RWTH Aachen

Department of Computer Science
Technical Report

OpenAD/F: A Modular, Open-Source
Tool for Automatic Differentiation of
Fortran Codes

Jean Utke, Uwe Naumann, Mike Fagan, Nathan Tallent, Michelle
Strout, Patrick Heimbach, Chris Hill, and Carl Wunsch

ISSN 0935-3232 . Aachener Informatik Berichte . AIB-2007-14

RWTH Aachen . Department of Computer Science . June 2007



The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/



OpenAD/F: A Modular, Open-Source Tool for
Automatic Differentiation of Fortran Codes

Jean Utke!, Uwe Naumann?, Mike Fagan, Nathan Tallent®, Michelle Strout?
and Patrick Heimbach, Chris Hill, Carl Wunsch®

! Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL,
USA
2 Dept. of Computer Science, RWTH Aachen University, Aachen, Germany
3 Dept. of Computer Science, Rice University, Houston, TX, USA
4 Dept. of Computer Science, Colorado State University, Fort Collins, CO, USA
5 Dept. of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of
Technology, Cambridge, MA, USA

Abstract. The OpenAD/F tool allows the evaluation of derivatives of func-
tions defined by a Fortran program. The derivative evaluation is performed by a
Fortran code resulting from the analysis and transformation of the original pro-
gram that defines the function of interest. OpenAD/F has been designed with a
particular emphasis on modularity, flexibility, and the use of open source com-
ponents. While the code transformation follows the basic principles of automatic
differentiation, the tool implements new algorithmic approaches at various lev-
els, for example, for basic block preaccumulation and call graph reversal. Unlike
most other automatic differentiation tools, OpenAD/F uses components provided
by the OpenAD framework, which supports a comparatively easy extension of
the code transformations in a language-independent fashion. It uses code anal-
ysis results implemented in the OpenAnalysis component. The interface to the
language-independent transformation engine is an XML-based format, specified
through an XML schema. The implemented transformation algorithms allow ef-
ficient derivative computations using locally optimized cross-country sequences
of vertex, edge, and face elimination steps. Specifically, for the generation of ad-
joint codes, OpenAD/F supports various code reversal schemes with hierarchical
checkpointing at the subroutine level. As an example from geophysical fluid dy-
namics a nonlinear time-dependent scalable, yet simple, barotropic ocean model
is considered. OpenAD/F’s reverse mode is applied to compute sensitivities of
some of the model’s transport properties with respect to gridded fields such as
bottom topography as independent (control) variables.

1 Introduction

The basic principles of automatic differentiation (AD) (see also Section 2) have
been known for several decades [36], but only during the past 15 years have the
tools implementing AD found significant use in optimization, data assimilation,
and other applications in need of efficient and accurate derivative information.
As a consequence of the wider use of AD, various tools have been developed
that address specific application requirements or programming languages. The
AD community’s website www.autodiff . org provides a comprehensive overview
of the tools that are available. One can categorize two user groups of AD tools.
On one side are casual users with small-scale problems applying AD mostly in a
black-box fashion and demanding minimal user intervention. This category also
includes users of AD tools in computational frameworks such as NEOS [25]. On
the other side are experienced AD users aiming for highly efficient derivative



computations. Their need for efficiency is dictated by the computational com-
plexity of models that easily reaches the limits of current supercomputers. In
turn this group is willing to accept some limitation in the support of language
features.

1.1 A Large-Scale Example Application

One of the most demanding applications of AD is the computation of gradi-
ents for sensitivity analysis and state estimation (sometimes referred to as data
assimilation) on large-scale models in oceanography and climate research. This
application clearly falls in the category requiring experienced users.

To demonstrate what can be achieved today with the gradient computed in
this manner, and to expose how AD has made a specific large-scale optimization
problem practical, we elaborate on this application. It takes advantage of the
reverse mode of AD (see Section 2), which yields the transpose of the tangent
linear model, the adjoint model. It has long been recognized that for scalar-valued
objective functions (such as energy, property transports, property content, or
least-squares model data misfits) the sensitivity or gradient of such a determining
function with respect to a large suite of n independent (or control) variables can
be calculated efficiently with a single adjoint integration, whereas as many as n
separate perturbation integrations would be required with the original forward
model. In the context of ocean and climate modeling the latter computation
quickly becomes prohibitive (n being of the order 10* to 108). On the other
hand, the generation of an adjoint model to a given fully fledged nonlinear time-
dependent general circulation model (GCM) is a major undertaking, similar in
complexity to the GCM development itself.

A major step forward was the implementation at MIT of a new ocean general
circulation model [18] and simultaneous development of the AD tool TAMC [10]
to fully support the GCM’s coding structures and to render efficient adjoint
code in the context of a nonlinear time-dependent problem. This led to the
first sensitivity application based on fully AD-derived adjoint code in which,
for the first time, one could comprehensively address the question of how North
Atlantic heat transport (a scalar-valued objective function) depended on changes,
separately, in every element of gridded two- or three-dimensional fields, such
as sea-surface temperature everywhere in the domain (i.e., a 10*-dimensional
control space) [17]. At the same time, the Estimating the Circulation and Climate
of the Ocean (ECCO) Consortium set out to derive an ocean state estimate
(OSE) covering the period of the World Ocean Circulation Experiment and the
beginning of the satellite altimetric record (1992) [28]. The availability of the
AD-derived adjoint made practical the application of the method of Lagrange
multipliers in a gradient-based iterative optimization that brings the numerical
model to consistency with a plethora of observations (today on the order of
100 million) by varying elements of a 108-dimensional control space [37]. Since
then, both underlying code and the type of observations available have evolved
significantly. AD has permitted maintenance of an up-to-date adjoint code for
the forward model undergoing vigorous model development [14]. OSE is today
developing in a number of different directions, (see, e.g., the overview by [38]), but
challenges remain, among others, with limitations in computational resources and
with limitations in the AD tools flexibility, code handling, derivation of efficient



code, and trade-offs between efficiency and approximations made to the exactness
of tangent linearity. Despite these limitations it has come as a surprise to ocean
and climate modelers that the potential of the reverse mode of AD has not found
much wider application in the large-scale optimization community.

1.2 Motivation

An evaluation of the available AD tools revealed shortcomings from the perspec-
tives of the tool users as well as the tool developers and was the rationale for
designing a new tool with particular emphasis on

— flexibility,
— the use of open source components, and
— modularity.

From the view point of AD tool users, there is a substantial need for flexibil-
ity of AD tools. The most demanding numerical models operate at the limit
of the computing capacity of state-of-the-art facilities. Usually the model code
itself is specifically adapted to fit certain hardware characteristics. Therefore,
AD tool code generation ideally should be adaptable in a similar fashion. Since
some of these adaptations may be too specific for a general-purpose tool, the AD
tool should offer flexibility at various levels of the transformation — from simple
textual preprocessing of the code down to changes in the generic code transfor-
mation engine. This is the rationale for developing an open source tool where all
components are accessible and may be freely modified to suit specific needs. A
modular tool design with clearly defined interfaces supports such user interven-
tions. Since this design instigates a staged transformation, each transformation
stage presents an opportunity to check and modify the results.

From the view point of AD tool developers, many AD tools share the same
basic algorithms, but there is a steep hurdle to establish a transformation envi-
ronment consisting of a front-end that turns the textual program into a compiler-
like internal representation, an engine that supports the transformations of this
internal representation, and an unparser that turns the transformed internal rep-
resentation back into source code. A modular, open-source tool facilitating the
integration of new transformations into an existing environment allows for a quick
implementation and testing of algorithmic ideas. Furthermore, a modular design
permits the reuse of transformation algorithms across multiple target languages,
provided the parsing front-ends can translate to and from the common internal
representation.

These considerations motivated the Adjoint Compiler Technology & Stan-
dards [1] project, a research and development collaboration of MIT, Argonne
National Laboratory, the University of Chicago, and Rice University. OpenAD/F
is one of its major results.

1.3 Overview

OpenAD/F is the Fortran incarnation of the OpenAD framework [26]. OpenAD/F
has a modular design, illustrated in Figure 1. Given as input a Fortran pro-
gram f, the Open64 (see www.hipersoft.rice.edu/open64) front-end performs
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Fig. 1. Simplified overview of the OpenAD/F components and the pipeline of transformation
steps. The input is a numerical model f given as a Fortran program. The Open64 compiler
front-end parses it into whirl, which is translated into the language-independent XML-based
Xaif format. The Xaif representation then is translated back into a Fortran program f’ that
computes derivatives.

a lexical, syntactic, and semantic analysis and produces an intermediate repre-
sentation of f, here denoted by f, ;, in the whirl format. OpenAnalysis is used
to build call and control flow graphs and perform code analyses such as alias,
activity, and side-effect analysis. This information is used by whirl2xaif to con-
struct a representation of the numerical core of fin Xaif format, shown as f,,; .
A differentiated version of f, ;¢ is derived by an algorithm that is implemented
in xaifBooster, represented in Xaif as f7,;¢. The information in f;,;; and the
original f, ;,.; is used by xaif2whirl to construct a whirl representation f} ;. of
the differentiated code. The unparser of Open64 transforms f, ;. into Fortran,
thus completing the semantic transformation of a program f into a differenti-
ated program f! The shaded area encloses the language-specific front-end that
can potentially be replaced by front-ends for languages other than Fortran. The
C/C++ tool ADIC v2.0 (see [2]) is also based on OpenAD but is not discussed
here.

