea of simulation and its problems

The base idea to prove that a term M of a calculus with explicit substitutions is SN is
to interpret it as a strongly normalising λ-term L(M) and then simulate its reductions by
β-reductions of its interpretation. Hence, after a certain number of steps, only reductions

84

can take place that no longer modify the interpretation. Then it would suffice to show that
the reductions that do not necessarily induce at least one β-reduction terminate, so that no
infinite reduction sequence can start from M , as illustrated in Figure 1.

M

��

L() +3 L(M) ∈ SNβ

β∗

��
N1

∗

��

L() +3 L(N1)

β∗
��

Ni

∗

��

L() +3 L(Ni)

Ni+j

∗

��

L()

2:llllllllllllll

llllllllllllll L()

7?xxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxx

Figure 1. Deriving strong normalisation by simulation

For PSN, if M = A(t) where t is the λ-term supposed to be SNβ , then we would take
L(M) = t. For sequent calculus, it would be a typed (and hence strongly normalising) λ-
term that denotes a proof in natural deduction of the same sequent (using Curry-Howard
correspondence), so that the idea of simulating Cut-elimination by β-reductions is closely
related to Prawitz’s correspondence [Pra65].

There is one problem in doing so: an encoding into λ-calculus that allows the simulation
needs to interpret explicit substitutions by implicit substitutions like t{x = u}. But should
x not be free in t, all reduction steps taking place within the term of which u is the encoding
would not induce any β-reduction in t{x = u}.

Therefore, the sub-system consisting of all the reductions that are not necessarily simu-
lated by at least one β-reduction is too big to be proven terminating (and very often it is
not).

2 Refining the simulation by using Church-Klop’s λI-calculus

Our contribution is to overcome this problem by encoding a calculus with explicit substi-
tutions in Church-Klop’s λI-calculus [Klo80] instead of λ-calculus. On the one hand, λI
extends the syntax of λ-calculus with a “memory operator” so that, instead of being thrown
away, a term N can be retained and carried along in a construct [− , N]. With this opera-
tor, those bodies of substitutions are encoded that would otherwise disappear, as explained
above. On the other hand, λI restricts λ-abstractions to variables that have at least one free
occurrence, so that β-reduction never erases its argument.

85

Doing so requires the encoding in λI to be non-deterministic, i.e. we define a relation
H between the calculus and λI, and the reason for this is that, since the reductions in λI
are non-erasing reductions, we need to add this memory operator at random places in the
encoding, using such a rule:

M H T
U ∈ λI

M H [T,U]

For instance, λx.x H λx.[x, x] but also λx.x H [λx.x, λz.z], so that both λx.[x, x] and
[λx.x, λz.z] (and also λx.x) are encodings of λx.x.

Another problem that arises is that explicit substitutions are pushed down in the terms
of the calculus, whereas the memory operator cannot be pushed down in λI, making the
simulation difficult. Hence, we use a subtle side-condition for the encoding of an explicit
substitution 〈N/x〉M :

M H T N H U
x ∈ FV (T) or N ∈ SN

〈N/x〉M H T{x = U}

1. Always requiring x ∈ FV (T) would be too strong, because the substitution 〈N/x〉
can be propagated into the sub-terms of M whereas x has no reason to be free in the
corresponding sub-terms of T , so the simulation theorem would not hold.

2. On the contrary, no side-condition would make the encoding too relaxed because U could
disappear and the reduction steps that could take place within N would be simulated
by zero reduction steps so we would have the same problem as with λ-calculus.

3. The side-condition x ∈ FV (T) or N ∈ SN is the adequate balance:
• First, when we reduce N or reduce T , the side-condition is still preserved (because

reductions in λI are non-erasing).
• If N 6∈ SN, then x ∈ FV (T) is required and for the same reason as in point 1

we cannot simulate the propagation of 〈N/x〉. So we need to prove that from a
term which is not strongly normalising we can find an infinite reduction sequence
that never propagates such a substitution, and this can be done because instead of
propagating 〈N/x〉, we can leave it where it is and infinitely reduce N instead.

• If on the contrary N ∈ SN, then we can simulate its propagation because we never
care whether x ∈ FV (. . .), but for the same reason as in point 2, reduction steps
within N might be simulated by zero reduction steps, but because N ∈ SN this can
only happen finitely many times (we call those reductions safe reductions).

Eventually, the reduction relation of the explicit substitution calculus is split into two parts
Y and Z that satisfy the following simulation theorem:

Theorem 1 (Simulation). Suppose M H T .

• If M −→Y N , there is a U such that N H U and T −→+ U .
• If M −→Z N , there is a U such that N H U and T −→∗ U .

Now it must be proven that every term M can be encoded into a strongly normalising
term of λI. This depends on the calculus that is being treated, but the following method
generally works:

86

• Encode the term M as a strongly normalising λ-term t, such that no sub-term is lost,
i.e. not using implicit substitutions. For PSN, the original λ-term would do, because it
is strongly normalising by hypothesis; for a proof-term of sequent calculus, t would be a
λ-term typed in an appropriate typing system, the typing tree of which is derived from
the proof-tree of the sequent (we would get t ∈ SNβ using a theorem stating that typed
terms are SNβ).

