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Abstract. Various economic interactions can be modeled as two-sided markets.
A central solution concept to these markets are stable matchings, introduced by
Gale and Shapley. It is well known that stable matchings can be computed in poly-
nomial time, but many real-life markets lack a central authority to match agents.
In those markets, matchings are formed by actions of self-interested agents. Knuth
introduced uncoordinated two-sided markets and showed that the uncoordinated
better response dynamics may cycle. However, Roth and Vande Vate showed
that the random better response dynamics converges to a stable matching with
probability one, but did not address the question of convergence time.

In this paper, we give an exponential lower bound for the convergence time of
the random better response dynamics in two-sided markets. We also extend these
results to the best response dynamics, i. e., we present a cycle of best responses,
and prove that the random best response dynamics converges to a stable matching
with probability one, but its convergence time is exponential. Additionally, we
identify the special class of correlated two-sided markets with real-life applications
for which we prove that the random best response dynamics converges in expected
polynomial time.

1 Introduction

One main function of many markets is to match agents of different kinds to
one another, for example men and women, students and colleges [GS62], interns
and hospitals [Rot84,Rot96], and firms and workers. Gale and Shapley [GS62]
introduced two-sided markets to model these problems. A two-sided market con-
sists of two disjoint groups of agents. Each agent has some preferences about
the agents on the other side and can be matched to one of them. A match-
ing is stable if it does not contain a blocking pair, i. e., a pair of agents from
different sides who can deviate from this matching and both benefit. Gale and
Shapley [GS62] showed that stable matchings always exist and can be found in
polynomial time. Besides their theoretical appeal, two-sided matching models
have proved useful in the empirical study of many labor markets such as the Na-
tional Resident Matching Program (NRMP). Since the seminal work of Gale and
Shapley, there has been a significant amount of work in studying two-sided mar-
kets, especially on extensions to many-to-one matchings and preference lists with
ties [KC82,RS90,Fle03,EO06]. See for example, the book by Knuth [Knu76], the
book by Gusfield and Irving [GI89], or the book by Roth and Sotomayor [RS90].

⋆ This work was supported by DFG grant VO 889/2, EPSRC Grant GR/T07343/02, and by
the EU within the 6th Framework Programme under contract 001907 (DELIS).



In many real-life markets, there is no central authority to match agents,
and agents are self-interested entities. This motivates the study of uncoordinated

two-sided markets, first proposed by Knuth [Knu76]. Uncoordinated two-sided
markets can be modeled as a game among agents of one side, which we call the
active side. The strategy of each active agent is to choose one agent from the
passive side. Stable matchings correspond to Nash equilibria of the corresponding
games. In these uncoordinated markets, it is important to analyze better response
dynamics among agents, and bound the number of steps for agents to converge
to a stable matching. In this regard, Knuth showed that a sequence of better
responses of agents can cycle, and posed a question concerning the convergence
of this dynamics. Consider the following random better response dynamics: at
each step, pick a blocking pair of agents at random and let the agents in this
pair match to each other. Roth and Vande Vate [RV90] proved that the random
better response dynamics converges to a stable matching with probability one.
However, they do not address the question of convergence time.

Our first result in this paper is an exponential lower bound for the convergence
time of this better response dynamics in uncoordinated two-sided markets (The-
orem 1). Both Knuth’s cycle [Knu76], and Roth and Vande Vate’s proof [RV90]
hold only for the better response dynamics, and not for the best response dynam-

ics. We strengthen the results in [Knu76,RV90] to best responses. That is, we
illustrate a cycle of best responses of agents (Theorem 2), and then, using a po-
tential function argument, we show that starting from any matching, there exists
a short sequence of best responses of agents to a stable matching (Theorem 3).
Moreover, we study the random best response dynamics and show an exponential
lower bound for its convergence time to stable matchings (Theorem 4).

