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Abstract. Gradients of high-dimensional functions can be computed efficiently
and with machine accuracy by so-called adjoint codes. We present an L-attributed
grammar for the single-pass generation of intraprocedural adjoint code for a sim-
ple imperative language (a subset of C). Our ideas can easily be applied to any
programming language that is suitable for syntax-directed translation. Moreover
the conceptual insights are useful in the context of multi-pass generation of adjoint
code. Our focus is on correctness. The necessary domain-specific code optimiza-
tions are beyond the scope of this paper. We give references to corresponding
work in this area.

1 Motivation

Numerical simulation plays a central role in computational science and engineer-
ing. Derivatives (gradients, Jacobians, Hessians or even higher derivatives) are
required in order to make the highly desirable transition from pure simulation
to optimization of the numerical model or its parameters. Refer to [1–4] for an
impressive collection of such applications.

Consider an implementation of a multivariate nonlinear function f : IRn → IR

as a computer program where y = f(x). Suppose that we are interested in the
sensitivities of the objective y with respect to changes in the parameter vector
x, for example, in the context of an unconstrained optimization algorithm. Such
derivatives (the gradient of y with respect to x) can be approximated by centered
(or forward, or backward) finite difference quotients

∂y

∂xi

≈
f(x0, . . . , xi + h, . . . , xn−1) − f(x0, . . . , xi − h, . . . , xn−1, u)

2h
(1)

for an appropriate (small) value h ∈ IR. Choosing the right value for h for a
given function evaluated in a given floating-point number system can be prob-
lematic. Cancellations can lead to very poor approximations of the derivatives.
More importantly, the accumulation of the whole gradient requires 2n function
evaluations which may be infeasible for high-dimensional problems. See [8] for
an application in oceanography where n can be of the order of 1012 and higher.

Even for very simple representatives of Equation (1) (for example, y = x0∗. . .∗
xn−1) the finite difference approximation of the gradient can take several hours
for n ≥ 106. In this paper we present an L-attributed grammar for transforming
the implementation of f into an adjoint code during a single pass compilation
process. The adjoint code computes the same gradient in only a few seconds.

In Section 2 we outline the basic structure of adjoint codes. An L-attributed
grammar for transforming programs written in imperative programming lan-
guages that are suitable for single-pass compilation is presented in Section 3. A



simple proof-of-concept implementation based on flex and bison as well as a
case study are discussed in Section 4. We conclude with an outlook to potential
areas of application of the proposed technology in Section 5.

2 Adjoint Code

The problem of determining an appropriate value for h can be eliminated by
considering a tangent-linear model Ḟ of F. Let therefore x = x(t) with t ∈ IR

and set
∂x

∂t
= ẋ .

By the chain rule we get

∂y

∂t
= ẏ = Ḟ (x, ẋ) = F ′ · ẋ . (2)

Refer to Figure 1 (a) and (b) for a graphical illustration. It can be regarded as
a transformation of the parser tree of F (x(t)) (see (a)) into one for Ḟ (x, ẋ). The
technique is known as the forward mode of automatic differentiation (AD) [6].
The parse tree is linearized by attaching partial derivatives to the corresponding
edges. The chain rule of differentiation is interpreted as the chained product of all
edge labels along the path from t to y. Assuming that we have an implementation
of Ḟ we can compute the columns of F ′ by letting ẋ range over the Cartesian
basis vectors in IRn. The computational complexity of this approach is of the
same order as that of finite differences.

To eliminate the dependence of the computational complexity on the poten-
tially very large value of n we consider adjoint codes that can be generated by
the reverse mode of AD. Let therefore t = t(y) with t ∈ IR and set

∂t

∂y
= ȳ .

Exploiting the associativity of the chain rule we get

x̄ = F̄ (x, ȳ) = ȳ · F ′ . (3)

Refer to Figure 1 (c) and (d) for illustration. All barred vectors (x̄ and ȳ) are
row vectors. Assuming that we have an implementation of F̄ we can compute
the rows of F ′ by letting ȳ range over the Cartesian basis vectors in IRm. Gra-
dients of scalar functions in particular can be obtained at a (hopefully) small
constant multiple of the computational complexity of F . The realization of this
theoretical result in practice is the subject of numerous ongoing research and
development efforts world-wide. See http://www.autodiff.org for links and
further information.