• Then encode t in λI with the following encoding:

i(x) = x
i(λx.t) = λx.i(t) x ∈ FV (i(t))
i(λx.t) = λx.[i(t), x] x 6∈ FV (i(t))
i(t u) = i(t) i(u)

In [KL04] we prove that if a λ-term t is strongly normalising for β-reductions, then
i(t) is weakly normalising in λI. The proof simply consists in simulating an adequate
reduction sequence that starts from t and ends with a normal form, the encoding of
which is a normal form of λI. What makes this simulation work is the fact that the
reduction sequence is provided by a perpetual strategy (the definition of which involves
side-conditions similar to that of the above inference rule). Also, weak normalisation
implies strong normalisation in λI [Ned73], so i(t) is strongly normalising.

• Then prove that i(t) reduces to one of the non-deterministic encodings of M in λI, that
is, that there is a term T such that M H T and i(t) −→∗ T .

The technique is summarised in Figure 2.
Finally, it remains to be proven that the relation Z that consists of the reductions that

are not simulated in at least one step is now small enough to be terminating.

3 Conclusion

This technique works for λx, giving a new proof of PSN (already shown in [BR95]), as
well as for proving PSN of the explicit substitution calculus λlxr of [KL04], and for various
sequent calculi that range from propositional logic to a logic as expressive as the Calculus
of Constructions, and we believe that it can be applied to many other calculi.

References

[BR95] R. Bloo and K. H. Rose. Preservation of strong normalisation in named lambda calculi with explicit
substitution and garbage collection. In CSN ’95 – Computer Science in the Netherlands, pages
62–72, Koninklijke Jaarbeurs, Utrecht, November 1995.

[KL04] D. Kesner and Stéphane Lengrand. Broadening the horizon of the explicit substitution paradigm
via a logical model. submitted to CSL’ 2004.

[Klo80] Jan-Willem Klop. Combinatory Reduction Systems, volume 127 of Mathematical Centre Tracts.
CWI, Amsterdam, 1980. PhD Thesis.

[Ned73] Rob Nederpelt. Strong Normalization in a Typed Lambda Calculus with Lambda Structured Types.
PhD thesis, Eindhoven University of Technology, 1973.

[Pra65] D. Prawitz. Natural deduction. a proof-theoretical study. In Acta Universitatis Stockholmiensis,
volume 3. Almqvist & Wiksell, 1965.

87

The calculus
which is being treated λ λI

t ∈ SNβ

i() +3 i(t)

∗

��
M

��

H +3

/7

T

∗

��
N1

∗

��

H +3 U1

∗
��

Ni

Z∗

��

H +3 Ui

Ni+j

Z∗

��

H

/7hhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhh H

3;ooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooo

Figure 2. The general technique to prove that M ∈ SN

88

Higher-Order Rewriting with Types and Arities

Jean-Pierre Jouannaud1 and Femke van Raamsdonk2 and Albert Rubio3

1 LIX, École Polytechnique, 91400 Palaiseau, France
jouannaud@lix.polytechnique.fr

2 Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands
femke@cs.vu.nl

3 Technical University of Catalonia, Pau Gargallo 5, 08028 Barcelona, Spain
rubio@lsi.upc.es

Abstract. We introduce a new framework for higher-order rewriting where function symbols and variables
have both a type and an arity. Rewriting is defined modulo βη. A novel feature is that rules of functional
type are admitted. It is shown that rewriting and equality coincide, a critical pair lemma is given, and a
termination method based on the higher-order recursive path ordering is given.

1 Introduction

Background. Higher-order rewrite rules are increasingly used in programming languages
and logical systems, with three main goals: describing computations, rule-based decision
procedures, and encoding other logical systems. As usual, the choice of the syntax in which
the rules are expressed plays a crucial role, as well as the definition of rewriting itself. Several
proposals for frameworks of higher-order rewriting have been made by Klop, Khasidashvili,
Nipkow, and by Jouannaud and Okada.

The first proposal for a format of higher-order rewriting are the Combinatory Reduction
Systems (CRSs) defined by Klop [8], inspired by the Contraction Schemes of Aczel [1].
Independently of Klop, Khasidashvili [7] introduced the similar framework of Expression
Reduction Systems (ERSs). CRSs are second-order systems, and are untyped. A drawback
is that the definition of rewriting makes use of a specific meta-language.

The second proposal are the Higher-Order Rewrite Systems (HRSs) introduced by Nip-
kow [11,9]. In HRSs we work with simply typed λ-calculus as a meta-language, and pattern-
matching is modulo βη. This is called higher-order pattern matching. The left- and right-
hand side of a rewrite rule of a HRS must be of base type. This rules out a rule of the form
diff(λx. sin(x)) → λx. cos(x). Further, rules must be written in η-long form, which may
be cumbersome, as for instance in the following rule for map: map(λx. F (x), cons(h, t)) →
cons(F (h),map(λx. F (x), t), where would be more natural to use F instead of λx. F (x).

The third proposal was made by Jouannaud and Okada [4,2]. In the Algebraic-Functional
Systems (AFSs) the rewrite relation is induced by a set of algebraic rules and the β-reduction
rule. In AFSs the definition of substitution is not internalized, so the right-hand side of the
β-reduction rule is not a term but uses meta-notation. AFSs use plain pattern matching for
firing rules, which is too weak for most encodings.

Problem. The question that is considered in this work is how to define typed higher-order
rewriting modulo βη (with higher-order pattern-matching) where function symbols and
variables have types and arities such that higher-order rewrite rules can be allowed.

Contribution. We define a framework for higher-order rewriting that combines the advan-
tages of the three earlier introduced frameworks. Rewriting is modulo βη but uses βη-normal
forms instead of long-βη-normal forms as representatives of a βη-equivalence class. A novel
feature of our framework is that rules of functional type are allowed.

