
Aachen
Department of Computer Science

Technical Report

Fast Convergence of Routing Games
with Splittable Flows

George B. Mertzios

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2008-11

RWTH Aachen · Department of Computer Science · May 2008



The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/



Fast Convergence of Routing Games

with Splittable Flows

George B. Mertzios
Department of Computer Science

RWTH Aachen University
mertzios@cs.rwth-aachen.de

Abstract. In this paper we investigate the splittable routing game in a series-
parallel network with two selfish players. Every player wishes to route optimally,
i.e. at minimum cost, an individual flow demand from the source to the destina-
tion, giving rise to a non-cooperative game. We allow a player to split his flow
along any number of paths. One of the fundamental questions in this model is
the convergence of the best response dynamics to a Nash equilibrium, as well as
the time of convergence. We prove that this game converges indeed to a Nash
equilibrium in a logarithmic number of steps. Our results hold for increasing and
convex player-specific latency functions. Finally, we prove that our analysis on
the convergence time is tight for affine latency functions.

1 Introduction

We investigate in this paper the splittable routing game in a network with two
selfish players. The aim of each player is to route a flow demand from a source to
a destination at minimum cost. This gives rise to a non-cooperative game. The
players have possibly different demands (weighted flow). At each step of the game,
one of the players reallocates his flow, such that his individual cost is minimized,
assuming that the flow allocation of the other player remains unchanged (best
response dynamics). The players are allowed to split their flow arbitrarily along
any number of paths from the source to the destination (splittable flow).

This model was introduced in [1], where it is noted that the existence of Nash
equilibrium points (NEP) follows from a classical result about convex games [2].
In [1] the uniqueness of NEP is investigated mainly. In particular, it has been
proved that in a network with two nodes and multiple parallel links the NEP
is unique under reasonable convexity assumptions on the latency functions. Re-
cently, it has been proved that only the class of nearly parallel networks ensures
uniqueness of NEP for any set of players and latency functions [3]. This model has
been considered also from the perspective of the efficiency of equilibria, i.e. the
social optimality [4,5,6,7]. For the special case of symmetrical players in a net-
work the unique NEP is characterized as the minimum of a convex optimization
problem [7]. This implies that the game with symmetric players is an exact po-
tential game and thus the best response dynamics converge to a PNE [8].

The stability of NEP is a fundamental question in game theory and has been
stated as a major issue for further research in the model under consideration
[1]. The only result until now about this issue is that the two player game on
a restricted network with only two nodes and two parallel links converges to
the unique NEP [1]. To the best of our knowledge, nothing is known about the
time of convergence in this model. The convergence issue in the closely related
model of unsplittable flows has been investigated in the literature as well. Two



main results in this context are the existence of exponentially long best response
paths to PNE [9] and fast convergence to constant factor solutions on random
best response paths [10]. Furthermore, the number of steps required to reach
a NEP has been investigated for a variety of load balancing models using a
potential-based argument in [11].

Another related model is that of a cost sharing mechanism. In contrast to our
model, this mechanism is non-increasing in the number of players using an edge.
This crucial property has been used for the multicast game with selfish players, in
order to obtain a potential function for both splittable and unsplittable versions
[12]. The splittable version of this model is similar to ours. Though, the existence
of this potential function, which extends that of Rosenthal [13], seems not to be
extensible to non-decreasing cost functions, as it is in our case.

In this article we prove that the game with two selfish players on a series-
parallel network G converges in a logarithmic number of steps to a NEP, starting
at an arbitrary initial configuration. Here, we use the notion of convergence to a
NEP in the sense of [1], i.e. that the strategy configuration, which in the present
case is a point in a Eucledian space, is close to a NEP. Throughout this article
we make the assumption that the latency functions are increasing and convex,
which complies with the convexity assumptions of [1].

The proof of convergence is bazed on a potential-based argument. In partic-
ular, we define for every step t ∈ N a non-negative function (potential) ΦG(t),
which equals the amount of flow that is reallocated in the network G during step
t. We prove that for every ε > 0 the value of this function is at most ε after a
number of steps that is logarithmic in ε−1. In a series-parallel network with m
edges, the asymptotic convergence time is given in the main Theorem 1:

Theorem 1. The game converges to a Nash equilibrium in a logarithmic number
of steps. In particular, after

t(ε) = O(log(m�ε))

steps, the potential ΦG(t(ε)) is at most ε, for every ε > 0.

