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Abstract

Embedded systems based on different types of hardware platforms are nowa-
days increasingly used in safety-critical applications. These different hardware
platforms lead to fundamental differences in design, particularly regarding the
corresponding software. In this work, potential influences of hardware platforms
on safety properties were gathered and open issues were identified. The most
relevant of these open issues were evaluated for popular embedded hardware
platforms (microcontroller, CPLD/FPGA). In detail, the impacts of hardware
platform selection on software diversity, encapsulation, reviewability, reusability
and the development according to ISO26262 were chosen for investigation. Fur-
thermore, the approach of software diversity was compared with a fault removal
approach. The evaluation was realized in form of six experiments conducted for
this work. During these evaluations, the following similarities and differences
were observed for the considered hardware platforms. Despite the diversity be-
tween the hardware platforms, failures observed in the software versions, which
were developed for these different platforms, contained high numbers of depen-
dent (coincident) failures. Although failure dependency between two versions
was reduced by the use of diverse hardware platforms, this effect was low. Most
dependent failures were identified as implementation independent so that im-
provements of the software diversity by hardware diversity were limited. Thus,
a comparison of software fault tolerance with a fault removal approach based
on tests and reviews was conducted. As a result, different types of failures
were mitigated by these alternative approaches. On the other hand, differences
between microcontrollers and FPGAs were observed. First, certain advantages
of FPGAs with respect to encapsulation and reuse of real-time functions could
be demonstrated. Moreover, differences regarding the reviewability of software
versions written for FPGAs and microcontrollers were observed. Finally, the
development according to ISO26262 revealed only minor differences between
the investigated hardware platforms but between the different safety concepts
of device supervision and function supervision.
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1. Introduction

1.1. Problem Definition and Objectives

The complexity of today’s control applications is currently increasing. These
applications range from autopilots in airplanes and brake assistants in modern
cars to complex assembly lines in production automation. To enable flexible
and efficient approaches, increased amounts of programmable electronics, whose
behavior is substantially determined by software1, are applied to implement
these applications. A commonly used term for these programmable devices is
embedded systems, as they are embedded into another system (e.g. car, airplane,
assembly line).
According to the given examples of these systems, it is obvious that failures

of these devices could lead to dangerous consequences (e.g. serious accident if
brake assistant disables brake activity). In systems, in which the consequences
of failures are not tolerable, measures are required to assure that the risk of such
a failure is adequately low. Effective measures to reduce the risk of failure, as
over-designing2 (e.g. enforced steering column) and redundancy (e.g. doubling
of pressure-relief valves) of critical components, are known in the area of me-
chanical components. However, problems might result from the costs of these
additional measures and their additional weight could also be critical in several
embedded applications. Moreover, if the concept of redundancy is applied, it
has to be assured that the risk of both redundant units failing at the same
time is acceptably low (e.g. two identical valves could both stop working if the
temperature is above or below a certain threshold).
These techniques can be transferred partly to the hardware parts of embedded

systems. While over-designing with respect to safety is not always suitable (e.g.
improving the robustness of a semiconductor device by increasing its internal
structure size typically reduces its performance), the concept of redundancy is
generally applicable. As in the case of mechanic components, additional costs
are often a problem of both approaches. To allow low cost devices that also meet
the remaining requirements present in safety-critical embedded applications, the

1The term software includes all non-physical parts of a systems that determine its behavior,
while all physical parts of an embedded system are referred to as hardware.

2The term over-designing describes measures of enforcing a component itself without adding
redundancy.
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1. Introduction

use of highly integrated components would be desirable. However, applications
with very high production volumes (e.g. consumer electronics, telecommuni-
cation, office applications), which drive the development of highly integrated
components, are usually not safety-critical. Therefore, these devices do not
include measures specific for safety-critical systems. As most of today’s safety-
critical systems are produced in comparatively low numbers (e.g. autopilot in an
airplane), typically general purpose devices have to be applied for cost reasons,
and safety requirements have to be targeted by additional measures. While the
increasing amount of safety-critical applications (e.g. in modern cars) might
change this situation in the future, this lack of built-in safety measures has to
be considered in current applications.
On the other hand, these approaches are not applicable for software. While

over-designing is not possible for software, a simple doubling of software can
also not be considered as a solution. A fault in one software module would
be present in the doubled version also, counteracting the idea of redundancy.
The problem is that all software faults are introduced into the system at design
time and therefore are systematic. Software can affect system safety in two
ways: First, it can exhibit behavior that contributes to the system reaching
a hazardous state. Second, it can fail to recognize or handle hardware faults
that it is required to control [58]. Moreover, testing of software is notoriously
difficult, as testing of every possible situation is usually not possible. Testing
in embedded systems is further complicated by real-time properties present
in most of these systems. Thus, it is not surprising that many engineers see
the production of dependable software as the most important element in the
creation of safety-critical systems [117].
Consequently, it is of major interest to avoid faults in the software of em-

bedded systems. Additionally, approaches to tolerate the software faults that
remained in the system upon completion are desirable. However, not many
established results on influences regarding software reliability are available [79].
As further described in Section 2.1, many different hardware platforms are

available in embedded systems. These platforms range from CPU based systems
to programmable logic devices (PLDs) and differ with respect to their program-
ming languages, design processes and their corresponding tools. According to
limited resources and real-time requirements, present in most embedded sys-
tems, a close correlation between hardware and software is present in these
systems. Therefore, it seems necessary to investigate the impact of hardware
platform selection on faults in embedded software and fault handling3 in gen-
eral. The investigation of this impact is especially interesting, as decisions for
a specific hardware platform these days usually consider only the handling of

3The term fault handling comprises fault avoidance and fault tolerance (see Section 3.2).
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1.2. Contribution

hardware faults or even neglect fault handling aspects.
Accordingly, the objective of this work is to identify impacts of hardware

platform selection on the fault handling in embedded systems, especially in their
software. Therefore, a suitable methodology of evaluation is required for these
investigations. According to the large scope of potential hardware platforms,
a selection of representative devices is required for the evaluations. Moreover,
a methodology allowing the conduction of further evaluations in this field is
desirable.

1.2. Contribution

To support the objective presented in the previous chapter, the main contribu-
tions of this work are presented in the following.
First, we identified fault handling as the major aspect for the comparison of

embedded hardware platforms for their suitability for safety-critical systems. In
this context, we developed a model of the impacts on the handling of hardware
and software faults, which is presented in Chapter 3. Based on this model,
a literature survey revealed several open issues, mostly with respect to the
handling of software faults.
In our investigations, we compared the fault handling properties of different

hardware platforms by applying empirical evaluations. For the investigation
of the open issues identified, we performed 6 experiments with more than 100
participants resulting in 86 final (and several more intermediate) program ver-
sions, 48 review reports and 14 test reports. As a result, several differences with
respect to fault handling could be shown for the considered hardware platforms.
The results obtained are suitable to support the process of hardware selection
in safety-critical embedded applications. Moreover, the methodology of evalu-
ation presented in this work is suited to support the development of further
experiment designs in the area of embedded systems. Additionally, the empir-
ical data collected in our experiments was used for a case study of a software
tool developed at our institute [111]. Finally, the obtained data is suitable for
further empirical investigations.

1.3. Thesis Structure

The remaining thesis is organized as follows. Chapter 2 describes preliminaries,
and is mostly a brief introduction into embedded systems and safety-critical
systems. As impacts of hardware platforms in safety-critical systems are of
interest for this work, safety-relevant impacts are evaluated in Section 3. In this

3



1. Introduction

section, which represents the analysis of related work, open issues are identified
and selected aspects are chosen for later analysis.
The chapters 4 to 6 describe the empirical evaluations conducted for this

thesis. The planning of the evaluations is described in Chapter 4. The dif-
ferent planning aspects for the conducted experiments are described jointly in
this chapter, while illustrating the existent differences between the experiments.
Next, the execution of each of the six experiments is described in Chapter 5 and
the evaluation of the experiment outcomes can be found in Chapter 6. Finally,
Chapter 7 represents an evaluation of educational and organizational aspects
of the experiments conducted as well as a discussion of the significance of the
obtained results.

1.4. Bibliographic Notes

Parts of this thesis are based on work presented in earlier publications. An
early survey on fault handling in embedded systems was published in [93, 94].
The results of our first experiment investigating the diversity of software faults
on different hardware platforms have been published in [106]. Moreover, an
early identification of safety-relevant impacts of hardware platform selection was
presented in [95]. The impacts of MCUs and FPGAs on the fault handling in
safety-critical systems were partly published in [103]. Results of the second and
third experiment (encapsulation, reviewability) can be found in [98] while parts
of the results achieved by the forth experiment (test and review) were published
in [96, 97]. The results of the fifth experiment (reusability) were presented
in [101]. Moreover, the testing issues presented in 4.6.6 were described in [100]
before. Finally, the application used for the first experiment was described in
[105] in combination with educational aspects. A presentation of the application
used in Experiment 2 can be found in [111]. Furthermore, the approach of
systematic hardware platform selection presented in Chapter 8 was published
in [99] with regard to educational aspects and was applied in [104] for a survey
on the suitability of FPGAs for industrial applications.
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2. Preliminaries

The preliminaries presented in this chapter include a brief introduction to em-
bedded systems with a focus on the two hardware platforms investigated in this
work. Moreover, a short introduction to safety-critical systems is given.

2.1. Embedded Systems

Several important properties of embedded systems have already been mentioned
in the introduction of this thesis. First of all, embedded systems interact with
another system in which they are embedded, the so called embedding system.
Requirements for the embedded system have to be derived from requirements
for the embedding system. These requirements include functional, but also non-
functional requirements as dependability, modifiability, reusability, and mar-
ketability (see [99] for further details). Second, the interaction with the embed-
ding system usually requires real-time properties of the embedded system. In
this case, the correctness of an operation depends upon both, the correctness
of the output values and the time at which they are released. These real-time
requirements have to be considered, if functionalities (e.g. to avoid and tolerate
faults) are introduced into the design.
Moreover, embedded systems can be subdivided into product automation and

production automation. While in the first case, the embedded system itself is
the product which is sold (e.g. mobile phone), the embedded system is used
for production in the second case (e.g. control unit for a chemical process).
Devices of these categories have different properties, mostly originating from
differences in the production volume. In this work, the focus is on the first cate-
gory of embedded systems, but several results could be transferred to the second
category. An aspect typical for embedded systems of this first category are lim-
ited resources, e.g. regarding size, weight, power consumption, and costs. The
cost aspect is usually resulting in limited computational power and comparable
small memories. To fulfill the given requirements with the restricted resources,
software for embedded systems is often developed closely to the hardware. In
this manner, very short response times and computation cycles can be achieved
with limited computational power. Thus, hardware abstraction and operating
systems are only applied if necessary and if real-time requirements can be met
this way.
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2. Preliminaries

If a function is implemented in the field of embedded systems, several differ-
ent hardware platforms1 are available. These platforms are ranging from CPU
based systems as microcontrollers (MCUs) and digital signal processors (DSPs)
to programmable logic devices (PLDs) as complex programmable logic devices
(CPLDs) and Field Programmable Logic Arrays (FPGAs). The different plat-
forms lead to differences in design and development activities. Since FPGAs
and MCUs are compared as popular representatives of CPU and PLD based
embedded systems for this work2, these two devices will be introduced briefly
in the following.

Microcontrollers and FPGAs

In principle, a given function could be implemented on both types of hardware
platforms (MCUs and FPGAs) [119]. Depending on the functional and non-
functional requirements, one hardware platform might be suited better than
another one. We described the structure of both devices briefly in [99] while
further information on the structure of FPGAs can be found in [70, 90]. More-
over, the publications [119] and [114] provide a good comparative introduction
into CPU and PLD based systems. Therefore, only selected functional differ-
ences are presented below.
The implementation of a transfer function that does not change during run

time is generally easy to implement on an FPGA. A fixed transfer function is
present if, for example, required constants (offsets, sensors characteristics, etc.)
are loaded into the module at start up. Moreover, changes in parameters of
the transfer function can also be handled at run time. If it is required that
calculations have to be performed with different transfer functions that depend
on run time options, an MCU will be typically more suitable.
Otherwise, the parallel structure of FPGAs allows to implement concurrently

operating modules. This aspect is especially suitable if several real-time func-
tions have to be executed in parallel (e.g. signal generation or signal measure-
ment). If sequential operations are required within an FPGA, they have to be
implemented by using state machines or by integrating soft-core processors in
the FPGA design. MCUs, on the other hand, usually include on-chip peripher-
als (e.g. different types of timer units) that also allow a concurrent execution of
real-time tasks. However, the application of these hardware units is limited to

1The term hardware platform comprises all programmable electronic devices that are suitable
for control tasks in embedded systems.

2A CPLD was used for the first experiment. However, FPGAs and CPLDs differ from the
programmer’s point of view only in the amount of logic that can be synthesized on them.
Performance and power consumption issues might lead to further differences, but these
differences could be neglected for this work.
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2.2. Safety-Critical Systems

those available on the chosen MCU, while the required function could be sim-
ply implemented in FPGAs. Finally, the advent of dual-core microcontrollers
allows the introduction of a certain parallelism in MCUs.
Summarizing, there are differences in the development between MCUs and

FPGAs, which could have an impact on functional and non-functional3 proper-
ties of embedded systems.

2.2. Safety-Critical Systems

As mentioned before, an increasing number of embedded systems is applied in
safety-critical applications. An application is considered as safety-critical, if
faults in this application could lead to hazards (e.g. severe damage of people or
the environment). All parts of these systems which could contribute to hazards
are referred to as safety-related (see e.g. [46, 116]).
In safety-critical systems, specific requirements have to be considered. In this

regard, it is important that safety is a system problem [58]. Thus, it has to made
sure that the combination of hardware and software never leads to an unsafe
state. This property is generally achieved by implementing a sufficient safety
function. A safety function is responsible for the detection and the handling of
all faults which could lead to unsafe states of the overall system. One form of
fault handling is to shut down the system as soon as a critical fault is detected
(fail-silent system). Another option is to put the actuators in a safe state and
to try a form of fault recovery. This recovery could include a simple reset of
the system (could mitigate transient hardware faults and some software faults)
or a more fine grained recovery (e.g. to defined recovery point in the system).
The disadvantage of these approaches is the interruption of the system’s service
during fault handling. This interruption might be not acceptable for safety-
critical systems that require permanent service (e.g. drive-by-wire system). A
combination of two fail-silent units to one fail-operational system is one solution
to this problem (see e.g. [71]).
The reliability of the safety function is essential in safety-critical systems.

First of all, it is important that all safety-relevant faults are detected and suffi-
ciently handled to assure that safety requirements are not violated. Moreover,
the fact that the safety function could perform a shut-down, a reset, or other
recovery operations of the system, has an impact on the availability of the
original application. Thus, the reliability aspect of functions implemented in
safety-critical embedded systems is of great importance (and thus the major
focus of this work).

3Note: non-functional properties do not represent the required functionality itself but addi-
tional qualities of the system (e.g. reliability, maintainability and testability, see also [99]).
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2. Preliminaries

For the development of safety-critical applications, several safety standards
have been developed in the last decade. While certain standards are specific
for a certain application domain, the standard IEC61508 [46] is comparatively
application independent. Nevertheless, specialties of the process automation
domain had an influence on the contents of this standard. The standard is based
on integrity targets that are named safety integrity levels (SILs). These levels
are described by one of four discrete bands (SIL1...SIL4) with SIL4 representing
the highest target (most critical application). Next, an assessment of the design,
the designer’s organization and management, as well as the competence and
training of operators and maintainers is carried out in order to determine if the
equipment actually meets the target SIL in question [116]. Thus, all activities
in the life cycle of a system have to be considered. In order to fill the roles
of being both a template for the development of application specific standards,
and being a standard in its own right, the IEC61508 necessarily leaves much
to the discretion and interpretation of the user [116]. Therefore, no advice for
hardware platform selection can be found in the IEC61508. However, a new
annex is currently developed for the IEC61508, which targets new aspects of
microelectronics (61508-2 Annex E: Special architecture requirements for ASICs
with on-chip redundancy [47]).

According to the generic nature of the standard in combination with its back-
ground in process automation, difficulties might occur if the standard is applied
in application domains that differ significantly from process automation. An
example is the automotive domain. Among other aspects, the determination of
safety integrity levels described in the IEC61508 is not suitable for this domain.
Therefore, the specific safety standard ISO26262 [48] is currently developed for
automotive applications. This standard is also based on integrity levels, the so
called automotive safety integrity levels (ASIL), which range from ASIL A to
ASIL D with the latter representing the highest target. Also the remaining con-
tents of the current version of this standard (baseline 7 was considered for this
work) is structured similarly to the IEC61508, but includes more details with
respect to the implementation of safety-critical automotive applications. Nev-
ertheless, recommendations for hardware platform selection cannot be found in
this standard.
Finally, certain terms describing aspects of safety critical systems are used

throughout this thesis. Beside the terms explicitly introduced in this and the
previous section, the terms fault, error, failure, reliability, safety, fault preven-
tion, fault tolerance, fault removal, fault avoidance, development phase, use
phase, random testing, deterministic testing, content failure, silent failure, tim-
ing failure, common mode failures, and fault activation reproducibility used in
this work are compliant with those described in [5].
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3. Identification of Safety-Relevant
Impacts

The research focus of this work is concretized in this chapter. Thus, design
decisions that might affect the safety of an embedded system are presented
(Section 3.1). In this context, fault handling is identified as an important aspect
for safety-critical systems and is investigated in Section 3.2. Next, open issues in
fault handling are identified (Section 3.3), whereof a selection was investigated
in this work (Section 3.4).
We have published aspects of fault handling in embedded systems, which are

presented in this chapter, in [93, 94, 95, 103].

3.1. Potential Safety-Related Impacts

Although safety requirements are of great importance in safety-critical systems,
first design steps of these systems are often focused on functional requirements
only. Accordingly, the safety standard IEC61508 allows the consideration of
the system’s safety after its functional development. The reason is that the
IEC61508 has its background in process and production industries in which ap-
plication and safety function are typically developed separately (see e.g. [42, 52]).
The standard ISO26262 on the other hand propagates a planing and execution
of all safety measures parallel to actual development activities. As described in
Section 2.2, the ISO26262 is especially developed for the automotive domain. In
this domain, application and safety function are often closely coupled according
to requirements for low cost, low volume and low power consumption, which
makes an early consideration of safety requirements necessary. Nevertheless,
even in this case, several design decisions are typically made before the safety
considerations. Thus, the design decisions made may lead to an insufficient
design with respect to safety aspects. While this insufficiency might result in
unnecessary overheads in development time or may require additional hardware
measures increasing the overall costs of the system, safety requirements may
even require changes of the complete system. Accordingly, it would be benefi-
cial to know in advance how certain design decisions will affect the safety of the
system.
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For this reason, the influences of design decisions on the reliability of a func-
tion in embedded systems are considered in the following. A collection of some
potential impacts is listed in the following:

• Design processes (none, V-model, life-cycle, etc.)

