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An Automata Theoretic Approach to the Theory of
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Frank G. Radmacher

Lehrstuhl für Informatik 7, RWTH Aachen University, Germany
radmacher@automata.rwth-aachen.de

Abstract. We investigate rational relations over trees. Our starting point
is the definition of rational tree relations via rational expressions by Raoult
(Bull. Belg. Math. Soc. 1997). We develop a new class of automata, called asyn-
chronous tree automata, which recognize exactly these relations. The automata
theoretic approach is convenient for the solution of algorithmic problems (like
the emptiness problem). The second contribution of this paper is a new subclass
of the rational tree relations, called separate-rational tree relations, defined via
a natural restriction on asynchronous tree automata. These relations are closed
under composition, preserve regular tree languages, and generate precisely the
regular sets in the unary case (all these properties fail for the general model),
and they are still more powerful than, for instance, the automatic tree relations.

1 Introduction

Automata definable relations over words are widely investigated. Recognizable,
automatic, deterministic rational, and (non-deterministic) rational relations re-
sult in a well-known hierarchy [CCG06]. Proper generalizations of these theories
to trees have been established over the past years in the case of recognizable
relations and automatic relations [CDG+07, Blu99, BG04]. However, it is still
debatable how to obtain a reasonable generalization of rational word relations to
trees.

The theory of rational relations over words is a well-developed theory [Ber79,
Eil74]. Rational relations over words can be introduced in several equivalent
ways: First, they are definable via rational expressions (a generalization of regular
expressions), which means that rational relations are generated from the finite
relations by closure under union, componentwise concatenation, and Kleene star.
On the other hand rational relations are recognized by a generalized model of
finite automata, so-called asynchronous automata (sometimes also called multi-
tape automata). They were introduced in their weaker deterministic variant by
Rabin and Scott in the late fifties [RS59]. Nowadays the non-deterministic model
introduced by Elgot and Mezei in [EM65] which exactly recognize the rational
relations is considered as the right generalization. Elgot and Mezei showed that
rational relations includes many other known binary relations. They also studied
the closure properties of rational relations. Fischer and Rosenberg discovered
most of the undecidability results [FR68].

Generalizing rational relations to trees (resp. terms) is not straightforward.
A survey focussing on binary relations (transductions) was given by Raoult
in [Rao92]. Attractive results on rational word relations which one would also
like for rational tree relations are the following:

∗ This article is an extended version of [Rad08].



– Applied to unary trees, the rational word relations should be generated (also
in the case of n-ary relations).

– A characterization via rational expressions should exist (this implies closure
under union, some kind of componentwise concatenation, and Kleene star).

– A natural automata theoretic characterization should exist.

– Restricted to unary relations the class of regular tree languages should be
generated.

– Binary rational tree relations should be closed under composition.

– Binary rational tree relations (transductions) should preserve regular tree
languages.

An additional motivation for our automata theoretic approach is the possi-
bility of defining other classes of relations over trees which have their natural
definition in automata theory. Examples for such languages and relations are
regular languages over unranked trees which are defined via unranked tree au-
tomata [BMW01, CDG+07], and deterministic rational relations which are de-
fined via deterministic asynchronous automata [RS59, PS99, Gri02]. The theories
of rational relations over unranked trees and deterministic rational tree relations
were started in [Rad07].

Towards a generalization of rational relations to trees, Raoult suggests
in [Rao97] defining relations over trees by tree grammars in which non-terminals
are represented by tuples of letters (called multivariables), so that a synchro-
nization between the productions is possible. Raoult calls these relations rational
tree relations and gives also a characterization in terms of rational expressions.

Complementary Raoult’s grammars, the first contribution of this paper are
so-called asynchronous tree automata which recognize exactly the rational tree
relations. With our automata theoretic approach it is possible to address certain
properties and (un-) decidability results of rational tree relations.

Rational tree relations in the mentioned format have a few drawbacks. They
do not coincide with regular tree languages in the unary case, they are not
closed under composition, and if considered as transductions they do not pre-
serve regular tree languages. In [Rao97] Raoult proposes a restriction of his tree
grammars to so-called transduction grammars which resolve these problems. But
these have the disadvantage that, when applied to unary trees, they can only
be considered as a generalization of binary rational word relations, but not of
the n-ary case. Furthermore, Raoult’s restriction is difficult to adapt to tree
automata, i. e. it misses a natural automata theoretic characterization in our
framework. To take account of these problems the second contribution of this
paper is such a natural restriction of rational tree relations (which semantically
differs from Raoult’s one). These so-called separate-rational tree relations meet
all the properties demanded above and are still more powerful than automatic
tree relations [CDG+07, BG04].

1.1 Related Works

As mentioned above, deterministic rational tree relations and rational tree rela-
tions over unranked trees were addressed in [Rad07]. A deterministic top-down
approach was applied to recognizable, automatic, and rational tree relations
which results in a whole hierarchy of automata definable tree relations.
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An application of rational relations is the classification of word-rewriting sys-
tems. Caucal investigated left,- right, suffix- and, prefix-systems and showed these
have a rational derivation [Cau00]. Meyer adapted this classification to term-
rewriting systems using Raoult’s rational tree relations. He examined bottom-
up-, top-down-, suffix- and prefix-systems and showed the former three have a
rational derivation, but some prefix-systems have not [Mey04, Mey05]. With re-
spect to Raoult’s restriction of transduction grammars Meyer notes that even
some top-down-systems do not satisfy this restriction.

Morvan investigated the class of rational graphs over words whose nodes are
represented by words and whose edge relation is recognizable by a rational word
relation [Mor00]. The model-checking problem on those graphs is undecidable for
first order logic. However, decidability of the model-checking problem for modal
logic is easy to obtain. Since rational word relations preserve regular languages,
a set of nodes which satisfies a given formula (with regular sets of nodes as
propositions) have a finite representation (cf. [Rad07]).

1.2 Structure of the paper

This remainder of this paper is structured as follows. First we fix a few nota-
tions in Sect. 2. In Sect. 3 we define rational tree relation introduced by Raoult,
develop asynchronous tree automata, and show the equivalence. In Sect. 4 we
use asynchronous tree automata to investigate the properties of rational tree
relations. We will see to what extent they are a good generalizations of the
word case. In Sect. 5 we introduce separate-rational relations and corresponding
separate-asynchronous automata. A more detailed discussion on the restrictions
of separate-rational relations and Raoult’s transduction grammars is given at the
end of Sect. 5. Section 6 contains a conclusion and an outlook on further research.
There, we will give some ideas for defining rational relations over unranked trees
and deterministic rational tree relations.

Acknowledgements. This work contains some results of my diploma the-
sis [Rad07]. Special thanks go to Wolfgang Thomas for supervising this work
and for his numerous helpful suggestions.

2 Preliminaries

We assume the reader is familiar with the basics of tree automata [GS84,
CDG+07] and with rational relations over words [Ber79, Eil74]. Here, we fix just
a few notations and conventions used throughout this paper.

We consider trees and tuple of trees over ranked alphabets Σ = Σ0 ·∪ . . . ·∪ Σm

(where Σi contains exactly the symbols of rank i). Often we will state the rank
of a symbol in parentheses as superscript. So, f (2) means that the symbol f has
rank 2. A tree t is represented as a pair (domt, val) where domt is the set of tree
nodes and val : domt → Σ maps each node of rank k to a symbol in Σk. Similarly,
a tuple t̄ = (t1, . . . , tn) of trees is represented as (domt̄, val) where domt̄ is the
disjoint union of the domti . We write trees as terms in the standard way. The
height of a tree (resp. a tuple of trees) is defined as the number of nodes of a
longest path from a root to a leaf. For example a tree which only consists of the
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root has a height of 1. With TΣ we denote the set of all trees over Σ. A tree
language resp. tree relation is a subset of TΣ resp. (TΣ)n. In Sect. 5 we will also
use a distinguished alphabet for each projection to one component of a relation.
An n-ary recognizable relation is a finite union of products T1× . . .×Tn of regular
tree languages T1, . . . , Tn.

3 Rational Tree Relations

In this section we present the theory of rational tree relations starting from
Raoult’s definition via rational expressions [Rao97]. Then we define asynchronous
tree automata and show the equivalence to Raoult’s definition.

3.1 Definition of Rational Tree Relations via Rational Expressions

Rational relations over words are defined inductively as the sets which are closed
under union, componentwise concatenation, and Kleene star. This yields a de-
scription of rational relations by rational expressions. In order to define the con-
catenation for tuple of trees, Raoult has the idea of using multivariables. These
enable a simultaneous substitution on distinguished leaves. This approach is a
natural generalization of the concatenation of tree languages in which single
leaves are distinguished as variables for substitution.
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Fig. 1. Generating an unbounded number of instances of a multivariable.