Note that this potential is not a function defined over the strategy configu-
rations, but rather a measure of the distance between two consecutive steps in
the best-response path. Thus, the existence of this function does not imply that
the game under consideration is a potential game.

Furthermore, a lower bound on the convergence time is presented. Our anal-
ysis is tight in the case of affine latency functions. We remind that the routing
problem in a network with a single convex objective can be solved in a stan-
dard way using convex programming techniques [14,15]. Thus, we assume that
exact minimization is achieved at each step. Hence, we are interested only in the
number of steps, in order to study the convergence time to a NEP.

The article is organized as follows. In Section 2 we investigate a network with
two nodes and multiple parallel links as a special case of a series-parallel network.
For this class of networks we provide a potential function that decreases strictly
at every step after the second one. In Section 3 we generalize our analysis to
arbitrary series-parallel networks. In particular, we provide a potential function
that generalizes that of Section 2. In Section 3.3 this potential is used to prove
Theorem 1. In Section 3.4 we obtain a lower bound on the convergence time,



which is tight in the case of affine latency functions. Finally, some conclusions
and open problems are discussed in Section 4.

2 A network of parallel links

2.1 Notation and terminology

We consider a network G with source u, destination v and a set of m parallel links
E = {1, 2, ...,m}, where the selfish players j ∈ {1, 2} wish to route an individual
flow demand dj from u to v at minimum cost each. W.l.o.g. we assume that the
demands dj are scaled in the interval (0, 1]. Let fe and xe,j denote the total flow
and the flow of player j respectively on link e. Player j has on link e an increasing
and convex player-specific latency function �e,j(fe), which denotes the cost per
unit of flow of player j on this edge. This latency implies that the cost function
of player j on edge e is ce,j(xe,j, fe) = xe,j�e,j(fe). The marginal cost function
ge,j(xe,j, fe) equals the first derivative of the cost function ce,j with respect to
xe,j, i.e. ge,j(xe,j, fe) = �e,j (fe) + xe,j�

′
e,j (fe).

Suppose that the players play alternating and let a step of the game denote
the best response of the corresponding player. Denote by j(t) the player moving
at step t, as well as by f

(t)
e and x

(t)
e,j the quantities fe and xe,j respectively after

the execution of this step. Let furthermore f
(0)
e be the flow on link e in the initial

allocation of the network. For every step t ∈ N let Δ
(t)
e = f

(t)
e − f

(t−1)
e and define

the sets E(t)+ := {e ∈ E : Δ
(t)
e > 0} and E(t)− := {e ∈ E : Δ

(t)
e < 0}.

Denote by g
(s)
e,j(t) = ge,j(t)(x

(s)
e,j(t), f

(s)
e ) the marginal cost of player j(t) on link

e after the execution of step s. Denote furthermore by S
(t)
j ⊆ E the support of

player j after the execution of step t, i.e. the set of the network links on which
player j allocates a positive amount of flow. We remind that, since the cost of
player j(t) is minimized at step t, then his marginal cost g

(t)
e,j(t) is equal to a

quantity g(t) on every link e ∈ S
(t)
j(t), while the marginal cost on every of the

remaining links is at least g(t).

2.2 The potential function

The potential at step t ∈ N is defined by

Φ(t) :=
∑
e∈E

|Δ(t)
e | ≥ 0 (1)

For every step t ∈ N, the potential Φ(t) equals the sum of the amounts of flow
that are reallocated on all links during step t. Since the demands of the players
remain constant, it holds that

Φ(t) = 2
∑

e∈E(t)+

|Δ(t)
e | = 2

∑
e∈E(t)−

|Δ(t)
e | (2)

Define now

λ := min
j∈{1,2},e∈E

⎧⎪⎨
⎪⎩

inf
0≤x≤d1+d2

{�′e,j(x)}
sup

0≤x≤d1,0≤y≤d2

{[x�e,j(x + y)]′′}

⎫⎪⎬
⎪⎭ > 0 (3)



which is a constant that depends only on the latency functions of the network.
Due to the monotonicity and convexity of these functions, it holds that

sup
0≤x≤d1,0≤y≤d2

{[x�e,j(x + y)]′′} ≥ [xe,j�e,j(fe)]
′′ = 2�′e,j(fe) + xe,j�

′′
e,j(fe)

≥ 2�′e,j(fe) ≥ 2 inf
0≤x≤d1+d2

{�′e,j(x)} > 0

for all values of xe,j and fe. It follows that

0 < λ ≤ 1
2

(4)

The following Lemma proves that Φ(t) decreases strictly at every step t ≥ 3 of
the game.