• Programming languages (Assembly, C, ADA, VHDL, etc.)

• Development style (code based ↔ model based design)

• Software architecture

• Operating system, hardware abstraction

• Hardware architecture (e.g. redundancy)

• Hardware platform

It is important to note that the selection of the hardware platform has an
impact on most of the remaining aspects. As an example, a certain operating
system or a specific programming languages might not be available for every
hardware platform. This dependency supports the importance of hardware
platform selection investigated in this work.
Moreover, the impacts of all these aspects listed above could be defined by

their impact on the different techniques of fault handling (e.g. a specific pro-
gramming language might allow especially efficient avoidance of software faults).
Therefore, an analysis of fault handling techniques in embedded systems is pre-
sented in the following section.

3.2. Impacts on Fault Handling in Embedded Systems

Fault handling can be applied at different life-cycle stages of embedded systems.
In the development phase, measures can be applied to avoid the occurrence of
faults in the later system. This fault avoidance could be further divided into
fault prevention on the one hand (e.g. by suitable design processes) and fault
removal on the other hand (e.g. by testing and formal verification). Other
measures try to tolerate faults, which have not been detected and removed
during development, during the use-phase. This fault tolerance includes error
detection and handling of errors and faults during the use-phase. Moreover,
faults in embedded systems can occur as well in hardware as in software. Further
on, fault handling techniques are also possible in hardware and/or software.
While several aspects have to be considered for an evaluation of fault handling

measures, often only isolated aspects are considered in current publications. As
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3.2. Impacts on Fault Handling in Embedded Systems

an example, several publications consider different aspects of hardware fault
handling (e.g. [9, 12, 51, 77, 124]), but do not consider aspects of software
fault handling. Further on, comparisons between different hardware platforms
as MCUs and FPGAs are rare. Similarly, recommendations given by safety
standards generally focus on selected aspects. As an example, a rating of pro-
gramming languages with respect to their suitability for safety critical systems
can be found in the IEC61508. However, this rating is very general and limited
to selected languages for microcontrollers only. Moreover, certain recommenda-
tions for software architecture aspects are given (e.g.: it is highly recommended
for a SIL3 system not to use dynamic objects and to make only limited use of
interrupts, pointers and recursion [46], Part 3, page 87). Further software archi-
tecture recommendations are given in the Annex C of Part 7 of this standard
(e.g. the use of N-version programming). Unfortunately, the recommendations
are usually very generic and some of them lack a well founded reasoning for
their recommendation (e.g. for the use of N-version programming). Finally,
the considered safety standards do not explicitly consider differences caused by
diverse hardware platforms.
To organize the different aspects of fault handling in embedded systems, we

propose a structured representation as depicted in Fig. 3.1. This figure consists
of two major parts: fault handling in software (left part) and fault handling
in hardware (right part). For both cases, impacts on fault avoidance (upper
part) and fault tolerance (lower part) are considered. HW as well as SW could
be influenced by the design process, available verification capabilities and the
architecture chosen. Additionally, a factor influencing the fault handling in
hardware is the device technology used for the actual device. Several fault
handling techniques are known for software and hardware and several of these
aspects depend on the hardware platform chosen.
Afterwards, these hardware dependent safety aspects are discussed for em-

bedded systems. For clarity reasons, the comparison of hardware platforms will
focus on MCUs and FPGAs, as popular representatives of CPU based systems
and programmable logic devices (see Section 2.1). In the next subsection, the
handling of hardware faults is surveyed followed by a subsection dealing with
the handling of software faults.

3.2.1. Handling of Hardware Faults

This section gives a brief comparative overview on the handling of hardware
faults in MCU and FPGA based embedded systems (aspects listed in the right
part of Fig. 3.1).
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Figure 3.1.: Impacts on fault handling: HW vs. SW issues

Hardware Design Process

It is expected, that the hardware design process has a high impact on the
quality of the resulting hardware. Especially measures to obtain certain levels
of quality (e.g. testing, burn in) are of great importance for the avoidance
of faults in the later device. Therefore, process requirements with respect to
the hardware design process are present in safety standards as IEC61508 and
ISO26262. However, safety standards do not distinguish between different types
of hardware platforms. Moreover, impacts of the hardware design process are
probably very similar for MCUs and FPGAs and are not considered any further
in this work for this reason.
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Device Technology

Publications dealing with hardware reliability often target specific problems in
aerospace or space applications (e.g: SEU (Single Event Upset), SEL (Single
Event Latch-up), TID (Total Ionizing Dose)). Although these effects are less
critical at ground level, they are still existent [9, 12, 77]. Especially [77] gives a
good overview on how memory cells could be affected at ground level. These ef-
fects have to be considered in safety-critical systems since a fault in the hardware
of such a system could lead to catastrophic consequences. As a first approach,
measures have been introduced to harden the silicon structure (e.g. alpha parti-
cles can be shielded by a thick polyimide layer prior to package), but shielding
does not work for high energy cosmic radiation [9]. Furthermore, TID ratings
can be improved through special circuit design techniques and shielding meth-
ods [124], and SEL has been all but eliminated for many FPGA devices through
the incorporation of special current limiting circuitry [124]. The approaches pre-
sented have two drawbacks: First, devices including these measures are targeted
primarily at space based applications and as such their cost is often prohibitive
for use in many designs. Second, SEU cannot be avoided completely by device
techniques and has to be mitigated by further measures in any CMOS device
used in safety-critical applications.
One interesting question is whether certain device techniques are especially

suitable to built reliable devices. As an example, increasing device density and
larger dies of current devices make the devices less reliable [55]. Thus, "old"
silicon techniques might be more robust than recent ones. However, designing
with older devices can lead to a major problem in obtaining devices for repairs
or new builds of the system. Moreover, there have been improvements in silicon
techniques as described in [9]. Some sources of soft errors were detected in
the last decades and according measures to avoid these are present in newer
techniques only (e.g. removal of borophosphosilicate glass (BPSG) to avoid soft
errors from low energy cosmic neutron interactions [9] or integration of specific
shielding). Moreover, the authors of [51] indicate that (in case of FPGAs) it is
not only the feature size, but also the supply voltages and the architecture itself
which influence the hardware reliability. Thus, the use of improved techniques
in combination with a large scale process might be an option to increase the
robustness of the circuitry. Though, this concept again requires a production
of specific devices, which is leading to increased costs.
Another aspect often discussed is the memory technique used for program

and configuration memories. One time programmable (OTP) memories, as for
example anti fuse technology, are very robust to soft errors [66]. However, they
are less flexible and it has to be kept in mind that even devices, based on anti fuse
program/configuration memories include SRAM for storage of dynamic data.
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In-circuit reconfigurable memories allow higher flexibility than OTP devices.
According to [124], the most promising in-circuit reconfigurable devices from
the TID, SEL, and SEU point of view are those that are based upon FLASH
or EEPROM. The most flexible but also most sensitive type are SRAM based
memories. As already stated above, all devices include SRAM for storage of
dynamic data. Accordingly, soft error mitigation techniques have to be applied
on all devices and the only difference is the effort that has to be taken to check
the program/configuration memory. Important factors here are how fast an
error can be detected and how long it takes to mitigate the error. These issues
will be handled in later parts of the section Hardware & Software Architecture
(Fault Tolerance).

Hardware Architecture (Fault Avoidance)

Techniques to avoid and to tolerate hardware faults could be applied at the
hardware architecture level. In this section, architectural measures to avoid
hardware faults are considered for MCUs and FPGAs, while fault tolerance
techniques are discussed in the following section.

First of all, MCUs and FPGAs are affected differently by transient hardware
failures. In case of MCUs, the program memory, the data memory, general and
special purpose registers as well as internal buses could be corrupted. In case of
FPGAs, the configuration memory, FlipFlops, internal buses/interconnections
and, if available, the data memory could be corrupted. Changes in the config-
uration memory could fundamentally change the behavior of the FPGA. How-
ever, fundamental changes are also possible, if certain registers are affected in
MCUs [121].

Finally, parts of the architecture, which are not directly involved in the appli-
cation itself have to be considered. One of these parts are on-chip programming
and debugging facilities as the Joint Test Action Group (JTAG) interface (IEEE
standard 1149.1) [51]. This interface can be very useful during the development
phase, but it is important to ensure that this interface remains inoperable dur-
ing normal operation. Otherwise, noise at the JTAG pins appearing as a valid
command could result in unpredictable operation of inputs and outputs [74].

While all aspects presented should be considered during hardware platform
selection, no general differences in hardware fault avoidance in the architec-
tures of FPGAs and MCUs could be found. Next, measures of hardware fault
tolerance by hardware and software measures are considered.
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Hardware & Software Architecture (Fault Tolerance)

The tolerance of hardware faults can be generally achieved by hardware and/or
software measures (see Fig. 3.1). Depending on the type of hardware platform,
different system components can be affected by hardware faults as described in
the previous section.While an overview of several software based techniques for
the tolerance of hardware faults on MCUs and FPGAs is given in [38], further
fault tolerance aspects are considered in the following.
MCU: If the program or data memory of an MCU has a transient error, Er-

ror Correction Codes (ECC) can be used to mitigate the error. These codes can
be implemented in software (no specific hardware needed, memory and compu-
tation time overhead, might increase complexity of the software). Moreover, an
increasing number of MCUs with built-in hardware ECC for program and/or
data memories is available (increased hardware costs, no software overhead).
Mitigation of faults in CPU registers could be realized in software with time
redundancy (redoing calculations and compare results). The protection of spe-
cific MCU registers as program and stack counter is more complicated. An
implementation of this protection in a pure software approach leads to a high
overhead (e.g. speed decrease (3 times) and memory overhead (4.5 times) [75]).
Therefore, this approach is expected to complicate the software architecture
and the verification of real-time requirements.
An approach using standard hardware has been proposed in [78]. This ap-

proach applies super-scalar processors and duplicate instructions for the mitiga-
tion of transient hardware faults. Further approaches propose the integration
of specific hardware based reliability measures in processor based systems. Ex-
amples can be found in [120] (making registers SEU tolerant), in [12] (control
flow checking), and in [13] (data checking). Eventually, an MCU for automotive
applications which included BIST (Built In Self Test) was proposed in [7].
In addition, faults in the CPU could exist beyond those in registers (e.g.

faults in CPU logic). These faults are often permanent and require specific
measures to remedy them. While some of these faults could be detected with a
standard watchdog (if the fault effects the function that triggers the watchdog),
several faults might not be identified this way1. More sophisticated approaches
to handle faults in the CPU are mostly based on two CPUs which compare their
results. One approach with two CPUs could be an implementation with two
discrete MCUs comparing their outputs. Because of the high hardware costs,
this approach is considered as unattractive for most embedded applications.
An alternative to the use of two discrete MCUs is the use of dual-core devices.
Different approaches of fault handling with dual-core devices are known, which

1Maximum diagnostic coverage considered as achievable by a watch-dog with separate time
base and time-window is considered as medium only in [48].
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include a structure of two identical cores running in lock step mode. In this
structure, both cores are receiving identical inputs and executing the same
program concurrently, but the output lines are driven only by one of the cores.
During each cycle, the output generated by the first core is compared to the
second core’s output. Every mismatch between the outputs indicates a transient
or permanent failure in one of the two cores (see e.g. [107]). Furthermore, an
appropriate error detection scheme to protect the input and output lines of each
core is required in this approach. Otherwise, an approach with a heterogeneous
dual-core device in combination with additional hardware measures as hardware
CRC and memory protection units can be found in [18]. Further approaches
for fault mitigation are known as the use of co-processors available in several
MCU devices. However, these co-processors usually can monitor only specific
functionalities of the main processor. A structure with duplicated processors
and error checking can also be realized by utilizing the embedded cores available
within some Xilinx FPGAs. These processors can be operated in lock step mode
and error detection logic could be implemented within the FPGA [129].
Beside a supervision that is independent from the application as in the ap-

proaches mentioned above, the second core could also supervise the application
running on the first core. A comparison of this approach with the application
independent approach presented above, can be found in Section 6.6 as part of
our experiment evaluations.
Moreover, specific checker hardware could be integrated in single-core MCUs,

as proposed in [65]. This additional hardware includes checker for all critical
components of the device including the CPU, the memory, internal buses, and
internal peripherals. According to [65], the reduced overhead in the chip area is
the advantage of this approach compared to the dual-core approaches described
above.
Finally, modern MCUs offer multiple on-chip peripherals such as memory and

communication controllers while not all of them will be used in each applica-
tion. These unused peripherals must still be handled in accordance with the
MCU data sheet to ensure that they cannot interrupt or otherwise influence
the program execution. Thus, the components used to terminate these unused
peripherals will contribute to the calculation of the failure rate of the device.
FPGA: One major advantage of FPGAs with respect to reliability is that

the integration of hardware reliability measures is possible on generic hard-
ware. However, FPGAs have the disadvantage that soft errors could not affect
only their memories used during processing but the hardware structure itself.
Anyway, the configuration of an FPGA can be checked in different ways, de-
pending on the FPGA device used. One method is to use a built-in constantly
running CRC check, which is executed in the background of the FPGA and al-
lows a reconfiguration if an error is detected [1]. Another option is to read back
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the configuration data from the configured FPGA and to check the received
CRC [130]. Again, reconfiguration will be possible, if a mismatch is detected.
It is important to note that both approaches require additional hardware. In
the case of the first approach, additional circuitry is required to detect faults
and reconfigure the FPGA while in the second approach, a configuration con-
troller is required to configure the device and then initiate the read back CRC
checks. Further on, the addition of such a CRC can affect the design: The
maximum operating frequency of the device could be reduced by integrating
the CRC checks (see [103]).
In [55], an approach of dynamic fine grained reconfiguration is proposed to

overcome the problem of faults in the configuration. Another approach to han-
dle the problem is the self configuration checker proposed in [123]. Further on,
TMR (Triple Modular Redundancy) allows to mitigate most hardware faults by
triplicating the application (3x application logic + voter). Partial TMR, as pro-
posed in [85] is an option to reduce the area overhead in some applications. An
overview on fault tolerance methods, including TMR, in SRAM based FPGAs
can be found in [50]. Furthermore, it has been proposed in [89] to use alter-
nating logic to detect hardware faults. The success of TMR and other FPGA
reliability measures can be validated with tools as those presented in [85, 125].
Finally, also the vulnerability of the memory holding the original configu-

ration file has to be considered [36]. However, standard error detection and
correction measures, as those presented in the MCU section above, could be
applied.
An aspect, which makes FPGAs very attractive for safety-critical applications,

is the possibility to integrate individual safety measures into the device. An
example could be a safety monitor that is applied to check the outputs of the
application for constellations, which could violate the safety requirements. As
this safety monitor can be implemented in parallel logic in the FPGA, this
additional function has no impact (e.g. side effects by common CPU) on the
original application.
However, single points of failures have to be considered when designing re-

dundant units (as application + monitor or TMR) on a single chip. Sources of
single point failures could be input and output pins including clock and reset
lines. To overcome this problem, these in- and outputs should be provided to
each redundant unit via separate pins. A further source of single point faults
could be a fault in one redundant unit, which results in a critical temperature in-
crease (e.g. short circuit). This temperature increase might affect other units on
the same chip or even the overall chip. This problem could be partly mitigated
by placing the redundant units with sufficient distance on the chip. Finally,
the most critical aspect for single point faults are the common power supply
lines used by all circuitry on the FPGA. In some applications, a monitoring of
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the power supply might be sufficient (e.g. by an external Watchdog chip with
brown out detection) while other applications would require an approach with
two separated chips (e.g. two FPGAs).
Beside a combination of two fail-silent units (which typically include two

nodes each) the TMR approach allows to built a fail-operational system. In
a TMR system, reliability will decrease, if a defect affects the functionality
of one module. Accordingly, a defect module has to be repaired as soon as
possible. The authors of [36] state some advantages of using three discrete
reprogrammable FPGAs in a TMR architecture. A fault in one of the FPGAs
can be detected and, in case of a transient failure, corrected by reconfiguring
the defect FPGA. In case of a permanent physical defect in a minor part of the
FPGA, reconfiguration has to be performed avoiding the faulty area. A certain
area overhead is necessary in order to provide alternative circuit blocks and
to include the logic managing the reconfiguration. Nevertheless, this approach
allows a degree of fault tolerance that is unique for reconfigurable logic devices as
FPGAs. While the risk of the described permanent faults is comparatively low,
their handling is very important in applications that require high availability
but prohibit maintenance during operation (e.g. space applications).

Hardware Verification

Another important aspect in safety-critical systems is to demonstrate that the
hardware is always acting as intended. One approach is the formal verification
of the hardware built (with respect to specification) which is applicable for both
MCU and FPGA in the same way. The most common approach is functional
verification by testing. In case of larger MCUs and FPGAs, it is usually not
possible to test the complete functionality. Therefore, coverage criteria have to
be applied for the test processes in case of both devices.
Otherwise, devices, which have been used in other applications without fail-

ures for a certain time, can be considered as proven in use. This property can
be sufficient for less critical systems [46]. However, the use of these devices can
be considered as a drawback as they do not represent state of the art technolo-
gies. Moreover, it has to be assured that the devices are really identical (e.g.
identical fabrication process) and not only functionally equivalent.
Summarizing, no significant differences with respect to hardware verification

could be identified for MCUs and FPGAs.

3.2.2. Handling of Software Faults

Real-time requirements, hardware/software dependencies, and the increasing
complexity of applications make developing reliable software for embedded sys-
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tems a non trivial task. Additionally, the software measures for hardware fault
mitigation, described in the previous section, are expected to increase the soft-
ware complexity. Therefore, handling of software faults is an important issue,
which involves several aspects (see left part of Fig. 3.1). As for hardware fault
handling, these aspects will be evaluated in the following.

Design Process

The software design processes of MCUs and FPGAs differ in many aspects.
Differences can be found in the programming languages, the development styles
(sequential vs. parallel), and the tool chains for development and debugging.