Our focus is on the design rationale and major features of OpenAD/F. Tech-
nical details are left to the user manual [35]. In Section 2 we cover the concepts
of AD relevant to the description of OpenAD, in Section 3 the components that
make up OpenAD/F, and in Section 4 tool usage. Two applications in Section 5
illustrate the tool usage. We conclude in Section 6 with future developments.

2 AD Concepts

In this section we present the terminology and basic concepts that we will refer to
throughout this paper. A detailed introduction to AD can be found in [11]. The
interested reader should also consult the proceedings of AD conferences [8,5,7,
6]. We consider first consecutive sequences of elemental numerical operations in
Section 2.1, then their control flow context within a subroutine in Section 2.2, and
the entire program consisting of several subroutines in a call graph in Section 2.3.
The given numerical model is a vector-valued function

y=flz): R" — R"



implemented as a computer program, and the objective is to compute derivatives

such as products of Jacobians J = [%] with seed matrices S:

JS and JTS . (1)

2.1 Elemental Operations in Computational Graphs

Without loss of generality assume that an evaluation of f(x) for a specific value
of x can be represented by a sequence of elemental operations

szqu(...,’ui,...) . (2)

The v; € V represent the vertices in the corresponding computational graph
G = (V,E). The edges (i,j) € E in this graph are the direct dependencies
v; < vj implied by the elemental assignment v; = ¢;(...,v;,...). The elemental
operations ¢; are assumed to be differentiable on open subdomains Each edge
(1,7) € E is labeled with a local partial derivative ¢j; = 8 . The central principle
of AD is the application of the chain rule to the partials of the elementals ¢, that
is, multiplications and additions of the cj;.

Using a specific numbering scheme for the vertices v; we presume ¢ interme-
diate values v; = ¢;(...,v;,...)for j=1,...,g+mandi=1—-n,...,q, j > i.

The n independent variables x1,...,x, correspond to vi_,,...,v9. We consider
the computation of derivatives of the dependent variables y1, ...,y represented
by m variables vy41, ..., vgm With respect to the independents. The dependency

v; < v;j implies @ < j. Using the edge labels ¢;; = g—zz, the forward mode of AD
propagates directional derivatives as

UJ:chﬂ'Ji for j=1,...,q+m. (3)

In reverse mode we compute adjoints of the arguments of the ¢; as a function of
local partial derivatives and the adjoint of the variable on the left-hand side:

EZ:ZCJ'Z@J' for j=¢q,...,1—n. (4)
J

In practice, the sum in (4) is often split into individual increments associated
with each statement in which v; occurs as an argument v; = v;+7;-¢j;. Equations
(3) and (4) can be used to accumulate the (local) Jacobian J(G) of G; see also
Section 2.2.

In a source transformation context we want to generate code for all possible
inputs «. In general, there is no single representative G' because of the presence
of control flow. Instead we simply consider the statements contained in a basic
block as a section of code below the granularity of control flow and construct our
computational (sub)graph for a basic block.

2.2 Elimination Methods and Preaccumulation

Let frepresent a single basic block for which we compute a local Jacobian (preac-
cumulation). For notational simplicity and w.l.0.g. we assume that the dependent



t1 = x(1) + x(2)
t2 = t1 + sin(x(2)
y(1) = cos(tl * t2)
y(2) = -sqrt(t2)

W N

Fig. 2. Code example of a sequence of assignment statements that can form a basic block. Here
x(1) and x(2) are the independent, y(1) and y(2) the dependent variables.

variables are mutually independent (can always be enforced by introducing auxil-
iary assignments). Consider the small example in Figure 2. Expressing it in terms
of results of elemental operations ¢ assigned to unique intermediate variables v,
we have

v = v_1 4 vg; vo =sin(vy); v3 = v1 + v2; V4 = V1 * U3;

U5 = \/U3; vg = cos(vy); v7 = —U3

()

In OpenAD/F this modified representation is created as part of the linearization
transformation; see Section 3.1. In Figure 3(a) we show the computational graph
G for this representation. The edge labels c;; are the local partial derivatives, for

(a) (b) (©) (d)
YCM zw Y zﬁ im zﬁ Y:M 7075

Fig. 3. (a) Computational graph G for the representation in equation (5). Elimination steps
are categorized as follows: (b) eliminate vertex 3 from G, (c) front eliminate edge (1,3) from G
with ¢51 = ¢s3 * c31, and (d) back eliminate edge (3,4) from G with ca2 = ca3 * 32

example, cgg = —sin(vy). With the tool, this graph is generated as part of the
algorithm described in Section 3.1. Jacobian preaccumulation can be interpreted
as eliminations in G. The graph-based elimination steps are categorized in vertex,
edge, and face eliminations. In G a vertex j € V is eliminated by connecting its
predecessors with its successors [12]. An edge (i,k) with ¢ < j and j < k is
labeled with cg; + c; - ¢ji if it existed before the elimination of j (absorption).
Otherwise, (i,k) is generated (fill-in) and labeled with ¢j; - ¢j; The vertex j is
removed from G together with all incident edges. Figure 3(b) shows the result of
eliminating vertex 3 from the graph in Figure 3(a).

An edge (i,7) is front eliminated by connecting ¢ with all successors of 7,
followed by removing (7, j) [19]. The corresponding structural modifications of G
in Figure 3(a) are shown in Figure 3(c) for front elimination of (1,3) together
with the new edge labels. Edge-front elimination eventually leads to intermediate
vertices in G becoming isolated; that is, these vertices no longer have predecessors.



Isolated vertices are simply removed from G together with all incident edges.
Back elimination of an edge (see Figure 3(d)) is symmetric to front elimination.

Numerically, the elimination is the application of the chain rule, that is, a
sequence of fused-multiply-add (fma) operations

Cri = Cji * Cj (FCri) (6)

where the additions in parentheses take place only in the case of absorption;
otherwise, fill-in is created as described above. Aside from special cases, a single
vertex or edge elimination will result in more than one fma. Face elimination was
introduced as the elimination operation with the finest granularity of exactly one
multiplication (additions are not necessarily directly coupled) per elimination
step.

Vertex and edge elimination steps have an interpretation in terms of vertices
and edges of GG, whereas face elimination is performed on the corresponding
directed line graph G. A face elimination is the elimination of an edge in G. The
result may be absorbed, as with vertex and edge eliminations, or may generate
fill-in. A complete face elimination sequence yields a tripartite directed line graph
that can be transformed back into the bipartite graph representing the Jacobian
f! Any G can be transformed into the corresponding G, but a back transformation
generally is not possible once face elimination steps have been applied. A detailed

V1 = V-1 + vo; C1,—1 = 1; c1,0 = 1;
v = sin(vo); c2,0 = cos(vo);

v3 = v1 + v2; c31 = 1; cs2 =1;
V4 = V1 * U3; C4,1 = U3; C4,3 = V1;
vs = \/v3; cs3 = (2v/03)

v = cos(v4); c6,a = —sin(va);

V7 = —Us; cr5 = —1;

Fig. 4. Pseudo code for computing f from Figure 2 as done in (5) together with the computation
of the ¢;; for each v;.

description of face elimination is given in [20]. In OpenAD all these eliminations
are implemented in the algorithms described in Section 3.1. The accumulation of
a Jacobian with a minimal arithmetic complexity has only recently been shown
to be NP-complete [21].

In the context of source transformations the operations (6) are expressed as
code (the Jacobian accumulation code). For our example code from Figure 2
the code computing the local partials in conjunction with the function value is
shown in Figure 4 (for readability we write the ¢;; with commas). In OpenAD /F
the operations in Figure 4 are generated by the linearization algorithm discussed
in Section 3.1. The operations induced by the eliminations on the graph can
be expressed in terms of the edge labels c¢;j;. For our example, a forward vertex
elimination in G (Figure 3), leads to the Jacobian accumulation code shown
in Figure 5. In the tool these operations are generated by the preaccumulation
algorithms (see Section 3.1).



v1: C3,—1=— C3,1 * C1,—1; C3,0 = C3,1 * C1,0; C4,—1 — C4,1 * C1,—1;
C4,0= C4,1 * C1,0,

v2: C3,0= C3,2 * C2,0 t C3,0;

V3.  C4,—1= C4,3 ¥C3,—-1 F C4,-1; C4,0 = C4,3 * C3,0 + C4,0; C5,—1 = C5,3 * C3,—1;
C5,0= C5,3 * C3,0;

V4: C6,—1— C6,4 * C4,—1; C6,0 = C6,4 * C4,0;

Vs: C7,—1= C7,5 * C5,—1; C7,0 = C7,5 * C5,0;

Fig. 5. Pseudo code for eliminations of v; ...vs for (5) in forward order.