Lemma 1. For every t ≥ 3, it holds that Φ(t) ≤ (1 − λ) Φ(t − 1).

Proof. We denote for the purposes of the proof the quantities f
(t−2)
e ,x

(t−2)
e,j(t) and

j(t) by fe,xe,j and j respectively. For the marginal cost of player j on an arbitrary
link e ∈ E after the execution of step t, it holds that

g
(t)
e,j = �e,j

(
fe+Δ(t−1)

e + Δ(t)
e

)
+

(
xe,j + Δ(t)

e

)
�′e,j

(
fe+Δ(t−1)

e + Δ(t)
e

)
(5)

We distinguish the following cases.
Case 1. Suppose that g(t) ≥ g(t−2). Consider an arbitrary e ∈ E(t)−. Due to

the monotonicity and convexity of �e,j(fe), the marginal cost function ge,j(xe,j, fe)
is non-decreasing in fe. Since Δ

(t)
e < 0, player j allocated a positive amount of

flow on e after step t − 2, i.e. e ∈ S
(t−2)
j . It follows that his marginal cost on e

after step t−2 was equal to g(t−2). On the other side, since Δ
(t)
e < 0, his marginal

cost on e after the execution of step t − 1 was greater than g(t) and therefore
greater that g(t−2), due to the assumption. It follows that the total flow fe has
been increased during step t − 1 by the other player, i.e. e ∈ E(t−1)+. Thus,
E(t)− ⊆ E(t−1)+ ∩ S

(t−2)
j .

Since g
(t)
e,j ≥ g(t) holds for any link e ∈ E and due to the assumption, it follows

that g
(t)
e,j ≥ g(t−2) for every e ∈ E. Suppose now that |Δ(t)

e | ≥ |Δ(t−1)
e | for some

link e ∈ E(t)−. Then, since Δ
(t)
e < 0 and Δ

(t−1)
e > 0, it holds that xe,j + Δ

(t)
e <

xe,j + Δ
(t−1)
e + Δ

(t)
e ≤ xe,j. Therefore, (5) implies, due to the monotonicity and

convexity of �e,j, that g
(t)
e,j < �e,j(fe) + xe,j�

′
e,j(fe). Since e ∈ S

(t−2)
j , the latter

quantity equals g(t−2) and therefore g
(t)
e,j < g(t−2), which is a contradiction.

It follows that |Δ(t)
e | = (1 − λe) |Δ(t−1)

e | for every e ∈ E(t)−, where λe ∈ (0, 1].
By substituting this in the inequality g

(t)
e,j ≥ �e,j(fe) + xe,j�

′
e,j(fe) = g(t−2), we

obtain from (5), since Δ
(t)
e = −|Δ(t)

e | and Δ
(t−1)
e = |Δ(t−1)

e |, that

�e,j(fe + λe|Δ(t−1)
e |) + (xe,j+(λe − 1)|Δ(t−1)

e |)�′e,j(fe + λe|Δ(t−1)
e |)

≥ �e,j (fe) + xe,j�
′
e,j (fe) (6)

from which it follows that

[(xe,1 + λe|Δ(t−1)
e |)�e,1(fe + λe|Δ(t−1)

e |)]′ − [xe,j�e,j(fe)]′

≥ |Δ(t−1)
e |�′e,j(fe + λe|Δ(t−1)

e |) ≥ |Δ(t−1)
e | inf

0≤x≤d1+d2

{�′e,j(x)} (7)



The left hand side of the latter inequality is at most as
λe|Δ(t−1)

e | sup
0≤x≤d1,0≤y≤d2

{[x�e,j(x + y)]′′}, from which it follows due to (3)

that λe ≥ λ. Thus, since |Δ(t)
e | = (1 − λe)|Δ(t−1)

e | holds for every e ∈ E(t)− and
since E(t)− ⊆ E(t−1)+, it holds that

∑
e∈E(t)−

|Δ(t)
e | ≤ (1 − λ)

∑
E(t−1)+

|Δ(t−1)
e | (8)