Today, the most common programming languages used for MCUs are C/C++
and ADA. According to the safety standard IEC61508, the language ADA is
preferred over the C language [46]. However, subsets of the C language are
still allowed, as the subset developed for the automotive domain called MISRA-
C [68].
FPGAs are currently programmed mostly in VHDL and Verilog. However,

recent publications propose the use of languages developed for CPU based sys-
tems as ADA [43] or Esterel [40, 44]. The reason behind these approaches is that
classical hardware description languages (HDL) have only limited abstraction
capabilities and are therefore not suited for more complex designs. Nevertheless,
programmable logic devices cannot be treated as CPU based systems, especially
with respect to the hardware description language. While the HDL may look
like a software program for CPU based systems, it describes the function to
be implemented in digital logic. Thus, the HDL development process has to
follow different rules and procedures than the software development for MCUs
to ensure fault tolerance or avoidance. Further on, additional transformations
(e.g. Esterel to VHDL) are needed if "MCU languages" will be applied, which
have to be verified if applied in safety-critical applications.
A motivation for higher programming languages is to handle the increasing

complexity of today’s embedded systems. In this context, approaches of model
based design gain importance. In embedded software design, the underlying
hardware has to be considered in safety-critical applications, since many faults
occur at this hardware/software boundary (especially timing problems). This
aspect is one reason that makes the application of hardware abstractions com-
plicated in safety-critical applications.
Furthermore, languages as Esterel allow formal verification of the hardware

description. Nevertheless, formal verification is also possible for systems written
in VHDL [14, 24, 76] and is applied in industry already.
The different development styles of FPGAs and MCUs might have an impact

on the reuse of real-time components. As components are included into the de-
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sign as logic elements in FPGAs, their side effects are limited to the interface of
the component. In MCUs, on the other hand, side effects could occur according
to the common CPU, common memories as well as the use of common on-chip
peripherals. Moreover, the low hardware dependencies of a design described in
a hardware description language benefits reuse activities. If care is taken during
programming activities, a real-time software component could be reused on any
FPGA device without modifications. Higher reuse of own and/or standardized
commercial components could have a positive impact on fault avoidance (e.g.
the component could be considered as proven in use), but also potential nega-
tive impacts have to be considered (e.g. the component does not fit in the new
context and modifications introduce new faults). Furthermore, excellent reuse
properties of the hardware description language VHDL are stated in [57].
Finally, further process requirements are given by relevant safety standards

as [46] and [48], but these requirements are very generic and do not depend
on the type of hardware platform.

Software Architecture

All faults in software are introduced into the system at development time. In
other words: all software faults are systematic. Therefore, handling of software
faults mostly focuses on fault avoidance. However, measures of fault tolerance
are also possible in the software architecture as will be discussed later in this
section.
The approaches for fault avoidance in the software architecture are similar to

those described in the previous section. As an example, coding guidelines are
suitable to improve the structure of the developed software. This approach is
applicable for MCUs and FPGAs. Moreover, coding guidelines are essential for
FPGA software development from the functional point of view (see e.g. [88]).
The reason is that not every hardware description that passes the syntax check
is resulting in the synthesis of correct logic structures.
Furthermore, the implementation of a specific application might be easier on

one hardware platform than on another. The resulting software architecture
would most probably benefit from a development on the hardware platform
suited best. A brief comparison of the functional properties of MCUs and
FPGAs can be found in Section 2.1. Therefore, the implementation of several
concurrent real-time tasks might be easier to handle on FPGAs than on MCUs.
Otherwise, fault tolerance measures can be applied in the software architec-

ture. Generic techniques known to handle software faults are information hid-
ing, recovery blocks or defensive programming in general (see e.g. [46, 48]). An
example for defensive programming is the check of all input values (range, plau-
sibility) by each function, which is processing these values. It has to be noted
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that certain tools can perform checks, e.g. the range check, automatically as it
is the case in typical VHDL compilers.
Moreover, fault tolerance could be archived by redundant software units. An

example is the implementation of a monitor function, which checks the results of
the original application. While this approach has been already described for the
tolerance of hardware faults in Section 3.2.1, additional thoughts are required
if it is applied for the tolerance of software faults. In this case, it has to be
assured that the application and the monitor are sufficiently different. In other
words, they are not allowed to fail at the same time. To achieve the required
failure independence between the redundant software versions, approaches of
N-version programming [4] and functional diversity [62] have been proposed.
Nevertheless, limitations of approaches that implement the same function by
different teams to achieve failure independence have been observed [28, 53].
Finally, if a monitoring function or another form of software redundancy is
applied on a single FPGA, the different functions (e.g. application and monitor)
can be implemented in different encapsulated blocks. Therefore, side effects, as
present in a single MCU according to a common CPU and common memories
are not present in this case.

Software Verification

Verification is especially important for safety-critical systems [58, 117] and has
become the bottle neck of the design process [49]. The main problem for veri-
fication is the increasing complexity of the developed systems. Thus, it is not
possible any more to consider all possible combinations during the tests. Cov-
erage criteria have been introduced to find areas of the design which are not
tested. The authors of [33] indicate that an increase in the code coverage is
likely to increase reliability. While this work was conducted on MCU software,
there is no reason to believe the results could not be extended to HDL code cov-
erage (in [49] an introduction to different coverage metrics used in HDL design
can be found).
In order to ease verification, Lala and Harper proposed in [56] to partition

redundant elements into individual fault-containment regions. These should
be provided with independent power and clocking sources and their interfaces
should be electrically isolated. As already discussed before, partition of redun-
dant elements could not be achieved with a single MCU, but to some instance
on a single FPGA (electrical isolation between redundant elements and inde-
pendent power sources are not possible in today’s FPGAs).
According to [124], FPGAs offer a benefit over traditional MCU based ap-

proaches as execution is more deterministic on a programmable logic device
than on an embedded microprocessor using techniques as interrupt processing
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and cache memory. The determinism eases verification of real-time systems, es-
pecially as frequent failures in hard real-time systems result from the inability
of the system to deliver the required services by the required deadline under
various workload conditions [56].

Additional techniques like assertion based verification and code coverage anal-
ysis demand modifications of the code. In case of CPU based systems, these
modifications change the timing properties, which could be problematic for real-
time systems. Otherwise, assertions usually do not affect the timing properties
of applications implemented on FPGAs.
Moreover, simulation is a common technique to verify designs, which can be

seen as testing on a model of the system. Additional simulation of the environ-
ment is possible with certain tools. In case of FPGA designs, the environment
generally can be modeled in the same HDL as the design. While an advantage
of simulation is the dispensability of the concrete hardware platform, the simula-
tion times may be considerable long, especially in larger designs. Therefore, at
least in later stages of the development, the physical devices are used for testing
of MCU and FPGA software (requires reprogrammable configuration/program
memories).
Another form of verification is to inspect the code, written by another person

or team, manually. Different approaches of reviews are well known [30, 81]
and applied in industry. Challenges of review are at least twofold. The first
challenge is to understand the unknown code, while the second challenge is to
reveal a high amount of the faults eventually present in this code. In case of real-
time systems, both aspects are challenging, as the correct timing is essential.
If several real-time functions are executed concurrently, a verification of their
timing behavior is complex on MCUs. This complexity is even increased if
restricted resources permit the use of a real-time operating system. FPGAs
on the other hand can execute concurrent real-time functions in parallel logic
which might ease the verification of their timing behavior.

Formal verification of the software is another important issue. Approaches are
available for systems written for FPGAs [14, 24, 76] and for MCUs [110] used
in embedded systems. However, a formal verification of real-time properties
remains a challenge for model checking of MCU code.
Finally, formal equivalence checking is applied in FPGA designs to verify

that the synthesis and place and route stages (which usually occur after func-
tional verification has been completed) have not introduced or removed logic
and therefore changed the function of the logic. The design tools will attempt
to modify and optimize the logical structure described by the HDL to make
it best fit into the logical structures available on the target architecture. It
is therefore important that in devices intended for safety-critical applications
these processes do not change the behavior of the logic (also in case of hardware
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errors). An example of undesired changes can be found in [87]. Further aspects
of the application of formal equivalence checking are described in [11, 103].

3.3. Summary and Open Issues

The previous section identified that sophisticated methods of fault handling are
present for MCUs and FPGAs. MCUs and FPGAs are affected differently by
hardware faults, but in both cases faults could fundamentally change the behav-
ior of the device. Fault mitigation in program/configuration and data memories
can be applied on both platforms by hardware or software techniques. Mitiga-
tion of transient faults in CPU registers needs further measures. They could
be based on either pure software (resulting in an immense runtime and mem-
ory overhead), or specific hardware on general purpose hardware (super scalar,
dual core), or on hardware specialized for safety-critical applications. Transient
faults in FPGAs can be mitigated by full or partial duplication of functionalities
resulting in an area overhead. Furthermore, mitigation of permanent faults is
possible in FPGAs if only minor parts of the device are affected and partial
configuration is supported. Systematic hardware faults could be mitigated by
appropriate design processes and hardware verification capabilities on MCUs as
well as on FPGAs.

Moreover, MCUs and FPGAs differ with respect to the handling of software
faults. These differences include the software design process, especially the lan-
guages used with their specific properties and software verification capabilities.
In both cases it has to be assured that the later system is behaving as intended.
In case of MCUs, potential side effects (interrupts, memory, etc.) complicate
this verification while in the FPGA design the handling of interconnected par-
allel processes might be challenging. Architecture measures can be applied in
MCUs as well as in FPGAs to tolerate software failures during run time. How-
ever, in FPGA design it might be beneficial that these measures usually do not
affect the timing behavior of the original function.
Summarizing, MCUs and FPGAs seem both suitable for application in safety

critical systems. However, the differences in fault handling might be of interest,
if the suitability of both devices is compared. Advantages and disadvantages of
the different properties are obvious in some cases (e.g. avoidance of hardware
faults, most aspects of hardware fault tolerance), but remain unclear otherwise
(e.g. avoidance and tolerance of software faults). The latter is typically the
case, when human factors contribute to the fault handling.
These human factors can have major impacts on the quality of intellectual

products, as for example software. However, many approaches involving human
factors are based on best practice approaches. This procedure may be critical, as
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some approaches are based on wrong assumptions. One example in this context
is the improvement of reliability by using redundant structures. This struc-
ture will only improve the reliability if the redundant units fail independently.
When transferred to software design, one method to improve this independence
recommended by the IEC61508 [46] is the approach of N-version programming
(NVP). In this approach, which was first proposed in [4], software for redundant
units is developed by different teams. However, Knight and Leveson could show
with an empirical experiment that even independent development teams tend to
make the same faults [53]. The example of N-version programming clarifies the
importance of empirical studies in the area of safety-critical systems. However,
despite their importance, relatively few empirical studies have been published
that investigate issues relating to the dependability of software [79]. Reasons
can be seen in the high effort required for these investigations. In addition,
these studies published (e.g. [8, 31, 53, 69, 79]) deal with faults in software
only and do not take HW/SW dependencies into consideration which are an
important factor in embedded systems.
Differences between the fault handling of MCUs and FPGAs have been iden-

tified. However, the specific advantages and disadvantages of certain aspects,
especially of those dependent on human factors, remained unclear. For an inves-
tigation, empirical evaluations were introduced as a suitable measure to clarify
these open issues instead of simply following best practice approaches. As it is
beyond the scope of this work to investigate all unclear differences in the fault
handling of MCUs and FPGAs, selected impacts of hardware platform selec-
tion were considered in this work. These aspects are presented in the following
section. Nevertheless, the approach of evaluation presented in the chapters 4
to 6 could be applied to investigate further differences by conducting the exper-
iments needed.

3.4. Investigated Impacts

As described in the previous section, open issues have been identified during
the comparison of the fault handling on MCUs and FPGAs. In this section, a
selection of those open issues that were investigated in this thesis is presented.

3.4.1. Software Diversity

An approach for the handling of software faults has been presented above,
namely N-version programming. However, limitations of this approach were
identified by analytical arguments [61] and empirical evaluations [28, 53]. To
mitigate this problem, it has been proposed to increase the diversity between
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the redundant versions by additional measures [61, 84]. Examples for this ap-
proach, which is also known as forced diversity, are the application of different
programming languages in [6] and different programming environments in [64].
Both experiments reported a decrease of dependent failures2. However, the
analysis in case of the first experiment was based on only 6 different software
versions. Thus, the validity of the results might be questionable.

Nevertheless, the approach of forced diversity might be successful in the con-
text of hardware platforms in embedded systems. As for example, differences
between the software design for MCUs and FPGAs were observed (see Sec-
tion 2.1 and 3.2.2). Therefore, the application of different hardware platforms
as a factor to force the diversity in the N-version approach might be interesting.
Thus, the first aspect that was investigated in this work was the gain of diversity
in software faults by applying different hardware platforms (Experiment 1).

3.4.2. Encapsulation

Effective encapsulation of critical functions is a desirable property in safety-
critical applications [46, 48, 56, 109]. Reasons stated are the need to reduce
faults in case of modifications [46] (Part 3, page 45), to ease verification ac-
tivities [56], and to allow the integration of functions with different levels of
criticality on a single device [109]. In the context of fault handling presented
in Section 3.2.2, differences with respect to encapsulation have been identified
between MCUs and FPGAs, especially with respect to real-time functions. How-
ever, it remained unclear, if the advantages seen in the structure of FPGAs really
has a positive impact on the encapsulation. Thus, the impact of hardware plat-
forms on the encapsulation of software functions was investigated in a second
experiment (Experiment 2).

3.4.3. Review

Inspection of the source code developed is recommended by safety standards [48]
(Part 6, page 31), [46] (Part 3, page 91). The application of code inspection,
which is also known as review, allows to reveal problems in the software (insuf-
ficient documentation, bad code structure, potential risks as division by zero,
undesired overflows, etc.) and to identify inconsistencies with the specification.
Reviews offer chances to identify problems with respect to functional require-
ments, but also with respect to non-functional requirements as maintainability
and reliability. However, the result of each review process depends a lot on the
personalities of the reviewers and their review performance is hard to quantify.

2A failure is considered as dependent, if the failure occurs in two versions at the same test
input. Moreover, dependent failures are also known as coincident failures (see e.g. [28])
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To overcome this problem, it is desirable to have more than one reviewer and to
control the review process (see e.g. [30, 81]). Moreover, real-time properties are
an additional challenge for the review process [80]. Especially the time, which is
needed for the execution of sequential code, is hard to determine, not to speak
of program parts which can be disrupted by interrupts at any time. Differences
in the software structure of MCUs and FPGAs might have an impact on the
review of real-time functions as described in Section 3.2.2. Hence, possible im-
pacts of this hardware platform selection on the review of real-time software
was investigated in another experiment (Experiment 3).

3.4.4. Test and Review vs. N-Version Programming

According to the limitations of N-version programming, this approach was com-
pared with measures of fault avoidance3 in [112] (experiment) and [83] (analyti-
cal investigation). It is reported in [83] that there is as yet no evidence that the
choice between design diversity and other means of reliability improvement can
be decided by general arguments. Similarly, no clear results could be obtained
in [112].
The dependent failures, present in the majority of the versions created in

previous experiments, seem to be found easily as soon as they have been iden-
tified once. Furthermore, we added ambiguous statements to the specification
which had not yet been identified by any experiment participant. In order to
investigate which of the faults present in previous experiments are found, this
aspect was investigated in a forth experiment (Experiment 4). The idea was to
compare the dependent failures in the versions created in the first experiment
with the faults that remained in the versions of this experiment after a fault
removal phase based on review and testing.

3.4.5. Reusability

The systematic reuse of software is seen as a potential, powerful method of
improving the practice of software engineering in terms of amortizing software
development efforts [54, 57]. Despite the simplicity of the idea, software reuse
still has its problems and limitations [37, 67]. Successful software reuse in em-
bedded systems generally has to face further challenges according to real-time
requirements, restricted resources, and safety and reliability requirements. To
meet these requirements in embedded systems, the obvious solution is often
seen in a redesign of the complete system for each application [73]. With re-

3as introduced in Section 3.2, fault avoidance is based on fault prevention and fault removal
during design time
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spect to safety, reuse can be seen as a chance, if software components4 that
are already verified and proven in use can be reused. Otherwise, reuse of ap-
plication software has also resulted in major accidents (see e.g. [59]). Safety
standards as the IEC61508 [46] recommend to reuse software components: Use
of trusted/verified software modules and components (if available), but also re-
quest additional safety measures. In [60], Leveson lists certain aspects to assure
safe reuse of software. According to this work, the design rationale should be
included with all design decisions in the specification. Additionally, a docu-
mentation of all assumptions concerning the environmental conditions that are
implicit in the software as well as a documentation of the hazard analysis should
be included. These requirements go well with requirements present in recent
safety standards as IEC61508 [46] and the working draft of the ISO26262 [48].
Publications on different aspects of reuse are known for both, MCUs (e.g.: [60,

73]) and FPGAs (e.g.: [57, 108]), but publications comparing their reuse prop-
erties could not be found. As mentioned above, real-time requirements can be
seen as a specific challenge for an effective and safe reuse in embedded systems.
The differences in the internal structures of MCUs and FPGAs are expected to
have an impact on the reuse of real-time functions as described in Section 3.2.2.
To investigate the effect of these differences, empirical evaluations were chosen.
Thus, the aspect of reuse was investigated in a fifth experiment (Experiment 5)
with a specific emphasis on impacts on software faults.

Additionally, the concrete factors of interest had to be determined. Important
factors of reuse can be seen in comprehensibility and independability [73]. While
the first aspect stresses the ease of understanding the component to be reused,
the second aspect comprises the degree of a component’s independence from
its environment. Apparently, deficiencies in both aspects could lead to serious
faults. Nevertheless, we focus on the second aspect, since we expect in this
case major differences with respect to different embedded hardware platforms.
Further on, the reuse process itself (how to built reusable components, how to
organize these components, how to find these components) is not part of the
evaluation. Instead, our work focuses on the effect of a given reuse scenario on
faults in an exemplary system (Experiment 5). As recommended in [60], this
reuse was applied on component level.

3.4.6. Development according to ISO26262

Finally, safety standards, as IEC61508 [46] and ISO26262 [48], require certain
measures for the handling of software and hardware faults. In case of safety-

4A software component is the implementation of one or more functions in software. It is a
logically separable part of the software and consists of one or more software components
and/or software units.

