
Aachen
Department of Computer Science

Technical Report

Model Checking Software for

Microcontrollers

Bastian Schlich, Michael Rohrbach, Michael Weber, and Stefan

Kowalewski

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2006-11

RWTH Aachen · Department of Computer Science · August 2006

The publications of the Department of Computer Science of RWTH Aachen

University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Model Checking Software for Microcontrollers

Bastian Schlich1⋆, Michael Rohrbach1, Michael Weber2⋆⋆, and Stefan
Kowalewski1

1 RWTH Aachen University, Embedded Software Laboratory, Ahornstr. 55,
52074 Aachen, Germany

Schlich@informatik.rwth-aachen.de
http://www-i11.informatik.rwth-aachen.de

2 CWI, Dept. of Software Engineering, Amsterdam, The Netherlands
Michael.Weber@cwi.nl

Abstract. A method for model checking of microcontroller code is presented.
The main objective is to check embedded C code including typical hardware
specific ingredients like embedded assembly statements, direct memory accesses,
direct register accesses, interrupts, and timers, without any further manual pre-
processing. For this purpose, the state space is generated directly from the as-
sembly code that is generated from C code for the specific microcontroller, in our
case the ATMEL ATmega family. The properties to be checked can refer to the
global C variables as well as to the microcontroller registers and the SRAM. By
this approach we are able to find bugs which cannot be found if one looks at the
C code or the assembly code alone. The paper explains the basic functionality of
our tools using two illustrative examples.

1 Introduction

In recent years industries have recognized model checking as a promising tool
for the development of embedded systems. Many embedded systems are used in
safety critical environments. Full testing of the systems is often not possible be-
cause it is too time consuming or too expensive. However errors in these systems
may lead to fatal events. A replacement of the software while in operation is of-
ten too difficult or not possible as it is in desktop systems. Hence the industries
would like to verify their systems.

In most embedded systems microcontrollers are used. The programs for mi-
crocontrollers are in the majority of cases written in the C language. Therefore
it can be expected that in almost all embedded software projects in some phase
there exists C code for microcontrollers. We want to use this C code for model
checking. The model checking should be done without the need to manually pre-
process the program. For an adoption of model checking in the industry it is
not feasible that a developer uses hours of her time to prepare programs for the
verification. If model checking is to be used in industry, it is mandatory that the
programs that are created in the development can be used for verification with-
out manual preparation. Furthermore, a manual preprocessing could introduce
new errors or mask existing errors.

The C code used for programming software for microcontrollers often contains
hardware dependent constructs as:

⋆ Corresponding author
⋆⋆ This research has been partially funded by the Netherlands Organisation for Scientific Re-

search (NWO) under FOCUS/BRICKS grant number 642.000.05N09

– direct hardware and memory accesses,

– embedded assembly instructions,

– use of interrupts and timers.

These microcontroller specific constructs are often used in software for em-
bedded systems and important for the operation of the embedded system. They
vary significantly between different microcontroller families, and can not be ab-
stracted away in the verification procedure without the loss of crucial details.

Contribution To address these challenges, we developed a practical method to
apply model checking to microcontroller programs which works directly on the
level of assembly language. In principle, we can deal with programs written in
any programming languages by first compiling them with commonly available
compilers.

As platform for our experiments we have chosen the popular ATMEL AT-
mega family of controllers. We can handle all commonly used hardware details,
and some of the more esoteric features. Despite the necessity to select a spe-
cific microcontroller family, our method is easily retargetable to others. Much of
the work can be transferred straightforwardly. As expected, the main effort of
supporting a new controller lies in the support for special-purpose features.

While commonly embedded systems developers have little problems dealing
with microcontroller assembly, it is not very appealing to only work at such
low levels, especially if the input program was written in another language. We
exploit debugging information emitted by compilers during the translation phase
to maintain a link between the input program and its translation into assembly.

Advantages Our approach has several advantages. The code which finally is
deployed to the hardware is checked, and not an intermediate representation. All
errors that could be introduced during the development process can be found,
including compiler errors, misunderstanding of semantics, or misunderstanding
of the behavior of the underlying hardware. Platform-specific errors can be found
which are not visible in the original C code; an example for such an error is given
in Section 6.1. In fact, not even the C source code needs to be given. Users
are not forced to create an environment, make annotations, or apply manual
abstractions. We support assertions about features of the C code, about features
of the hardware, and about features of the assembly code.

Overview The rest of this paper is organized as follows. In the next section
we review related model checkers which we evaluated before starting our own.
In Section 3, we discuss in detail how current approaches fall short, and how we
intend to fix the situation. In Section 4, we briefly describe the ATMEL ATmega
16 microcontroller. In Section 5, we describe two possible approaches to translate
assembly programs into a representation suitable for model checking algorithms.
After that, some encouraging first results of applying these approaches are pre-
sented in Section 6. We conclude with some remarks about our experiences and
future work.

4

2 Related Work

As programs of interest to us are written in C with parts in microcontroller-
specific assembly language, our work is related both to C code model checkers,
and assembly code model checkers.

Today, many C code model checkers are in existence, most of them con-
centrating on the verification of ANSI C code. Their primary goal is to verify
hardware-independent parts of a program. Most of them are used for verification
of drivers and protocols. In contrast, we want to model check C code that is
written for a specific microcontroller. In a previous study [1], we found that gen-
eral purpose C code model checkers are not able to model check this specific C

code. Two reasons can be identified. First, many C code model checkers restrict
the set of supported ANSI C constructs. The second reason is that none of them
support hardware-specific extensions, e. g., global variables which mask access to
I/O ports, embedded assembly statements, interrupts and timers.

However, in embedded C programs all these features are used and therefore
many of the C code model checkers are not even able to correctly parse such
programs. Others abort with error messages when encountering direct memory
accesses (dereference of a pointer which is a constant). None of them was able
to model check a simple program written for a microcontroller [1]. Even if they
would be able to build the state space for these programs, the negligence of the
underlying hardware would in many cases result in a state space that is too large.
Details are explained in Section 4 and 5.

For many of these C code model checkers the user has to prepare the source
code with annotations, create manual abstractions, or to provide an environment
to close the system [2]. In this work we try to automate this step as much as
possible by exploiting detailed knowledge of the underlying hardware.

Additionally, the specification features provided by many of the C code model
checkers are not adequate for creating specifications for embedded systems (e. g.,
only reachability, and only through source code annotations).

The State Exploring Assembly Model Checker StEAM [3] model checks ma-
chine code for the Internet C Virtual Machine (ICVM), which is compiled from
C/C++ source code. The main focus of StEAM is model checking of parallel
C++ programs. It builds the state space by monitoring a modified version of
the ICVM. The ICVM simulates the program on assembly code level. StEAM
depends on a modified version of the GCC compiler. If a new version of GCC
has to be used, it has to be adapted again. In our approach, we can use the
GCC compiler as it is. StEAM is able to model check ANSI C code and standard
C++ code. The same restrictions apply which we lined out for the C code model
checkers, regarding their hardware independence. However, a similar approach is
used to generate the state space of a program.

3 Deriving Models from Microcontroller Programs

In this section, we review how models suitable for checking properties on have
been constructed traditionally, why this is unsatisfactory for our setting, and
how we can take advantage of the often under appreciated simplicity of assembly

language to reach our goals, even with less work.

5

3.1 Models for Checking: Where They Come From

Explicit-state model checking is usually carried out in several steps. Traditionally,
the artifact to be verified is manually described with a modeling language. From
this model, a (possibly labeled) state transition system is derived (its reachable
part is called state space), which then is used to check properties given in a tem-
poral logic like LTL or CTL, and to provide a proof in terms of a counterexample
or a witness. The verification algorithms for the last step are well-known. Conve-
niently, they can be formulated as some kind of graph search. In the remainder
of this section, we will focus on how to construct a suitable input graph for these
algorithms from the artifacts we want to check: microcontroller programs.

As mentioned, the construction of a model used to be a manual step. This
allows the modeler to create concise models of exactly those parts of an artifact
which are relevant for the properties to check. However, it is clear that this
process also is a potential source of errors, as the relation between the actual
artifact and the model is informal, for several reasons.

Modeling languages like finite-state machines, CCS, etc., provide a simple
mathematical framework with formal semantics, and thus often do not provide
sufficient expressivity to comfortably map all details of a program one-to-one
into this framework. Other modeling languages, like Promela [4], are patterned
to resemble conventional high-level programming languages. However, this incurs
more complicated semantics. It becomes harder to convince ourselves whether our
intentions are really reflected by the models. Also, the translation into transition
systems becomes more involved.

Despite their extensions, we don’t know of any modeling language suitable
for model checking which includes direct ways to express the specifics of micro-
controller hardware. We still have to resort to describing them indirectly (incon-
venient), or abstracting from them completely. Furthermore, some abstraction is
often needed to make the model checking task tractable, otherwise the generated
state space is too big to be handled even by modern computers3.

3.2 Software Model Checking: Eliminating the Middleman

While ultimately is seems not feasible to completely replace all manual abstrac-
tions, software model checking tries to eliminate one source of human error by
automating the translation of the program into a model suitable for verification
algorithms. The programming language in which our program is written becomes
the input formalism from which a transition system can be derived.

To base ourselves on a solid foundation, we need to assign unambiguous
meaning to a program through the operational semantics of the programming
language it is written in. In an explicit-state setting, we can then obtain the
transition system of a concrete program by interpreting it stepwise. Each step is
a state in its state space. Edges of the transition system are induced by relating
each two of such consecutive steps.

However, the fact that we deal with microcontroller programs complicates our
setting, even if we restrict ourselves to a specific microcontroller. It is common
that we have to deal with programs written in C, C++ and SystemC, often

3 There is little practical value in drawing a distinction between infinite and simply too large
state spaces.

6

mixed with hardware-specific assembly language. Each of the high(er)-level lan-
guages is challenging to handle in completeness, let alone formalize, as the CIL

(C Intermediate Language) project found out [5]. In part, this is due to the fact
that real-world programs often are not conforming to the respective language
standard, they invoke undefined behavior, and use compiler-specific extensions.
The standards themselves are large, informal, and bugged with many dark cor-
ners.