89

2 The framework

In this section we discuss a few aspects of our framework.

Types. The set of (simple) types is inductively defined by the following grammar: σ, τ ::=
s(σ1, . . . , σn) |σ → σ′, where s is a sort symbol of arity n. A type is functional if it is of the
form σ → σ′, and a base type otherwise.

Type declarations. In our framework, function symbols and variables have besides a type
also an arity which is a natural number denoting the number of arguments it is supposed to
have. That is, we combine a typed setting as in HRSs and AFSs with the presence of arities
as in CRSs (all variables have arity 0 in AFSs). In order to express the combination of a
type and an arity, we use type declarations as in AFSs. A type declaration is an expression
of the form σ1× . . .×σn ⇒ τ with σ1, . . . , σn, τ types. Such a type declaration is a notation
for the type σ1 → . . . → σn → τ in which it is also expressed that the arity is n.

Typing rules. We use the following typing rules to derive statements of the form Γ ` t : σ.
Here Γ is an environment, containing type declarations for variables and function symbols,
t is a term, and σ is a type.

X : σ1 × . . .× σn ⇒ τ ∈ Γ Γ ` si : σi

Γ ` X(s1, . . . , sn) : τ
var

Γ, x :⇒ σ ` t : τ

Γ ` λx : σ. t : σ → τ
abs

f : σ1 × . . .× σn ⇒ τ ∈ Γ Γ ` si : σi

Γ ` f(s1, . . . , sn) : τ
fun Γ ` s : σ → τ Γ ` t : σ

Γ ` @(s, t) : τ
app

It is important that all bound variables have arity zero. Note that the variable x in the
abstraction rule has arity zero. The variable X in the variable rule has arity n with n ≥ 0.
We use the notation convention that variables written as x, y, z have arity zero; the arity
of variables written as X, Y, Z, . . . is zero or greater.

A second important point is that the typing system guarantees that symbols get exactly
the number of arguments as prescribed by their arity. Therefore, we use the notations
f(s1, . . . , sm) and X(s1, . . . , sm) if and only if f and X have arity m.

Modulo βη. In HRSs we work modulo βη and use as representative of an equivalence class
its (unique) long βη-normal form. Here we take a different approach and use instead as
a representative the (unique) βη-normal form. An expression is called a term if it is in
βη-normal form, and a preterm if it not necessarily in βη-normal form. The η-reduction
rule λx.@(s, x) →η s is subject to the usual side-condition, and in addition the arity of the
symbols plays a role here. We explain this by means of an example. The symbol f in the
term λx.@(f, x) has arity 0. Here we can apply the η-reduction rule which yields the term
f . In contrast, if f is a symbol of arity 1, then λx.@(f, x) is not a term. Then λx. f(x) is
a term, but here the η-reduction rule doesn’t apply.

Rewrite relation. We adapt the definition of patterns to our framework. The left-hand side
of a rewrite rule is required to be a term of the form f(l1, . . . , ln) with all li patterns. Rules
of functional type are allowed, but the left-hand side is not allowed to be an abstraction. An
example of a rewrite rule is diff(λx. sin(x)) → λx. cos(x) using the declaration diff : (R →
R) ⇒ (R → R). The rewrite relation is defined on terms (in βη-normal form).

90

3 Results

In this section we describe the results obtained for our framework; in some cases this is still
work in progress.

Rewriting and equality. In HRSs, rules of functional type are not admitted. The reason is
that they cause the equality relation induced by the rewrite rules (viewed as equations) to
be different from the reflexive-transitive-symmetric closure of the rewrite relation.

In our framework, rules of functional type are admitted. We avoid the problem that
occurs in the HRS setting by requiring that the left-hand side of a rewrite rule is of the
form f(l1, . . . , ln). Because it is neither an abstraction nor an application, there is no overlap
with the rules for β- and η-reduction that are applied on a meta-level. Using one technical
lemma, we can show the following theorem.

Theorem 1. We have s =R s′ if and only if s↓↔ s′ ↓.

Here s and s′ are preterms, and t↓ denotes the βη-normal form of t. An alternative approach
could be to add extensions rules as those by Stickel in order to ensure coherence [3].

Local confluence. We use the following adaptation of the definition of patterns due to Miller
[10]: a pattern is an application-free term in βη-normal form where all free variables have
only different bound variables as arguments. By slightly adapting the standard unification
algorithm, it can be shown that unification of patterns (in our sense) is decidable.

The definitions of overlapping rules and critical pairs are almost the same as for HRSs.
Also the proof of the following theorem is similar to the analogous result for HRSs [11,9].

Theorem 2. The rewrite relation is locally confluent if and only if all critical pairs are
joinable.

Termination. Jouannaud and Rubio [5,6] introduce a higher-order version of the recursive
path ordering (HORPO). We adapt HORPO to the present setting. This yields a termi-
nation method for our framework: the rewriting system is terminating if l � r for every
rewrite rule l → r. Here � is used to denote HORPO. As usual, a key step in the proof of
correctness of this method is the following result.

Theorem 3. The ordering � is well-founded.

The proof proceeds as follows: for every term s and computable substitution γ it is shown
by induction on the typing derivation of s that sγ is computable. Using HORPO, we can for
instance show termination of the rewrite rule h(g(X, F)) → g(X, λyz. h(@(F, y, z))) with
the declarations h : A ⇒ A and g : A× (A → A → A) ⇒ A.