27



3. Identification of Safety-Relevant Impacts

critical systems with higher safety integrity levels (ASIL C or higher in case of
ISO26262), a sufficient handling of random hardware faults has to be demon-
strated (see [48], Part-5, page 12 and [46], Part-2, page 55). This handling
of hardware faults requires certain redundancy as described in Section 3.2.1.
Redundancy is either required in form of independent redundant units, both
executing the safety critical application, or in form of a component performing
sufficient diagnosis of the unit executing the safety-critical application. In both
cases, detected faults have to be handled by recovery measures (retry, reset,
etc.) or by a shut-down of the system (see also Section 2.2).
Single hardware-platforms or combinations of identical/different hardware

platforms are possible to meet the requirements presented above. For this work,
the following two hardware architectures were selected5:
First, a dual-core microcontroller was selected. In contrast to dual-core mi-

crocontrollers which are currently developed specifically for safety-critical appli-
cations, this device is a general purpose MCU with two independent cores (see
Section 4.3.2 for details of this hardware platform). The idea was to determine
how suitable this general purpose device is for the development of an ASIL C
application.
Second, a standard single core microcontroller was selected in combination

with a standard FPGA (details in Section 4.3.2). The combination of these two
hardware platforms was investigated as second hardware platform with respect
to its suitability for implementing an ASIL C application.
The term of suitability is very general and requires further concretion. First

of all, the development effort of the two approaches is an interesting aspect, as
reductions of this effort are desirable for several reasons (e.g. costs, time-to-
market). Moreover, impacts of the approaches on further important properties
as reliability and modifiability are of interest. Therefore, a sixth experiment
was conducted to enable the corresponding investigations.

5Selection was conducted by project members of the FAT/AK31 project Reliable Automotive
Embedded Systems, according to potential trends in automotive electronics.
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Empirical evaluations were identified in the previous chapter as a promising mea-
sure to gain well founded information regarding safety-related impacts. There-
fore, the techniques of empirical evaluations will be introduced in the following
while the planning of the empirical studies actually conducted for this work will
be presented in the sections 4.2 - 4.7.
Descriptions of the different experiments can also be found in [93, 96, 97, 98,

101, 106]. Moreover, parts of the testing issues in 4.6.6 were presented in [100].

4.1. Empirical Evaluations

Empirical evaluations can be categorized into three major types: the question-
naire based survey, the case study (observation based data collection during
one project) and the controlled experiment (multiple participants, focused on
statistical inference) [126].
The challenges in case studies result from the development of the system itself.

The implementation task must be representative (complex enough), but also
easy enough to allow an execution of the study in reasonable time. In addition,
the control of variables is not always possible in case studies. Thus, small and
simplified case studies may not be good instruments to evaluate principles.
As with case studies, the task must be complex enough in experiments to

allow representative results. Further on, experiments are generally driven by
one or more hypotheses, which should be confirmed or refused by the experiment
results. Therefore, the structure of these experiments usually consists of two
treatment groups implementing the same task. The results of the two treatment
groups are compared and used to test the hypotheses. While one variable
(treatment) is different for the two treatment groups, all other variables must
be kept constant to show the impact of this specific treatment on the results.
Experiments, which investigate aspects influenced by human factors, have to
mask out the differences of the individual developers. One approach is to use a
statistically significant number of developers which complicates the conduction
of these experiments.
For this work, the impact of different hardware platforms on the correspond-

ing software and the overall system was investigated. The design of software is
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strongly influenced by human factors. Therefore, controlled experiments have
been applied for all of our investigations. During these experiments, several
challenges were identified and possible solutions developed. Some of these chal-
lenges resulted from the specific properties of embedded systems and mostly
had an impact on testing issues (see sections 4.6.6 and 4.7.4).
In accordance with [126], the experiment process is subdivided for each ex-

periment into the experiment definition (Section 4.2), the experiment planning
(sections 4.3 - 4.7), the experiment operation (Section 5) and the evaluation of
the experiment outcomes (Section 6). Although six independent experiments
have been conducted for this work, these different experiments share certain
aspects of their definition and planning phases. Therefore, common aspects
will be presented in the following sections, while aspects specific for certain
experiments will be discussed in Section 5. The evaluation of the results in Sec-
tion 6 will be centered around the hypotheses which are put up in the following
sections. In this context, each experiment can contribute to one or more hy-
potheses. An overview of the experiments is given in Fig. 4.1 while the contents
of this figure will be described in the following sections.

4.2. Definition of Experiments

The objective of the experiments presented is to investigate the impact of differ-
ent hardware platforms on the aspects selected in Section 3.4. More precisely,
the purpose of the experiments is to evaluate the impact of the application of
two different hardware platforms on the effectiveness of

• diversity improvement of software faults (Experiment 1 and 2),

• encapsulation of real-time tasks (Experiment 2),

• fault detection by review (Experiment 3),

• safe reuse of real-time functions (Experiment 5),

• development according to ISO26262 (Experiment 6).

Moreover, Experiment 4 compares the effectiveness of review and testing with
the effectiveness of software diversity determined in previous experiments.
The experiments 1, 2, 4 and 5 took place in lab courses with computer science

students implementing a given application, while Experiment 3 was conducted
using student assistants reviewing software versions developed in a previous
experiment. Experiment 6 was conducted in the context of two diploma theses in
computer science, which were supported by student assistants. Further details
of the experiments can be found in the following sections.
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No. Experiment definition Subjects Task Hypothesis Treatment

1

Evaluation of the impact of 

different hardware platforms 

on software diversity

26 students

(12 teams)
basic H1

type of hardware 

platform 

(MCU vs. CPLD)

2

Evaluation of the impact of 

different hardware platforms 

on the encapsulation of 

real-time tasks

24 students

(12 teams)

basic+ 

1,2,3,4,5,6
H1, H2

type of hardware 

platform

(MCU vs. FPGA)

3

Evaluation of the impact of 

different hardware platforms 

on the fault detection by 

review 

4 students 

(3 teams)

basic+ 

1,2,3,4,5,6
H3

type of hardware 

platform

(MCU vs. FPGA)

4

Comparison of the 

effectiveness of review and 

testing with the effectiveness 

of software diversity

19 students

(12 teams)

basic+ 

1,2,3,4,5,6
H4

type of fault 

handling 

(Review and Test 

vs. Diversity)

5

Evaluation of the impact of 

different hardware platforms 

on the reuse of safety-critical 

tasks 

24 students

(12 teams)

basic+ 

2,3,5,(6) 

+life beat

H5

type of hardware 

platform

(MCU vs. FPGA)

6

Evaluation of the impact of 

different hardware platforms 

on the development 

according to ISO26262

4 students 

(2 teams)

roof control 

function
H6

type of hardware 

platform

(Dual-Core vs. 

MCU+FPGA)

Figure 4.1.: Overview of the experiments conducted

4.3. Context Selection

Although the most general results can be achieved in an experiment if it is
executed in a large, real software project with professional staff [126], the exper-
iments presented in this work took place in an academic setting. The reasoning
behind this decision are manifold. First of all, experiments involve risks for
the project they are applied on. If an experiment takes place parallel to a real
project, its conduction is resulting in high costs. Thus, experiments in the area
of software implementation, which require high numbers of professional devel-
opers are possible only with the corresponding funding. These problems are
less critical, if experiments are conducted at universities or other teaching orga-
nizations. This way, comparatively large numbers of participants are available
through lab courses or project works. Furthermore, experiments in an edu-
cational context are probably easier to control. Otherwise, students might be
considered as less experienced. The topic of students as experiment participants
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ECU

ECU ECU

CAN bus

ECU

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Figure 4.2.: Automotive four channel speed measurement application

is discussed in numerous works [19, 45, 115]. Accordingly, if different approaches
(design processes, programming languages, hardware platforms, etc.) shall be
compared, at least the differences in the previous knowledge will have to be
recorded, to discuss potential impacts on the results after the experiment. This
recording could be achieved by questionnaires or an initial test as proposed
in [86]. Further on, an introductory course could be conducted to leverage the
knowledge of the participants with respect to the approaches compared in the
experiments. Furthermore, a suitable experiment design could overcome certain
problems caused by different previous knowledge.
The aforementioned aspects were applied during experiment design whenever

applicable. While this application is described in the sections 4.6 and 4.7, fur-
ther details of the context selection are given below.

4.3.1. Experiment Tasks

Experiment tasks often do not allow general experiment results according to
their restricted complexity (forced by cost and time constraints). To allow a
certain level of representativity with respect to embedded systems, properties
typical for embedded systems were included in our experiment tasks. These
properties were defined as the need to fulfill real-time requirements, to inter-
act with a physical environment, and to consider memory and performance
constraints. Moreover, the task had to be generic enough to allow an implemen-
tation on different hardware platforms.

Experiment Tasks for Experiments 1 - 5

The majority of the experiments presented in this work (experiments 1, 2, 3, 4,
5) are based on a common basic task, which is extended for each experiment to
suit individual needs. This basic task represents an automotive measurement
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Table 4.1.: Sensor data processing
Signal frequency f Speed value s max. max.

response failure
f < 2Hz s = 0 2s 10%

2Hz ≤ f < 45Hz s = f ∗ 0.0436 + 1 1s 10%
45Hz ≤ f < 550Hz s = f ∗ 0.0436 + 1 0.2s 10%
550 ≤ f < 5733Hz s = f ∗ 0.0436 + 1 0.1s 5%

f ≥ 5733Hz s = 251 0.1s 5%

application with a CAN bus interface, which is depicted in Fig. 4.2 and was
originally targeted to an electronic control unit (ECU) on one of the institute’s
own prototyping vehicles.
The task includes the measurement of four independent speed signals in com-

bination with a CAN bus communication, which is responsible for the transmis-
sion of the speed values measured. The application revealed several challenges:
Concurrent measurement of four speed signals (frequency measurement of rect-
angularly shaped signals), sensor data processing within the limited resources of
the given hardware platform and interfacing with the external CAN controller.
All these tasks had strong real-time requirements. The sensor data processing
had to be performed according to Tab. 4.1 in order to integrate the four speed
values into the specific CAN message. Only 8 bit were available to store each
speed value making this conversion necessary. Additionally, requirements for ac-
curacy and response time were given, depending on the actual frequency of each
individual sensor signal. It was assumed that during movement of the vehicle
at high velocity shorter response times are required than during movement at
low velocity. Accordingly, sensor signals with high frequency demanded short re-
sponse times (<100ms) while sensor signals with low frequency demanded longer
measurement intervals to achieve the required accuracy (maximum failure 10%).
A strategy had to be developed to achieve an optimized compromize between
short response times and high accuracy for different situations (all signals with
high frequency, all with low frequency, different signal input, changes in signal
input, etc.). This basic task was applied in the first experiment (Exp.1).
For further experiments (Experiment 2, 3, 4) this basic task was extended

by additional tasks as depicted in Fig. 4.3. For these three experiments, the
additional tasks were the following:

• Additional task 1: Flash a specified LED each time a CAN message is
sent (max. delay between the action of sending the message and flashing
the LED: 10ms)
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Device under Test (DUT)
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controller
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4-channel frequency 
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Value 

processing

CAN 

communication

Status LEDs

: data flow : HW component : SW component

Figure 4.3.: Automotive application used for experiments

• Additional task 2: If a value sent is not up to date (because the cor-
responding measurement is not finished yet, e.g. in a situation in which
one wheel is turning significantly slower than the remaining wheels), this
situation will have to be marked in the 8th byte of the CAN message.

• Additional task 3: Display the content of the CAN controller status
register after the last send request on 8 LEDs if the corresponding button
(BTNA) is pressed. Otherwise, four of the LEDs shall be flashed in the
frequency present at the input of the four measurement channels while
the remaining four LEDs shall be flashed with 1/16 of these frequencies.

• Additional task 4: Send a test message every 100ms (±20ms) instead
of the original speed message as long as the associated button (BTNB)
is pressed. The test message includes a test counter, which has to be
incremented with every message sent starting with 0 (the max. delay
between the activation of the button and the sending of a test message is
500ms).

• Additional task 5: Send a message containing peak speed values as soon
as the corresponding button (BTNC) is pressed (max. delay between the
sending of a peak message and the activation of the button is 100ms). For
the determination of the peak values, the interval between the last two
activations of the button has to be considered.

• Additional task 6: Insert status information in the 5th byte of the CAN
message. This status information includes the status of certain registers in
the CAN controller and information concerning speed differences between
the four wheels.
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In another experiment (Experiment 5), a pre-designed software component
representing a life beat functionality had to be reused. This software component
is described in Section 4.7.1. To compensate this additional effort, additional
tasks 1 and 4 were not implemented in this experiment and the amount of
information included in the status (additional task 6) was reduced.
The use of a common basic task for these experiments allowed the use of a

common test environment for the evaluation of these experiments and compar-
isons of the results obtained in the different experiments.

Experiment Task for Experiment 6

Finally, another automotive application was applied as experiment task in Ex-
periment 6. The task originated from a real automotive application (open-
topped roof control application), but was slightly reduced in complexity to suit
the needs of the experiment. The interface description of the roof top control
unit that had to be implemented is depicted in Fig. 4.4 in form of a context
diagram.

Roof control unit

CAN

Status side windows

Status trunk lid

Status ignition

Vehicle speed

CAN

Message for display unit

Status message

Request trunk lock

Request window movement

Hydraulic actuator

Hydraulic pump left/right/off

Power stage on/off

Hydraulic valves 

Electric motors

Pump temperature 

sensor

Temperature hydraulic pump

Motor sensors

Limit switch for side latch

Position encoder for power striker

Locking of trunk lid with roof 

kinematik (Side Latch)

Automatic closing of trunk lid 

(Power Striker)

Determination of roof status 

(Hall sensors)

Discrete roof 

positions

Control panel

Request 

open/close

Activation of hall 

sensors
10

2/1

Figure 4.4.: Interface description of the roof control unit

According to a request from the user via a control panel, the roof had to
be opened or closed. For this process, information from the sensors represent-
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ing the status of the roof has to be evaluated and the corresponding actuators
(electronic motors, hydraulic pump, hydraulic valves) have to be driven. More-
over, further information has to be retrieved via the CAN bus (e.g.: velocity
of the vehicle, status of trunk and side windows) and additional actuators have
to be actuated (e.g.: trunk lock and side windows). As a more detailed de-
scription of this application is not possible in this work for space reasons, the
interested reader is referred to the system specification document developed for
this experiment [102].

4.3.2. Selection of Hardware Platforms

Common embedded hardware platforms have been described in Section 2.1.
As already mentioned in this context, the implementation of a task on a pro-
grammable logic device differs a lot from the implementation of the same task
on a CPU based system. For the experiments 1-5, MCUs and FPGAs1 have
been selected as popular representatives of these two families of devices. As a
microcontroller, an Atmel ATmega16 2 controller has been used while a Xilinx
Spartan3 3 was used as an FPGA (respective a Xilinx Coolrunner2 4 as a CPLD
in the first experiment). The development took place in the development en-
vironments provided by Atmel (AVR studio) and Xilinx (Integrated Software
Environment (ISE)).
Certain real-time functionalities of embedded systems can be already simu-

lated without the actual target hardware. However, usually neither a sufficient
functionality of the embedded system’s interface nor a simulation of external
components (e.g. communication controllers or external memories) is available
in this approach. Our experiences showed that working with a simulated em-
bedded device makes the development for the participant more complicated.
Therefore, the implementation was conducted with existing evaluation boards
in all cases. Additionally, another printed circuit board was developed and
produced to allow the CAN communication. This board included a CAN con-
troller (Philips SJA1000, see [82] for data sheet) and an interface for the MCU
development board as well as one for the CPLD/FPGA development boards.
For the last experiment, the selection of the hardware platforms was based

on an investigation on potential future trends in automotive electronics, which
has been conducted with partners from the automotive domain. As a result, a

1actually, a CPLD was used in the first experiment, but differences between CPLDs and
FPGAs are low from the software developers point of view as described in Section 2.1

2Atmel ATmega16 @ 6MHz, data sheet: [2]
3Xilinx Spartan-3 XC3S200 @ 50MHz (typically reduced to 1MHz internally), data
sheet: [128]

4Xilinx CoolrunnerII XC2C256 @ 1,8432MHz, data sheet: [127]
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dual-core microcontroller was picked as first hardware platform, while a combi-
nation of MCU and FPGA was selected as second platform. Only few dual-core
microcontrollers were available at the time of preparation of this experiment.
The device chosen is a microcontroller from the company DUAL-CORE 5. Al-
though the device is a little overdimensioned for the experiment application
(16-bit CPUs and smaller memories would have been sufficient), it is consid-
ered as useful for the experiment. The FPGA used for the second hardware
platform was also a Xilinx Spartan-3 (details see above) while the MCU was a
Freescale HCS12 6 microcontroller. The reason for not using the ATMEL AT-
mega16 applied before was the following. First, it was assumed that a 16bit
microcontroller was required for the application selected for this experiment.
Moreover, both hardware platforms were required to include an internal CAN
controller, which was not the case in the ATmega16 controller.

Selection of Languages

According to [117], the choice of an appropriate programming language is of
great significance in safety-critical systems in order to prevent faults in the
software. In this regard, further discussions of the suitability of different pro-
gramming languages can be found, e.g. in [23] and [41]. However, it has to be
noted that not every language is available or even suitable for every hardware
platform. Therefore, only suitable and available languages could be considered
for this work.
Real-time applications executed on MCUs are nowadays most often imple-

mented in the C language (especially in the automotive domain) while in case
of strict resource constraints, the assembly language is still present in these sys-
tems. Otherwise, the amount of C code generated automatically from models is
increasing (model based development). However, the code generated automati-
cally comes usually with a certain overhead in size and execution time. Further
on, drivers and other functions related closely to the target hardware still have
to be programmed manually. Therefore, the C language has been chosen for
the implementation on MCUs in case of all of our experiments. Another op-
tion, which is particularly suitable for safety-critical systems, would have been
the language ADA. However, for the MCUs considered for the experiment, no
suitable ADA compiler was available.
In case of the FPGAs, the two main languages are VHDL and Verilog while

the use of the language SystemC is increasing. Moreover, model based develop-
ment is also possible for FPGAs although current approaches mainly aim at sig-

5DualCore DCIC9907 @ 16MHz, internal operating frequency is derived by the DCIC9907-
internal PLL, which is typically 128 MHz, data sheet: [26]

6Freescale MC9S12DP512 @ 16MHz, data sheet: [34]
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nal processing tasks. Before our first experiment, the suitability of the different
hardware description languages for safety-critical applications was investigated.
In conclusion, advantages of using VHDL over Verilog were identified according
to aspects as stronger typing, while no benefits of the language SystemC with re-
spect to safety aspects could be identified. Therefore, VHDL has been selected
for the software development for FPGAs. Moreover, an additional graphical rep-
resentation (schematics) was applied, but only to join different VHDL blocks
together.