Any execution of the program F is expected to decompose into a sequence
of elemental assignments

vj = ϕj(vi)i≺j (4)

for j = 1, . . . , p+m and i ≺ j if and only if vi is an argument of ϕj . Equation (4)
is also referred to as the code list of F at the given point that fixes the flow of
control. We set vi−n = xi for i = 1, . . . , n and vp+j = yj for j = 1, . . . ,m. The
vk, k = 1 − n, . . . , p + m, are called code list variables.

4



t

x

y

ẋ
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ȳ x

F
′

x̄[∗]

(a) (b) (c) (d)

Fig. 1. Linearized F (x(t)) (a), Ḟ (b) linearized t(F (x)) (c), F̄ (d)

The elemental functions ϕj are assumed to be continuously differentiable in
a neighborhood of the current argument. The corresponding local partial deriva-
tives are denoted by

cj,i =
∂ϕj

∂vi

.

Adjoints are propagated backwards with respect to the data flow in the code list.
Hence, the values of the intermediate variables are not used in their original order
of computation. In (incremental) reverse mode AD the local partial derivatives
are computed during the adjoint evaluation.

vi−n = xi for i = 1, . . . , n (5)

vj = ϕj(vi)i≺j for j = 1, . . . , p + m (6)

yk = vp+k for k = 1, . . . ,m (7)

v̄p+k = ȳk for k = 1, . . . ,m (8)

v̄j = 0 for j = 1 − n, . . . , p (9)

cj,i =
∂ϕj

∂vi

; v̄i = v̄i + cj,i · v̄j for i ≺ j and j = q, . . . , 1 (10)

x̄i = v̄i−n for i = 1, . . . , n . (11)

Adjoint assignments are generated for all assignments in the original code. We
build assignment-level code lists as in Equations 5–7. The data-flow reversal
requires arguments of nonlinear operations to be persistent. Conservatively we
account for this by storing all overwritten values on a value stack (push v).
The resulting code is referred to as augmented forward code. Adjoints are propa-
gated backwards according to Equations 8–11. The previously stored values are
restored from the stack (pop v). The resulting code is referred to as backward

code. The compiler-generated intermediate variables vj represent subexpressions
of the right-hand side. Hence, they are read exactly once, thus eliminating the
need for the initialization in Equation (9) as well as that for the incrementation
in Equation (10). Adjoints of compiler-generated intermediate variables are sim-
ply overwritten. Only adjoints of program variables need to be initialized and
incremented.
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Example In our proof-of-concept implementation (see Section 4) the single as-
signment

x=x∗y

is transformed into the augmented forward code

push v ( v0 ) ; v0=x ;
push v ( v1 ) ; v1=y ;
push v ( v2 ) ; v2=v0∗v1 ;
push v (x ) ; x=v2 ;

followed by the backward code

pop v ( x ) ; v2 =x ; x =0;
pop v ( v2 ) ; v0 =v2 ∗v1 ; v1 =v2 ∗v0 ;
pop v ( v1 ) ; y +=v1 ;
pop v ( v0 ) ; x +=v0 ;

For notational simplicity Code list variables are enumerated starting from 0
rather than 1 − n = −1. Adjoint variables are marked by a trailing underscore.
The gradient of x as an output with respect to x as an input and y at a given
point (x, y) is equal to (y, x). It can be computed numerically by a single run of
the adjoint code. Note that, while being conservatively correct, this adjoint code
is far from optimal. Optimization of adjoint code is a major issue in ongoing
research and development in the field of AD. It is beyond the scope of this paper
that aims to relate the fundamental concept of attribute grammars to correct
automatically generated adjoint code.

The reversal of the data-flow implies the necessity to reverse the flow of control.
A simple, conservatively correct approach is to enumerate all assignments and
to remember their order of execution in the augmented forward code by push-
ing their respective indexes onto a control stack (push c). The backward code
loops over the indexes in reverse (pop c) thus executing the backward codes of
all assignments in the correct order. Refer to Section 4 for an example.

3 L-Attributed Grammar for Adjoint Code

A syntax-directed approach to the automatic generation of tangent-linear code
has been presented in [5]. In this section we extend these ideas to adjoint codes
by the definition of an appropriate L-attributed grammar. Recall that a grammar
is called L-attributed if the values of all inherited attributes are functions of non-
terminals to the left in the given production rule (includes the parent on the
left-hand side).