Further research. At the moment HORPO is not yet very useful for comparing an algebraic
term of functional type with an abstraction. It would be interesting to make HORPO more
powerful such that also those comparisons can be done smoothly.

Further, we aim to consider more general typing systems. Adding polymorphism as in
[6] should not be too difficult. However, adding dependant types could be hard.

91

References

1. P. Aczel. A general Church-Rosser theorem. University of Manchester, July 1978.
2. F. Blanqui, J.-P. Jouannaud, and M. Okada. The calculus of algebraic constructions. In P. Narendran

and M. Rusinowitch, editors, Proceedings of the 9th International Conference on Rewriting Techniques
and Applications (RTA ’99), number 1631 in LNCS, pages 301–316, Trento, Italy, July 1999. Springer
Verlag.

3. J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set of equations. SIAM Journal
of Computing, 15(4):1155–1194, 1986.

4. J.-P. Jouannaud and M. Okada. A computation model for executable higher-order algebraic specification
languages. In Proceedings of the 6th annual IEEE Symposium on Logic in Computer Science (LICS ’91),
pages 350–361, Amsterdam, The Netherlands, July 1991.

5. J.-P. Jouannaud and A. Rubio. The higher-order recursive path ordering. In Proceedings of the 14th
annual IEEE Symposium on Logic in Computer Science (LICS ’99), pages 402–411, Trento, Italy, July
1999.

6. J.-P. Jouannaud and A. Rubio. Higher-order recursive path orderings à la carte. URL:
http://www.lix.polytechnique.fr/Labo/Jean-Pierre.Jouannaud/biblio.html

7. Z.O. Khasidashvili. Expression Reduction Systems. In Proceedings of I. Vekua Institute of Applied
Mathematics, volume 36, pages 200–220, Tblisi, Georgia, 1990.

8. J.W. Klop. Combinatory Reduction Systems. Number 127 in Mathematical Centre Tracts. CWI, Ams-
terdam, The Netherlands, 1980. PhD Thesis.

9. R. Mayr and T. Nipkow. Higher-order rewrite systems and their confluence. Theoretical Computer
Science, 192:3–29, 1998.

10. D. Miller. A logic programming language with lambda-abstraction, function variables, and simple
unification. Journal of Logic and Computation, 1(4):497–536, 1991.

11. T. Nipkow. Higher-order critical pairs. In Proceedings of the 6th annual IEEE Symposium on Logic in
Computer Science (LICS ’91), pages 342–349, Amsterdam, The Netherlands, July 1991.

92

t

Vincent van Oostrom and Kees-Jan van de Looij and Marijn Zwitserlood

Department of Philosophy, Universiteit Utrecht, The Netherlands
oostrom,vdlooij,marijn@phil.uu.nl

Abstract. An optimal implementation of λβ-calculus into interaction nets with one type of scope node t.

1 Introduction

We present an implementation of β-reduction on λ-terms. For any λ-term [1] (Section 2),
translating it by � to an interaction net [5] (Section 3), then performing a number of
interaction steps (Section 4), and finally unwinding the resulting interaction net by M to a
tree-like net isomorphic to a λ-term again (Section 5), yields a λ-term which is reachable
by a number of β-steps from the initial term.

Although optimality was the original motivation for our studies, we wil not high-light
it here. Instead, we focus on just presenting the implementation and some intuitions.

2 λ-calculus

In this section we present a factorisation of β-reduction in the nameless λ-calculus [3] into
replication and scope extrusion. The reason for presenting this factorisation is that the
implementation of β-reduction into interaction nets in Section 4 is obtained by localising
the global parts of this factorisation. We employ the following as a running example.

Example 1. The application 2 2 of the (Church) numeral 2 = λλ(S0)((S0)0) to itself, reduces

2 2 →β λ2(20)
→β λ2λ(S0)((S0)0)
→β λλ(λ(SS0)((SS0)0))((λ(SS0)((SS0)0))0)
→β λyλz(λx(SS0)((SS0)0))((S0)((S0)0))
→β λλ(S0)((S0)((S0)((S0)0)))

to 4 in the five steps displayed. (Application of Church numerals is exponentiation.)

We have employed unary notation for De Bruijn-indices in order to make the main point
of this section which is that the set of (closed) De Bruijn terms is a context free set of
terms [2]. Consider, from left to right, the syntax tree of 2 in the named λ-calculus [1]), the
syntax tree of 2 itself, and that tree again with some boxes added to it

@@

λy

x x y

λx λ

λ

S S

0 0

0

@@

λ

λ

S S

0 0

0

@@

93

These boxes indicate how each S and 0 in the tree can be seen to match with a unique
λ. This notion of matching can be easily formalised by means of a push down automaton
(PDA): starting with an empty stack and walking from the root toward the leaves each λ
corresponds to a push and each S or 0 to a pop (and @s have no effect). Then the closed
De Bruijn terms are exactly captured by the requirement that each path is accepted by the
PDA. Alternatively, paths may be mapped to strings of parentheses by setting λ 7→ (and
S, 0 7→) and forgetting @. Then the closed De Bruijn terms are exactly captured by each
path being mapped to a string of the form (n)m with n ≥ m. The upshot is that one should
not think of S as operating on the subterm below it, but instead of as matching with a
(unique) λ above it. The rest of the abstract is a consequence of this shift of viewpoint.

The first observation is that the notion of a variable being bound by a λ-abstraction
in the named λ-calculus corresponds in the De Bruijn representation to a 0 matching the
λ-abstraction. For instance, the leftmost x being bound by the topmost λ in the named
syntax tree in the figure, corresponds to the leftmost 0 matching the topmost λ in the
unnamed syntax tree. An occurrence of 0 in t matching the λ of a β-redex (λt)s then has
the operational meaning: put the argument s.