It is not surprising that conventional software model checkers have problems
dealing with the intricacies of programs we are interested in [1]. In addition, they
cannot deal with embedded assembly parts at all.

3.3 Towards a Manageable Approach

Reconsidering the setting that we find ourselves in—dealing with several in-
put languages, embedded assembly language, and hardware specifics—it seems
obvious that we cannot avoid dealing with the lowest layer: hardware-specific as-
sembly. However, as it turns out, selecting assembly as the only input language
that we deal with even has several advantages over existing high-level language
approaches:

– Existing compilers can do the grunt work of “understanding” high-level lan-
guages. We leave this task to the respective domain experts, and rather con-
centrate on how to deal with their (simpler) output. Specifically, we consider
only object code, which can be viewed as the canonical representation of a
program for a specific hardware platform. As nice side effect, we can check
programs for which we have no access to their original source code.

– In principle, model checking tools adopting this approach can deal with a
number of languages for which exist compilers to our chosen target platform.

– Compilers implement all kinds of non-trivial optimizations on programs be-
fore emitting executable code, and interactions between such optimizations
make it hard to ensure their correctness. In general, programs exhibit different
run-time behavior depending on the level of optimizations in the compilation.
By using the assembly output of a compiler, we implicitly make the entire
compilation process part of our model. In other words, we can actually de-
tect situations in which a compiler introduces a bug in an otherwise correct
program, thus letting it behave as not intended.

– Assembly language is geared towards direct execution in hardware, and as
such it is simple, instructions have well-defined and often strictly local effect
on the processor state, and it bears little redundancy. In addition, reference
manuals for an assembly language are sufficiently formal that it is mostly
straight-forward to derive operational semantics from them. This in turn
enables us to obtain a state transition system from a program by emulating
the microcontroller as a whole!

However, the dependency on an external compiler brings along some addi-
tional challenges. Users expect the outcome of a model checking run to be given
relative to their input language, that is, they would rather like to deal with
properties and counterexample in terms of, e.g. C, than assembly, if possible
(cf. section 6.1). Fortunately for us, most compilers can emit detailed debugging

7

information along with the actual assembly code. Translating back and forth be-
tween input program and assembly then is a matter of threading this information
through the model checking process, but does not pose too many difficulties.

Another issue is that some properties, which are easily deducible from a
high-level program, are obscured by the compilation process with its possible
optimizations. Here, debugging information helps to recover them as well, at
least in parts. Some loss is usually unavoidable.

Programs requiring some kind of input, usually through special hardware
support, also need special consideration. Such programs are considered open,
and explicit-state model checking algorithms can only deal with closed systems,
where an environment providing the input is part of the model.

The type of expected input is to some degree implicitly encoded in a program
itself, however usually not in a conveniently accessible form. A separate line of
research is devoted to methods for automatically closing open systems [2].

We stress that part of the simplicity of this approach also stems from the
fact that we are dealing with a very restricted setting which plays out in our
favor. The class of programs we are dealing with are usually small, largely self-
contained, sequential (except for interrupt handlers), and finite-state. They are
designed to execute within very small amounts of memory, and have limited
capabilities to interact with the outside world. Recursion and dynamic memory
allocation are rare as well. These traits play into our hands, as they simplify the
model checking process.

4 ATMEL ATmega 16 microcontroller

We decided to use the ATMEL ATmega 16 microcontroller. It was used before
at the embedded software laboratory. It has has simple and clean architecture
and it is widely-used. Many real-world example can be found in the Internet.
Furthermore there exists a big pool of programs at the embedded software lab-
oratory.

The ATMEL ATmega 16 is a low-power CMOS 8 bit microcontroller based
on a RISC architecture. It has inter alia the following features:

– 16 KB flash memory, 1 KB internal SRAM, 512 Bytes EEPROM

– 4 I/O Ports 8-bit, 3 Timer Counter Units, 20 vectorized interrupts

It can be programmed via assembly or C language and it is supported by the
GCC compiler. It is e.g. used to control sensors and actuators on lower field-levels
in industrial controll systems. Another application area are sensor networks.

Microcontrollers differ from normal microprocessor. Additional to the CPU
a microcontroller consists of specific hardware features as timers, interrupts, I/O
ports, etc. All these features are accessed through defined I/O registers. These
I/O registers are accessed directly by their addresses. They are important for
the operation of the microcontroller. Most work is done by means of these I/O
registers. It is not possible to abstract from these registers. Since most of the
additional hardware features are used via more than one register, these registers
influence each other. E.g. a write to register DDRA influences the behavior of
register PORTA. The interaction between these registers is not static, it may

8

change during the operation of the microcontroller. A static abstraction could
not reflect the correct behavior.

As the microcontroller interacts via the I/O registers with its environment
and we wanted to keep the system open [2], we had to introduce nondeterminism.
The nondeterminism is needed for e.g. external interrupts, read accesses to ports,
and Analog to Digital Converter (ADC). In both approaches we try to limit
the over-approximation induced by this nondeterminism by taking advantage of
the hardware architecture. The concrete implementation differs slightly in both
approaches. There are other microcontroller specific features that require extra
treatment but we can not list them here due to space constraints.

5 Approaches

In this section two approaches and the implementations of theses two approaches
to model check assembly code for microcontrollers are described. The first ap-
proach uses an existing simulator to build the state space. It was developed at
the embedded software laboratory. The second approach translates the assem-
bly code together with a description of the microcontroller into bytecode for an
exiting virtual machine. It was developed during a diploma thesis that was done
in a cooperation between the embedded software laboratory and the CWI. Both
approaches use explicit state model checking. The first does CTL and the second
does LTL model checking.

5.1 Using an existing Simulator

The first approach is implemented in the model checker [mc]square as proposed
in [1]. [mc]square stands for Model Checking MicroControllers. In this approach
parts of an existing simulator are used. This specific implementation uses parts
of the cycle accurate simulation framework Avrora4 [6]. Avrora is mainly used
to simulate a network of sensor nodes. A core component of Avrora is the so
called interpreter. This interpreter takes a state and evaluates the instruction of
this state. In the interpreter all instructions that the ATMEL ATmega family
supports are implemented. Avrora also models the complete hardware of the
microcontroller. We had to change some components of Avrora to be able to use
it for building the state space.

This approach is divided into the following four steps:

– Preprocess the formula.
– Build the entire state space.
– Model check the generated state space.
– Create the counterexample.

In the first step the user-provided formula is preprocessed. The formula is
transformed into a formula that only contains the CTL operators EX, EU , and
EG. All other temporal operator can be expressed with these operators [7].

In the next step [mc]square builds the state space. In the beginning the
initial state is put on the stack. [mc]square takes the first state from the stack.
Then it passes the state to Avrora and calls a step method. This step method

4 http://compilers.cs.ucla.edu/avrora

9

executes the interpreter on this state. The interpreter evaluates the instruction.
After that [mc]square takes the newly created state and searches in the hash
table that stores the state space if this state already exists. If it exists, this
state is discarded and the next state is taken from the stack. But if the state
does not already exist, it is added to the state space. Before it is added to the
state space, the data that is attached to this state is compressed via run-length
encoding (lossless compression algorithm). The data contains the complete data
address space of the microcontroller. The new state is given to Avrora and the
step method is called again. This is repeated until the stack is empty and no
new state is found. The build process of the state space is completed when this
situation is reached.

The above described procedure applies in case only deterministic successor
states occur. As described before some features of the microcontroller require
nondeterminism when model checking the code. But the interpreter can not
handle this nondeterminism because normally every state in Avrora only has
one deterministic successor. To handle this [mc]square prepares the states that
have nondeterministic successors (e.g. a read of an I/O port). If it encounters
such a state, it calls a component called splitter.

The splitter is a part of [mc]square. It analyzes the state and computes the
number of states that have to be created from this state. After that it creates all
these states by setting the value of the nondeterministic register that is accessed
in the current instruction. That means if an I/O register is read and four bits
of this I/O register are nondeterministic, it creates 16 states from this state
and in every of these 16 states it sets the I/O register to a different value.
Thereby it creates from one state with nondeterministic successors 16 states
that each have one deterministic successor. Hence all possible values are covered.
The intermediate states are not added to the state space.

Through these changes the interpreter of Avrora is now able to handle these
intermediate states. [mc]square iteratively passes the intermediate states to Avrora.
Avrora executes the interpreter on each of these states. After that [mc]square
adds the resulting states to the state space and to the stack. The state that
accessed the nondeterministic register is set as the predecessor of these states.
The intermediate states do not occur in the state space at all. The I/O register
that was accessed is still nondeterministic. I.e. in the next read to this I/O regis-
ter this procedure is repeated. The number of possible successor states that the
splitter component creates depends on the hardware feature that is accessed in
the corresponding instruction (cf. 4) and on the current state of this hardware
feature.

After the state space is build it is checked via a standard CTL model checking
algorithm. Only the three operators EX, EU , and EG are implemented. The
algorithm for EG and EX were taken from [7]. The algorithm for EU was
taken from [8]. We used non-recursive versions of the algorithms for performance
reasons. If a formula is invalid, [mc]square generates a counterexample. This
counterexample is then presented as a graph or can be traversed in the C code
and assembly code file.

If this approach is to be extended to handle another microcontroller, one
has to exchange the simulator and to adapt the interface to the new simulator.
The model checking algorithm and most parts of the splitter can be reused. The

10

advantage of this approach is that an existing simulator can be used to build
the state space. If no simulator exists for the new microcontroller or the existing
simulator can not be adapted, one has to write a basic simulator on its own. If
an existing simulator is to be used, the effort that is needed to adapt it can vary.
It depends on the features the simulator supports and how it implements these
features. [mc]square only needs some basic functions to communicate with the
simulator. A function to pass a state to the simulator, a function to get a state
from the simulator, and a step function to execute an instruction.