2.3 Control Flow Reversal and Taping

The code for f generally contains control flow constructs. Therefore, in general,
no single computational graph G represents the computation of f for all possible
values of @. Section 2.1 considers computational graphs constructed from the
contents of a basic block. In the example shown in Figure 6 we put the basic
block code shown in Figure 2 into control flow context. A representation of the

1 y&) = sin(x(1)*x(2))
2 k = kt+1

3 if(mod(k,2) .eq. 1) then
4y = 2%y (k-1)

5 else

6 do i=1,k

7 t1 = x(D+x(2) }
8 t2 = tl+sin(x(1))
9 x(1) = cos(t1*t2)
10 x(2) = -sqrt(t2)
11 end do

12 end if

13 y(k) = y(k)+x(1)*x(2)

Fig. 6. Toy example code with control flow. Assignment statements are contained in basic
blocks, B(2) (lines 1-2), B(4) (line 4), B(6) (lines 7-10), and B(9) (line 13); see also Figure 7(a).
The sequence of assignment statements from Figure 2 forms B(6) except that instead of assigning
y(1) and y(2) we overwrite x(1) and x(2).

control flow graph (CFG) [3] resulting from the code in Figure 6 is depicted in
Figure 7(a). All assignment statements are contained in basic blocks. Because
the loop body B(6) is executed k times, the additional (compile-time) effort
of optimizing the derivative code by optimizing the elimination sequence (as
illustrated in Section 2.2) is justified. For a sequence of [ basic blocks that are
part of a path through the CFG for a particular value of x, the equations (3)
and (4) can be generalized as follows:

:i/j:.]j:'z:j for 5=1,...,1 (7)

and

zj=Jy for j=1..,1, (8)

where x; = (fz:f eV:ii=1,...,n;) and y; = (yf eV :i=1,...,m;) are the
inputs and outputs of the basic blocks, respectively. In forward mode a sequence of

10



Entry(10)

FolT
| EndBranch(8) || B(6) |) | EndBranch(8) || EndLoop(7) | | EndBranch(3) || B(6)” |)
[ B | |EndLoop() | [ B2 | | EndLoop®s) |

» N o

Fig. 7. CFG of Figure 6 (a) original, (b) trace generating, (c) for reversed control flow

products of the local Jacobians J; with the directions &; is propagated forward
in the direction of the flow of control together with the computation of f. In
our example basic block B(6) is the third basic block (j = 3), and we have
T3 =Y = (x(1),x(2)) and consequently have the operations for the Jacobian
vector product shown in Figure 8.

t1 = x(1);
to = x(2);
x(1) = c6,—1 * t1;
x(1) =x(1) + 6,0 * t2;
x(2) =c¢7,—1 *t1;
x(2) =x(2) + cr0 *to;

Fig. 8. Pseudo code for the (sparse) product Js&s for the loop body in Figure 6. This follows
the statements from Figure 4 and Figure 5. Note that x(1) and x(2) are overwritten, and
therefore we have to preserve the original derivatives in temporaries t; and t2.

In reverse mode, products of the transposed Jacobians J}F with adjoint vectors
Y; are propagated reverse to the direction of the flow of control. The JjT can
be computed by augmenting the original code with linearization and Jacobian
accumulation statements; see Section 2.2. The preaccumulated J]T are stored
during the forward execution on a stack, also called the tape; see Figure 9(a)
for an example. In order to compute (8), they are retrieved during the reverse
execution; see Figure 9(b) for an example. To find the proper path through
the reversed control flow, we also have to generate a trace. We do so with an
augmented CFG; for our toy example, see Figure 7(b). This augmented CFG

11



push(ce,—1); to = pop() * x(2);

Py, = pop( xx@);
push(cr0); ta = t2 + pop() * x(1);
t1 = t1 + pop() * x(1);
x(2) = to;
x(1) =ty

Fig. 9. Pseudo code for writing the tape (left) and consuming the tape for J3 g, (right) for the
loop body B(6) in Figure 6. Writing values to the tape follows the statements in Figure 4 and
Figure 5, and together they constitute B(6)’ in Figure 7(b). Consuming the tape constitutes
B(6)” in Figure 7(c).

keeps track of which branch was taken and counts how often a loop was executed.
This information is pushed on a stack and popped from that stack during the
reverse sweep; see also [24]. Because the control flow trace adheres to the stack
model, it often is considered part of the tape. In the example in Figure 7(b)
the extra basic blocks pBT and pBF push a Boolean (T or F) onto the stack
depending on the branch. In iLl.c we initialize a loop counter, increment the loop
counter in +Lc, and push the final count in pLc.

Figure 7(c) shows the CFG for the reversed control flow for our toy example.
The parenthesized numbers in the node labels relate the nodes across the three
graphs. The exit node becomes the entry, loop becomes endloop, branch becomes
endbranch, and vice versa. Each basic block B is replaced with its reversed version
B’. Finally, all control flow conditions are decided with the information recorded
in Figure 7(b). The extra nodes pB and pLc pop the branch information and the
loop counter, respectively. We enter the branch and execute the loop as indicated
by the recorded information. The process of the control flow reversal is described
in detail in [24].

2.4 Call Reversal and Checkpointing

Generally, the computer program induces a call graph (CG) [3] whose vertices
are subroutines and whose edges represent calls potentially made during the
computation of y for all values of x in the domain of f.

For a large number of problems it is possible to statically predetermine either
split or joint reversal [11] for any subroutine in the call graph. These concepts are
more easily understood with the help of a dynamic call tree (see also [23]), where
each vertex represents an actual invocation of a subroutine for a given execution
of the program; see Figure 10(a) and (b) and Figure 11 for an explanation of
the symbols. The order of calls is implied by following the edges left to right.
Split reversal for all subroutines in the program implies we first write the tape
for the entire program, followed by the reverse sweep that consumes the tape;
see Figure 10(c).

Joint reversal as introduced in [9] for all subroutines in a program implies
that the tape for each subroutine invocation is written immediately before the
reverse sweep for that particular invocation. In our example we have to gener-
ate a tape for C? while the caller B? is being reversed. Because in the reversal
we have no guarantee that the data used by C? is correct (variables may have

12



subroutine A()
call BQ)
call DQ)
call BQ)
end subroutine
A
subroutine B()
call CQ)
8 end subroutine
B
9 subroutine C()
10 call EQ
11 end subroutine
C

(a) (b) (c)

Fig. 10. Simple example code (a) with a (static) calling hierarchy, the corresponding DCT (b),
and the DCT for the adjoint via split reversal (c).

T W N

N &

n-th invocation of subroutine S D run forward and tape (2)

ré subroutine call D run adjoint (3)
—— order of execution D store checkpoint (4)
D run forward (1) D restore checkpoint (5)

Fig. 11. Symbols for call tree reversal

been overwritten), we cannot simply reexecute C2. We could reexecute the entire
program up to the C? call and start taping, or we could store the input of G2
during the regular forward execution and restore it for the taping sweep. The
latter approach is called checkpointing. The ensuing dynamic call tree for our
example is shown in Figure 12. For many applications neither an all-split nor
all-joint reversal is efficient. Often a mix of split and joint reversals statically
applied to subtrees of the call tree is suitable; see Section 5.2.

3 Components of OpenAD/F

OpenAD/F is built of components that belong to a framework designed for code
transformation of numerical programs. The components are tied together either
by programmatic interfaces or by communication using the Xaif language. The
modular design of the tool aims to reuse the components for different types of
source transformation of numerical codes and for different programming lan-
guages in which these tools are written. Uses of some components outside of
OpenAD/F further improve their utility and reliability. The flexibility of the
tool afforded by the modular design is of equal importance. The transformation
of the source code follows the pipeline shown in Figure 13. A fundamental design
decision is the separation of programming-language-independent components.
The pipeline as shown here and the use of a canonicalizer and postprocessor
are a consequence of the design. Section 3.1 motivates the language-independent
component design followed by sections on the language-independent transfor-
mation and analysis engine. The language-dependent components introduced in

13



[ prepared Fortran j [ postprocessed Fortran ’j

(ii) canonicalizer ( Fortran inline/templates) (viii) postprocessor
32.1 324
( canonicalized Fortranj ( Fortran ’ j
(iii) mfef90 (vii) whirl2f
322 322
( whirl ) ( whirl j
(iv) whirl2xaif OpenAnalysis (vi) xaif2whirl
323 L 313 323

( xaif 3.1.1 j ( xaif ’ 3.1.1 j

(v) xaifBooster
3.1.2

Fig. 13. OpenAD pipeline of components and relevant section numbers

Section 3.2 are to be seen in the context of this design. The components are con-
nected in multiple ways. For instance, the activity analysis is performed within
whirl2xaif, but the independent and dependent variable designation is done via a
pragma mechanism implemented in the mfef90 front-end, and the results of the
analyses are used with the transformation engine. The following sections contain
numerous cross-references to ease following these connections. Figure 13 should
be used as a reference for positioning any of the components within the tool
pipeline. The regular setup procedure for OpenAD/F (see also Section 4) will
retrieve all components into an OpenAd/ directory, to which we refer from here on.

3.1 Language-Independent Components (OpenAD)

This section describes OpenAD’s language-independent components. They are
also used by ADIC v2.0.

Representing the Numerical Core (Xaif) To obtain a language-independent
representation of programs across multiple programming languages, one might

14



choose the union of all language features. On the other hand, one can observe
that most differences between languages do not lie with the elemental numerical
operations that are at the heart of AD or other numerical transformations. This
more narrow representation is a compromise permitting just enough coverage to
achieve language independence for the numerical core across languages. Conse-
quently, certain program features are not represented and have to be filtered and
preserved by the language-specific front-end to reassemble the complete program
after the transformation. Among these are

— user type definitions and member access (see also Section 3.2),
— pointer arithmetic,

— I/0 operations,

— memory management, and

— preprocessor directives.

A more detailed discussion regarding this compromise can be found in [34]. Cer-
tain aspects of the adjoint code, such as checkpointing (see Section 2.4) and
taping (see Section 2.3), can involve memory allocation and various I/O schemes
and therefore are not amenable to representation in the Xaif. At the same time,
the concrete handling of memory and 1/O for taping and checkpointing is typi-
cally determined by the problem size at run-time and not by static information
available during the transformation. Therefore, OpenAD handles these transfor-
mation aspects by special code expansion for subroutine-specific templates and
inlinable subroutine calls in the postprocessor; see Section 3.2. Not only does this
approach avoid any language-specific I/O and memory management constructs,
it also affords additional flexibility.