Example 3.1. Consider the rational expression

(cx1y1, cbx2y2)
∗y1y2 ·y1y2

(a, a) ·x1x2
(bz1, bz2)

∗z1z2 ·z1z2
(a, a)

over the ranked alphabet Σ = {a(0), b(1), c(2)}. In this example we use “multivari-
ables” x1x2, y1y2, z1z2 (written also as X,Y,Z) which are subject to simultaneous
substitution. The form of tuples of the rational tree relation defined by above
expression is depicted in Fig. 1. We see that the multivariable X = x1x2 oc-
curs in distinct instances x1x2, x

′
1x

′
2, . . . which have to be distinguished. Here,

the number of possible instances of X cannot be bounded by a natural number.
Each instance of the multivariable X becomes substituted with two unary trees
of same height (see Fig. 3(a) on page 7 for a full example pair of trees).
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Alternatively, rational tree relations can also be defined via tree gram-
mars [Rao97]. The relation defined by this rational expression can also be
generated by the tree grammar with multivariables S = S1S2 and A = A1A2 as
non-terminals (S is the start symbol), and following production:

S1S2 → c(A1, S1) c(b(A2), S2) | a a

A1A2 → b(A1) b(A2) | a a .

Towards the formal definition of rational tree relations, let V be a set of
variables. A multivariable is a sequence in V+ containing at most one occurrence
of any variable. For X = x1 · · · xn (n > 0) we say that the multivariable X
has length |X| := n. The set of all instances of variables resp. multivariables is
the cartesian product V × N resp. V+ × N. We say (x, j) is the j-th instance
of variable x, written xj , and (X, j) is the j-th instance of multivariable X,
written Xj . In order to avoid too many indices in the notation, we write instances
x0

i , x
1
i , x

2
i , . . . of a variable xi also in the form xi, x

′
i, x

′′
i , . . ..

Instances of variables are nullary symbols which can only occur as leaves.
Furthermore, each instance of a multivariable can occur in a tuple of trees at
most once, and if an instance of a variable occurs, so all other variables of the
same multivariable and same instance: Formally, let t̄ ∈ Tm

Σ be a tuple of trees,

let X = x1 · · · xn be a multivariable where xj
i occurs in t̄; then each xj

i′ occurs
in t̄ exactly once (and as leaf) for 1 ≤ i, i′ ≤ n.

Let X = x1 · · · xn be a multivariable of length n, R a relation over n-tuples
of trees, S a relation over m-tuples of trees, and t̄ a m-tuple of trees containing
k instances of X. Then the concatenation of a tuple with a tree relation is defined
as

t̄ ·X R := {t̄′ | t̄′ results from t̄ by substituting each of the k instances of X

with a tuple from R} ,

the concatenation of two tree relations is defined as

S ·X R := {t̄ ·X R | t̄ ∈ S} ,

and the iterated concatenation and the Kleene star for tree relations are defined
as R0X := {(xj

1, . . . , x
j
n)}, RnX := {(xj

1, . . . , x
j
n)} ∪ R ·X R(n−1)X , and

R∗X :=
⋃

n≥0

RnX .

In the case of the iterated concatenation the instance j ∈ N is chosen as a new
instance, so that it occurs in the resulting relation only once.

Definition 3.2 ([Rao97]). The classes Ratn of rational tree relations are de-
fined inductively as follows:

– Each finite n-ary tree relation is in Ratn.
– R ∈ Ratn ∧ S ∈ Ratn ⇒ R ∪ S ∈ Ratn.
– R ∈ Ratn ∧ |X| = m ∧ S ∈ Ratm ⇒ R ·X S ∈ Ratn.
– R ∈ Ratn ∧ |X| = n ⇒ R∗X ∈ Ratn.

5



3.2 Rational Tree Languages

We denote the unary relations in the class Rat1 as rational tree languages. Note
that the class Rat1 does not coincide with the class of regular tree languages:

Example 3.3. The rational expression (fx1x2) ·x1x2
(gy1, gy2)

∗y1y2 ·y1y2
(aa) over

the ranked alphabet Σ = {f (2), g(1), a(0)} describes the tree language Tsim =
{f(gna, gna) | n ∈ N} ∈ Rat1, but Tsim is not regular.

So, we obtain a difference to rational relations over words which coincide
to regular languages when restricted to unary sets. This fact already motivates
restrictions of rational tree relations that will be discussed in Sect. 5.

3.3 Asynchronous Tree Automata

Now we introduce a class of automata recognizing exactly the class Ratn of
rational tree relations. The above considered Examples 3.1 and 3.3 show that
these automata basically have to provide the following three mechanisms:

– Certain transitions are supposed to be used simultaneously. We will achieve
this by combining states to tuples of states which we will call macro states.
In the runs of our automata all states of a macro state have to be reached
and left simultaneously.
We write a finite set of macro states as Q = {q1, . . . , qk} where q1, . . . , qk are
tuples of states taken from a finite set Q of states (Q contains all states that
occur in some q ∈ Q). A macro state has the form q = (q1, . . . , ql) with l ≥ 1.
All macro states in Q are “pairwise disjoint”, i. e. {q1, . . . , ql}∩{p1, . . . , pm} =
∅ for all macro states q = (q1, . . . , ql) and p = (p1, . . . , pm) in Q.

– In addition we require some mechanism to allow asynchronous moves. We
will achieve this by the addition of ε-transitions. This enables the automaton
to do a bottom-up step in one component and to stay in place in another
component (possibly just changing the state).

– An unbounded number of instances of macro states has to be distinguished. In
a run we have to distinguish whether states belong to the same or to different
instances. We will achieve this by combining each state in a transition with
a variable. States with same variables must belong to the same instance
when these transitions are used. In a run of our automaton, variables will
be instantiated with natural numbers to denote the different instances.

Example 3.4. Consider macro states p = (p1, p2) and q = (q1, q2). Then two
transitions ((p1, x), (p1, y), (p2, y), f, (q1, z)), ((p2, x), ε, (q2, z)) enable a bottom-
up computation step as depicted in Fig. 2.

f
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(p2, 1)

vv
vv HH

HH −→

(q1, 3)

kkkkkkk
SSSSSSS

(q2, 3)

vv
vv HH

HH

(p1, 1) (p1, 2) (p2, 2)

Fig. 2. A computation step of an asynchronous tree automaton.

6



c

iiiiiiii
UUUUUUUU

c

iiiiiiii
UUUUUUUU

b c

iiiiiiii
UUUUUUUU

b c

iiiiiiii
UUUUUUUU

b b c

iiiiiiii
UUUUUUUU

b b c

iiiiiiii
UUUUUUUU

a a a a b b b a

a a a

(a)

(qc1 , 7)

iiiiiiii
UUUUUUUU

(qc2 , 7)

iiiiiiii
UUUUUUUU

(qa1/b1 , 3) (qc1 , 6)

iiiiiiii
UUUUUUUU

(qb2 , 3) (qc2 , 6)

iiiiiiii
UUUUUUUU

(qa1
, 3) (qa1/b1 , 2) (qc1 , 5)

iiiiiiii
UUUUUUUU

(qa2
, 3) (qb2 , 2) (qc2 , 5)

iiiiiiii
UUUUUUUU

(qa1
, 3) (qa1

, 2) (qa1/b1 , 1) (qc1 , 4) (qa2
, 3) (qa2

, 2) (qb2 , 1) (qc2 , 4)

(qa2
, 3) (qa2

, 2) (qa2
, 1)

(b)

Fig. 3. (a) A pair of trees; (b) an accepting run of A(2) on this pair of trees.
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Before we give the formal definition of asynchronous tree automata, we start
with a comprehensive example.

Example 3.5. Consider the rational relation from Example 3.1. We define an
asynchronous tree automaton recognizing this relation. Formally, we will denote
our automaton with A(2) = 〈Q,Q, Var, Σ,∆,F〉 (the superscript indicates that
the automaton runs on pairs of trees). Σ = {a(0), b(1), c(2)} is a ranked alphabet.
The used macro state set Q = {(qa1

, qa2
), (qb1 , qb2), (qc1 , qc2)} consists of pairwise

disjoint tuples of states in Q. We declare the macro states of the set F ⊆ Q as
final. In this example we declare only the macro state (qc1, qc2) as final, i. e. the
automaton accepts a pair of trees iff there exists a run of A(2) which reaches qc1

at the first and qc2 at the second root node. A(2) has the following transitions in
its transition relation ∆ which employ variables of the set Var = {x, y, z}:

(a, (qa1
, x)) , (a, (qc1 , x)) ,

(a, (qa2
, x)) , (a, (qc2 , x)) ,

((qa1
, x), b, (qa1

, x)) , ((qa1
, x), ε, (qb1 , x)) ,

((qa2
, x), b, (qa2

, x)) , ((qa2
, x), b, (qb2 , x)) ,

((qb1 , x), (qc1 , y), c, (qc1 , z)) , ((qb2 , x), (qc2 , y), c, (qc2 , z)) .

