RWTH Aachen

Department of Computer Science
Technical Report

coJIVE: A System to Support
Collaborative Jazz Improvisation

Jan Buchholz, Eric Lee, Jonathan Klein and Jan Borchers

ISSN 0935{3232 Aachener Informatik Berichte AlIB-2007-04

RWTH Aachen Department of Computer Science March 2007

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

http://aib.informatik.rwth-aachen.de/

coJIVE: A System to Support Collaborative Jazz
Improvisation

Jan Buchholz, Eric Lee, Jonathan Klein and Jan Borchers

Lehrstuhl far Informatik X
RWTH Aachen University, Germany
Email: fbuchholz, eric, klein, borchers g@cs.rwth-aachen.de

Abstract. Jazz improvisation is a complex and demanding art of on-the- y com-
position and performance. We present coJIVE, a system that allows musically
inexperienced people to improvise to jazz by substituting f or musical knowledge
and experience. Using well-established musical theory, it aids users in creating a
harmonic performance, and also helps coordinate a collaboative session amongst
the participants. Remarks from users during evaluation sho wed an overall positive
response to the support provided by the system.

1 Introduction

Jazz is a complex musical genre, with a wider theoretical bdground than, for
example, classical music; it can deter even well-educatedassical musicians. Be-
sides performing composed songs and melodies, improvisait, the art of creating
performances on the vy, is a very in uential part of jazz. Und oubtedly, impro-
visation requires a lot of experience and technical abilites: a musician needs to
have precise control of his instrument and build up a personbrepertoire of short
melodic patterns to create new improvised melodies. Analyis of chord progres-
sions that de ne a song structure allows jazz musicians to dermine a musical
scale for each of the chords in the progression. With this sda, they know which
notes t the underlying chords' harmonic context (i.e., the notes belonging to
that scale), and what notes will be likely to cause dissonane (i.e., the outside
notes). Additionally, jazz musicians need to coordinate wih each other during a
session to ensure a balanced performance. Usually, only onausician, the soloist,
is improvising at a given time, while the other participants provide an accompa-
niment without disturbing the improvisation.

How computers can help inexperienced users to master such roplex tasks
has been explored previously by systems such a#d/orldBeat[Z]. This system,
amongst other things, allows its users to improvise over a hles song with com-
puter support. Evaluation of this system with users showed hat this type of
computer-supported interaction can bring musically inexperienced people closer
to this type of sophisticated performance. We identi ed seeral other previous
systems supporting improvisation; their achievements andshortcomings will be
discussed in subsequent sections. These ndings motivatedis to develop our
own system to support collaborative jazz improvisation: the collaborative Jazz
I mprovisation Environment (coJIVE).

2 Related Work

A number of previous research projects have tried to tackle lhe di erent aspects
of musical performances. In general, such systems addresgher harmony or
collaboration.

A musician's performance \sounds good" if the notes that sheplays t the
harmonic context at that particular position in the song str ucture. Jazz musicians
determine the contexts of a song by conducting the aforemeined analysis of
the song's chord structure. This analysis has been the topiof a few projects,
several of which were conducted by Frarcois Pachet.

[IZ] describes how he used the Lempel-Ziv data compressiorethod on chord
changes to determine the level of surprise in a chord progrsgon (i.e., how likely
a chord change is). The resulting Lempel-Ziv tree also allow for the extraction of
a grammar of chord production rules without the input of musical knowledge. In
[13], a system is presented that is able to perform a hierardbal harmony analysis
on chord progressions. This system useshapesderived from short sequences
of chords; larger shapes can be derived from a sequence of dlmaones. The
deployed method, however, does not always choose interestj scales; it was not
meant for scale selection. A di erent approach is describedn [5]: the presented
system, created by Andrew Choi, uses minimisation to choosscales for a chord
sequence. Therefore, a global scale distance measure is bgpd, which describes
the di erence in pitches between two scales. This rather mahematical approach,
of course, is not concerned with musical rules; it often choges di erent scales
than a real jazz musician would.

Most systems concerned with harmony in human performancesoflow the
design principle for new instruments described in[[I0]: unacessary degrees of
freedom (i.e., the number of available notes) are reduced ahthe interface is
specialised for the song to be played (i.e., context-awareeduction of notes).