The format of choice in OpenAD is an XML-based hierarchy of directed
graphs, referred to as Xaif [15]. This is motivated by the ability to describe the
Xaif with an XML schema and the existence of XML parsers that can validate
any given Xaif representation against the schema. The annotated Xaif schema is
documented at www.mcs.anl.gov/xaif. The building blocks of Xaif are struc-
tures commonly found in compilers, starting from the top with a call graph
containing scopes and symbol tables, CFGs as call graph vertices, basic blocks
as CFG vertices, statement lists contained in basic blocks, assignments state-
ments with expression graphs, and variable references and intrinsic operations as
expression graph vertices. Xaif elements are associated by containment. In the
graph, edges refer to source and target vertices by vertex ids. Variable references
contain symbol references that are associated to symbol table entries via a scope
and a symbol id. An example can be found in Section 3.2, Figure 20.

The Xaif contains the results of the code analyses provided by OpenAnalysis;
see Section 3.1, for instance, for activity information as additional attributes on
certain Xaif elements. Side-effect analysis provides lists of variable references
per subroutine; du/ud-chains are expressed as lists of identifiers of assignment
elements. Alias information is expressed as sets of virtual addresses. Du/ud-
chains and alias information are collected in maps. Individual entries held in
these maps are referenced via foreign key attributes.

The transformation algorithms change the Xaif contents at almost all levels.
In principle it would be possible to express the result entirely in plain Xaif. How-
ever, we already mentioned the code expansion approach introduced for added
flexibility. The transformed Xaif adheres to a schema extended by elements rep-
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resenting inlinable subroutine calls as well as groups of CFGs that the postpro-
cessor places into predefined locations in subroutine templates. The Xaif schema
and examples can be found in subdirectory xaif/.

Transforming the Numerical Core (xaifBooster) The transformation en-
gine that differentiates the Xaif representation of f is called xaifBooster. It is
implemented in C++ based on a data structure that represents all information
supplied in the Xaif input together with a collection of algorithms that operate on
this data structure, modify it, and produce transformed Xaif output as the result.
All sources for xaifBooster can be found under xaifBooster/. The xaifBooster data
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Fig. 14. Simplified class inheritance (left) and composition (right) in xaifBooster

structure resembles the information one would find in a compiler’s high-level in-
ternal representation using the boost graph library (see www.boost.org) and the
GNU Standard C++ Library (see gcc.gnu.org/libstdc++). Figure 14 shows
simplified subsets of the classes occurring in the xaifBooster data structure in
the inheritance as well as the composition hierarchy. A doxygen-generated doc-
umentation (see www.doxygen.org) of all data structures can be found in [26].
The class hierarchy is organized top down with a single CallGraph instance as the
top element.

The transformation algorithms are modularized to enable reuse in different
contexts. Figure 15 shows dependencies between some of the implemented algo-
rithms. In order to avoid conflicts between transformations, all data representing
the input are preserved. The data representing modifications or augmentations of
the original input element in a class <name> (e.g., Variable) are held in algorithm-
specific instances of class <name>Alg (e.g., VariableAlg). They are associated via mu-
tual references accessible through get<name>A1gBase() and getContaining<name>(),
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Fig. 15. Schematic dependencies of the transformation algorithms implemented in xaifBooster.
Note that the inheritance hierarchy of the individual classes constituting the algorithms may
skip some of these dependencies depicted here.

respectively. The instantiation of the algorithm-specific classes follows the factory
design pattern. The factory instances in turn are controlled by transformation-
specific AlgFactoryManager classes that ensure instantiation of the <name>A1g sub-
class appropriate for a given transformation. Further details can be found in
[33].

In the following sections we highlight the role of particular algorithms. Each
algorithm has a driver t.cpp that is compiled into a binary t. Both can be found
in algorithms/<algorithm name>/test/. The driver encapsulates the algorithm in
a stand-alone binary that provides the functionality described in the following
sections.

Reading and Writing Xaif Reading and writing the Xaif are part of the basic
infrastructure found in the source code in system/. The Xerces C++ XML parser
(see xml.apache.org/xerces-c) uses XML element handlers implemented in
system/src/XAIFBaseParserHandlers.cpp to populate the xaifBooster data structures
from the top down. All OpenAD/F components that read Xaif data can per-
form validation according to the schema. Beyond the schema-based validation
are additional consistency checks; therefore, manual modifications of Xaif data
should be done judiciously. The transformed data is unparsed into Xaif through
a traversal of the data structure and calls to virtual functions implemented by
the transformation algorithms.

The catalog of inlinable intrinsics, supplied as a separate XML file following a
specialized schema in Xaif (see Sections 3.1 and 3.2), is parsed prior to the Xaif
program representation. It contains the declarations of intrinsics and defines
the partial derivative expressions. The driver found in system/test/t.cpp provides
only parsing and unparsing functionality. It can be used to establish that the
tool preserves the semantics of the original program when no transformation is
involved.

Linearization Section 2.1 explained the computation of the local partial deriva-
tives cj;, the edge labels in the computational graph G. For each elemental ¢
(see (2)) we find definitions of the respective partials in the inlinable intrinsics
catalog (see above). An example for division is given in Figure 16.

Because partials are defined in terms of positional arguments, the right-hand-
side expression may have to be split into subexpressions to assign intermediate
values (positional arguments for the partial computation) to temporary vari-
ables, for example, v3 and v4 in Figure 4. In cases of the left-hand-side vari-
able occurring on the right-hand side (or being may-aliased to a right-hand-side
variable, see Section 3.1), conservative correctness requires an additional assign-
ment to delay the (potential) overwrite until after the partials depending on

17



i

division : Intrinsics Catalogue

-
I 2 |d1vision| |

L)
(‘square ) _ (u—minus)

1"\e m
(1]

Fig. 16. Partial expressions for the division operator. The expression is given in terms of ar-
gument positions, here 1 for the numerator and 2 for the denominator. Applied to z=n/d this
yields %: 1/d and %: —n/(d * x2). The format also permits the reuse of the intrinsic result
in the partial computation, resulting in savings for some intrinsics such as exp().
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the variable’s original value have been computed. The result of the linearization
is a representation for code containing the potentially split assignments along
with assignments for each nonzero edge label c;;. These representations are con-
tained in the xaifBoosterLinearization::AssignmentAlg instances associated with
each assignment in the Xaif. The generated code, after unparsing to Fortran, is
compilable, but by itself does not compute useful derivative information for f.

Basic Block Preaccumulation Basic block preaccumulation generates a code rep-
resentation that can be used to compute derivatives in forward mode. It builds
on the linearization done in Section 3.1. The first step constructs the computa-
tional graphs G for contiguous assignment sequences in any given basic block.
To ensure semantic correctness of the graph being constructed in the presence
of aliasing, it relies on alias analysis and du/ud-chains supplied by OpenAnal-
ysis; see Section 3.1. The algorithm itself is described in detail in [31]. Because
of aliasing as analyzed by OpenAnalysis, it may not be possible to cover all as-
signments by the construction of a single G. In such cases a sequence of graphs
is created. Likewise, the occurrence of a subroutine call leads to a split in the
graph construction. In the context of Section 2 one may think of the sets of as-
signments forming each of these graphs as a separate basic block. The driver for
the algorithm allows one to disable the graph construction across assignments
and restrict it to single right-hand sides.

Based on the constructed G, an elimination sequence has to be determined.
To allow a choice for the computation of the elimination sequence, the code uses
the interface coded in algorithms/CrossCountryInterface/ and by default calls the
Angel library [4,22]. Angel determines an elimination sequence and returns it as
fused multiply-add expressions in terms of the edge references. Several heuristics
implemented within Angel control the selection of elimination steps and thereby
the preaccumulation code that is generated. The algorithm code calls a default set
of heuristics. All heuristics use the CrossCountryInterface and therefore different
heuristics can be selected.

The second step in this transformation is the generation of preaccumulation
code. First the algorithm concretizes the abstract expression graphs returned by
Angel into assignments and resolves the edge references into the labels ¢;;. The
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resulting code resembles what we show in Figure 5. Then the transformation
generates the code that performs the saxpy operations (a - + y) shown in (7).
Considering the input and output variables z; and y; of a basic block, the code

generation also ensures proper propagation of xi of variables z] € x; N y; by

saving the & in temporaries. The example in Figure 8 illustrates this case. The
detection of the intersection elements relies on the alias analysis provided by
OpenAnalysis. To reduce overhead, we generate saxpy calls following the interface
specified in algorithms/DerivativePropagator/ for four cases:

(a):y’z—gg-:’c, (b):y’z%-:ﬁ—i—y, (¢): y=4%, (d): y=0 . 9)

The generated code is executable and represents an overall forward mode accord-
ing to (7) with basic block-local preaccumulation in cross-country fashion.

Control Flow Reversal Section 2.3 explains the principal approach to the reversal
of the CFG. The CFG reversal as implemented in this transformation is, by
itself, not useful as unparsed code other than to check the correctness without
interference from other transformations. It is a building block for the adjoint
code generator described in Section 3.1. The loop counters and branch identifiers
are stored in the same stack data structure that is used for the tape (introduced
in Section 2.3, see Figure 9, and also used in Section 3.1). The reversal of loops
and branches as detailed in [24] assumes CFGs to be well structured, that is,
essentially to be free of arbitrary jump instructions such as ¢oto or conTINUE. Of
course it is possible to reverse such graphs, for instance by enumerating all basic
blocks, recording the execution sequence, and invoking them according to their
recorded identifier in reverse order. Such a reversal is less efficient than a code
that, by employing proper control flow constructs, aids compiler optimization and
yields much more efficient adjoint code. For the same reason well-tuned codes
implementing the target function favoid arbitrary jumps. Therefore we have not
seen sufficient demand to implement a CFG reversal for arbitrary jumps.