Figure 3 shows a pair of trees and an accepting bottom-up run of A(2) on this
pair. For instance, in a first step of this accepting run the first instantiation of
the macro state (qa1

, qa2
) is assigned to a pair of leaves resulting in the labelings

(qa1
, 1) and (qa1

, 2). In a second step this macro state changes to (qb1 , qb2) by
application of the ε-transition ((qa1

, x), ε, (qb1 , x)) in the first component and
the proper transition ((qa2

, x), b, (qb2 , x)) in the second component. Note that
the numbering of instances is rather arbitrary as long as different instances of
variables can be distinguished. Due to lack of space we illustrate all intermediate
configurations of the run in one tree. If a node is part of two different cuts in the
run (due to the use of ε-transitions), we label this node with both configurations
in an abbreviated form, e. g. for a node v and two configurations c1(v) = (qa1

, 3)
and c2(v) = (qb1 , 3) we label v with (qa1/b1 , 3).

The definition of asynchronous tree automata follows. Informally, the descrip-
tion of the computation steps of the bottom-up run formalize the of following:

– Same states in the same configuration have to be distinguishable, i. e. they
have to be instantiated with different natural numbers.

– Only entire instances of macro states occur.
– In each computation step exactly one instance of a macro state is reached.

Definition 3.6. An asynchronous tree automaton over a ranked alphabet Σ =
Σ0 ∪ . . . ∪ Σm is a tuple A(n) = 〈Q,Q, Var, Σ,∆,F〉 with

– a finite set Q of states,
– a set Q of macro states over Q (i. e. pairwise disjoint tuples of states in Q),
– a finite set Var of variables,
– a transition relation

∆ ⊆
m
⋃

i=0

(

(Q × Var)i × Σi × Q × Var
)

∪ (Q × Var × {ε} × Q × Var) ,
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– and a set F ⊆ Q of final macro states.

An instantiation of a set V ⊆ Var of variables is an injective function IV :
V → N, x 7→ α. We also refer to α ∈ N as the instance α. A cut C of an n-
tuple (t1, . . . , tn) of trees is an antichain in dom(t1,...,tn) (consisting of pairwise
incomparable nodes w. r. t. the prefix ordering). The computation shifts the cut
stepwise upwards until it reaches the antichain of the root nodes of t1, . . . , tn
(if possible). A configuration is a mapping c : C → Q × N which associates an
instantiated state to each node of C through the tuple (t1, . . . , tn). We require
that the instances of states are the same within each macro state of a configura-
tion; also different occurrences of a state in a configuration appear with different
instances (formally c(v1) 6= c(v2) for all v1 6= v2).

A makes a computation step c1 → c2 between two configurations c1 : C1 →
Q × N and c2 : C2 → Q × N where C2 contains the parents of C1-nodes reached
via a proper transition, those C1-nodes which are only subject to state changes
by ε-transitions, and those C1-nodes which are not affected by any transitions in
this step and hence stay unchanged. More precisely, we require that there exist
nodes v1, . . . vk with children v11, . . . , v1l of v1, children v21, . . . , v2l of v2, . . .
and children vk1, . . . , vkl of vk as well as nodes vε1

, . . . , vεj , so that the following
conditions are fulfilled:

1. {v11, . . . , vkl, vε1
, . . . , vεj} ⊆ C1.

2. C2 = (C1 \ {v11, . . . , vkl}) ∪ {v1, . . . , vk}.
3. There exist proper transitions

((q11, x11), . . . , (q1l, x1l), val(v1), (q1, x)), . . . , ((qk1, xk1), . . . , (qkl, xkl), val(vk), (qk, x))

and ε-transitions

((qε1
, xε1

), ε, (qε′
1
, x)), . . . , ((qεj

, xεj
), ε, (qε′

j
, x))

in ∆, so that
– q1, . . . , ql, qε′

1
, . . . , qε′j

form exactly one macro state,

– q11, . . . , qkl, qε1
, . . . , qεj form a union of certain macro states, and all states

belonging to the same macro state occur with the same variable,
– there exist an instantiation IV of a variable set V ⊆ Var, so that these

transitions with each variable x ∈ V replaced by IV(x) match both con-
figurations c1 and c2 of the computation step c1 → c2.

4. c2 is identical to c1 on (C1 ∩ C2) \ {vε1
, . . . , vεj}.

The configuration c : C → Q × N with C = ∅ is called start configuration. A
configuration c : C → Q × N is accepting iff C = {root1, . . . , rootn} with roots
rooti of ti (1 ≤ i ≤ n), and there exist a final macro state (q1, . . . , qn) ∈ F,
so that c(root1) = (q1, α), . . . , c(rootn) = (qn, α) for an α ∈ N. A sequence of
configurations is a run iff c1 → . . . → cm and c1 is the start configuration. Such
a run is called accepting iff cm is accepting. A(n) recognizes the n-ary relation

R(A(n)) = {(t1, . . . , tn) | there exists an accepting run of A(n) on (t1, . . . , tn)} .

3.4 The Equivalence Theorem

The equivalence theorem is an adaption of the Kleene-Theorem for tree languages
(see [GS84, CDG+07]). (For the detailed proof we refer to Appendix A.)

9



Theorem 3.7. A relation R of n-tuples of trees is rational if and only if there
exists an asynchronous tree automaton A(n) with R(A(n)) = R.

Proof (Sketch). The ⇒-direction of the proof goes by induction over rational
expressions. For the induction start the construction of an asynchronous tree
automaton for a singleton of a tuple of trees suffices. Here it is important to
prepare the induction step by reading each instance of a multivariables at the
leaves simultaneously. For the induction step asynchronous tree automata for the
operations ∪, ·X and ∗X according to Definition 3.2 are easy to construct.

For the ⇐-direction it can be shown for each asynchronous tree automaton
A(n) that its recognized relation is rational. The result can be shown by an in-
duction over the set of “intermediate macro states” S of the runs of A(n). As
intermediate macro states we count macro states which occur in other config-
urations than start configurations at the leaves or an end configuration at the
root. For the induction start (S = ∅) we have to consider trees accepted by A(n)

without intermediate macro states. These are n-tuples of trees of height 1 or 2
only. Since these are only finitely many, they form a rational relation. For the
induction step (|S| > 0) it suffices to give a rational expression which composes
relations with |S| − 1 intermediate macro states to a relations with |S| interme-
diate macro states. ⊓⊔

4 Properties of Rational Tree Relations

Now we present some closure properties and (un-) decidability results, also re-
calling some “defects” of the rational tree relations which were noted in [Rao97].
So we will see to what extent they are a good generalization of rational relations
over words.

4.1 The Interrelationship to Rational Word Relations

We start with the interrelationship between rational relations over words and
rational relations over trees. For a word relation R we define a tree rela-
tion TreeRel(R) and a tree language TreeLang(R). These are two possible views
to see a word relation as tree relation. In TreeRel(R) each word u = a1a2 · · · an of
a tuple of R is seen as a unary tree u$ = a1(a2(. . . (an($)) . . .)). In TreeLang(R)
an n-tuple (u1, . . . , un) of words is seen as a single tree f(u1$, . . . , un$) with a
new n-ary symbol f . This not so common view allows a closer characterization
of the class Rat1 of relation tree languages.

Definition 4.1. For an n-ary word relation R ⊆ Σ∗
1 × . . . × Σ∗

n the tree lan-
guage TreeLang(R) over Σ1 ∪ . . . ∪ Σn ·∪ {f (n), $(0)} is defined as

TreeLang(R) = {f(u1$, . . . , un$) | (u1, . . . , un) ∈ R}

and the tree relation TreeRel(R) over Σ1 ·∪ {$(0)}, . . . , Σn ·∪ {$(0)} is defined as

TreeRel(R) = {(u1$, . . . , un$) | (u1, . . . , un) ∈ R} .