Two approaches for improvised performances using scales ttetermine har-
mony (similar to what jazz musicians do) are presented in Nikimoto et al.'s
RhyMe[11], and the aforementionedWorldBeat[Z]. While WorldBeat uses pre-
de ned scales to map gestures performed with digital batonsto notes, RhyMe
calculates the scales to use based on a given song structusmd maps the notes
of the current scale to the white keys on a keyboardism [g], Ishida et al.'s im-
provisation supporting system, exhibits a more dynamic appoach: ism uses a
database of melodic patterns and anN -gram model to calculate the probability
of the last notes based on the notes played before. A probaliy threshold is used
to decide on the note's appropriateness and can be used to adjt the system's
support to t the abilities of a user.

Another important aspect of musical performance is collaboation. A bal-
anced interaction renders a more varied, and thus more integsting perfor-
mance for the audience. Most research projects concerned thi collaboration
have turned their attention to connecting distributed users with networks | the
users are not supported in organising their collaboration.Since coJIVE is not
concerned with the aspect of remote collaboration, these sgems are not dis-
cussed here. William F. Walker's ImprovisationBuilder [14] tries to recreate the
behaviour of a human participant in jazz sessions. While ths system can create
improvisation on its own, it also listens to the other participants in the session

4

and acts accordingly; based on the range of pitches used antieé amount of notes
played, it can determine which player is currently soloing.
Thus, our system is unique in the following ways:

{ The system looks at several aspects of musical performance.§., harmony,
collaborative behaviour, handling of the interfaces) rather than focusing on
a single one.

{ There is no assumption that users know about jazz theory or hw to han-
dle the instruments correctly, and various types of errors n user input are
accounted for.

{ The system not only corrects, but also enriches a user's indun accordance
with the musical structure of the piece.

{ The system is not only aware of collaboration amongst the peobrmers, but
actively mediates and supports it.

3 Requirements

Our goal was to create a system to enable people with little ono training in jazz

improvisation to participate in a typical collaborative ja zz improvisation session.
To accomplish this, our system corrects and enriches usershusical input, as
depicted in Fig. [I.

(0*+,-"*.-%/0) (O*+,-"*.-%I0 I
'1%.2.3/4.25)2* -(.&/6!8 1"4$96& '1%.2.3/4.25)2*,-(.&/678
O
9+.<.2 Y U 9+.,<.2
— "(%"
¥
_%\Q

I

£,

B"#'%,1/2)%./9%,-3
6B"&+1,C8

Fig. 1. Interaction between coJIVE and the users. The users create input with
their interfaces, while the system plays an accompaniment ad alters the given
input. Information on the session and the input is provided for the users.

In a real jazz session, the musicians decide on a song to plage order of
the soloists, and the maximum length of a solo. The performane starts with the

5

musicians playing the song's main melody, also called théheme Thereafter, the
musicians take turns soloing in the previously de ned order which can be dy-
namically changed using gestures. Another recitation of tle main melody marks
the end of the session. The left-hand side of Fidld2 depicts # structure of such
sessions.

Jazz Session B coJIVE Session
l Theme ' l Theme '
Player 1 I Player 1 I
Player 2 Player 2
£
Player 3 *(+,$-.1
222 | 222 |
' Theme ' \Vi

Fig. 2. The time ow of the di erent stages in a typical jazz session and a session
created by coJIVE.

We envisioned a system that is able to recreate a simpli ed vesion of such
sessions for its users. People can walk up to the system, ch&m an instrument,
and agree on a song to perform to. Once the session is startetthe system creates
a drum rhythm and a bass-line to accompany the users. In addibn, it recites the
song's theme. The participants receive information on thei current role in the
session (i.e., whether it is their turn to solo or to accompany another soloist), and
feedback on their performance. They are also informed aboutpcoming changes
of their role. Furthermore, the system alters the participants' input to ensure a
harmonic performance, and enriches it if necessary. The siam does not repeat
the current song's theme at the end of session to not leave thearticipants
unoccupied. Fig.[2 shows the general session structure of ith system on the
right-hand side.

