
Aachen
Department of Computer Science

Technical Report

Algebraic Correctness Proofs

for Compiling Recursive Function Definitions

with Strictness Information

Klaus Indermark and Thomas Noll

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2004-08

RWTH Aachen · Department of Computer Science · December 2004

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Algebraic Correctness Proofs

for Compiling Recursive Function Definitions

with Strictness Information

Klaus Indermark and Thomas Noll

Lehrstuhl für Informatik II
Aachen University of Technology (RWTH)

D–52056 Aachen, Germany
Email: {indermark,noll}@cs.rwth-aachen.de

Abstract. Adding appropriate strictness information to recursive function def-
initions we achieve a uniform treatment of lazy and eager evaluation strategies.
By restriction to first–order functions over basic types we develop a pure stack
implementation that avoids a heap even for lazy arguments. We present algebraic
definitions of denotational, operational, and stack–machine semantics and prove
their equivalence by means of structural induction.

1 Introduction

Recursive definitions play a fundamental rôle in computer science as they of-
fer two different semantic views. From a denotational perspective they can be
regarded as equations defining objects as solutions, whereas operationally they
may be taken as rewrite rules which produce results by stepwise reduction. The
equivalence of these views accounts for the central importance of recursion being
at the same time declarative and executable.

This holds in particular for the recursive definition of functions in functional
programming languages where a compiler automatically transforms such defi-
nitions into executable code. In this paper, we restrict to the special case of
first–order function definitions over basic types. For such definitions we develop
a stack implementation which does not require any heap nor closures, even for
lazy evaluation. We present algebraic correctness proofs for the generation of
stack code. Adding appropriate strictness information to a recursive function
definition we achieve a uniform treatment of lazy and eager evaluation strategies
(cf. [Wad96] for a thorough discussion of these concepts). For that purpose we
demand that every function definition indicates for each of its arguments whether
it enforces strictness or not [Chi97].

In order to motivate this approach we consider the following simple example
with functions on the set N of non–negative integers:

F (x) = G(x− 1,H(x))

G(x, y) = if x = 0 then x else G(x− 1, y) + y

H(x) = H(x+ 1)

Here, the second equation gives a primitive recursive definition of the multipli-
cation function, which is called in the first equation with an undefined second
argument.

1.1 Operational Semantics

We begin with an operational view and interpret equations as rewrite rules. For
a proper implementation, the non–deterministic character of the corresponding
rewrite process requires an evaluation order. We present three strategies and
show their differences in computing the value of F (1).

1.1.1 Leftmost–Innermost Reduction All function arguments are evalu-
ated before executing a function call; this strategy is also known as call by value.
It induces for the computation of F (1) the following infinite rewrite process:

F (1) ⇒ G(1 − 1,H(1))

⇒ G(0,H(1))

⇒ G(0,H(1 + 1))

⇒ G(0,H(2))

⇒ G(0,H(2 + 1))

...

We therefore conclude that F (1) is not defined.

1.1.2 Leftmost–Outermost Reduction This rewriting strategy corresponds
to the well–known call by name principle where function calls are executed first
so that arguments are evaluated only if necessary:

F (1) ⇒ G(1 − 1,H(1))

⇒ if 1 − 1 = 0 then 1 − 1 else G((1 − 1) − 1,H(1)) +H(1)

⇒ if 0 = 0 then 1 − 1 else G((1 − 1) − 1,H(1)) +H(1)

⇒ if true then 1 − 1 else G((1 − 1) − 1,H(1)) +H(1)

⇒ 1 − 1

⇒ 0

In this case, the computation yields the result F (1) = 0.

1.1.3 Mixed Reduction The inefficiency of call by name is obvious: in the
above rewriting sequence, the expression 1− 1 is evaluated twice due to multiple
occurrences of x in the defining term of G. But as the first argument of G has to
be computed anyway, we can do this before calling G, thus avoiding its repeated
computation:

F (1) ⇒ G(1 − 1,H(1))

⇒ G(0,H(1))

⇒ if 0 = 0 then 0 else G(0 − 1,H(1)) +H(1)

⇒ if true then 0 else G(0 − 1,H(1)) +H(1)

⇒ 0

So we realize that this mixture of the first two strategies, delaying the computa-
tion of only one function argument, produces shorter computations.

2

1.2 Denotational Semantics

Now we are going to model these operational differences on a purely denotational
level. We therefore have to look for suitable techniques to solve our system of
equations, defining the same functions as the previously discussed evaluation
strategies. For the second equation

G(x, y) = if x = 0 then x else G(x− 1, y) + y

there seems to be just one solution, namely the function

g : N2 → N with g(a, b) = a · b.

However, the third equation

H(x) = H(x+ 1)

has many solutions, namely, for each k ∈ N,

hk : N → N with hk(a) = k for every a ∈ N.

and, in addition, the partial function

h : N � N with h(a) = undefined for every a ∈ N.

It should be clear that only the partial function h corresponds to our functional
view because any argument a yields an infinite computation. Moreover, h turns
out to be the least solution with respect to the partial order defined by graph
inclusion.

It remains to solve the first equation

F (x) = G(x− 1,H(x)).

This seems to be a simple task. We just substitute the solutions g and h for the
function variables G and H and get

f : N � N with f(a) = g(a − 1, h(a)).

And here we have reached the crucial point because we are faced with the prob-
lem of how to compose partial functions. Technically, this will be described by
introducing a new element ⊥ that represents undefinedness. A partial function
ϕ : Nn � N can then be regarded as a total function ϕ̄ : Nn → N⊥ where
N⊥ := N ∪ {⊥}. For the composition of such functions we have to choose ap-
propriate extensions ϕ̂ : N⊥

n → N⊥ which define the behaviour on undefined
arguments. We shall see that a recursive function definition allows in a natural
way several such extension methods which prove to be an exact denotational
counterpart to the operational evaluation strategies.

1.2.1 Strict Extension Let us first assume that an undefined argument al-
ways implies an undefined function value. In that case, the argument is not passed
to the defining term for evaluation. For our example this means that

fs(1) = gs(0, hs(1))

= gs(0,⊥)

= ⊥

according to the enforced strictness of gs : N⊥
2 → N⊥. Clearly, the strict extension

turns out to be semantically equivalent to call by value.

3

1.2.2 Non–Strict Extension We may alternatively treat ⊥ as an ordinary
value and pass it to the defining term. Note that this method may give the same
strict result as before. However, if not all argument variables occur in the defining
term or if the conditional skips an undefined case, the result may be a non–strict
function. In that case we obtain

fn(1) = gn(0, hn(1))

= gn(0,⊥)

= 0

because the defining term for G yields gn(0,⊥) = if 0 = 0 then 0 else . . . =
0. Obviously, this method denotationally models the computation with call by
name.

1.2.3 Mixed Extension Finally, as we observed already with evaluation
strategies, we can combine both methods and declare for each function argu-
ment whether it enforces strictness or whether it is passed unevaluated to the
defining term. Turning back to our example we realize that treating the first
argument of G strictly in contrast to the second, we get a perfect match to the
mixed reduction strategy.

Conclusion: A recursive function definition uniquely specifies its solution only
if we add proper strictness information to each function argument.

In order to simplify the formal treatment we assume that those arguments
which are treated strictly precede the others. By suitable reordering of function
arguments on left– and right–hand sides of all equations this is easily achieved.
Therefore, a function variable with n arguments gets a further index σ between
0 and n to indicate that the first σ arguments are treated strictly, in contrast
to the remaining ones. This additional information allows a uniform compila-
tion of recursive function definitions into stack code integrating lazy and eager
evaluation strategies.

The remainder of this paper is organized as follows. In Section 2 we present
the algebraic and order–theoretic foundations required for the formal treatment
of recursive function definitions. These are defined in Section 3 together with their
denotational and operational semantics and corresponding equivalence proofs.
Then Section 4 introduces a stack interpreter as a first abstract implementation,
followed by Section 5 where the interpreter is transformed into a compiler.

2 Mathematical Framework

For proving the correctness of a compiler we have to verify that the translation
of syntactic objects preserves their semantics. The proof technique strongly de-
pends on the mathematical framework. Here we choose an algebraic approach
where syntactic objects can be viewed as abstract structured entities, indepen-
dent of their concrete representation, and where their semantics is determined
by structural induction, without employing any notion of computation. Together
with order–theoretic fixed–point techniques we establish a formal setting that al-
lows a concise and rigorous treatment of recursive function definitions including
equivalence proofs of their denotational, reduction, and stack semantics.

4

2.1 Algebraic Foundations

Our algebraic approach is based on the work of Goguen, Thatcher, Wagner,
and Wright who showed in [GTWW77] that programs can be understood as el-
ements of a free term algebra with their semantics definable by homomorphisms.

As a recursive function definition deals with data of at least two sorts, a
boolean and some other basic sort, it is convenient to work with sorted sets.

Definition 1: Let S be a non–empty set whose elements are called sorts. A set
A together with a mapping sort : A→ S is called S–sorted. For s ∈ S we denote
by As := sort−1(s) the set of all elements of A with sort s. Let f : A → B be
a mapping between S–sorted sets A and B. We say that f preserves sorts if
f(As) ⊆ Bs for each s ∈ S.

Convention: We only consider sets with a unique sorting and therefore omit
the mapping sort. Moreover, we always assume implicitly that mappings between
sorted sets preserve sorts.

The syntactic basis of recursive function definitions will be given as a collec-
tion of function symbols, called a signature.

Definition 2: Let S be a set of sorts, D(S) := S∗×S its derived set of function
types and F a D(S)–sorted set of function symbols. Then we call Σ = 〈S, F 〉
a signature. The elements of C :=

⋃
s∈S C

s where Cs := F (ε,s) are called con-

stant symbols.

We define the semantics of a signature as an algebraic structure interpreting
sorts as sets and function symbols as functions on these sets according to their
type information.

Definition 3: Let A be an S–sorted set and τ = (w, s) ∈ D(S). We generalize
the denotation As to Aw using the following cartesian products:

Aε := {()} and

As1...sn := As1 × . . . ×Asn for s1, . . . , sn ∈ S and n > 0.

Then we call a mapping f : Aw → As a function on A of type τ . If in addition
w = ε, then f is called a constant of type s. Their collections are denoted by

Fτ (A) := {f | f : Aw → As} and

F(A) :=
⋃

τ∈D(S)

Fτ (A).

Definition 4: Let Σ = 〈S, F 〉 be a signature. A Σ–algebra A = 〈A;α〉 consists
of an S–sorted set A, the carrier of A, and a mapping α : F → F(A). Each
α(f) is called a base function, and is also denoted by fA.

Observe that both F and F(A) are D(S)–sorted such that according to our
sort–preserving convention we have α(F τ) ⊆ Fτ (A) for every τ ∈ D(S).

Given a signature we can construct new syntactic objects as terms of function
symbols and variables. Semantically, this corresponds to the derivation of new
functions from base functions by composition. We regard terms as elements of a
free algebra such that their semantics can be described by homomorphisms.

5

Definition 5: Let Σ = 〈S, F 〉 be a signature and X an S–sorted set of variables.
The Σ–term algebra over X

TΣ(X) = 〈TΣ(X);αT 〉

is defined as follows:

– TΣ(X) is the smallest S–sorted set which contains all variables and which is
closed under free application of function symbols, i.e.,
• X ⊆ TΣ(X) and
• for all (w, s) ∈ D(S) and f ∈ F (w,s),

(t1, . . . , tn) ∈ TΣ(X)w implies ft1 . . . tn ∈ TΣ(X)s.
– αT associates with each f ∈ F (w,s) the following function on terms:

αT (f) : TΣ(X)w → TΣ(X)s where αT (f)(t1, . . . , tn) := ft1 . . . tn.

This definition includes for w = ε the special case of constant symbols. For
each c ∈ C it follows that αT (c)() = c, and therefore c ∈ TΣ(X).

A term algebra represents a particular algebraic structure in a concrete way
using symbol strings in prefix notation. To formalize the underlying structural
properties we introduce homomorphisms. The latter are structure–preserving
mappings between algebras which play a central rôle in our algebraic treatment
of syntax and semantics.

Definition 6: Let A = 〈A;α〉 and B = 〈B;β〉 be Σ–algebras. A mapping h :
A→ B is called a homomorphism, and is denoted by h : A → B, if

h(fA(aw)) = fB(h(aw))

for each (w, s) ∈ D(S), f ∈ F (w,s), and aw ∈ Aw.
(Note that h : A→ B canonically extends to h : Aw → Bw.)

It is easily verified that identities are homomorphisms, and so are composi-
tions of homomorphisms.

The fundamental property of term algebras consists in their free generation.
This means that every element can be obtained from a generating subset by
application of base functions in a unique way. The following equivalent definition
offers greater flexibility in proofs.

Definition 7: A Σ–algebra A = 〈A;α〉 is said to be freely generated by a set
X ⊆ A if each assignment χ : X → B into an arbitrary Σ–algebra B = 〈B;β〉
uniquely extends to a homomorphism

χ : A → B.

Term algebras confirm the existence of free algebras:

Theorem 8: The Σ–term algebra TΣ(X) is freely generated by X.

The proof exploits the fact that each term has a unique decomposition into
subterms and is omitted. Instead, we prove the following result which captures
the essence of abstract syntax, stating that all free algebras over a given signature
have the same structure.

6

Theorem 9: Let A = 〈A;α〉 and B = 〈B;β〉 be Σ–algebras which are freely
generated by X. Then A and B are isomorphic, i.e., there exists a bijective
homomorphism h : A → B.

Proof: Since X is a subset of both A and B, the identity on X, idX : X → X,
can be regarded as an inclusion inX,A : X → A and also as inX,B : X → B. By
definition, these assignments uniquely extend to homomorphisms inX,A : B → A

and inX,B : A → B. Their composition inX,A ◦ inX,B is a homomorphism on A

that coincides with the identical homomorphism on A because both extend inX,A.
Interchanging the rôles of A and B we conclude that inX,B ◦ inX,A : B → B is the
identical homomorphism on B. Therefore, inX,B must be injective and surjective,
thus satisfying the assertion. �

Abstract syntax: As the semantics of a programming language, and simi-
larly its translation into machine code, depends only on its structural properties,
it is possible to regard programs syntactically as elements of a free algebra.
Thereby, we abstract the relevant structural information of programs with the
advantage of choosing deliberately between suitable concrete representations, due
to their isomorphic nature.

The definition of free algebras implies that we can prove properties by means
of structural induction: for M ⊆ TΣ(X) it holds that M = TΣ(X) iff X ⊆M
and M is closed under all base functions αT (f) with f ∈ F .

Algebraic semantics: The unique homomorphic extension χ : TΣ(X) → A

of an assignment χ : X → A permits a very simple definition of semantics and
similarly of code generation. This extension is also said to be defined by structural
induction because χ can be viewed as the unique solution of the following system
of equations:

χ(x) = χ(x) for every x ∈ X

χ(ft1 . . . tn) = fA(χ(t1), . . . , χ(tn)) for every ft1 . . . tn ∈ TΣ(X)

Definition 10: Let t ∈ TΣ(X), and let χ : X → A be an assignment into a
Σ–algebra A = 〈A;α〉. Then

JtK(A,χ) := χ(t) ∈ A

is called the algebraic semantics of t with respect to A and χ.

Note that this method of defining semantics is purely denotational and does
not require any notion of computation.

There are two special cases for the algebraic semantics JtK(A,χ): χ may be
an inclusion that leaves its arguments unchanged or, conversely, A may also
be a term algebra so that function symbols are preserved. The corresponding
homomorphisms are called evaluation and substitution, respectively.

– Evaluation: ifX ⊆ A and χ = inX,A, we simply write JtKA instead of JtK(A,χ).
For X = ∅, JtKA is known as initial algebra semantics.

7

– Substitution: If χ : X → TΣ(Y), we write its application as usual in postfix
notation, tχ, rather than JtK(A,χ) or χ(t).

We see that any induced homomorphism χ : TΣ(X) → A splits into a sub-
stitution sub : TΣ(X) → TΣ(A), where sub(x) := χ(x) for every x ∈ X, followed
by an evaluation idA : TΣ(A) → A:

χ = idA ◦ sub,

since both sides coincide on X.
The following lemma describes a slightly more general result of composing an

arbitrary substitution with an evaluation. It will be needed later in the order–
theoretic context where B is the flat extension of A.

Lemma 11 (Substitution Lemma): For any substitution sub : TΣ(X) →
TΣ(A) and any evaluation inA,B : TΣ(A) → B it holds that

inA,B ◦ sub = inA,B ◦ sub.

Proof: Both homomorphisms coincide on X and therefore must be equal:

inA,B ◦ sub(x) = (inA,B ◦ sub)(x) = inA,B(sub(x)) and

(inA,B ◦ sub)(x) = inA,B(sub(x)) = inA,B(sub(x)). �

Hence, substitution and evaluation are in a certain way interchangeable. And
it is this property that yields the equivalence of denotational and operational
semantics.

Term functions: Terms will be used as right–hand sides of equations in
order to define new functions. For that purpose we fix an S–sorted standard
alphabet of argument variables

X := {xsi | s ∈ S, i ∈ N}.

We restrict to the definition of proper functions having at least one argument
because the recursive definition of constants in flat domains is of little interest.
Therefore, we use the notation

F (S) := S+ × S

for proper function types instead of D(S) = S∗ × S. Each w = s1 . . . sn ∈ S+

determines the subset

Xw := {xs11 , . . . , x
sn
n }

which should not be confused with Xw = Xs1×. . .×Xsn . With xw := (xs11 , . . . , x
sn
n)

as a non–empty list of argument variables, we abstract from t ∈ TΣ(Xw)s the
explicit function definition

λxw.t

which yields, when interpreted by a Σ–algebra A, the term function

Jλxw.tKA : Aw → As

8

defined as follows. Each argument vector aw = (a1, . . . , an) ∈ Aw determines the
assignment [xw/aw] : Xw → A by [xw/aw](xsii) := ai for i = 1, . . . , n, so that we
can define

Jλxw.tKA(aw) := JtK(A,[xw/aw]).

In general, we drop the index w and simply write x̄ and ā.

Term functions will be employed for giving denotational semantics to recur-
sive function definitions.

In the special case of finite substitutions, as induced by term functions, the
Substitution Lemma implies the following result.

Corollary 12: For [x̄/ū] : TΣ(Xw) → TΣ(A), inA,B : TΣ(A) → B, and t ∈
TΣ(Xw), it holds that

Jt[x̄/ū]KB = JtK(B,[x̄/JūKB]).

Note that according to our extension of sort–preserving mappings, we have
for ū = (u1, . . . , un) that JūKB = (Ju1KB, . . . , JunKB) because JuiKB = inA,B(ui).

We shall see that this commutativity between substitution and evaluation
provides the essential link between fixed–point and reduction semantics.

2.2 Order–Theoretic Foundations

The explicit definition of term functions did not require any notion of compu-
tation. Instead, we used homomorphisms as an algebraic tool to describe the
semantics by structural induction. As we have seen in the introduction, a deno-
tational approach to recursive function definitions benefits from the additional
use of order–theoretic methods. They allow to define semantics using least fixed
points of continuous functions on complete partial orders. Technically, we replace
partial functions by continuous functions on flat domains with a new element ⊥
that represents an undefined value. This also enables us to model strictness prop-
erties as a denotational analogue of various implementation strategies.

Definition 13: Let A be a non–empty set and ≤ ⊆ A × A a binary relation
being

– reflexive: a ≤ a,

– transitive: a ≤ b and b ≤ c implies a ≤ c, and

– antisymmetric: a ≤ b and b ≤ a implies a = b for every a, b, c ∈ A.

Then A = 〈A;≤〉 is called a partial order.

The simplest partial orders occurring in our denotational treatment of re-
cursive function definitions are flat extensions of S–sorted sets. Since undefined
values should also have sorts we use the set {⊥s | s ∈ S} for that purpose.

Definition 14: The flat extension of an S–sorted set A is defined by

〈A⊥;≤〉

where A⊥ :=
⋃
s∈S A

s
⊥ and As⊥ := As ∪ {⊥s}, and where a ≤ b if {a, b} ⊆ As⊥ and

(a = ⊥s or a = b) for some s ∈ S.

9

Obviously, A⊥ is S–sorted and partially ordered by ≤. In addition, all 〈As
⊥;≤〉

with ≤ restricted appropriately are partial orders.
Further partial orders are generated by means of product and function spaces

which inherit the ordering relations from their components.