The above lower bounds show that the decentralized game theoretic approach
for stable matchings does not converge in polynomial time. This motivates study-
ing special cases of two-sided markets for which the convergence time is polyno-
mial. In this regard, we consider a natural class of correlated two-sided markets,
which are inspired from real-life one-sided market games in which players have
preferences about a set of markets, and the preferences of markets are corre-
lated with the preferences of players. This special class of two-sided markets is
shown to be a potential game in [AGM+07] and complexity related questions
are studied in [ALMO07]. Two illustrative examples of these markets are mar-
ket sharing games [GLMT04], and distributed caching games [FGMS06,Mir05].
These markets have been also studied for finding stable geometric configurations
with applications in VLSI design [HHP06]. In a correlated two-sided market,
there is a payoff associated with every possible pair of active and passive agent.
Both active and passive agents are interested in maximizing their payoff, that
is, an agent i prefers an agent j to an agent j′ if the payoff associated with pair
(i, j) is larger than the payoff associated with pair (i, j′). In contrast to general
two-sided markets, we show that the random best response dynamics converges
in polynomial time to a stable matching in correlated two-sided markets (Theo-
rem 5).
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2 Preliminaries and Notations

In this section, we define the problems and notations that will be used throughout
the paper.

Two-sided Markets. A two-sided market consists of two disjoint groups of
agents X and Y, e. g., women and men. Each agent has a preference list over
the agents of the other side. An agent i ∈ X ∪ Y can be assigned to one agent j
in the other side. Then she gets payoff pi(j). If the preference list of agent i is
(a1, a2, . . . , an), we say that agent i has payoff k ∈ {0, . . . , n−1} if she is matched
to agent an−k. Also, we say that an agent has payoff −1 if she is unmatched.
Given a matching M , we denote the payoff of an agent i in matching M by pi(M).
Throughout the paper, we use women or players as active agents, and men, or
resources, or markets as passive agents in the corresponding market game.

Given a matching M , an agent x ∈ X and an agent y ∈ Y form a blocking

pair if {x, y} /∈ M and px(y) > px(M) and py(x) > py(M). Given a matching
M and a blocking pair (x, y) in M , we say that a matching M ′ is obtained from
M by resolving the blocking pair (x, y) if the following holds: {x, y} ∈ M ′, any
partners with whom x and y are matched in M are unmatched in M ′, and all
other edges in M and M ′ coincide. A matching is stable if it does not contain a
blocking pair.

Uncoordinated Two-sided Markets. We model the uncoordinated two-sided
market (X ,Y) as a game G(X ,Y) among agents of the active side X . The strategy
of each active agent x ∈ X is to choose one agent y from the passive side Y. The
goal of each active agent x ∈ X is to maximize her payoff px(y). Given a strategy
vector of active players, an active agent x obtains payoff px(y) if she proposes to
y, and if she is the winner of y. Agent x is the winner of y if y ranks x highest
among all active agents who currently propose to her. Additionally, passive agent
y obtains py(x) if x is the winner of y.

Remark 1. Stable matchings in an uncoordinated two-sided market (X ,Y) cor-
respond to pure Nash equilibria of the corresponding game G(X ,Y) and vice
versa.

Consider two agents x ∈ X and y ∈ Y. If a blocking pair (x, y) is resolved, we
say that x plays a better response. If there does not exist a blocking pair (x, y′)
with px(y′) > px(y), then we say that x plays a best response when the blocking
pair (x, y) is resolved. In the random better response dynamics at each step a
blocking pair is chosen uniformly at random and resolved. In the random best

response dynamics at each step an active agent from X is chosen uniformly at
random and allowed to play a best response.

Correlated Two-sided Markets. In general, there are no dependencies be-
tween the preference lists of agents. Correlated two-sided markets are exam-
ples in which the preference lists are correlated. Assume that there is a payoff
px,y ∈ N associated with every pair (x, y) of agents x ∈ X and y ∈ Y such that
px(y) = py(x) = px,y. The preference lists of both active and passive agents are
then defined according to these payoffs, e. g., a passive agent y prefers an active
agent x to an active agent x′ if px,y > px′,y. We assume that for every agent i,
the payoffs associated to all pairs including agent i are pairwise distinct. Then
the preference lists are uniquely determined by the ordering of the payoffs.
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3 Better Response Dynamics

In this section, we consider the random better response dynamics and present
instances for which with high probability the better response dynamics takes
exponential time. We present our instances using an edge-weighted bipartite
graph with an edge for each pair of woman and man. A woman w prefers a man
m to a man m′ if the weight of the edge {w,m} is smaller than the weight of
{w,m′}. On the other hand, a man m prefers a woman w to a woman w′ if the
weight of the edge {m,w} is larger than the weight of the edge {m,w′}. The
bipartite graph is depicted in Figure 1. Before we analyze the number of better

m1 m2 m3 . . . mn−2 mn−1 mn

w1 1 2 3 . . . n − 2 n − 1 n

w2 n 1 2 . . . n − 3 n − 2 n − 1
w3 n − 1 n 1 . . . n − 4 n − 3 n − 2
...