The reversal of loop constructs such as do i=1,10 replaces the loop variable i
with a generated variable name, for example, t, and we iterate up to the stored
execution count, for example, c. Then the reversed loop is do t=1,c. Often the loop
body contains array dereferences such as a(i), but i is no longer available in the
reversed loop. We call this kind of loop reversal anonymous. To access the proper
memory location, i must be stored along with the loop counters and branch
identifiers in the tape stack. To avoid this overhead, the loop reversal may be
declared ezplicit by prepending !$openad xxx simple loop to the loop in question.
With this directive the original loop variable will be preserved; the reversed loop
in our example is constructed as do i=10,1,-1, and no index values for the array
references in the loop body are stored. In general, the decision when an array
index needs to be stored is better answered with a code analysis similar to to-
be-recorded analysis [13]. Currently we do not have such analysis available and
instead, as a compromise, define the simple loop that can be reversed explicitly
as follows:

— loop variables are not updated within the loop,
— the loop condition does not use .ne.,
— the loop condition’s left-hand side consists only of the loop variable,
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— the stride in the update expression is fixed,
— the stride is the right-hand side of the top level + or - operator, and
— the loop body contains no index expression with variables that are modified

within the loop body.

While these conditions can be relaxed in theory, in practice the effort to imple-
ment the transformation will rise sharply. Therefore they represent a workable
compromise for the current implementation. Because multidimensional arrays
often are accessed with nested loops, the loop directive when specified for the
outermost loop will assume the validity of the above conditions for everything
within the loop body, including nested loop and branch constructs. Details can
be found in [32].

Writing and Consuming the Tape Section 2 explains the need to store the c;; on
the tape. The writing transformation® stores the nonzero elements of local Jaco-
bians J;. It is implemented as an extension of the preaccumulation in Section 3.1,
but instead of using the Jacobian elements in the forward saxpy operations as in
(7), we store them on a stack as shown for the example code in Figure 8(a). The
tape consuming transformation algorithm? reinterprets the saxpy operations gen-
erated in Section 3.1 according to Figure 17. The tape writing and consumption

Forward Adjoint
(a) y:%x E:%ﬂ—&-f, 7=0
(b)  g=gr d+yT=57-Y+7
(c) y=2a =y, y=0
(d) =0 7=0

Fig. 17. Saxpy operations from (9) and their corresponding adjoints

are used for the adjoint code generator in Section 3.1.

Basic Block Preaccumulation Reverse This transformation® represents the com-
bination of the various transformations into a coherent output that, unparsed
into code and postprocessed, compiles as an adjoint model. For the postprocess-
ing steps, see Section 3.2. Additional functionality is the generation of code that
is able to write and read checkpoints at a subroutine level; see also Section 2.4,
which relies heavily on the results of side-effect analysis (see Section 3.1) and
the inlinable subroutine call mechanism of the postprocessor (see Section 3.2)
to accomplish the checkpointing. The transformation has various options that
control subroutine argument intents (needed to accomplish checkpointing) and
the renaming of subroutines. Details can be found in [35].

Static Code Analyses (OpenAnalysis) The OpenAnalysis toolkit (see [30])
separates program analysis from language-specific or front-end-specific interme-
diate representations. This separation enables a single implementation of domain-
specific analyses, such as activity analysis, to-be-recorded analysis [13], and lin-
earity analysis [29] in OpenAD/F. Standard analyses provided by OpenAnalysis

5 See algorithms/BasicBlockPreaccumulationTape/
7 See algorithms/BasicBlockPreaccumulationTapeAdjoint/
8 See algorithms/BasicBlockPreaccumulationReverse/
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include CFG and call graph construction, alias analysis, reaching definitions, ud-
and du-chains, and side effects [3]. Because these analyses require lower-level
information (e.g., pointer dereferences) not represented in the numerical core
(see Section 3.1), OpenAnalysis primarily interacts with the language-dependent
OpenADFortTk component (see Section 3.2).

A Dbrief description of alias analysis illustrates this interaction. The alias map
data structure in Xaif maps each variable reference to a set of virtual mem-
ory locations that it may or must reference. For example, if a global variable
g is passed into subroutine foo through the reference parameter p, variable ref-
erences g and p will reference the same location within the subroutine foo and
therefore be aliased to one another. OpenAnalysis determines the aliasing rela-
tionships by querying the front-end’s intermediate representation of the program
through an abstract, analysis-specific interface called the alias IR interface. This
is a language-independent interface between OpenAnalysis and any intermediate
representation for an imperative programming language. Within OpenADFortTk
the whirl2xaif subcomponent implements the alias IR interface for the Fortran in-
termediate representation given in whirl. The interface includes iterators over all
the procedures, statements in those procedures, memory references in each state-
ment, and memory reference expression and location abstractions that provide
further information about memory references and symbols. The analysis result
(i.e., the alias map needed to create Xaif) is returned to whirl2xaif through an
alias results interface.

For the activity analysis performed by OpenAnalysis, the independent and
dependent variables of interest are communicated via the front-end through the
use of pragmas; see Section 3.2. The analysis indicates which variables are active
(i.e., have nonzero derivatives) at any time, which memory references are active,
and which statements are active. The current activity analysis is based on the
formulation in [13], but the implemented data-flow engine does not take advan-
tage of structured data-flow equations yet. It can handle unstructured as well as
structured programs. The source code can be found in subdirectory OpenAnalysis/.

3.2 Language-Dependent Components (OpenADFortTk)

For simplicity we consider all language-dependent components part of the OpenAD
Fortran Tool Kit (OpenADFortTk). The following sections provide details for the
various subcomponents used in the transformation pipeline in the following se-
quence.

1. The canonicalizer converts programming constructs into a canonical form
described in Section 3.2.
2. The compiler front-end mfef90 parses Fortran and generates an intermediate
representation (IR) in the whirl format; see Section 3.2.
3. The bridge component whirl2xaif
— drives the various program analyses (see Section 3.1) and
— translates the numerical core of the program and the results of the pro-
gram analyses from whirl to Xaif; see also Section 3.2.
4. The bridge component xaif2whirl translates the differentiated numerical core
represented in Xaif into the whirl format; see Section 3.2.
5. The unparser whirl2f converts whirl to Fortran; see Section 3.2.
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6. The postprocessor is the final part of the transformation that performs tem-
plate expansion as well as inlining substitutions; see Section 3.2.

Canonicalization In Section 3.1 we explained how the restriction to the numer-
ical core contributes to the language independence of the transformation engine.
Still, even for a single programming language, the numerical core often exhibits a
large variability in expressing semantically identical constructs. To streamline the
transformation engine, we reduce this variability by canonicalizing the numerical
core. Because the canonicalization is done automatically, it does not restrict the
expressiveness of the input programs supplied by the user. Rather, it is a means
to reduce the development effort of the transformation engine. In the following
we describe the canonical form. The canonicalizer is written in Python and can
be found under OpenADFortTk/tools/canonicalize/.

Canonicalization 1 All function calls are canonicalized into subroutine calls.

real function foo(a,b)

! declarations, body etc.
foo = ...

end

(a) y = x * foo(a,b) (c)

subroutine oad_s_foo(a,b,0ad_ctmp0)
! type matches foo return
real oad_ctmpO
! old declarations, body etc.
oad_ctmp0 = ...
end

! type matching foo’s return
real oad_ctmpO

(b) ! transform the assignment (d)
call oad_s_foo(a,b,o0ad_ctmp0)
y = X * oad_ctmpO

Fig. 18. Canonicalizing a function call (a) inside an assignment statement into a subroutine
call (b). The function definition (c) is turned into a subroutine definition (d).

For the transformations, in particular the basic block-level preaccumulation, we
want to ensure that an assignment affects a single variable on the left-hand side.
Therefore, the right-hand-side expression must to be side-effect free. While rarely
enforced by compilers, this is also a requirement for Fortran programs. Rather
than determining side effects of user-defined functions, we pragmatically hoist
all user-defined functions; see Figure 18(a) and (b). Subsequently, assignment
right-hand-side expressions consist only of elemental operations typically defined
in the programming language as built-in operators and intrinsics. The canonical-
izer also performs the accompanying transformation of the function definitions
(Figure 18(c)) into subroutine definitions (Figure 18(d)). The oads. prefix is
adjustable. A particular canonicalization of calls without canonicalization of def-
initions is applied to the max and min intrinsics because Fortran cannot express
their partials in closed form. OpenAD/F provides a run-time library containing
definitions for the respective subroutines called instead.

Canonicalization 2 Nonwvariable actual parameters are hoisted.

Expressions as actual parameters may need to be differentiated, but we differ-
entiate only assignment right-hand sides. Consequently, we hoist all nonvariable
actual parameters into temporaries; see Figure 19(a) and (b).
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integer,parameter :: n=10
(a) call foo(x*y)} (¢) real :: a,b
common /foo/ a(n),b

module oad_m_foo
private n
(d) integer,parameter :: n=10
real :: a(n),b
end module

real ad_ctmpO
oo,

(b)

ad_ctmp0 = x*y
call foo(ad_ctmp0)

Fig. 19. Before (a) and after (b) hoisting a nonvariable parameter and canonicalizing a common
block (c¢) into a module (d).