Lemma 15: For partial orders A1 = 〈A1;≤1〉 and A2 = 〈A2;≤2〉,

(i) the product space A1 × A2 := 〈A1 × A2;≤〉 where (a1, a2) ≤ (b1, b2) if
a1 ≤1 b1 and a2 ≤2 b2, and

(ii) the function space [A1 → A2] := 〈{f | f : A1 → A2};≤〉 where f ≤ g if
f(a) ≤2 g(a) for every a ∈ A1

are again partial orders.

It follows that the flat partial orders 〈As⊥;≤〉 induce for w = s1 . . . sn ∈ S+

and s ∈ S

(i) the product space Aw⊥ := As1⊥ × . . .×Asn⊥ and
(ii) the function space F(w,s)(A⊥) := {f | f : Aw⊥ → As⊥},

being partially ordered as defined above.

Since functions on A⊥ will be our principal semantic objects, we introduce
some of their properties. For our purposes, it is the behaviour on ⊥–arguments
that has to be modelled carefully.

Definition 16: Let f ∈ F(w,s)(A⊥), w = s1 . . . sn ∈ S+, and 1 ≤ i ≤ n.

(i) f is called i–strict if for each ā = (a1, . . . , an) ∈ Aw⊥ we have f(ā) = ⊥s

whenever ai = ⊥si, and
(ii) f is called strict if f is i–strict for every i = 1, . . . , n.

Note that f ∈ F(w,s)(A) extends uniquely to a strict f⊥ ∈ F(w,s)(A⊥). But we
cannot confine ourselves to strict functions. The very conditional, indispensable
for recursive function definitions, may skip an undefined alternative and yet pro-
duce a defined value. Although this behaviour contradicts strictness, it exhibits
a more general property insofar as it preserves the partial order that results from
the degree of definedness. This means that if the amount of information about
an argument increases, this must also hold for the resulting value. Certainly, any
computable function has to share this monotonicity.

Definition 17: Let 〈A1;≤1〉 and 〈A2;≤2〉 be partial orders and f : A1 → A2. f
is called monotonic if a ≤1 b implies f(a) ≤2 f(b) for all a, b ∈ A1.

It follows directly that strict functions are monotonic, and that monotonic
functions are closed under composition. As we shall deal with monotonic func-
tions only, we fix for each (w, s) ∈ F (S) the function space

mF(w,s)(A⊥) := {f | f : Aw⊥ → As⊥, f monotonic}.

Being a subspace of F(w,s)(A⊥), it inherits its partial ordering.
The collection of monotonic functions

mF(A⊥) :=
⋃

(w,s)∈F (S)

mF(w,s)(A⊥)

10

is F (S)–sorted so that we can use again the shorthand for cartesian products:

mFτ1...τr(A⊥) := mFτ1(A⊥) × . . . ×mFτr (A⊥) for τ1 . . . τr ∈ F (S)+

being a suitable domain for the solution of a recursive function definition.
The flat extension of S–sorted sets not only allows to handle partial as total

functions. We also have to explain their behaviour on undefined arguments. This
is formally achieved by extending functions on A to monotonic functions on A⊥.
From our introductory discussion we know that there exist several possibilities
for such extensions which correspond to various implementation strategies.

For simplicity we assume that all base functions except conditionals are ex-
tended strictly. From now on, we consider only signatures which include a boolean
sort and conditional symbols, and interpret them accordingly.

Definition 18: A signature Σ = 〈S, F 〉 is called branching if S has a special
sort bool and, for each s ∈ S, there is a conditional symbol conds ∈ F (bool ss,s).
Their collection is denoted by Fcond := {conds | s ∈ S}, and we let Fbase :=
F \ Fcond denote the set of proper base functions.

A Σ–algebra A = 〈A;α〉 is called branching if Σ is branching, and if in
addition bool and conds are interpreted as

– Abool = B = {true, false} and
– α(conds) : B × As × As → As with (true, a, b) 7→ a and (false, a, b) 7→ b for

each s ∈ S.

The strict extension A⊥ = 〈A⊥;α⊥〉 of a branching Σ–algebra A = 〈A;α〉 is
defined by extending base functions as follows:

– α⊥(conds)(⊥
bool, a, b) := ⊥s,

α⊥(conds)(true, a, b) := a (even if b = ⊥s),
α⊥(conds)(false, a, b) := b (even if a = ⊥s), and

– α⊥(f) := α(f)⊥ for every f ∈ Fbase \ C and
α⊥(c) := α(c) for every c ∈ C.

More generally, a monotonic Σ–algebra Am = 〈A⊥;αm〉 is defined in the same
way as A⊥ only that we allow arbitrary monotonic extensions for all f ∈ Fbase\C.

We introduced the more general concept of monotonic algebras for technical
reasons: in order to define the semantics of recursive function definitions we
enlarge the signature Σ by function variables which take arbitrary monotonic
functions as values.

Extended term functions: After extending base functions we now turn
to term functions. Their extension depends on how we deal with ⊥–arguments.
Either they directly enforce a ⊥–result, or they affect the term semantics just as
the other arguments do. Note that this difference concerns the defining method
and not necessarily the extension itself. We shall see below that both methods
may produce equal or different results. But first let us refine our treatment of ⊥–
arguments. Each argument of an explicit function definition will get a strictness
tag that decides whether we skip term evaluation enforcing strictness or not. For
simplicity we assume that arguments enforcing strictness precede arguments for
term evaluation so that the required strictness information can be given by an
index σ ∈ {0, . . . , n} where n is the number of arguments.

11

Definition 19: Let Σ be a branching signature, (w, s) ∈ F (S), 0 ≤ σ ≤ |w|,
and t ∈ TΣ(Xw)s. Then we call

λσxw.t

an explicit function definition with strictness information. When interpreted
by a monotonic Σ–algebra A, it determines an extended term function on
A⊥,

Jλσxw.tKA : Aw⊥ → As⊥,

where, for aw = (a1, . . . , an) ∈ Aw⊥ ,

Jλσxw.tKA(aw) :=

{
JtK(A,[xw/aw]) if (a1, . . . , aσ) ∈ Aσ

⊥s otherwise

Lemma 20: Extended term functions are monotonic:

Jλσx̄.tKA ∈ mF(w,s)(A⊥).

Moreover,
Jλ|w|x̄.tKA ≤ Jλ|w|−1x̄.tKA ≤ . . . ≤ Jλ0x̄.tKA,

and for t = fx̄ with strict fA, it holds that

Jλ|w|x̄.tKA = Jλ|w|−1x̄.tKA = . . . = Jλ0x̄.tKA,

whereas for t = c ∈ C we have

Jλ|w|x̄.tKA < Jλ|w|−1x̄.tKA < . . . < Jλ0x̄.tKA.

Proof: First, we prove by induction on t ∈ TΣ(Xw)s that each term function
without strictness information, Jλx̄.tKA : Aw⊥ → As⊥, is monotonic.

(i) t ∈ Xw yields a projection. Its monotonicity follows from the partial ordering
of Aw⊥ .

(ii) t ∈ C yields a constant function, which is clearly monotonic.
(iii) If t = ft1 . . . tn and, by induction hypothesis, all Jλx̄.tiKA are monotonic, it

follows for ā ≤ b̄ in Aw⊥ that

Jλx̄.tKA(ā) = Jft1 . . . tnK(A,[x̄/ā])

= fA(Jt1K(A,[x̄/ā]), . . . , JtnK(A,[x̄/ā]))

≤ fA(Jt1K(A,[x̄/b̄]), . . . , JtnK(A,[x̄/b̄]))

= Jλx̄.tKA(b̄)

by monotonicity of fA and of the occurring term functions. Hence, Jλx̄.tKA is
monotonic, too.

Now, let 0 ≤ σ ≤ |w| and ā ≤ b̄ in Aw⊥ . If (a1, . . . , aσ) ∈ Aσ, we also have
(b1, . . . , bσ) ∈ Aσ, so that

Jλσx̄.tKA(ā) = JtK(A,[x̄/ā]) ≤ JtK(A,[x̄/b̄]) = Jλσx̄.tKA(b̄).

In the other case that (a1, . . . , aσ) /∈ A
σ, we get directly

Jλσx̄.tKA(ā) = ⊥s ≤ Jλσx̄.tKA(b̄),

and thereby the monotonicity of Jλσx̄.tKA.
The remaining assertions are obvious. �

12

Term Functionals: Recursive function definitions are built up from terms
that also contain function variables besides function symbols. By further ab-
straction we associate functionals with such terms. These are mappings between
function spaces forming the basis of fixed–point semantics. Formally, we choose
an F (S)–sorted standard alphabet of function variables

F := {F τj | τ ∈ F (S), j ∈ N}.

Using a similar notation as with argument variables we associate with every
ρ = τ1 . . . τr ∈ F (S)+ the set

Fρ := {F τ11 , . . . , F τrr }

which represents the function variables of a recursive function definition. In order
to describe its right–hand sides, we enlarge the set F of function symbols by Fρ

and thus obtain the extended signature

Σ[Fρ] := 〈S, F ∪ Fρ〉.

A right–hand side will then be a term t ∈ TΣ[Fρ](Xw)s where (w, s) ∈ F (S).
It determines for F̄ = (F τ11 , . . . , F τrr) and 0 ≤ σ ≤ |w| the functional definition

λF̄ .λσ x̄.t

which yields, when interpreted by A⊥, the term functional

JλF̄ .λσx̄.tKA⊥
: mFρ(A⊥) → mF(w,s)(A⊥),

defined as follows. For an argument vector ḡ = (g1, . . . , gr) ∈ mFρ(A⊥), we
extend A⊥ to the monotonic Σ[Fρ]–algebra A⊥[ḡ] := 〈A⊥;αḡ〉 with αḡ(F

τj
j) := gj

for j = 1, . . . , r. This suggests to set

JλF̄ .λσx̄.tKA⊥
(ḡ) := Jλσx̄.tKA⊥[ḡ]

in analogy to the definition of term functions. It follows from the proof of the
previous lemma that the result is in fact a monotonic function since all gj are.
In addition we can prove that the functional itself is monotonic.

Lemma 21: Each term functional JλF̄ .λσx̄.tKA⊥
is monotonic.

Proof: We have to check that JλF̄ .λσx̄.tKA⊥
(ḡ) ≤ JλF̄ .λσ x̄.tKA⊥

(h̄) whenever
ḡ ≤ h̄. By Lemma 15, this holds if Jλσx̄.tKA⊥[ḡ](ā) ≤ Jλσx̄.tKA⊥[h̄](ā) for all ā ∈ Aw⊥ .
In case that (a1, . . . , aσ) /∈ Aσ, this is obvious because we obtain ⊥ on both sides.
Therefore, it suffices to verify that

(∗) JtK(A⊥[ḡ],[x̄/ā]) ≤ JtK(A⊥[h̄],[x̄/ā])

holds for all t ∈ TΣ[Fρ](Xw) and ā ∈ Aw⊥ . We prove (∗) by induction on t, using
the abbreviation

JtK(ḡ,ā) := JtK(A⊥[ḡ],[x̄/ā]).

(i) For t ∈ Xw ∪ C, (∗) holds with equality because t does not contain any
function variable.

13

(ii) Let t = ft1 . . . tm, f ∈ F , and, by induction hypothesis, all ti satisfy (∗). We
conclude:

Jft1 . . . tmK(ḡ,ā) = fA⊥
(Jt1K(ḡ,ā), . . . , JtmK(ḡ,ā))

≤ fA⊥
(Jt1K(h̄,ā), . . . , JtmK(h̄,ā))

= Jft1 . . . tmK(h̄,ā).

(iii) Let t = Fjt1 . . . tm and, by induction hypothesis, all ti satisfy (∗). Here, we
need one additional step:

JFjt1 . . . tmK(ḡ,ā) = gj(Jt1K(ḡ,ā), . . . , JtmK(ḡ,ā))

≤ gj(Jt1K(h̄,ā), . . . , JtmK(h̄,ā))

≤ hj(Jt1K(h̄,ā), . . . , JtmK(h̄,ā))

= JFjt1 . . . tmK(h̄,ā). �

Term functionals are not only monotonic. In addition, they preserve limits.
We formalize this property, which is crucial for constructing fixed points, by
means of continuous functions over complete partial orders.

Definition 22: Let A = 〈A;≤〉 be a partial order, T ⊆ A, and a ∈ A.

(i) T is called directed if T 6= ∅ and if for every a, b ∈ T there exists c ∈ T such
that {a, b} ≤ c.

(ii) a is called an upper bound of T if T ≤ a.
(iii) a is called a least element of T if a ≤ T and a ∈ T .
(iv) If {a | T ≤ a} has a least element, it is called least upper bound of T and

is denoted by
⊔
T or

⊔
t∈T t.

(v) A is called a complete partial order if the following holds:
– There is a least element ⊥A ∈ A.
– Every directed subset T ⊆ A has a least upper bound

⊔
T ∈ A.

For a directed subset T it follows that any finite subset T ′ ⊆ T has an upper
bound in T . Hence, if T itself is finite, it must contain an upper bound, necessarily
the least one:

⊔
T ∈ T . Therefore, a flat partial order 〈A⊥;≤〉 is complete because

a directed subset contains at most one a ∈ A. The following lemma states that
completeness is preserved under product and function space construction.

Lemma 23: If A1 = 〈A1;≤1〉 and A2 = 〈A2;≤2〉 are complete partial orders,
the same holds for the product space A1 × A2 and the function space [A1 → A2].
Directed subsets T ⊆ A1 × A2 and D ⊆ {f | f : A1 → A2} have the following
least upper bounds:

(i)
⊔
T = (

⊔
proj1(T),

⊔
proj2(T)) and

(ii)
⊔
D where (

⊔
D)(a) :=

⊔
f∈D f(a).

Proof: We know already that product and function spaces inherit ordering re-
lations from their components. Obviously, (⊥A1 ,⊥A2) and a1 7→ ⊥A2 are their
least elements, respectively. If T ⊆ A1×A2 is directed, this must also be true for
both proji(T). Hence, (

⊔
proj1(T),

⊔
proj2(T)) exists and proves to be the least

upper bound of T . Similarly, it follows for D that all {f(a) | f ∈ D} are directed.
So, we get a 7→

⊔
f∈D f(a) as the least upper bound of D. �

14

We conclude that the spaces Aw⊥ and F(w,s)(A⊥) are complete for any (w, s) ∈
F (S). The next result shows that this also holds if we restrict ourselves to mono-
tonic functions.

Lemma 24: The function space mF(w,s)(A⊥) is a complete partial order for any
(w, s) ∈ F (S).

Proof: The least element of F(w,s)(A⊥), ā 7→ ⊥s, is a constant function and
therefore monotonic, thus also being the least element of mF(w,s)(A⊥). If D ⊆
mF(w,s)(A⊥) is directed, it is also a directed subset of F(w,s)(A⊥) and has a
least upper bound g :=

⊔
D ∈ F(w,s)(A⊥) with g(ā) =

⊔
f∈D f(ā). We show

that g is monotonic. Let ā ≤ b̄ in Aw⊥ . Since each f ∈ D is monotonic, we have
f(ā) ≤ f(b̄) so that

⊔
f∈D f(b̄) is an upper bound of {f(ā) | f ∈ D}. Therefore,

g(ā) =
⊔
f∈D f(ā) ≤

⊔
f∈D f(b̄) = g(b̄). �

Finally, we turn to continuous functions. In particular, we want to verify the
continuity of term functionals.

Definition 25: Let A1 = 〈A1;≤1〉 and A2 = 〈A2;≤2〉 be complete partial orders
and f : A1 → A2. Then f is called continuous if

– f is monotonic and
– f(

⊔
T) =

⊔
f(T) for each directed subset T ⊆ A1.

As a direct consequence we note that continuous functions are closed under
composition.

Lemma 26: Each f ∈ mF(w,s)(A⊥) is continuous.

Proof: Let D ⊆ Aw⊥ be directed. Then, all proji(D) are directed subsets of
Asi⊥ . They must be finite and therefore D, too. As f is monotonic, f(D) is also
directed and finite. Hence,

⊔
D = d1 ∈ D and

⊔
f(D) = f(d2) ∈ f(D) and

thereby
⊔
f(D) = f(d2) ≤ f(

⊔
D) = f(d1) ≤

⊔
f(D). �

Theorem 27: Each term functional

JλF̄ .λσx̄.tKA⊥
: mFρ(A⊥) → mF(w,s)(A⊥)

is continuous.

Proof: We have checked already that JλF̄ .λσx̄.tKA⊥
is monotonic. It remains to

prove that for any directed D ⊆ mFρ(A⊥) and for each ā ∈ Aw⊥ , it holds that

Jλσx̄.tKA⊥[
F

D](ā) =
⊔

ḡ∈D

Jλσx̄.tKA⊥[ḡ](ā).

In the case that (a1, . . . , aσ) /∈ Aσ, we get ⊥s on both sides. Otherwise, the
argument ā is passed to the term semantics, and we have to verify that

(∗) JtK(A⊥[
F

D],[x̄/ā]) =
⊔

ḡ∈D

JtK(A⊥[ḡ],[x̄/ā])

We proceed by induction on t, again using the abbreviation

JtK(ḡ,ā) := JtK(A⊥[ḡ],[x̄/ā]).

15

(i) t = xi yields ai on both sides of (∗).
(ii) Let t = ft1 . . . tm, f ∈ F , and (∗) holds for all ti by induction hypothesis.

This implies

Jft1 . . . tmK(
F

D,ā) = fA⊥
(Jt1K(

F

D,ā), . . . , JtmK(
F

D,ā))

= fA⊥
(
⊔

ḡ∈D

Jt1K(ḡ,ā), . . . ,
⊔

ḡ∈D

JtmK(ḡ,ā))

= fA⊥
(
⊔

ḡ∈D

(Jt1K(ḡ,ā), . . . , JtmK(ḡ,ā)))

=
⊔

ḡ∈D

Jft1 . . . tmK(ḡ,ā).

(iii) Let t = Fjt1 . . . tm, 1 ≤ j ≤ r, and (∗) holds for all ti by induction hypothesis.
We conclude

JFjt1 . . . tmK(
F

D,ā) = projj(
⊔
D)(Jt1K(

F

D,ā), . . . , JtmK(
F

D,ā))

= projj(
⊔
D)(

⊔

ḡ∈D

(Jt1K(ḡ,ā), . . . , JtmK(ḡ,ā)))

=
⊔

ḡ∈D

projj(
⊔
D)(Jt1K(ḡ,ā), . . . , JtmK(ḡ,ā))

=
⊔

ḡ∈D

(
⊔

h̄∈D

hj)(Jt1K(ḡ,ā), . . . , JtmK(ḡ,ā))

=
⊔

ḡ∈D

⊔

h̄∈D

hj(Jt1K(ḡ,ā), . . . , JtmK(ḡ,ā)) (a)

=
⊔

ḡ∈D

gj(Jt1K(ḡ,ā), . . . , JtmK(ḡ,ā)) (b)

=
⊔

ḡ∈D

JFjt1 . . . tmK(ḡ,ā).

All equalities, except the last but one, are obvious. So, let us prove that
(a) = (b).
– (b) ≤ (a) follows from the fact that, for all ḡ ∈ D,

gj(Jt1K(ḡ,ā), . . . , JtmK(ḡ,ā)) ≤
⊔

h̄∈D

hj(Jt1K(ḡ,ā), . . . , JtmK(ḡ,ā)).

– For the converse (a) ≤ (b) we observe that for each {ḡ, h̄} ⊆ D there is
k̄ ∈ D such that {ḡ, h̄} ≤ k̄. We get

hj(Jt1K(ḡ,ā), . . . , JtmK(ḡ,ā)) ≤ kj(Jt1K(ḡ,ā), . . . , JtmK(ḡ,ā))

≤ kj(Jt1K(k̄,ā), . . . , JtmK(k̄,ā))

so that, for all ḡ ∈ D, we have

⊔

h̄∈D

hj(Jt1K(ḡ,ā), . . . , JtmK(ḡ,ā)) ≤
⊔

k̄∈D

kj(Jt1K(k̄,ā), . . . , JtmK(k̄,ā)),

which implies (a) ≤ (b). �

16

We conclude our order–theoretic foundations with Tarski’s Fixed–Point The-
orem for continuous transformations [Tar55].

Theorem 28: Let A = 〈A;≤〉 be a complete partial order and f : A → A a
continuous mapping. Then we have for D := {f i(⊥) | i ∈ N} that

(i) D is directed and

(ii) fix(f) :=
⊔
D is a fixed point of f , i.e., f(fix(f)) = fix(f), and moreover,

(iii) fix(f) is the least fixed point of f .

Proof: (i) ⊥ ≤ f(⊥) ≤ f 2(⊥) ≤ . . . because f is monotonic. Hence, D is
directed.