To facilitate a jazz session, the system has to provide:

musical interfaces (instruments) and appropriate feedbak;

mechanisms to substitute for the users' lack of knowledge ijazz theory;
musical support based on these mechanisms;

a lead shedl, depicting the structure of the song to be performed as a se-
quence of chords;

Lot Wt Wate Waa

! The lead sheet usually is a piece of paper showing important information about a song: name,
composer, tempo, metre, as well as the song's chord structue and a notation of its main
melody

{ accompaniment de ning the base tempo and harmony of the piee;
{ mechanism(s) to faciliate collaboration.

4 Design

The nal design of coJIVE was a result of a series of re ned prdotypes. The
improvements and extensions made to these prototypes werealsed on opinions
expressed by users who had tested earlier versions, and bdsen observations
made during these tests.

4.1 Musical Interfaces

After preliminary design analyses and user interviews, we dcided to pursue two
musical interfaces with di erent characteristics and input methods for coJIVE,
and explore di erent ways to facilitate performing with the se interfaces:

Keyboard: The piano keyboard is often present in jazz sessions in the fim
of a piano or organ, and it allows the user accurate control ogr input timing
and pitch. This interface, unsurprisingly, requires much practice to master. The
precise one-to-one mapping of key to note also limits the rage in which the
input can be altered without aggravating the user.

Digital batons: These devices are played like a xylophone with hitting ges-
tures, but without actual plates to hit. While users retain p recise control over
timing of their input, pitch control is less precise. For novice musicians, the ba-
tons have successfully been used in systems likorldBeat [Z]].

4.2 Harmony Analysis

The analysis of a song's chord structure mentioned above iste of the key abilities
necessary for improvisation. This procedure tries to idenify patterns|] of short
sequences indicating a tonality. In accordance, one scal®if each of the chords
in the progression can be determined, providing a musician ith a pool of notes
to use. As this analysis is a complex ability to learn, noviceusers can not be
expected to perform this analysis on their own. ThereforecoJIVE was provided
with a mechanism to conduct this technique, often referred b asRoman Numeral
Analysis, by itself.

This mechanism works in two phases. In the rst phase, the ched sequence
is scanned for known patterns. For each pattern known to the gstem, a rule
is present and applied to each position. On nding a candidat sequence of
chords for its pattern, a rule will label the chords with the Roman Numerals
corresponding to their harmonic functions in the pattern. If a chord is labelled
already, it depends on the behaviour of the pattern whether he rule overwrites
the label; some patterns depend on other patterns being iddéhed rst. All rules
are repeatedly applied to the whole chord sequence until nohord is relabelled
anymore.

In the second phase, each chord is assigned a scale based oa tbman nu-
meral it is labelled with. For each roman numeral, only a smal number of scales
are available; the nal decision is then based on the charagtristics of the chord
itself (e.g., root note, major, melodic minor). With a given scale, a distribution
of note probabilities can be calculated.

As an additional aspect, the note played last by the user is usd to further
modify the probability distribution. We integrated this fe ature to allow advanced
users to play chromatic sequences of notes, including notefsom outside the
current scale.

4.3 Musical Support

The system was designed to adjust its assistance not only bad on the instru-
ment, but also based on the user's specic abilities and neesl We created a
user level scheme to estimate a user's skills based on fourlfseated parameters:
knowledge of musical theory, knowledge of jazz theory, expEnce with the piano
keyboard, and experience in group performances. Support iadjusted based on
how users rate themselves in each of these parameters.

Since the batons provide no physical targets to hit, the sysém needs to
calculate virtual targets for the available notes. The \fuzzy" nature of the control
over the batons allows for the system to adjust the size and ammunt of virtual
targets based on the note probabilities derived from the anbysis described in
the previous section. Jazz musicians conduct a similar angsis during their own
performances. Therefore, a target's width re ects its notés suitability based on
the current harmonic context of the song | more harmonic note s are also more
likely to be hit. Fig. Blshows a mock-up visualisation of the vrtual targets. A
skill-based threshold is used to rule out less probable notefor novice users; notes
with a probability below this threshold are not represented by a virtual target.

Fig. 3. The batons with a mock-up visualisation of the virtual targets calculated
by the system. Each target represents a note and its width reects that note's
probability.