The following results are easy to prove by construction of corresponding au-
tomata for each direction. (The construction for part (d) can be found in Ap-
pendix C; part (b) can be found in [Rad07].)
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Lemma 4.2. Let R be a word relation. The following equivalences hold:

(a) R is recognizable iff TreeRel(R) recognizable.

(b) R is recognizable iff TreeLang(R) recognizable.

(c) R is rational iff TreeRel(R) is rational.

(d) R is rational iff TreeLang(R) is rational.

4.2 Closure Properties

Some elementary closure properties of rational word relations can be extended
to trees easily.

Proposition 4.3. The class Ratn of n-ary rational tree relations is closed under
union, not closed under intersection, and not closed under complementation.

Proof. Closure under union holds per Definition 3.2. The latter follows from
Lemma 4.2(c), because the class of rational relations over words are closed nei-
ther under intersection nor under complementation. ⊓⊔

Rational tree relations are closed under intersection with recognizable tree
relations. For the proof construct the product automaton of the automata rec-
ognizing R and S which is an asynchronous tree automaton for R ∩ S.

Proposition 4.4. Given an n-ary rational tree relation R and an n-ary recog-
nizable tree relation S. Then R ∩ S is rational.

Unlike binary rational relations over words, the class Rat2 of binary rational
tree relations is not closed under composition:

Example 4.5. The binary tree relations R1 = {(bman$, f(an$, bm$)) | m,n ∈ N}
and R2 = {(f(an$, bm$), anbm$) | m,n ∈ N} are rational, but the composition
{(bman$, anbm$) | m,n ∈ N} is not rational.

4.3 Decision Problems

The membership problem for asynchronous tree automata is decidable, i. e. it
is decidable whether (t1, . . . , tn) ∈ R(A). Also the emptiness problem, i. e. the
question whether R(A) = ∅, and the infinity problem, i. e. the question whether
|R(A)| is infinite, are decidable:

Theorem 4.6. Given an asynchronous tree automaton with macro state set Q

and transition relation ∆, and a tuple of trees with m nodes. The membership
problem is decidable in O(|∆|m) time, and the emptiness and the infinity problem
are decidable in O(|Q|2 · |∆|) time.

Proof (Sketch). For the membership problem consider a tuple of trees (t1, . . . , tn)
and an asynchronous tree automaton A. We make use of the fact that there are
only finitely many possibilities of constructing a run for a given tuple of trees
(except for different naming of instances). By constructing a run in a top-down
manner, we get a time complexity of O(|∆|m) for a tuple of trees with m nodes
overall. The length of a run can be bounded by m and in each step we have the
choice of ∆ transitions at most.
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The emptiness problem can be solved by a reachability test. The idea is to
compute successively for a given A the set EA of all reachable macro states.
Then R(A) = ∅ iff EA ∩ F = ∅. Note that the reachability of a macro state is
only subject to the existence of an instance, so that instantiations have not to be
distinguished for the emptiness test. A corresponding algorithm has to perform
|EA| ≤ |Q| iterations at most, and in each step the transitions of ∆ have to be
applied on the so far calculated set Ek ⊆ EA. So we get a time complexity of
O(|Q|2 · |∆|).

The infinity problem is a variant of the emptiness problem which is decidable
in an analogous way. It can be checked, whether there exists a final macro state
which can be visited twice. If so, the transition relation permits a loop and the
final macro state can be visited infinitely often, hence A recognizes an infinite
language.

A formalization of the reachability tests for the emptiness problem and the
infinity problem can be found in [Rad07]. ⊓⊔

Of course, due to Lemma 4.2(c) rational tree relations inherit all undecidable
properties of rational word relations:

Proposition 4.7. For rational tree relations R1, R2 ∈ Ratn it is undecidable to
determine whether R1 ∩ R2 = ∅, R1 ⊆ R2, and R1 = R2.

Lemma 4.2 has another application in a question which arises from the ra-
tional tree languages (cf. Sect. 3.2). We prove that it is undecidable whether a
rational tree language is regular.

Theorem 4.8. It is undecidable

(a) whether for a given rational word relation R the tree language TreeLang(R)
is regular,

(b) whether a rational tree language is regular.

Proof. (a) Given a rational word relation R ⊆ Σ∗ × Γ ∗ defined by an asyn-
chronous automaton A. Assume, it is decidable whether the tree language
TreeLang(R) is regular. Then we can decide whether R is recognizable: Due to
Lemma 4.2(d), we know TreeLang(R) is rational. We decide whether TreeLang(R)
is a regular tree language (due to our assumption). If so, R is recognizable, other-
wise not (due to Lemma 4.2(b)). This is a contradiction, because it is undecidable
whether a rational word language R is recognizable (cf. [CCG06]).

(b) follows from (a). ⊓⊔

4.4 Transductions Ought to Preserve

Binary rational relations over words are also called (rational) transductions. They
preserve regular and context-free languages, i. e. the image and the inverse image
of a regular (resp. a context-free) language under a transduction is again a regular
(resp. context-free) language [Ber79]. Here we note that binary rational tree
relations do not even preserve regularity:

Example 4.9 ([Rao97]). Consider the rational tree relation Tsim = {f(gna, gna) |
n ∈ N} from Example 3.3. Clearly, R := Σ∗ × Tsim is rational. The image of a
regular language under R is Tsim which is not regular. An analogous result for
the inverse image can be proved with a relation R′ := Tsim × Σ∗.
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5 Separate-Rational Tree Relations

We have seen a few drawbacks of rational tree relations. They do not coincide
with regular tree language when restricted to unary sets, they are not closed
under composition, and they are unsuitable as transductions in the sense that
they do not preserve regular tree languages.

In [Rao97] Raoult proposes a restriction of rational tree relations, generated
by so-called transduction grammars. These satisfy the demanded properties, but
as mentioned in the introduction they have other drawbacks: They are not a
proper generalization of rational word relations in the n-ary case, and the restric-
tion is difficult to adapt to asynchronous tree automata. So, we define yet an-
other restriction, both for rational expressions and asynchronous tree automata,
resolving these issues. We will discuss the assets and drawbacks of Raoult’s trans-
duction grammars and our so-called separate-rational tree relations at the end of
this section.

The idea is to define a class of relations which can be computed by asyn-
chronous tree automata which have all their macro states separated between the
components, i. e. each state of a macro state can only occur in one component.

5.1 Definition of Separate-Rational Tree Relations via
Separate-Rational Expressions

For the definition via separate-rational expressions we demand that variables of
the same multivariable may only occur in different components of the generated
tuples and that relations are generated by tuples of trees of height 2 at most
(this will assure the recognizability of the tuples by separate-asynchronous tree
automata as defined in the next section).

Definition 5.1. The classes SepRatn of separate-rational tree relations are de-
fined inductively as follows:

– ∅ ∈ SepRatn.
– {(t1, . . . , tn)} ∈ SepRatn, where t1, . . . , tn are only trees of height 1 or 2 and

each component contains at most one variable of each multivariable.
– R ∈ SepRatn ∧ S ∈ SepRatn ⇒ R ∪ S ∈ SepRatn.
– R ∈ SepRatn ∧ |X| = m ∧ S ∈ SepRatm ⇒ R ·X S ∈ SepRatn, where

m ≤ n and each component of a tuple in R contains at most one variable
of X.

– R ∈ SepRatn ∧ |X| = n ⇒ R∗X ∈ SepRatn, where each component of a
tuple in R contains exactly one variable of X.

Example 5.2. (a) The relation from Example 3.1 is separate-rational. The ratio-
nal expression can be rewritten as (cx1y1, cx2y2)

∗y1y2 ·y1y2
(a, a) ·x1x2

(x1, bx2) ·x1x2

(bz1, bz2)
∗z1z2 ·z1z2

(a, a). It is generated by trees of height 2 at most, and all mul-
tivariables are separated between the components of the tuples.

(b) The rational relation Tsim from Example 3.3 is not separate-rational, be-
cause in order to define Tsim we need two different variables of one multivariable
to occur in the same component of a tuple.

(c) The rational relations R1 and R2 from Example 4.5 are not separate-
rational, because multivariables of length 3 are are easily seen to be necessary in
order to define these relations. So, at least two different variables of one multi-
variable have to occur in the same component of a tuple.
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5.2 Separate-Asynchronous Tree Automata

Now we will restrict asynchronous tree automata, so that these recognize exactly
the class of separate-rational tree relations. In contrast to asynchronous tree
automata, which use the same ranked alphabet for all components, we allow
separate-asynchronous automata to utilize a specific ranked alphabet for each
component.