(ii) f(
⊔
i∈N

f i(⊥)) =
⊔
i∈N

f i+1(⊥) =
⊔
i∈N

f i(⊥) because f is continuous and ⊥
is least element.

(iii) For a ∈ A with f(a) = a it follows that f i(⊥) ≤ f i(a) = a for every i ∈ N.
Hence, fix(f) ≤ a. �

3 Recursive Function Definitions

With these algebraic and order–theoretic foundations we established a suitable
framework for defining syntax and semantics of recursive function definitions.
In this section we present a fixed–point semantics that takes strictness informa-
tion into account. As a preparation for our stack implementation we construct
an operational small–step semantics. Its soundness and completeness is proved
by means of a third semantics, a non–deterministic reduction semantics whose
parallel reduction steps turn out to essentially support the equivalence proofs.

Formally, a recursive function definition is viewed as a scheme together with
an algebra that interprets its basic function symbols.

Definition 29: Let Σ = 〈S, F 〉 be a branching signature and Fρ = {F τ11 , . . . , F τrr }
a non–empty set of function variables with ρ = τ1 . . . τr ∈ F (S)+. Let τj =
(wj , sj), dtj ∈ TΣ[Fρ](Xwj)

sj , and 0 ≤ σj ≤ |wj | for j = 1, . . . , r. Then we call

R = (F
τj
j = λσjxwj .dtj | 1 ≤ j ≤ r)

a recursive function scheme over Σ. If in addition A is a branching Σ–
algebra, we call (R,A) a recursive function definition over Σ.

The sort of a recursive function definition is given by its defining function
variable F τ11 :

sort(R,A) := τ1.

Thereby, the set of recursive function definitions over Σ, RfdΣ, is F (S)–sorted:

RfdΣ :=
⋃

τ∈F (S)

RfdτΣ.

Example 30: It should be clear that our introductory example can be under-
stood as a recursive function definition (Rmult,N) ∈ RfdΣ where Σ is a branch-
ing signature with sorts for non–negative integers and booleans and with ap-
propriate function symbols for addition, subtraction, zero, one, equality, and

17

conditionals. Accordingly, N fixes their standard interpretation. We represent
Rmult syntactically by

F = λ0 x.G (x− 1) (Hx)

G = λ1 x y.cond (x = 0)x ((G (x − 1) y) + y)

H = λ0 x.H (x+ 1).

Here, we have chosen the strictness information such that only the first argument
of G is treated strictly which corresponds to the third case of mixed extension
in our introduction.

3.1 Denotational Semantics

Definition 31 (Fixed–point semantics): Let (R,A) ∈ RfdΣ. In order to
specify its fixed–point semantics as a function of type

FpJRKA : Aw1 → As1⊥ ,

we associate with (R,A) the transformation

Φ(R,A) : mFρ(A⊥) → mFρ(A⊥)

given by

Φ(R,A)(ḡ) := (JλF̄ .λσ1xw1 .dt1KA⊥
(ḡ), . . . , JλF̄ .λσrxwr .dtrKA⊥

(ḡ)),

and define

FpJRKA(aw1) := bs1 if proj1(fix(Φ(R,A)))(a
w1) = bs1 .

Note that solutions of (R,A) viewed as an equation system are in fact fixed
points of Φ(R,A). Its least fixed point exists due to the continuity of term function-
als (Theorem 27). Since ⊥–elements are only used as intermediate denotational
values, we did not specify the semantics just by proj1(fix(Φ(R,A))) : Aw1

⊥ → As1⊥
but by its restriction to Aw1 instead.

Example 32: We compute the fixed–point semantics of our example (Rmult,N)

FpJRmultKN : N → N⊥

as follows:

The initial approximation is the least element of the domain, i.e., the vector
containing a globally undefined function for each of the equations:

f0(a) = ⊥

g0(a, b) = ⊥

h0(a) = ⊥ for all a, b ∈ N⊥

18

In the first iteration, these initial functions are substituted for function vari-
ables on right–hand sides:

f1(a) = g0(a− 1, h0(a))

= ⊥

g1(a, b) =

⊥ if a = ⊥
0 if a = 0
g0(a− 1, b) + b otherwise

=

{
0 a = 0
⊥ otherwise

h1(a) = h0(a+ 1)

= ⊥

The next iteration yields:

f2(a) =

{
0 if a ∈ {0, 1}
⊥ otherwise

g2(a, b) =

0 if a = 0
b if a = 1
⊥ otherwise

h2(a) = ⊥

Continuing this process and taking the least upper bound of the resulting ap-
proximations we get as least fixed point:

f(a) =

{
0 if a ∈ {0, 1}
⊥ otherwise

g(a, b) =

0 if a = 0
a · b if a, b 6= ⊥
⊥ otherwise

h(a) = ⊥

and therefore:

FpJRmultKN(a) =

{
0 if a ∈ {0, 1}
⊥ if a > 1

3.2 Operational Semantics

As a first step towards an implementation on an abstract stack machine, we
change our view of recursive function definitions by taking an operational per-
spective in which equations are regarded as rewrite rules. They allow to compute
a function value from given arguments by stepwise reduction.

Let (R,A) ∈ RfdΣ. Based on the S–sorted set

T(R,A) := TΣ[Fρ](A)

of reduction terms for (R,A), we first define the following computation
rules:

19

– ground reduction: faw → fA(aw)

for every (w, s) ∈ F (S), f ∈ F
(w,s)
base

, and aw ∈ Aw,
– conditional reduction: conds true u1u2 → u1

conds falseu1u2 → u2

for every s ∈ S and u1, u2 ∈ T(R,A)s, and
– function reduction: F

τj
j u

wj → dtj [x
wj/uwj]

for every j = 1, . . . , r and uwj ∈ T(R,A)wj such that u1, . . . , uσj ∈ A.

Note that in the special case w = ε ground reduction yields constant re-
duction: c → cA(). Also note that function reduction respects the strictness
information since the first σj arguments have to be evaluated before the function
call.

Generally, a reduction term contains several reducible subterms so that a se-
quential implementation requires a suitable reduction strategy. Later we shall see
that leftmost reduction represents an appropriate choice. At this point, however,
we prefer to leave this issue open, even permitting parallel reduction steps, in
order to simplify the correctness proof.

Definition 33: The reduction relation

⇒ ⊆ T(R,A) ×T(R,A)

is inductively defined as follows:

– For each computation rule u→ v, we have u⇒ v.
– For each u ∈ T(R,A), we let u⇒ u.
– For each (w, s) ∈ F (S), ϕ ∈ (F ∪ Fρ)

(w,s), and uw, vw ∈ T(R,A)w such that
ui ⇒ vi for every 1 ≤ i ≤ |w|, we have ϕuw ⇒ ϕvw.

Example reductions can be found in the introduction.
The following lemma states that we can in fact reduce arbitrary subterms

simultaneously.

Lemma 34: Let w ∈ S+, t ∈ TΣ[Fρ](Xw), and uw, vw ∈ T(R,A)w. If ui ⇒ vi
for every 1 ≤ i ≤ |w|, then also

t[xw/uw] ⇒ t[xw/vw].

Proof: by induction on t ∈ TΣ[Fρ](Xw).

(i) If t = xi, then the assertion turns into one of the premises.
(ii) Let t = ϕt1 . . . tm, and let as induction hypothesis the assertion hold for every

ti. It follows that

(ϕt1 . . . tm)[xw/uw] = ϕ(t1[x
w/uw]) . . . (tm[xw/uw])

⇒ ϕ(t1[x
w/vw]) . . . (tm[xw/vw])

= (ϕt1 . . . tm)[xw/vw]. �

Despite its nondeterminism, the reduction relation provides a proper seman-
tics as it proves to be confluent: for a given reduction term u ∈ T(R,A), there
exists at most one value a ∈ A such that u ⇒∗ a. This will be verified by ex-
tending the fixed–point semantics to reduction terms, and by establishing its

20

invariance under reduction. For notational convenience, we introduce some ab-
breviations concerning the fixed point of the transformation Φ(R,A). Let

⊥ρ := (⊥τ1
1 , . . . ,⊥

τr
r) := ⊥mF

ρ(A⊥)

where ⊥(w,s) : Aw⊥ → As⊥ is given by

⊥(w,s)(aw) := ⊥s

for every aw ∈ Aw⊥ . We denote the fixed point of Φ(R,A) by

ψρ = (ψτ11 , . . . , ψ
τr
r) := fix(Φ(R,A))

or, omitting type information, simply by ψ̄ = (ψ1, . . . , ψr), and its approxima-
tions by

ψ̄(k) = (ψ
(k)
1 , . . . , ψ(k)

r) := Φk(R,A)(⊥
ρ)

for each k ∈ N.
Now we extend our fixed–point semantics to a reduction term u ∈ T(R,A)

by
FpJuK(R,A) := JuKA⊥[ψ̄]

which relates to the fixed–point semantics of a recursive function definition as
follows:

FpJRKA(aw) = FpJF1a
wK(R,A)

for every aw ∈ Aw.

Lemma 35: For every u, v ∈ T(R,A), u⇒ v implies FpJuK(R,A) = FpJvK(R,A).

Proof: by induction on the structure of ⇒.

(i) For a ground reduction of the form faw → fA(aw), it follows directly that

JfawK
A⊥[ψ̄] = fA(aw) = JfA(aw)K

A⊥[ψ̄].

(ii) For a conditional reduction conds trueu1u2 → u1 we have

Jconds true u1u2 → u1KA⊥[ψ̄] = α⊥(conds)(true, Ju1KA⊥[ψ̄]), Ju2KA⊥[ψ̄])

= Ju1KA⊥[ψ̄],

and correspondingly in the false–case.
(iii) A function reduction Fju

w → dtj [x
w/uw] with uw = (u1, . . . , un) requires

that u1, . . . , uσj ∈ A. Here the assertion follows essentially from the fixed–
point property of ψ̄ and from Lemma 11:

JFju
wKA⊥[ψ̄] = ψj(Ju

wKA⊥[ψ̄])

= projj(ψ̄)(JuwK
A⊥[ψ̄])

= projj(Φ(R,A)(ψ̄))(JuwKA⊥[ψ̄])

= JλF ρ.λσjxw.dtjKA⊥
(ψ̄)(JuwKA⊥[ψ̄])

= Jλσjxw.dtjKA⊥[ψ̄](Ju
wKA⊥[ψ̄])

= JdtjK(A⊥[ψ̄],[xw/JuwK
A⊥[ψ̄]])

= Jdtj [x
w/uw]KA⊥[ψ̄].

21

(iv) For the inductive step, let ϕu1 . . . un ⇒ ϕv1 . . . vn with ui ⇒ vi for every
1 ≤ i ≤ n. We easily check that

Jϕu1 . . . unKA⊥[ψ̄] = ϕA⊥[ψ̄](Ju1KA⊥[ψ̄], . . . , JunKA⊥[ψ̄])

= ϕA⊥[ψ̄](Jv1KA⊥[ψ̄], . . . , JvnKA⊥[ψ̄])

= Jϕv1 . . . vnKA⊥[ψ̄],

thus concluding the proof. �

The invariance of the fixed–point semantics entails the following special con-
fluence property, which yields the well–definedness of reduction semantics as
specified below.

Corollary 36: For every u ∈ T(R,A) and b1, b2 ∈ A, u ⇒∗ b1 and u ⇒∗ b2
implies b1 = b2.

Definition 37 (Reduction semantics): Let (R,A) ∈ Rfd
(w,s)
Σ . Its reduction

semantics

RedJRKA : Aw → As⊥,

is defined for aw ∈ Aw by:

RedJRKA(aw) :=

{
b if F1a

w ⇒∗ b for some b ∈ As

⊥s if no such b exists

Moreover, the invariance of fixed–point semantics yields the following sound-
ness property.

Corollary 38 (Soundness of reduction semantics): For (R,A) ∈ RfdΣ ,
aw ∈ Aw, and b ∈ As, it holds that

RedJRKA(aw) = b implies FpJRKA(aw) = b.

It remains to verify that the reduction semantics is also complete with respect
to the fixed–point semantics. Here we exploit the fact that the restriction to finite
approximations is sufficient to obtain the denotational semantics of a given term.

Lemma 39: For each u ∈ T(R,A) there exists k ∈ N such that

JuK
A⊥[ψ̄] = JuK

A⊥[ψ̄(k)].

In particular, if JuK
A⊥[ψ̄] = ⊥s, this holds with k = 0.

Proof: From the proof of continuity for term functionals (Theorem 27) we see
that

JuK
A⊥[ψ̄] =

⊔

k∈N

JuK
A⊥[ψ̄(k)]

because {ψ̄(k) | k ∈ N} is a directed subset of mFρ(A⊥) with
⊔
k∈N

ψ̄(k) = ψ̄,
and u can be regarded as a term in TΣ′[Fρ] where Σ′ is a suitable extension of Σ
by constant symbols from A. As we have

⊔
k∈N

JuK
A⊥[ψ̄(k)] ∈ A⊥, there must be a

k ∈ N satisfying the assertion. Obviously, if
⊔
k∈N

JuK
A⊥[ψ̄(k)] = ⊥s, we can take

k = 0. �

22

Theorem 40 (Completeness of reduction semantics): Let u ∈ T(R,A),
a ∈ A, and k ∈ N. Then

(∗) JuK
A⊥[ψ̄(k)] = a implies u⇒∗ a.

Proof: by induction on k ∈ N.

(i) k = 0: We prove (∗) by induction on the structure of u ∈ T(R,A).
(a) u = a ∈ A: (∗) obviously holds since a⇒∗ a.
(b) u = fu1 . . . un with f ∈ Fbase: let (∗) hold for every ui, where k = 0. Then

it follows that

a = Jfu1 . . . unKA⊥[ψ̄(0)]

= fA⊥
(Ju1KA⊥[ψ̄(0)], . . . , JunKA⊥[ψ̄(0)]).

Due to the strictness of fA⊥
, for every argument position i ∈ {1, . . . , n}

there exists ai ∈ A such that JuiKA⊥[ψ̄(0)] = ai, and hence, according to the
induction hypothesis, ui ⇒

∗ ai, which implies fu1 . . . un ⇒∗ fa1 . . . an ⇒
a.

(c) u = cond u0u1u2 with (∗) for every ui, where k = 0. Here, JuK
A⊥[ψ̄(0)] = a

implies that either Ju0KA⊥[ψ̄(0)] = true and Ju1KA⊥[ψ̄(0)] = a or Ju0KA⊥[ψ̄(0)] =
false and Ju2KA⊥[ψ̄(0)] = a. In both cases, the induction hypothesis yields
reduction sequences which can be combined to cond u0u1u2 ⇒∗ a.

(d) u = Fju
w: here, JuK

A⊥[ψ̄(0)] = ψ
(0)
j (JuwK

A⊥[ψ̄(0)]) = ⊥sj /∈ A, such that (∗)
holds trivially.

Altogether, (∗) holds for k = 0.
(ii) k k + 1: let (∗) hold for k. Again we employ induction on the structure

of u ∈ T(R,A). The first three cases, which do not directly depend on the
approximation index k, can be handled in analogy to k = 0. It remains to
investigate the following situation:
(d) u = Fju

w where uw = (u1, . . . , un). Our structural induction hypothesis
yields (∗) with k + 1 for every ui, which implies

a = JuK
A⊥[ψ̄(k+1)]

= ψ
(k+1)
j (JuwK

A⊥[ψ̄(k+1)])

= projj(Φ(R,A)(ψ̄
(k)))(JuwK

A⊥[ψ̄(k+1)])

= Jλσjxw.dtjKA⊥[ψ̄(k)](Ju
wK

A⊥[ψ̄(k+1)])

= JdtjK(A⊥[ψ̄(k)],[xw/JuwK
A⊥ [ψ̄(k+1)]

]).

Here, the strictness index σj requires that ai := JuiKA⊥[ψ̄(k+1)] ∈ A for
every i = 1, . . . , σj . In order to be able to apply the induction hypothesis
for k, we choose the reduction terms

vi :=

{
ai if ai ∈ A
ui if ai = ⊥si

for every i = 1, . . . , n. It follows that JviKA⊥[ψ̄(k)] = JuiKA⊥[ψ̄(k+1)], since the
monotonicity of the term semantics implies that JuiKA⊥[ψ̄(k)] ≤ JuiKA⊥[ψ̄(k+1)].
Applying the Substitution Lemma, we obtain

a = JdtjK(A⊥[ψ̄(k)],[xw/JvwK
A⊥ [ψ̄(k)]

])

= Jdtj[x
w/vw]K

A⊥[ψ̄(k)]

23

such that the induction hypothesis for k yields

dtj[x
w/vw] ⇒∗ a.

Moreover, vw has been chosen to fulfil the strictness requirement of Fj ,
and hence

Fjv
w ⇒ dtj [x

w/vw].

Finally, it is easily verified that ui ⇒
∗ vi for every i = 1, . . . , n such that

Fju
w ⇒∗ a,

which concludes our proof. �

Combining Corollary 38 and Theorem 40, we obtain the following equivalence
result.

Corollary 41 (Equivalence of reduction and fixed–point semantics):
For every (R,A) ∈ RfdΣ we have

RedJRKA = FpJRKA.

3.3 Leftmost Reduction

Due to its nondeterminism, the reduction semantics as presented in the pre-
vious section is not a suitable basis for a direct implementation. We therefore
introduce a deterministic evaluation strategy. As mentioned earlier, selecting
the leftmost reducible subterm of a reduction term represents an appropriate
choice. We thereby generalize and unify the well–known leftmost–outermost and
leftmost–innermost reduction strategies.

Definition 42: The l–reduction relation

⇒l ⊆ T(R,A) ×T(R,A)

is inductively defined as follows.

– For each computation rule u→ v, we have u⇒l v.
– If fa1 . . . ai−1ui . . . un ∈ T(R,A) where f ∈ Fbase, 1 ≤ i ≤ n, a1, . . . , ai−1 ∈
A, and ui ⇒l vi for some vi ∈ T(R,A), then

fa1 . . . ai−1ui . . . un ⇒l fa1 . . . ai−1vi . . . un.

– If conds u0u1u2 ∈ T(R,A) and u0 ⇒l v0 for some v0 ∈ T(R,A), then

conds u0u1u2 ⇒l condsv0u1u2.

– If Fja1 . . . ai−1ui . . . un ∈ T(R,A) where 1 ≤ i ≤ σj, a1, . . . , ai−1 ∈ A, and
ui ⇒l vi for some vi ∈ T(R,A), then

Fja1 . . . ai−1ui . . . un ⇒l Fja1 . . . ai−1vi . . . un.

Lemma 43: For every u ∈ T(R,A), we have:

(i) If u /∈ A, then there exists exactly one v ∈ T(R,A) such that u⇒l v.

24

(ii) If u ∈ A, then no such v exists.

Proof: by induction on the structure of u. �

Definition 44 (l–reduction semantics): Let (R,A) ∈ Rfd
(w,s)
Σ . We define its

l–reduction semantics

lRdJRKA : Aw → As⊥,

by:

lRdJRKA(aw) :=

{
b if F1a

w ⇒∗
l b for some b ∈ As

⊥s if no such b exists

Theorem 45 (Equivalence of l–reduction and reduction semantics):
For every (R,A) ∈ RfdΣ we have

lRdJRKA = RedJRKA.

Proof: Obviously, F1a
w ⇒∗

l b implies F1a
w ⇒∗ b. To verify the completeness

of l–reduction semantics, we prove by induction on m ∈ N that, for every u ∈
T(R,A) and a ∈ A, u⇒∗

l a whenever u⇒m a.

(i) m = 0: u⇒0 a implies u = a and hence u⇒∗
l a.

(ii) m m+ 1: let u⇒m+1 a. We have the following cases for u:

(a) u = a: as before, u⇒∗
l a follows immediately.

(b) u = fu1 . . . un with f ∈ Fbase:
It follows that u ⇒m fa1 . . . an ⇒ fA(a1, . . . , an) = a. According to Def-
inition 33, there are n simultaneous reductions of the form ui ⇒m ai
such that by induction hypothesis ui ⇒

∗
l ai for i = 1, . . . , n. Sequentially

composing these reductions, we obtain

fu1 . . . un ⇒∗
l fa1 . . . un ⇒∗

l fa1 . . . an ⇒l a.

(c) u = cond u0u1u2: analogously

(d) u = Fju
w with uw = (u1, . . . , un):

The reduction u ⇒m+1 a can be decomposed into Fju
w ⇒p Fjv

w ⇒
dtj [x

w/vw] ⇒q a where p + q = m, vw = (v1, . . . , vn) ∈ T(R,A)n, and
v1, . . . , vσj ∈ A. Consequently, ui ⇒

p vi for i = 1, . . . , n, and by induction
hypothesis ui ⇒

∗
l vi for i = 1, . . . , σj. By proper combination we get

Fju
w ⇒∗

l Fjv1 . . . vσjuσj+1 . . . un
⇒l dtj[x

w/(v1, . . . , vσj , uσj+1, . . . , un)]
=: t′.