Now, the Lemma follows from (2) and (8).
Case 2. Suppose that g(t) ≤ g(t−2). Consider an arbitrary e ∈ E(t)+. Simi-

larly, since Δ
(t)
e > 0, player j allocates on e a positive amount of flow after the

execution of step t, i.e. e ∈ S
(t)
j . It follows that his marginal cost on e after step

t is equal to g(t). On the other side, since Δ
(t)
e > 0, his marginal cost on e after

the execution of step t−1 was less than g(t) and therefore less that g(t−2), due to
the assumption. It follows that the total flow fe has been decreased during step
t− 1 by the other player, i.e. e ∈ E(t−1)−. It follows that E(t)+ ⊆ E(t−1)− ∩ S

(t)
j .

Since e ∈ S
(t)
j , it holds that g

(t)
e,j = g(t). Further, since g(t−2) ≤ g

(t−2)
e,j holds

for every e ∈ E, we obtain that g
(t)
e,j ≤ g

(t−2)
e,j . Suppose now that |Δ(t)

e | ≥ |Δ(t−1)
e |.

Then, since Δ
(t)
e > 0 and Δ

(t−1)
e < 0, it holds that xe,j + Δ

(t)
e > xe,j + Δ

(t−1)
e +

Δ
(t)
e ≥ xe,j. Therefore, (5) implies, due to the monotonicity and convexity of �e,j,

that g
(t)
e,j > �e,j(fe) + xe,j�

′
e,j(fe) = g

(t−2)
e,j , which is a contradiction.

It follows that |Δ(t)
e | = (1 − λe) |Δ(t−1)

e | for every e ∈ E(t)+, where λe ∈ (0, 1].
By substituting this in the inequality g

(t)
e,j ≤ �e,j(fe)+xe,j�

′
e,j(fe), we obtain from

(5), since Δ
(t)
e = |Δ(t)

e | and Δ
(t−1)
e = −|Δ(t−1)

e |, that

�e,j(fe − λe|Δ(t−1)
e |) + (xe,j+(1 − λe)|Δ(t−1)

e |)�′e,j(fe − λe|Δ(t−1)
e |)

≤ �e,j (fe) + xe,j�
′
e,j (fe) (9)

from which it follows that

[xe,j�e,j (fe)]
′ − [(xe,j−λe|Δ(t−1)

e |)�′e,j(fe−λe|Δ(t−1)
e |)]′

≥ |Δ(t−1)
e |�′e,j(fe − λe|Δ(t−1)

e |) ≥ |Δ(t−1)
e | inf

0≤x≤d1+d2

{�′e,j(x)} (10)

The left hand side of the latter inequality is at most as
λe|Δ(t−1)

e | sup
0≤x≤d1,0≤y≤d2

{[x�e,j(x + y)]′′}, from which it follows due to (3)

that λe ≥ λ. Thus, since |Δ(t)
e | = (1 − λe)|Δ(t−1)

e | holds for every e ∈ E(t)+ and
since E(t)+ ⊆ E(t−1)−, it holds that

∑
e∈E(t)+

|Δ(t)
e | ≤ (1 − λ)

∑
E(t−1)−

|Δ(t−1)
e | (11)

Now, the Lemma follows from (2) and (11).



3 Series-parallel networks

3.1 Notation and terminology

In this section we extent our model to a series-parallel network G with source u,
destination v and m edges, which is a generalization of the network presented in
Section 2. We remind here the definition of such a network.

Definition 1 (Series-parallel network). A series-parallel network G is a di-
rected network with a source u and a destination v that is defined recursively as
follows:

1. The primitive series-parallel network consists of a source u, a destination v
and a single directed edge from u to v.

2. The parallel composition P = P (G1, G2) of the series-parallel networks G1

and G2 is the network created from the disjoint union of G1 and G2 by merg-
ing the sources and destinations of them to create the source and the desti-
nation of P respectively.

3. The series composition S = S(G1, G2) of the series-parallel networks G1 and
G2 is the network created from the disjoint union of G1 and G2 by merging
the destination of G1 and the source of G2. The source of S is then the source
of G1 and its destination is the destination of G2.