The more accurate control implied by the keyboard resulted h a more varied
set of supporting mechanisms. Novices may not know what note to play, but
they can also not be expected to properly handle this sophistated instrument.
In addition, their performance is expected to be not as rich @ the performances
of seasoned jazz musicians. The rest of this subsection thefore describes the
mechanisms deployed for the keyboard.

To preserve a general harmony in the keyboard performancehe user's input
needs to be checked in terms of harmony. Therefore, each noie compared to its
direct neighbours in terms of their probabilities; the most probable of these notes

8

is then played. To enable adjustment of this mechanism to a uer's skills, another
threshold is used. The substitution of a note by a more probake neighbour only
takes place if its probability is lower than the threshold.

Evaluation of an early prototype showed that novice users mde several mis-
takes in handling the instrument: they often pressed two neghbouring keys with
one nger by accident, or they pressed too many keys at once ira specic area
(i.e., by pressing a at hand on the keyboard). A timer was introduced to nd
out if such groups of notes belong together. The system cheskfor each pressed
key whether one of its physically neighbouring keys | two white keys, for ex-
ample, can physically be neighbours although they are sepated by a black key
| has been pressed within the last 100 milliseconds. If this is the case, the last
key pressed is deemed to be played by mistake, and left out byhe system. To
prevent users from pressing too many keys at once in a speci area, a weighting
function is used: for a key pressed by a user, the system accumates the weights
of all other keys currently held down in this key's neighboutood. A key's weight
corresponds to its distance to the key that initiated the scan. If the accumulated
weights surpass another threshold, which again is based orhé user's skills, the
density in that neighbourhood is deemed too high and the initial key & discarded.

To enrich a user's input, we followed the idea that jazz musi@ans often use
chord voicings (a speci ¢ arrangement of the chords' notes) to acquire ricter per-
formances. Commercially available keyboards sometimes lalv playing selected
chords at the push of a single key. We adapted this mechanisnof coJIVE adding
two additional modes for di erent user groups. While the one-key chord trigger-
ing is meant for novice users, classically educated musiaia can trigger a chord
voicing with three keys. The latter mode is based on the ideahat chords in clas-
sical music usually have less notes (i.e., three) than jazzhords (i.e., four or ve).
On recognising a three-note chord played by a classical musan, the system will
add an appropriate fourth note. The third mode, meant for intermediate users
(i.e., musicians in training), looks for two appropriate keys pressed at the same
time, adding two keys to form a jazz chord voicing. To allow the di erent user
groups to benet from these modes without making them mandabry, we split
the keyboard into two sections below middleC (C5) and distributed the di erent
modes over the two sections based on the user's skills (thisigtribution is de-
picted in Fig. B). The voicings are acquired for each chord inthe song structure
individually, making the mechanism context-aware.

To allow users to interpret and perhaps even learn to anticiate the reaction
of the system to their input, they are provided with feedback. The form of this
feedback is closely tied to the instruments: the keyboard isrecreated by the
system and the system's output is shown on that keyboard alog with the user's
input. For the batons, a more fuzzy type of feedback was sele¢ed to re ect their
inherent imprecision. The hitting gestures are representd as green circles on a
black background with only one mark showing the middleC (C5) to provide a
rough orientation. The size of a circle shows the gestures l@city.

4.4 Accompaniment

Although not the primary focus of this work, some type of accanpaniment was
nonetheless a necessary part of the system, to provide a rhigimic and harmonic
foundation for the users' interaction with coJIVE.

Key pressedi</C5 Key pressed/= C5

Neyieas ‘ - A
— i
i

e i

Fig. 4. Deployment scheme for the three di erent modes of chord triggering. The
combinations of keys shown lead to the triggering of the samehord voicing.

10

We chose to automatically generate a simple swing pattern fothe drum
rhythm, repeated throughout the entire performance. The bas was provided as
either an automatically generated walking bass up and down he current scale,
or read from a pre-recorded le.

4.5 Collaboration Support

One of the primary goals ofcoJIVE is to assist users participating in a collabo-
rative jazz improvisation session. In preliminary user interviews, we determined
that many of our users had never participated in such a sessig therefore, it was
important for coJIVE to more explicitly expose and support the structure of a
jazz improvisation session. For simplicity, we limited ourselves toSolo & Comp-
ing[3], where the musicians take turns soloing and the soloistsiaccompanied by
the musicians.

