
Aachen
Department of Computer Science

Technical Report

A Framework for Proving Correctness

of Adjoint Message Passing Programs

Uwe Naumann, Laurent Hascoët, Chris Hill, Paul Hovland, Jan

Riehme, and Jean Utke

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2008-06

RWTH Aachen · Department of Computer Science · April 2008



The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/



A Framework for Proving Correctness of Adjoint

Message Passing Programs

Uwe Naumann1, Laurent Hascoët2 , Chris Hill3, Paul Hovland4

Jan Riehme5, and Jean Utke4

1 Corresponding Author: LuFG Informatik 12 (Software and Tools for Computational
Engineering) Department of Computer Science

RWTH Aachen University, 52056 Aachen, Germany
www: http://www.stce.rwth-aachen.de

email: naumann@stce.rwth-aachen.de
2 Projet TROPICS, INRIA Sophia-Antipolis, France

3 Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of
Technology, Cambridge, MA, USA

4 Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL,
USA

5 Department of Computer Science, University of Hertfordshire, Hatfield, UK

Abstract. Adjoint programs play a central role in modern numerical algorithms
such as large-scale sensitivity analysis, parameter tuning, and general nonlinear
optimization. They can be generated automatically by compilers. In such cases,
the data flow of the original program needs to be reversed. If message passing is
used, then any communication needs to be reversed, too. Crucial properties of the
original program such as deadlock-freeness and determinism must be preserved in
the adjoint code. A formalism for proving the correctness of compiler-generated
adjoints is required but has been missing so far, to the best of our knowledge.
To rectify this situation, we propose a proof technique that relies on data depen-
dences in partitioned global address space versions of the adjoint message-passing
program. If the original program is deadlock-free, the transformation rules can be
shown to be correct in the sense that the automatically generated adjoint program
is also deadlock free while implementing the mathematical mapping from given
independent inputs onto their corresponding adjoints correctly. As an example
we discuss asynchronous unbuffered send/receive using MPI.

1 Adjoint Numerical Programs

Numerical simulation and optimization in computational science and engineer-
ing have gained significant importance over the past few decades. For example,
our ability to understand physical, chemical, and biological processes has im-
proved with the increased power of computational resources as well as with the
deepened insight into mathematical and algorithmic issues. Numerical simulation
programs map n independent inputs onto m dependent outputs (also referred to
as the objectives). Often n is very large in comparison to m. The classical numer-
ical approach to quantifying the sensitivities of those objectives with respect to
the inputs through finite-difference quotients yields a computational complexity
of O(n). Note that certain high-end applications such as the simulation of ocean
circulation [15] may have a runtime of several days to produce physically rele-
vant results on the latest high-performance computing platforms. The number
of independent inputs may reach values of the order of n = 109. Hence, forward
sensitivity analysis requiring n runs of the simulation program is simply not
feasible.



Adjoint methods and corresponding program transformation techniques have
been developed to replace the dependence on n with that on the number of ob-
jectives m. If m = 1, then adjoint programs deliver the sensitivities of the ob-
jective with respect to all independent inputs at O(1). Adjoint programs can be
generated from a given numerical simulation program by a semantic program
transformation technique known as automatic differentiation (AD) [11]. A large
number of successful applications of AD to real-world problems in science and
engineering have been reported in the literature. Refer, for example, to the pro-
ceedings of the five international conferences on AD held in 1991 [8], 1996 [2],
2000 [7], 2004 [4], and 2008 [3].

Adjoint numerical programs consist of two parts. The augmented forward
section is an instrumented version of the original program containing statements
to memorize certain intermediate values that are required for the correct (and
efficient) evaluation of the adjoint program variables. The reverse section propa-
gates values of adjoint program variables in the opposite direction of the original
data flow. Optimal data-flow reversal is NP-complete [16, 17]. It involves the
reversing of the flow of control (which implies reversing the order of the state-
ments within basic blocks) and generating the corresponding adjoint statements.
Proofs of correctness of sequential adjoint programs are based on the chain rule
of differential calculus and, in particular, on its associativity. Refer to [11] for a
comprehensive discussion of the mathematical foundations of adjoint programs.
The purpose of this paper is served best by introducing adjoint programs by
means of an example.