The input code is a sequence of one or more statements (code :: s). In addi-
tion to assignments (a) we introduce simple branch (b) and loop (l) constructs
causing a potentially nontrivial intraprocedural flow of control. Five attributes
are associated with each grammar symbol: The integer attribute j represents the
assignment-level code list variable indexes. A second integer attribute n is used
to synthesize the sizes of subtrees (parse trees) in right-hand sides of assignments.
A third integer attribute k serves as an enumerator of the assignments in the
input code. There are two text attributes to hold the forward (cf ) and backward
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(cb) sections of the adjoint code. The text vector cb has length α, where α de-
notes the number of assignment statements in the input code. The whole adjoint
code is synthesized into code.cf during a successful compilation. The complete
augmented forward code s.cf is followed by the reverse loop over the adjoints of
all executed assignments.

(P0) code ::

s.k = 0

s

code.cf = s.cf

+ ”int i;”

+ ”while(pop c(i)) {”

+ ”if(i == 1) {”

+ s.cb
1

+ ”} else if(i == 2) {”

+ s.cb
2

...

+ ”} else if(i ==” + s.k + ”) {”

+ s.cb
s.k

+ ”}”

(P1) s ::

a.k = s.k + 1

a

s.k = a.k; s.cf = a.cf ; s.cb = a.cb

The vector assignment s.cb = a.cb operates at the elemental level, that is,
s.cb

i = a.cb
i for i = 1, . . . , α. We chose a split way of presenting the produc-

tion rules together with their associated semantic actions that resembles the
implementation in Section 4. For example, the attribute k of a is set prior to
parsing the assignment itself. The forward and backward codes of the nontermi-
nal symbol on the left-hand side of the production rule are synthesized at the
time of reduction (in the context of a shift-reduce parser).

(P1a) s ::

b.k = s.k

b

s.k = b.k; s.cf = b.cf ; s.cb = b.cb
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(P1b) s ::

l.k = s.k

l

s.k = l.k; s.cf = l.cf ; s.cb = l.cb

(P2) sl ::

a.k = sl.k + 1

a

sr.k = a.k

sr

sl.k = sr.k; sl.cf = a.cf + sr.cf ;

sl.cb = sr.cb + a.cb

The vector sum sl.cb = sr.cb + a.cb is also elemental, that is, sl.cb
i = sr.cb

i + a.cb
i

for i = 1, . . . , α.

(P2a) sl ::

b.k = sl.k

b

sr.k = b.k

sr

sl.k = sr.k; sl.cf = b.cf + sr.cf ;

sl.cb = sr.cb + b.cb

(P2b) sl ::

l.k = sl.k

l

sr.k = l.k

sr

sl.k = sr.k; sl.cf = l.cf + sr.cf ;

sl.cb = sr.cb + l.cb
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(P3) a ::

e.k = a.k; e.j = 0

V = e;

a.cf = e.cf + ”push c(” + a.k + ”);”

+ ”push v(” + V.cf + ”);”

+ V.cf + ”= v0;”

a.cb
a.k = ”pop v(” + V.cf + ”);”

+ ”v0 =” + V.cf + ” ;”

+ V.cf + ” = 0;”

+ e.cb
a.k

The root of the syntax tree of the expression of the right-hand side has fixed
code list variable index 0.

(P4) e :: V e.n = 1

a.cf = ”push v(v” + e.j + ”);”

+ ”v” + e.j + ”=” + V.cf + ”;”

a.cb
e.k = ”pop v(v” + e.j + ”);”

+ V.cf + ” + = v” + e.j + ” ;”

(P5) e :: C e.n = 1

a.cf = ”push v(v” + e.j + ”);”

+ ”v” + e.j + ”=” + C.cf + ”;”

a.cb
e.k = ”pop v(v” + e.j + ”);”

(P6) el ::

er.j = el.j + 1; er.k = el.k

F (er)

el.n = er.n + 1

el.cf = er.cf

+ ”push v(v” + el.j + ”);”

+ ”v” + el.j + ”=” + F.cf

+ ”(v” + er.j + ”);”

el.cb
e.k = ”pop v(v” + el.j + ”);”

+ ”v” + er.j + ” =” + Fer.j

+ ”∗v” + el.j + ” ;” + er.cb
e.k
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F is an arbitrary unary function, such as sin or exp . Fer .j denotes the partial
derivative of F with respect to the code list variable holding the value of the
expression er.