Definition 5.3. A separate-asynchronous tree automaton A(n) = 〈Q,Q, Var,
Σ1, . . . , Σn,∆,F〉 is an asynchronous tree automaton over Σ1 ∪ . . . ∪ Σn (each
Σj = Σ0j ∪ . . . ∪ Σmj is a ranked alphabet) with the following restrictions:

– the set Q of states is partitioned in Q = Q1 ·∪ . . . ·∪ Qn,
– for each macro state (q1, . . . , qm) ∈ Q and all qk 6= ql with 1 ≤ k, l ≤ m and

1 ≤ j ≤ n holds: qk ∈ Qj ⇒ ql 6∈ Qj ,

– the transition relation is partitioned in ∆ = ∆1 ·∪ . . . ·∪ ∆n with

∆j ⊆
m
⋃

i=0

(

(Qj × Var)i × Σij × Qj × Var
)

∪ (Qj × Var × {ε} × Qj × Var) ,

– each final macro state q ∈ F has the form q = (q1, . . . , qn) with qi ∈ Qi for
all 1 ≤ i ≤ n.

The Equivalence Theorem (Theorem 3.7) can be reformulated for separate-
rational relations. Only slight modifications are necessary. It should be mentioned
that the restriction to elementary trees of height 1 or 2 in Definition 5.3 is im-
portant for the “⇒”-direction of the proof in order to handle the induction start.
Also, this condition is not a restriction for the “⇐”-direction, because in the
original proof the induction start results in trees of height 1 or 2 only.

Theorem 5.4. A relation R of n-tuples of trees is separate-rational if and only
if there exists a separate-asynchronous tree automaton A(n) with R(A(n)) = R.

5.3 The Interrelationship to Rational Word Relations

We have already discussed the interrelationship between rational tree relations
and rational word relations in Sect. 4. Now we discuss these thoughts for separate-
rational tree relations.

We note that a unary separate-rational tree language is regular, because by
restricting all multivariables to length 1 (resp. all macro states to size 1) we
yield a regular tree language. So, a rational word relation cannot be represented
by a separate-rational tree language (in the spirit of Lemma 4.2(d)), since the
separate-rational tree languages are precisely the regular sets. For a rational word
relation R the tree language TreeLang(R) is not separate-rational in general.

The reason Lemma 4.2(d) does not inherit to separate-rational relations is
only up to the fact that synchronization is not allowed within the same pro-
jection to one component. If we understand each component (of a tuple in a
word relation) as a unary tree, this restriction is insignificant. Therefore, we can
reformulate Lemma 4.2(c) for separate-rational tree relations:

Lemma 5.5. A word relation R is rational iff TreeRel(R) is separate-rational.
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5.4 Properties of Separate-Rational Tree Relations

Due to Lemma 5.5, we obtain the same undecidability results and closure proper-
ties as for rational tree relations. Beyond this, separate-rational relations resolve
the issues raised in Sect. 4.

Theorem 5.6. (a) The class SepRat1 of separate-rational tree languages is pre-
cisely the class of regular tree languages.

(b) The class SepRat2 of binary separate-rational tree relations is closed under
composition.

(c) The image and the inverse image of a regular tree language under a binary
separate-rational tree relation R are again regular tree languages.

Proof. (a) For n = 1 all multivariables have length 1 (resp. all macro states have
size 1), yielding regular tree languages.

(b) For separate-rational tree relations R and S construct a separate-
asynchronous automaton recognizing R⊚S := {(t, t′, t′′) | (t, t′) ∈ R, (t′, t′′) ∈ S}
by synchronization of the common component. The projection on the first and
third component yields a separate-asynchronous automaton for R ◦ S. (We refer
to Appendix B for the detailed proof.)

(c) Due to symmetry of Definition 5.3, it suffices to show that the image of a
regular tree language under a binary separate-rational relation is regular. Clearly,
the identity idT = {(t, t) | t ∈ T} of a regular tree language T is separate-rational.
Thus, the image of T under a separate-rational relation R is the projection on the
second component of idT ◦R. Due to Theorem 5.6(b), idT ◦R is also a separate-
rational. The projection on the second component yields a regular tree language
(due to the closure of SepRat under projections (see Lemma B.1 in Appendix B)
and Theorem 5.6(a)). ⊓⊔

If we consider rational relations over words, they also preserve context-free lan-
guages [Ber79]. It is an open question whether separate-rational tree relations
also preserve context-free tree languages as defined in [GS97].

Of course, per definition every separate-rational tree relation is also rational
and every separate-asynchronous tree automaton is an ordinary asynchronous
tree automaton. The decidability of the converse questions is more interesting:

Theorem 5.7. (a) It is decidable whether a given asynchronous tree automaton
over Σ is also separate-asynchronous over Σ × . . . × Σ.

(b) It is undecidable whether a rational tree relation is separate-rational.

Proof. (a) The additional conditions of Definition 5.3 are easy to verify. It suffices
to check whether there exists an adequate partition of the state set and the
transition relation.

(b) Assume, it is decidable whether a rational tree relation is separate-
rational. Given a rational tree language T , we know T is separate-rational iff
T is regular (see Theorem 5.6(a)). So, we can decide whether T is a regular tree
language. But this is undecidable due to Theorem 4.8. ⊓⊔

5.5 Discussion on Restrictions of Rational Tree Relations

In [Rao97] Raoult proposes a restriction of rational tree relations generated by
so-called transduction grammars. Raoult’s restriction requires a (p + q)-ary rela-
tion to be decomposed into two parts, so that each multivariable have all their
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variables in two trees at most, one tree in the first p and the other tree in the last
q components (of a tuple in the relation) (see [Rao97] for details). This restriction
also solves the discussed issues of rational tree relations (i. e. Theorem 5.6 hold
for Raoult’s restriction), but from our point of view two other drawbacks arises.

The main drawback of Raoult’s transduction grammars is the lack of a nat-
ural automata theoretic characterization in our framework of asynchronous tree
automata. The other drawback is that transduction grammars can only be con-
sidered as a generalization of binary rational relations over words, but not as a
generalization of n-ary rational relations:

Example 5.8. The trinary relation R3 = {(gna, gna, gna) | n ∈ N} is separate-
rational, but does not satisfy the restriction which arises from transduction gram-
mars in [Rao97].

Considering binary relations only, Raoult’s transduction grammar are more
general than binary separate-rational relations:

Example 5.9. Consider the relations R, S, and R ◦ S depicted in Fig. 4. These
relations can be generated by transduction grammars, but are not separate-
rational.

b

ooooo
OOOOO

c

ooooo
OOOOO

b

ooooo
OOOOO

1 b

ooooo
OOOOO

c

ooooo
OOOOO
2 1 b

ooooo
OOOOO

2 c

ooooo
OOOOO

1

b

ooooo
OOOOO
4 3 b

ooooo
OOOOO

3 c

ooooo
OOOOO
3 2

6 5 b

ooooo
OOOOO

4 6 5 4

5 6

(a) (b) (c)

Fig. 4. Pairs of numbers represent the identity, i. e. same numbers denote same
subtrees. The relation between trees of the form (a) and (b) is denoted by R, the
relation between trees of the form (b) and (c) is denoted by S. So, the composition
R ◦ S is the relation between trees of the form (a) and (c).

Remark 5.10. Example 5.9 was first proposed by Arnold and Dauchet [AD82].
They investigated an interesting type of tree relations which are definable via
morphisms (of “magmoids”) strict and separated with delay (see [AD82, Rao92]
for details). These relations are also closed under composition and include the
relations R, S, and R◦S from the example. Hence, separate-rational tree relations
miss the definability of some relations definable via these morphisms. Raoult
mentionend in [Rao97] that his transduction grammars contain the relations of
Arnold and Dauchet.
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The relations from the example also illustrate the reason for restricting trees
to a height of at most 2 in Definition 5.1. Otherwise, on the one hand problems
regarding the closure under composition occur with our approach, and on the
other hand a corresponding restriction for asynchronous automata would be hard
to define.

Separate-rational tree relations have a drawback regarding their expressive-
ness. Since those relations are generated by tuple of trees of height 2 at most,
they miss the inclusion of relations relaying on this feature. For example the left
rotation and the right rotation (cf. [Rao97], Fig. 2) are not separate-rational, and
even some relations definable by linear (top-down or bottom-up) tree transduc-
ers (cf. [CDG+07]) are not separate-rational, but are definable by transduction
grammars. However, separate-rational relations comprise automatic tree rela-
tions (cf. [Blu99, BG04]), whereas transduction grammars misses this inclusion
in the n-ary case.