5.2 Translation to Bytecode

The second approach is implemented in Model Checking of Embedded Systems
Software (MCESS) [9]. This approach translates given assembly code together
with a description of a microcontroller into the input language of an existing
virtual machine for state space generation (NIPS VM) [10].

NIPS VM operates on an assembly-like bytecode, and is intended as a generic
intermediate layer for the translation of modeling languages. Therefore, the main
task in the second approach is to translate the microcontroller assembly code into
bytecode. In addition to that, the microcontroller hardware has to be represented
in the NIPS VM.

This translation is initially developed for the ATMEL ATmega 16, but it is
possible to modify any microcontroller specific information, like memory layout or
instructions semantics without modifying the implementation of the translation.
This is done by means of a Domain-Specific description Language based on the
Register Transfer Language (RTL-DSL). Some kind of register transfer language
is commonly used in microcontroller documentations to describe the effects of
assembler instructions on the microcontroller hardware. Thus, this information
can be directly copied from the documentation to the RTL-DSL specification,
to describe the instruction semantics of the microcontroller. A description of the
memory layout with the number of general purpose registers, special purpose
registers, SRAM size, etc. can also be taken directly from the ATMEL documen-
tation. Because of the external RTL-DSL specification it is possible to adapt the
translation and hence the model checker to other microcontrollers.

The information in the specification is used to create a representation of a
microcontroller state and to perform the translation of the assembly code into
the bytecode.

Up to this point the model checker has every information to compute the
deterministic successor of a state resulting from the execution of one assembler
instruction. However, special care has to be taken for accesses to microcontroller
features which depend on interaction with the environment. For these situations
additional code fragments for the access to special purpose registers have to be
added to the RTL-DSL specification. These fragments are executed each time
the memory address of the appropriate register is read or written instead of
loading or storing the deterministic value. For example, if the program accesses
the special purpose register containing the value of an extern port and this port is
configured as input, the code fragment has to simulate every possible value that
can possibly occur at this port. These code fragments which serve as abstractions
for real accesses to memory locations are implemented directly in NIPS VM
bytecode and are added during the translation of the assembly code.

11

The model checking process using MCESS works as follows. The C code
checked is compiled to its assembly code representation and given to the trans-
lation unit, together with the specification of the microcontroller. Since MCESS
does LTL model checking the user has to provide an LTL formula which specifies
the desired behavior of the program. Then the assembly code and the RTL-DSL
specification are used to create the model of the program running on the specified
microcontroller. The formula is also encoded in the model in terms of a Buechi
automaton. This automaton runs simultaneously with the system and accepts
every run which falsifies the formula. Thus the formula is satisfied on all paths
of the system if the resulting state space does not contain any accepting cycles
[11]. This is checked with a nested depth-first search algorithm [12].

The advantage of translating assembly code into NIPS VM bytecode is that
once this is done, generic algorithms can be used for the following steps in the
model checking process, like static analyses and the actual LTL model checking.
Also, it enables easy connection to existing distributed verification tools [13].

6 First Results

In this section two programs are presented that are used to show the basic fea-
tures of both implementations. The first program was written as part of a diploma
thesis. This thesis is done in corporation between the embedded software labora-
tory and the CWI. For clarity only a small part of this program is presented here.
This part still contains an error that can not be found by C code model checking.
This error is typical for software used in embedded systems. The second program
was created in a laboratory course at the embedded software laboratory. It shows
an error that only occurs if two interrupts are raised at the same time.

6.1 Faulty Write to an Integer

The first program is shown in Listing 1.1. Due to space constrains, we present
this small part of a bigger program. This part still contains an error that is often
found in programs for embedded systems.

In this program one I/O port and one external interrupt are used. In the main
loop a variable i is incremented from 0 to 300. There is an external interrupt
that may be triggered from outside. In the interrupt handler of this external
interrupt port A is set to a value depending on the value of i . If i < 150 port
A is set to 0x00 and if 150 <=i <= 300 port A is set to 0x55. At the end of the
interrupt handler port A is set to 0xff. The formula we want to verify is (1).

AG (in interrupt handler = 1 ⇒ i ≤ 300) (1)

This formula states that if the program is in the interrupt handler, the variable
i is always less or equal to 300. In the original program a bigger value than 300
resulted in an error. Looking at the C source code the program should satisfy
specification (1), but both model checkers report a counterexample which shows
that there exists a state where the interrupt handler is executed and the value
of i is 511. If you take a look at the assembly code representation of the i++;

instruction in line 16 you see that the assignment of a new value to the memory

12

Listing 1.1. Faulty Write to an Integer
1 #include <avr/io.h>

#include <avr/interrupt.h>
#include <avr/signal.h>

volatile int i=0;
6 char in_interrupt_handler = 0;

int main (void){
DDRA = 0xff; // PORTA as output
PORTA = 0xff;

11 MCUCSR = MCUCSR | (1<<ISC2); // IR 2 with falling edge
GICR = GICR | (1<<INT2); // ext IR 2 activated
sei(); // global IR enable
while (1){

while(i<300){
16 i++;

}
i = 0;

}
}

21

SIGNAL (SIG_INTERRUPT2){
in_interrupt_handler = 1;
if (i < 150)

PORTA = 0x00;
26 else if (i <= 300)

PORTA = 0x55;
PORTA = 0xff;
in_interrupt_handler = 0;

}

location of i is done by two subsequent assembler instruction. The first instruc-
tion stores the higher and the second instruction stores the lower byte of the
integer value. The counterexample shows that an interrupt was triggered exactly
in between of those two instruction when the value of i was 255 = 0x00FF . This
means that the first instruction already stored the high byte of the new value
256 = 0x0100 which resulted in the value 511 = 0x01FF in the memory location
of i . As soon as the variable in_interrupt_handler is set to 1 after the interrupt
was triggered, the model reaches a state which falsifies specification (1).

[mc]square takes about 4 seconds to check the formula and generates 104,338
states that need 45 MB of memory. MCESS needs about 10 seconds to generate
the bytecode and about 1 second to check the formula. Since MCESS uses an
on-the-fly model checking algorithm it only needs to explore 20,163 states and
uses approximately 23 MB of memory for storing the state space. Building the
complete state space with a simple reachability formula produces 107,640 states
in about 4.5 seconds and needs 119,08 MB of memory.

To fix the error in this example, we only have to deactivate interrupts while i

is incremented. To do so, we insert the statement cli(); just before line 16 and
sei(); just after line 16. Now the formula is found to be valid by both model
checkers.

Important to notice is that the size of the state space drops to 68,340 states
in mc[square] and 70,416 states in MCESS, respectively. The lower state count
results in a shorter exploration time and reduced memory consumption for storing
the states, mc[square] needs about 3 seconds and 30 MB of memory, MCESS
requires about 10 seconds for translation, 3 seconds to check the model, and
78 MB of memory. The reason for the decreased state count is that now the

13

interrupt can not be triggered during the execution of i++ . On assembly level
the instruction i++ is split up into five instructions.

6.2 Traffic Light Example

In this section a program is presented that was developed as an exercise in a
laboratory course at the embedded software laboratory. It is an implementation
of a traffic light that is only controlled by time. The implementation is shown in
Listing 1.2. The only influence from the outside is an emergency switch that puts
the traffic light into an emergency off state. The normal operation is controlled
by an interrupt that is triggered by a timer overflow of timer 0. The emergency
button is implemented by a button that is connected to a pin at port D. If this
button is pressed, it raises an interrupt. The interrupt handler of this interrupt
disables the timer and sets the traffic light into the emergency state.

We want to verify that the program is in well defined states all the time and
that the emergency state (PORTA=0xf8) is never left if it is entered once. This is
encoded in formula (2).

AG (porta = 0 ∨ porta = 0xfb ∨ porta = 0xfd ∨ porta = 0xfe ∨

AG porta = 0xf8)
(2)

This formula is rejected. [mc]square needs about 1 second to build the state
space and to model check it. The state space has 9,435 states and 5 MB are
needed to store all states. MCESS checks the model (94 states) in less than
1 second and needs less than 1 MB. It needs 11 seconds for translation. The
complete state space (9,758 states) is searched in about 1 second and 22 MB.

By inspecting the counterexample, we find out that the error happens in the
interrupt handler of external interrupt 0 (SIGNAL (SIG_OVERFLOW0) {...}). In
case both interrupts (external interrupt and timer overflow interrupt) occur at
the same time, first the interrupt handler of the external interrupt is executed.
In this interrupt handler the timer is deactivated. But the flag that the timer 0
overflowed is not reset. Hence after the interrupt handler of the external interrupt
is finished, the interrupt handler of the timer overflow is called. This handler sets
port A to 0xfd. By this the traffic light leaves the emergency state. To fix this
error we insert instruction TIFR=(1<<TOV0); in line 33, which resets the flag
storing that the timer overflow interrupt has to be called. Now the formula is
verified.

[mc]square needs about 1 second to verify this formula. 9,445 states are cre-
ated that need 5 MB of memory. Checking the formula with MCESS also takes
about 1 second and results in 9,750 states which need 22 MB. The translation
takes 10 seconds.