The second observation is that one may think of S as an end-of-scope operator [4]: if it
matches some λ, then no symbol below the S can match with that same λ again; i.e. all these
symbols are out-of-scope so to speak. That is, the boxes in the figure should be thought of
as (explicit) representations of the notion of scopes. An occurrence of S in t matching the
λ of a β-redex (λt)s has the operational meaning: throw the argument s away.

Combining these two observations yields the first replication phase of the β-reduction
of (λt)s in which the argument s is put at all 0s in the body matching the λ, in which all
Ss in the body matching the λ are elided, and in which finally the @ and λ of the redex are
removed. Applied to the first β-step of our running example, this yields the first phase of
its factorisation as (the first step in):

2 2 = (λλ(S0)((S0)0)) 2 → λ(S2)((S2)0) → λ2(20)

Note that the result λS2((S2)0) of the first phase is not yet a De Bruijn term, since S is
applied in it to a term instead of to a De Bruijn index. Rather it is a so-called generalised
λ-term [2], where successors can be applied to any (generalised) term instead of just to
De Bruijn indices. In order to turn the generalised λ-term into the ordinary λ-term λ2(20)
again, the offending Ss are pushed to the leafs in a matching-preserving way, as in the
second step above, a process which we call scope extrusion [4].

Formally, the grammar for the set GΛ of generalised λ-terms is

t ∈GΛ ::= 0 | St | λt | tt

We employ t, s, u, . . . to range over generalised λ-terms and i, j, k, . . . to range over its
subset of (De Bruijn) indices, i.e. repeated applications of S to 0. We abbreviate indices
by natural numbers in sans-serif e.g. SSS0 is abbreviated to 3. Ordinary nameless λ-terms
are obtained by requiring successors to occur as part of indices. β-reduction on ordinary
(nameless) λ-terms factorises then as follows. First, replication is performed according to

(λt)s→ t[s]0

with substitution t[s]i of s in t at depth i defined globally in Table 1. Next, scopes are

94

0[s]0 = s

0[s]Si = 0
(St)[s]0 = t

(St)[s]Si = St[s]i

(λt)[s]i = λt[s]Si

(t1t2)[s]
i = t1[s]

it2[s]
i

t0 = St

0Si = 0
(St)Si = Sti

(λt)Si = λtSSi

(t1t2)
Si = tSi

1 tSi
2

Table 1. Global definitions of substitution (left) and minimal lifting (right)

extruded by reducing to normal form with respect to the scope extrusion rules

Sλt →λ λtS0

S(t1t2) →@ St1St2

where, for index i, minimal lifting ti is defined globally in Table 1. Note that using the
extrusion rules, the first step of Example 1, indeed factorises in the way which was displayed
above. In particular, note that S2 →λ 2 holds since 2 is closed. Here a generalised λ-term t is
closed if 0` t in the following inference system (read the rules top-down, like syntax-trees):

Si` 0
0

Si`St
S

i` t

i`λt
λ

Si` t

i` t1t2
@

i` t1 i` t2

An intuitive reading of the index i (the ‘stack’) in a judgment i` t (read: term t is well-
formed under index i), is as the (number of) variables bound by λs above this subterm t.
It is easy and instructive to verify that 2 is indeed closed.

3 From terms to nets

We present our translation of the nameless λ-terms to a class IN of graphs known as
interaction nets [5], with which we assume familiarity. The signature of an interaction net
consists of symbols each having a number of ports among which a designated principal port.
The interaction net signature we employ is

i

delimiter

λ bind

body

abstractor

@

function

argument

applicator eraser

i

duplicator

where ◦s indicate ports and •s indicate principal ports, i.e. ports along which a symbol may
interact (see below). Here i ranges over arbitrary indices, making the signature infinite.

Apart from @ and λ which will have the meaning one expects, the signature has symbols
for explicitly representing the different operations of the factorisation of β-reduction, as
presented in the previous section. In particular, the duplicator Oi (share, fan) and the eraser
} (garbage) will together serve to represent replication, as usual in graph implementations
of first-order rewriting. The delimiter ti represents the higher-order aspect of scope. When
an index is 0, it will be omitted.

Interaction nets are graphs the nodes of which are labelled by symbols of the signature,
and the edges of which connect to the ports of the (symbol occurrences labelling the) nodes.
To every port at most one edge may be connected. If no edge is connected to a port, then
the port is called free. A net is closed if it does not have free ports.

95

The function � :Λ→IN mapping closed terms to closed interaction nets is defined in two
phases. First, a well-formed term i` t is mapped to a net having i + 1 free ports, which is
defined by induction and cases (0, S, λ, and @) on the definition of well-formedness as:

λ

i i` t

i

i

Si` t
i i

i

i` t1 i` t2

@

After that a }-node (the root) is connected to the (unique by closedness) free port. Here
a number i next to a slashed edge represents that in fact the edge is a ‘bus’ consisting
of i edges connected to an appropriate number of copies of its connected node. Since the
translation is uniform, it is on the one hand easy to prove properties about, but on the other
hand very inefficient: it generates many duplicator-eraser combinations whose net-effect will
be the same as that of an edge. To see this it is instructive to compute �(2). Below, we will
work with the optimisation 2 instead where all redundant combinations have been removed.