Furthermore, a proper generalization of Raoult’s restriction of transduction
grammars to the n-ary case seems possible by demanding that each multivari-
able has all their variables in n trees at most, one tree in each component (of
a tuple in the relation). Generalizing Raoult’s restriction to the n-ary case in
this way results in a less restrictive class which comprises more relations than
separate-rational tree relations. So, with respect to expressiveness Raoult’s trans-
duction grammars are perhaps a more promising approach to restrict rational
tree relations.

Nevertheless, the main drawback of Raoult’s restriction remains that it does
not seem to be natural in the framework of asynchronous tree automata. An
automata theoretic description for transduction grammars should assure that all
states of a macro state in the same component belong to one “elemental tree”.
So, such automata should rather have transitions over trees instead of transitions
over single symbols.

To sum it up, separate-rational tree relations and relations generated by
transduction grammars are incomparable in the n-ary case, and in the binary case
Raoult’s tree transductions are strictly stronger than separate-rational relations.
Separate-rational tree relations are a proper generalization of rational relations
over words with a natural automata theoretic description.

6 Conclusion

We presented a reasonable automata theoretic approach to rational tree rela-
tions which now can be described by three equivalent formalisms: Rational ex-
pressions, tree grammars [Rao97], and asynchronous tree automata. We argued
to what extent the properties of rational relations over words apply to trees.
Separate-rational tree relations overcome some drawbacks of the rational tree re-
lations. They generate exactly the regular sets when restricted to the unary case,
are closed under composition, and preserve regular tree languages. This restric-
tion is natural, since it is easy to apply to all three formalisms (tree grammars
were not discussed here, but can be restricted like rational expressions). We dis-
cussed the differences between the restrictions of separate-rational relations and
Raoult’s transduction grammars. While Raoult’s transduction grammars have
some advantages regarding the expressiveness, separate-rational tree relations
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are a proper generalization of n-ary rational word relations and are still more
powerful than, for instance, automatic tree relations.

Outlook: Rational tree relations are more powerful than linear tree transduc-
ers (as defined in [CDG+07]) and some classes of term rewriting systems [Mey04].
These results do not hold for the separate-rational restriction. More expressive
extensions of separate-rational relations with such features need to be investi-
gated. As discussed in Sect. 5.5, automata which allow transitions over entire
trees (instead of transitions over single symbols) could be a promising approach
to such a class.

As mentioned in the introduction asynchronous automata enable the defi-
nition of rational relations over unranked trees. A straightforward approach is
the usage of regular expressions in transitions; but the problem arises that we
have used a finite set Var of variables in Definition 3.6 which is problematic for
a node of unbounded rank. In [Rad07] we propose a solution by numbering the
occurrences of variables in a given sequence of states. So, we still use a finite set
Var of variables in the transitions, but interpret it in an unbounded manner. For
example if we use a transition (L, a, (q′, i′)) with L given by a regular expression
((q1, i)(q2, i)(q, i

′))+ and (q), (q1, q2) ∈ Q, i, i′ ∈ Var for a node of rank 6, we will
interpret it as ((q1, i1), (q2, i1), (q, i

′
1), (q1, i2), (q2, i2), (q, i

′
2), a, (q′, i′)).

In the word case asynchronous automata enable the definition of a determin-
istic subclass of rational relations (cf. [RS59, PS99, Gri02]). Analogously, asyn-
chronous tree automata enable the definition of deterministic rational tree rela-
tions (both over ranked and unranked trees). A deterministic top-down model
of rational tree relations is easy to define (see [CLT05, Rad07]). The automaton
starts in a unique macro state q0 at the root nodes. Then the transition relation
is made deterministic by partitioning of the macro state set. In a macro state
(q1, . . . , qk) of the i-th partition the automaton only reads the symbol at the node
marked with qi and makes a top-down step at this node with a proper transi-
tion. In the other nodes marked with the states q1, . . . , qi−1, qi+1, . . . , qk only
ε-transition are applied. The state qi and the labeling (in Σ) of this node deter-
ministically determine the computation step. Unfortunately a top-down approach
have the same weakness as ordinary deterministic top-down tree automata, so
such automata do not recognize all regular tree languages (resp. recognizable tree
relations). Hence, this approach yields a hierarchy of automata definable rela-
tions over trees which differ from the case of words. Due to the non-deterministic
mechanism of merging states to instances of macro states in a run, a determinis-
tic bottom-up model seems to be challenging. A further restriction of separate-
rational automata may yield a model which generalizes deterministic rational
word relations on the one hand and includes recognizable and automatic tree
relations on the other hand.
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A Proof of the Equivalence Theorem (Theorem 3.7)

Proof (⇒). Given a rational relation of n-tuples of trees. According to Defini-
tion 3.2 we can assume that this relation is specified by iterated application of
operators ∪, ·X and ∗X on finite relations of tuples of trees. Hence, we shall prove
our claim inductively.

Induction start: Every finite relation can be understood as union of re-
lations which consists of one n-tuple of trees at most. The special case of the
empty relation is recognized by an asynchronous tree automaton with an empty
set of final macro states. For the relations consisting of exactly one n-tuple of
trees we have to prepare the automaton in such a way that the concatenation ·X
and the star ∗X with respect to a multivariable X = x1 · · · xn can be applied.
Thus, when reading an instance of x1 · · · xn at the leaves the automaton have to
assume a macro state (qx1

, . . . , qxn).

Example A.1. Consider the tuple (t1, t2, t3) of trees in Fig. 5. Thereby X = x1x2

is a multivariable with two occurrences of instances in (t1, t2, t3). We construct
an asynchronous automaton which only accepts (t1, t2, t3) and assumes a macro
state (qx1

, qx2
) when reading an instance of X = x1x2 at the leaves.

We construct A(3) = 〈Q,Q, Var, Σ,∆,F〉 over Σ = {a(0), x
(0)
1 , x

(0)
2 , b(1), c(2), }

with

– Q = { q1
x1

, q1
x2

, q2
x1

, q2
x2

, r, s, qf1
, qf2

, qf3
},

– Q = { (q1
x1

, q1
x2

), (q2
x1

, q2
x2

), (r), (s), (qf1
, qf2

, qf3
) },

– F = { (qf1
, qf2

, qf3
) },

– Var = { i, j, k, l }, and
– ∆ = { (x1, (q

1
x1

, i)), (x2, (q
1
x2

, i)), (a, (r, i)),
((q1

x1
, i), ε, (q2

x1
, i)), ((q1

x2
, i), b, (q2

x2
, i)), ((r, i), b, (s, i)),

((q2
x1

, i), (q2
x2

, i), c, (qf1
, l)), ((q1

x1
, j), b, (qf2

, l)),
((q1

x2
, j), (s, k), c, (qf3

, l)) }.

c
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LL
L
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rr
rr

r
LL

LL
L

x1 b x′

1 x′

2 b

x2 a

Fig. 5. A triple of trees (t1, t2, t3) with two instances of a multivariable X = x1x2.

It should be quite clear that every relation which only consists of one tu-
ple of trees is recognizable in this way (nevertheless, formally writing down the
construction seems to be cumbersome).

induction step: We construct asynchronous tree automata for the opera-
tions ∪, ·X and ∗X :

– Given asynchronous tree automata A
(n)
1 = 〈Q1,Q1, Var1, Σ,∆1,F1〉 and

A
(n)
2 = 〈Q2,Q2, Var2, Σ,∆2,F2〉 with Q1 ∩ Q2 = ∅. The relation R(A

(n)
1 ) ∪

R(A
(n)
2 ) can be recognized by the asynchronous tree automaton A(n) =

〈Q1 ∪ Q2,Q1 ∪ Q2, Var1 ∪ Var2, Σ,∆1 ∪ ∆2,F1 ∪ F2〉.
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– Given asynchronous tree automata A
(n)
1 = 〈Q1,Q1, Var1, Σ,∆1,F1〉 and

A
(m)
2 = 〈Q2,Q2, Var2, Σ,∆2,F2〉 with Q1 ∩ Q2 = ∅. Furthermore let X =

x1 · · · xm be a multivariable, and A
(n)
1 assumes the macro state q1 =

(q1
1 , . . . , q

1
m) ∈ Q1 when reading x1, . . . , xm at the leaves. The relation

R(A
(n)
1 ) ·X R(A

(m)
2 ) can be recognized by the asynchronous tree automa-

ton A(n) = 〈Q1 ∪ Q2,Q1 ∪ Q2, Var1 ∪ Var2 ∪ {k, k′}, Σ,∆,F1〉 with

∆ = (∆1 \ {(x1, (q
1
1 , i)), . . . , (xm, (q1

m, i)) | i ∈ Var1}) ∪ ∆2

∪ {((q2
1 , k′), ε, (q1

1 , k)), . . . , ((q2
m, k′), ε, (q1

m, k)) |

there exist q2 = (q2
1 , . . . , q

2
m) ∈ F2

and (x1, (q
1
1 , i)), . . . , (xm, (q1

m, i)) ∈ ∆1 with i ∈ Var1} .