Canonicalization 3 Common blocks are converted to modules.

To ensure proper initialization of active global variables, the elements of the
common block (Figure 19(c)) are declared as module variables (Figure 19(d)).
Care must be taken to privatize and declare any symbolic size parameters for
elements of the common block. None of the above canonicalizations are intended
to produce manually maintainable code. Therefore we prefer simplicity to more
sophisticated transformations, for example, a common block converter that mod-
ularizes dimension information shared between common blocks.

Compiler Front-End Components (from Open64) The choice of Open64
for some of the programming-language-dependent components ensures some ini-
tial robustness of the tool that is afforded by an industrial-strength compiler. The
Center for High Performance Software Research (HiPerSoft) at Rice University
develops Open64 as a multiplatform version of the SGI Pro64/Open64 compiler
suite, originally based on SGI’s commercial MIPSPro compiler.

OpenAD/F uses the parser, an internal representation, and the unparser of
the Open64 project. The classical compiler-parser mfef90 produces a representa-
tion of the Fortran input in a format known as “very high level” or “source-level”
whirl. The whirl representation can be unparsed to Fortran with whirl2f. The
source-level whirl representation is a typical abstract syntax tree with the ad-
dition of machine type deductions. The original design of whirl, in particular
the descent to lower levels closer to machine code, enables good optimization
for high-performance computing. HiPerSoft’s main contribution to the Open64
community has been the source-level extension to whirl that is geared toward
source-to-source transformations. It has invested significant effort in the whirl2f
unparser.

For the purpose of AD, user-supplied hints and required input are typically
not directly representable in the programming language. For example, an AD
tool must know which variables in the code for f are independent and which are
dependent; see Section 3.1. While one can supply this information externally,
for instance with a configuration file, we introduced a special pragma facility,
encoded within Fortran comments. Pragmas are intrusive, but they have the
advantage of being parsed by the front-end and being associated with a given
context in the code. Thus, code and AD information are easily kept in sync. For
OpenAD/F we extended the Open64 components to generate and unparse these
pragma nodes represented in whirl. The behavior is similar to many other special-
purpose Fortran pragma systems such as OpenMP [27]. To specify a variable y as

23



a dependent, the user writes !$openad dependent(y), where $openad is the special
prefix that identifies OpenAD pragmas. To provide flexibility, we introduced
a generic !$openad xxx <some text> pragma,’ which can communicate arbitrary
pieces of text through the pipeline. These generic pragmas can be associated
with whole procedures, single statements, or groups of statements. They provide
an easy way to implement additional user hints while eliminating the significant
development costs associated with modifying Open64.

<xaif:VariableReference vertex_id="2">
<xaif:SymbolReference vertex_id="1" symbol_id="Y"/>
<xaif:ArrayElementReference vertex_id="2">
<xaif:Index>
<xaif:VariableReference vertex_id="1" ... "I" />
</xaif:Index>
</xaif:ArrayElementReference>
<xaif:VariableReferenceEdge source="1" target="2"/>
</xaif:VariableReference>

Fig. 20. Section of Xaif representing an array dereference Y(I)

Translating between whirl and Xaif The translation of whirl into Xaif
(whirl2xaif), feeding it to the transformation engine, and then backtranslat-
ing the differentiated Xaif into whirl (xaif2whirl) are crucial parts of the tool
pipeline. Two distinguishing features of Xaif shape the contours of whirl2xaif
and xaif2whirl.

First, because Xaif represents only the numerical core of a program, many
whirl statements and expressions are not translated into Xaif. For instance, Xaif
does not represent dereferences for user-defined types because numerical opera-
tions simply will not involve the user-defined type as such but instead always the
numerical field that eventually is a member of the user-defined type (hierarchy).
Derived type references are therefore scalarized; that is, the derived type refer-
ence is converted into a uniquely named scalar variable in Xaif. For example, u%v
may be represented as

<xaif:SymbolReference vertex_id="1" scope_id="4" symbol_id="scalarizedrefO">
and in the Xaif symbol table we would find scalarizedrefo as a scalar variable
with a type that matches that of v. This scalarization is reversed upon back-
translating the transformed Xaif representation into whirl. Variable references
of user-defined type can appear in the Xaif as subroutine parameters and in
these cases are given a special opaque type attribute. Statements in the origi-
nal code that do not have an explicit representation in the Xaif, such as I/0O
statements, take the form of annotated markers that retain their position in the
representation during the transformation of the Xaif. Given the original whirl
and the differentiated Xaif (with the scalarized objects, opaque type, and an-
notated markers preserved), xaif2whirl generates a new whirl representation for
the differentiated code while restoring user-defined types, dereferences, and state-

® The mnemonic behind the name is that as z is the typical variable name, so !$openad xxx
is the variable pragma.
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ments not shown in the Xaif. The differentiated Xaif relies on postprocessing;
see Section 3.2. Therefore the second major challenge for xaif2whirl is the cre-
ation of whirl containing the postprocessor directives related to three tasks to be
accomplished by the postprocessor:

— Declaration and use of the active variables
— Placement of inlinable subroutine calls
— Demarcation of the various subroutine bodies used in the subroutine template

replacements

Second, Xaif provides a way to represent the results of common compiler
analyses. To provide these to the transformation engine, whirl2xaif acts as a
driver for the analyses provided by the OpenAnalysis package; see Section 3.1.
In particular it implements the abstract OpenAnalysis interface to the whirl IR.
The results returned by OpenAnalysis are then translated into a form consistent
with Xaif.

Postprocessing The postprocessor performs the three tasks outlined in Sec-
tion 3.2. The main rationale for its existence is the added flexibility it affords
the tool, which would otherwise be achieved only at a substantially higher im-
plementation effort.

Use of the Active Type The simplest postprocessing task is the concretization
of the active variable declarations and uses. The main rationale for postpon-
ing the concretization of the active type is flexibility with respect to the ac-
tual active type implementation. The current postprocessor is written in Perl!?
and therefore is much easier to adapt to a changing active type implementation
than to find the proper whirl representation and modify xaif2whirl to create it.
However, the ease of adaptation is clearly correlated to the simplicity and in
particular the locality of the transformation: the advantage disappears with in-
creased complexity of the transformation. For an active variable, for example v,
the representation created by xaif2whirl in whirl and then unparsed to Fortran
shows up as TYPE (OpenADTy_active) v. In whirl the type remains abstract because
the accesses to the conceptual value and derivative components are represented
as function calls __value_(v) and _deriv__(v), respectively. The concretized ver-
sions created by the postprocessor for the current active type implementation
(see runTimeSupport/simple/OpenAD_active.:EQO) are type(active) v for the declara-
tion and simply v%v for the value v%d for the derivative component, respectively,
and each subroutine receives an additional USE statement that makes the type
definition in OpenAD_active known.

Inlinable Subroutine Calls The second task, the expansion of inlinable subrou-
tine calls, is more complex because any call expansion now has the scope of a
subroutine body. The calls unparsed from whirl to Fortran are regular subroutine
call statements. They are, however, preceded by an inline pragma

!$openad inline <name(parameters)>

1% The source code can be found under OpenADFortTk/tools/multiprocess/. A rewrite in
Python reusing the same Fortran parsing functionality of the canonicalizer is under way.
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that directs the postprocessor to expand the following call according to a def-
inition found in an input ﬁleu; see also runTimeSupport/simple/ad_inline.f. For
example, pushing a preaccumulated local Jacobian value as in Figure 9(a) might
appear in the code as shown in Figure 21(b), for which we have a definition in

subroutine push(x)

!$openad§ inline DECLS !$openad inline push(subst)

use OpenAD_tape call push(OpenAD_Symbol_5)
implicit none

double precision :: x
!$openad$ end DECLS

dTape (dTapePtr)=x

dTapePtr=dTapePtr+1
end subroutine

dTape (dTapePtr) = OpenAD_Symbol_5
dTapePtr = dTapePtr+1

—
&
Nass

© 00 O Uk W

Fig. 21. Inlinable subroutine definition(a), a call (b), and the expanded call (c).

ad_inline.f as for instance in Figure 21(a). The postprocessor ignores the DECLS
section (lines 2-6) and expands this to what is shown in Figure 21(c). Note that
for flexibility any calls with inline directives for which the postprocessor cannot
find an inline definition remain unchanged. For example, we may compile the
above definition for push and link it instead.

Subroutine Templates The third task, the subroutine template expansion, is
somewhat related to the inlining. In Figure 21, the tape storage referred to in
the push routine needs to be defined, and in our design the subroutine template
is the intended place for such definitions. In our example this is achieved through
including a use statement in the template code (see Figure 21(a), line 3) where
a module provides the taping space. The main purpose of the subroutine tem-
plate expansion, however, is to orchestrate the call graph reversal. The simple
reversal schemes introduced in Section 2.4 can be realized by carrying state while
traversing the call tree.