Now, Lemma 34 admits simultaneous reduction of subterms so that we
get t′ ⇒p dtj[x

w/vw] ⇒q a, and again by induction hypothesis, t′ ⇒∗
l a.
�

These equivalence results show that strictness information can appropriately
be modelled on the denotational as well as the operational level.

25

4 Interpreter Semantics

In this section we present an interpreter for evaluating a recursive function def-
inition. In comparison with reduction semantics, its working principle is closer
to a real implementation: in function calls, variable substitutions are not carried
out but, for reasons of efficiency, argument values are kept in environments.

More concretely, our machine consists of three stack components. The first
one is used to drive the reduction process according to the structure of the
current term. Either, special decomposition steps are carried out to implement
the leftmost reduction strategy, or certain computation steps corresponding to
computation rules of reduction semantics (cf. Section 3.2) are taken. Here, spe-
cial constructor symbols are used to delay the evaluation of non–strict function
parameters and of the two result branches of a conditional expression.

The second component is a data stack which is used for storing intermediate
computation results. The third stack keeps track of parameter values for function
calls. It contains one entry for each active function call and for each evaluation of
a lazy argument. Special ret entries are used to delete the topmost environment
when terminating the corresponding computation.

Note that the standard implementation technique for lazy functional lan-
guages involves so–called closures which are special data structures used to rep-
resent unevaluated arguments (or, in a higher–order setting, partial function
applications), and which are usually stored in a heap. This technique was in-
troduced by P. Landin for his SECD–machine [Lan64]. However, our first–order
framework without (explicit) data structures allows us to keep all required infor-
mation in a single nested stack.

As before, let (R,A) ∈ RfdΣ where R = (F
τj
j = λσjxwj .dtj | 1 ≤ j ≤ r).

First we construct from R two symbol sets for proper control of interpreter steps.
An arbitrary term t ∈ TΣ[Fρ](X) is used as a decomposition symbol which will
be transformed into a sequence of reduction symbols. To ease the following com-
piler construction we even include atomic terms as decomposition symbols and
distinguish them from corresponding reduction symbols although this separation
is not necessary.

Definition 46 (Decomposition and reduction symbols): The elements of
Dec := TΣ[Fρ](X) are called decomposition symbols of R. With each t ∈ Dec
we associate a reduction symbol redsym(t):

– redsym(x) := [x]
– redsym(ft1 . . . tn) := [f]
– redsym(cond t0t1t2) := cond[t1, t2]
– redsym(Fjt1 . . . tnj) := Fj [tσj+1, . . . , tnj]

and, including the special reduction symbol ret, we get the set
Red := {redsym(t) | t ∈ Dec} ∪ {ret} of reduction symbols of R.

Now we can fix the interpreter states as follows.

Definition 47: The set IntSt of interpreter states w.r.t. (R,A) is given by

IntSt := PS ×DS×ES

26

where

PS := (Dec ∪Red)∗,

DS := A∗, and

ES := Env∗

represent the sets of program stack values, data stack values, and envi-

ronment stack values, respectively. Here, Env := (Z ∗)∗ denotes the set of
environments where Z := A ∪Dec.

We use the following standard denotations:

st = 〈ps, ds, es〉 ∈ IntSt
es = e1 : . . . :en ∈ ES
ei = z̄1 · . . . · z̄m ∈ Env
z̄i = (z1, . . . , zk) ∈ Z

∗

Later we shall restrict states to l–states and, in particular, environments to
l–environments, taking type information into account. As a consequence this
will also enable us to simplify our notation for environments, which currently
represents the full stack history at each stack level.

The interpreter changes its states by performing transitions which are deter-
mined by the top symbol of the program stack. The essential point here is the
handling of a function call, which extends the environment stack by a new envi-
ronment, whereas for evaluating a lazy argument the environment of the calling
function has to be restored.

Definition 48 (Interpreter transitions): A state st = 〈ε, ds, es〉 ∈ IntSt is
called a final state. Non–final states are called decomposition states or re-

duction states according to the top symbol in the program stack. Correspond-
ingly, the transition relation ` ⊆ IntSt× IntSt is given by

` :=`dec ∪ `red

where the decomposition relation `dec is specified by

– 〈x :ps, ds, es〉 `dec 〈[x] :ps, ds, es〉
– 〈ft1 : . . . : tn :ps, ds, es〉 `dec 〈t1 : . . . : tn : [f] :ps, ds, es〉 for every f ∈ Fbase,
– 〈cond t0 t1 t2 :ps, ds, es〉 `dec 〈t0 :cond[t1, t2] :ps, ds, es〉, and
– 〈Fj t1 . . . tnj :ps, ds, es〉 `dec 〈t1 : . . . : tσj :Fj [tσj+1, . . . , tnj] :ps, ds, es〉,

and where the reduction relation `red is defined by

– 〈[xi] :ps, ds, (z1, . . . , zk) · e :es〉 `red 〈ps, ds :zi, (z1, . . . , zk) · e :es〉
if 1 ≤ i ≤ k and zi ∈ A,

– 〈[xi] :ps, ds, (z1, . . . , zk) · e :es〉 `red 〈zi : ret :ps, ds, e : (z1, . . . , zk) · e :es〉
if 1 ≤ i ≤ k and zi ∈ Dec,

– 〈[f] :ps, ds :a1 : . . . :an, es〉 `red 〈ps, ds :fA(a1, . . . , an), es〉,
– 〈cond[t1, t2] :ps, ds : true, es〉 `red 〈t1 :ps, ds, es〉,
– 〈cond[t1, t2] :ps, ds : false, es〉 `red 〈t2 :ps, ds, es〉,
– 〈Fj [tσj+1, . . . , tnj] :ps, ds :a1 : . . . :aσj , e :es〉 `red

〈dtj : ret :ps, ds, (a1, . . . , aσj , tσj+1, . . . , tnj) · e :e :es〉, and

27

– 〈ret :ps, ds, e :es〉 `red 〈ps, ds, es〉.

Note that the transition relation is in fact well–defined because for st ∈ IntSt
and st ` st′ we also have st′ ∈ IntSt. Moreover, ` is deterministic because each
program stack value determines at most one possible transition except those with
[xi] or cond[t1, t2] as top entry, in which case the environment stack or the data
stack, respectively, takes the decision.

By successive decomposition a decomposition symbol can be transformed into
a sequence of reduction symbols.

Definition 49 (Decomposition mapping): The decomposition mappping

dec : PS → PS

is given by:

dec(ε) := ε

dec(p :ps) := dec(p) :ps

dec(x) := [x]

dec(ft1 . . . tn) := dec(t1) : t2 : . . . : tn : [f]

dec(cond t0t1t2) := dec(t0) :cond[t1, t2]

dec(Fjt1 . . . tnj) := dec(t1) : t2 : . . . : tσj : Fj [tσj+1, . . . , tnj]

dec(p) := p if p ∈ Red

Lemma 50 (Uniqueness of decomposition): For each non–final state st =
〈p :ps, ds, es〉 ∈ IntSt there is exactly one reduction state st′ such that st `∗

dec
st′.

Moreover, st′ is the decomposed state dec(st) := 〈dec(p :ps), ds, es〉.

Proof: For each st = 〈p :ps, ds, es〉 ∈ IntSt with p ∈ Red we have dec(st) = st,
which is a reduction state being reachable within 0 steps. Otherwise we proceed
by induction over p ∈ Dec:

(i) For p = x we have 〈x :ps, ds, es〉 `dec 〈[x] :ps, ds, es〉 = 〈dec(x) :ps, ds, es〉.
(ii) If p = ft1 . . . tn, the induction hypothesis yields:

〈ft1 . . . tn :ps, ds, es〉 `dec 〈t1 : t2 : . . . : tn : [f] :ps, ds, es〉

`∗
dec

〈dec(t1) : t2 : . . . : tn : [f] :ps, ds, es〉

= 〈dec(ft1 . . . tn) :ps, ds, es〉

The remaining cases are handled similarly. Note that st′ is unique since ` is
deterministic. �

Definition 51 (Interpreter semantics): For (R,A) ∈ Rfd
(w,s)
Σ we define its

interpreter semantics

IntJRKA : Aw → As⊥

by:

IntJRKA(a1, . . . , an) :=

{
b if 〈F1 x1 . . . xn : ret, ε, (a1, . . . , an)〉 `

∗ 〈ε, b, ε〉
⊥s if no such b ∈ As exists

28

Note that due to the determinism of the transition relation the semantics is
well defined.

Example 52: The following computation of our interpreter for the multiplica-
tion definition (Rmult,N) (Example 30) shows that

IntJRmultKN(1) = 0 :

〈F x : ret, ε, (1)〉

`dec 〈F [x] : ret, ε, (1)〉 (σF = 0)

`red 〈G (x − 1) (H x) : ret : ret, ε, (x) · (1) : (1)〉

`dec 〈x − 1 :G[H x] : ret : ret, ε, (x) · (1) : (1)〉 (σG = 1)

`dec 〈x : 1 : [−] :G[H x] : ret : ret, ε, (x) · (1) : (1)〉

`dec 〈[x] : 1 : [−] :G[H x] : ret : ret, ε, (x) · (1) : (1)〉

`red 〈x : ret : 1 : [−] :G[H x] : ret : ret, ε, (1) : (x) · (1) : (1)〉

`dec 〈[x] : ret : 1 : [−] :G[H x] : ret : ret, ε, (1) : (x) · (1) : (1)〉

`red 〈ret : 1 : [−] :G[H x] : ret : ret, 1, (1) : (x) · (1) : (1)〉

`red 〈1 : [−] :G[H x] : ret : ret, 1, (x) · (1) : (1)〉

`dec 〈[1] : [−] :G[H x] : ret : ret, 1, (x) · (1) : (1)〉

`red 〈[−] :G[H x] : ret : ret, 1 :1, (x) · (1) : (1)〉

`red 〈G[H x] : ret : ret, 0, (x) · (1) : (1)〉

`red 〈cond (x = 0) x ((G (x − 1) y) + y) : ret : ret : ret, ε, (0, H x) · (x) · (1) : (x) · (1) : (1)〉

`dec 〈x = 0:cond[x, (G (x − 1) y) + y] : ret : ret : ret, ε, (0, H x) · (x) · (1) : (x) · (1) : (1)〉

`dec 〈x : 0 : [=] :cond[x, (G (x − 1) y) + y] : ret : ret : ret, ε, (0, H x) · (x) · (1) : (x) · (1) : (1)〉

`dec 〈[x] : 0 : [=] :cond[x, (G (x − 1) y) + y] : ret : ret : ret, ε, (0, H x) · (x) · (1) : (x) · (1) : (1)〉

`red 〈0 : [=] :cond[x, (G (x − 1) y) + y] : ret : ret : ret, 0, (0, H x) · (x) · (1) : (x) · (1) : (1)〉

`dec 〈[0] : [=] :cond[x, (G (x − 1) y) + y] : ret : ret : ret, 0, (0, H x) · (x) · (1) : (x) · (1) : (1)〉

`red 〈[=] :cond[x, (G (x − 1) y) + y] : ret : ret : ret, 0 :0, (0, H x) · (x) · (1) : (x) · (1) : (1)〉

`red 〈cond[x, (G (x − 1) y) + y] : ret : ret : ret, true, (0, H x) · (x) · (1) : (x) · (1) : (1)〉

`red 〈x : ret : ret : ret, ε, (0, H x) · (x) · (1) : (x) · (1) : (1)〉

`dec 〈[x] : ret : ret : ret, ε, (0, H x) · (x) · (1) : (x) · (1) : (1)〉

`red 〈ret : ret : ret, 0, (0, H x) · (x) · (1) : (x) · (1) : (1)〉

`red 〈ret : ret, 0, (x) · (1) : (1)〉

`red 〈ret, 0, (1)〉

`red 〈ε, 0, ε〉

Note that the environment stack, which is actually a nested stack of environ-
ments, could be implemented more efficiently by employing pointers to access
the parameter values of previous (active) function calls.

Now we want to verify that the interpreter semantics in fact coincides with the
reduction semantics. A closer look at the behaviour of our interpreter reveals that
it simulates l–reductions so that those states actually occurring in a computation
have a particular structure.

Definition 53 (L–environments): The S∗–sorted set

lEnv ⊆ Env

of l–environments is inductively defined as follows.

29

(i) If ai ∈ Asi for 1 ≤ i ≤ n, then (a1, . . . , an) ∈ lEnvs1...sn.
(ii) If e ∈ lEnvw, ai ∈ Asi for 1 ≤ i ≤ n or n = 0, and if ti ∈ Dec(w,si) :=

TΣ[Fρ](Xw)si for n+1 ≤ i ≤ m, then (a1, . . . , an, tn+1, . . . , tm)·e ∈ lEnvs1...sm.

Due to these type restrictions, every l–environment yields a sequence of re-
duction terms which is obtained by iterated substitution.

Definition 54 (Reduction terms of l–environments): The mapping

rt : lEnv → T(R,A)∗

is defined by

rt((a1, . . . , an)) := (a1, . . . , an) and

rt((a1, . . . , an, tn+1, . . . , tm) · e) := (a1, . . . , an, tn+1[rt(e)], . . . , tm[rt(e)]).

We see that rt preserves types such that the substitutions ti[rt(e)], shorthand
for ti[x

w/rt(e)], are well defined.

Definition 55 (L–environment stack values): A stack value es = e1 : . . . :
en ∈ ES is called an l–environment stack value if it has the following prop-
erties:

(i) ei ∈ lEnv for every 1 ≤ i ≤ n,
(ii) ei is compatible with ei+1 for every 1 ≤ i < n, i.e., we have either ei = z̄ ·ei+1

or ei+1 = z̄ · ei, for some z̄ ∈ Z∗.

Definition 56 (L–states): The S–sorted set lSt ⊆ IntSt of l–states, together
with their associated reduction terms rt : lSt → T(R,A), is inductively given
as follows.

(i) st := 〈ε, a, ε〉 ∈ lSts for every a ∈ As, and rt(st) := a,
(ii) st := 〈ret, a, e〉 ∈ lSts for every a ∈ As, e ∈ lEnv, and rt(st) := a,
(iii) st := 〈[xsi] : ret, ε, e〉 ∈ lSts for every xsi ∈ X, e ∈ lEnvs1...sn with si = s, and

rt(st) := ui where rt(e) = (u1, . . . , un),

(iv) st := 〈[f] : ret, a1 : . . . : an, e〉 ∈ lSts for every f ∈ F
(w,s)
base

, (a1, . . . , an) ∈ Aw,
e ∈ lEnv, and rt(st) := fa1 . . . an,

(v) st := 〈F
(w,s)
j [tσj+1, . . . , tnj] : ret, a1 : . . . :aσj , e〉 ∈ lSts if F

(w,s)
j [tσj+1, . . . , tnj] ∈

Red, w = s1 . . . snj , e ∈ lEnvv, ai ∈ Asi, ti ∈ Dec(v,si), and
rt(st) := Fja1 . . . aσj tσj+1[rt(e)] . . . tnj [rt(e)],

(vi) st := 〈conds[t1, t2] : ret, true, e〉 ∈ lSts if conds[t1, t2] ∈ Red, t1, t2 ∈ Dec(w,s),
e ∈ lEnvw, and rt(st) := conds true t1[rt(e)] t2[rt(e)],

(vii) st := 〈conds[t1, t2] : ret, false, e〉 ∈ lSts if conds[t1, t2] ∈ Red, t1, t2 ∈ Dec(w,s),
e ∈ lEnvw, and rt(st) := conds false t1[rt(e)] t2[rt(e)].

The next four rules specify the inductive closure. Under the induction hypothesis
that st = 〈ps : ret, ds, es〉 ∈ lSts with ps 6= ε and rt(st) = u ∈ T(R,A)s, also the
following states are l–states:

(viii) st := 〈ps : tk+1 : . . . : tn : [f] : ret, a1 : . . . : ak−1 : ds, es〉 ∈ lSts
′

for each

f ∈ F
(w,s′)
base

, w = s1 . . . , sn, ai ∈ Asi , ti ∈ Dec(v,si), s = sk, es = e : es′,
e ∈ lEnvv, and rt(st) := fa1 . . . ak−1u tk+1[rt(e)] . . . tn[rt(e)],

30

(ix) st := 〈ps : conds′ [t1, t2] : ret, ds, es〉 ∈ lSts
′

if s = bool, conds′ [t1, t2] ∈ Red,
t1, t2 ∈ Dec(w,s′), es = e :es′, e ∈ lEnvw, and
rt(st) := conds′ u t1[rt(e)] t2[rt(e)],

(x) st := 〈ps : tk+1 : . . . : tσj : F
(w,s′)
j [tσj+1, . . . , tnj] : ret, a1 : . . . : ak−1 : ds, es〉 ∈

lSts
′

if F
(w,s′)
j [tσj+1, . . . , tnj] ∈ Red, w = s1 . . . snj , ai ∈ Asi , ti ∈ Dec(v,si),

s = sk, es = e :es′, e ∈ lEnvv, and
rt(st) := Fja1 . . . ak−1u tk+1[rt(e)] . . . tnj [rt(e)],

(xi) st := 〈ps : ret : ret, ds, es :e〉 ∈ lSts if e ∈ lEnv, and rt(st) := u.

Observe that each l–state is a reduction state as it is in decomposed form.

Lemma 57: Let (w, s) ∈ S∗×S, e ∈ lEnvw, and t ∈ Dec(w,s). Then it holds for
st = 〈t : ret, ε, e〉 ∈ IntSt that dec(st) = 〈dec(t) : ret, ε, e〉 ∈ lSts and rt(dec(st)) =
t[rt(e)].

Proof: by induction on t.

(i) For t = xi ∈ X the assertion follows from Definition 56 together with the
observation that xi[rt(e)] = ui if rt(e) = (u1, . . . , un).

(ii) For t = c ∈ C we similarly conclude that dec(st) ∈ lSt and rt(st) = c =
c[rt(e)].

(iii) Let t = ft1 . . . tn ∈ Dec where n ≥ 1. Hence, t1 ∈ Dec, and by induction
hypothesis, 〈dec(t1) : ret, ε, e〉 ∈ lSt and rt(〈dec(t1) : ret, ε, e〉) = t1[rt(e)]. Then
Definition 56 implies that

〈dec(t1) : t2 : . . . : tn : [f] : ret, ε, e〉 = 〈dec(t) : ret, ε, e〉 ∈ lSt and

rt(dec(st)) = f t1[rt(e)] t2[rt(e)] . . . tn[rt(e)]

= t[rt(e)].

(iv) Let t = cond t0t1t2 ∈ Dec. Then t0 ∈ Dec, and by induction 〈dec(t0) :
ret, ε, e〉 ∈ lSt and rt(〈dec(t0) : ret, ε, e〉) = t0[rt(e)]. Again Definition 56 im-
plies that

〈dec(t0) :cond[t1, t2] : ret, ε, e〉 = 〈dec(t) : ret, ε, e〉 ∈ lSt and

rt(dec(st)) = cond t0[rt(e)] t1[rt(e)] t2[rt(e)]

= t[rt(e)].

(v) For t = Fjt1 . . . tnj ∈ Dec where σj ≥ 1 and, inductively, 〈dec(t1) : ret, ε, e〉 ∈
lSt and rt(〈dec(t1) : ret, ε, e〉) = t1[rt(e)] we conclude from Definition 56 that

〈dec(t1) : t2 : . . . : tσj :Fj [tσj+1, . . . , tnj] : ret, ε, e〉 = 〈dec(t) : ret, ε, e〉 ∈ lSt and

rt(dec(st)) = Fj t1[rt(e)] t2[rt(e)] . . . tnj [rt(e)]

= t[rt(e)].

(vi) For t = Fjt1 . . . tnj ∈ Dec where σj = 0 we directly see from Definition 56
that

〈dec(t) : ret, ε, e〉 = 〈Fj [t1, . . . , tnj] : ret, ε, e〉 ∈ lSt and

rt(dec(st)) = t[rt(e)]. �

31

Now we are well prepared to prove that our interpreter implements the left–
reduction strategy. For this purpose we start from the obvious correspondence
between initial states, and then we show that this correspondence between in-
terpreter states and left–reduction terms is preserved during computation.

Lemma 58 (Correspondence of initial states): Let (R,A) ∈ Rfd
(w,s)
Σ and

ā = (a1, . . . , an) ∈ Aw. Then it holds for the initial state stā := 〈F1x1 . . . xn :
ret, ε, ā〉 that dec(stā) ∈ lSt and rt(dec(stā)) = F1a1 . . . an.