...
...

...
...

...
...

...
wn−1 3 4 5 . . . n 1 2
wn 2 3 4 . . . n − 1 n 1

Fig. 1: The weights of the edges in our construction.

responses needed to reach a stable matching, we prove a structural property of
the instances we construct.

Lemma 1. For the family of instances of the two-sided market problem that is

depicted in Figure 1, a matching M is stable if and only if it is perfect and every

woman has the same payoff in M .

Proof. First we show that every perfect matching M in which every woman
has the same payoff is stable. One crucial property of our construction is that
whenever a woman w and a man m are married, the sum pw(m) + pm(w) of
their payoffs is n − 1. In order to see this, assume that the edge between w and
m has weight l + 1. Then there are l men whom woman w prefers to m, i. e.,
pw(m) = n− 1− l. Furthermore, there are n− 1− l women whom man m prefers
to w, i. e., pm(w) = l. This implies pw(m)+ pm(w) = n− 1. We consider the case
that every woman has payoff k and hence every man has a payoff of n− 1− k in
M . Assume that there exists a blocking pair (w,m). Currently w has payoff k, m
has payoff n−1−k, and w and m are not married to each other. Since (w,m) is a
blocking pair, pw(m) > k and hence pm(w) = n−1−pw(m) < n−1−k = pm(M),
contradicting the assumption that (w,m) is a blocking pair.

Now we have to show that a state M in which not every woman has the
same payoff cannot be a stable matching. We can assume that M is a perfect
matching as otherwise it obviously cannot be stable. Let M be a perfect matching
and define l(M) to be the lowest payoff that one of the women receives, i. e.,
l(M) = min{pw(M) | w ∈ X}. Furthermore, by L(M) we denote the set of
women receiving payoff l(M), i. e., L(M) = {w ∈ X | pw(M) = l(M)}. We claim
that there exists at least one woman in L(M) who forms a blocking pair with
one of the men.

First we consider the case that the lowest payoff is unique, i. e., L(M) = {w}.
Let m be the man with pw(m) = l(M)+1. We claim that (w,m) is a blocking pair.
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To see this, let M ′ denote the matching obtained from M by resolving (w,m).
We have to show that the payoff pm(M) of man m in matching M is smaller
than his payoff pm(M ′) in M ′. Due to our construction pm(M ′) = n− 1− pw(m)
and pm(M) = n − 1 − pw′(m), where w′ denotes m’s partner in M . Due to
our assumption, w is the unique woman with the lowest payoff in M . Hence,
pw′(m) = pw′(M) > pw(M) = pw(m) − 1. This implies pm(M ′) ≥ pm(M), and
hence (w,m) is a blocking pair.

It remains to consider the case that the woman with the lowest payoff is not
unique. We claim that also in this case we can identify one woman in L(M) who
forms a blocking pair. Let w(1) ∈ L(M) be chosen arbitrarily and let m(1) denote
her partner in M . Let m(2) denote the man with pw(1)(m(2)) = pw(1)(m(1)) + 1
and let w(2) denote the woman married to m(2) in M . If the payoff of w(2) in
M is larger than the payoff of w(1) in M , then by the same arguments as for
the case |L(M)| = 1, it follows that (w(1),m(2)) is a blocking pair. Otherwise,
if pw(1)(M) = pw(2)(M), we continue our construction with w(2). To be more
precise, we choose the man m(3) with pw(2)(m(3)) = pw(2)(m(2)) + 1 and denote
by w(3) his partner in M . Again either w(3) ∈ L(M) or (w(2),m(3)) is a blocking
pair. In the former case, we continue the process analogously, yielding a sequence
m(1),m(2),m(3), . . . of men. If the sequence is finite, a blocking pair exists. Now
we consider the case that the sequence is not finite. Let j ∈ {1, . . . , n} be chosen
such that m(1) = mj. Due to our construction, it holds m(i) = m(j−i mod n)+1 for
i ∈ N. Hence, in this case, every man appears in the sequence, and hence every
woman has the same payoff l(M).