Example: Consider the following simple code fragment that is assumed to
implement a function y = f(x), depending on some condition c.

y = sin(x)

if(c)

x = y + 1

else

x = y − 1

y = cos(x)

As an input to the adjoint routine f̄(x, x̄, ȳ) shown in Figure 1, the variable x̄

should be initialized to zero in order to obtain x̄ = ȳ · f ′(x) on output. The
gradient f ′(x) at point x (a single scalar partial derivative in this simple case) is
obtained by initializing ȳ = 1 on input to f̄ .

We use two stacks for a store-all approach to data-flow reversal. The first
stack, Sd, is used to store values that are required for evaluating the partial
derivatives of some assignments and that are (possibly6) overwritten by some
subsequently executed assignment. For example, the value of x at input is re-
quired to compute the partial derivative of the left-hand side of the first assign-
ment with respect to x as the argument of the intrinsic call sin(x). Hence, it
needs to be stored before being overwritten by the second or third assignment.
The value of y right before the fourth assignment is not required for evaluating

6 Substantial conservative static data-flow analysis is usually involved in deciding which values
to store. See, e.g., [12].

4



partial derivatives of any preceding assignment and therefore does not need to
be stored.

The second stack, Sc, contains information on the original flow of control
that is to be reversed. For example, we need to remember which branch of the
if-statement is executed. One solution is to push one or zero depending on the
condition c being true or false. The augmented forward section is shown in Fig-
ure 1(a). The adjoint statements that correspond to a given original assignment

y = sin(x)

if(c)

push(Sd, x)

x = y + 1

push(Sc, 1)

else

push(Sd, x)

x = y − 1

push(Sc, 0)

y = cos(x)

x̄+= − sin(x) · ȳ; ȳ = 0

if(pop(Sc))

ȳ+=x̄; x̄ = 0

x = pop(Sd)

else

ȳ+=x̄; x̄ = 0

x = pop(Sd)

x̄+=cos(x) · ȳ; ȳ = 0

(a) (b)

Fig. 1. Adjoint Code = Augmented Forward Section (a) + Reverse Section (b)

(e.g., the last one) increment the adjoints (x̄) of all program variables (x) on
the original right-hand side with the product of the adjoint (ȳ) of the program
variable (y) on the original left-hand side with the corresponding local partial
derivative (cos(x)). The adjoint of the left-hand side needs then to be reset to
zero. Correctness of these rules follows immediately from the chain rule applied
to program variables that can represent various instances due to overwrites. The
order of the statements is reversed in the reverse section. Correct reversal of the
flow of control is achieved through Sc. The reverse section of the example code
is shown in Figure 1 (b).

This paper is motivated by the need for automatically generated adjoint ver-
sions of parallel programs that use message passing. Related work comprises [5,
6, 10, 13, 14, 20]. We describe a proof technique that allows us to show the cor-
rectness of adjoint message-passing programs. Usually a number of semantically
equivalent adjoint versions can be generated for a given message-passing pro-
gram. As developers of adjoint code compilers, we consider the scenario of a
given transformation algorithm that needs to be proved right or wrong in the
sense that correct adjoints are computed for arbitrary inputs.

2 Correctness of Adjoint Communication Patterns

We consider the partitioned global address space (PGAS) [9] version Ps of a
message-passing program P involving n processes p1, . . . , pn. In order for Ps to
operate on the union of the n memory spaces all program variables are augmented
with an additional dimension of length n. Communications are translated into x-
assignments between augmented program variables belonging to disjoint address

5



spaces. Auxiliary variables are introduced for buffered communication. Barriers
in asynchronous communication yield a set of PGAS versions for a given message-
passing program.