Proof: The claim follows directly from the previous lemma. �

Theorem 59: For each interpreter state st = 〈ps, ds, es〉 ∈ lSt with ps 6= ε
there is st′ ∈ IntSt such that

st `red st
′ `∗

dec dec(st′) ∈ lSt

and

rt(st) ⇒n
l rt(dec(st′)) for some n ∈ {0, 1}.

Proof: by induction on st according to Definition 56.

(ii) For st = 〈ret, a, e〉 we have st `red 〈ε, a, ε〉 ∈ lSt and rt(st) = a = rt(〈ε, a, ε〉)
so that the claim holds with n = 0.

(iii) For st = 〈[xi] : ret, ε, (z1, . . . , zk) · e〉, the following cases are possible:

(a) zi ∈ A: here st `red 〈ret, zi, (z1, . . . , zk) · e〉 =: st′, and hence dec(st′) = st′

and rt(st) = zi = rt(dec(st′)).

(b) zi ∈ Dec: we have st `red 〈zi : ret : ret, ε, e : (z1, . . . , zk) · e〉 =: st′. Here
dec(st′) ∈ lSt holds since Lemma 57 implies that 〈dec(zi) : ret, ε, e〉 ∈ lSt,
and from Definition 56 we see that also dec(st′) = 〈dec(zi) : ret : ret, ε, e :
(z1, . . . , zk) · e〉 ∈ lSt. For the corresponding reduction terms we conclude
rt(st) = zi[rt(e)], and, again by Lemma 57, rt(dec(st′)) = rt(〈dec(zi) :
ret, ε, e〉) = zi[rt(e)].

(iv) If st = 〈[f] : ret, a1 : . . . : an, e〉 ∈ lSt and a = fA(a1, . . . , an), then st `red

〈ret, a, e〉 ∈ lSt and rt(st) = fa1 . . . an ⇒l a = rt(〈ret, a, e〉).
(v) If st = 〈Fj [tσj+1, . . . , tnj] : ret, a1 : . . . :aσj , e〉 ∈ lSt, then

st `red 〈dtj : ret : ret, ε, (a1, . . . , aσj , tσj+1, . . . , tnj) · e :e〉 =: st′.

Here, dec(st′) ∈ lSt follows as in case (iii)(b), and

rt(st) = Fja1 . . . aσj tσj+1[rt(e)] . . . tnj [rt(e)]

⇒l dtj [(a1, . . . , aσj , tσj+1[rt(e)], . . . , tnj [rt(e)])]

= dtj [rt((a1, . . . , aσj , tσj+1, . . . , tnj) · e)]

= rt(dec(st′)).

(vi) If st = 〈cond[t1, t2] : ret, true, e〉 ∈ lSt, then st `red 〈t1 : ret, ε, e〉 =: st′. Accord-
ingly, dec(st′) ∈ lSt, and rt(st) = cond true t1[rt(e)] t2[rt(e)] ⇒l t1[rt(e)] =
rt(dec(st′)).

(vii) The case of false can be dealt with analogously.

32

The remaining cases concern inductive steps. We first observe a general property
of reductions: if

〈ps : ret, ds, es〉 `red 〈ps′ : ret, ds′, es′〉,

then
〈ps :ps1 : ret, ds1 :ds, es :es1〉 `red 〈ps′ :ps1 : ret, ds1 :ds′, es′ :es1〉

for every possible extension of the interpreter state. This holds since reduction
steps only modify a limited amount of upper stack elements whereas the exten-
sions modify stacks at the other end. In addition, the program stack must contain
a non–empty ps such that the ret entry remains unchanged.

Now we assume inductively that st = 〈ps : ret, ds, es〉 `red st′ = 〈ps′ :
ret, ds′, es′〉 with st, dec(st′) ∈ lSt and rt(st) ⇒n

l rt(dec(st′)) for some n ∈ {0, 1}.
In each of the following cases it follows from the property stated above that the
extended state, ŝt, leads again to an l–state:

ŝt `red ŝt
′
`∗

dec dec(ŝt
′
) ∈ lSt.

More precisely, the reduction of ŝt extends the reduction of st in the same way

as ŝt extends st: ŝt
′

= ŝt′; furthermore, dec(ŝt
′
) = dec(ŝt′) = ̂dec(st′) ∈ lSt.

Altogether we see that our interpreter in fact preserves the l–property of states.
We still have to verify that rt(ŝt) ⇒n

l rt(dec(ŝt
′
)). Here we have to treat the

four possible extensions separately.

(viii) For ŝt = 〈ps : tk+1 : . . . : tn : [f] : ret, a1 : . . . : ak−1 : ds, es〉 and rt(ŝt) =
fa1 . . . ak−1 rt(st) tk+1[rt(e)] . . . tn[rt(e)] where es = e : es1, the induction hy-
pothesis yields

rt(ŝt) ⇒n
l fa1 . . . ak−1 rt(dec(st′)) tk+1[rt(e)] . . . tn[rt(e)]

= rt(〈dec(ps′) : tk+1 : . . . : tn : [f] : ret, a1 : . . . :ak−1 :ds′, es′〉)

= rt(dec(〈ps′ : tk+1 : . . . : tn : [f] : ret, a1 : . . . :ak−1 :ds′, es′〉))

= rt(dec(ŝt′))

= rt(dec(ŝt
′
)).

In the remaining cases the claim follows in the same way. �

These results show that a computation can be viewed as a sequence of l–
transitions, where the l–transition relation `l ⊆ lSt× lSt is defined by

st `l st
′ if st `red st

′′ `∗
dec st

′ for some st′′ ∈ IntSt.

Note that if st′ and st′′ exist, they are uniquely determined by st.

Corollary 60: For (R,A) ∈ Rfd
(w,s)
Σ , ā ∈ Aw, b ∈ As and st0 := dec(stā) we

have

(i) IntJRKA(ā) = b iff st0 `∗
l 〈ε, b, ε〉 and

(ii) IntJRKA(ā) = ⊥ iff there is an infinite computation (sti `l sti+1 | i ∈ N).

Proof: This is an immediate consequence of our previous results taking into
account that 〈ε, ds, es〉 ∈ lSt implies that ds ∈ A and es = ε. �

33

Theorem 61 (Equivalence of interpreter and l–reduction semantics):
It holds for every (R,A) ∈ RfdΣ that

IntJRKA = lRdJRKA.

Proof: If (R,A) ∈ Rfd
(w,s)
Σ , then both semantic functions are of type Aw → As⊥.

Hence, it suffices to verify that

(i) IntJRKA(ā) = b implies lRdJRKA(ā) = b and
(ii) IntJRKA(ā) = ⊥ implies lRdJRKA(ā) = ⊥

for each ā ∈ Aw and b ∈ As.
Proof of (i): If IntJRKA(ā) = b, there is a sequence of l–transitions (sti `l

sti+1 | i = 0, . . . , q − 1) such that st0 = dec(stā) and stq = 〈ε, b, ε〉. For the
corresponding reduction terms rt(sti) we conclude that rt(st0) = F1ā, rt(stq) = b
and rt(sti) ⇒

n
l rt(sti+1) for some n ∈ {0, 1} and i = 0, . . . , q−1. Hence, F1ā⇒∗

l b
and thereby lRdJRKA(ā) = b.

Proof of (ii): This case is more subtle in so far as we have to distinguish
l–transitions corresponding to proper l–reduction steps (n = 1) from those with
equal reduction terms (n = 0). Therefore we define for an l–transition st `l st

′

that
st `l0 st

′ if rt(st) = rt(st′) and

st `l1 st
′ if rt(st) ⇒l rt(st′).

Now, if IntJRKA(ā) = ⊥, there is an infinite computation (sti `l sti+1 | i ∈
N) starting from st0 = dec(stā). It remains to show that the corresponding l–
reduction sequence is infinite, too.

For that purpose we prove that an l0–transition st = 〈ps, ds, es〉 `l0 st
′ =

〈ps′, ds′, es′〉 has the following property. It holds that either

(a) st′ is final, i.e., st′ = 〈ε, b, ε〉 for some b ∈ A, or
(b) es is extended by a shortened environment, i.e., es = (z1, . . . , zk) · e : es0 and

es′ = e : es, or
(c) es is preserved and ps is shortened, i.e., es′ = es and ps = p : ps′.

As a consequence there cannot be an infinite sequence of l0–transitions so that
in fact our l–reduction sequence must be infinite.

We prove this l0–property by induction on st ∈ lSt :

(i) st = 〈ε, a, ε〉 does not allow any l0–transition.
(ii) st = 〈ret, a, e〉 ∈ lSt yields st `l0 〈ε, a, ε〉 with property (a).
(iii) st = 〈[xi] : ret, ε, (z1, . . . , zm) · e〉 ∈ lSt :

if zi ∈ A, then st `l0 〈ret, zi, (z1, . . . , zm) · e〉 with property (c);
if zi ∈ T , then st `l0 〈dec(zi) : ret : ret, ε, e : (z1, . . . , zm) · e〉 with property
(b);

(iv) - (vii) do not allow any l0–transition.

Now we assume as induction hypothesis that st = 〈ps : ret, ds, es〉 ∈ lSt with
ps 6= ε and that st `l0 st

′ has the l0–property.

(viii) Let st1 = 〈ps : tk+1 : . . . : tn : [f] : ret, a1 : . . . : ak−1 : ds, es〉.
If st1 `l0 st

′
1, it follows that st = 〈ps : ret, ds, es〉 `l0 st

′ = 〈ps′ : ret, ds′, es′〉
for suitable ps′, ds′, and es′, and in addition that st′1 = 〈ps′ : tk+1 : . . . : tn :
[f] : ret, a1 : . . . : ak−1 : ds′, es′〉. Hence, the l0–property is preserved.

The remaining cases can be treated analogously. �

34

5 A Compiler for Recursive Function Definitions

In a final step we now transform the interpreter into a compiler. For this purpose
we exploit the fact that only subterms of righthand sides dtj and of the calling
term F1x1 . . . xn1 may occur as decomposition symbols in a computation. Their
reduction symbols are taken as machine commands. All symbols will be replaced
by addresses in order to eliminate the implicit control of reduction steps by
means of term decomposition and to use instead explicit control by jumps. Only
connecting the ret command requires a dynamic control through a return stack.
Hence, the program stack will change into a program counter together with a
return stack.

First we modify the interpreter replacing symbols by appropriate addresses.
Then we show how these addresses permit an explicit control of reduction steps.
Thereafter an abstract stack machine together with a compiler emerge as a nat-
ural consequence.

Definition 62 (Addresses and their symbols): Let (R,A) ∈ RfdΣ and R =
(F

τj
j = λσjxwj .dtj | 1 ≤ j ≤ r). The set AdrR ⊆ N∗ of addresses of R and

their decomposition symbols, given by decsym : AdrR → Dec, are defined by

– j ∈ AdrR and decsym(j) := dtj for each j ∈ {1, . . . , r},
– 0 ∈ AdrR and decsym(0) := F1x

w1, and
– if α ∈ AdrR, decsym(α) = ϕt1 . . . tm, and 1 ≤ i ≤ m,

then also α.i ∈ AdrR and decsym(α.i) = ti.

In addition, let Adrret

R := AdrR ∪ {r + 1}.
Each address α ∈ Adrret

R also determines a reduction symbol:

– redsym(α) := redsym(decsym(α)) for α 6= r + 1, and
– redsym(r + 1) := ret.

Note that AdrR and therefore decsym(AdrR) and redsym(Adrret

R) are finite
sets. Since only their elements may occur in an actual computation, we can re-
place program and environment stack symbols by corresponding addresses. On
the program stack we have to distinguish between decomposition and reduc-
tion addresses whereas on the environment stack an address always refers to a
decomposition symbol.

The interpreter with addresses will be constructed with respect to (R,A) ∈
RfdΣ . In contrast, the abstract stack machine has to work for all recursive func-
tion definitions. Therefore we use the index R for denoting the sets of addresses
and of environment stack values and drop this index later with the abstract stack
machine.

Definition 63 (Interpreter with addresses): The address interpreter of
(R,A) ∈ RfdΣ is defined by the set

IntSt@ := PS@ ×DS ×ES@
R

of address states where

PS@ := ({(α, d) | α ∈ AdrR} ∪ {(α, r) | α ∈ Adrret

R })∗,

DS := A∗, and

ES@
R := (Env@

R)∗ where Env@
R := ((A ∪AdrR)∗)∗,

35

by the corresponding transition relation

` := `dec ∪ `red ⊆ IntSt@ × IntSt@

which is given by

– 〈(α, d) :ps, ds, es〉 `dec 〈(α, r) :ps, ds, es〉
if decsym(α) = x,

– 〈(α, d) :ps, ds, es〉 `dec 〈(α.1, d) : . . . : (α.n, d) : (α, r) :ps, ds, es〉
if decsym(α) = ft1 . . . tn,

– 〈(α, d) :ps, ds, es〉 `dec 〈(α.1, d) : (α, r) :ps, ds, es〉
if decsym(α) = condt0t1t2,

– 〈(α, d) :ps, ds, es〉 `dec 〈(α.1, d) : . . . : (α.σj , d) : (α, r) :ps, ds, es〉
if decsym(α) = Fjt1 . . . tnj ,

– 〈(α, r) :ps, ds, z̄ · e :es〉 `red 〈ps, ds :zi, z̄ · e :es〉
if redsym(α) = [xi], z̄ = (z1, . . . , zk), 1 ≤ i ≤ k, and zi ∈ A,

– 〈(α, r) :ps, ds, z̄ · e :es〉 `red 〈(zi, d) : (r + 1, r) :ps, ds, e : z̄ · e :es〉
if redsym(α) = [xi], z̄ = (z1, . . . , zk), 1 ≤ i ≤ k, and zi ∈ AdrR,

– 〈(α, r) :ps, ds :a1 : . . . :an, es〉 `red 〈ps, ds :fA(a1, . . . , an), es〉
if redsym(α) = [f],

– 〈(α, r) :ps, ds : true, es〉 `red 〈(α.2, d) :ps, ds, es〉
if redsym(α) = cond[t1, t2],

– 〈(α, r) :ps, ds : false, es〉 `red 〈(α.3, d) :ps, ds, es〉
if redsym(α) = cond[t1, t2],

– 〈(α, r) :ps, ds :a1 : . . . :aσj , e :es〉 `red

〈(j, d) : (r + 1, r) :ps, ds, (a1, . . . , aσj , α.(σj + 1), . . . , α.nj) · e :e :es〉
if redsym(α) = Fj [tσj+1, . . . , tnj],

– 〈(r + 1, r) :ps, ds, e :es〉 `red 〈ps, ds, es〉,

and by the address interpreter semantics

Int@JRKA : Aw → As⊥

where

Int@JRKA(a1, . . . , an1) :=

{
b if 〈(0, d) : (r + 1, r), ε, (a1, . . . , an1)〉 `

∗ 〈ε, b, ε〉,
⊥s if no such b ∈ As exists.

From this address abstraction it follows directly that the semantics remains
unchanged.

Corollary 64: For (R,A) ∈ RfdΣ we have

Int@JRKA = IntJRKA.

Proof: Replacing addresses by corresponding decomposition and reduction sym-
bols an address interpreter computation turns into an equivalent interpreter com-
putation. �

36

Addresses of a program stack value occurring in an actual computation are
connected in a particular way. We describe this connection by two functions, first

and follow. first(α) gives for decsym(α) the start address of the corresponding
computation, i.e., the address of a subterm whose reduction symbol causes the
first reduction step. It is determined by decomposition of decsym(α). follow(α)
addresses the reduction symbol where the computation continues after evaluating
decsym(α).

Definition 65: first : Adrret

R → Adrret

R and follow : AdrR → Adrret

R are defined
by

first(α) :=

α if decsym(α) ∈ X ∪C
or decsym(α) = Fj t1 . . . tnj , σj = 0
or α = r + 1,

first(α.1) if decsym(α) = f t1 . . . tn, n ≥ 1
or decsym(α) = cond t0 t1 t2
or decsym(α) = Fj t1 . . . tnj , σj ≥ 1,

follow(j) := r + 1 if 0 ≤ j ≤ r,

follow(α.i) :=

first(α.(i + 1)) if decsym(α) = f t1 . . . tn, 1 ≤ i < n
or decsym(α) = Fj t1 . . . tnj , 1 ≤ i < σj,

α if decsym(α) = f t1 . . . tn, i = n
or decsym(α) = Fj t1 . . . tnj , i = σj
or decsym(α) = cond t0 t1 t2, i = 1,

r + 1 if decsym(α) = Fj t1 . . . tnj , σj < i ≤ nj,

follow(α) if decsym(α) = cond t0 t1 t2, i ∈ {2, 3}.

Definition 66: Connected program stack values ps ∈ PS@ are defined by the
following induction:

– ε is connected,

– if ps is connected, then (r + 1, r) :ps is connected,

– if (α, d) :ps is connected and β ∈ AdrR such that follow(β) = first(α),
then (β, ν) : (α, d) :ps is connected for ν ∈ {d, r},

– if (α, r) :ps is connected and β ∈ AdrR such that follow(β) = α,
then (β, ν) : (α, r) :ps is connected for ν ∈ {d, r}.

Definition 67: An address state is called reachable if it occurs in an actual
computation, i.e.,

– 〈(0, d) : (r + 1, r), ε, (a1, . . . , an1)〉 is reachable for all (a1, . . . , an1) ∈ An1,

– if 〈ps, ds, es〉 ∈ IntSt@ is reachable and 〈ps, ds, es〉 ` 〈ps′, ds′, es′〉,
then 〈ps′, ds′, es′〉 is reachable.

Lemma 68: Reachable address states have connected program stack values.

Proof: (i) The initial program stack value (0, d) : (r+1, r) is connected because
(r + 1, r) is connected and follow(0) = r + 1.

37

(ii) Decomposition steps preserve the connectedness of program stack values. To
show this, let st := 〈(α, d) :ps, ds, es〉 `dec st

′ and (α, d) :ps be connected. It
follows that ps = (β, x) :ps′ and that the follow–condition holds for α and β.
There are four types of decomposition steps given by decsym(α).
– decsym(α) = x.

It follows that st′ = 〈(α, r) : ps, ds, es〉. Since the follow–condition of the
upper two stack elements remains unchanged, (α, r) :ps is connected, too.

– decsym(α) = ft1 . . . tn.
Hence, st′ = 〈(α.1, d) : . . . : (α.n, d) : (α, r) : ps, ds, es〉. We conclude as
in the previous case that (α, r) :ps is connected. Moreover, follow(α.i) =
first(α.(i + 1)) for i = 1, . . . , n− 1 and follow(α.n) = α which shows that
the program stack value of st′ is connected.

– decsym(α) = condt0t1t2.
Here, st′ = 〈(α.1, d) : (α, r) : ps, ds, es〉. Its program stack value is con-
nected because this holds for (α, r) :ps and follow(α.1) = α.

– decsym(α) = Fjt1 . . . tnj .
It follows that st′ = 〈(α.1, d) : . . . : (α.σj , d) : (α, r) : ps, ds, es〉. Again, we
easily check that addresses are connected appropriately.

(iii) Reduction steps also preserve the connectedness of program stack values.
There are seven cases:
– 〈(α, r) : ps, ds, z̄ · e : es〉 `red 〈ps, ds : zi, z̄ · e : es〉 where redsym(α) = [xi],
z̄ = (z1, . . . , zk), 1 ≤ i ≤ k, and zi ∈ A.
Here, ps directly inherits connectedness from (α, r) :ps.

– 〈(α, r) : ps, ds, z̄ · e : es〉 `red 〈(zi, d) : (r + 1, r) : ps, ds, e : z̄ · e : es〉 where
redsym(α) = [xi], z̄ = (z1, . . . , zk), 1 ≤ i ≤ k, and zi ∈ AdrR.
In this case, (zi, d) : (r+1, r) :ps is connected because this holds for ps and
therefore for (r + 1, r) :ps, and because for zi ∈ AdrR being the address
of a delayed function call argument we have follow(zi) = r + 1.

– 〈(α, r) : ps, ds : a1 : . . . : an, es〉 `red 〈ps, ds : fA(a1, . . . , an), es〉 and
redsym(α) = [f].
Again, ps must be connected because (α, r) :ps is.

– 〈(α, r) :ps, ds : true, es〉 `red 〈(α.2, d) :ps, ds, es〉 and
redsym(α) = cond[t1, t2].
Now, the assertion follows because follow(α.2) = follow(α).