(P7) el ::

er1 .j = el.j + 1; eri .k = el.k for i = 1, 2

er1

er2 .j = er1 .j + er1 .n + 1

Oer2

el.n = er1 .n + er2 .n + 1

el.cf = er1 .cf + er2 .cf

+ ”push v(v” + el.j + ”);”

+ ”v” + el.j + ”= v” + er1.j + O.cf

+ ”v” + er2.j + ”;”

el.cb
e.k = ”pop v(v” + el.j + ”);”

+ ”v” + er2.j + ” =” + Oer2 .j

+ ”∗v” + el.j + ” ;”

+ ”v” + er1.j + ” =” + Oer1 .j

+ ”∗v” + el.j + ” ;”

+ er2 .cb
e.k + er1 .cb

e.k

O is an arbitrary binary operator, such as + or ∗. Oer1 .j denotes the partial
derivative of O with respect to the code list variable holding the value of the
expression er1 . (similarly er1)

(P8) b :: IF (r)

s.k = b.k

{s}

b.k = s.k

b.cf = ”if” + ”(” + r.cf + ”)” + ”{”s.cf + ”}”

b.cb = s.cb

(P9) l :: WHILE(r)

s.k = l.k

{s}

l.k = s.k

l.cf = ”while” + ”(” + r.cf + ”)”

+ ”{”s.cf + ”}”

l.cb = s.cb

10



(P10) r :: V r1 < V r2

r.cf = V r1 .cf + ”<” + V r2.cf

14 (seq_of_stat)

8 (if) 13 (=)

2 (<) 6 (seq_of_stat)

0 (y) 1 (x) 5 (=)

3 (y) 4 (1)

7 (y) 12 (*)

9 (y) 11 (sin)

10 (x)

Fig. 2. Parse Tree (generated with dot; see www.graphviz.org)

Example We investigate the development of the values of all five attributes when
parsing

i f (y<x) {
y=1;

}
y=y∗ s i n ( x ) ;

The parse tree is depicted in Figure 2. Sequences of statement have been flattened
into a single vertex with the corresponding statements as immediate successors
(v6 and v14). The i-th vertex is referenced as vi.

1. Synthesized subtree sizes in right-hand sides of assignments: v4.n = 1, v9.n =
1, v10.n = 1, v11.n = v10.n + 1 = 2, v12.n = v9.n + v11.n + 1 = 4.

2. Inherited code list variable indexes: v4.j = 0 (P3), v12.j = 0 (P3), v9.j =
v12.j + 1 = 1 (P7), v11.j = v12.j + v9.n + 1 = 2 (P7), v10.j = v11.j + 1 = 3
(P6).

3. Inherited assignment counter: v14.k = 0 (P0) v8.k = v14.k = 0 (P2a), v6.k =
v8.k = 0 (P8), v5.k = v6.k + 1 = 1 (P1), v4.k = v5.k = 1 (P3), v8.k = v6.k =
v5.k = 1 (P8, P2a), v13.k = v8.k + 1 = 2 (P2, P3), v12.k = v13.k = 2 (P3),
v9.k = v10.k = v11.k = v12.k = 2 (P4–P7), v14.k = v13.k = 2 (P1, P2a).

4. Synthesized augmented forward code:
– v0.c

f = ”y” (Scanner)

– v1.c
f = ”x” (Scanner)
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– v2.c
f = ”y < x” (P10)

– v3.c
f = ”y” (Scanner)

– v4.c
f = ”push v(v0); v0 = 1;” (P5, Scanner)

– v5.c
f = v4.c

f + ”push c(1); push v(y); y = v0;” (P3, Scanner)

– v6.c
f = v5.c

f (P1)

– v8.c
f = ”if(y < x){” + v5.c

f + ”}” (P8)
– v7.c

f = ”y” (Scanner)

– v9.c
f = ”push v(v1); v1 = y;” (P4, Scanner)

– v10.c
f = ”push v(v3); v3 = x;” (P4, Scanner)

– v11.c
f = v10.c

f + ”push v(v2); v2 = sin(v3);” (P6)