In jazz sessions, the order of the soloists, and length of dasolo, are typically
determined beforehand and, possibly, decided on-the-y dung the session. To
assist users,coJIVE instead takes over this leading role by dictating the order
of soloists and the length of each solo.

Each solo has a length between 30 and 60 seconds, allowing theloist ample
time to create an improvised solo, but not boring the other plyers. The exact
length of the solo was determined using a scheme inspired by &lker's Improvisa-
tionBuilder [I4], where a solo's temporal density and the dynamics (i.e velocity)
a ect the length of the solo.

The system communicates to a particular user that he is solaig by shining
a spotlight on them, and a change of roles is indicated using aountdown timer.

Finally, coJIVE analyzes the temporal density of an accompanying user's
input. If it is found to be too interfering with the soloist, t he dynamics of the
accompanying player's input is modi ed such that it is more \ di cult" for them
to play loud notes, via a velocity curve (see Fig. ref g:VeloCurve).

5 Implementation

Our implementation of coJIVE consists of two parts: the coJIVE front-end[4]
is responsible for reading and responding to user input, andhe coJIVE back-
end is a software framework encapsulating the musical knowldge necessary for
analysing and augmenting the user inpul[8].

The system was developed in a user-centred, iterative pross: several proto-
types were designed, implemented, and subsequently evaltead in user studies.
The results of an evaluation were then fed back into the desig process to improve
subsequent prototypes. With this process, the users' needsould be identi ed,
and the system could be altered to satisfy them.

5.1 The Back-End

The back-end's main task is to perform the analysis of the chad progression and
calculate the note probabilities. In addition, the back-end maintains a database
of chord voicings for the aforementioned chord triggering asistance and accom-
paniment generation, and it allows dynamic loading of songsThe latter aspect
was rendered possible by de ning an XML format that describes the di erent

11

—
N
~

@)
c
[gl
O
c
==
<
)
o
(2)
:I
<

Input Velocity 127

Fig.5. A modi ed velocity curve. Velocity values of incoming notes are damp-
ened, but higher values are not ruled out. With this mechanisn, it gets harder
to reach higher velocity values.

pieces of information of a song (name, tempo, metre, chord sticture, etc.). The
back-end was implemented in the form of a Mac OS X framework toallow for
an easy integration with the front-end.

5.2 The Front-End

The front-end was implemented as a CocoA[1] application in Mc OS X ; it
provides the users with a graphical user interface, estaldihes connections to the
instruments via MIDI, and implements the behaviour described in the design
section. The structure of a song loaded into the system is digayed in the main
window (coJIVE 's version of the lead sheet shown in Fig[d6), the current chat
is highlighted by an orange backdrop, and a cursor marks the wrrent position
in the song for orientation.

For each player added to the system, a player eld is createdn a drawer
beneath the window. Player-speci c information and options are collected in
this eld: the player's role and the feedback mentioned aboe are depicted, and
additional buttons are added to access the user's settingsMIDI ports and skKill
settings). The player eld can also be detached from the mainwindow (e.g.,
to make use of multiple screens). The LEDs, used for the aforeentioned light
signal mediating roles in collaboration, are controlled wih a Teleo module[9]:
the soloist's LED is lit, and the countdown to the next solo is accompanied by
blinking of the a ected users' LEDs.

12

Fig. 6. The main application window of coJIVE with additional elds for a
keyboard player and a baton player.

13

6 Evaluation

Besides the user tests during the development ofoJIVE, we conducted a nal
study. The test subjects performed with the system in pairs d two; one subject
played the keyboard, the other one used the batons to performAdditionally
they were asked to use two di erent versions of the system. Thy were not told
that they were going to use the same system with full support ih one pass, and
without any support in the other pass. We collected data afte the tests by means
of questionnaires.

In this questionnaire, the subjects were asked to point out he dierences
between the two passes, and rate the two \versions" of the syem concerning
di erent aspects of musical support and collaboration support. They also had
the opportunity to give comments, remarks, or simply write down their opinion.