2.1 Example

The program

s0

if (myrank == 1) isend(a, r); s1; if (myrank == 2) irecv(b, r); s2; wait(r)

s3

with unspecified sequences of statements si for i = 0, . . . , 3 yields the following
set of constraints for the placement of the x-assignment χ:

s1
0 < χ; s2

1 < χ; χ < s1
3; χ < s2

3 .

These constraints lead to the following six PGAS codes:

s0; s2
1; b2 = a1; s1

1; s2; s3

s0; s1; b2 = a1; s2; s3

s0; s1; s2
2; b2 = a1; s1

2; s3

s0; s1; s1
2; b2 = a1; s2

2; s3

s0; s2
1; s2

2; b2 = a1; s1
1; s1

2; s3

s0; s1; s2; b2 = a1; s3

The statements executed in section i by processor j are denoted by s
j
i . In this

example we assume two processors. Note that (s1
i ; s2

i ) = (s2
i ; s1

i ) as a result of
the disjoint address spaces. Hence, the PGAS code si; si+1 yields the following
six semantically equivalent sequential codes:

s1
i ; s1

i+1
; s2

i ; s2
i+1

s2
i ; s2

i+1; s1
i ; s1

i+1

s1
i ; s2

i ; s1
i+1; s2

i+1

s1
i ; s2

i ; s2
i+1

; s1
i+1

s2
i ; s1

i ; s1
i+1; s2

i+1

s2
i ; s1

i ; s2
i+1

; s1
i+1

The partial order of the statements is induced by s
j
i < s

j
i+1

. Any two statements

from s
j
i and sk

i+1 can be executed in arbitrary order for j 6= k. Further combina-
tions resulting from feasible (wrt. data dependence) switches of the x-assignment
and statements in certain s

j
i lead to an exponential number of possible actual

execution orders that need to be taken into account when proving properties of
PGAS programs. For this example we observe that the original program must
satisfy the restriction for isend that a1 is not written by s1 nor s2.

7 Similarly,
for irecv it must satisfy that b2 is neither read nor written by s2.

To prove the correctness of an adjoint of a message-passing program, we need
to show that its adjoint PGAS versions are semantically equivalent to the PGAS
versions of its adjoint. We do so by looking at all possible actual execution orders.

7 a1 must not be written by s1

1 nor s1

2. It is not written by s2

1 nor s2

2 due to the separate address
spaces.

6



2.2 Case Study: Asynchronous Unbuffered Send/Receive

We present here a case study to illustrate the use of the proposed formalism.
Similar proofs are required for a large number of communication patterns. We
are analyzing all communication patterns used by our main target applications,
including MITgcm (mitgcm.org) as well as ICON (www.icon.enes.org).

Proposition: Let P be a message-passing program involving processes p1 and
p2, and let the integer variable myrank contain the respective process identifiers.
The communication pattern

si−1; if (myrank == 1) isend(a, r); si+1

. . .

sj−1; if (myrank == 2) irecv(b, r); sj+1

. . .

sk−1; wait(r); sk+1

in the forward section of the adjoint code yields

s̄k+1

if (myrank == 2) isend(b̄, r)

if (myrank == 1) irecv(t, r)

s̄k−1

. . .

s̄j+1; if (myrank == 2) wait(r); b̄ = 0; s̄j−1

. . .

s̄i+1; if (myrank == 1) wait(r); ā+=t; s̄i−1

in the reverse section, where s̄k are the adjoint statements corresponding to sk.

Proof. The forward PGAS codes are given as

si−1; si+1; . . . sj−1; s2
j+1; b2 = a1; s1

j+1; . . . sk−1; sk+1

si−1; si+1; . . . sj−1; sj+1; b2 = a1; . . . sk−1; sk+1

. . .

si−1; si+1; . . . sj−1; sj+1; . . . sk−1; b2 = a1; sk+1

The reverse sections of the adjoint PGAS codes become

s̄k+1; s̄k−1; . . . s̄1
j+1; ā1

+=b̄2; b̄2 = 0; s̄2
j+1; s̄j−1; . . . s̄i+1; s̄i−1

s̄k+1; s̄k−1; . . . ā1
+=b̄2; b̄2 = 0; s̄j+1; s̄j−1; . . . s̄i+1; s̄i−1

. . .