– 〈(α, r) :ps, ds : false, es〉 `red 〈(α.3, d) :ps, ds, es〉 and
redsym(α) = cond[t1, t2].
Analogously.

– 〈(α, r) :ps, ds :a1 : . . . :aσj , e :es〉 `red

〈(j, d) : (r + 1, r) : ps, ds, (a1, . . . , aσj , α.(σj + 1), . . . , α.nj) · e : e : es〉 and
redsym(α) = Fj [tσj+1, . . . , tnj].
The assertion follows from follow(j) = r + 1.

– 〈(r + 1, r) :ps, ds, e :es〉 `red 〈ps, ds, es〉.
Necessarily, ps is connected. �

This address connection of program stack values of reachable address states
shows that the program stack can be replaced by a program counter pointing
to the next reduction symbol and a return stack which holds the dynamic first–
address after a return address. The control of all other reduction symbols can
be described statically by first and follow functions. These considerations suggest
the following abstract machine for compiling recursive function definitions.

38

Definition 69 (Abstract stack machine): Let A be a branching Σ–algebra.
Using the infinite set Adr := N∗ of addresses we define the abstract stack ma-
chine of A by the set St of states together with the set Cmd of commands

where
St := PC×RS ×DS×ES@

and

PC := Adr,

RS := Adr∗,

DS := A∗, and

ES@ := (((A ∪Adr)∗)∗)∗,

denote the sets of program counter, return stack, data stack, and environ-

ment stack values, respectively, and where

Cmd := {EVAL(x, β) | x ∈ X, β ∈ Adr} ∪
{EXEC(f, β) | f ∈ Fbase, β ∈ Adr} ∪
{SELECT(α1, α2) | α1, α2 ∈ Adr} ∪
{CALL(α0, σ, α1, . . . , αm, β) | σ,m ∈ N, αi, β ∈ Adr} ∪
{RET}.

Each command γ ∈ Cmd denotes a state transformation JγK : St � St
defined by

– JEVAL(xi, β)K〈pc, rs, ds, (z1, . . . , zk) · e :es〉

:=

{
〈β, rs, ds :zi, (z1, . . . , zk) · e :es〉 if 1 ≤ i ≤ k and zi ∈ A
〈zi, β :rs, ds, e : (z1, . . . , zk) · e :es〉 if 1 ≤ i ≤ k and zi ∈ Adr

– JEXEC(f, β)K〈pc, rs, ds :a1 : . . . :an, es〉
:= 〈β, rs, ds :fA(a1, . . . , an), es〉

– JSELECT(α1, α2)K〈pc, rs, ds :b, es〉

:=

{
〈α1, rs, ds, es〉 if b = true

〈α2, rs, ds, es〉 if b = false

– JCALL(α0, σ, α1, . . . , αm, β)K〈pc, rs, ds :a1 : . . . :aσ , e :es〉
:= 〈α0, β :rs, ds, (a1, . . . , aσ, α1, . . . , αm) · e :e :es〉

– JRETK〈pc, α :rs, ds, e :es〉
:= 〈α, rs, ds, es〉.

Note that this abstract stack machine operates only on A–values and addresses
whereas terms have been eliminated completely.

Definition 70 (Machine programs): Let Adrf ⊆ Adr be a non–empty and
finite subset of addresses. A mapping

π : Adrf → Cmd

is called a machine program. For its semantics we associate with π a transition
relation

`π ⊆ St× St

defined by st = 〈pc, rs, ds, es〉 `π st
′ if pc ∈ Adrf and st′ = Jπ(pc)K(st).

39

The task of translating a recursive function definition into a suitable machine
program is now easily accomplished. We choose Adrret

R as a finite address set. The
corresponding commands are determined by their associated reduction symbols
together with first and follow functions.

Definition 71 (Compiling a recursive function definition): For (R,A) ∈
RfdΣ we define its machine program

πR : Adrret

R → Cmd

by

πR(α) :=

EVAL(xi, follow(α)) if redsym(α) = [xi],
EXEC(f, follow(α)) if redsym(α) = [f],
SELECT(first(α.2), first(α.3)) if redsym(α) = cond[t1, t2],
CALL(first(j), σj , first(α.(σj + 1)),
. . . , first(α.nj), follow(α)) if redsym(α) = Fj [tσj+1, . . . , tnj],
RET if redsym(α) = ret.

We see that compiling essentially appears to be a finite abstraction of con-
trol: while the interpreter controls reduction steps by term decomposition during
computation, the compiler generates an explicit control through first and follow

functions independent of a particular computation. Only the RET–command re-
quires a dynamic control through the return stack.

Iterating the transitions of machine programs we define a compiler semantics
for recursive function definitions as follows.

Definition 72 (Compiler semantics): For (R,A) ∈ Rfd
(w,s)
Σ the compiler

semantics

CmpJRKA : Aw → As⊥

is defined by:

CmpJRKA(a1, . . . , an) :=

{
b if 〈first(0), 0.0, ε, (a1 , . . . , an)〉 `

∗
πR 〈0.0, ε, b, ε〉

⊥s if no such b ∈ As exists

Note that 0 marks the position of the initial term whereas 0.0 /∈ AdrR is
taken as a standard stop address.

Example 73: For our multiplication example (Rmult,N), given by

F = λ0 x.G (x− 1) (Hx)

G = λ1 x y.cond (x = 0)x ((G (x − 1) y) + y)

H = λ0 x.H (x+ 1),

40

we get the following machine program πRmult where we simply write α : γ; instead
of πRmult(α) = γ:

0 : CALL(1.1.1, 0, 0.1, 4);
0.1 : EVAL(x, 4);

1 : CALL(2.1.1, 1, 1.2, 4);
1.1 : EXEC(−, 1);

1.1.1 : EVAL(x, 1.1.2);
1.1.2 : EXEC(1, 1.1);

1.2 : CALL(3, 0, 1.2.1, 4);
1.2.1 : EVAL(x, 4);

2 : SELECT(2.2, 2.3.1.1.1);
2.1 : EXEC(=, 2);

2.1.1 : EVAL(x, 2.1.2);
2.1.2 : EXEC(0, 2.1);

2.2 : EVAL(x, 4);
2.3 : EXEC(+, 4);

2.3.1 : CALL(2.1.1, 1, 2.3.1.2, 2.3.2);
2.3.1.1 : EXEC(−, 2.3.1);

2.3.1.1.1 : EVAL(x, 2.3.1.1.2);
2.3.1.1.2 : EXEC(1, 2.3.1.1);

2.3.1.2 : EVAL(y, 4);
2.3.2 : EVAL(y, 2.3);

3 : CALL(3, 0, 3.1.1, 4);
3.1 : EXEC(+, 4);

3.1.1 : EVAL(x, 3.1.2);
3.1.2 : EXEC(1, 3.1);

4 : RET;

This machine program generates for input x = 1 the following stack machine
computation where 0 and 1 are integers in contrast to the addresses 0 and 1:

〈 0 , 0.0 , ε , (1) 〉
〈 1.1.1 , 4:0.0 , ε , (0.1) · (1) : (1) 〉
〈 0.1 , 1.1.2:4 :0.0 , ε , (1) : (0.1) · (1) : (1) 〉
〈 4 , 1.1.2:4 :0.0 , 1 , (1) : (0.1) · (1) : (1) 〉
〈 1.1.2 , 4:0.0 , 1 , (0.1) · (1) : (1) 〉
〈 1.1 , 4:0.0 , 1 :1 , (0.1) · (1) : (1) 〉
〈 1 , 4:0.0 , 0 , (0.1) · (1) : (1) 〉
〈 2.1.1 , 4:4 :0.0 , ε , (0, 1.2) · (0.1) · (1) : (0.1) · (1) : (1) 〉
〈 2.1.2 , 4:4 :0.0 , 0 , (0, 1.2) · (0.1) · (1) : (0.1) · (1) : (1) 〉
〈 2.1 , 4:4 :0.0 , 0 :0 , (0, 1.2) · (0.1) · (1) : (0.1) · (1) : (1) 〉
〈 2 , 4:4 :0.0 , true , (0, 1.2) · (0.1) · (1) : (0.1) · (1) : (1) 〉
〈 2.2 , 4:4 :0.0 , ε , (0, 1.2) · (0.1) · (1) : (0.1) · (1) : (1) 〉
〈 4 , 4:4 :0.0 , 0 , (0, 1.2) · (0.1) · (1) : (0.1) · (1) : (1) 〉
〈 4 , 4:0.0 , 0 , (0.1) · (1) : (1) 〉
〈 4 , 0.0 , 0 , (1) 〉
〈 0.0 , ε , 0 , ε 〉

This shows that CmpJRmultKN(1) = 0.

41

Now we are well prepared for the final step of our compiler correctness proof.

Theorem 74 (Compiler correctness): For every (R,A) ∈ RfdΣ, compiler
and address interpreter semantics coincide:

CmpJRKA = Int@JRKA.

Proof: In order to correlate address interpreter computations with abstract ma-
chine computations we abstract from an address state an abstract machine state:

mst : IntSt@ → St

is defined by

mst〈ps, ds, es〉 := 〈pc(ps), rs(ps), ds, es(es)〉

pc(ε) := 0.0

pc((α, d) :ps) := first(α)

pc((α, r) :ps) := α

rs(ε) := ε

rs((α,) :ps) := rs(ps) if α 6= r + 1

rs((r + 1, r) :ps) := pc(ps) : rs(ps)

es(e1 : . . . :en) := es(e1) : . . . :es(en)

es(z̄1 · . . . · z̄m) := es(z̄1) · . . . · es(z̄m)

es(z1, . . . , zk) := (es(z1), . . . , es(zk))

es(z) :=

{
z if z ∈ A
first(z) if z ∈ AdrR.

We prove by induction on reachable address states that mst maps an address
interpreter computation onto a semantically equivalent abstract machine com-
putation. Here we exploit the fact that reachable address states have connected
program stack values.

(i) The initial address state for (a1, . . . , an) is mapped onto the corresponding
initial machine state:
mst〈(0, d) : (r + 1, r), ε, (a1, . . . , an)〉 = 〈first(0), 0.0, ε, (a1 , . . . , an)〉.

(ii) A decomposition step between address states does not change the correspond-
ing machine states. There are two cases:

(a) If st = 〈(α, d) : ps, ds, es〉 `dec 〈(α.1, d) : ps1), ds, es〉 = st′, it follows that
first(α) = first(α.1) and rs((α, d) :ps) = rs((α.1, d) :ps1) and therefore that
mst(st) = mst(st′).

(b) If st = 〈(α, d) : ps, ds, es〉 `dec 〈(α, r) : ps), ds, es〉 = st′, then first(α) = α
and rs((α, d) :ps) = rs((α, r) :ps)), so that again mst(st) = mst(st′).

(iii) Reduction steps between reachable address states are mapped onto machine
transitions. As for a reachable state st = 〈(α, r) :ps, ds, es〉 the program stack
value (α, r) : ps is connected, it follows that ps 6= ε and follow(α) = pc(ps)
provided that α 6= r + 1.
Now, if st `red st′ and st is reachable, then mst(st) `πR mst(st′). This is
proved by the following case analysis.

42

(a) Let st = 〈(α, r) :ps, ds, (z1, . . . , zk) · e :es〉, redsym(α) = [xi] and zi ∈ A.
It follows that st `red st

′ = 〈ps, ds :zi, (z1, . . . , zk) · e :es〉.
Since πR(α) = EVAL(xi, follow(α)), we get for the corresponding machine
states

mst(st) = 〈α, rs(ps), ds, es((z1, . . . , zk) · e :es)〉

`πR JEVAL(xi, follow(α))K(mst(st))

= 〈follow(α), rs(ps), ds :zi, es((z1, . . . , zk) · e :es)〉

= 〈pc(ps), rs(ps), ds :zi, es((z1, . . . , zk) · e :es)〉

= mst(st′).

(b) If st = 〈(α, r) :ps, ds, (z1, . . . , zk) · e :es〉, redsym(α) = [xi] and zi ∈ AdrR,
it follows that st `red st

′ = 〈(zi, d) : (r + 1, r) :ps, ds, e : (z1 , . . . , zk) · e :es〉
and we conclude similarly

mst(st) `πR 〈first(zi), follow(α) : rs(ps), ds, es(e : (z1, . . . , zk) · e :es)〉

= mst(st′).

(c) For st = 〈(α, r) :ps, ds :a1 : . . . :an, es〉 with redsym(α) = [f] it follows that
st `red st

′ = 〈ps, ds : fA(a1, . . . , an), es〉 and πR(α) = EXEC(f, follow(α)),
so that

mst(st) = 〈α, rs(ps), ds :a1 : . . . :an, es(es)〉

`πR JEXEC(f, follow(α))K(mst(st))

= 〈follow(α), rs(ps), ds :fA(a1, . . . , an), es(es)〉

= 〈pc(ps), rs(ps), ds :fA(a1, . . . , an), es(es)〉

= mst(st′).

(d) If st = 〈(α, r) : ps, ds : true, es〉 and redsym(α) = cond[t1, t2], we see that
st `red st

′ = 〈(α.2, d) :ps, ds, es〉 and πR(α) = SELECT(first(α.2), first(α.3)),
so that

mst(st) = 〈α, rs(ps), ds : true, es(es)〉

`πR JSELECT(first(α.2), first(α.3))K(mst(st))

= 〈first(α.2), rs(ps), ds, es(es)〉

= mst(st′).

In the false–case the same holds with the second alternative.
(e) If st = 〈(α, r) :ps, ds :a1 : . . . :aσj , e :es〉 and redsym(α) = Fj [tσj+1, . . . , tnj],

we have st `red

st′ = 〈(j, d) : (r + 1, r) : ps, ds, (a1, . . . , aσj , α.(σj + 1), . . . , α.nj) · e : e : es〉.
As πR(α) = CALL(first(j), σj , first(α.(σj +1)), . . . , first(α.nj), follow(α)), it
follows that

mst(st) = 〈α, rs(ps), ds :a1 : . . . :aσj , es(e :es)〉

`πR JCALL(first(j), σj , first(α.(σj + 1)), . . . , follow(α))K(mst(st))

= 〈first(j), follow(α) : rs(ps), ds,
es((a1, . . . , aσj , α.(σj + 1), . . . , α.nj) · e :e :es)〉

= mst(st′).

43

(f) Finally, if st = 〈(r + 1, r) : ps, ds, e : es〉, it holds that st `red st′ =
〈ps, ds, es〉. Since πR(r + 1) = RET, the assertion follows by

mst(st) = 〈r + 1, pc(ps) : rs(ps), ds, es(e :es)〉

`πR JRETK(mst(st))

= 〈pc(ps), rs(ps), ds, es(es)〉

= mst(st′).

These results imply that in fact address interpreter and compiler semantics co-
incide: if Int@JRKA(a1, . . . , an) = b ∈ A, then there is an address interpreter
computation 〈(0, d) : (r + 1, r), ε, (a1, . . . , an)〉 `

∗ 〈ε, b, ε〉. The corresponding ab-
stract machine computation 〈first(0), 0.0, ε, (a1 , . . . , an)〉 `∗

πR 〈0.0, ε, b, ε〉 proves
that also CmpJRKA(a1, . . . , an) = b holds.
If on the other hand Int@JRKA(a1, . . . , an) = ⊥, there is an infinite address in-
terpreter computation (sti ` sti+1 | i ∈ N) starting from st0 = 〈(0, d) : (r +
1, r), ε, (a1, . . . , an)〉. It must contain an infinite number of reduction steps so that
the corresponding machine computation starting from 〈first(0), 0.0, ε, (a1 , . . . , an)〉
is infinite, too. Hence, CmpJRKA(a1, . . . , an) = ⊥. �

6 Conclusion

Using an algebraic and order–theoretic framework we presented a complete cor-
rectness proof for compiling recursive function definitions with strictness infor-
mation into stack code. Due to the absence of higher–order functions and data
structures we could develop a stack technique that avoids heaps and closures even
for implementing lazy evaluation. Starting from a denotational view we defined
a fixed–point semantics taking strictness information into account. For an op-
erational view we first gave a non–deterministic single–step reduction semantics
which could later be specialized to a deterministic left–reduction semantics inte-
grating call–by–name and call–by–value evaluation. This separation of reduction
semantics turned out to be essential for the equivalence proof being more com-
plex than in the big–step case. Left–reductions naturally led to an interpreter
which could thereafter be transformed appropriately into a compiler.

Altogether we proved the equivalence of all semantic models. For any recur-
sive function definition (R,A) ∈ RfdΣ it holds that

FpJRKA = RedJRKA = lRdJRKA = IntJRKA = Int@JRKA = CmpJRKA.

7 Historical remarks

Already S.C. Kleene [Kle52] presented in his first recursion theorem a connection
between operational and fixed–point semantics. He considered strict arithmetical
functions and used a computation that corresponds to call–by–value reduction.
With the development of programming languages the practical importance of
recursive function definitions became evident. As an early example we mention
LISP. Its theoretical foundations were developed by J. McCarthy in [McC60].
The denotational method defining the meaning of a program by induction on its
syntactic structure was introduced by D. Scott and C. Strachey [SS72]. D. Scott

44

realized the importance of topological tools, in particular continuous functions
on complete partial orders [Sco70]. The algebraic character of denotational se-
mantics has been worked out most explicitly by J.A. Goguen, J.W. Thatcher,
E.G. Wagner, and J.B. Wright [GTWW77]. The relationship between fixed–point
semantics and evaluation strategies was studied by J. Cadiou [Cad72], Z. Manna
and J. Vuillemin [MV72]. However, they only considered the call–by–name fixed
point as valid and viewed the call–by–value computation as incorrect when com-
pared to fixed–point semantics. It was shown by J. de Bakker [Bak76] that there is
also a fixed–point semantics corresponding to call–by–value. In his book [Win93]
G. Winskel gives equivalence proofs for both cases, but using big–step instead
of small–step semantics. Here, we consider the latter as it is more convenient
for proving the correctness of stack code. The use of stacks for the implemen-
tation of programming languages dates back to the early work of F.L. Bauer
and K. Samelson [SB60]. They suggested a stack for evaluating arithmetical ex-
pressions. The corresponding stack code was proved correct by J. McCarthy and
J. Painter [MP67]. Although stacks turned out to be of central importance for
compilers, the additional use of a heap was unavoidable. In this paper we could
demonstrate that at least in the first order case heaps are unnecessary provided
that we can read the full stack. In his master’s thesis [Sch87] R. Schlör gave
separate proofs for the correctness of call–by–name and call–by–value stack code
using a closure technique.

References

[Bak76] J.W. de Bakker. Least fixed points revisited. Theoretical Computer Science, 2:155–
181, 1976.

[Cad72] J. Cadiou. Recursive Definitions of Partial Functions and Their Computation. PhD
thesis, Stanford University, 1972.

[Chi97] O. Chitil. The ς–semantics: A comprehensive semantics for functional programs.
Fundamenta Informaticae, 31:253–294, 1997.

[GTWW77] J.A. Goguen, J.W. Thatcher, E.G. Wagner, and J.B. Wright. Initial algebra se-
mantics and continuous algebras. Journal of the ACM, 24(1):68–95, January 1977.

[Kle52] S.C. Kleene. Introduction to Metamathematics. North–Holland, Amsterdam, 1952.
[Lan64] P.J. Landin. The mechanical evaluation of expressions. The Computer Journal,

6(4):308–320, January 1964.
[McC60] J. McCarthy. Recursive functions of symbolic expressions and their computation

by machine, part I. Communications of the ACM, 3:184–195, 1960.
[MP67] J. McCarthy and J. Painter. Correctness of a compiler for arithmetic expressions.

Proceedings Symposium in Applied Mathematics, Mathematical Aspects of Com-

puter Science, 19:33–41, 1967.
[MV72] Z. Manna and J. Vuillemin. Fixpoint approach to the theory of computation.

Communications of the ACM, 15(7):528–536, July 1972.
[SB60] K. Samelson and F.L. Bauer. Sequential formula translation. Comm. ACM,

3(2):76–83, 1960.
[Sch87] R. Schlör. Korrektheit der Übersetzung rekursiver Funktionsdefinitionen in Stack-

code. Master’s thesis, RWTH Aachen University, 1987.
[Sco70] D. Scott. Outline of a mathematical theory of computation. In Proc. Fourth Annual

Princeton Conference on Information Sciences and Systems, volume 3, pages 169–
176, 1970.

[SS72] D. Scott and C. Strachey. Towards a mathematical semantics for computer lan-
guages. In J. Fox, editor, Proc. Symp. Computers and Automata, pages 19–46.
Wiley, New York, 1972.

[Tar55] A. Tarski. A lattice–theoretical fixpoint theorem and its applications. Pacific J.