The basic building blocks from the transformations in Section 3.1 are variants
s; of the body of an original subroutine body sy, each accomplishing one of the
tasks (¢) denoted with (1)...(5) in Figure 11. For instance, the taping variant So
is created by the transformation in Section 3.1 or the checkpointing by the trans-
formation in Section 3.1. To integrate the S; into a particular reversal scheme, we
need to be able to make all subroutine calls in the same fashion as in the original
code and, at the same time, control which task each subroutine call accomplishes.
We replace the original subroutine body with a branch structure in which each
branch body contains one S;. The execution of each branch is determined by a
global structure whose members represent the state of execution in the reversal
scheme. The branches contain code for pre- and poststate transitions enclosing
the respective S;. This ensures that the transformations producing the S; do not
depend on any particular reversal scheme. The postprocessor inserts the s; into a
subroutine template, schematically shown in Figure 22(a). The template is writ-
ten in Fortran. Each subroutine in the postprocessor Fortran input is transformed
according to a default subroutine template found in a ad_template.f file or in a

1 gpecified with command line option -i, which defaults to ad_inline.f
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subroutine template()

- use OpenAD_tape ! tape
template variables
subroutine variables storage
setup 3 use OpenAD_rev ! state
] structure

[state indicates task 1

!$TEMPLATE_PRAGMA_DECLARATIONS

pre state chng. task 1

S

post state chng. task 1

if (rev_modetape) then
! the state component
! ’taping’ is true
!$PLACEHOLDER_PRAGMA$ id=2
end if

&
€

© 00 N OOt

[state indicates task 2

—

pre state chng. task 2
10 if (rev_modeadjoint) then

S2 11 ! the state component
12 ! ’adjoint’ run is true

: 13 !$PLACEHOLDER_PRAGMA$ id=3
14 end if

—J

(wrapup

16 end subroutine template

Fig. 22. Subroutine template components (a), split-mode Fortran template (b)

file specified in a !$openad XXX Template <file name> pragma to be located within
the subroutine body. The input Fortran also contains !$openad begin replacement
<i> paired with pragmas !$openad end replacement. Each such pair delimits a code
variant S; and the postprocessor matches the respective integer identifier ¢ with
the identifier given in the template PLACEHOLDER PRAGMA.

Split reversal is the simplest static call graph reversal. We first execute the
entire computation with the augmented forward code (S2) and then follow with
the adjoint (S3). From the task pattern shown in Figure 10(c) it is apparent that,
aside from the top-level routine, there is no change to the state structure within
the call tree. Therefore, there is no need for state changes within the template.
Since no checkpointing is needed either, we have only two tasks: producing the
tape and performing the adjoint run. Figure 22(b) shows a simple split-mode tem-
plate; see also runTimeSupport/simple/ad_template.split.f. The state is contained
in rev_mode, a static Fortran variable; see runTimeSupport/simple/OpenAD_rev.£90 of
type modeType also defined in this module. To perform a split-mode reversal for
the entire computation, a driver routine calls the top-level subroutine first in
taping mode and then in adjoint mode.

Figure 12 illustrates the task pattern for a joint reversal scheme that requires
state changes in the template and requires more code alternatives. Figure 23
shows a simplified joint mode template together with a detailed explanation; see
also runTimeSupport/simple/ad_template.joint.f.

4 Tool Usage

The following contains brief remarks about how to obtain and use OpenAD/F.
While the principal approach will remain the same, future development may
introduce slight changes.

All components are open source and readily available for download from
the HiPerSoft CVS server at Rice University. Instructions to set up for anony-
mous CVS access are found at http://hipersoft.cs.rice.edu/cvs/index.
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subroutine template()
use OpenAD_tape
use OpenAD_rev
use OpenAD_checkpoints
!$TEMPLATE_PRAGMA_DECLARATIONS
type (modeType) :: orig_mode

if (rev_mode’arg_store) then

! store arguments

!$PLACEHOLDER_PRAGMA$ id=4

end if

if (rev_modelarg_restore) then

! restore arguments

!$PLACEHOLDER_PRAGMA$ 1d=5

end if

if (rev_mode¥plain) then
orig_mode=rev_mode
rev_mode%arg_store=.false.

! run the original code

!$PLACEHOLDER_PRAGMA$ +<d=1
rev_mode=orig_mode

end if

if (rev_mode’tape) then

! run augmented forward code
rev_modejarg_store=.true.; rev_modelarg_restore=.false.
rev_mode%plain=.true.; rev_mode%tape=.false.

!$PLACEHOLDER_PRAGMA$ id=2
rev_modejarg_store=.false.; rev_modejarg_restore=.false.
rev_mode%plain=.false.; rev_mode%adjoint=.true.

end if

if (rev_mode%adjoint) then

! run the adjoint code
rev_modejarg_restore=.true.; rev_modejtape=.true.
rev_modejadjoint=.false.

!$PLACEHOLDER_PRAGMA$ %d=3
rev_mode)plain=.false.; rev_modeltape=.true.
rev_modejadjoint=.false.

end if

end subroutine template

Fig. 23. Joint-mode Fortran template with argument checkpointing. The state transitions in
the template directly relate to the pattern shown in Figure 12. Each prestate change applies to
the callees of the current subroutine. Since the argument store (S4) and restore (Ss) variants
do not contain any subroutine calls, they do not need state changes. Looking at Figure 12, one
realizes that the callees of any subroutine executed in plain forward mode (S1) never store the
arguments (only callees of subroutines in taping mode do). This fact explains lines 18, 25, and
30. Furthermore, all callees of a routine currently in taping mode are not to be taped but instead
run in plain forward mode, as reflected in lines 27 and 28. Joint mode in particular means that a
subroutine called in taping mode (S2) has its adjoint (S3) executed immediately after Sa. This
is facilitated by line 33, which makes the condition in line 35 true, and we execute S3 without
leaving the subroutine. Any subroutine executed in adjoint mode has its direct callees called in
taping mode, which in turn triggers their respective adjoint run. This is done in lines 37-39.
Finally, we have to account for sequence of callees in a subroutine; that is, when we are done
with this subroutine, the next subroutine (in reverse order) needs to be adjoined. This process
is triggered by calling the subroutine in taping mode, as done in lines 41-43. The respective
top-level routine is called by the driver with the state structure having both tape and adjoint
set to true.
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html#anonymous. The reader is encouraged to refer to the up-to-date instruc-
tions in [26].

The components of OpenAD/F transform the code in a predetermined se-
quence of steps, the pipeline. Depending on the particular problem, certain vari-
ations to the pipeline achieve better performance of the generated code. The most
common pipeline setups are encapsulated in a Perl script OpenAD/tools/openad/openad.
Invoking it with the -n option displays the script usage, of which the mode choices
are the most important. For large projects it will be more appropriate to integrate
the sequence of customized transformation steps into a Makefile. The technical
details can be found in [35].

All Fortran produced by whirl2f needs definitions for kind variables referred to
within the generated code. These definitions can be found in runTimeSupport/all/
in w2f__types.£90. The code produced by the transformation pipeline requires im-
plementations (OpenAD/F supplies samples in directory runTimeSupport/simple/)
for the following aspects:

Active type (see OpenAD_active.£90)
— Checkpointing (only for adjoint models, see OpenAD_checkpoints.£90)

Taping (only for adjoint models, see OpenAD_tape.£90)

State for call graph reversal (only for adjoint models; see OpenAD_rev.£90)

The compilation order for these various modules follows exactly the order given
here. The provided sample implementations work with the subroutine inlining
and templates found in the same directory.

We also require a driver that invokes the transformed routines and seeds and
retrieves the derivatives. Examples for such drivers can be found in Section 5.1
and [35].

5 Applying OpenAD/F

The following examples illustrate some of the implementation strategies chosen
for OpenAD/F. The first, simple example demonstrates the general embedding
approach of the transformed code within an overall driver. The second example
is taken from a complex real-life application.

5.1 Toy Example

Consider as a toy example the function y = sin(z?) whose code is depicted in
Figure 24(a), along with the user-defined dependent and independent declara-
tions; see Section 3.2. Transformed into a tangent linear model, head turns into
a subroutine that has active parameters, and the calling code (i.e., the driver)
is written to seed (x%d) and extract (y%d) the derivatives according to Eqn. (1).
A simple driver for the tangent-linear model is shown in Figure 25(a). Because
of the simplicity of the example, the adjoint model version does not provide
much insight other than the reversal of seeding (y%d) and extraction (x%d) of the
derivatives; see Figure 25(b).
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SUBROUTINE head (X, Y)
use w2f__types

subroutine head(x,y) use OpenAD_active
double precision,intent(in) :: x type(active) :: X
double precision,intent(out) :: y INTENT(IN) X
(a)c$openad INDEPENDENT (x) (b) type(active) :: Y
y=sin(x*x) INTENT(OUT) Y
c$openad DEPENDENT (y)
end subroutine ! function body etc.