Similarly to Section 2, we use here the following notation for a series-parallel
network G with a set E of m edges. Denote by PG the set of directed paths from
u to v and by S

(t)
j ⊆ PG the support of player j after the execution of step t,

i.e. the set of paths on which player j allocates a positive amount of flow. The
marginal cost of player j(t) on a path P ∈ PG after the execution of step s is
denoted by g

(s)
P,j(t) =

∑
e∈P g

(s)
e,j(t), where g

(s)
e,j(t) denotes his marginal cost on edge

e ∈ E after step s, as in Section 2. Since the cost of player j(t) is minimized at
step t, it follows that his marginal cost g

(t)
P,j(t) is equal to a quantity g

(t)
G on every

path P ∈ S
(t)
j(t), while the marginal cost on every of the remaining paths is at

least g
(t)
G .

3.2 The potential function

Denote now by ΔG(t) the difference of the flows on G between steps t and t− 1.
This is a flow with value Δ

(t)
e on edge e ∈ E. Let furthermore P(t)

G = {P (t)
i }

i∈I
(t)
G

be a path decomposition of the flow ΔG(t) in directed paths from u to v. Denote
the flow on P

(t)
i by f

(t)
i . W.l.o.g. suppose that

∑
i∈I

(t)
G

|f (t)
i | is minimum among

all path decompositions of ΔG(t). Then, the potential at step t is defined as

ΦG(t) :=
∑

i∈I
(t)
G

|f (t)
i | ≥ 0 (12)

which equals the amount of flow that is reallocated in G during step t. Define
now the subsets I

(t)+
G := {i ∈ I

(t)
G : f

(t)
i > 0} and I

(t)−
G := {i ∈ I

(t)
G : f

(t)
i < 0}

of the index set I
(t)
G . In the case where G is a network of parallel links, the



paths correspond to the links. Thus, the potential function of (12) degenerates
to that of (1) and the sets I

(t)+
G and I

(t)−
G correspond to the sets E(t)+ and E(t)−

of Section 2 respectively. Since the demands of the players remain constant, it
holds similarly to (2) that

ΦG(t) = 2
∑

i∈I
(t)+
G

|f (t)
i | = 2

∑
i∈I

(t)−
G

|f (t)
i | (13)

for every t ∈ N. The following Lemma shows that also in this case the potential
ΦG(t) decreases strictly at every step t ≥ 3.

Lemma 2. It holds that ΦG(t) ≤ (1 − λ) ΦG(t − 1) for every t ≥ 3.

Proof. The proof will be done by induction on the structure of G. If G is a
network of parallel links, then Lemma 2 follows from Lemma 1.

Suppose first that G = S(G1, G2) for some series-parallel networks G1, G2.
The paths of P(t)

G1
and P(t)

G2
cover the whole flow in ΔG

(t)
1 and ΔG

(t)
2 , while

ΦG1(t), ΦG2(t) denote the sum of the absolute flows on the paths of P(t)
G1

and P(t)
G2

respectively. Due to the definition, the values ΦG1(t) and ΦG2(t) are minimum
among all path decompositions of ΔG

(t)
1 and ΔG

(t)
2 respectively. W.l.o.g. it holds

that ΦG1(t) ≥ ΦG2(t). Then, extend every path P of P(t)
G2

by some paths of P(t)
G1

of the same total flow with P . We cover this way the whole ΔG
(t)
2 and a part

of ΔG
(t)
1 with paths, such that their absolute flows sum up to ΦG2(t). The sum

of the absolute flows on the remaining paths of ΔG
(t)
1 equals ΦG1(t) − ΦG2(t).

We extend all these paths of ΔG
(t)
1 by a single path P0 of G2, covering thus the

whole ΔG(t) with paths of total absolute value ΦG1(t). It follows that

ΦG(t) = max{ΦG1(t), ΦG2(t)} (14)

for every t ∈ N. Now, the induction hypothesis implies that

ΦG1(t) ≤ (1 − λ)ΦG1(t − 1) (15)

and
ΦG2(t) ≤ (1 − λ)ΦG2(t − 1) (16)

The Lemma follows from (14), (15) and (16).
Suppose now that G = P (G1, G2). The networks G1 and G2 do not share any

common edges or paths. Thus, since the cost of player j(t) is minimized at step
t, it holds that g

(t)
G1

= g
(t)
G2

= g
(t)
G . We distinguish the following cases.