Math., 5:285–309, 1955.

45

[Wad96] P. Wadler. Lazy versus strict. ACM Computing Surveys, 28(2):318–320, June 1996.
[Win93] G. Winskel. The Formal Semantics of Programming Languages. MIT Press, Cam-

bridge, Massachusetts, 1993.

46

Aachener Informatik-Berichte

This is a list of recent technical reports. To obtain copies of technical reports

please consult http://aib.informatik.rwth-aachen.de/ or send your request

to: Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen, Email:

biblio@informatik.rwth-aachen.de

1987-01 ∗ Fachgruppe Informatik: Jahresbericht 1986

1987-02 ∗ David de Frutos Escrig, Klaus Indermark: Equivalence Relations of Non-

Deterministic Ianov-Schemes

1987-03 ∗ Manfred Nagl: A Software Development Environment based on Graph

Technology

1987-04 ∗ Claus Lewerentz, Manfred Nagl, Bernhard Westfechtel: On Integration

Mechanisms within a Graph-Based Software Development Environment

1987-05 ∗ Reinhard Rinn: Über Eingabeanomalien bei verschiedenen Inferenzmod-

ellen

1987-06 ∗ Werner Damm, Gert Döhmen: Specifying Distributed Computer Archi-

tectures in AADL*

1987-07 ∗ Gregor Engels, Claus Lewerentz, Wilhelm Schäfer: Graph Grammar En-

gineering: A Software Specification Method

1987-08 ∗ Manfred Nagl: Set Theoretic Approaches to Graph Grammars

1987-09 ∗ Claus Lewerentz, Andreas Schürr: Experiences with a Database System

for Software Documents

1987-10 ∗ Herbert Klaeren, Klaus Indermark: A New Implementation Technique

for Recursive Function Definitions

1987-11 ∗ Rita Loogen: Design of a Parallel Programmable Graph Reduction Ma-

chine with Distributed Memory

1987-12 J. Börstler, U. Möncke, R. Wilhelm: Table compression for tree automata

1988-01 ∗ Gabriele Esser, Johannes Rückert, Frank Wagner: Gesellschaftliche As-

pekte der Informatik

1988-02 ∗ Peter Martini, Otto Spaniol: Token-Passing in High-Speed Backbone

Networks for Campus-Wide Environments

1988-03 ∗ Thomas Welzel: Simulation of a Multiple Token Ring Backbone

1988-04 ∗ Peter Martini: Performance Comparison for HSLAN Media Access Pro-

tocols

1988-05 ∗ Peter Martini: Performance Analysis of Multiple Token Rings

1988-06 ∗ Andreas Mann, Johannes Rückert, Otto Spaniol: Datenfunknetze

1988-07 ∗ Andreas Mann, Johannes Rückert: Packet Radio Networks for Data Ex-

change

1988-08 ∗ Andreas Mann, Johannes Rückert: Concurrent Slot Assignment Protocol

for Packet Radio Networks

1988-09 ∗ W. Kremer, F. Reichert, J. Rückert, A. Mann: Entwurf einer Netzw-

erktopologie für ein Mobilfunknetz zur Unterstützung des öffentlichen

Straßenverkehrs

1988-10 ∗ Kai Jakobs: Towards User-Friendly Networking

1988-11 ∗ Kai Jakobs: The Directory - Evolution of a Standard

1988-12 ∗ Kai Jakobs: Directory Services in Distributed Systems - A Survey

1988-13 ∗ Martine Schümmer: RS-511, a Protocol for the Plant Floor

47

1988-14 ∗ U. Quernheim: Satellite Communication Protocols - A Performance

Comparison Considering On-Board Processing

1988-15 ∗ Peter Martini, Otto Spaniol, Thomas Welzel: File Transfer in High Speed

Token Ring Networks: Performance Evaluation by Approximate Analysis

and Simulation

1988-16 ∗ Fachgruppe Informatik: Jahresbericht 1987

1988-17 ∗ Wolfgang Thomas: Automata on Infinite Objects

1988-18 ∗ Michael Sonnenschein: On Petri Nets and Data Flow Graphs

1988-19 ∗ Heiko Vogler: Functional Distribution of the Contextual Analysis in

Block-Structured Programming Languages: A Case Study of Tree Trans-

ducers

1988-20 ∗ Thomas Welzel: Einsatz des Simulationswerkzeuges QNAP2 zur Leis-

tungsbewertung von Kommunikationsprotokollen

1988-21 ∗ Th. Janning, C. Lewerentz: Integrated Project Team Management in a

Software Development Environment

1988-22 ∗ Joost Engelfriet, Heiko Vogler: Modular Tree Transducers

1988-23 ∗ Wolfgang Thomas: Automata and Quantifier Hierarchies

1988-24 ∗ Uschi Heuter: Generalized Definite Tree Languages

1989-01 ∗ Fachgruppe Informatik: Jahresbericht 1988

1989-02 ∗ G. Esser, J. Rückert, F. Wagner (Hrsg.): Gesellschaftliche Aspekte der

Informatik

1989-03 ∗ Heiko Vogler: Bottom-Up Computation of Primitive Recursive Tree

Functions

1989-04 ∗ Andy Schürr: Introduction to PROGRESS, an Attribute Graph Gram-

mar Based Specification Language

1989-05 J. Börstler: Reuse and Software Development - Problems, Solutions, and

Bibliography (in German)

1989-06 ∗ Kai Jakobs: OSI - An Appropriate Basis for Group Communication?

1989-07 ∗ Kai Jakobs: ISO’s Directory Proposal - Evolution, Current Status and

Future Problems

1989-08 ∗ Bernhard Westfechtel: Extension of a Graph Storage for Software Doc-

uments with Primitives for Undo/Redo and Revision Control

1989-09 ∗ Peter Martini: High Speed Local Area Networks - A Tutorial

1989-10 ∗ P. Davids, Th. Welzel: Performance Analysis of DQDB Based on Simu-

lation

1989-11 ∗ Manfred Nagl (Ed.): Abstracts of Talks presented at the WG ’89 15th

International Workshop on Graphtheoretic Concepts in Computer Sci-

ence

1989-12 ∗ Peter Martini: The DQDB Protocol - Is it Playing the Game?

1989-13 ∗ Martine Schümmer: CNC/DNC Communication with MAP

1989-14 ∗ Martine Schümmer: Local Area Networks for Manufactoring Environ-

ments with hard Real-Time Requirements

1989-15 ∗ M. Schümmer, Th. Welzel, P. Martini: Integration of Field Bus and

MAP Networks - Hierarchical Communication Systems in Production

Environments

1989-16 ∗ G. Vossen, K.-U. Witt: SUXESS: Towards a Sound Unification of Ex-

tensions of the Relational Data Model

48

1989-17 ∗ J. Derissen, P. Hruschka, M.v.d. Beeck, Th. Janning, M. Nagl: Integrat-

ing Structured Analysis and Information Modelling

1989-18 A. Maassen: Programming with Higher Order Functions

1989-19 ∗ Mario Rodriguez-Artalejo, Heiko Vogler: A Narrowing Machine for Syn-

tax Directed BABEL

1989-20 H. Kuchen, R. Loogen, J.J. Moreno Navarro, M. Rodriguez Artalejo:

Graph-based Implementation of a Functional Logic Language

1990-01 ∗ Fachgruppe Informatik: Jahresbericht 1989

1990-02 ∗ Vera Jansen, Andreas Potthoff, Wolfgang Thomas, Udo Wermuth: A

Short Guide to the AMORE System (Computing Automata, MOnoids

and Regular Expressions)

1990-03 ∗ Jerzy Skurczynski: On Three Hierarchies of Weak SkS Formulas

1990-04 R. Loogen: Stack-based Implementation of Narrowing

1990-05 H. Kuchen, A. Wagener: Comparison of Dynamic Load Balancing Strate-

gies

1990-06 ∗ Kai Jakobs, Frank Reichert: Directory Services for Mobile Communica-

tion

1990-07 ∗ Kai Jakobs: What’s Beyond the Interface - OSI Networks to Support

Cooperative Work

1990-08 ∗ Kai Jakobs: Directory Names and Schema - An Evaluation

1990-09 ∗ Ulrich Quernheim, Dieter Kreuer: Das CCITT - Signalisierungssystem

Nr. 7 auf Satellitenstrecken; Simulation der Zeichengabestrecke

1990-11 H. Kuchen, R. Loogen, J.J. Moreno Navarro, M. Rodriguez Artalejo:

Lazy Narrowing in a Graph Machine

1990-12 ∗ Kai Jakobs, Josef Kaltwasser, Frank Reichert, Otto Spaniol: Der Com-

puter fährt mit

1990-13 ∗ Rudolf Mathar, Andreas Mann: Analyzing a Distributed Slot Assign-

ment Protocol by Markov Chains

1990-14 A. Maassen: Compilerentwicklung in Miranda - ein Praktikum in funk-

tionaler Programmierung (written in german)

1990-15 ∗ Manfred Nagl, Andreas Schürr: A Specification Environment for Graph

Grammars

1990-16 A. Schürr: PROGRESS: A VHL-Language Based on Graph Grammars

1990-17 ∗ Marita Möller: Ein Ebenenmodell wissensbasierter Konsultationen - Un-

terstützung für Wissensakquisition und Erklärungsfähigkeit

1990-18 ∗ Eric Kowalewski: Entwurf und Interpretation einer Sprache zur Beschrei-

bung von Konsultationsphasen in Expertensystemen

1990-20 Y. Ortega Mallen, D. de Frutos Escrig: A Complete Proof System for

Timed Observations

1990-21 ∗ Manfred Nagl: Modelling of Software Architectures: Importance, No-

tions, Experiences

1990-22 H. Fassbender, H. Vogler: A Call-by-need Implementation of Syntax Di-

rected Functional Programming

1991-01 Guenther Geiler (ed.), Fachgruppe Informatik: Jahresbericht 1990

1991-03 B. Steffen, A. Ingolfsdottir: Characteristic Formulae for Processes with

Divergence

1991-04 M. Portz: A new class of cryptosystems based on interconnection net-

works

49

1991-05 H. Kuchen, G. Geiler: Distributed Applicative Arrays

1991-06 ∗ Ludwig Staiger: Kolmogorov Complexity and Hausdorff Dimension

1991-07 ∗ Ludwig Staiger: Syntactic Congruences for w-languages

1991-09 ∗ Eila Kuikka: A Proposal for a Syntax-Directed Text Processing System

1991-10 K. Gladitz, H. Fassbender, H. Vogler: Compiler-based Implementation

of Syntax-Directed Functional Programming

1991-11 R. Loogen, St. Winkler: Dynamic Detection of Determinism in Func-

tional Logic Languages

1991-12 ∗ K. Indermark, M. Rodriguez Artalejo (Eds.): Granada Workshop on the

Integration of Functional and Logic Programming

1991-13 ∗ Rolf Hager, Wolfgang Kremer: The Adaptive Priority Scheduler: A More

Fair Priority Service Discipline

1991-14 ∗ Andreas Fasbender, Wolfgang Kremer: A New Approximation Algorithm

for Tandem Networks with Priority Nodes

1991-15 J. Börstler, A. Zündorf: Revisiting extensions to Modula-2 to support

reusability

1991-16 J. Börstler, Th. Janning: Bridging the gap between Requirements Anal-

ysis and Design

1991-17 A. Zündorf, A. Schürr: Nondeterministic Control Structures for Graph

Rewriting Systems

1991-18 ∗ Matthias Jarke, John Mylopoulos, Joachim W. Schmidt, Yannis Vassil-

iou: DAIDA: An Environment for Evolving Information Systems

1991-19 M. Jeusfeld, M. Jarke: From Relational to Object-Oriented Integrity

Simplification

1991-20 G. Hogen, A. Kindler, R. Loogen: Automatic Parallelization of Lazy

Functional Programs

1991-21 ∗ Prof. Dr. rer. nat. Otto Spaniol: ODP (Open Distributed Processing):

Yet another Viewpoint

1991-22 H. Kuchen, F. Lücking, H. Stoltze: The Topology Description Language

TDL

1991-23 S. Graf, B. Steffen: Compositional Minimization of Finite State Systems

1991-24 R. Cleaveland, J. Parrow, B. Steffen: The Concurrency Workbench: A

Semantics Based Tool for the Verification of Concurrent Systems

1991-25 ∗ Rudolf Mathar, Jürgen Mattfeldt: Optimal Transmission Ranges for Mo-

bile Communication in Linear Multihop Packet Radio Networks

1991-26 M. Jeusfeld, M. Staudt: Query Optimization in Deductive Object Bases

1991-27 J. Knoop, B. Steffen: The Interprocedural Coincidence Theorem

1991-28 J. Knoop, B. Steffen: Unifying Strength Reduction and Semantic Code

Motion

1991-30 T. Margaria: First-Order theories for the verification of complex FSMs

1991-31 B. Steffen: Generating Data Flow Analysis Algorithms from Modal Spec-

ifications

1992-01 Stefan Eherer (ed.), Fachgruppe Informatik: Jahresbericht 1991

1992-02 ∗ Bernhard Westfechtel: Basismechanismen zur Datenverwaltung in struk-

turbezogenen Hypertextsystemen

1992-04 S. A. Smolka, B. Steffen: Priority as Extremal Probability

1992-05 ∗ Matthias Jarke, Carlos Maltzahn, Thomas Rose: Sharing Processes:

Team Coordination in Design Repositories

50

1992-06 O. Burkart, B. Steffen: Model Checking for Context-Free Processes

1992-07 ∗ Matthias Jarke, Klaus Pohl: Information Systems Quality and Quality

Information Systems

1992-08 ∗ Rudolf Mathar, Jürgen Mattfeldt: Analyzing Routing Strategy NFP in

Multihop Packet Radio Networks on a Line

1992-09 ∗ Alfons Kemper, Guido Moerkotte: Grundlagen objektorientierter Daten-

banksysteme

1992-10 Matthias Jarke, Manfred Jeusfeld, Andreas Miethsam, Michael Gocek:

Towards a logic-based reconstruction of software configuration manage-

ment

1992-11 Werner Hans: A Complete Indexing Scheme for WAM-based Abstract

Machines

1992-12 W. Hans, R. Loogen, St. Winkler: On the Interaction of Lazy Evaluation

and Backtracking

1992-13 ∗ Matthias Jarke, Thomas Rose: Specification Management with CAD

1992-14 Th. Noll, H. Vogler: Top-down Parsing with Simultaneous Evaluation on

Noncircular Attribute Grammars

1992-15 A. Schuerr, B. Westfechtel: Graphgrammatiken und Graphersetzungssys-

teme(written in german)

1992-16 ∗ Graduiertenkolleg Informatik und Technik (Hrsg.): Forschungsprojekte

des Graduiertenkollegs Informatik und Technik

1992-17 M. Jarke (ed.): ConceptBase V3.1 User Manual

1992-18 ∗ Clarence A. Ellis, Matthias Jarke (Eds.): Distributed Cooperation in

Integrated Information Systems - Proceedings of the Third International

Workshop on Intelligent and Cooperative Information Systems

1992-19-00 H. Kuchen, R. Loogen (eds.): Proceedings of the 4th Int. Workshop on

the Parallel Implementation of Functional Languages

1992-19-01 G. Hogen, R. Loogen: PASTEL - A Parallel Stack-Based Implementation

of Eager Functional Programs with Lazy Data Structures (Extended

Abstract)

1992-19-02 H. Kuchen, K. Gladitz: Implementing Bags on a Shared Memory MIMD-

Machine

1992-19-03 C. Rathsack, S.B. Scholz: LISA - A Lazy Interpreter for a Full-Fledged

Lambda-Calculus

1992-19-04 T.A. Bratvold: Determining Useful Parallelism in Higher Order Func-

tions

1992-19-05 S. Kahrs: Polymorphic Type Checking by Interpretation of Code

1992-19-06 M. Chakravarty, M. Köhler: Equational Constraints, Residuation, and

the Parallel JUMP-Machine

1992-19-07 J. Seward: Polymorphic Strictness Analysis using Frontiers (Draft Ver-

sion)

1992-19-08 D. Gärtner, A. Kimms, W. Kluge: pi-Redˆ+ - A Compiling Graph-

Reduction System for a Full Fledged Lambda-Calculus

1992-19-09 D. Howe, G. Burn: Experiments with strict STG code

1992-19-10 J. Glauert: Parallel Implementation of Functional Languages Using

Small Processes

1992-19-11 M. Joy, T. Axford: A Parallel Graph Reduction Machine

1992-19-12 A. Bennett, P. Kelly: Simulation of Multicache Parallel Reduction

51

1992-19-13 K. Langendoen, D.J. Agterkamp: Cache Behaviour of Lazy Functional

Programs (Working Paper)

1992-19-14 K. Hammond, S. Peyton Jones: Profiling scheduling strategies on the

GRIP parallel reducer

1992-19-15 S. Mintchev: Using Strictness Information in the STG-machine

1992-19-16 D. Rushall: An Attribute Grammar Evaluator in Haskell

1992-19-17 J. Wild, H. Glaser, P. Hartel: Statistics on storage management in a lazy

functional language implementation

1992-19-18 W.S. Martins: Parallel Implementations of Functional Languages

1992-19-19 D. Lester: Distributed Garbage Collection of Cyclic Structures (Draft

version)

1992-19-20 J.C. Glas, R.F.H. Hofman, W.G. Vree: Parallelization of Branch-and-

Bound Algorithms in a Functional Programming Environment

1992-19-21 S. Hwang, D. Rushall: The nu-STG machine: a parallelized Spineless

Tagless Graph Reduction Machine in a distributed memory architecture

(Draft version)

1992-19-22 G. Burn, D. Le Metayer: Cps-Translation and the Correctness of Opti-

mising Compilers

1992-19-23 S.L. Peyton Jones, P. Wadler: Imperative functional programming (Brief

summary)

1992-19-24 W. Damm, F. Liu, Th. Peikenkamp: Evaluation and Parallelization of

Functions in Functional + Logic Languages (abstract)

1992-19-25 M. Kesseler: Communication Issues Regarding Parallel Functional Graph

Rewriting

1992-19-26 Th. Peikenkamp: Charakterizing and representing neededness in func-

tional loginc languages (abstract)

1992-19-27 H. Doerr: Monitoring with Graph-Grammars as formal operational Mod-

els

1992-19-28 J. van Groningen: Some implementation aspects of Concurrent Clean on

distributed memory architectures

1992-19-29 G. Ostheimer: Load Bounding for Implicit Parallelism (abstract)