6.3 Remarks

Taken this first results, both implementations show similar performance. Due
to the on-the-fly algorithm that MCESS uses, the size of the generated state
spaces can differ drastically in case that an error is found. However, the usage
of such an algorithm can lead to a blow up of the state space since it is directly

14

Listing 1.2. Implementation of a Traffic Light
#include <avr/io.h> // access to I/O-registers
#include <avr/interrupt.h> // interrupt handling
#include <avr/signal.h> // signal handling

5 volatile char status=0;

void init(void){
DDRA = 0xff; // PORTA as output
PORTA = 0x00;

10 DDRD = 0x00; // PORTD as Input
PORTD = 0xff; // activate pull-up
TCNT0 = 0x00; // counter register = 0
OCR0 = 0x00; // compare register = 0
TCCR0 = 0x00; // stop timer 0

15 MCUCR |= (1<<ISC01); // enable ext IR0
GICR |= (1<<INT0); // enable ext IR0
TIMSK |= (1<<TOIE0); // enable timer 0 IR
TCCR0 = 0x05; // start timer 0

}
20

int main (void){
init();
sei(); // global IR enable
while(1){

25 //do something here
}
return(1);

}

30 SIGNAL (SIG_INTERRUPT0) {
status = 0;
TCCR0 = 0x00; // stop timer 0
PORTA = 0xf8;

}
35

SIGNAL (SIG_OVERFLOW0){
TCCR0 = 0x00; // stop timer 0
status++; // increment status
if(status<80){ // choose action depending on status

40 PORTA = 0xfb; // red 1111 1011
} else {

if (status<115) {
PORTA = 0xfd; // yellow 1111 1101

} else {
45 if (status<220){

PORTA = 0xfe; // green 1111 1110
} else {

PORTA = 0xfd; // yellow 1111 1101
}

50 }
}
TCNT0 = 0x00;
TCCR0 = 0x05; // restart timer 0

}

15

influenced by the size of the formula. The differences in memory consumption
come from the fact that [mc]square uses run-length encoding. This compression
algorithm causes an increase of the time that [mc]square needs for building the
state space and model checking it (5–10 times). It is important to notice that
the memory consumption is only measured for the complete state space. The
temporary memory consumption of both implementations is higher. [mc]square
needs more temporary memory since it uses a GUI and runs in the Java Virtual
Machine.

Although both implementation are based on different approaches, the sizes of
the entire state spaces are nearly the same. They only differ by a negligible small
portion. In the programs used a considerable amount of time is consumed by the
translation process in MCESS. When checking programs with larger state spaces
this amount of time can be neglected since it increases only linear in program
length and not in state space size.

The maximum size of state spaces that can be generated with [mc]square
is about 2,000,000 states per gigabyte RAM. The maximum size of the state
space for MCESS is about 800,000 per gigabyte RAM since it does not use a
compression algorithm. [mc]square may produce less states per gigabyte RAM if
the distribution of the values is unfortunate.

7 Conclusion & Future Work

This paper describes the basic idea to model check hardware dependent assembly
code for a specific microcontroller. The advantages to model check the assembly
code are manifold. The semantics of assembler code is easier and better docu-
mented than the semantics of C code. All errors that could be introduced during
the development phase can be found in the assembly code file. This includes
compiler errors. The assembly code is the code that finally is transferred to the
microcontroller. The hardware dependency helps to decrease the size of the gen-
erated state space and makes it possible to state properties including all features
that are present on a microcontroller.

Two approaches that model check the assembly code are presented. The first
approach uses an existing simulation framework to build the state space. The
second approach translates the assembly code together with an description of the
hardware into bytecode for the NIPS virtual machine for state space generation.
For both approaches a implementation is described.

Two programs were uses to demonstrate the basic features of both implemen-
tations. Only small programs were used for clarity. It is important to mention
that both programs could not be checked by general purpose C code model check-
ers or StEAM without applying manual abstractions, creating an environment,
or annotating the program. Those changes were not needed by [mc]square and
MCESS. As mentioned in Sect. 6.3, both model checkers can deal with much big-
ger programs. Although both approaches are implemented differently, the sizes
of the generated state spaces are similar. This increases the trust that the state
spaces were generated correctly. Furthermore the model checking results of both
approaches were equal while [mc]square does CTL and MCESS does LTL model
checking.

16

In the future we want to compare both approaches in depth because we want
to find out in which situation which approach is better suited. Additionally we
want to find out whether it is desirable to use both implementations at once.
Such a proceeding could increase the trust in the validity of the results.

This is a first step towards an integration of model checking into the develop-
ment process for embedded systems. In both approaches model checking of the
program is done without the need to prepare the program. Although the model
checking is done on assembly level, information can be presented in terms of
the original C code. At present both model checkers can only be used to model
check code for the ATMEL ATmega 16 microcontroller. Both approaches can be
extended to model check code for other microcontrollers. The effort doing this
may vary.

References

1. Schlich, B., Kowalewski, S.: Model checking c source code for embedded systems. In:
Proceedings of the IEEE/NASA Workshop on Leveraging Applications of Formal Methods,
Verification, and Validation (ISoLA 2005). (2005)

2. Kupferman, O., Vardi, M.: Module checking. In: Computer Aided Verification, Proc.
8th Int. Conference. Volume 1102 of Lecture Notes in Computer Science., Springer-Verlag
(1996) 75–86

3. Leven, P., Mehler, T., Edelkamp, S.: Directed error detection in C++ with the assembly-
level model checker StEAM. In: Model Checking Software (SPIN). (2004) 39–56

4. Holzmann, G.J.: The SPIN MODEL CHECKER: Primer and reference manual. Addison-
Wesley (2003)

5. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate language and tools
for analysis and transformation of c programs. In: Computational Complexity. (2002) 213–
228

6. Titzer, B.L., Lee, D.K., Palsberg, J.: Avrora: Scalable sensor network simulation with pre-
cise timing. In: Proceedings of Fourth International Conference on Information Processing
in Sensor Networks (IPSN’05), Los Angeles (2005)

7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (1999)
8. Berard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., Schnoebelen, P.:

Systems and Software Verification: Model Checking Techniques and Tools. Springer (2001)
9. Rohrbach, M.: Model checking of embedded systems software. Master’s thesis, RWTH

Aachen University, Embedded Software Laboratory (2006)
10. Weber, M., Schürmans, S.: NIPS virtual machine and compiler implementation.

http://www.cwi.nl/˜weber/nips/ (2005)
11. Vardi, M., Wolper, P.: Automata theoretic techniques for modal logics of programs. Journal

of Computer and System Sciences 32(2) (1986) 182–221
12. Schwoon, S., Esparza, J.: A note on on-the-fly verification algorithms. In Halbwachs, N.,

Zuck, L.D., eds.: TACAS. Volume 3440 of Lecture Notes in Computer Science., Springer
(2005) 174–190

13. Barnat, J., Brim, L., Černá, I., Šimeček, P.: DiVinE the distributed verification environ-
ment. In Leucker, M., van de Pol, J., eds.: PDMC’05, Lisbon, Portugal (2005)

17

18

Aachener Informatik-Berichte

This is a list of recent technical reports. To obtain copies of technical reports

please consult http://aib.informatik.rwth-aachen.de/ or send your request

to: Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen, Email:

biblio@informatik.rwth-aachen.de

1987-01 ∗ Fachgruppe Informatik: Jahresbericht 1986

1987-02 ∗ David de Frutos Escrig, Klaus Indermark: Equivalence Relations of Non-

Deterministic Ianov-Schemes

1987-03 ∗ Manfred Nagl: A Software Development Environment based on Graph

Technology

1987-04 ∗ Claus Lewerentz, Manfred Nagl, Bernhard Westfechtel: On Integration

Mechanisms within a Graph-Based Software Development Environment

1987-05 ∗ Reinhard Rinn: Über Eingabeanomalien bei verschiedenen Inferenzmod-

ellen

1987-06 ∗ Werner Damm, Gert Döhmen: Specifying Distributed Computer Archi-

tectures in AADL*

1987-07 ∗ Gregor Engels, Claus Lewerentz, Wilhelm Schäfer: Graph Grammar En-

gineering: A Software Specification Method

1987-08 ∗ Manfred Nagl: Set Theoretic Approaches to Graph Grammars

1987-09 ∗ Claus Lewerentz, Andreas Schürr: Experiences with a Database System

for Software Documents

1987-10 ∗ Herbert Klaeren, Klaus Indermark: A New Implementation Technique

for Recursive Function Definitions

1987-11 ∗ Rita Loogen: Design of a Parallel Programmable Graph Reduction Ma-

chine with Distributed Memory

1987-12 J. Börstler, U. Möncke, R. Wilhelm: Table compression for tree automata

1988-01 ∗ Gabriele Esser, Johannes Rückert, Frank Wagner Gesellschaftliche As-

pekte der Informatik

1988-02 ∗ Peter Martini, Otto Spaniol: Token-Passing in High-Speed Backbone

Networks for Campus-Wide Environments

1988-03 ∗ Thomas Welzel: Simulation of a Multiple Token Ring Backbone

1988-04 ∗ Peter Martini: Performance Comparison for HSLAN Media Access Pro-

tocols

1988-05 ∗ Peter Martini: Performance Analysis of Multiple Token Rings

1988-06 ∗ Andreas Mann, Johannes Rückert, Otto Spaniol: Datenfunknetze

1988-07 ∗ Andreas Mann, Johannes Rückert: Packet Radio Networks for Data Ex-

change

1988-08 ∗ Andreas Mann, Johannes Rückert: Concurrent Slot Assignment Protocol

for Packet Radio Networks

1988-09 ∗ W. Kremer, F. Reichert, J. Rückert, A. Mann: Entwurf einer Netzw-

erktopologie für ein Mobilfunknetz zur Unterstützung des öffentlichen

Straßenverkehrs

1988-10 ∗ Kai Jakobs: Towards User-Friendly Networking

1988-11 ∗ Kai Jakobs: The Directory - Evolution of a Standard

1988-12 ∗ Kai Jakobs: Directory Services in Distributed Systems - A Survey

1988-13 ∗ Martine Schümmer: RS-511, a Protocol for the Plant Floor

19

1988-14 ∗ U. Quernheim: Satellite Communication Protocols - A Performance

Comparison Considering On-Board Processing

1988-15 ∗ Peter Martini, Otto Spaniol, Thomas Welzel: File Transfer in High Speed