Case 1. Suppose that g
(t)
G ≥ g

(t−2)
G . Due to Case 1 in the proof of Lemma 1,

the induction hypothesis implies for both components G1, G2 of G that∑
i∈I

(t)−
Gk

|f (t)
i | ≤ (1 − λ)

∑
i∈I

(t−1)+
Gk

|f (t−1)
i |, k ∈ {1, 2} (17)

since g
(t)
Gk

≥ g
(t−2)
Gk

. By adding the inequalities of (17) for both k ∈ {1, 2}, we
obtain ∑

i∈I
(t)−
G

|f (t)
i | ≤ (1 − λ)

∑
i∈I

(t−1)+
G

|f (t−1)
i | (18)



The Lemma follows from (13) and (18).
Case 2. Suppose that g

(t)
G ≤ g

(t−2)
G . Similarly, due to Case 2 in the proof

of Lemma 1, the induction hypothesis implies for both components G1, G2 of G
that ∑

i∈I
(t)+
Gk

|f (t)
i | ≤ (1 − λ)

∑
i∈I

(t−1)−
Gk

|f (t−1)
i |, k ∈ {1, 2} (19)

since g
(t)
Gk

≤ g
(t−2)
Gk

. By adding the inequalities of (19) for both k ∈ {1, 2}, we
obtain ∑

i∈I
(t)+
G

|f (t)
i | ≤ (1 − λ)

∑
i∈I

(t−1)−
G

|f (t−1)
i | (20)

Now, the Lemma follows from (13) and (20).

3.3 Proof of Theorem 1

Proof. Recall first that the demands d1, d2 are scaled in the interval (0, 1]. Denote
now λ0 = 1 − λ. The flow ΔG(t) can be decomposed in at most m paths in P(t)

G

with non-zero flow. Since player 2 moves at the second step of the game, it holds
that |f (2)

i | ≤ d2 ≤ 1 for every path P
(2)
i of P(2)

G . It follows that ΦG (2) ≤ m. Due
to Lemma 2, it holds that ΦG(t) ≤ λt−2

0 ΦG (2) ≤ λt−2
0 m for every t ≥ 3. Now,

suppose that λt−2
0 m ≤ ε, for some ε > 0. It follows then that λ−t+2

0 ≥ m�ε.
Therefore, after

t(ε) := �log−1(λ−1
0 ) log(m�ε)� + 2 (21)

steps the potential ΦG is at most ε, for any given ε > 0. Thus, since λ0 < 1 is
a constant and since the potential equals the 1-norm of the difference between
the configurgation vectors in two consequtive steps, the game converges in a
logarithmic number of steps to a NEP and the Theorem follows.

3.4 Tight bounds

Due to (4) it holds that λ0 = 1 − λ ∈ [12 , 1) in the proof of Theorem 1. Thus,
log−1(λ−1

0 ) ≥ 1 and for the convergence time in (21) it holds that

t(ε) ≥ �log(m�ε)� + 2 (22)

Consider now the special case that the player-specific latency functions are
affine, i.e. for every e ∈ E and j ∈ {1, 2} it holds that �e,j (x) = αe,jxe,j + βe,j,
with αe,j > 0 and βe,j ≥ 0. Then, directly substitution in (3) implies that

λ = min
j∈{1,2},e∈E

{
αe,j

2αe,j

}
=

1
2

(23)

Therefore, λ0 = 1
2 and log−1(λ−1

0 ) = 1. It follows that in this case equality holds
in (22), which shows that our analysis is tight.



4 Concluding remarks

This paper investigates the selfish routing of two players in a series-parallel net-
work. Each player controls a demand of flow, which can be splitted arbitrarily
on the available paths between the source and the destination. The main result
is the convergence of the best response dynamics to a Nash equilibrium in a
logarithmic number of steps, starting at an arbitrary initial configuration. The
generalization of this result to the case of an arbitrary network, as well as to the
atomic game with several players activated in a round robin fashion, remains an
important open question for further research.
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2003-05 Christof Löding, Philipp Rohde: Solving the Sabotage Game is PSPACE-

hard
2003-06 Franz Josef Och: Statistical Machine Translation: From Single-Word

Models to Alignment Templates
2003-07 Horst Lichter, Thomas von der Maßen, Alexander Nyßen, Thomas

Weiler: Vergleich von Ansätzen zur Feature Modellierung bei der Soft-
wareproduktlinienentwicklung
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gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit
BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-
ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-
ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:
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