1992-20 H. Kuchen, F.J. Lopez Fraguas, J.J. Moreno Navarro, M. Rodriguez

Artalejo: Implementing Disequality in a Lazy Functional Logic Language

1992-21 H. Kuchen, F.J. Lopez Fraguas: Result Directed Computing in a Func-

tional Logic Language

1992-22 H. Kuchen, J.J. Moreno Navarro, M.V. Hermenegildo: Independent

AND-Parallel Narrowing

1992-23 T. Margaria, B. Steffen: Distinguishing Formulas for Free

1992-24 K. Pohl: The Three Dimensions of Requirements Engineering

1992-25 ∗ R. Stainov: A Dynamic Configuration Facility for Multimedia Commu-

nications

1992-26 ∗ Michael von der Beeck: Integration of Structured Analysis and Timed

Statecharts for Real-Time and Concurrency Specification

1992-27 W. Hans, St. Winkler: Aliasing and Groundness Analysis of Logic Pro-

grams through Abstract Interpretation and its Safety

1992-28 ∗ Gerhard Steinke, Matthias Jarke: Support for Security Modeling in In-

formation Systems Design

1992-29 B. Schinzel: Warum Frauenforschung in Naturwissenschaft und Technik

52

1992-30 A. Kemper, G. Moerkotte, K. Peithner: Object-Orientation Axiomatised

by Dynamic Logic

1992-32 ∗ Bernd Heinrichs, Kai Jakobs: Timer Handling in High-Performance

Transport Systems

1992-33 ∗ B. Heinrichs, K. Jakobs, K. Lenßen, W. Reinhardt, A. Spinner: Euro-

Bridge: Communication Services for Multimedia Applications

1992-34 C. Gerlhof, A. Kemper, Ch. Kilger, G. Moerkotte: Partition-Based Clus-

tering in Object Bases: From Theory to Practice

1992-35 J. Börstler: Feature-Oriented Classification and Reuse in IPSEN

1992-36 M. Jarke, J. Bubenko, C. Rolland, A. Sutcliffe, Y. Vassiliou: Theories Un-

derlying Requirements Engineering: An Overview of NATURE at Gen-

esis

1992-37 ∗ K. Pohl, M. Jarke: Quality Information Systems: Repository Support for

Evolving Process Models

1992-38 A. Zuendorf: Implementation of the imperative / rule based language

PROGRES

1992-39 P. Koch: Intelligentes Backtracking bei der Auswertung funktional-

logischer Programme

1992-40 ∗ Rudolf Mathar, Jürgen Mattfeldt: Channel Assignment in Cellular Radio

Networks

1992-41 ∗ Gerhard Friedrich, Wolfgang Neidl: Constructive Utility in Model-Based

Diagnosis Repair Systems

1992-42 ∗ P. S. Chen, R. Hennicker, M. Jarke: On the Retrieval of Reusable Soft-

ware Components

1992-43 W. Hans, St.Winkler: Abstract Interpretation of Functional Logic Lan-

guages

1992-44 N. Kiesel, A. Schuerr, B. Westfechtel: Design and Evaluation of GRAS,

a Graph-Oriented Database System for Engineering Applications

1993-01 ∗ Fachgruppe Informatik: Jahresbericht 1992

1993-02 ∗ Patrick Shicheng Chen: On Inference Rules of Logic-Based Information

Retrieval Systems

1993-03 G. Hogen, R. Loogen: A New Stack Technique for the Management of

Runtime Structures in Distributed Environments

1993-05 A. Zuendorf: A Heuristic for the Subgraph Isomorphism Problem in Ex-

ecuting PROGRES

1993-06 A. Kemper, D. Kossmann: Adaptable Pointer Swizzling Strategies in

Object Bases: Design, Realization, and Quantitative Analysis

1993-07 ∗ Graduiertenkolleg Informatik und Technik (Hrsg.): Graduiertenkolleg In-

formatik und Technik

1993-08 ∗ Matthias Berger: k-Coloring Vertices using a Neural Network with Con-

vergence to Valid Solutions

1993-09 M. Buchheit, M. Jeusfeld, W. Nutt, M. Staudt: Subsumption between

Queries to Object-Oriented Databases

1993-10 O. Burkart, B. Steffen: Pushdown Processes: Parallel Composition and

Model Checking

1993-11 ∗ R. Große-Wienker, O. Hermanns, D. Menzenbach, A. Pollacks, S. Repet-

zki, J. Schwartz, K. Sonnenschein, B. Westfechtel: Das SUKITS-Projekt:

A-posteriori-Integration heterogener CIM-Anwendungssysteme

53

1993-12 ∗ Rudolf Mathar, Jürgen Mattfeldt: On the Distribution of Cumulated

Interference Power in Rayleigh Fading Channels

1993-13 O. Maler, L. Staiger: On Syntactic Congruences for omega-languages

1993-14 M. Jarke, St. Eherer, R. Gallersdoerfer, M. Jeusfeld, M. Staudt: Con-

ceptBase - A Deductive Object Base Manager

1993-15 M. Staudt, H.W. Nissen, M.A. Jeusfeld: Query by Class, Rule and Con-

cept

1993-16 ∗ M. Jarke, K. Pohl, St. Jacobs et al.: Requirements Engineering: An In-

tegrated View of Representation Process and Domain

1993-17 ∗ M. Jarke, K. Pohl: Establishing Vision in Context: Towards a Model of

Requirements Processes

1993-18 W. Hans, H. Kuchen, St. Winkler: Full Indexing for Lazy Narrowing

1993-19 W. Hans, J.J. Ruz, F. Saenz, St. Winkler: A VHDL Specification of a

Shared Memory Parallel Machine for Babel

1993-20 ∗ K. Finke, M. Jarke, P. Szczurko, R. Soltysiak: Quality Management for

Expert Systems in Process Control

1993-21 M. Jarke, M.A. Jeusfeld, P. Szczurko: Three Aspects of Intelligent Co-

operation in the Quality Cycle

1994-01 Margit Generet, Sven Martin (eds.), Fachgruppe Informatik: Jahres-

bericht 1993

1994-02 M. Lefering: Development of Incremental Integration Tools Using Formal

Specifications

1994-03 ∗ P. Constantopoulos, M. Jarke, J. Mylopoulos, Y. Vassiliou: The Software

Information Base: A Server for Reuse

1994-04 ∗ Rolf Hager, Rudolf Mathar, Jürgen Mattfeldt: Intelligent Cruise Control

and Reliable Communication of Mobile Stations

1994-05 ∗ Rolf Hager, Peter Hermesmann, Michael Portz: Feasibility of Authenti-

cation Procedures within Advanced Transport Telematics

1994-06 ∗ Claudia Popien, Bernd Meyer, Axel Kuepper: A Formal Approach to

Service Import in ODP Trader Federations

1994-07 P. Peters, P. Szczurko: Integrating Models of Quality Management Meth-

ods by an Object-Oriented Repository

1994-08 ∗ Manfred Nagl, Bernhard Westfechtel: A Universal Component for the

Administration in Distributed and Integrated Development Environ-

ments

1994-09 ∗ Patrick Horster, Holger Petersen: Signatur- und Authentifikationsver-

fahren auf der Basis des diskreten Logarithmusproblems

1994-11 A. Schürr: PROGRES, A Visual Language and Environment for PRO-

gramming with Graph REwrite Systems

1994-12 A. Schürr: Specification of Graph Translators with Triple Graph Gram-

mars

1994-13 A. Schürr: Logic Based Programmed Structure Rewriting Systems

1994-14 L. Staiger: Codes, Simplifying Words, and Open Set Condition

1994-15 ∗ Bernhard Westfechtel: A Graph-Based System for Managing Configura-

tions of Engineering Design Documents

1994-16 P. Klein: Designing Software with Modula-3

1994-17 I. Litovsky, L. Staiger: Finite acceptance of infinite words

54

1994-18 G. Hogen, R. Loogen: Parallel Functional Implementations: Graphbased

vs. Stackbased Reduction

1994-19 M. Jeusfeld, U. Johnen: An Executable Meta Model for Re-Engineering

of Database Schemas

1994-20 ∗ R. Gallersdörfer, M. Jarke, K. Klabunde: Intelligent Networks as a Data

Intensive Application (INDIA)

1994-21 M. Mohnen: Proving the Correctness of the Static Link Technique Using

Evolving Algebras

1994-22 H. Fernau, L. Staiger: Valuations and Unambiguity of Languages, with

Applications to Fractal Geometry

1994-24 ∗ M. Jarke, K. Pohl, R. Dömges, St. Jacobs, H. W. Nissen: Requirements

Information Management: The NATURE Approach

1994-25 ∗ M. Jarke, K. Pohl, C. Rolland, J.-R. Schmitt: Experience-Based Method

Evaluation and Improvement: A Process Modeling Approach

1994-26 ∗ St. Jacobs, St. Kethers: Improving Communication and Decision Making

within Quality Function Deployment

1994-27 ∗ M. Jarke, H. W. Nissen, K. Pohl: Tool Integration in Evolving Informa-

tion Systems Environments

1994-28 O. Burkart, D. Caucal, B. Steffen: An Elementary Bisimulation Decision

Procedure for Arbitrary Context-Free Processes

1995-01 ∗ Fachgruppe Informatik: Jahresbericht 1994

1995-02 Andy Schürr, Andreas J. Winter, Albert Zündorf: Graph Grammar En-

gineering with PROGRES

1995-03 Ludwig Staiger: A Tight Upper Bound on Kolmogorov Complexity by

Hausdorff Dimension and Uniformly Optimal Prediction

1995-04 Birgitta König-Ries, Sven Helmer, Guido Moerkotte: An experimental

study on the complexity of left-deep join ordering problems for cyclic

queries

1995-05 Sophie Cluet, Guido Moerkotte: Efficient Evaluation of Aggregates on

Bulk Types

1995-06 Sophie Cluet, Guido Moerkotte: Nested Queries in Object Bases

1995-07 Sophie Cluet, Guido Moerkotte: Query Optimization Techniques Ex-

ploiting Class Hierarchies

1995-08 Markus Mohnen: Efficient Compile-Time Garbage Collection for Arbi-

trary Data Structures

1995-09 Markus Mohnen: Functional Specification of Imperative Programs: An

Alternative Point of View of Functional Languages

1995-10 Rainer Gallersdörfer, Matthias Nicola: Improving Performance in Repli-

cated Databases through Relaxed Coherency

1995-11 ∗ M.Staudt, K.von Thadden: Subsumption Checking in Knowledge Bases

1995-12 ∗ G.V.Zemanek, H.W.Nissen, H.Hubert, M.Jarke: Requirements Analy-

sis from Multiple Perspectives: Experiences with Conceptual Modeling

Technology

1995-13 ∗ M.Staudt, M.Jarke: Incremental Maintenance of Externally Materialized

Views

1995-14 ∗ P.Peters, P.Szczurko, M.Jeusfeld: Oriented Information Management:

Conceptual Models at Work

55

1995-15 ∗ Matthias Jarke, Sudha Ram (Hrsg.): WITS 95 Proceedings of the 5th

Annual Workshop on Information Technologies and Systems

1995-16 ∗ W.Hans, St.Winkler, F.Saenz: Distributed Execution in Functional Logic

Programming

1996-01 ∗ Jahresbericht 1995

1996-02 Michael Hanus, Christian Prehofer: Higher-Order Narrowing with Defi-

nitional Trees

1996-03 ∗ W.Scheufele, G.Moerkotte: Optimal Ordering of Selections and Joins in

Acyclic Queries with Expensive Predicates

1996-04 Klaus Pohl: PRO-ART: Enabling Requirements Pre-Traceability

1996-05 Klaus Pohl: Requirements Engineering: An Overview

1996-06 ∗ M.Jarke, W.Marquardt: Design and Evaluation of Computer–Aided Pro-

cess Modelling Tools

1996-07 Olaf Chitil: The Sigma-Semantics: A Comprehensive Semantics for Func-

tional Programs

1996-08 ∗ S.Sripada: On Entropy and the Limitations of the Second Law of Ther-

modynamics

1996-09 Michael Hanus (Ed.): Proceedings of the Poster Session of ALP96 - Fifth

International Conference on Algebraic and Logic Programming

1996-09-0 Michael Hanus (Ed.): Proceedings of the Poster Session of ALP 96 -

Fifth International Conference on Algebraic and Logic Programming:

Introduction and table of contents

1996-09-1 Ilies Alouini: An Implementation of Conditional Concurrent Rewriting

on Distributed Memory Machines

1996-09-2 Olivier Danvy, Karoline Malmkjær: On the Idempotence of the CPS

Transformation

1996-09-3 Vı́ctor M. Guĺıas, José L. Freire: Concurrent Programming in Haskell

1996-09-4 Sébastien Limet, Pierre Réty: On Decidability of Unifiability Modulo

Rewrite Systems

1996-09-5 Alexandre Tessier: Declarative Debugging in Constraint Logic Program-

ming

1996-10 Reidar Conradi, Bernhard Westfechtel: Version Models for Software Con-

figuration Management

1996-11 ∗ C.Weise, D.Lenzkes: A Fast Decision Algorithm for Timed Refinement

1996-12 ∗ R.Dömges, K.Pohl, M.Jarke, B.Lohmann, W.Marquardt: PRO-

ART/CE* — An Environment for Managing the Evolution of Chemical

Process Simulation Models

1996-13 ∗ K.Pohl, R.Klamma, K.Weidenhaupt, R.Dömges, P.Haumer, M.Jarke: A

Framework for Process-Integrated Tools

1996-14 ∗ R.Gallersdörfer, K.Klabunde, A.Stolz, M.Eßmajor: INDIA — Intelligent

Networks as a Data Intensive Application, Final Project Report, June

1996

1996-15 ∗ H.Schimpe, M.Staudt: VAREX: An Environment for Validating and Re-

fining Rule Bases

1996-16 ∗ M.Jarke, M.Gebhardt, S.Jacobs, H.Nissen: Conflict Analysis Across Het-

erogeneous Viewpoints: Formalization and Visualization

1996-17 Manfred A. Jeusfeld, Tung X. Bui: Decision Support Components on the

Internet

56

1996-18 Manfred A. Jeusfeld, Mike Papazoglou: Information Brokering: Design,

Search and Transformation

1996-19 ∗ P.Peters, M.Jarke: Simulating the impact of information flows in net-

worked organizations

1996-20 Matthias Jarke, Peter Peters, Manfred A. Jeusfeld: Model-driven plan-

ning and design of cooperative information systems

1996-21 ∗ G.de Michelis, E.Dubois, M.Jarke, F.Matthes, J.Mylopoulos, K.Pohl,

J.Schmidt, C.Woo, E.Yu: Cooperative information systems: a manifesto

1996-22 ∗ S.Jacobs, M.Gebhardt, S.Kethers, W.Rzasa: Filling HTML forms simul-

taneously: CoWeb architecture and functionality

1996-23 ∗ M.Gebhardt, S.Jacobs: Conflict Management in Design

1997-01 Michael Hanus, Frank Zartmann (eds.): Jahresbericht 1996

1997-02 Johannes Faassen: Using full parallel Boltzmann Machines for Optimiza-

tion

1997-03 Andreas Winter, Andy Schürr: Modules and Updatable Graph Views for

PROgrammed Graph REwriting Systems

1997-04 Markus Mohnen, Stefan Tobies: Implementing Context Patterns in the

Glasgow Haskell Compiler

1997-05 ∗ S.Gruner: Schemakorrespondenzaxiome unterstützen die paargramma-

tische Spezifikation inkrementeller Integrationswerkzeuge

1997-06 Matthias Nicola, Matthias Jarke: Design and Evaluation of Wireless

Health Care Information Systems in Developing Countries

1997-07 Petra Hofstedt: Taskparallele Skelette für irregulär strukturierte Prob-

leme in deklarativen Sprachen

1997-08 Dorothea Blostein, Andy Schürr: Computing with Graphs and Graph

Rewriting

1997-09 Carl-Arndt Krapp, Bernhard Westfechtel: Feedback Handling in Dy-

namic Task Nets

1997-10 Matthias Nicola, Matthias Jarke: Integrating Replication and Commu-

nication in Performance Models of Distributed Databases

1997-11 ∗ R. Klamma, P. Peters, M. Jarke: Workflow Support for Failure Manage-

ment in Federated Organizations

1997-13 Markus Mohnen: Optimising the Memory Management of Higher-Order

Functional Programs

1997-14 Roland Baumann: Client/Server Distribution in a Structure-Oriented

Database Management System

1997-15 George Botorog: High-Level Parallel Programming and the Efficient Im-

plementation of Numerical Algorithms

1998-01 ∗ Fachgruppe Informatik: Jahresbericht 1997

1998-02 Stefan Gruner, Manfred Nagel, Andy Schürr: Fine-grained and

Structure-Oriented Document Integration Tools are Needed for Devel-

opment Processes

1998-03 Stefan Gruner: Einige Anmerkungen zur graphgrammatischen Spezifika-

tion von Integrationswerkzeugen nach Westfechtel, Janning, Lefering und

Schürr

1998-04 ∗ O. Kubitz: Mobile Robots in Dynamic Environments

1998-05 Martin Leucker, Stephan Tobies: Truth - A Verification Platform for

Distributed Systems

57

1998-06 ∗ Matthias Oliver Berger: DECT in the Factory of the Future

1998-07 M. Arnold, M. Erdmann, M. Glinz, P. Haumer, R. Knoll, B. Paech, K.

Pohl, J. Ryser, R. Studer, K. Weidenhaupt: Survey on the Scenario Use

in Twelve Selected Industrial Projects

1998-08 ∗ H. Aust: Sprachverstehen und Dialogmodellierung in

natürlichsprachlichen Informationssystemen

1998-09 ∗ Th. Lehmann: Geometrische Ausrichtung medizinischer Bilder am

Beispiel intraoraler Radiographien

1998-10 ∗ M. Nicola, M. Jarke: Performance Modeling of Distributed and Repli-

cated Databases

1998-11 ∗ Ansgar Schleicher, Bernhard Westfechtel, Dirk Jäger: Modeling Dynamic

Software Processes in UML

1998-12 ∗ W. Appelt, M. Jarke: Interoperable Tools for Cooperation Support using

the World Wide Web

1998-13 Klaus Indermark: Semantik rekursiver Funktionsdefinitionen mit Strik-

theitsinformation

1999-01 ∗ Jahresbericht 1998

1999-02 ∗ F. Huch: Verifcation of Erlang Programs using Abstract Interpretation

and Model Checking — Extended Version

1999-03 ∗ R. Gallersdörfer, M. Jarke, M. Nicola: The ADR Replication Manager

1999-04 Maŕıa Alpuente, Michael Hanus, Salvador Lucas, Germán Vidal: Spe-

cialization of Functional Logic Programs Based on Needed Narrowing

1999-05 ∗ W. Thomas (Ed.): DLT 99 - Developments in Language Theory Fourth

International Conference

1999-06 ∗ Kai Jakobs, Klaus-Dieter Kleefeld: Informationssysteme für die ange-

wandte historische Geographie

1999-07 Thomas Wilke: CTL+ is exponentially more succinct than CTL

1999-08 Oliver Matz: Dot-Depth and Monadic Quantifier Alternation over Pic-

tures

2000-01 ∗ Jahresbericht 1999

2000-02 Jens Vöge, Marcin Jurdzinski: A Discrete Strategy Improvement Algo-

rithm for Solving Parity Games

2000-04 Andreas Becks, Stefan Sklorz, Matthias Jarke: Exploring the Semantic

Structure of Technical Document Collections: A Cooperative Systems

Approach

2000-05 Mareike Schoop: Cooperative Document Management

2000-06 Mareike Schoop, Christoph Quix (eds.): Proceedings of the Fifth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2000-07 ∗ Markus Mohnen, Pieter Koopman (Eds.): Proceedings of the 12th Inter-

national Workshop of Functional Languages

2000-08 Thomas Arts, Thomas Noll: Verifying Generic Erlang Client-Server Im-

plementations

2001-01 ∗ Jahresbericht 2000

2001-02 Benedikt Bollig, Martin Leucker: Deciding LTL over Mazurkiewicz

Traces

2001-03 Thierry Cachat: The power of one-letter rational languages

58

2001-04 Benedikt Bollig, Martin Leucker, Michael Weber: Local Parallel Model

Checking for the Alternation Free mu-Calculus

2001-05 Benedikt Bollig, Martin Leucker, Thomas Noll: Regular MSC Languages

2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-

Order Logic

2001-07 Martin Grohe, Stefan Wöhrle: An Existential Locality Theorem

2001-08 Mareike Schoop, James Taylor (eds.): Proceedings of the Sixth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2001-09 Thomas Arts, Jürgen Giesl: A collection of examples for termination of

term rewriting using dependency pairs

2001-10 Achim Blumensath: Axiomatising Tree-interpretable Structures

2001-11 Klaus Indermark, Thomas Noll (eds.): Kolloquium Programmier-

sprachen und Grundlagen der Programmierung

2002-01 ∗ Jahresbericht 2001

2002-02 Jürgen Giesl, Aart Middeldorp: Transformation Techniques for Context-

Sensitive Rewrite Systems

2002-03 Benedikt Bollig, Martin Leucker, Thomas Noll: Generalised Regular

MSC Languages

2002-04 Jürgen Giesl, Aart Middeldorp: Innermost Termination of Context-

Sensitive Rewriting

2002-05 Horst Lichter, Thomas von der Maßen, Thomas Weiler: Modelling Re-

quirements and Architectures for Software Product Lines

2002-06 Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party

Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic

Finite Automata

2002-07 Jörg Dahmen: Invariant Image Object Recognition using Gaussian Mix-

ture Densities

2002-08 Markus Mohnen: An Open Framework for Data-Flow Analysis in Java

2002-09 Markus Mohnen: Interfaces with Default Implementations in Java

2002-10 Martin Leucker: Logics for Mazurkiewicz traces

2002-11 Jürgen Giesl, Hans Zantema: Liveness in Rewriting

2003-01 ∗ Jahresbericht 2002

2003-02 Jürgen Giesl, René Thiemann: Size-Change Termination for Term

Rewriting

2003-03 Jürgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations

2003-04 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Improving Dependency Pairs

2003-05 Christof Löding, Philipp Rohde: Solving the Sabotage Game is PSPACE-

hard

2003-06 Franz Josef Och: Statistical Machine Translation: From Single-Word

Models to Alignment Templates

2003-07 Horst Lichter, Thomas von der Maßen, Alexander Nyßen, Thomas

Weiler: Vergleich von Ansätzen zur Feature Modellierung bei der Soft-

wareproduktlinienentwicklung

2003-08 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Mechanizing Dependency Pairs

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2004

59

2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic

2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting

2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming

2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on Func-

tional and (Constraint) Logic Programming

2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming

2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination

2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information

2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

60