– v12.c
f = v9.c

f + v11.c
f + ”push v(v0); v0 = v1 ∗ v2;” (P7)

– v13.c
f = v12.c

f + ”push c(2); push v(y); y = v0;” (P3, Scanner)

– v14.c
f = v8.c

f + v13.c
f (P2a, P1)

5. Inherited backward code:

– v4.c
b
1 = ”pop v(v0);” (P5)

– v5.c
b
1 = ”pop v(y); v0 = y ; y = 0;” + v4.c

b
1 (P3)

– v8.c
b
1 = v6.c

b
1 = v5.c

b
1 (P1, P8)

– v9.c
b
2 = ”pop v(v1); y + = v1 ;” (P4)

– v10.c
b
2 = ”pop v(v3); x + = v3 ;” (P4)

– v11.c
b
2 = ”pop v(v2); v3 = cos(v3) ∗ v2 ;” + v10.c

b
2 (P6)

– v12.c
b
2 = ”pop v(v0); v2 + = v1 ∗ v0 ; v1 + = v2 ∗ v0 ” + v9.c

b
2 + v11.c

b
2

(P7)

– v13.c
b
2 = ”pop v(y); v0 = y ; y = 0;” + v12.c

b
2 (P3)

– v14.c
b
1 = v8.c

b
1(P2a); v14.c

b
2 = v13.c

b
2 (P2a, P1)

Finally, the augmented forward code and the backward codes of both assignments
are synthesized according to production rule P0 to obtain the whole adjoint code:

v14.c
f

int i;

while (pop c(i)) { if (i==1) { v14.c
b
1 } else if (i==2) { v14.c

b
2 } }

4 Implementation and Case Study

We have developed a proof-of-concept implementation based on the scanner and
parser generators flex and bison. The bison input has the following structure.

1 . . .
2

3 %token V F IF WHILE
4 %l e f t ’∗ ’
5

6 %%
7

8 code : s
9 s : a

10 | b
11 | l
12 s : a s { . . . } ;
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13 | b s { . . . } ;
14 | l s { . . . } ;
15 b : IF ’ ( ’ c ’ ) ’ ’{ ’ s ’} ’ { . . . } ;
16 l : WHILE ’ ( ’ c ’ ) ’ ’{ ’ s ’} ’ { . . . } ;
17 c : V ’< ’ V { . . . } ;
18 a : V ’= ’ { . . . } e ’ ; ’ { . . . } ;
19 e : e ’∗ ’ e {
20 $$ . j=c l c ++;
21 get memory f(&$$ ) ; get memory r(&$$ , k ) ;
22 s p r i n t f ( $$ . cf ,”% s%spush v ( v%d) ; v%d=v%d∗v%d ;\ n” , $1 . cf ,

$3 . cf , $$ . j , $$ . j , $1 . j , $3 . j ) ;
23 s p r i n t f ( $$ . cr [ k ] , ” pop v ( v%d) ; v%d =v%d ∗v%d ; v%d =v%d

∗v%d ;\n%s%s ” , $$ . j , $1 . j , $$ . j , $3 . j , $3 . j , $$ . j , $1 . j , $3 .
cr [ k ] , $1 . cr [ k ] ) ;

24 f r ee memory f (&$1 ) ; f ree memory r(&$1 , k ) ;
f r ee memory f (&$3 ) ; f ree memory r(&$3 , k ) ;

25 } ;
26 | F ’ ( ’ e ’ ) ’ { . . . } ;
27 | V { . . . } ;
28 | C { . . . } ;
29

30 %%

IF, WHILE, V, F, as well as the remaining seven single-character tokens are
delivered by the lexical analyzer. As an example we include the treatment of the
product of two expressions. The inherited attribute j in grammar rule P7 is imple-
mented as a global counter variable (line 20). While the order of the enumeration
is changed, the necessary properties (uniqueness, correct dependences among the
code list variables) are preserved. New dynamic memory is allocated for the aug-
mented forward and adjoint codes corresponding to the nonterminal symbol e on
the left-hand side of the production rule (line 21). The augmented forward code
($$.cf) is generated on line 22. The adjoint code ($$.cr[k]) is generated on line
23. Finally, the dynamic memory associated with the two nonterminal symbols
on the right-hand side of the production rule is deallocated (line 24). The entire
code is open source. It can be obtained by sending an email to the first author.