– Given an asynchronous tree automaton A
(n)
1 = 〈Q1,Q1, Var1, Σ,∆1,F1〉. Fur-

thermore let X = x1 · · · xn be a multivariable, and A
(n)
1 assumes the macro

state q = (q1, . . . , qn) ∈ Q1 when reading x1, . . . , xn at the leaves. The re-

lation R(A
(n)
1 )∗X can be recognized by the asynchronous tree automaton

A(n) = 〈Q1,Q1, Var1 ∪ {k, k′}, Σ,∆,F1〉 with

∆ = ∆1 ∪ {((q′1, k
′), ε, (q1, k)), . . . , ((q′n, k′), ε, (qn, k)) |

there exist q′ = (q′1, . . . , q
′
n) ∈ F1

and (x1, (q1, i)), . . . , (xn, (qn, i)) ∈ ∆1 with i ∈ Var1} .
⊓⊔

Proof (⇐). Given an asynchronous tree automaton A(n) = 〈Q,Q, Var, Σ,∆,F〉,
we show that R(A(n)) is a n-ary rational tree relation according to Definition 3.2.

First of all we extent the alphabet Σ with new nullary symbols, in order to
apply the operations ·X and ∗X . For this purpose we missuse the states of the
given automaton and extent Σ to Σ ·∪ Q where all symbols in Q have arity 0.

Example A.2. Let Σ = {a(0), b(1), c(2)} and Q = {(p1, p2), (q1, q2), (r)}. An ex-
ample tree over the extended alphabet Σ ∪ Q is shown in Fig. 6 (a).

c

rr
rr

r
LL

LL
L

b cq1

rr
rr

r
LL

LL
L

bq2

a b b ar bp1 bp2

q1 q2 q
q1
1 q

q2
2

(a) (b)

Fig. 6. (a) A pair of trees over Σ∪Q; (b) a run on this pair in R2(R,S, (q1, q2)).

After extending the alphabet we construct for A(n) a new automaton A′(n)

by adding transitions (p1, (p1, i)), . . . , (pk, (pk, i)) for all p = (p1, . . . , pk) ∈ Q.
This allows the automaton to read the new nullary symbols at the leaves and
in doing so assume the corresponding states (having the same name). Notice,
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this assures that symbols in Q which form an entire macro state are supposed to
appear together, because only in this case the automaton A′(n) can assume the
macro state p = (p1, . . . , pk).

For R,S ⊆ Q, q ∈ Q we define a set Rn(R,S, q). It consists of all n-tuple of
trees over Σ ·∪ Q for which an accepting run of A′(n) exists, so that

– on all leaves labeled with symbols in Q, the run begins with macro states
in R,

– the run ends in an accepting configuration at the root nodes assuming the
macro state q = (q1, . . . , qn),

– in the remaining configurations of the run only macro states in S occur.

We call the elements of R “source states”, q the “target state” and the elements
of S “intermediate states”.

Example A.3. Let R = {(q1, q2)} and S = {(p1, p2), (r)}. An example run on a
pair in R2(R,S, (q1, q2)) is shown in Fig. 6 (b).

By definition of Rn(R,S, q) holds:

R(A(n)) =
⋃

q∈F

Rn(∅,Q, q) .

Hence, it suffices to show that all sets Rn(R,S, q) are rational. We show this by
induction over S.

Induction start: S = ∅. In this case Rn(R,S, q) only consists of n-tuple of
trees of height 1 or 2. These are finitely many, so Rn(R,S, q) is rational.

Induction step: |S| > 0. Let S = S0 ∪{s} (with s 6∈ S0), where for S0 the
induction hypothesis holds. It holds (t1, . . . , tn) ∈ Rn(R,S, q) iff there exists a
run on (t1, . . . , tn) with a source state in R, target state q and an intermediate
state in S0 ∪ {s}. We can unambiguously decompose (t1, . . . , tn) at the nodes
where s = (s1, . . . , sk) occurs in the run. An example of a decomposition with
respect to a macro state is depicted in Fig. 7. The decomposed parts have all their
intermediate states in S0, hence they are rational by induction hypothesis. So,
Rn(R,S, q) is rational, because it can be composed by the rational expression

Rn(R,S0 ∪ {s}, q) =

Rn(R,S0, q) ∪ Rn(R ∪ {s},S0, q) ·S (Rn(R ∪ {s},S0, s))
∗S ·S Rn(R,S0, s)

with S = s1 · · · sk.
The concatenation of the decomposed parts is possible, because the states

s1, . . . , sk in a run of A′(n) can only be reached and left simultaneously, and in
each bottom-up computation step only one instance of s = (s1, . . . , sk) can be
reached. For any run this is assured by the requirements on states and variables
in Definition 3.6. Examples for impossible decompositions are depicted in Fig. 8.

⊓⊔

B Separate-Rational Tree Relations are Closed Under
Composition (Proof of Theorem 5.6(b))

One major advantage of separate-rational relations is their closure under com-
position. Towards the proof, we need to show that separate-rational relations
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Fig. 7. Decomposition of a run of an asynchronous tree automaton with respect
to a macro state (s1, s2). Superscripts number distinct instances.
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Fig. 8. Decompositions with respect to a macro state (s1, s2) which cannot occur
in a run of an asynchronous tree automaton.
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are closed under projection (a result Raoult has shown already for rational tree
relations [Rao97]).

Lemma B.1 (Projection Lemma). The class SepRatn of separate-rational
tree relation is closed under projection, i. e. for every n-ary separate-rational
relation R each (n − 1)-ary relation R′ with

(t1, . . . , ti−1, ti+1 . . . , tn) ∈ R′ ⇐⇒ ∃ti : (t1, . . . , ti−1, ti, ti+1 . . . , tn) ∈ R

is also separate-rational (for an arbitrary 1 ≤ i ≤ n).

Proof. Given an n-ary R by a separate-asynchronous tree automaton A
(n)
R with

states in Q1 ·∪ . . . ·∪ Qn according to Definition 5.3. Assume that all transitions
are reachable and productive, i. e. for each transition τ there exists an accepting

run using τ . This can be easily checked (e. g. by modifying A
(n)
R and using the

emptiness test, or by directly using a suitable reachability test). Then we can

construct the separate-asynchronous tree automaton A
(n−1)
R′ for R′ by deleting

the i-th component, i. e. delete all transitions in ∆i, and change each macro state
(q1, . . . , qk−1, qk, qk+1 . . . , ql) with qk ∈ Qi to (q1, . . . , qk−1, qk+1 . . . , ql). ⊓⊔

Towards the closer under composition, we construct for binary separate-
rational tree relations R and S a separate-asynchronous tree automaton for

R ⊚ S := {(t, t′, t′′) | (t, t′) ∈ R, (t′, t′′) ∈ S}

by synchronization of the common component. Then the Projection Lemma
yields a separate-asynchronous automaton for R ◦ S.

We introduce the abbreviated form “sync(∆′)” to express that a set ∆′ of
transitions can be applied simultaneously in a run of an asynchronous automata:

Definition B.2. Let A(n) = 〈Q,Q, Var, Σ,∆,F〉 be an asynchronous tree au-
tomaton. It holds sync(∆′) for a subset ∆′ ⊆ ∆ iff a computation step is possible
exactly with the transitions in ∆′, i. e. there exist a tuple of trees and configura-
tions c1, c2 (on this tuple), so that exactly the transitions in ∆′ are used for the
computation step c1 → c2.

Now we can give the formal construction for R⊚S that proves Theorem 5.6(b),
i. e. that the class SepRat2 of binary separate-rational tree relations is closed
under composition.