4 Interaction net reduction

The intuitive meaning of the symbols in our interaction net signature, as presented above,
is operationalised by just two rule schemes, for f ,g arbitrary but distinct, and a rule:

. . .
n

. . .m

f ′f ′

. . .

m

n

. . .

f

commute

g′ g′

g
.

.

. . .

. . .

. . .

f

. . .

. . .
annihilate

f

@

λ

Beta

where f ′ and g′ are either identical to or updates of the symbols f and g, respectively. An
update is an increment of the index i (if any) of either symbol, which takes place iff the
other symbol is either λ or tj , with i ≥ j. Instances of the two schemes are called x-rules.

Example 2. Annihilate, commute, and commute with update are exemplified by

1

11 λ

λ

1 1

The set B of interaction rules which interest us is defined to be the union of x and Beta.
Note that the effect of operators is indeed as expected: the eraser acts as a garbage collec-
tor erasing anything it encounters; the duplicator acts as a copier duplicating anything it
encounters; the delimiter acts as an extruder putting anything it encounters into its scope.
All act locally in the sense that they affect one node at the time. This restriction, which
comes with the interaction net framework, explains our use of indexed delimiters: roughly
speaking, the way in which the global definition of minimal lifting of the previous section is
implemented, is to record the superscript there as an index to the delimiter. Similarly the
superscript in the global definition of substitution corresponds to the index of a duplicator.

Example 3. We display only a few nets along the reduction of 2 applied to itself, to B-
normal form. The net in the middle is the normal form which is a representation of 4. The
remaining steps serve to retrieve this term from the net and are the next topic.

96

loop cut

@

@

2

2

@

1 1

S S S S

λ

λ

@ @

@ @

λ

λ

@ @

@

S S S S

Beta x B unwind

@

λ

λ

1 1

1 1 11

λ

2

@

λ

λ

@

2

@

λ

@@ @

λ

λ

@

@

@

@

11

1111

scope remove

5 From nets to terms

The function M : IN→Λ mapping closed nets to closed terms is defined in three phases, each
consisting of normalising w.r.t. an action first and the x-rules next. (Without touching the
root-}.) This yields the syntax tree of a unique (derivation of a) term, which is taken as
the result of M(ν). The three actions are the following graph rewrite rules:

s
@ @

unwind

y

S
i

P

scope remove

λ λ

loop cut

Here the S is a new node type, the interaction of which is governed by the x-rules, i.e. S
behaves as a non-indexed ti. After the unwinding action, both abstractions and application
have their north port as principal port. This makes that all replication and delimiter nodes
are ‘pushed toward the leafs/variables’ (causing unsharing and extrusion) by the subsequent
x-normalisation phase. Once extruded, it is safe to forget the indices of the remaining
delimiters. By swapping their principal port as well, the scope removal phase causes the
remaining upward directed delimiters (which all have index 0) to be pushed toward the
leafs, and the replication nodes to become closer to the leafs than the delimiter nodes. Once
this has been done, cutting the loops causes all replication nodes to vanish by having them
interact with the eraser, yielding a tree proper as shown above.

6 Conclusion

The proof that the above is correct and is even optimal in the sense of Lévy is beyond
the scope of this abstract. Here we just wanted to stress the correspondence between our
implementation and the calculational approach to the λ-calculus of [3], and its simplicity;
the calculus is completely reduction-based, fits on half a page, and is trivial to implement.

References

1. H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland, 1984.
2. R.S. Bird and R.A. Paterson. De Bruijn notation as a nested datatype. JFP, 9(1):77–91, 1999.
3. N.G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula manip-

ulation. Indagationes Mathematicae, 34:381–392, 1972.
4. D. Hendriks and V. van Oostrom. λ. In CADE 19, volume 2741 of LNAI, pages 136–150. Springer, 2003.
5. Y. Lafont. Interaction nets. In POPL 17, pages 95–108. ACM Press, 1990.

97

Aachener Informatik-Berichte

This is a list of recent technical reports. To obtain copies of technical reports please con-
sult http://aib.informatik.rwth-aachen.de/ or send your request to: Informatik-
Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen, Email: biblio@informatik.
rwth-aachen.de

95-11 ∗ M. Staudt / K. von Thadden: Subsumption Checking in Knowledge
Bases

95-12 ∗ G.V. Zemanek / H.W. Nissen / H. Hubert / M. Jarke: Requirements
Analysis from Multiple Perspectives: Experiences with Conceptual Mod-
eling Technology

95-13 ∗ M. Staudt / M. Jarke: Incremental Maintenance of Externally Material-
ized Views

95-14 ∗ P. Peters / P. Szczurko / M. Jeusfeld: Business Process Oriented Infor-
mation Management: Conceptual Models at Work

95-15 ∗ S. Rams / M. Jarke: Proceedings of the Fifth Annual Workshop on
Information Technologies & Systems

95-16 ∗ W. Hans / St. Winkler / F. Sáenz: Distributed Execution in Functional
Logic Programming

96-1 ∗ Jahresbericht 1995
96-2 M. Hanus / Chr. Prehofer: Higher-Order Narrowing with Definitional

Trees
96-3 ∗ W. Scheufele / G. Moerkotte: Optimal Ordering of Selections and Joins

in Acyclic Queries with Expensive Predicates
96-4 K. Pohl: PRO-ART: Enabling Requirements Pre-Traceability
96-5 K. Pohl: Requirements Engineering: An Overview
96-6 ∗ M. Jarke / W. Marquardt: Design and Evaluation of Computer–Aided