Selection of Hardware Abstraction

The automotive application used in the first five experiments was characterized
by limited resources, strong real-time requirements, and a medium complexity of
the task. Therefore, no specific hardware abstraction, as a real-time operating
system was applied in these experiments. Moreover, it has to be noted that
hardware abstraction in form of an operating system will only be possible on
FPGAs if processors are implemented within the FPGA. Furthermore, it is
stated in [117] that even simple operating systems are quite complex so that
the use of them is not acceptable in highly critical applications.
On the contrary, the real-time operating system OSEK was chosen for Experi-

ment 6 according to the higher complexity of the automotive task applied in this
experiment. However, no operating system was used for the implementation of
the safety function.

4.3.3. Selection of Subjects

The selection of the experiment participants as well as their number has impacts
on the results when generalizing [126]. As argued above, an academic setting
was chosen, which limits the possibilities of selecting the participants.

In case of the experiments, which took place in lab courses (experiments
1, 2, 4, and 5, see Fig. 4.1), the options for selecting the participants were
limited as the number of applicants exceeded the maximum number of lab
course participants only by two or three students. In this case, a selection was
made according to the highest previous knowledge. The number of participants
in these experiments ranged from 19-26 students forming 12 teams (see Fig. 4.1
for details).
According to limited educational aspects, the review of software versions (Ex-

periment 3) was conducted by student assistants. All student assistants, which
were familiar with the corresponding programming languages and also present
at the institute at the time of the experiment, were asked to participate. As a
result, four student assistants participated in this experiment.
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Finally, due to the higher complexity of the task in Experiment 6, a conduc-
tion of this experiment in the setting of a regular lab course was not possible. To
overcome this problem, the task was implemented on the two different hardware
platforms within the scope of two diploma theses. To reduce the implementa-
tion effort of this work, we employed two additional student assistants so that
in total four students participated in this experiment forming two teams.

4.4. Setup of Hypotheses

Based on the experiment definition given in Section 4.2, the hypotheses had to
be formalized, which is described in the following for the six aspects investigated.

H1: Impact of Diverse Hardware Platforms on the Diversity of Software
Faults

The main idea behind these investigations was the assumption that the applica-
tion of different hardware platforms is resulting in software with diverse failure
behavior (see Section 3.4.1). The first hypothesis guiding this investigation is
the following:

H1a: Failures in the software versions written by dif-
ferent teams independently for different hardware plat-
forms (CPLDs/FPGAs and MCUs) are not stochasti-
cally independent.

This hypothesis is tested by falsification of the opposite assumption called null-
hypothesis. In this case, the null-hypothesis states that the probability of making
independent failures on both platforms is calculated by the product of the single
failure probabilities. The according formal expression is:

H01a : p(FMCU ∩ FCPLD) = p(FMCU ) · p(FCPLD)

with p being the probability and F the failure event of the software implemented
on CPLDs respectively MCUs.
However, it is expected that the number of dependent failures between dif-

ferent hardware platforms (heterogeneous pairs) is decreased in comparison to
identical hardware platforms (homogeneous pairs). This aspect is expressed by
the following sub hypothesis:

H1b: The probability of dependent failures is higher
in case of two identical hardware platforms than in
case of two diverse hardware platforms.
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The corresponding null-hypothesis is expressed by the following formula:

H01b : Md[p(Fpairheterogeneous
)] ≥Md[p(Fpairhomogeneous

)]

with Md being the median, p the probability and F the failure event of the
corresponding pair of hardware platforms. A heterogeneous pair is comprised
of two diverse hardware platforms while a homogeneous pair is comprised of
two identical hardware platforms.

H2: Impact of Hardware Platforms on the Encapsulation of Real-Time
Tasks

According to the parallel structure of FPGAs, it was assumed that the encapsu-
lation of real-time software functions benefits of this structure (see Section 3.4.2).
For this investigation, subfunctions were identified within the application and
potential side effects were examined. It is assumed that in case of the FPGAs,
changes in input signals fed into one subcomponent (a subcomponent imple-
ments a subfunction) lead to less changes in the timing of another subcompo-
nent than in case of the MCUs. Major subfunctions identified in the experiment
task are the signal measurement, the signal processing and the communication
(see Fig. 4.3). This first aspect is expressed by the following hypothesis.

H2a: In case of the FPGAs, changes in the frequencies
fed into the devices tested (signal measurement and
processing function) lead to less changes in the timing
of the CAN communication (communication function)
than in case of MCUs.

The corresponding null-hypothesis is expressed by the following formula:

H02a :
∑N

1 |∆TFPGA(fL, fH , Vf )|
N

≥
∑N

1 |∆TMCU (fL, fH , Vf )|
N

∆Tx(fL, fH , Vf ) = T (fH , Vf )− T (fL, Vf ), x ∈ {MCU,FPGA}
with N being the number of versions considered for evaluation and ∆T the
variation of the CAN communication interval T caused by changes in the input
frequencies f . These changes are represented by one input constellation at
the lower end of the input range specified (fL ≈ 6% of fmax)7 and one input
constellation at the upper end (fH ≈ 100% of fmax). Finally, the final software
versions Vf were used for this test8.

7No upper limit for the input frequencies was specified. Therefore, the highest frequency,
which was specified explicitly (6kHz), is considered as fmax.

8Note: final version = version including main task and all additional tasks; main version =
version including the main task only.
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Moreover, it was assumed that, in case of the FPGAs, the integration of
additional tasks (see Section 4.3.1) would lead to less side effects with respect
to existing tasks, namely the communication function as well as the signal
measurement and processing functions. This assumption is expressed in the
following sub hypotheses:

H2b: In case of the FPGAs, the integration of the
additional tasks lead to less changes in the timing of
the CAN communication than in case of the MCUs.

The corresponding null-hypothesis is expressed by the following formula:

H02b :
∑N

1 |∆TFPGA(Vf , Vm, fH)|
N

≥
∑N

1 |∆TMCU (Vf , Vm, fH)|
N

∆Tx(Vf , Vm, fH) = T (Vfinalx , fH)− T (Vmainx , fH), x ∈ {MCU,FPGA}
with N being the number of versions considered for evaluation and ∆T the
variation of the CAN communication interval T caused by changes from the
main version Vm to the final version Vf . Moreover, fH ≈ fmax represents the
input frequency determined for the test of this hypothesis.
The following hypothesis targets the integration of the additional tasks with-

out considering any user interaction (via buttons) possible in case of the addi-
tional tasks.

H2c: In case of the FPGAs, the integration of the ad-
ditional tasks lead to less additional failures in the con-
tents of the CAN messages than in case of the MCUs.

The corresponding null-hypothesis is expressed by the following formula:

H02c : Md[∆λFPGA(Vf , Vm, fTB)] ≥Md[∆λMCU (Vf , Vm, fTB)]

∆λx(Vf , Vm, fTB) = λ(Vfx , fTB)− λ(Vmx , fTB), x ∈ {MCU,FPGA}
with Md being the median and ∆λ the variation in the failure rate λ caused
by the change from a main version Vm to a final version Vf , which includes
the additional tasks. As input frequencies fTB, the available test benches are
applied.
The last hypothesis is expressing the impact of the external triggering of the

execution of the additional tasks via three user buttons:

H2d: In case of the FPGAs, the execution of those
additional tasks activated via user buttons leads to less
additional failures in the contents of the CANmessages
than in case of the MCUs.
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The null-hypothesis corresponding to this hypothesis is expressed by the follow-
ing formula:

H02d : N [FFPGA(Vf , fTBbutton
)] ≥ N [FMCU (Vf , fTBbutton

)]

with N being the number of versions, which contain failures F in their output
according to the activation of additional tasks. The activation is achieved by a
special test bench TBbutton. Of course, the final versions Vf were used for this
hypothesis test as only these versions include the additional tasks.

H3: Impact of Hardware Platforms on Software Review

The review of real-time functions requiring fast response times is challenging
on MCUs. Therefore, it is assumed that the action of review might profit from
the parallel structure of FPGAs (see Section 3.4.3). First, it is assumed that
the review on FPGAs reveals more timing faults than on MCUs. This aspect
is expressed by the succeeding hypothesis:

H3a: In case of the FPGA versions, review results
show higher compliance with test results than in case
of the MCU versions, with the tests performed on basis
of the review results.

The corresponding null-hypothesis is expressed by the following formula:

H03a :
i∑
1

N∑
1

n∑
1

ΨFPGA(Ri, VfN
, Sn) ≤

i∑
1

N∑
1

n∑
1

ΨMCU (Ri, VfN
, Sn)

n ∈ {1, 2, 3} , i ∈ {1, 2, 3}
with N being the number of considered final versions Vf and Ψ the number of
review results that comply with the corresponding test results. In this context,
each version is reviewed by different reviewers Ri regarding different review sce-
narios Sn. The number of review scenarios depended on the individual reviewer
as discussed in Section 5.3.
Furthermore, it is expected that reviewers consider the review of software

written for FPGAs as more pleasant as the review of the same functions im-
plemented in MCU software. This expectation is expressed by the following
hypothesis:

H3b: In case of the FPGA versions, the reviewability
is rated better (on average) than in case of the MCU
versions.
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The corresponding null-hypothesis is expressed by the following formula:

H03b :
∑i

1

∑N
1 <FPGA(VfN

, Ri)
i ·N ≥

∑i
1

∑N
1 <MCU (VfN

, Ri)
i ·N

i ∈ {1, 2, 3}
with N being the number of considered final versions Vf and < the normalized
grades of reviewability given by each reviewer Ri. For the results of each re-
viewer, the grades for the reviewability (< = 1 : good reviewability,...,< = 5 :
review not possible) are divided by the average grading of the corresponding
reviewer for normalization.

H4: Software Diversity vs. Fault Removal

It has been discussed before that instead of applying N-version programming,
the effort for implementing the second version could be spent on verifying the
first version (see Section 3.4.4). It is assumed that this approach would discover
dependent failures as those observed in the majority of the previous experiments
1 and 2. The failure which occurred most often, was the faulty behavior in case
of fast changes in the input values. Therefore, it is expected that the corre-
sponding faults will be also present in the majority of the versions developed in
this experiment. The identification of the faults should be investigated, which
is expressed in the following hypothesis:

H4a: The failure according to fast changes in the in-
put frequencies is identified by at least 3/4 of the ex-
periment teams by review or testing

The corresponding null-hypothesis is expressed by the following inequation:

H04a :
N(Vf (Fdetected))

N(Vf (Fdetected)) +N(Vf (Fundetected))
<

3
4

Fdetected = FdetectedTest
+ FdetectedReview

+ FdetectedTest∧Review

with N being the number of final versions Vf and F the failure according to fast
changes in the input frequencies, which could be either detected or undetected
for each version. Moreover, fast changes are quantified as a difference in two
consecutive frequency values of more than 200Hz.
The second aspect investigated refers to known problems in the specification.

Four statements in the specification have been identified as ambiguous in pre-
vious implementations. As these statements are a source of dependent failures,
it is of interest in how many cases these ambiguous statements are identified.
This aspect is expressed by the following hypothesis:
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H4b: The four known ambiguous statements in the
specification are identified by at least 3/4 of the teams
during their review and test activities. In this context,
not all four statements have to be detected by one
team.

The corresponding null-hypothesis is expressed by the following inequation:

H04b :
N(Vf (ASidetected

))
N(Vf (ASidetected

)) +N(Vf (ASiundetected
))
<

3
4
, i ∈ {1, 2, 3, 4}

withN being the number of final versions Vf and ASi the four known ambiguous
statements in the specification. A description of these four statements can be
found in Fig. 5.5 in Section 5.4.
Finally, it is expected that a fault removal approach based of review and

testing is leading to less failures than the NVP approach investigated in the
experiments 1 and 2. This assumption is described by the following hypothesis:

H4c: If a comparable effort is put into the verification
and correction than into the second version of an NVP
approach, the first approach leads to less failures. The
verification in this case is based on review and testing

The corresponding null-hypothesis is expressed by the following formula:

H04c : Md[λNV P (Vf , fTB)] ≤Md[λV &C(Vf , fTB)]

withMd being the median and λ the failure rate of the corresponding approach.
The NVP approach is based on two final versions Vf developed independently.
If both versions fail, this approach will be considered as failed. The approach of
verification and correction (V&C) is based on a single final version Vf , which
has been reviewed, tested and corrected. The input values fTB used for this
test are based on available test benches (TB).

H5: Impact of Hardware Platforms on the Reuse of Real-Time Functions

The parallel nature of FPGAs is seen as a potential benefit for the reuse of
software, especially in the case of real-time functions (see Section 3.4.5). It is
assumed that reused software components suffer from less side effects than in
case of MCUs. This assumption is expressed by the following two hypotheses:

H5a: In case of the FPGA versions, the execution of
the functions implemented beside the reused function
on the same device, lead to less content failures in the
reused function (LB component) than in case of the
MCU versions.
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The corresponding null-hypothesis is expressed by the following formula:

H05a : N [FLBFPGA
(Vf , fM , fLB)] ≥ N [FLBMCU

(Vf , fM , fLB)]

with N being the number of versions in which failures FLB are observed in
the content of the life beat function’s output. For this test, the final versions
Vf are applied. As this test represents a stress test, values up to three times
higher than the input value explicitly specified are used as test input fM for
the four channel speed measurement function. Moreover, the input for the life
beat function is fLB = {0Hz, 10Hz}.

H5b: In case of the FPGA versions, the execution of
the functions implemented beside the reused function
on the same device, lead to less timing failures in the
reused function (LB component) than in case of the
MCU versions.

The corresponding null-hypothesis is expressed by the following formula:

H05b :
∑N

1 |∆TLBFPGA
(Vf , fM , fLB)|

N
≥

∑N
1 |∆TLBMCU

(Vf , fM , fLB)|
N

with N being the number of considered final versions Vf and ∆T the variation
of the LB send interval T caused by integration of the LB component in the
new context. Moreover, fM ≈ 50% of fmax represents the input frequency
determined as input for the measurement channels for the test of this hypothesis.
Additionally, the input for the life beat function is fLB = 0Hz in this case.

On the other hand, it was expected that especially MCU versions suffer from
side effects with the integrated LB component. This aspect is expressed in the
following hypothesis:

H5c: In case of the FPGA versions, the inclusion of
the function to be reused (LB component), leads to
less failures in the remaining functions implemented
on the device than in case of the MCU versions.

The corresponding null-hypothesis is expressed by the following formula:

H05c : N [FcontextFPGA(Vf , fM , fLB)] ≥ N [FcontextMCU (Vf , fM , fLB)]

with N being the number of versions in which failures Fcontext are observed in
functions embedding the reused life beat function. For this test, final version
Vf are applied. Further on, the test frequency fM ≈ 50% of fmax represents the
input frequency for the four measurement channels. Finally, the input frequency
for the LB function fLB ranges from 0Hz to 100kHz.
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H6: Impact of Hardware Platforms on the Development according to
ISO26262

In this investigation, two types of hardware platforms were examined with re-
spect to safety and reliability issues. It had been expected that the two plat-
forms differ with respect to these aspects as described in Section 3.4.6. First,
it has been assumed that the effort of developing a system according to the re-
quirements of the ISO26262 for an ASILC system differs for the two hardware
platforms9. This assumption is expressed by this hypothesis:

H6a: The effort (development time and occurring
problems) for developing the given safety-critical ap-
plication classified as ASIL C according to ISO26262
is not equal on both hardware platforms.

The corresponding null-hypothesis is expressed by the following two formulas:

H06a : (THW1 ≈ THW2) ∧ (PHW1 ≈ PHW2), P =
N∑
1

CN

with T being the development time for implementing the application according
to ISO26262 on the corresponding hardware platforms. Moreover, P are the
development problems identified on the two hardware platforms. The develop-
ment problems are defined as the sum of the criticality C of all N problems,
which occur during the development for this hardware platform. In this context,
the criticality of each problem is rated from 0 (uncritical) to 5 (very critical).
Finally, the notation of ≈ allows a difference of 10% of the larger value.
Moreover, differences in the resulting architectures with respect to reliability

and modifiability are expected. As no concrete expectations were present at the
time of hypothesis definition, no formal hypotheses were formulated for these
issues. Nevertheless, these aspects are evaluated in Section 6.6.

4.5. Variable Selection

For the variable selection, it has to be differentiated between independent vari-
ables (those variables, which can be controlled and changed in the experiment)
and dependent variables (the measurement of those variables determines the
effect of the treatment) [126].

9The requirements considered for our investigations excluded process requirements (e.g. man-
agement and documentation activities), as no differences are expected between the two
platforms in this field.
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The most important independent variable in the experiments 1, 2, 3, 5, and
6 was the type of hardware platform which was applied in the implementation.
In the remaining experiment (Experiment 4), the most important independent
variable is the type of software fault handling (review and testing in contrast to
NVP) applied.
The dependent variable in the majority of the experiments is the number and

the type of failures in the developed systems (experiments 1, 2, 4, and 5) and
is derived directly from the corresponding hypotheses.
In the third experiment, several dependent variables were selected. A first

variable selected is the time needed for the review as it is comparatively easy
to measure and might be used to determine the review effort. Moreover, the
reviewability, which represents another dependent variable, had to be graded by
each reviewer. The third dependent variable in this experiment is the number
of faults identified correctly by review.
Furthermore, the success of the review and test activities in Experiment 4 was

not only evaluated by the remaining faults in the system. Therefore, further
dependent variables in this experiment are the type of faults identified by review
and testing respectively.
The most important dependent variable in Experiment 6 is the development

effort for implementing the specification following the requirements of the safety
standard ISO26262. This variable was measured by the time needed for imple-
mentation and problems that occurred during development. Moreover, certain
properties of the resulting implementations were investigated, which is described
in Section 5.6.
Further factors in the experiments should be kept constant in each experiment

and can be seen as further independent variables. They have to be controlled,
if it cannot be guaranteed that they do not influence the dependent variables.
This control could be achieved by keeping these variables constant (e.g. the
time for implementing the experiment task) or by using statistical measures (e.g.
previous knowledge of participant is controlled by a high number of randomly
picked developers). During our experiments, we determined specific challenges
and solutions with respect to the control of variables, which are presented in
Section 4.7.2.