s̄k+1; ā1
+=b̄2; b̄2 = 0; s̄k−1; . . . s̄j+1; s̄j−1; . . . s̄i+1; s̄i−1

The variable a1 is not written by any of the statements in si+1; ... sk−1 because
the original message-passing program is assumed to satisfy the restrictions on

7



isend. Similarly, b2 is neither read nor written by sj+1; ... sk−1. However, the
value of a1 may be read by statements in si+1; ... sk−1, implying that while ā1

may be incremented by s̄k−1; ... s̄i+1, it is not read or written otherwise. The
order of two successive increment operations can be switched if the incremented
variable is neither read nor written in between the two increment operations.8

Moreover, the placement of theses increment operations is arbitrary as long as
the values of the increments do not change. The value of b̄2 is neither read nor
written by s̄k−1; ... s̄j+1. Hence, the statement ā1+=b̄2 can be inserted at any
position between s̄k+1 and s̄j−1. In other words, the adjoints of all PGAS versions
of the given message-passing program are equivalent.

The adjoint message passing program yields the following set of constraints
for the placement of the adjoint x-assignment χ̄ ≡ “t = b̄2” :

s̄1
k+1 < χ̄; s̄2

k+1 < χ̄; s̄2
j−1 > χ̄; s̄1

i−1 > χ̄ .

Hence, the PGAS versions of the adjoint message-passing program are the fol-
lowing:

s̄k+1; s̄k−1; . . . s̄j+1; t = b̄2; b̄2 = 0; s̄j−1; . . . s̄i+1; ā1
+=t; s̄i−1

. . .

s̄k+1; t = b̄2; s̄k−1; . . . s̄j+1; b̄2 = 0; s̄j−1; . . . s̄i+1; ā1
+=t; s̄i−1

As a compiler-generated auxiliary variable, t can be guaranteed not to be read or
written by any of the statements s̄k−1; ... s̄i+1. From our previous argument we
recall that ā1 may be incremented by s̄k−1; ... s̄i+1 but it is not read or written
otherwise. Hence, the increment operation of ā1 with t can be placed in between
s̄i+1 and s̄i−1. As the value of b̄2 is neither read nor written by s̄k−1; ... s̄j+1,
the fixed placement of b̄2 = 0 in between s̄j+1 and s̄j−1 does not change the
program’s semantics either. The auxiliary variable t can be removed as the result
of copy-propagation [1], yielding a possible replacement of the first assignment
in t = b̄2; . . . ā1+=t with ā1+=b̄2. Consequently, the adjoint PGAS versions of
the message-passing program are semantically equivalent to the PGAS versions
of the adjoint message-passing program. �

3 Conclusion and Outlook

A formalism for proving the correctness of adjoint message-passing programs
has been illustrated by means of an asynchronous unbuffered send/receive com-
munication between two processes. This method is applied to a large number
of transformation rules currently being implemented in OpenAD [21] and the
differentiation-enabled NAGWare Fortran compiler [18]. It is based on analyzing
the data dependences in the PGAS versions of the original message-passing pro-
gram. Rigorous proofs can thus be constructed that rely only on program analysis
techniques used in classical compiler construction. We intend to consider ideas
presented in [19] in order to investigate a potential automatization of this proof
technique.

8 For a given use of a variable we distinguish between reads, writes, and increment operations
as a special case of a read-write combination.

8



One of our long-term goals is to build an adjoint message-passing library on
top of MPI. Such an extension is desirable for achieving satisfactory efficiency.
The ability to prove the correctness of given communication patterns is a funda-
mental ingredient of this ambitious research and development project.

References

1. A. Aho, R. Sethi, and J. Ullman. Compilers. Principles, Techniques, and Tools. Addison-
Wesley, Reading, MA, 1986.

2. M. Berz, C. Bischof, G. Corliss, and A. Griewank, editors. Computational Differentiation:
Techniques, Applications, and Tools, Proceedings Series. SIAM, 1996.