Process Modelling Tools
96-7 O. Chitil: The ς-Semantics: A Comprehensive Semantics for Functional

Programs
96-8 ∗ S. Sripada: On Entropy and the Limitations of the Second Law of Ther-

modynamics
96-9 M. Hanus (Ed.): Proceedings of the Poster Session of ALP’96 — Fifth

International Conference on Algebraic and Logic Programming
96-10 R. Conradi / B. Westfechtel: Version Models for Software Configuration

Management
96-11 ∗ C. Weise / D. Lenzkes: A Fast Decision Algorithm for Timed Refinement
96-12 ∗ R. Dömges / K. Pohl / M. Jarke / B. Lohmann / W. Marquardt: PRO-

ART/CE∗ — An Environment for Managing the Evolution of Chemical
Process Simulation Models

96-13 ∗ K. Pohl / R. Klamma / K. Weidenhaupt / R. Dömges / P. Haumer /
M. Jarke: A Framework for Process-Integrated Tools

96-14 ∗ R. Gallersdörfer / K. Klabunde / A. Stolz / M. Eßmajor: INDIA — Intel-
ligent Networks as a Data Intensive Application, Final Project Report,
June 1996

96-15 ∗ H. Schimpe / M. Staudt: VAREX: An Environment for Validating and
Refining Rule Bases

96-16 ∗ M. Jarke / M. Gebhardt, S. Jacobs, H. Nissen: Conflict Analysis Across
Heterogeneous Viewpoints: Formalization and Visualization

96-17 M. Jeusfeld / T. X. Bui: Decision Support Components on the Internet
96-18 M. Jeusfeld / M. Papazoglou: Information Brokering: Design, Search and

Transformation
96-19 ∗ P. Peters / M. Jarke: Simulating the impact of information flows in

networked organizations
96-20 M. Jarke / P. Peters / M. Jeusfeld: Model-driven planning and design

of cooperative information systems
96-21 ∗ G. de Michelis / E. Dubois / M. Jarke / F. Matthes / J. Mylopoulos

/ K. Pohl / J. Schmidt / C. Woo / E. Yu: Cooperative information
systems: a manifesto

96-22 ∗ S. Jacobs / M. Gebhardt, S. Kethers, W. Rzasa: Filling HTML forms
simultaneously: CoWeb architecture and functionality

96-23 ∗ M. Gebhardt / S. Jacobs: Conflict Management in Design
97-01 Jahresbericht 1996
97-02 J. Faassen: Using full parallel Boltzmann Machines for Optimization
97-03 A. Winter / A. Schürr: Modules and Updatable Graph Views for PRO-

grammed Graph REwriting Systems
97-04 M. Mohnen / S. Tobies: Implementing Context Patterns in the Glasgow

Haskell Compiler
97-05 ∗ S. Gruner: Schemakorrespondenzaxiome unterstützen die paargramma-

tische Spezifikation inkrementeller Integrationswerkzeuge
97-06 M. Nicola / M. Jarke: Design and Evaluation of Wireless Health Care

Information Systems in Developing Countries
97-07 P. Hofstedt: Taskparallele Skelette für irregulär strukturierte Probleme

in deklarativen Sprachen
97-08 D. Blostein / A. Schürr: Computing with Graphs and Graph Rewriting
97-09 C.-A. Krapp / B. Westfechtel: Feedback Handling in Dynamic Task Nets
97-10 M. Nicola / M. Jarke: Integrating Replication and Communication in

Performance Models of Distributed Databases
97-13 M. Mohnen: Optimising the Memory Management of Higher-Order

Functional Programs
97-14 R. Baumann: Client/Server Distribution in a Structure-Oriented Data-

base Management System
97-15 G. H. Botorog: High-Level Parallel Programming and the Efficient Im-

plementation of Numerical Algorithms
98-01 ∗ Jahresbericht 1997

98-02 S. Gruner/ M. Nagel / A. Schürr: Fine-grained and Structure-oriented
Integration Tools are Needed for Product Development Processes

98-03 S. Gruner: Einige Anmerkungen zur graphgrammatischen Spezifikation
von Integrationswerkzeugen nach Westfechtel, Janning, Lefering und
Schürr

98-04 ∗ O. Kubitz: Mobile Robots in Dynamic Environments
98-05 M. Leucker / St. Tobies: Truth — A Verification Platform for Distributed

Systems
98-07 M. Arnold / M. Erdmann / M. Glinz / P. Haumer / R. Knoll / B.

Paech / K. Pohl / J. Ryser / R. Studer / K. Weidenhaupt: Survey on
the Scenario Use in Twelve Selected Industrial Projects

98-08 ∗ H. Aust: Sprachverstehen und Dialogmodellierung in natürlichsprach-
lichen Informationssystemen

98-09 ∗ Th. Lehmann: Geometrische Ausrichtung medizinischer Bilder am
Beispiel intraoraler Radiographien

98-10 ∗ M. Nicola / M. Jarke: Performance Modeling of Distributed and Repli-
cated Databases

98-11 ∗ A. Schleicher / B. Westfechtel / D. Jäger: Modeling Dynamic Software
Processes in UML

98-12 ∗ W. Appelt / M. Jarke: Interoperable Tools for Cooperation Support
using the World Wide Web

98-13 K. Indermark: Semantik rekursiver Funktionsdefinitionen mit Strikt-
heitsinformation