Proof (of Theorem 5.6(b)). Given R,S ∈ SepRat2 by separate-asynchronous au-
tomata AR = 〈Q,Q1, Var1, Σ1, Γ,∆1,F1〉 with a partitioned state set Q = Q1 ∪
Q2 and AS = 〈P,Q2, Var2, Γ,Σ2,∆2,F2〉 with a partitioned state set P = P1∪P2.
We assume w. l. o. g. (q1, q2) ∈ Q1 ⇒ q1 ∈ Q1 ∧ q2 ∈ Q2 (analogously for AS).
We further assume w. l. o. g. that for every macro state (q1, q2) ∈ Q1 also ε-
transitions ((q1, i), ε, (q1, i)), ((q2, i), ε, (q2, i)) are in ∆1 (analogously for AS).
Generally these ε-transitions are needed for a synchronization of the common
component.
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For R ⊚ S := {(t, t′, t′′) | (t, t′) ∈ R, (t′, t′′) ∈ S} we construct the separate-

asynchronous automaton A
(3)
RS = 〈Q′,Q′, Var′, Σ1, Γ,Σ2,∆

′,F′〉 with

Q′ := Q1 ·∪ Q2 × P1 ·∪ P2 ,

Q′ := {(q) | (q) ∈ Q1, q ∈ Q1}

∪ {(p) | (p) ∈ Q2, p ∈ P2}

∪ {(qp) | (q) ∈ Q1, q ∈ Q2, (p) ∈ Q2, q ∈ P1}

∪ {(q1, q2p) | (p) ∈ Q2, p ∈ P1, (q1, q2) ∈ Q1}

∪ {(qp1, p2) | (q) ∈ Q1, q ∈ Q2, (p1, p2) ∈ Q2}

∪ {(q1, q2p1, p2) | (q1, q2) ∈ Q1, (p1, p2) ∈ Q2} ,

Var′ := Var1 ∪ Var2 ∪ (Var1 × Var2) ,

∆′ := {(q1, . . . , qk, x, (q, i)) | (q) ∈ Q1, q ∈ Q1, (q1, . . . , qk, x, (q, i)) ∈ ∆1}

∪ {(p1, . . . , pk, y, (p, i)) | (p) ∈ Q2, p ∈ P2, (p1, . . . , pk, y, (p, i)) ∈ ∆2}

∪ {(q1p1, . . . , qkpk, z, (qp, (i1, i2))) | (q) ∈ Q1, q ∈ Q2, (p) ∈ Q2, p ∈ P1,

(q1, . . . , qk, z, (q, i1)) ∈ ∆1, (p1, . . . , pk, z, (p, i2)) ∈ ∆2}

∪ {(q′1, . . . , q
′
k, x, (q1, (i1, i2))), (r1s1, . . . , rlsl, z, (q2p, (i1, i2))) |

(q1, q2) ∈ Q1, (p) ∈ Q2, p ∈ P1, (s1, . . . , sl, z, (p, i2)) ∈ ∆2,

τ1 : (q′1, . . . , q
′
k, x, (q1, i1)) ∈ ∆1, τ2 : (r1, . . . , rl, z, (q2, i1)) ∈ ∆1,

and sync({τ1, τ2}) holds}

∪ {(. . . , z, (qp1, (i1, i2))), (. . . , y, (p2, (i1, i2))) |

(q) ∈ Q1, q ∈ Q2, (p1, p2) ∈ Q2, (. . . , z, (q, i1)) ∈ ∆1,

τ1 : (. . . , z, (p1, i2)) ∈ ∆2, τ2 : (. . . , y, (p2, i2)) ∈ ∆2,

and sync({τ1, τ2}) holds}

∪ {(. . . , x, (q1, (i1, i2))), (. . . , z, (q2p1, (i1, i2))), (. . . , y, (p2, (i1, i2))) |

(q1, q2) ∈ Q1, (p1, p2) ∈ Q2,

τ1 : (. . . , x, (q1, i1)) ∈ ∆1, τ2 : (. . . , z, (q2, i1)) ∈ ∆1,

τ ′
2 : (. . . , z, (p1, i2)) ∈ ∆2, τ ′

2 : (. . . , y, (p2, i2)) ∈ ∆2,

and sync({τ1, τ2}) resp. sync({τ ′
1, τ

′
2}) holds} , and

F′ := {(q1, q2p1, p2) | (q1, q2) ∈ F1, (p1, p2) ∈ F2}

for all x ∈ Σ1 ∪ {ε}, y ∈ Σ2 ∪ {ε}, z ∈ Γ ∪ {ε}. For a clearer view we left
out the left hand sides of transitions in the last two cases of the construction.
They are analogously to the other cases. Please also note, that the construction
is informal with respect to the combination of given states to new macro states,
because macro states have to be disjoint according to Definition 5.3. This can be
easily achieved by an appropriate renaming of states.

So, we obtain a separate-asynchronous automaton for R ⊚ S. The projection
on the first and the third component yields R ◦ S which is separate-rational by
Lemma B.1. ⊓⊔

C Construction for Lemma 4.2(d)

Word relations can be seen as a special case of tree relations (see Definition 4.1),
and we have mentioned a tight relationship in Lemma 4.2. Here we will give a
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formal construction for part (d) of this Lemma. Part (c) is only a slightly variant
of (d). Parts (a) and (b) can be proved by similar automata construction [Rad07].

Proof (of Lemma 4.2(d)). In order to prove the direction from left to right, let
R ⊆ Σ∗

1 × . . . × Σ∗
n be a rational word relation, given by an asynchronous word

automaton A = 〈Q,Σ1, . . . , Σn, q0,∆, F 〉 recognizing R. Let Q = {q0, . . . , qm}.
We assume w. l. o. g. that A can read one symbol in each component at most,
i. e. ∆ only consists of transitions of the form (p, x1/ . . . /xn, q) with xi ∈ Σi ∪
{ε} (1 ≤ i ≤ n). We define the corresponding asynchronous tree automaton

A
(1)
Rat

(R) = 〈Q′,Q′, Var′, Σ1 ∪ . . . ∪ Σn ∪ {f (n), $(0)},∆′,F′〉 with

– Q′ = (Q × {1, . . . , n}) ·∪ {qf},
– Q′ = {(q1

0 , . . . , q
n
0 ), . . . , (q1

m, . . . , qn
m)} ·∪ {(qf )},

– F′ = {(qf )},
– Var = {i},
– and transitions

∆′ = {($, (q1
j , i)), . . . , ($, (qn

j , i)) | qj ∈ F}

∪ {((q1
k, i), x1, (q

1
j , i)), . . . , ((q

n
k , i), xn, (qn

j , i)) | (qj, x1/ . . . /xn, qk) ∈ ∆}

∪ {((q1
0 , i), . . . , (qn

0 , i), f, (qf , i))}

for all xi′ ∈ Σi′ ∪ {ε}, 1 ≤ j, k ≤ m.

Then it holds (u1, . . . , un) ∈ R ⇐⇒ (u1, . . . , un) ∈ R(A) ⇐⇒ f(u1$, . . . , un$) ∈

R(A
(1)
Rat

(R)), hence R(A
(1)
Rat

(R)) = TreeLang(R).
Now we prove the other direction. Given a word relation R by a asyn-

chronous tree automaton A(1) = 〈Q,Q, Var, Σ1 ∪ . . . ∪ Σn ∪ {f (n), $(0)},∆,F〉
which defines TreeLang(R). We construct an asynchronous word automaton
B = 〈Q′, Σ1, . . . , Σn, q′0,∆

′, F ′〉 with

– Q′ = (Q ·∪ {⊤,⊥})n,
– q′0 = (⊤, . . . ,⊤),
– F ′ = {(⊥, . . . ,⊥)},
– and transitions

∆′ = {((⊤, . . . ,⊤), ε/ . . . /ε, (p1, . . . , pn)) | there exist {qf} ∈ F, ∆′′ ⊆ ∆,

((p1, i1), . . . , (pn, in), f, (qf , i′)) ∈ ∆′′, so that sync(∆′′) holds

(according to Definition B.2)}

∪ {((q1, . . . , qn), x1/ . . . /xn, (p1, . . . , pn)) | there exist 1 ≤ j1, . . . , jm ≤ n,

so that q = (qj1, . . . , qjm) ∈ Q, ∆′′ ⊆ ∆, and there exist transitions

((pjk
, ijk

), xjk
, (qjk

, i′)) in ∆′′ (resp. transitions ($, (qjk
, i′)) in ∆′′

with xjk
= ε and pjk

= ⊥) for 1 ≤ k ≤ m, so that all in all

sync(∆′′) holds (according to Definition B.2),

and for all l ∈ {1, . . . , n} holds: l 6∈ {j1, . . . , jm} ⇒ (pl = ql ∧ xl = ε)}

for all xi ∈ Σi ∪ {ε}.

Then it holds (u1, . . . , un) ∈ R ⇐⇒ f(u1$, . . . , un$) ∈ R(A(1)) ⇐⇒
(u1, . . . , un) ∈ R(B), hence R is rational. ⊓⊔
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