4.6. Experiment Designs

The design of the experiment has got a huge impact on the conduction of the
experiment as well as on the quality of the experiment results. Therefore, several
aspects have to be considered during experiment design. The designs of the
experiments we conducted for this work are described in the following sections.
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Figure 4.5.: Design of Experiment 1 and 2

4.6.1. Experiments 1 and 2

The experiments 1 and 2 took place in lab courses, as this setting allowed exper-
iments with comparatively high numbers of participants. For these experiments,
we applied a paired comparison design (see [126]). In this design, each subject
(development teams in our case) applies both treatments on the same object
(specification of experiment task) to improve the precision of the experiment.
To reduce the impact of the order in which the subjects apply the treatments,
the order is assigned randomly.
For the experiments 1 and 2, the resulting experiment design is depicted

in Fig. 4.5. Both experiments took place in lab courses with 12 teams of
development teams. We established two treatment groups and the teams of
both groups received a common specification of the experiment task described
in 4.3.1. Teams in the first treatment group had to implement this specification
on a MCU target hardware platform while teams of the second group had to
implement the same specification on an CPLD/FPGA10 target. After the im-
plementation was finished, all teams had to pass an acceptance test, which was
applied to guarantee a certain minimum level of quality of all versions. Further
details of this test are discussed in Section 4.6.6. If a team did not pass this
acceptance test, it had the chance to correct the version and try another accep-

10Experiment 1: CPLD, Experiment 2: FPGA
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tance test. Only those versions that passed this acceptance test were considered
for the later evaluation. After this first half of the experiment, the hardware
platforms were exchanged. The teams, which had programmed the MCU target
before, now had to program the FPGA and vice versa. At the end, the same
acceptance test had to be passed and again only those versions, which passed
this test, were considered for evaluation.
According to this experiment design, each participant had to apply both ap-

proaches in an arbitrary order. This structure allowed to consider the different
skills and previous knowledge of the participants. However, when applying the
paired comparison design, potential learning effects from the first implementa-
tion on the second one have to be considered. Therefore, versions implemented
in the first half of the experiment were compared with those implemented in
the second half in order to investigate potential learning effects.

4.6.2. Experiment 3

In case of this experiment, we took data (software versions developed on dif-
ferent hardware platforms) from the second experiment and examined their
reviewability. As the process of reviewing takes some time, it was not possible
to conduct this experiment in the lab courses used for the development of the
original software. Therefore, student assistants familiar with both hardware
platforms conducted the review of 6 MCU and 6 FPGA versions each. These
versions were picked randomly from a total of 22 versions.

Table 4.2.: Design of Experiment 3
Subjects Review Objects (in given order)
Reviewer 1 M-2, F-2, F-5, M-5, M-6, F-6, F-7, M-7, M-8, F-8, F-9, M-9
Reviewer 2 F-9, M-9, M-8, F-8, F-7, M-7, M-6, F-6, F-5, M-5, M-2, F-2
Reviewer 3 F-9, M-9, M-8, F-8, F-7, M-7, M-6, F-6, F-5, M-5, M-2, F-2

Note: M-2 = MCU version 2, F-5 = FPGA version 5

As this investigation is based on outcomes of a previous experiment, it is not
suited for a classical experiment design as the one applied in the experiment de-
scribed above. The experiment design applied for this investigation is described
in Tab.4.2. Accordingly, the three reviewers11 had to review the 12 versions in
the given order. The different orders were chosen to decrease potential impacts
of this factor.
11for organizational reasons, the third review had to be split on two different student assis-

tants.
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Moreover, the reviewers were guided by a given review report form and a
given review instruction (see Section 4.7.2). In the review report form, the
following aspects had to be filled out by each reviewer:

• requirements tested + results

• requirements not tested + reasons

• scenarios identified, which could lead to problems + results

• quality of version tested (range 1..5, reviewer’s subjective opinion)

• final remarks concerning implementation and specification

• grading of reviewability (range 1..5, reviewer’s subjective opinion)

The review instruction only covered the main ideas of the review process,
as for example that the reviewers were not allowed to execute or modify the
inspected code. The review technique applied did not include any formal aspects
as e.g. proposed by Fangan [30]. However, the aim of this review was to evaluate
the code and not to find as much as possible faults. Therefore, this approach is
considered as suitable for this experiment.

4.6.3. Experiment 4

Guided by hypothesis H4, the effect of review and test activities was investigated
in this experiment, which also took place in a lab course. Therefore, a design
was chosen as depicted in Fig. 4.6.

Each team had to program the same task as used in Experiment 2. However,
only the microcontroller hardware was used for implementation, which took
part in the first half of the lab course. The second half of the lab course was
used for review and testing, which was organized as follows: Randomly, each
team was assigned a version for review and another version for testing. The
versions were anonymized to avoid interaction between the implementation and
the verification teams and it was assured that no team checked their own version.
Half of the teams started with review while the other half started with testing
in order to mask out effects of execution order and to reduce the number of test
equipment needed for the experiment. After three weeks (three appointments
with 3 hours each) the teams changed from testing to review and vice versa.
In the last two weeks, all teams had the chance to improve their own version
on basis of the review and test reports. In the following, the test and review
process used in the experiment will be presented briefly.
For testing, all six test teams were equipped with an own automated test en-

vironment, similar to the one used for evaluation (see Section 4.7.4). Moreover,
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Figure 4.6.: Design of Experiment 4

each team received a documentation for the test environment, the machine code
for testing, and an empty test report form. The following aspects had to be
filled out in every test report:

• requirements tested + results

• requirements not tested + reasons

• scenarios identified, which could lead to problems + results

• quality of version tested (range 1..5, reviewer’s subjective opinion)

• final remarks concerning implementation and specification

This given form of the report helped the students during test case creation and
eased the later analysis of all test reports for the evaluation.
As in the case of testing, every review team received an empty review report

form, a short review instruction and the source code to review. Additionally
they received the corresponding documentation, which should help them to
understand the code if necessary. The review report form was identical to the
one used in Experiment 3. Therefore, it covered the same aspects as the test
report and an additional grading of the reviewability.

51



4. Methodology of Evaluation

MCU 

Target

FPGA 

Target

Spec. 

+LB’

Evaluation test

if
 p

a
s
s
e

d

FPGA 

Target

MCU 

Targetif
 p

a
s
s
e

d

time

A
c
c
e
p
ta

n
c
e
 t

e
s
t

A
c
c
e
p
ta

n
c
e
 t

e
s
t

MCU 

Target

FPGA 

Target

Spec. 

+ LB
A

c
c
e
p
ta

n
c
e
 t

e
s
t

Initial study with adaptations of LB Experiment, use of adapted LB‘

LB = Life beat component (to be reused)

Figure 4.7.: Design of Experiment 5

Moreover, since the same experiment task was applied in experiment two and
three, a comparison between the effects of N-version programming and those of
review and testing is possible.

4.6.4. Experiment 5

In accordance with the experiments 1 and 2, a common specification was imple-
mented on an MCU target platform as well as on an FPGA target. However,
a specific software component, originally designed for another application, was
reused in this experiment in case of both platforms.
The design of the evaluation is based on two steps. In a first step, we con-

ducted an initial study in which the aforementioned software component was
reused by a student assistant in the new application to investigate whether this
reuse is feasible (see left part of Fig. 4.7). In this step, the software component
could be adapted if needed while all modifications were documented.
In a second step, this adapted software component was provided to the par-

ticipants of a lab course. During this lab course, the component was reused
(without further adaptation) to allow an evaluation of the reuse on the two
different hardware platforms (see right part of Fig. 4.7). As introduced in Sec-
tion 4.6.1, we also applied a paired comparison design in this experiment (both
treatments were applied to all teams in random order) to improve the precision
of the experiment.
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4.6.5. Experiment 6

The investigations with regard to Experiment 6 required the implementation
of a comparatively complex automotive application. Moreover, requirements
by the safety standard ISO26262 [48] had to be considered. Therefore, this
experiment required development time and previous knowledge, which could
not be expected from students participating in a lab course. As mentioned
previously, this experiment took place in the context of two diploma theses
resulting in a simplified experiment design depicted in Fig. 4.8.
As determined in the variable selection (see 4.5), the dependent variable in

this experiment was the development effort. Therefore, design problems and
the development progress were documented in weekly meetings as can be seen
in the left part of Fig. 4.8. Next, the student assistants tested the implemented
versions by using acceptance criteria given in the specification. The discovered
failures were documented and the corresponding development teams had the
chance to improve their implementations. Moreover, the developed versions
were analyzed with respect to further properties described in Section 4.4 and
then tested with the test environment developed for this purpose (right part of
Fig. 4.8).
The low number of subjects (one development team for each treatment) can

have impacts on the validity of the results, which is discussed in Section 6.6.4.

53



4. Methodology of Evaluation

4.6.6. Testing Issues

To assure a certain minimum quality of the versions created in the experiments,
acceptance tests were applied in the experiments 1, 2, 4, 5 and 6. Our expe-
riences with these acceptance tests show a certain dilemma. If the acceptance
test is too weak, the later evaluation might be impossible because some versions
simply do not work as intended. If the acceptance test is too strict on the other
hand, the evaluation test might be somehow useless as new faults may not be
found during evaluation. Further on, the determination of the acceptance test
can have unintended effects on the experiment results (with one acceptance test
one might receive a different result than with another acceptance test). Accep-
tance tests are commonly used, but follow different approaches. An acceptance
test generated randomly was used in [53] and it is stated in [112]: "The accep-
tance test was not, and was not intended to be, a basis for quality assessment
of the code, but rather was a test of whether all major portions of the code
were present in some operable form". Otherwise, a test case representing one of
four functional profiles of the actual application was used in [64] in a two-step
acceptance test and failures identified in this acceptance tests were used in the
later evaluation. Based on our experiences, we propose the usage of a compara-
tively strict acceptance test to guarantee a sufficient quality of the experiment
outcomes and to use the information of all failed acceptance tests for the later
evaluation (as applied in [64]) to increase the independence of the evaluation
results from the acceptance test used. This approach, which is depicted in
Fig. 4.9 in form of a flowchart, requires to document date and time as well as
the reason of failing in case of each failed acceptance test. As this approach has
been developed during our work, it was applied in case of Experiment 5 and 6
only (details in Section 5.5 and 5.6).
Furthermore, design for testability could be an important issue in the experi-

ment design. As soon as the overall function fails, it often would be desirable to
determine, which of the subfunctions work correctly and which do not. One way
would be to evaluate each version manually and to include debug commands in
the code. An approach that turned out to be effective in our experiments, was
to include test functionality within the actual specification used in the exper-
iment (e.g.: write intermediate results to the output if a certain test variable
is set to true). While this approach implies a knowledge of the subfunctions
to be tested at the time the specification is written, it simplifies the testing of
these subfunctions in the later evaluation. Moreover, this approach is especially
useful in the field of embedded systems, in which the access to internal values at
run-time is limited or not possible. Further testing issues typical for embedded
systems can be found in Section 4.7.4 describing the test environments.
Further on, testing is important during the development as part of debugging
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and verification activities. These activities require in some cases a simulation of
the embedded system’s environment (embedding system). The simulation could
be achieved by comparatively simple measures in the experiments 1, 2, 4, and 5
(details in Section 5), while a simulation environment had to be developed for
Experiment 6. Finally, debugging facilities could ease the development process
and should be provided to the experiment participants for this reason.

4.7. Instrumentation

In accordance with [126], instruments for an experiment include objects, mea-
surements and guidelines. These instruments, which are described in the follow-
ing sections, had to be developed before the experiment execution. Moreover,
the measurement of variables required dedicated measurement equipment in
case of most of our experiments. These environments are described in Sec-
tion 4.7.4 followed by the corresponding test case generation described in Sec-
tion 4.7.5.
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4.7.1. Experiment Objects

The experiment task specification represents the experiment object in all exper-
iments, which involve implementation activities (experiments 1, 2, 4, 5 and 6).
This task description was given in written form to the students and is described
briefly in Section 4.3.1. Moreover, the experiment object in case of Experiment
3 is the code developed in a previous experiment. In the same manner, code
developed in the first half of Experiment 4 is also an experiment object for the
investigations performed in the second half of this experiment.
Beside the task specification, a further experiment object in Experiment 5 is

the software component, which had to be reused. This component was devel-
oped by a student assistant for both hardware platforms with another context in
mind. The original application combined a safety-critical life beat (LB) function,
which is continuously checking the liveness of another device, with a function
checking the status of several buttons (BTNs) as depicted in Fig. 4.10. In detail,
the LB function had to check for a correct length of the high and low phase of
the given LB signal. A correct LB signal was defined by a frequency of 10Hz and
a length of the high phase equal to the length of the low phase. Both functions
use an external CAN controller for communicating their status via the CAN
bus. The initialization of the CAN controller and the send requests for CAN
messages is conducted outside the LB-function. Since the LB functionality is
considered as safety-critical, the function can send their own CAN messages if
no CAN messages have been sent for a given time. To assure the applicability of
the reuse in the new context (see Fig. 4.11), the reuse was tested by a student
assistant in a second step in which also minor modifications were applied to
both components (details in Section 5.5.1).

4.7.2. Measurements

Several measurements were applied for the experiments conducted for this thesis.
These include measurements to control variables, to measure variables and to
determine the statistical relevance of the measured results.

Control of Variables

With regard to the control of the variables, all participants should receive the
complete information concerning their task in the experiment in a written spec-
ification. This procedure is important to avoid influences by the experiment
supervisor by answering individual questions. Moreover, the implementation
of the task by a test team prior to the actual experiment is suitable to verify
the completeness and comprehensibility of this common specification. However,
it turned out that different participants may have different problems with the
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same specification, which makes it necessary to provide additional information
during the experiment. In this case, this information should also be provided
in a written form (e.g. via email, as applied in [53]) to all participants. In our
experiments, we also chose to give additional information via email to all ex-
periment participants. Moreover, it turned out to be extremely useful to apply
the same task in several of our experiments and to improve the specification for
every run to avoid problems that appeared in the previous experiment.
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Further on, a certain control of the experiment participants is also needed.
This control includes several aspects. First, the development effort performed
by the experiment participants will have to be controlled, if this variable is not
the dependent variable. This effort is usually measured by the development
time. The obvious approach is to give a fixed time to fulfill the experiment
task (e.g. development is limited to the times of a lab course). However, time
is a variable that is hard to keep constant, as some participants continue their
work at home, even if they are explicitly asked not to do so. Even without
explicit implementations outside the actual experiment, it makes a difference
if participants think outside the experiment hours how to go on and how to
solve a problem or if they start thinking how to go on each time they enter
the lab. Therefore, questionnaires were conducted at the end of experiments,
which took place in lab courses to gain information concerning development
activities outside the actual experiment hours. Moreover, the time needed for
reviews was measured in Experiment 3. Since reviews had to be conducted as
a whole and a maximum time for review of three hours was given, no impacts
on the variable time are expected in this case. Finally, the development effort
was not only determined by measuring the time in Experiment 6, but on basis
of weekly meetings in which problems and challenges, which occurred during
implementation, were discussed.
As reliability aspects are a major concern for the evaluations in this work, a

certain minimum quality of the experiment outcomes has to be guaranteed. As
it cannot be expected that all experiment participants put similar effort in the
verification of their implementation, acceptance criteria were applied in all of
our experiments, which involved development activities (see Section 4.6).
Moreover, students had to conduct certain actions during our experiments in

order to allow a later evaluation. In the majority of experiments conducted for
this work, the participants had to save the current state of their work as soon as
one of a set of subtasks was implemented successfully. These activities had to
be controlled very strictly, as the participants could understand them wrong or
simply forget them. The same is true for questionnaires. While multiple choice
questionnaires could be checked for soundness and completeness, most other
types of questionnaires cannot be checked automatically and require manual
checks for this reason. However, a tool that checks and indicates incomplete
parts of the questionnaires automatically could also lead to participants check-
ing the boxes arbitrarily to finish the questionnaire quickly.
Another important aspect is to assure that all participants develop their im-

plementation of the specification independently. Beside the fact that we asked
the participants to develop their versions independently, we partly used a plagia-
rism finder tool to assure no suspicious similarities were present in the different
versions (see Section 6.1). However, we experienced no problems with plagia-
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rism in our experiments. The reason for this result is seen in the fact that we
did not give the students hard deadlines and that we supported them in case
of problems whenever possible12 in order to release the pressure of delivering a
final version.
Another important variable that has to be controlled is the previous knowl-

edge of the participants. The previous knowledge was tried to leverage by an
introductory course described in the following section. Moreover, differences in
the previous knowledge were determined by questionnaires described later in
this section.

Introductory Course

The students participating in our experiments had certain experiences in em-
bedded systems. However, experiences with the hardware platforms applied in
the experiment differed between the participants. Therefore, an introductory
course was used in all experiments, which were conducted in lab courses, with
the intention to leverage the knowledge of the participants. The main idea was
to make the students familiar with the development environments provided for
the experiments. The introductory course took place on two days and was held
prior to the actual lab course. An introduction to microcontroller programming
was given on the first day and an introduction to PLD13 programming on the
second day. To emphasize the differences and similarities between the two plat-
forms, a common introductory example was used in both cases. Moreover, the
introductory example was chosen to be different enough from the later experi-
ment task, but still allowed to clarify challenges and possible solutions of the
implementation on these two hardware platforms.