7 Discussion

The qualitative part of the evaluation (i.e., comments, remarks, and opinions)
o ered some positive feedback: some of the subjects statechat the system's
support o ered an entertaining experience, a few even mentined to have been
more motivated by it during the tests.

Unfortunately, the ratings of the di erent aspects of the system's support did
not show any clear results. We compared the ratings of the r$ and the second
pass for all aspects, but we could not nd any statistically signi cant di erence.

Additionally, we observed di ering reactions to the system during the tests.
While some subjects started experimenting with their instrument almost in-
stantly, exploring and exploiting the support, others were hesitant and only cau-
tiously used their instrument.

8 Future Work

The results obtained from the last user study clearly showedthat the support
coJIVE currently provides is not su cient for some users. One can imagine
several improvements of the system to better support the uses.

To allow for a more hands-on experience with the system, a newraphical
design could be more appropriate. A layout that presents thetask of improvising
in the form and fashion of a game might help people to lose theireservation.
The formerly \serious musical task" could then be perceivedas entertainment
rather than a chore.

Since the inexperienced subjects hardly created recogniske melodies, more
guidance in that respect might be of help. Beside the scalesa database with
melodic patterns could be used to determine the note probaliities. If the last
sequence of notes resembled a pattern stored in the systenhe subsequent note
in that pattern would be rated more probable. Thus, a player would be directed
towards a melody.

Beside the harmony of the notes played, their timing in respet to the rhythm
iS an important expressive parameter. A cautious real-timequantisation could
be used to delay notes to rhythmically signi cant positions (e.g., on a beat or a
swing note). We are currently conducting a separate study toexamine the e ect
of such \timing corrections" on users.

14

Finally, it would be interesting to explore additional musi cal interfaces that
often appear in jazz sessions: the guitar, the trumpet, the axophone, etc. With
the dierent characteristics of such instruments, new supporting mechanisms
would be needed, but at the same time, new possibilities mighemerge.

9 Conclusions

We presentedcoJIVE, a software system for computer-aided jazz improvisation.
Our user-centred design of the system was aimed at identifyig the users' needs
in terms of musical performances and improvisation using tle interfaces pro-
vided. Based on the results, we implemented and iterativelyimproved a set of
mechanisms to substitute for the users' lack of knowledge ah experience.

Our experiments have indicated that, although the performances novices can
create with the system are far from what real jazz musicians e able to do,
coJIVE can be e ective in facilitating jazz improvisation, and tha t such research
helps further interaction between humans and technology.

References

1. Apple Computer Inc. Cocoa. http://developer.apple.com/cocoa/ , 2001.

2. Borchers, J. WorldBeat: Designing A Baton-Based Interfa ce for an Interactive Music Ex-
hibit. Proceedings of the ACM CHI'97 International Conference on H uman Factors in
Computing Systems (Atlanta, Georgia) . ACM, New York (1997), 131{138.

3. Borchers, J. A Pattern Approach to Interaction Design . Wiley Series in Software Design
Patterns. John Wiley & Sons Ltd, Chichestr, England, 2001.

4. Buchholz, J. A Software System for Computer Aided Jazz Imp rovisation. Master's thesis,
RWTH Aachen University, Aachen, Germany, 2005.

5. Choi, A. Analysis of Jazz Chords as Optimization. www.sixthhappiness.ca/blog , 2004.

6. Ishida, K., Kitahara, T., and Takeda, M. ism: Improvisati on Supporting System based on
Melody Correction. Proceedings of NIME '04 Conference on new Interfaces for Musical
Expression. |IEEE, Washington (2004), 177{180.

7. Jungbluth, A. Jazz-Harmonielehre, Funktionsharmonik und Modaliat . B. Schott's Sehne,
Mainz, Germany, 1981.

8. Klein, J. A Pattern-based Software Framework for Compute r Aided Jazz Improvisation.
Master's thesis, RWTH Aachen University, Aachen, Germany, 2005.

9. Making Thinks LLC. Teleo. http://www.makingthings.com/teleo.html , 2002.

10. Nishimoto, K., Oshima, C., and Miyagawa, Y. Why always ve rsatile? Dynamically Cus-
tomizable Musical Instuments Facilitate Expressive Perfo rmances. Proceedings of NIME '03
Conference on new Interfaces for Musical Expression. McGill University, Montreal (2003),
164{169.