99-01 ∗ Jahresbericht 1998
99-02 ∗ F. Huch: Verifcation of Erlang Programs using Abstract Interpretation

and Model Checking — Extended Version
99-03 ∗ R. Gallersdörfer / M. Jarke / M. Nicola: The ADR Replication Manager
99-04 M. Alpuente / M. Hanus / S. Lucas / G. Vidal: Specialization of Func-

tional Logic Programs Based on Needed Narrowing
99-07 Th. Wilke: CTL+ is exponentially more succinct than CTL
99-08 O. Matz: Dot-Depth and Monadic Quantifier Alternation over Pictures
2000-01 ∗ Jahresbericht 1999
2000-02 Jens Vöge / Marcin Jurdzinski: A Discrete Strategy Improvement Algo-

rithm for Solving Parity Games
2000-04 Andreas Becks / Stefan Sklorz / Matthias Jarke: Exploring the Semantic

Structure of Technical Document Collections: A Cooperative Systems
Approach

2000-05 Mareike Schoop: Cooperative Document Management
2000-06 Mareike Schoop / Christoph Quix (eds.): Proceedings of the Fifth In-

ternational Workshop on the Language-Action Perspective on Commu-
nication Modelling

2000-07 ∗ Markus Mohnen / Pieter Koopman (Eds.): Proceedings of the 12th In-
ternational Workshop of Functional Languages

2000-08 Thomas Arts / Thomas Noll: Verifying Generic Erlang Client-Server
Implementations

2001-01 ∗ Jahresbericht 2000
2001-02 Benedikt Bollig / Martin Leucker: Deciding LTL over Mazurkiewicz

Traces
2001-03 Thierry Cachat: The power of one-letter rational languages
2001-04 Benedikt Bollig / Martin Leucker / Michael Weber: Local Parallel Model

Checking for the Alternation Free mu-Calculus
2001-05 Benedikt Bollig / Martin Leucker / Thomas Noll: Regular MSC Lan-

guages
2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-

Order Logic
2001-07 Martin Grohe / Stefan Wöhrle: An Existential Locality Theorem
2001-08 Mareike Schoop / James Taylor (eds.): Proceedings of the Sixth Interna-

tional Workshop on the Language-Action Perspective on Communication
Modelling

2001-09 Thomas Arts / Jürgen Giesl: A collection of examples for termination of
term rewriting using dependency pairs

2001-10 Achim Blumensath: Axiomatising Tree-interpretable Structures
2001-11 Klaus Indermark / Thomas Noll (eds.): Kolloquium Programmier-

sprachen und Grundlagen der Programmierung
2002-01 ∗ Jahresbericht 2001
2002-02 Jürgen Giesl / Aart Middeldorp: Transformation Techniques for

Context-Sensitive Rewrite Systems
2002-03 Benedikt Bollig / Martin Leucker / Thomas Noll: Generalised Regular

MSC Languages
2002-04 Jürgen Giesl / Aart Middeldorp: Innermost Termination of Context-

Sensitive Rewriting
2002-05 Horst Lichter / Thomas von der Maßen / Thomas Weiler: Modelling

Requirements and Architectures for Software Product Lines
2002-06 Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party

Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic
Finite Automata

2002-07 Jörg Dahmen: Invariant Image Object Recognition using Gaussian Mix-
ture Densities

2002-08 Markus Mohnen: An Open Framework for Data-Flow Analysis in Java
2002-09 Markus Mohnen: Interfaces with Default Implementations in Java
2002-10 Martin Leucker: Logics for Mazurkiewicz traces
2002-11 Jürgen Giesl / Hans Zantema: Liveness in Rewriting
2003-01 ∗ Jahresbericht 2002
2003-02 Jürgen Giesl / René Thiemann: Size-Change Termination for Term

Rewriting
2003-03 Jürgen Giesl / Deepak Kapur: Deciding Inductive Validity of Equations

2003-04 Jürgen Giesl / René Thiemann / Peter Schneider-Kamp / Stephan Falke:
Improving Dependency Pairs

2003-05 Christof Löding / Philipp Rohde: Solving the Sabotage Game is
PSPACE-hard

2003-06 Franz Josef Och: Statistical Machine Translation: From Single-Word
Models to Alignment Templates

2003-07 Horst Lichter / Thomas von der Maßen / Alexander Nyßen / Thomas
Weiler: Vergleich von Ansätzen zur Feature Modellierung bei der Soft-
wareproduktlinienentwicklung

2003-08 Jürgen Giesl / René Thiemann / Peter Schneider-Kamp / Stephan Falke:
Mechanizing Dependency Pairs

2004-02 Benedikt Bollig / Martin Leucker: Message-Passing Automata are ex-
pressively equivalent to EMSO logic

2004-03 Delia Kesner / Femke van Raamsdonk / Joe Wells (eds.): Proceedings
of the Second International Workshop on Higher-Order Rewriting (HOR
2004)

2004-04 Slim Abdennadher / Christophe Ringeissen (eds.): Proceedings of the
Fifth International Workshop on Rule-Based Programming (RULE 2004)

2004-05 Herbert Kuchen (ed.): Proceedings of the 13th International Workshop
on Functional and (Constraint) Logic Programming (WFLP 2004)

2004-06 Sergio Antoy / Yoshihito Toyama (eds.): Proceedings of the 4th Interna-
tional Workshop on Reduction Strategies in Rewriting and Programming
(WRS 2004)

2004-07 Michael Codish / Aart Middeldorp (eds.): Proceedings of the 7th Inter-
national Workshop on Termination (WST 2004)

∗ These reports are only available as a printed version.

Please contactbiblio@informatik.rwth-aachen.de to obtain copies.