Now we can prove that with high probability the number of better responses
needed to reach a stable matching is exponential.

Theorem 1. There exists an infinite family of two-sided market instances

I1, I2, I3, . . . and corresponding matchings M1,M2,M3, . . . such that, for n ∈ N,

In consists of n women and n men and a sequence of random better responses

starting in Mn needs 2Ω(n) steps to reach a stable matching with probability

1 − 2−Ω(n).

Proof. We consider the instances shown in Figure 1. In Lemma 1, we have shown
that in any stable matching all women have the same payoff. For a given matching
M , we are interested in the most common payoff among the women and denote
by χ(M) the number of women having this payoff, i. e.,

χ(M) = max
i∈{0,...,n−1}

|{w ∈ X | pw(M) = i}| .

In the following, we show that whenever χ(M) is at least 15n/16, then χ(M) is
more likely to decrease than to increase. This yields a biased random walk which
takes with high probability exponentially many steps to reach χ(M) = n. If the
most common payoff is unique, which is always the case if χ(M) > n/2, then we
denote by X ′(M) the set of women having this payoff and by Y ′(M) the set of
men married to women from X ′(M).

Let δ = 15/16 and assume that χ(M) ≥ δn. First, we consider the case that
the current matching M is not perfect, i. e., there exists at least one unmatched
woman w and at least one unmatched man m. We call a blocking pair good if
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for the matching M ′ obtained from resolving it, χ(M ′) = χ(M) − 1. On the
other hand, we call a blocking pair bad if χ(M ′) = χ(M) + 1 or if M ′ is a
perfect matching. We count now the number of good and of bad blocking pairs.
Let k denote the most common payoff. Both the unmarried woman w and the
unmarried man m form a blocking pair which each person who prefers her/him
to his/her current partner. Since the current payoff of the women in X ′(M)
is k, at most k of these women do not improve their marriage by marrying the
unmarried man m. Analogously, since the payoff of the men in Y ′(M) is n−1−k,
at most n − 1 − k of these men do not improve their marriage by marrying the
unmarried woman w. This implies that the number of good blocking pairs is at
least max{δn− k, δn−n + 1+ k} ≥ (δ − 1/2)n. On the other hand, there can be
at most (1− δ)n + 1 bad blocking pairs. This follows easily because only women
from X \ X ′(M) can form bad blocking pairs and each of these women forms at
most one bad blocking pair as there is only one man who is at position n − k
in her preference list. Furthermore, there exists at most one blocking pair which
makes the matching perfect.

For a matching M with χ(M) ≥ δn, the ratio of good blocking pairs to bad
blocking pairs is bounded from below by

(δ − 1/2)n

(1 − δ)n + 1
≥

7

2
.

This implies that the conditional probability of choosing a good blocking pair
under the condition that either a good or a bad blocking pair is chosen is bounded
from below by 7/9.

If a good blocking pair is chosen, χ decreases by 1. If a bad blocking pair is
chosen χ increases by 1 or the matching obtained is perfect. In the latter case,
after the next step again a matching M ′′ is obtained that is not perfect. For this
matching M ′′, we have χ(M ′′) ≤ χ(M) + 2. Since we are interested in proving
a lower bound, we can pessimistically assume that the current matching is not
perfect and that whenever a bad blocking pair is chosen, χ increases by 2. Hence,
we can obtain a lower bound on the number of better responses needed to reach
a stable state, i. e., a state M with χ(M) = n, by considering a random walk on
the set {⌈δn⌉, ⌈δn⌉ + 1, . . . , n} that starts at ⌈δn⌉, terminates when it reaches
n, and has the transition probabilities as shown in Figure 2. This is a biased

2

9

7

9

. . .

. . .

7

9

7

9

7

9

7

9

7

9

2

9

2

9

2

9

2

9

⌈δn⌉ ⌈δn⌉ + 1 ⌈δn⌉ + 2 n − 3 n − 2 n − 1 n

Fig. 2: Transition probabilities of the random walk.

random walk. If we start with an arbitrary matching M satisfying χ(M) ≤ δn,
then one can show by applying a Chernoff bound that the biased random walk
takes 2Ω(n) steps with probability 1 − 2−Ω(n) to reach state n.