Variable Measurement

In our evaluations, the quality (in terms of low numbers of failures) of the ex-
periment outcomes is important. While being an acceptance criteria as already
mentioned above, it is also a major part of the evaluation in the experiments
conducted for this work.
In case of the acceptance criteria, testing could be applied to verify if the

experiment outcomes had fulfilled the acceptance criteria. As testing cannot
guarantee the absence of failure, the acceptance criteria have to be formulated in

12It is important to note that only implementation specific support (e.g. where to find
information about interrupt priorities) and general suggestions (e.g. try to test each
module on its own before you test the overall system) are allowed to avoid undesired
influences by the experiment supervisor

13PLD: CPLD in Experiment 1, FPGA in Experiment 2,4,5
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a way that unambiguous test cases can be generated easily. For our experiments,
the acceptance criteria were directly formulated as test cases.
The actual variable to be measured in the majority of our experiments (Ex-

periment 1,2,4,5) is the number of faults in the versions developed in the exper-
iments. Beside reviews/inspections or formal verification, testing is the most
important means for evaluating software with respect to correctness [46, 81].
While in case of acceptance tests, a defined set of test scenarios could be used,
the evaluation of functional correctness with respect to reliability is more chal-
lenging. But although testing can never guarantee the absence of failures, the
number of failures found by extensive testing can still be used as an indicator
for the system’s reliability [32, 81]. Analyzing the results of an experiment
includes the testing of all the different outcomes created with equal test cases.
Therefore, black box testing should be applied since this technique is indepen-
dent from the individual subject tested. Since the significance of the results
gained by black box testing is increasing with the amount of test cases a high
number of different test inputs is desirable.
Further dependent variables, as the reviewability in Experiment 3, were based

on a grading of the reviewers/developers. These variables were collected by
using forms and questionnaires. This measurement revealed only challenges in
the development of the corresponding forms/questionaires. These report forms
were provided for the documentation of test and review activities (Experiment 4,
only review in Experiment 3) and were applied for several reasons. First, they
allowed an easier comparison of the different reports. Second, the structure
of the reports was intended to give a certain guidance for the test and review
processes. Finally, the given structure of the reports allowed a minimum control
of the test and review activities as described in Section 5.4.
Finally, the development effort had to be measured in Experiment 6. As

stated in the setup of the hypothesis in Section 4.4, this variable was determined
by measuring the development time and documenting problems, which occurred
during development. Of course, these measures are not very exact. However,
as only a general effect should be evaluated in this experiment, this approach
is considered as sufficient.
In all experiments that took place in lab courses, two different questionnaires

were used. A first questionnaire was conducted prior to the experiment to de-
termine the previous knowledge and the expectations of the participants. The
second questionnaire was conducted at the end of each experiment to receive
feedback and to gain information about the implementation work (e.g. how
much work was done at home). The results of these questionnaires are used
during the validity determination of the experiment results in Section 6.1. More-
over, certain aspects are used for the discussion of the educational aspects of
these experiments in Section 7.3.
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For additional information with respect to the differences of FPGAs and
MCUs, the students had to fill out a feedback sheet during Experiment 5. The
idea behind this form was that students document any difference they experi-
ence between the two platforms during the experiment. These information are
analyzed in Section 6.7.
Further on, the test forms used for the acceptance tests were an important

measure to assure that all relevant aspects were tested during the acceptance
tests, especially in case of the additional tasks. Finally, the test environments
applied for acceptance and evaluation tests are described in Section 4.7.4.

Determination of Statistical Relevance

The data used for successful hypothesis tests has to be evaluated with respect to
statistical significance. The reasoning behind this measure is to determine the
probability that the observed results are not dependent on the treatment. In
the first experiment, the significance was determined within the method applied
for the test of hypothesis H01a, namely the method of resampling (bootstrap
method to be exact). This approach is following an intuitive approach of drawing
samples from the set of observed results. The important aspect is that the drawn
sample is put back to the set (re-sampling) each time. While this approach is
further described in Section 5.1.4, additional details can be found in literature,
e.g. in [16].
For the remaining successful hypothesis tests, the significance of the difference

between the results observed in the two treatment groups was also determined
by using the resampling method. In all cases, the following approach was chosen.
Given is the set of all N observed values (both treatment groups). From this set
N samples are drawn with replacement and the difference is calculated between
the mean14 of the first half of this sample and the mean of the second half of
the sample. The value calculated is documented. Then this procedure (take N
samples and compare the two means) is replicated 100000 times. Finally, it is
determined how often the difference observed between the two treatment groups
or even a larger difference occurred in the 100000 random comparisons. If this
value is sufficiently low15, the observed difference is considered as significant.

4.7.3. Guidelines

In all experiments, one or more guidelines were provided to the participants in
order to structure and/or control the actions within the experiment.

14Alternative: median (depends on hypothesis)
15An accepted threshold for this value is 0.05 [16]
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In the experiments, in which intermediate versions were of interest (especially
Experiment 2), storing of the correct versions was essential. Therefore, guide-
lines determining this process were provided in these experiments.
For the experiments including test and review activities (Experiment 3 and

4), brief guidelines for the test and review process were given to the experiment
participants. Further guidance for these processes was given by the test and
review report forms used in these experiments (see Section 4.6). Otherwise, a
guideline for the integration of the component to be reused had to be provided
in Experiment 5.
Furthermore, a composition of typical implementation issues was provided for

both targets in case of the experiments 1, 2, 4 and 5. They included the basics
of the VHDL language and specialties of the C language for embedded systems.
Moreover, certain coding guidelines were used in these experiments. These
guidelines restricted, for example, the use of in-line assembly statements and
existing VHDL components. In Experiment 6, the coding standards according
to MISRA-C [68] had to be followed for the C language and the recommenda-
tions given in The VHDL Golden Reference Guide [25] had to be followed for
VHDL.

Finally, guidelines for the proper use of the provided hardware platforms and
measurement equipment were needed to avoid damage to the material and the
participants. Parts of the guidelines for the individual experiments differed as
miscellaneous devices were used.
All guidelines targeting the implementation itself were included in the exper-

iment task description. Experiment 6 is an exception as the specification and
the coding guidelines were separate documents in this case.

4.7.4. Setup of Test Environments

Embedded systems realize functions in interaction with their environment. In
contrast to mere software functions, these functions have to be analyzed via
dedicated hardware/software interfaces. Additionally, embedded systems often
have to fulfill real-time requirements. According to these requirements, it is
usually of great importance to analyze the system’s real-time behavior. For
the task chosen for the experiments described in this work it has to be checked
if the response on inputs (reset, speed signals, and certain experiment specific
signals) generates outputs according to the specified timing behavior. In order
to analyze this real-time behavior, specific measurement equipment is necessary.
The aspects presented above in combination with the need for high numbers

of test cases identified in Section 4.7.2 make automated test environments neces-
sary. For the majority of embedded applications, these test environments have
to be designed for each individual application. The testing for correct real-time

62



4.7. Instrumentation

behavior demands real-time properties of the corresponding parts in the test
environment, which complicates the design and verification of the test environ-
ment. Another advantage of automatic testing is that it usually is less error
prone than manual testing [32].
For four of our experiments, a similar experiment task was applied. Therefore,

a common test environment could be developed for the evaluation of these ex-
periments. However, it is required that this test environment is flexible enough
to target the variations in the four experiments. For the acceptance tests con-
ducted in these experiments, a semi automatic test environment was developed
that is described in the following section, while the automatic test environment
developed for the evaluation is described afterwards.
While the embedding system could be simulated by simple measures in case

of the experiments mentioned above, the complexity of the embedding system
in Experiment 6 (several sensors and actuators interconnected via the roof me-
chanic, further system components connected via CAN bus) required the de-
velopment of a sophisticated simulation environment. As this environment in-
cluded the same interface as required for test activities, a combined test- and
simulation environment was developed, which is described at the end of this
section.

Semi Automatic Test Environment (experiments 2,4,5)

While the acceptance test was executed manually in the first experiment con-
ducted (Experiment 1), we applied a semi automated acceptance test in the
following experiments. This test approach allowed to generate a defined selec-
tion of physical test signals in real-time. The reasoning behind this change was
to assure equal, reproducible test conditions in the acceptance test and to speed
up the process of acceptance testing.
Since physical signals (four speed signals) had to be generated in real-time for

these acceptance tests, we implemented the semi automated acceptance test on
an FPGA development board. With this board, different test scenarios could be
selected by an array of switches. The correctness of the outputs of the device
under test (DUT) could be checked on a CAN monitor. The results of this
monitor were displayed via video projector making the results visible for all
lab course participants. The check was performed manually by comparing the
values displayed with a given table of expected results. This approach allowed
fast and reproducible acceptance tests.
Advantages of this approach are the small form factor of the test hardware

(just one FPGA development board in combination with the CAN monitor al-
ready present) as well as the easy handling of the test board within the given
setting. The drawbacks of this approach are that the timing of the DUT out-
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puts cannot be verified by this manual approach (only large violations of the
maximum response time can be detected this way) and that the number of test
cases is very limited. While this approach is sufficient for the acceptance tests,
a more sophisticated test environment is required for the evaluation tests, which
is presented in the following section.

Automatic Test Environment (experiments 1,2,4,5)

All versions, which passed the acceptance test, were considered for evaluation
testing. As in case of the acceptance test, physical signals had to be generated
in real-time. While only selected input scenarios were generated for the accep-
tance test, in this case, all possible input scenarios must have been able to be
generated to allow a sufficient test coverage. Therefore, an extended, flexible
approach of signal generation was realized. Unlike the semi automated test used
for acceptance tests, a completely automatic evaluation test environment is de-
sirable for several reasons. First of all, it allows faster correctness evaluation of
the outputs of the device under test (DUT) and therefore faster test runs. The
increased evaluation speed is important for the evaluation tests as high num-
bers of test scenarios should be tested in sufficient time. Secondly, the correct
timing of the DUT outputs cannot be verified manually with acceptable effort.
Thus, the test environment had to be extended by a component providing the
test scenarios for automatic test runs. Moreover, a component is required that
manages the test process in a way, that test scenarios are fed to the DUT at
defined instances in time and that records and time stamps all DUT outputs.
Finally, a component storing and evaluating the test results is needed.
The structure of the test environment we developed for the evaluation of the

different experiment outcomes is depicted in Fig. 4.12. The test environment
was built on basis of the following requirements, driven by the need to determine
the real-time behavior of the DUT and the idea to provide a flexible and easy
to handle test environment. The test environment must be able to:

1. read test cases from text files,

2. generate test signals with values and timing given in test cases,

3. record and time stamp the responses of the DUT on test signals,

4. store test results (test case, time stamp and test response) in a text file,
and to

5. evaluate test results (compare test results with specified behavior).

Further on, it should be possible, to check for the correct behavior of the test
environment
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Figure 4.12.: Automatic test environment used for evaluation

Based on these requirements, we developed the test environment presented in
Fig.4.12, which in principle works as follows: Test cases are read from a text file
by the host computer (PC) and are sent to a microcontroller (MCU) via serial
connection. Each message sent to the MCU contains one set of inputs for the
DUT and a value for the period of time this set of inputs should be fed into the
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Table 4.3.: Signals to be generated and processed by the test environment
Experiment Test signals Output
Experiment 1 4x frequency + reset CAN
Experiment 2 4x frequency + reset + 3x button CAN
Experiment 4 4x frequency + reset + 3x button CAN
Experiment 5 4x frequency + reset + 2x button + life beat CAN

DUT. The test data is then sent to the FPGA for test signal generation. The
second task of the MCU is to time stamp all messages coming from the DUT
and to send them, together with the current test case present at the inputs of
the DUT, to the host computer, in which they are stored in another text file
for later off-line analysis. Accordingly, the MCU acts as the test supervisor in
this approach, which is depicted in more detail in the lower part of Fig. 4.12.
The separation of measurement and evaluation activities was chosen for two

reasons: Firstly, it simplifies the analysis since no real-time requirements have
to be faced during the analysis process. Secondly, it simplifies the verification
of the test environment, since measurement and evaluation are well separated.
The failures considered during analysis are: timing failures (e.g. check if a

message arrived in time), silent failures (e.g. no message arrived for a certain
test input), and content failures (e.g. a message arrived in time but contained
one or more wrong values). While the test included only the test of the speed
measurement functionality in case of Experiment 1, additional aspects had to
be considered for Experiment 2, 4, and 5 (see Tab. 4.3). These aspects in-
cluded a correct reaction of the DUT on certain user inputs via buttons and
the additional life beat function.
The design of the evaluation test environment presented above allowed au-

tomatic test runs with given test scenarios. To assure correct evaluation, the
behavior of the test environment had to be verified. In this context, the strict
separation between the actual test run and the later off-line evaluation turned
out to be very useful as this structure allowed a separate evaluation of these two
parts. Both parts were examined by conducting several identical test runs un-
der constant conditions and by comparing test and analysis results with results
achieved by other measures (oscilloscope, CAN monitor, manual calculation,
etc.). During the verification of the test runs, problems with the reproducibility
of the test results (fault activation reproducibility) occurred. The reason behind
this problem originate in the real-time properties of the application [118]. Ac-
cording to these real-time properties, not only the combination of inputs fed into
the DUT is of importance, but also the time they occur. Therefore, the internal
state of the DUT and thus its outputs could depend on previous inputs. To
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overcome this problem, a defined reset of the DUT was conducted at the start
of each test run, which could enhance the reproducibility of the test results. To
handle incidental, remaining variations, certain test runs were conducted twice
and potential differences were considered in the evaluation.
Moreover, real-time properties have to be considered in the process of record-

ing the corresponding response data from the DUT. The task chosen for the
experiments required measurement intervals up to 2 seconds, depending on the
input (low input values required a long measurement interval). This aspect led
to particular long test runs in case of several test cases (e.g. > 2h for 20000
lines of test data). Another challenge were DUTs with high rates of sending
CAN messages. Some versions of the first experiment, in which we applied this
test environment, updated their outputs (CAN messages) faster than expected.
Hence, the test environment had to be adapted in order to cope with this speed
and amount of data. In order to reduce the amount of data produced with
every test run we specified a minimum interval of sending CAN messages in the
following experiments. In the majority of our experiments, the output format of
the DUT was a CAN message, which allowed a comparatively easy evaluation of
the results. Outputs based on binary values seem easier to evaluate on the first
view, but only if the bit width is low. Accordingly, the complexity of the output
data will be limited if binary outputs are used. Additionally, a sophisticated
communication interface as the CAN communication benefits from built in error
detection and correction codes. Finally, all recorded results had to be evaluated.
Beside every input combination, the timing of these input combinations had to
be considered during evaluation. For the evaluation of the timing, the time
stamps added during the test run were analyzed. To ease the evaluation (and
its later verification), the evaluation was divided into independent sections (e.g.
determine those messages that arrived in the considered time interval in a first
step and analyze the correctness of the content of these message in a second
step) and intermediate results were listed beside the final result.
The modifiability of the test environment is another aspect that turned out

to be very important. As described above, the generation of all physical test
signals was realized with an FPGA. This approach allows great flexibility since
new signals can be added to the test environment without influencing already
existent signals (parallel structure of the FPGA). This concept has shown to be
very useful as additional signals had to be added for the experiments 2, 4 and
5 (see Tab. 4.3).
An overview of the testing issues we identified in embedded systems can

be found in Fig. 4.13. These issues show that testing is an important aspect
in the evaluation in embedded real-time systems. If empirical evaluations are
conducted in the field of embedded systems, the design of the experiment has a
major impact on the testing of the experiment outcomes. The so called design
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for testability [122] can significantly ease the overall evaluation process and
therefore should be considered in the experiment design.
Finally, a simplified version of this test environment was applied for the test-

ing activities of the experiment participants in Experiment 4. While the ap-
proach with a combination of an MCU and an FPGA allowed an intuitive16 and
modular structure, an approach requiring less hardware resources and allowing
a smaller layout was needed for this experiment. Therefore, the approach was
completely integrated into a single FPGA while the external CAN controller
remained. The structure allowed to reduce the test environment on a single
evaluation board with a CAN controller, which could be provided in a sufficient

16signal generation was suited best for the FPGA while control and communication aspects
could be implemented in a straight forward manner in the MCU
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number to the experiment participants. Further details regarding both types of
the test environment can be found in the corresponding technical report [91].

Automatic Test and Simulation Environment (Experiment 6)

The test and simulation environment applied for Experiment 6 was built for
two purposes. First, a roof control had to be implemented in this experiment.
As no physical roof could be provided for this experiment, the function of the
corresponding sensors and actuators had to be simulated. Second, the appli-
cations developed during this experiment had to be evaluated with respect to
their failure behavior.
The corresponding test environment was based on an FPGA for signal genera-

tion and signal measurement. As part of the measurement activities, the FPGA
also received all CAN messages from the DUT and extended all relevant signals
measured with time stamps. The simulation of the roof itself was implemented
on a personal computer with the tools Matlab and Simulink17. Moreover, most
check and test activities were implemented with these tools. The communica-
tion between the FPGA and the personal computer was realized via a serial
connection as in the previous test environment.
Further details of the test and simulation environment are present in [27].

4.7.5. Test Case Generation

For the evaluation tests conducted on the data collected in the experiments
1,2,4, and 5 and partly on those collected in Experiment 6, sufficient test cases
had to be generated. As all experiment outcomes had to be treated equally (see
Section 4.5), black box testing was applied since test data generated following
this approach is independent from the different versions tested.

Test Cases for Experiments 1, 2, 4, 5

The test cases for these experiments were based on random testing and deter-
ministic testing. In the latter case, the test cases were determined by a specific
driving scenario (a tool was developed to generate test data based on a given
velocity profile) and by manual selection of specific input constellations, which
were considered as especially critical. In the case of random testing, the test
cases were determined randomly (even probability distribution) by a another
tool developed for this purpose. An overview of the test cases used in the evalu-
ation of the different experiments can be found in Tab. 4.4. The test benches in
this table are not consecutively numbered, as certain test benches used turned
17www.mathworks.de
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out to be unsuitable and were not used for the evaluations presented in this
paper. However, the numbers remained to allow an easy comparison with other
documents (e.g. test reports). Moreover, a graphical representation of certain
test benches can be found in Fig. 4.14 and further details on the tools developed
for test case generation can be found in [91].

Table 4.4.: Test benches used for evaluation testing
Test bench Exp. Type of test cases # test cases

TB1 1,2,4,5 moderate and extreme values se-
lected manually, partly individual
values (applied for initial checks)

156

TB2 1,2,4,5 values from 0 to 7 kHz ∼2100
TB3 1,2 random values from 0 to 3kHz, indi-

vidual values
∼20000

TB4 1,2,4,5 velocity profile including values from
0 to 6kHz

∼10000

TB8 1,2,4 random values from 0 to 6kHz ∼15000
TB9 2,4 random values from 0 to 6kHz, in-

dividual values, difference between
two consecutive values limited to
200Hz

∼15000

TB12 5 increasing values up to 100kHz and
constant LB signal

42

TB13 5 increasing values up to 100kHz + LB
signal switched on/off

75

TB4b 2,4,5 based on parts of TB4, extended
by signals for buttons (file is named
TB4button)

∼12000

Since the maximum allowed response time to certain input combinations was
up to 2 seconds, the test runs for the 76 final versions18 considered in this
thesis needed more time than might have been expected by the number of test
input combinations. Moreover, the measurement took place not only for the
final implementation, but also for intermediate versions (main version) in some
experiments increasing the measurement effort.
As soon as testing is applied for evaluation, coverage criteria are an important

issue to estimate the test coverage. As an example, test coverage metrics have
been applied in [63] to characterize the different experiment outcomes. However,
no correlation between test coverage and identified faults could be shown in this

18exp.1:20+exp.2:20+exp.4:12+exp.5:24
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Figure 4.14.: Test cases used for evaluation testing

work. A problem present for the application of coverage metrics in this work
is that no common test metric could be found for MCUs and FPGAs. More-
over, real-time properties have an impact on usual test coverage metrics [29]
and therefore require sophisticated coverage models. Since the aim of our ex-
periments is not to show that the different versions implement the specification
correctly, but to identify differences in failure behavior of the various versions,
no coverage criteria were applied in these evaluations.