3. C. Bischof, M. Bücker, P. Hovland, U. Naumann, and J. Utke, editors. Advances in Auto-
matic Differentiation, LNCSE, Berlin, 2008. Springer. To appear.

4. M. Bücker, G. Corliss, P. Hovland, U. Naumann, and B. Norris, editors. Automatic Differ-
entiation: Applications, Theory, and Tools, number 50 in LNCSE, Berlin, 2005. Springer.

5. A. Carle and M. Fagan. Automatically differentiating MPI-1 datatypes: The complete
story. In [7], chapter 25, pages 215–222. Springer, 2002.

6. C.Faure and P.Dutto. Extension of Odyssée to the MPI library – reverse mode. Rapport
de recherche 3774, INRIA, Sophia Antipolis, Oct. 1999.

7. G. Corliss, C. Faure, A. Griewank, L. Hascoët, and U. Naumann, editors. Automatic
Differentiation of Algorithms – From Simulation to Optimization, New York, 2002. Springer.

8. G. Corliss and A. Griewank, editors. Automatic Differentiation: Theory, Implementation,
and Application, Proceedings Series. SIAM, 1991.

9. T. El-Ghazawi. Partitioned Global Address Space (PGAS) programming languages. Tuto-
rial at SC07. See http://sc07.supercomputing.org/.

10. C. Faure, P. Dutto, and S. Fidanova. Odysée and parallelism: Extension and validation.
In Procceedings of the 3rd European Conference on Numerical Mathematics and Advanced
Applications, Jyväskylä, Finland, July 26-30, 1999, pages 478–485. World Scientific, 2000.

11. A. Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic Differen-
tiation. SIAM, 2000.

12. L. Hascoët, U. Naumann, and V. Pascual. To-be-recorded analysis in reverse mode auto-
matic differentiation. Future Generation Computer Systems, 21:1401–1417, 2005.

13. P. Heimbach, C. Hill, and R. Giering. Automatic generation of efficient adjoint code for a
parallel Navier-Stokes solver. In P. Sloot, C. Tan, J. Dongarra, and A. Hoekstra, editors,
Proceedings of ICCS 2002, volume 2330 of LNCS, pages 1019–1028, Berlin, 2002. Springer.

14. P. Hovland and C. Bischof. Automatic differentiation of message-passing parallel programs.
In Proceedings of the First Merged International Parallel Processing Symposium and Sympo-
sium on Parallel and Distributed Processing, pages 98–104, Los Alamitos, CA, 1998. IEEE
Computer Society Press.

15. J. Marotzke, R. Giering, K. Zhang, D. Stammer, C. Hill, and T. Lee. Construction of the
adjoint MIT ocean general circulation model and application to Atlantic heat transport
variability. J. Geophysical Research, 104, C12:29,529–29,547, 1999.

16. U. Naumann. Call tree reversal is NP-complete. In [3]. 2008. To appear.
17. U. Naumann. DAG reversal is NP-complete. J. Discr. Alg., 2008. To appear.
18. U. Naumann and J. Riehme. A differentiation-enabled Fortran 95 compiler. ACM Trans-

actions on Mathematical Software, 31(4):458–474, 2005.
19. D. Shasha and M. Snir. Efficient and correct execution of parallel programs that share

memory. ACM Trans. Program. Lang. Syst., 10(2):282–312, 1988.
20. M. Mills Strout, B. Kreaseck, and P. Hovland. Data-flow analysis for MPI programs. In

ICPP ’06: Proceedings of the 2006 International Conference on Parallel Processing, pages
175–184, Washington, DC, USA, 2006. IEEE Computer Society.

21. J. Utke, U. Naumann, C. Wunsch, C. Hill, P. Heimbach, M. Fagan, N. Tallent, and
M. Strout. OpenAD/F: A modular, open-source tool for automatic differentiation of For-
tran codes. ACM Transactions on Mathematical Software, 34(4), 2008.

9