4 Best Response Dynamics

In this section, we study the best response dynamics in two-sided markets.

8



Theorem 2. There exists an instance of the two-sided market problem with three

women and three men in which the best response dynamics can cycle.

Proof. Let w1, w2, w3 denote the women and let m1,m2,m3 denote the men. Let
the preference of w1, w2, w3, m1, m2, and m3 be (m2,m3,m1), (m1,m2,m3),
(m3,m1,m2), (w1, w3, w2), (w2, w1, w3), and (w1, w2, w3) respectively. We de-
scribe a state by a triple (x, y, z), meaning that the first woman is married to
the man mx, the second woman to man my, and the third woman to man mz. A
value of −1 indicates that the corresponding woman is unmarried. The following
sequence of states constitutes a cycle in the best response dynamics:

(−1, 2, 3) → (3, 2,−1) → (3, 1,−1) → (3,−1, 1)

→ (2,−1, 1) → (−1, 2, 1) → (−1, 2, 3) .

Theorem 3. For every two-sided market instance with n women and n men and

every matching M , there exists a sequence of 2n2 best responses starting in M
and leading to a stable matching.

Proof. We divide the sequence of best responses into two phases. In the first
phase only married women are allowed to change their marriages. If no married
woman can improve her marriage anymore, then the second phase starts. In the
second phase, all women are allowed to play best responses in an arbitrary order.
In the first phase, we use the potential function

Φ(M) =
∑

x∈X

(n − px(M)) ,

where X denotes the set of married women. This potential function decreases
with every best response of a married woman by at least 1 because this woman
increases her payoff and the set X can only become smaller. Since Φ is bounded
from above by n2, the first phase terminates after at most n2 best responses in
a state in which no married woman can improve her marriage.

Now consider the second phase. We claim that if we start in a state M ′ in
which no married woman can improve her marriage, then every sequence of best
responses terminates after at most n2 steps in a stable matching. Assume that
we start in a state M ′ in which no married woman can improve her marriage
and that an unmarried woman w plays a best response and marries a man m,
leading to state M ′′. Then the payoff of m can only increase. Hence, man m does
not accept proposals in state M ′′ which he did not accept in M ′. This implies
that also in M ′′ no married woman can improve her marriage. Since no married
woman becomes unhappy with her marriage, men are never left and therefore
they can only improve their payoffs. With every best response one man increases
his payoff by at least 1. This concludes the proof of the theorem as each of the
n men can increase his payoff at most n times.

Theorem 4. There exists an infinite family of two-sided market instances

I1, I2, I3, . . . and corresponding matchings M1,M2,M3, . . . such that, for n ∈ N,

In consists of n women and n men and a sequence of random best responses start-

ing in Mn needs 2Ω(n) steps to reach a stable matching with probability 1−2−Ω(n).
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Fig. 3: Nodes in the upper and lower row correspond to women and men respectively. The figure
also shows the initial state and the preference lists. The lists are only partially defined, but they
can be completed arbitrarily.

Proof. For every large enough n ∈ N, we construct an instance In with n women
and n men in which the preference lists and the initial state Mn are chosen as
shown in Figure 3.

Let M denote the set of matchings that contain the edges

(w1,m1), . . . , (wj−2,mj−2), (wj ,mj−1), . . . , (wk,mk−1),

(wk+1,mk+1), . . . , (wl,ml), (wl+2,ml+1), . . . , (wn,mn−1)

for some j < k < l with n/16 ≤ k − j ≤ n/4, k < n/4, and l ≥ 5n/8 (cf.
Figure 4a). We claim that if one starts in a matching that belongs to M, then
with probability 1 − 2−cn, for an appropriate constant c > 0, another matching
from M is reached after Θ(n) many steps. Since no matching from M is stable,
this implies the theorem.

wj−1 wl+1

mk

(a) Matching from M.

mk

(b) w1 proposes to mk if 7n

8
≤ k < n.

(c) A new diagonal is introduced.

Fig. 4: One phase of the best response dynamics.