END SUBROUTINE

Fig. 24. Toy example(a) and the modified signature for the tangent-linear model(b)

1 program driver
X 2 use OpenAD_active
1 program driver
X 3 use OpenAD_rev
2 use OpenAD_active
4 external head
3 external head 5 type (active)
ive):: x,
4 type(active) :: x, y P . ¥
. 6 read *, x/v
(a) 5 read *, x4V (b) .
. 7 y%hd=1.0
6 x%d=1.0 .
8 our_rev_modejtape=.true.
7 call head(x,y) A
R o 9 our_rev_modeAad301nt=.true.
8 write (x,*) "J(1,1)=",y%d
. 10 call head(x,y)
9 end program driver

11 write (x,*) "J(1,1)=",x)d
12 end program driver

Fig. 25. Toy example tangent-linear (a) and adjoint (b) driver

5.2 Shallow Water Model

Implementation details rapidly become critical determinants for the practicality
of complex real-life applications. We illustrate some aspects by way of a model
common in geophysical fluid dynamics. The shallow-water model for a homo-
geneous inviscid fluid on a rotating sphere provides useful insights into time-
dependent large-scale flow regimes in the atmosphere and ocean. While simpler
than a fully-fledged, vertically stratified atmosphere or ocean general circulation
model, it retains many of its complexities, including, from a physical point of
view, the nonlinear momentum equations, and, from a computational point of
view, the scaling of the computational problem with domain size and resolution.
The model is thus well suited as an example for applications where (i) the control
space scales with the dimensionality of the model grid, and (ii) the model state
is nonlinear and time-evolving, requiring the full state for derivative evaluations.
The present implementation was adapted from work by [16] in which they study
the feasability of using bottom topography as a control variable for ocean state
estimation. It is here extended to a global configuration at 2x2 degree horizontal
resolution with realistic bathymetry. The scalar-valued dependent variable (ob-
jective function) is the volume transport through Drake Passage in the Southern
Ocean, the control space spanned by the horizontal bathymetry field is 180*80-
dimensional. We seek the sensitivity of the Drake Passage transport to changes in
bottom topography everywhere (independently) in the domain, which we obtain
by means of the adjoint model (reverse mode AD)

Collect and Prepare Source Files The entire model consists of many sub-
routines distributed over various source files, and the existing build sequence
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involves C preprocessing. To perform the static code analysis as explained in
Section 3.1, all code that takes part in computing the model has to be visible to
the tool, which means it has to be concatenated into a single file. One can do so
for all source files of the model, but in many cases the result will include code
for ancillary tasks such as diagnostics and data processing not directly related
to the model computation. Often it is better to filter out such ancillary code.

— The static code analysis and subsequently the code transformation has to
make conservative assumptions to ensure correctness; for example, for alias
analysis this means an overestimate of the memory locations that can alias
each other. One of the effects of these potential aliases is additional assign-
ments in the generated code, which lead to a less efficient adjoint. Including
ancillary sources may cause more conservative assumptions to be made and
therefore lead to an unnecessary loss in efficiency.

— While the numerical portions frequently have been tuned and made plat-
form neutral, the ancillary portions often are platform dependent and may
contain Fortran constructs that the language-dependent components handle
improperly or not at all. While all tools in principle strive for complete lan-
guage coverage, the limited development resources often cannot be spared to
cover infrequently used language aspects and rather need to be focused on
features that actually benefit capabilities and efficiency for a wide range of
applications.

As for all AD tools in existence today, the above concerns also apply to Open-
AD/F, and users are kindly asked to keep them in mind when preparing the
source code.

Section 5.1 indicates the need for a modification to the code that drives
the model computation to at least perform the seeding and extraction of the
derivatives. The easiest approach to organize the driver is to identify (or create)
a top-level subroutine that computes the model with a single call. This routine
and all code it requires to compute the model become the contents of the single
file to be processed by the tool pipeline. The independent and dependent variables
should be identified in the top-level routine.

Orchestrate a Reversal and Checkpointing Scheme Joint and split rever-
sal (see Section 2.4) are two special cases of a large variety of reversal schemes.
The model here involved a time-stepping scheme controlled by a main loop.
OpenAD/F supports automatic detection of the data set to be checkpointed at
a subroutine level. To use this feature, the loop body is encapsulated into an
inner loop subroutine 1. To realize a nested checkpointing scheme, we select a
number i for the inner checkpoints, divide the original loop bound t by i, and
encapsulate the inner loop into an outer loop subroutine 0 schematically shown
in Figure 26, which is invoked o times.'? The state changes can be encapsulated
in four templates, one joint mode template for top and all its callees except 0,
one for all callees of 1, and one each for 0 and 1. Figure 26(b) shows the cost
subroutine called from I as well as from top. According to Figure 26, however,
we would need two versions of cost, one that as callee of top is reversed in joint

12 for simplicity disregarding remainders o=t/i.
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subroutine top subroutine init -
. call init i

]
do i-1,t L] call cost
o o subroutine O
= do i=1,0 do i=1.i
call newState . 11 0 o 1=i,1 subroutine I
ca call I
. end do
call cost ° .

céll finalCost

end do end subroutine c%ll cost

call finalCost

end subroutine end subroutine

(a) (b)

Fig. 26. Modification of the original code (a) to allow 2 checkpointing levels (b)

mode and one that as callee of I is reversed in split mode. To maintain the static
reversal approach,'® one needs to duplicate cost.

File I/O and Simple Loops The model code uses both the NetCDF library
and the built-in Fortran I/O during the initialization and output of results.
Because during the model computation no intermediate values are written and
read, there is no loss of dependency information. The I/O can lead to problems,
however, for instance when an activated array is initialized, effectively setting
the %v and %d values in the first half of the array instead of setting only the %v
values in the entire array. This is a well-known consequence of the active type
implementation and the lack of type checks in Fortran compilers. While one
could argue that the code should be generated to avoid reading or writing the
derivative information, this is not always the desired behavior, in particular not if
one reads or writes active intermediate variables. A simple and effective measure
to circumvent this problem is to encapsulate initializations in routines excluded
from the transformation. OpenAD/F creates conversion code for parameters to
such external subroutine that are active at the call site. However, this approach
does not work when, instead of passing a parameter, the external routine refers
to active global variables.

Early tests showed a considerable amount of run-time and memory spent
on taping array indices used in loops. The simple loop concept introduced in
Section 3.1 is designed to eliminate much of this overhead. Not all loops within the
given model code satisfy the corresponding conditions. Hence, as an additional
step throughout the model code, we identified the conformant loop constructs to
the tool using the simple-loop pragma. The resulting efficiency gain was about a
factor 4 in run-time and more than a factor 10 in memory use.

Results Figure 27 shows as an example output a map of sensitivities of zonal
volume transport through the Drake Passage to changes in bottom topography
everywhere in a barotropic ocean model computed from the shallow water code.
The integration period spans an interval of 50 years. Enhanced sensitivities are
manifest both locally in the vicinity of the Drake Passage as well as remotely,

13 A dynamic reversal scheme is forthcoming.
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Fig. 27. Sensitivity (gradient) map for 2 x 2 degree resolution

e.g. over the Kerguelen Plateau, the South Pacific Ridge and in the Indone-
sian Throughflow. Sensitivities are mediated through the adjoint variables (i.e.
the Lagrange multipliers of the) flow field represented by the model dynamics.
Instead of one single adjoint model integration 180*80 = 14,400 forward inte-
grations would have been necessary to produce this map. The adjoint model
generated with the current version of OpenAD/F applied to the shallow water
code achieves a run-time that is only about 8 times that of normal model com-
putation. We expect the ongoing development of OpenAD/F(see also Section 6)
to yield further efficiency gains.

6 Summary and Future Work

OpenAD/F is an automatic differentiation tool built on a language-independent
infrastructure with well-separated components. It allows developers to focus on
various aspects of source-to-source transformation AD, including parsing and
unparsing of different programming languages, data and control flow analysis,
and (semantic) transformation algorithms. The components have well-defined
interfaces, and intermediate stages are retained as either Fortran or XML sources.

The largest portion of the ongoing work on OpenAD/F is devoted to improve-
ments needed for the application of the tool to a fully-fledged parallel nonlinear
ocean general circulation model used for ocean circulation and climate studies.
The currently applied configurations of the model yield adjoint codes with an
overhead factor of about 10 over the normal model computation.

OpenAD/F allows users a great amount of flexibility in the use of the code
transformation and permits interventions at various stages of the transformation
process. We emphasize that for large-scale applications the efficiency of check-
pointing and taping can be improved merely by modifying the implementation
of the run-time support, the template, and inlining code. They are not conceived
to be just static deliverables of OpenAD/F but rather are part of the interface
accessible to the user. It is not the intention to stop with a few prepackaged solu-
tions as one would expect from a monolithic, black-box tool. True to the nature
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of an open source design, the interface is instead conceived as a wide playground
for experimentation and improvement.

Aside from the plain AD tool aspect, the intention of the underlying OpenAD
framework is to provide the AD community with an open, extensible, and easy-
to-use platform for research and development that can be applied across pro-
gramming languages. Tools that have a closer coupling with a language-specific,
internal representation have the potential to make the exploitation of certain
language features easier. Consequently we do not expect OpenAD/F to make
obsolete existing source transformation tools such as the differentiation-enabled
NAG Fortran compiler,'* TAF,'® or TAPENADE.'6 Rather, it is to complement
these tools by providing well-defined APIs to an open internal representation that
can be used by a large number of AD developers. Users of AD technology will
benefit from the expected variety of combinations of front-ends and algorithms
that is made possible by OpenAD/F.

As with any software project there is ample room for improvement. The ro-
bustness of the tool, in particular the coverage of some specific language features,
often is of concern to first-time users. While robustness is not to be disregarded,
it is rarely considered a research subject and as such cannot be made the major
objective of a tool development project in an academic setting. Robustness issues
affect mostly the language-dependent components, and the contributing parties
undertake a considerable effort to address concerns common to many applica-
tions. Many issues specific to a particular input code can be addressed by minor
adjustments, which often happen to reflect good coding practices anyway (e.g.,
using well-structured versus unstructured control flow).

We are concerned with changes that affect many applications and yield im-
proved efficiency of the adjoint code. Currently the most important items on the
development list are the support for vector intrinsics and the handling of alloca-
tion/deallocation cycles during the model computation for the generation of an
adjoint model. Because the tool provides a variety of options to the users, we are
also working on collecting data for efficiency estimates that permit an informed
choice between the code transformation options. The results of ongoing research
into AD algorithms — in particular dynamic call graph reversal, more efficient
control flow reversal, and improved elimination techniques in the computational
graphs — will be incorporated into OpenAD.
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