As a final case study consider the following simple C-code fragment.

i f (x<y ) {
x=x∗y ;
wh i le (y<x ) {
x=s in (x∗y ) ;

}
}

With x=-5.0 and y=-0.5 as inputs the while-loop is traversed twice to compute
x=-0.949. The corresponding gradient (0.079,1.577) is computed by a single run
of the following automatically generated adjoint code.

1 i f (x<y) {
2 push c ( 1 ) ;
3 push v ( v0 ) ; v0=x ;

13



4 push v ( v1 ) ; v1=y ;
5 push v ( v2 ) ; v2=v0∗v1 ;
6 push v (x ) ; x=v2 ;
7 whi le (y<x ) {
8 push c ( 2 ) ;
9 push v ( v0 ) ; v0=x ;

10 push v ( v1 ) ; v1=y ;
11 push v ( v2 ) ; v2=v0∗v1 ;
12 push v ( v3 ) ; v3=s in ( v2 ) ;
13 push v (x ) ; x=v3 ;
14 }
15 }
16 i n t i ;
17 whi le ( pop c ( i ) ) {
18 i f ( i==1) {
19 pop v ( x ) ; v2 =x ; x =0;
20 pop v ( v2 ) ; v0 =v2 ∗v1 ; v1 =v2 ∗v0 ;
21 pop v ( v1 ) ; y +=v1 ;
22 pop v ( v0 ) ; x +=v0 ;
23 }
24 e l s e i f ( i==2) {
25 pop v ( x ) ; v3 =x ; x =0;
26 pop v ( v3 ) ; v2 =cos ( v2 )∗ v3 ;
27 pop v ( v2 ) ; v0 =v2 ∗v1 ; v1 =v2 ∗v0 ;
28 pop v ( v1 ) ; y +=v1 ;
29 pop v ( v0 ) ; x +=v0 ;
30 }
31 }

The two assignment statements are enumerated by pushing unique indexes onto
the control stack (lines 2 and 8; grammar rule P3). Assignment-level code list are
built and the values of all overwritten variables are saved on the value stack (lines
3 – 6 and 9–13; grammar rules P3–P7). The flow of control remains unchanged
in the augmented forward code.

The adjoint code executes the adjoint code lists in reverse order by restoring
the indexes of the corresponding original assignments (lines 16, 17, 18, and 24);
grammar rule P0). All adjoint code list statements are preceded by pop accesses
to the value stack to restore the old value of the variables of the left-hand side of
the original code list statement (lines 19 – 22 and 25–29; grammar rules P3–P7).
For example, the adjoint corresponding to the assignment on line 12 first restores
the value of v3 followed by the evaluation of the product of cos(v2) (derivative
of sin(v2)) with the adjoint of v3 to get the adjoint of v2 (line 26).

5 Conclusion

We are actively involved in the development of the adjoint code compilers Ope-
nAD [10] and of the differentiation-enabled NAGWare Fortran compiler [9]. Con-
ceptually, the semantic actions that are performed on the respective internal
representations are similar to those proposed in this paper.
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The syntax-directed compilation of adjoint codes for numerical programs
written in suitable (subsets of) programming languages represents a low-develop-
ment-cost alternative to full-size adjoint code compilers such as OpenAD or the
differentiation-enabled NAGWare Fortran compiler. Due to the lack of static
program analysis and the corresponding optimizations (see, for example, [7]) the
output of a single-pass adjoint compiler should not be expected to have the same
level of efficiency. However the conceptual insight provided by the formulation
of adjoint code generation rules in form of an L-attributed grammar represents
a good entry point into the subject. For example, we follow this approach in our
course on “Adjoint Compilers” taught at the Department of Computer Science
at RWTH Aachen University.

The proposed method can be modified and extended to decrease the compu-
tational complexity through a decrease of the memory requirement. The use of
compiler-generated variables in the context of assignment-level code lists can be
reduced drastically. Arithmetic expressions (required for the local partial deriva-
tives) need to be synthesized instead of indexes of the corresponding code list vari-
ables. This work is to be continued on the basis of graduate- and undergraduate-
level projects. Currently we are investigating the syntax-directed compilation of
adjoint Matlab code. Matlab is certainly not a single-pass language. However we
expect to find a suitable large enough subset having this property.
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