If the current matching belongs to M, then there are at most three women
who have an incentive to change their marriage. Woman wj−1 can propose to
man mj−1, woman wk+1 can propose to man mk, and, if l < n, woman wl+1 can
propose to man ml+1. Intuitively, as long as we are in a state that belongs to
M, there exists one block of diagonal marriages in the first half, and possibly a
second block at the right end of the construction. In every step the left end of
the first block, the right end of the first block, and the left end of the second
block move with the same probability one position to the right. Since the length
of the first block is Ω(n), one can show by a standard application of a Chernoff
bound that the probability that the first block vanishes, i. e., its left end catches
up with its right end, before its right end reaches man mn is exponentially small.
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Furthermore, since the distance between the first and the second block is Ω(n),
the probability that the right end of the first block catches up with the left end
of the second block before the second block has vanished is also exponentially
small.

When the right end of the first block has reached man m7n/8, i. e., m7n/8

is unmarried, then with probability exponentially close to 1, the second block
has already vanished (see Figure 4b) because the initial distance between the
two blocks is at least 3n/8 and only with probability 2−Ω(n) it decreases to n/8
before the second block vanishes. As long as the right end of the second block
lies in the interval {7n/8, . . . , n − 1}, woman w1 has an incentive to change her
marriage since she prefers mk with k ∈ {7n/8, . . . , n − 1} to m1. Once she has
changed her strategy, a new block of diagonals can be created on the left end
of the construction (see Figure 4c). In particular, woman w1 will only return to
m1 if no man mk with k ∈ {7n/8, . . . , n − 1} is unmarried, that is, she will only
return to m1 if the right end of the first block has reached man mn. Since it is
as likely that a new diagonal at the beginning is inserted as it is that the right
end of the block moves one position further to the right, the expected length of
the newly created block is n/8 − 2. By Lemma 2 it follows that the length of
the new block lies with high probability in the interval [n/16, n/4]. Only with
exponentially small probability the left end of the block has not passed man
m5n/8 when the right end has reached man mn because this would imply that
the length of the block has increased from at most n/4 to 3n/8. If none of these
exponentially unlikely failures events occurs, we are again in a matching from
M.

Lemma 2. Let X be the sum of n/8 geometric random variables with parameter

p = 1/2. There exists a constant c > 0 such that

Pr [X /∈ [n/16, n/4]] ≤ 2e−cn .

Proof. The random variable X is negative binomially distributed with parame-
ters n/8 and 1/2. For a series of independent Bernoulli trials with success prob-
ability 1/2, the random variable X describes the number of failures before the
(n/8)th success is obtained. For a ∈ N, let Ya be a binomially distributed random
variable with parameters a and 1/2. Then

Pr [X > n/4] = Pr
[

Y3n/8 < n/8
]

= Pr

[

Y3n/8 <
2

3
E

[

Y3n/8

]

]

≤ e−cn ,

where the last inequality follows, for an appropriate constant c > 0, from a
Chernoff bound. Furthermore

Pr [X < n/16] = Pr
[

Y3n/16 > n/8
]

= Pr

[

Y3n/16 >
4

3
E

[

Y3n/16

]

]

≤ e−cn .

5 Correlated Two-Sided Markets

In this section, we show that, in contrast to general two-sided markets, the con-
vergence time of the random best response dynamics in correlated two-sided
markets is polynomial.
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Theorem 5. In every correlated two-sided market the random best response dy-

namics converges to a stable matching in polynomial time with high probability.

Proof. We denote by a round a consecutive sequence of best responses such that
every player is activated at least once. Due to the coupon collector’s problem,
each round has length Θ(n log n) with high probability. Let p denote the highest
possible payoff that can be achieved. After the first round there will be a pair
(x, y) ∈ X × Y contained in the matching such that py(x) = p because players
play best responses. After the value p occurs in the potential function Φ, player x
will never leave market y again. Furthermore, x cannot be displaced from y since
no player is strictly preferred to x by resource y. Hence, the assignment of x to y
can be fixed and we can remove x and y from the game. Now we can inductively
apply the same argument to the remaining game. This implies that after at most
n rounds a stable state is reached. Hence, the best response dynamics terminates
after O(n2 log n) steps in expectation and with high probability.
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