Token Ring Networks: Performance Evaluation by Approximate Analysis

and Simulation

1988-16 ∗ Fachgruppe Informatik: Jahresbericht 1987

1988-17 ∗ Wolfgang Thomas: Automata on Infinite Objects

1988-18 ∗ Michael Sonnenschein: On Petri Nets and Data Flow Graphs

1988-19 ∗ Heiko Vogler: Functional Distribution of the Contextual Analysis in

Block-Structured Programming Languages: A Case Study of Tree Trans-

ducers

1988-20 ∗ Thomas Welzel: Einsatz des Simulationswerkzeuges QNAP2 zur Leis-

tungsbewertung von Kommunikationsprotokollen

1988-21 ∗ Th. Janning, C. Lewerentz: Integrated Project Team Management in a

Software Development Environment

1988-22 ∗ Joost Engelfriet, Heiko Vogler: Modular Tree Transducers

1988-23 ∗ Wolfgang Thomas: Automata and Quantifier Hierarchies

1988-24 ∗ Uschi Heuter: Generalized Definite Tree Languages

1989-01 ∗ Fachgruppe Informatik: Jahresbericht 1988

1989-02 ∗ G. Esser, J. Rückert, F. Wagner (Hrsg.): Gesellschaftliche Aspekte der

Informatik

1989-03 ∗ Heiko Vogler: Bottom-Up Computation of Primitive Recursive Tree

Functions

1989-04 ∗ Andy Schürr: Introduction to PROGRESS, an Attribute Graph Gram-

mar Based Specification Language

1989-05 J. Börstler: Reuse and Software Development - Problems, Solutions, and

Bibliography (in German)

1989-06 ∗ Kai Jakobs: OSI - An Appropriate Basis for Group Communication?

1989-07 ∗ Kai Jakobs: ISO’s Directory Proposal - Evolution, Current Status and

Future Problems

1989-08 ∗ Bernhard Westfechtel: Extension of a Graph Storage for Software Doc-

uments with Primitives for Undo/Redo and Revision Control

1989-09 ∗ Peter Martini: High Speed Local Area Networks - A Tutorial

1989-10 ∗ P. Davids, Th. Welzel: Performance Analysis of DQDB Based on Simu-

lation

1989-11 ∗ Manfred Nagl (Ed.): Abstracts of Talks presented at the WG ’89 15th

International Workshop on Graphtheoretic Concepts in Computer Sci-

ence

1989-12 ∗ Peter Martini: The DQDB Protocol - Is it Playing the Game?

1989-13 ∗ Martine Schümmer: CNC/DNC Communication with MAP

1989-14 ∗ Martine Schümmer: Local Area Networks for Manufactoring Environ-

ments with hard Real-Time Requirements

1989-15 ∗ M. Schümmer, Th. Welzel, P. Martini: Integration of Field Bus and

MAP Networks - Hierarchical Communication Systems in Production

Environments

1989-16 ∗ G. Vossen, K.-U. Witt: SUXESS: Towards a Sound Unification of Ex-

tensions of the Relational Data Model

20

1989-17 ∗ J. Derissen, P. Hruschka, M.v.d. Beeck, Th. Janning, M. Nagl: Integrat-

ing Structured Analysis and Information Modelling

1989-18 A. Maassen: Programming with Higher Order Functions

1989-19 ∗ Mario Rodriguez-Artalejo, Heiko Vogler: A Narrowing Machine for Syn-

tax Directed BABEL

1989-20 H. Kuchen, R. Loogen, J.J. Moreno Navarro, M. Rodriguez Artalejo:

Graph-based Implementation of a Functional Logic Language

1990-01 ∗ Fachgruppe Informatik: Jahresbericht 1989

1990-02 ∗ Vera Jansen, Andreas Potthoff, Wolfgang Thomas, Udo Wermuth: A

Short Guide to the AMORE System (Computing Automata, MOnoids

and Regular Expressions)

1990-03 ∗ Jerzy Skurczynski: On Three Hierarchies of Weak SkS Formulas

1990-04 R. Loogen: Stack-based Implementation of Narrowing

1990-05 H. Kuchen, A. Wagener: Comparison of Dynamic Load Balancing Strate-

gies

1990-06 ∗ Kai Jakobs, Frank Reichert: Directory Services for Mobile Communica-

tion

1990-07 ∗ Kai Jakobs: What’s Beyond the Interface - OSI Networks to Support

Cooperative Work

1990-08 ∗ Kai Jakobs: Directory Names and Schema - An Evaluation

1990-09 ∗ Ulrich Quernheim, Dieter Kreuer: Das CCITT - Signalisierungssystem

Nr. 7 auf Satellitenstrecken; Simulation der Zeichengabestrecke

1990-11 H. Kuchen, R. Loogen, J.J. Moreno Navarro, M. Rodriguez Artalejo:

Lazy Narrowing in a Graph Machine

1990-12 ∗ Kai Jakobs, Josef Kaltwasser, Frank Reichert, Otto Spaniol: Der Com-

puter fährt mit

1990-13 ∗ Rudolf Mathar, Andreas Mann: Analyzing a Distributed Slot Assign-

ment Protocol by Markov Chains

1990-14 A. Maassen: Compilerentwicklung in Miranda - ein Praktikum in funk-

tionaler Programmierung (written in german)

1990-15 ∗ Manfred Nagl, Andreas Schürr: A Specification Environment for Graph

Grammars

1990-16 A. Schürr: PROGRESS: A VHL-Language Based on Graph Grammars

1990-17 ∗ Marita Möller: Ein Ebenenmodell wissensbasierter Konsultationen - Un-

terstützung für Wissensakquisition und Erklärungsfähigkeit

1990-18 ∗ Eric Kowalewski: Entwurf und Interpretation einer Sprache zur Beschrei-

bung von Konsultationsphasen in Expertensystemen

1990-20 Y. Ortega Mallen, D. de Frutos Escrig: A Complete Proof System for

Timed Observations

1990-21 ∗ Manfred Nagl: Modelling of Software Architectures: Importance, No-

tions, Experiences

1990-22 H. Fassbender, H. Vogler: A Call-by-need Implementation of Syntax Di-

rected Functional Programming

1991-01 Guenther Geiler (ed.), Fachgruppe Informatik: Jahresbericht 1990

1991-03 B. Steffen, A. Ingolfsdottir: Characteristic Formulae for Processes with

Divergence

1991-04 M. Portz: A new class of cryptosystems based on interconnection net-

works

21

1991-05 H. Kuchen, G. Geiler: Distributed Applicative Arrays

1991-06 ∗ Ludwig Staiger: Kolmogorov Complexity and Hausdorff Dimension

1991-07 ∗ Ludwig Staiger: Syntactic Congruences for w-languages

1991-09 ∗ Eila Kuikka: A Proposal for a Syntax-Directed Text Processing System

1991-10 K. Gladitz, H. Fassbender, H. Vogler: Compiler-based Implementation

of Syntax-Directed Functional Programming

1991-11 R. Loogen, St. Winkler: Dynamic Detection of Determinism in Func-

tional Logic Languages

1991-12 ∗ K. Indermark, M. Rodriguez Artalejo (Eds.): Granada Workshop on the

Integration of Functional and Logic Programming

1991-13 ∗ Rolf Hager, Wolfgang Kremer: The Adaptive Priority Scheduler: A More

Fair Priority Service Discipline

1991-14 ∗ Andreas Fasbender, Wolfgang Kremer: A New Approximation Algorithm

for Tandem Networks with Priority Nodes

1991-15 J. Börstler, A. Zündorf: Revisiting extensions to Modula-2 to support

reusability

1991-16 J. Börstler, Th. Janning: Bridging the gap between Requirements Anal-

ysis and Design

1991-17 A. Zündorf, A. Schürr: Nondeterministic Control Structures for Graph

Rewriting Systems

1991-18 ∗ Matthias Jarke, John Mylopoulos, Joachim W. Schmidt, Yannis Vassil-

iou: DAIDA: An Environment for Evolving Information Systems

1991-19 M. Jeusfeld, M. Jarke: From Relational to Object-Oriented Integrity

Simplification

1991-20 G. Hogen, A. Kindler, R. Loogen: Automatic Parallelization of Lazy

Functional Programs

1991-21 ∗ Prof. Dr. rer. nat. Otto Spaniol: ODP (Open Distributed Processing):

Yet another Viewpoint

1991-22 H. Kuchen, F. Lücking, H. Stoltze: The Topology Description Language

TDL

1991-23 S. Graf, B. Steffen: Compositional Minimization of Finite State Systems

1991-24 R. Cleaveland, J. Parrow, B. Steffen: The Concurrency Workbench: A

Semantics Based Tool for the Verification of Concurrent Systems

1991-25 ∗ Rudolf Mathar, Jürgen Mattfeldt: Optimal Transmission Ranges for Mo-

bile Communication in Linear Multihop Packet Radio Networks

1991-26 M. Jeusfeld, M. Staudt: Query Optimization in Deductive Object Bases

1991-27 J. Knoop, B. Steffen: The Interprocedural Coincidence Theorem

1991-28 J. Knoop, B. Steffen: Unifying Strength Reduction and Semantic Code

Motion

1991-30 T. Margaria: First-Order theories for the verification of complex FSMs

1991-31 B. Steffen: Generating Data Flow Analysis Algorithms from Modal Spec-

ifications

1992-01 Stefan Eherer (ed.), Fachgruppe Informatik: Jahresbericht 1991

1992-02 ∗ Bernhard Westfechtel: Basismechanismen zur Datenverwaltung in struk-

turbezogenen Hypertextsystemen

1992-04 S. A. Smolka, B. Steffen: Priority as Extremal Probability

1992-05 ∗ Matthias Jarke, Carlos Maltzahn, Thomas Rose: Sharing Processes:

Team Coordination in Design Repositories

22

1992-06 O. Burkart, B. Steffen: Model Checking for Context-Free Processes

1992-07 ∗ Matthias Jarke, Klaus Pohl: Information Systems Quality and Quality

Information Systems

1992-08 ∗ Rudolf Mathar, Jürgen Mattfeldt: Analyzing Routing Strategy NFP in

Multihop Packet Radio Networks on a Line

1992-09 ∗ Alfons Kemper, Guido Moerkotte: Grundlagen objektorientierter Daten-

banksysteme

1992-10 Matthias Jarke, Manfred Jeusfeld, Andreas Miethsam, Michael Gocek:

Towards a logic-based reconstruction of software configuration manage-

ment

1992-11 Werner Hans: A Complete Indexing Scheme for WAM-based Abstract

Machines

1992-12 W. Hans, R. Loogen, St. Winkler: On the Interaction of Lazy Evaluation

and Backtracking

1992-13 ∗ Matthias Jarke, Thomas Rose: Specification Management with CAD

1992-14 Th. Noll, H. Vogler: Top-down Parsing with Simultaneous Evaluation on

Noncircular Attribute Grammars

1992-15 A. Schuerr, B. Westfechtel: Graphgrammatiken und Graphersetzungssys-

teme(written in german)

1992-16 ∗ Graduiertenkolleg Informatik und Technik (Hrsg.): Forschungsprojekte

des Graduiertenkollegs Informatik und Technik

1992-17 M. Jarke (ed.): ConceptBase V3.1 User Manual

1992-18 ∗ Clarence A. Ellis, Matthias Jarke (Eds.): Distributed Cooperation in

Integrated Information Systems - Proceedings of the Third International

Workshop on Intelligent and Cooperative Information Systems

1992-19-00 H. Kuchen, R. Loogen (eds.): Proceedings of the 4th Int. Workshop on

the Parallel Implementation of Functional Languages

1992-19-01 G. Hogen, R. Loogen: PASTEL - A Parallel Stack-Based Implementation

of Eager Functional Programs with Lazy Data Structures (Extended

Abstract)

1992-19-02 H. Kuchen, K. Gladitz: Implementing Bags on a Shared Memory MIMD-

Machine

1992-19-03 C. Rathsack, S.B. Scholz: LISA - A Lazy Interpreter for a Full-Fledged

Lambda-Calculus

1992-19-04 T.A. Bratvold: Determining Useful Parallelism in Higher Order Func-

tions

1992-19-05 S. Kahrs: Polymorphic Type Checking by Interpretation of Code

1992-19-06 M. Chakravarty, M. Köhler: Equational Constraints, Residuation, and

the Parallel JUMP-Machine

1992-19-07 J. Seward: Polymorphic Strictness Analysis using Frontiers (Draft Ver-

sion)

1992-19-08 D. Gärtner, A. Kimms, W. Kluge: pi-Redˆ+ - A Compiling Graph-

Reduction System for a Full Fledged Lambda-Calculus

1992-19-09 D. Howe, G. Burn: Experiments with strict STG code

1992-19-10 J. Glauert: Parallel Implementation of Functional Languages Using

Small Processes

1992-19-11 M. Joy, T. Axford: A Parallel Graph Reduction Machine

1992-19-12 A. Bennett, P. Kelly: Simulation of Multicache Parallel Reduction

23

1992-19-13 K. Langendoen, D.J. Agterkamp: Cache Behaviour of Lazy Functional

Programs (Working Paper)

1992-19-14 K. Hammond, S. Peyton Jones: Profiling scheduling strategies on the

GRIP parallel reducer

1992-19-15 S. Mintchev: Using Strictness Information in the STG-machine

1992-19-16 D. Rushall: An Attribute Grammar Evaluator in Haskell

1992-19-17 J. Wild, H. Glaser, P. Hartel: Statistics on storage management in a lazy

functional language implementation

1992-19-18 W.S. Martins: Parallel Implementations of Functional Languages

1992-19-19 D. Lester: Distributed Garbage Collection of Cyclic Structures (Draft

version)

1992-19-20 J.C. Glas, R.F.H. Hofman, W.G. Vree: Parallelization of Branch-and-

Bound Algorithms in a Functional Programming Environment

1992-19-21 S. Hwang, D. Rushall: The nu-STG machine: a parallelized Spineless

Tagless Graph Reduction Machine in a distributed memory architecture

(Draft version)

1992-19-22 G. Burn, D. Le Metayer: Cps-Translation and the Correctness of Opti-

mising Compilers

1992-19-23 S.L. Peyton Jones, P. Wadler: Imperative functional programming (Brief

summary)

1992-19-24 W. Damm, F. Liu, Th. Peikenkamp: Evaluation and Parallelization of

Functions in Functional + Logic Languages (abstract)

1992-19-25 M. Kesseler: Communication Issues Regarding Parallel Functional Graph

Rewriting

1992-19-26 Th. Peikenkamp: Charakterizing and representing neededness in func-

tional loginc languages (abstract)

1992-19-27 H. Doerr: Monitoring with Graph-Grammars as formal operational Mod-

els

1992-19-28 J. van Groningen: Some implementation aspects of Concurrent Clean on

distributed memory architectures

1992-19-29 G. Ostheimer: Load Bounding for Implicit Parallelism (abstract)

1992-20 H. Kuchen, F.J. Lopez Fraguas, J.J. Moreno Navarro, M. Rodriguez

Artalejo: Implementing Disequality in a Lazy Functional Logic Language

1992-21 H. Kuchen, F.J. Lopez Fraguas: Result Directed Computing in a Func-

tional Logic Language

1992-22 H. Kuchen, J.J. Moreno Navarro, M.V. Hermenegildo: Independent

AND-Parallel Narrowing

1992-23 T. Margaria, B. Steffen: Distinguishing Formulas for Free

1992-24 K. Pohl: The Three Dimensions of Requirements Engineering

1992-25 ∗ R. Stainov: A Dynamic Configuration Facility for Multimedia Commu-

nications

1992-26 ∗ Michael von der Beeck: Integration of Structured Analysis and Timed

Statecharts for Real-Time and Concurrency Specification

1992-27 W. Hans, St. Winkler: Aliasing and Groundness Analysis of Logic Pro-

grams through Abstract Interpretation and its Safety

1992-28 ∗ Gerhard Steinke, Matthias Jarke: Support for Security Modeling in In-

formation Systems Design

1992-29 B. Schinzel: Warum Frauenforschung in Naturwissenschaft und Technik

24

1992-30 A. Kemper, G. Moerkotte, K. Peithner: Object-Orientation Axiomatised

by Dynamic Logic

1992-32 ∗ Bernd Heinrichs, Kai Jakobs: Timer Handling in High-Performance

Transport Systems

1992-33 ∗ B. Heinrichs, K. Jakobs, K. Lenßen, W. Reinhardt, A. Spinner: Euro-

Bridge: Communication Services for Multimedia Applications

1992-34 C. Gerlhof, A. Kemper, Ch. Kilger, G. Moerkotte: Partition-Based Clus-

tering in Object Bases: From Theory to Practice

1992-35 J. Börstler: Feature-Oriented Classification and Reuse in IPSEN

1992-36 M. Jarke, J. Bubenko, C. Rolland, A. Sutcliffe, Y. Vassiliou: Theories Un-

derlying Requirements Engineering: An Overview of NATURE at Gen-

esis

1992-37 ∗ K. Pohl, M. Jarke: Quality Information Systems: Repository Support for

Evolving Process Models

1992-38 A. Zuendorf: Implementation of the imperative / rule based language

PROGRES

1992-39 P. Koch: Intelligentes Backtracking bei der Auswertung funktional-

logischer Programme

1992-40 ∗ Rudolf Mathar, Jürgen Mattfeldt: Channel Assignment in Cellular Radio

Networks

1992-41 ∗ Gerhard Friedrich, Wolfgang Neidl: Constructive Utility in Model-Based

Diagnosis Repair Systems

1992-42 ∗ P. S. Chen, R. Hennicker, M. Jarke: On the Retrieval of Reusable Soft-

ware Components

1992-43 W. Hans, St.Winkler: Abstract Interpretation of Functional Logic Lan-

guages

1992-44 N. Kiesel, A. Schuerr, B. Westfechtel: Design and Evaluation of GRAS,

a Graph-Oriented Database System for Engineering Applications

1993-01 ∗ Fachgruppe Informatik: Jahresbericht 1992

1993-02 ∗ Patrick Shicheng Chen: On Inference Rules of Logic-Based Information

Retrieval Systems

1993-03 G. Hogen, R. Loogen: A New Stack Technique for the Management of

Runtime Structures in Distributed Environments

1993-05 A. Zündorf: A Heuristic for the Subgraph Isomorphism Problem in Ex-

ecuting PROGRES

1993-06 A. Kemper, D. Kossmann: Adaptable Pointer Swizzling Strategies in

Object Bases: Design, Realization, and Quantitative Analysis

1993-07 ∗ Graduiertenkolleg Informatik und Technik (Hrsg.): Graduiertenkolleg In-

formatik und Technik

1993-08 ∗ Matthias Berger: k-Coloring Vertices using a Neural Network with Con-

vergence to Valid Solutions

1993-09 M. Buchheit, M. Jeusfeld, W. Nutt, M. Staudt: Subsumption between

Queries to Object-Oriented Databases

1993-10 O. Burkart, B. Steffen: Pushdown Processes: Parallel Composition and

Model Checking

1993-11 ∗ R. Große-Wienker, O. Hermanns, D. Menzenbach, A. Pollacks, S. Repet-

zki, J. Schwartz, K. Sonnenschein, B. Westfechtel: Das SUKITS-Projekt:

A-posteriori-Integration heterogener CIM-Anwendungssysteme

25

1993-12 ∗ Rudolf Mathar, Jürgen Mattfeldt: On the Distribution of Cumulated

Interference Power in Rayleigh Fading Channels

1993-13 O. Maler, L. Staiger: On Syntactic Congruences for omega-languages

1993-14 M. Jarke, St. Eherer, R. Gallersdoerfer, M. Jeusfeld, M. Staudt: Con-

ceptBase - A Deductive Object Base Manager

1993-15 M. Staudt, H.W. Nissen, M.A. Jeusfeld: Query by Class, Rule and Con-

cept

1993-16 ∗ M. Jarke, K. Pohl, St. Jacobs et al.: Requirements Engineering: An In-

tegrated View of Representation Process and Domain

1993-17 ∗ M. Jarke, K. Pohl: Establishing Vision in Context: Towards a Model of

Requirements Processes

1993-18 W. Hans, H. Kuchen, St. Winkler: Full Indexing for Lazy Narrowing

1993-19 W. Hans, J.J. Ruz, F. Saenz, St. Winkler: A VHDL Specification of a

Shared Memory Parallel Machine for Babel

1993-20 ∗ K. Finke, M. Jarke, P. Szczurko, R. Soltysiak: Quality Management for

Expert Systems in Process Control

1993-21 M. Jarke, M.A. Jeusfeld, P. Szczurko: Three Aspects of Intelligent Co-

operation in the Quality Cycle

1994-01 Margit Generet, Sven Martin (eds.), Fachgruppe Informatik: Jahres-

bericht 1993

1994-02 M. Lefering: Development of Incremental Integration Tools Using Formal

Specifications

1994-03 ∗ P. Constantopoulos, M. Jarke, J. Mylopoulos, Y. Vassiliou: The Software

Information Base: A Server for Reuse

1994-04 ∗ Rolf Hager, Rudolf Mathar, Jürgen Mattfeldt: Intelligent Cruise Control

and Reliable Communication of Mobile Stations

1994-05 ∗ Rolf Hager, Peter Hermesmann, Michael Portz: Feasibility of Authenti-

cation Procedures within Advanced Transport Telematics

1994-06 ∗ Claudia Popien, Bernd Meyer, Axel Kuepper: A Formal Approach to

Service Import in ODP Trader Federations

1994-07 P. Peters, P. Szczurko: Integrating Models of Quality Management Meth-

ods by an Object-Oriented Repository

1994-08 ∗ Manfred Nagl, Bernhard Westfechtel: A Universal Component for the

Administration in Distributed and Integrated Development Environ-

ments

1994-09 ∗ Patrick Horster, Holger Petersen: Signatur- und Authentifikationsver-

fahren auf der Basis des diskreten Logarithmusproblems

1994-11 A. Schürr: PROGRES, A Visual Language and Environment for PRO-

gramming with Graph REwrite Systems

1994-12 A. Schürr: Specification of Graph Translators with Triple Graph Gram-

mars

1994-13 A. Schürr: Logic Based Programmed Structure Rewriting Systems

1994-14 L. Staiger: Codes, Simplifying Words, and Open Set Condition

1994-15 ∗ Bernhard Westfechtel: A Graph-Based System for Managing Configura-

tions of Engineering Design Documents

1994-16 P. Klein: Designing Software with Modula-3

1994-17 I. Litovsky, L. Staiger: Finite acceptance of infinite words

26

1994-18 G. Hogen, R. Loogen: Parallel Functional Implementations: Graphbased

vs. Stackbased Reduction

1994-19 M. Jeusfeld, U. Johnen: An Executable Meta Model for Re-Engineering

of Database Schemas

1994-20 ∗ R. Gallersdörfer, M. Jarke, K. Klabunde: Intelligent Networks as a Data

Intensive Application (INDIA)

1994-21 M. Mohnen: Proving the Correctness of the Static Link Technique Using

Evolving Algebras

1994-22 H. Fernau, L. Staiger: Valuations and Unambiguity of Languages, with

Applications to Fractal Geometry

1994-24 ∗ M. Jarke, K. Pohl, R. Dömges, St. Jacobs, H. W. Nissen: Requirements

Information Management: The NATURE Approach

1994-25 ∗ M. Jarke, K. Pohl, C. Rolland, J.-R. Schmitt: Experience-Based Method

Evaluation and Improvement: A Process Modeling Approach

1994-26 ∗ St. Jacobs, St. Kethers: Improving Communication and Decision Making

within Quality Function Deployment

1994-27 ∗ M. Jarke, H. W. Nissen, K. Pohl: Tool Integration in Evolving Informa-

tion Systems Environments

1994-28 O. Burkart, D. Caucal, B. Steffen: An Elementary Bisimulation Decision

Procedure for Arbitrary Context-Free Processes

1995-01 ∗ Fachgruppe Informatik: Jahresbericht 1994

1995-02 Andy Schürr, Andreas J. Winter, Albert Zündorf: Graph Grammar En-

gineering with PROGRES

1995-03 Ludwig Staiger: A Tight Upper Bound on Kolmogorov Complexity by

Hausdorff Dimension and Uniformly Optimal Prediction

1995-04 Birgitta König-Ries, Sven Helmer, Guido Moerkotte: An experimental

study on the complexity of left-deep join ordering problems for cyclic

queries

1995-05 Sophie Cluet, Guido Moerkotte: Efficient Evaluation of Aggregates on

Bulk Types

1995-06 Sophie Cluet, Guido Moerkotte: Nested Queries in Object Bases

1995-07 Sophie Cluet, Guido Moerkotte: Query Optimization Techniques Ex-

ploiting Class Hierarchies

1995-08 Markus Mohnen: Efficient Compile-Time Garbage Collection for Arbi-

trary Data Structures

1995-09 Markus Mohnen: Functional Specification of Imperative Programs: An

Alternative Point of View of Functional Languages

1995-10 Rainer Gallersdörfer, Matthias Nicola: Improving Performance in Repli-

cated Databases through Relaxed Coherency

1995-11 ∗ M.Staudt, K.von Thadden: Subsumption Checking in Knowledge Bases

1995-12 ∗ G.V.Zemanek, H.W.Nissen, H.Hubert, M.Jarke: Requirements Analy-

sis from Multiple Perspectives: Experiences with Conceptual Modeling

Technology

1995-13 ∗ M.Staudt, M.Jarke: Incremental Maintenance of Externally Materialized

Views

1995-14 ∗ P.Peters, P.Szczurko, M.Jeusfeld: Oriented Information Management:

Conceptual Models at Work

27

1995-15 ∗ Matthias Jarke, Sudha Ram (Hrsg.): WITS 95 Proceedings of the 5th

Annual Workshop on Information Technologies and Systems

1995-16 ∗ W.Hans, St.Winkler, F.Saenz: Distributed Execution in Functional Logic

Programming

1996-01 ∗ Jahresbericht 1995

1996-02 Michael Hanus, Christian Prehofer: Higher-Order Narrowing with Defi-

nitional Trees

1996-03 ∗ W.Scheufele, G.Moerkotte: Optimal Ordering of Selections and Joins in

Acyclic Queries with Expensive Predicates

1996-04 Klaus Pohl: PRO-ART: Enabling Requirements Pre-Traceability

1996-05 Klaus Pohl: Requirements Engineering: An Overview

1996-06 ∗ M.Jarke, W.Marquardt: Design and Evaluation of Computer–Aided Pro-

cess Modelling Tools

1996-07 Olaf Chitil: The Sigma-Semantics: A Comprehensive Semantics for Func-

tional Programs

1996-08 ∗ S.Sripada: On Entropy and the Limitations of the Second Law of Ther-

modynamics

1996-09 Michael Hanus (Ed.): Proceedings of the Poster Session of ALP96 - Fifth

International Conference on Algebraic and Logic Programming

1996-09-0 Michael Hanus (Ed.): Proceedings of the Poster Session of ALP 96 -

Fifth International Conference on Algebraic and Logic Programming:

Introduction and table of contents

1996-09-1 Ilies Alouini: An Implementation of Conditional Concurrent Rewriting

on Distributed Memory Machines

1996-09-2 Olivier Danvy, Karoline Malmkjær: On the Idempotence of the CPS

Transformation

1996-09-3 Vı́ctor M. Guĺıas, José L. Freire: Concurrent Programming in Haskell

1996-09-4 Sébastien Limet, Pierre Réty: On Decidability of Unifiability Modulo

Rewrite Systems

1996-09-5 Alexandre Tessier: Declarative Debugging in Constraint Logic Program-

ming

1996-10 Reidar Conradi, Bernhard Westfechtel: Version Models for Software Con-

figuration Management

1996-11 ∗ C.Weise, D.Lenzkes: A Fast Decision Algorithm for Timed Refinement

1996-12 ∗ R.Dömges, K.Pohl, M.Jarke, B.Lohmann, W.Marquardt: PRO-

ART/CE* — An Environment for Managing the Evolution of Chemical

Process Simulation Models

1996-13 ∗ K.Pohl, R.Klamma, K.Weidenhaupt, R.Dömges, P.Haumer, M.Jarke: A

Framework for Process-Integrated Tools

1996-14 ∗ R.Gallersdörfer, K.Klabunde, A.Stolz, M.Eßmajor: INDIA — Intelligent

Networks as a Data Intensive Application, Final Project Report, June

1996

1996-15 ∗ H.Schimpe, M.Staudt: VAREX: An Environment for Validating and Re-

fining Rule Bases

1996-16 ∗ M.Jarke, M.Gebhardt, S.Jacobs, H.Nissen: Conflict Analysis Across Het-

erogeneous Viewpoints: Formalization and Visualization

1996-17 Manfred A. Jeusfeld, Tung X. Bui: Decision Support Components on the

Internet

28

1996-18 Manfred A. Jeusfeld, Mike Papazoglou: Information Brokering: Design,

Search and Transformation

1996-19 ∗ P.Peters, M.Jarke: Simulating the impact of information flows in net-

worked organizations

1996-20 Matthias Jarke, Peter Peters, Manfred A. Jeusfeld: Model-driven plan-

ning and design of cooperative information systems

1996-21 ∗ G.de Michelis, E.Dubois, M.Jarke, F.Matthes, J.Mylopoulos, K.Pohl,

J.Schmidt, C.Woo, E.Yu: Cooperative information systems: a manifesto

1996-22 ∗ S.Jacobs, M.Gebhardt, S.Kethers, W.Rzasa: Filling HTML forms simul-

taneously: CoWeb architecture and functionality

1996-23 ∗ M.Gebhardt, S.Jacobs: Conflict Management in Design

1997-01 Michael Hanus, Frank Zartmann (eds.): Jahresbericht 1996

1997-02 Johannes Faassen: Using full parallel Boltzmann Machines for Optimiza-

tion

1997-03 Andreas Winter, Andy Schürr: Modules and Updatable Graph Views for

PROgrammed Graph REwriting Systems

1997-04 Markus Mohnen, Stefan Tobies: Implementing Context Patterns in the

Glasgow Haskell Compiler

1997-05 ∗ S.Gruner: Schemakorrespondenzaxiome unterstützen die paargramma-

tische Spezifikation inkrementeller Integrationswerkzeuge

1997-06 Matthias Nicola, Matthias Jarke: Design and Evaluation of Wireless

Health Care Information Systems in Developing Countries

1997-07 Petra Hofstedt: Taskparallele Skelette für irregulär strukturierte Prob-

leme in deklarativen Sprachen

1997-08 Dorothea Blostein, Andy Schürr: Computing with Graphs and Graph

Rewriting

1997-09 Carl-Arndt Krapp, Bernhard Westfechtel: Feedback Handling in Dy-

namic Task Nets

1997-10 Matthias Nicola, Matthias Jarke: Integrating Replication and Commu-

nication in Performance Models of Distributed Databases

1997-11 ∗ R. Klamma, P. Peters, M. Jarke: Workflow Support for Failure Manage-

ment in Federated Organizations

1997-13 Markus Mohnen: Optimising the Memory Management of Higher-Order

Functional Programs

1997-14 Roland Baumann: Client/Server Distribution in a Structure-Oriented

Database Management System

1997-15 George Botorog: High-Level Parallel Programming and the Efficient Im-

plementation of Numerical Algorithms

1998-01 ∗ Fachgruppe Informatik: Jahresbericht 1997

1998-02 Stefan Gruner, Manfred Nagel, Andy Schürr: Fine-grained and

Structure-Oriented Document Integration Tools are Needed for Devel-

opment Processes

1998-03 Stefan Gruner: Einige Anmerkungen zur graphgrammatischen Spezifika-

tion von Integrationswerkzeugen nach Westfechtel, Janning, Lefering und

Schürr

1998-04 ∗ O. Kubitz: Mobile Robots in Dynamic Environments

1998-05 Martin Leucker, Stephan Tobies: Truth - A Verification Platform for

Distributed Systems

29

1998-06 ∗ Matthias Oliver Berger: DECT in the Factory of the Future

1998-07 M. Arnold, M. Erdmann, M. Glinz, P. Haumer, R. Knoll, B. Paech, K.

Pohl, J. Ryser, R. Studer, K. Weidenhaupt: Survey on the Scenario Use

in Twelve Selected Industrial Projects

1998-09 ∗ Th. Lehmann: Geometrische Ausrichtung medizinischer Bilder am

Beispiel intraoraler Radiographien

1998-10 ∗ M. Nicola, M. Jarke: Performance Modeling of Distributed and Repli-

cated Databases

1998-11 ∗ Ansgar Schleicher, Bernhard Westfechtel, Dirk Jäger: Modeling Dynamic

Software Processes in UML

1998-12 ∗ W. Appelt, M. Jarke: Interoperable Tools for Cooperation Support using

the World Wide Web

1998-13 Klaus Indermark: Semantik rekursiver Funktionsdefinitionen mit Strik-

theitsinformation

1999-01 ∗ Jahresbericht 1998

1999-02 ∗ F. Huch: Verifcation of Erlang Programs using Abstract Interpretation

and Model Checking — Extended Version

1999-03 ∗ R. Gallersdörfer, M. Jarke, M. Nicola: The ADR Replication Manager

1999-04 Maŕıa Alpuente, Michael Hanus, Salvador Lucas, Germán Vidal: Spe-

cialization of Functional Logic Programs Based on Needed Narrowing

1999-05 ∗ W. Thomas (Ed.): DLT 99 - Developments in Language Theory Fourth

International Conference

1999-06 ∗ Kai Jakobs, Klaus-Dieter Kleefeld: Informationssysteme für die ange-

wandte historische Geographie

1999-07 Thomas Wilke: CTL+ is exponentially more succinct than CTL

1999-08 Oliver Matz: Dot-Depth and Monadic Quantifier Alternation over Pic-

tures

2000-01 ∗ Jahresbericht 1999

2000-02 Jens Vöge, Marcin Jurdzinski A Discrete Strategy Improvement Algo-

rithm for Solving Parity Games

2000-03 D. Jäger, A. Schleicher, B. Westfechtel: UPGRADE: A Framework for

Building Graph-Based Software Engineering Tools

2000-04 Andreas Becks, Stefan Sklorz, Matthias Jarke: Exploring the Semantic

Structure of Technical Document Collections: A Cooperative Systems

Approach

2000-05 Mareike Schoop: Cooperative Document Management

2000-06 Mareike Schoop, Christoph Quix (eds.): Proceedings of the Fifth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2000-07 ∗ Markus Mohnen, Pieter Koopman (Eds.): Proceedings of the 12th Inter-

national Workshop of Functional Languages

2000-08 Thomas Arts, Thomas Noll: Verifying Generic Erlang Client-Server Im-

plementations

2001-01 ∗ Jahresbericht 2000

2001-02 Benedikt Bollig, Martin Leucker: Deciding LTL over Mazurkiewicz

Traces

2001-03 Thierry Cachat: The power of one-letter rational languages

30

2001-04 Benedikt Bollig, Martin Leucker, Michael Weber: Local Parallel Model

Checking for the Alternation Free mu-Calculus

2001-05 Benedikt Bollig, Martin Leucker, Thomas Noll: Regular MSC Languages

2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-

Order Logic

2001-07 Martin Grohe, Stefan Wöhrle: An Existential Locality Theorem

2001-08 Mareike Schoop, James Taylor (eds.): Proceedings of the Sixth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2001-09 Thomas Arts, Jürgen Giesl: A collection of examples for termination of

term rewriting using dependency pairs

2001-10 Achim Blumensath: Axiomatising Tree-interpretable Structures

2001-11 Klaus Indermark, Thomas Noll (eds.): Kolloquium Programmier-

sprachen und Grundlagen der Programmierung

2002-01 ∗ Jahresbericht 2001

2002-02 Jürgen Giesl, Aart Middeldorp: Transformation Techniques for Context-

Sensitive Rewrite Systems

2002-03 Benedikt Bollig, Martin Leucker, Thomas Noll: Generalised Regular

MSC Languages

2002-04 Jürgen Giesl, Aart Middeldorp: Innermost Termination of Context-

Sensitive Rewriting

2002-05 Horst Lichter, Thomas von der Maßen, Thomas Weiler: Modelling Re-

quirements and Architectures for Software Product Lines

2002-06 Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party

Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic

Finite Automata

2002-07 Jörg Dahmen: Invariant Image Object Recognition using Gaussian Mix-

ture Densities

2002-08 Markus Mohnen: An Open Framework for Data-Flow Analysis in Java

2002-09 Markus Mohnen: Interfaces with Default Implementations in Java

2002-10 Martin Leucker: Logics for Mazurkiewicz traces

2002-11 Jürgen Giesl, Hans Zantema: Liveness in Rewriting

2003-01 ∗ Jahresbericht 2002

2003-02 Jürgen Giesl, René Thiemann: Size-Change Termination for Term

Rewriting

2003-03 Jürgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations

2003-04 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Improving Dependency Pairs

2003-05 Christof Löding, Philipp Rohde: Solving the Sabotage Game is PSPACE-

hard

2003-06 Franz Josef Och: Statistical Machine Translation: From Single-Word

Models to Alignment Templates

2003-07 Horst Lichter, Thomas von der Maßen, Alexander Nyßen, Thomas

Weiler: Vergleich von Ansätzen zur Feature Modellierung bei der Soft-

wareproduktlinienentwicklung

2003-08 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Mechanizing Dependency Pairs

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003

31

2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic

2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting

2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming

2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on Func-

tional and (Constraint) Logic Programming

2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming

2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination

2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information

2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity

2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules

2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004

2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer

School Applied IT Security”

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-

proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for

the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing

Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Informa-

tion

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-

ploring a Root-Cause Methodology to Prevent Distributed Denial-of-

Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With

Applications To Max-Cut

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General

Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts

2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture

2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-

ficient Reductions for Wait-Free Termination Detection in Faulty Dis-

tributed Systems

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting

Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization

2005-15 Uwe Naumann: The Complexity of Derivative Computation

32

2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)

2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedu-

ral Adjoint Code)

2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-

berger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann,

Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-

Entwicklungsprozess - Abschlußbericht des GI-Arbeitskreises “Features”

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented

LL-Parsers

2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbil-

dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-

bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-

gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit

BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-

ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-

ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:

Decision Making Based on Approximate and Smoothed Pareto Curves

2005-24 Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering

with Motes: Real-World Physical Attacks on Wireless Sensor Networks

2006-03 Uwe Naumann: Intraprocedural Adjoint Code Generated by the

Differentiation-Enabled NAGWare Fortran Compiler

2006-04 Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static

Memory Jacobian Accumulution

2006-06 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Divide-

and-Color

2006-07 Thomas Colcombet, Christof Löding:: Transforming structures by set

interpretations

2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-

Expression-Use Graphs

2006-10 Mesut Günes, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,

Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid

MCG-Mesh Testbed

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

33