11. Nishimoto, K., Watanabe, H., Umata, I., Mase, K., and Nak atsu, R. A supporting Method
for Creative Music Performance - Proposal of Musical Instru ment with Fixed Mapping of
Note-functions. Trans. of Information Processing Society of Japan 39, 5 (1998), 1556{1567.

12. Pachet, F. Surprising Harmonies. International Journal on Computing Anticipatory Sys-
tems (1999).

13. Pachet, F. (1997) Computer Analysis of Jazz Chord Sequerces: Is Solar a Blues?Readings
in Music and Arti cial Intelligence (2000).

14. Walker, W. F. A Computer Participant in Musical Improvis ation. Proceedings of the
ACM CHI'97 International Conference on Human Factors in Com puting Systems (Atlanta,
Georgia). ACM, New York (1997), 123{130.

15

16

Aachener Informatik-Berichte

This is the list of all technical reports since 1987. To obtai n copies of reports
please consult

http://aib.informatik.rwth-aachen.de/ or send your request to:
Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 A achen,

Email: biblio@informatik.rwth-aachen.de

1987-01 Fachgruppe Informatik: Jahresbericht 1986

1987-02 David de Frutos Escrig, Klaus Indermark: Equivalence Relaions of Non-
Deterministic lanov-Schemes

1987-03 Manfred Nagl: A Software Development Environment based on Gaph
Technology

1987-04 Claus Lewerentz, Manfred Nagl, Bernhard Westfechtel: On Itegration
Mechanisms within a Graph-Based Software Development Enybnment

1987-05 Reinhard Rinn: Uber Eingabeanomalien bei verschiedenen Inferenzmod-
ellen

1987-06 Werner Damm, Gert Dehmen: Specifying Distributed Computer Archi-
tectures in AADL*

1987-07 Gregor Engels, Claus Lewerentz, Wilhelm Schafer: Graph Gammar En-
gineering: A Software Speci cation Method

1987-08 Manfred Nagl: Set Theoretic Approaches to Graph Grammars

1987-09 Claus Lewerentz, Andreas Scharr: Experiences with a Databse System
for Software Documents

1987-10 Herbert Klaeren, Klaus Indermark: A New Implementation Technique
for Recursive Function De nitions

1987-11 Rita Loogen: Design of a Parallel Programmable Graph Redudbn Ma-
chine with Distributed Memory

1987-12 J. Berstler, U. Mancke, R. Wilhelm: Table compression for tree automata

1988-01 Gabriele Esser, Johannes Ruckert, Frank Wagner Gesellsdtftliche As-
pekte der Informatik

1988-02 Peter Martini, Otto Spaniol: Token-Passing in High-Speed Backbone
Networks for Campus-Wide Environments

1988-03 Thomas Welzel: Simulation of a Multiple Token Ring Backbone

1988-04 Peter Martini: Performance Comparison for HSLAN Media Access Pro-
tocols

1988-05 Peter Martini: Performance Analysis of Multiple Token Ring s

1988-06 Andreas Mann, Johannes Rackert, Otto Spaniol: Datenfunknetze

1988-07 Andreas Mann, Johannes Ruckert: Packet Radio Networks forData Ex-
change

1988-08 Andreas Mann, Johannes Ruckert: Concurrent Slot Assignmat Protocol
for Packet Radio Networks

1988-09 W. Kremer, F. Reichert, J. Rackert, A. Mann: Entwurf einer N etzw-
erktopologie far ein Mobilfunknetz zur Unterststzung de s @ entlichen
Stra enverkehrs

1988-10 Kai Jakobs: Towards User-Friendly Networking

1988-11 Kai Jakobs: The Directory - Evolution of a Standard

1988-12 Kai Jakobs: Directory Services in Distributed Systems - A Suvey

17

1988-13
1988-14

1988-15

1988-16

1988-17

1988-18

1988-19

1988-20

1988-21

1988-22

1988-23

1988-24

1989-01

1989-02

1989-03

1989-04

1989-05

1989-06
1989-07

1989-08

1989-09
1989-10

1989-11

1989-12

1989-13

1989-14

1989-15