Test Cases for Experiment 6

The test cases used for acceptance testing in Experiment 6 were taken from the
acceptance criteria that were part of the specification. As the evaluation of the
development effort was the focus of this experiment, this acceptance tests repre-
sented the major part of the test activities in this experiment. Moreover, tests
were applied in this experiment to show the efficiency of the safety measures
applied in the different architectures. Therefore, fault injection was the major
concern of this testing. Faults were injected in all components that were covered
by safety measures. According to the chosen safety concept (see Section 5.6.2),
faults were included in the program and data memories, in CPU registers, in
I/O registers as well as in CAN registers. Moreover, variations of the power
and clock supplies were simulated.
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5. Operation of Empirical Studies

This chapter describes the operational phase of the experiments, in which the
different treatments were applied to the subjects. Therefore, the operation of
each experiment is described in an own section. Moreover, the hypothesis tests
are included in each section while further analyses of the results are present in
Chapter 6.
We published parts of the description of the operational phase in [96, 97, 98,

101, 106].

5.1. Software Diversity by Diverse Hardware (Exp.1)

Investigations in this first experiment were driven by the hypothesis H1 (soft-
ware diversity by different hardware platforms) stated in Section 4.4. Therefore,
two different hardware platforms were applied to implement a common applica-
tion as described in Section 4.6.1. Further details on the microcontrollers and
CPLDs used as hardware platforms in this experiment are given in Section 4.3.2.

5.1.1. Preparation

Participants

This experiment took place in a lab course students could choose in their main
study period. The successful participation in a certain number of lab courses
and/or seminars is binding for each student. This requirement was an induce-
ment for participating in our lab course and thus in the experiment. Accordingly,
26 students participated in this experiment with all of them being computer sci-
ence students in their 5th semester or higher.
As mentioned before, an introductory course was given prior to the exper-

iment mandatory for all participants. This introductory course, which is de-
scribed briefly in Section 4.7.2, allowed an introduction into both hardware
platforms and therefore to leverage the initial knowledge of the participants.

Materials

Prior to the experiment, all materials needed, namely the specification of the
experiment task, the experiment guidelines (see Section 4.7.3 for details), and
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the initial and final questionnaires, were prepared. The specification of the
experiment task, which has been described in Section 4.3.1 as well as the exper-
iment guidelines were provided to the students in paper form. The support for
the programming languages applied was given in electronic form (text files) and
the initial and final questionnaires were conducted electronically with a tool
developed for this purpose. Moreover, the test cases for the acceptance test
were generated randomly and sheets for the acceptance test were created and
printed. Finally, all equipment necessary (development boards, debugging hard-
ware, frequency generators, CAN bus monitor, required cables) was collected
and prepared for its use in the experiment.

5.1.2. Execution

The experiment took place in the lab course mentioned above with 14 weekly
appointments of three hours each. Prior to the experiment, the students had to
fill out the initial questionnaire while the final questionnaire had to be filled out
after the completion of the experiment. The experiment was executed according
to the experiment design described in Section 4.6.1. The actual data collection
was achieved by a tool storing all program versions compiled. However, only
the final version of each team was evaluated in this experiment. Moreover,
anonymization of the experiment results, which is desirable to reduce external
influences, was achieved by assigning random numbers to the 12 development
teams (see also Section 7.3).
The acceptance test was conducted manually and was based on the test cases

generated randomly. If a team did not pass the acceptance test, the team had
the chance to improve the implementation. In the end, only versions that passed
the acceptance test were considered for later evaluation.
By applying the acceptance tests as precondition for the later evaluation, it

was assured that the treatments were applied in correct order and that only
accepted versions were stored for later analysis. In this experiment, 10 teams
passed the acceptance test with both versions (MCU and CPLD implementa-
tion) resulting in 20 versions considered for evaluation.

5.1.3. Variable Measurement

All experiment versions, which passed the acceptance test were tested. There-
fore, the automatic test environment described in Section 4.7.4 was applied and
each version was tested with different test benches. For the evaluation tests in
this experiment, four test benches were applied. These test benches (TB2, TB3,
TB4, and TB8) are introduced in Section 4.7.5 and stress different aspects of
the application. The corresponding results were stored for later analysis.
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A listing of the median and the arithmetic mean of the failure rates obtained
by testing can be found in Tab. 5.1 for both hardware platforms. Moreover, a
listing of the failures observed for each individual version can be found in Ap-
pendix A. The comparatively high numbers of failures in most CPLD versions in
case of test bench 3 were surprising. Later analysis identified crosstalk between
the cables carrying the sensor signals. This effect occurred only if different
frequencies were present on the four signal lines (as in TB3). Moreover, the
problem occurred only in CPLD versions, although the effect of crosstalk was
present in both cases. Later improvements in the test process (shorter cables or
filter elements for the four lines carrying the speed signals) could mitigate this
problem. Then, the test run of TB3 was repeated with a shortened version of
this test bench for CPLD versions and the results can be found in brackets in
Tab. 5.1. Results of the remaining test benches were not affected by the effect
described. Further interpretation of the measurement results can be found in
the succeeding section and in Section 6.2.1.

Table 5.1.: Mean and median values of the fraction of failures made on different
hardware platforms

TB2 TB3 TB4 TB8
Mean MCU 2.98% 9.41% 2.54% 6.19%
Mean CPLD 6.05% 88.04% 2.32% 2.04%

(20.82%)
Median MCU 1.00% 2.16% 0.18% 4.96%
Median CPLD 4.69% 98.60% 1.92% 1.00%

(3.32%)

5.1.4. Hypothesis Testing

The contents of Tab. 5.1 show that MCU versions as well as CPLD versions lead
to faults in case of all test benches. Moreover, all except one CPLD versions
show very high failure rates in case of TB3. As mentioned in the previous
section, these problems resulted from crosstalk between the four measurement
channels. While these disturbances showed no effect in MCU versions, CPLD
versions tended to interpret these disturbances as valid signals. This aspect
could not be discovered with the acceptance test, as only equal values were
used in this test (only a single frequency generator was available at this time).
While the problem described is considered in the analysis in Section 6.2.1,

only test benches based on equal values for all four measurement channels were
considered for hypothesis testing. In the end, the evaluations were performed
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on TB8 only, as it was generated randomly and is the most independent test
bench for this reason.
Potential learning effects and thus impacts of the initial implementations on

the second implementations had to be considered (see section 4.6.1). For the rele-
vant test bench (TB8), only small variations in the failure rate could be observed.
Moreover, a consideration of the mean and median values showed no clear trend:
In case of the mean values, the initial MCU versions had lower failure rates than
the versions developed in the second half of the experiment (5.17%→7.2%). On
the other hand, the CPLD versions of the second half had better mean values
(2.8%→1.3%). However, this effect was the other way round when median val-
ues were considered (MCU: 8.17%→4.69%, CPLD: 0.7%→1.6%). Therefore, we
see no hint for the mentioned learning effects. Nevertheless, only inital versions
were considered for the test of the hypothesis H1a as an independent develop-
ment is a precondition for this hypothesis test. On the other hand, all versions
were considered in case of hypothesis H1b as this hypothesis did not aim at
showing the independece between the developed versions.

Test of Hypothesis H1a

In contrast to the NVP experiment described in [53], in which a homogeneous
group of software versions existed, the software versions in this experiment differ
with respect to the hardware platform they have been developed for. This
aspect required a hypothesis test that allowed to consider different treatments.
Therefore, the approach of resampling, as described in [106], has been applied
to test the hypothesis in this experiment.
The aspect which has to be tested for the hypothesis H1a is the probability

of dependent failures in MCUs and CPLDs. Moreover, it will have to be deter-
mined if the probability measured differs from the probability one would achieve
in the case both versions fail independently. This aspect has been investigated
by resampling. Therefore, for each test case, a random pair of one MCU and
one CPLD version was picked and it was determined if both versions fail for
this test case. For this evaluation, an output was considered as false as soon as
any of the failure types introduced in Section 4.7.5 had occurred. Additionally,
it was simulated on basis of the independent failure model and of the average
failure fraction of both versions, whether they would fail for this test case. The
independent failure model is expressed by the following equation:

p(FMCU ∩ FCPLD) = p(FMCU ) · p(FCPLD)

representing the null-hypothesis H01a introduced in Section 4.4. Both results
were stored for later comparison. This process was performed on all test cases
present in the chosen test bench and in a last step, the sum of both results was
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subtracted. The result was indicating, if the number of observed dependent fail-
ures was higher, equal or lower than the number of dependent failures simulated
on basis of the independent failure model. In order to increase the precision
of this approach, the process steps described above have been repeated 100000
times. Simulation of independent errors
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Figure 5.1.: Results of the resampling process

The simulation results achieved by the resampling process described above
are shown in the histogram of Fig. 5.1. The difference of observed and simulated
failures is indicated on the x-axis while the occurrence is indicated on the y-axis.
For example, the x-value of 7 indicates that there are 7 additional observed
failures in comparison to the number of simulated failures, which occurred in
2000 comparisons during the resampling process.
According to these results, the dependent failures observed during the exper-

iment are higher than the failures simulated on the basis of the independent
failure model. In fact, the same number of dependent failures or less is only
simulated in 127 of the 100000 iterations of the resampling process. Thus, the
model of independence appears to be unlikely compared to the observed fail-
ures. Therefore, the null-hypothesis of independent failure behavior H01a was
rejected and H1a could be accepted.
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Test of Hypothesis H1b

While even software versions implemented on diverse hardware platforms evi-
dently do not lead to independent failures, it has been assumed that they result
in an increased failure independence as stated in hypothesis H1b. The analysis
was realized with a computer program written for this purpose. This program
compares all possible combinations of versions for all test cases applied. Each
time a failure is observed in two compared versions, the corresponding test case
is marked and the number of observed dependent failures is increased. Again,
all failure types introduced in Section 4.7.5 were considered. In the following, a
result is considered as wrong, as soon as a fault of one of the three categories
appears in both versions.
For the analysis, four categories of combinations are considered: The first

category contains pairwise combinations of all CPLD versions (45 combinations),
the second pairwise combinations of all MCU versions (45 combinations) and the
third pairwise combinations of one CPLD and one MCU version, each created
by a different team (90 combinations). The last category contains combinations
of CPLD and MCU versions created by one team (10 combinations). The results
are depicted in Fig. 5.2 for the four categories of combinations in form of box
plots1. Outliers are depicted in form of circles (mild outliers) and of stars
(extreme outliers). On basis of this graphical representation, the number of
dependent failures varies more in case of MCU pairs than in the other three
categories of combinations. Neglecting the outliers, the MCU/CPLD pair led
to better result than the first two categories of combinations. This result could
be regarded as a hint for improved failure diversity. However, a closer look on
the outliers reveals that they represent more than 16% of the results. Some
of these outliers also represent numbers of dependent failures which exceed
the number of dependent failures existent in CPLD pairs. Accordingly, not
every combination of diverse platforms does automatically lead to less failure
dependency. Nevertheless, the median2 of the observed failure rates is lower for
heterogeneous pairs than the median of both homogeneous pairs.
For the evaluation of the significance of the observed effect, the resampling

method was applied. Samples were drawn from the set of observed values for
100000 times as described in Section 4.7.2. In this simulation, the observed
difference or a larger difference between the median values of the two treatment
groups (heterogeneous vs. homogeneous pairs) was reached only in 0.04% of
the simulated results. This result states a high significance of the observed
difference between homogeneous and heterogeneous pairs. Moreover, another
resampling approach was applied in [106] comparing the individual failure be-

1An introduction to box plots can be found e.g. in [15], page 40.
2The median is represented by bold horizontal lines in the box plots in Fig. 5.2.
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Figure 5.2.: Fraction of dependent failures in pairwise combinations

havior of homogeneous and heterogeneous pairs. The result obtained by this
alternative resampling approach supports our findings that the application of
heterogeneous pairs improves the independence of software failures over homo-
geneous pairs.
Additionally, it has to be noted that the median of the heterogeneous pair is

also better than both homogeneous pairs in case of test bench 4. Nevertheless,
the effect is lower than in case of TB8. Finally, it has to be noted that is
was possible to create a test bench which lead to opposite results. With this
test bench (TB2), the median of the MCU pairs was slightly better than the
median of the mixed pair. As this test bench was comparatively small and
minor changes in the results could have changed the overall result, this test
bench was not considered for the hypothesis testing.
According to the results presented, the null-hypothesis H01b, which states

that the median of dependent failures is higher or equal in heterogeneous pairs
compared to homogeneous pairs, could be rejected. Therefore, hypothesis H1b
was accepted, which indicates improvements in software failure diversity by
diverse hardware platforms.
A further analysis of the results gained by the two hypothesis tests is pre-

sented in Section 6.2.
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5.2. Encapsulation on Different Hardware Platforms
(Exp.2)

Hypothesis H2 (impact of hardware platforms on encapsulation, see Section 4.4)
was driving the investigations in this second experiment. For this reason, two
different hardware platforms were applied to implement a common application
as in the previous experiment (see Section 4.6.1 for the design of this experi-
ment).
While the task of the first experiment included only the main task, the task

of this experiment was extended by 6 additional tasks (see 4.3.1) in order to
increase the complexity of the application and to provide functionalities that
might be useful to encapsulate. The additional functionalities exceeded the
complexity which could be implemented in the CPLD device applied in the
first experiment. Thus, this device was replaced by a larger device, namely
a Xilinx Spartan 3 FPGA, while the second hardware platforms remained an
Atmel ATmega16 MCU (see Section 4.3.2 for details of hardware platforms).

According to the independent implementation of a common specification on
different hardware platforms, the results achieved in this experiment could also
be used to support the aspects investigated in the first experiment.

5.2.1. Preparation

Initial Study

An initial study was conducted with one student assistant for two reasons: First,
the quality of the specification, now including the additional tasks, should be
verified this way. As a result, minor changes were applied to the specification
to improve their clarity. Second, the feasibility of an implementation of this ex-
tended task in the given context on both hardware platforms should be assured.
As the initial implementation did not reveal any major problems, the task was
used for the following experiment.

Participants

As in the first experiment, this experiment took place in a lab course, which
students could choose in their main study period. Therefore, the same concepts
were applied including anonymization of the experiment outcomes and the con-
duction of a mandatory introductory course prior to the actual experiment. In
this lab course, 24 students (computer science, 5th semester or higher) applied
for this experiment and all of them were selected.
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Materials

The materials for this second experiment are mostly identical with those of the
first experiment. However, the specification document had to be extended as
described in Section 4.3.1.
Instead of a manual acceptance test, a semi automated test environment was

used for the conduction of the acceptance tests in this experiment (see 4.7.4).
The reason for this change was to reduce the time needed for each acceptance
test and to increase the reproducibility of the tests. Further on, the testing
with four different inputs, which could not be achieved before, was possible
with this test environment. After all, the test cases were generated manually,
representing the minimum quality required as discussed in Section 4.6.6 and
sheets for this acceptance test were created and printed.
Beside the equipment provided in the first experiment, we also provided mul-

timeters. These measurement devices allowed to measure3 the frequencies gen-
erated by the frequency generators, which were applied for the testing of the
frequency measurement functions. Finally, the semi automatic test environment
had to be prepared for the acceptance tests.

5.2.2. Execution

The experiment took place in the lab course characterized above with 14 weekly
appointments of three hours each. As in the previous experiment, the students
had to fill out the initial questionnaire before the experiment start while the
final questionnaire had to be filled out after the completion of the experiment.
Only minor modifications were applied to these questionnaires according to
the adapted application and partly according to problems identified during the
evaluation of the questionnaires in the first experiment.
The acceptance test was conducted twice for each implementation in this

experiment. A first acceptance test took place after the completion of the
main task (same task as in the first experiment) while a second acceptance
test was conducted after the implementation of all additional tasks. In the end,
only those versions that passed both acceptance tests were considered for later
evaluation.
The actual data collection was achieved by a tool storing all program versions

compiled. Additionally, the students were asked to store their versions after the
first and the second acceptance test and after the successful implementation of
each additional task. The reason for the additional storing of versions is to pro-
vide intermediate versions with a known functionality. Since the intermediate
versions had to be stored by the students, this procedure had to be controlled.

3Note: Truth tables were used for frequency determination in the first experiment.
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This control could be achieved by storing these versions on net drives, which
could be read by the experiment supervisor.

5.2.3. Variable Measurement

In this experiment, 11 MCU and 11 FPGA versions passed the first acceptance
test. The main task tested with this first acceptance test was identical with the
task implemented in the first experiment. However, the acceptance test applied
was modified as described in Section 4.7.4. As in the previous experiment, the
test benches TB2, TB3, TB4, and TB8 were used for evaluation testing.
Moreover, all versions which included the additional tasks (final versions) and

passed the second acceptance test were tested. In this case, 10 teams passed
the acceptance test with both versions and were considered for evaluation. For
this second evaluation test, the test environment had to be adapted to allow a
testing of the additional tasks. In this case, additional test cases were used to
test the additional tasks (TB4b). For further investigations of the problem of
processing fast changes in the input channels, a test case was applied instead
of TB3, which represented only limited changes between two consecutive input
values (TB9).

A summary of the results can be found in Tab. 5.2 for the main versions and
in Tab. 5.3 for the final versions. As in the previous experiment, the failure
rates of each individual version can be found in the Appendix A.

Table 5.2.: Mean and median values of the fraction of failures made on different
hardware platforms (22 main versions)

TB2 TB3 TB4 TB8 TB9
Mean MCU 1.15% 27.90% 0.09% 34.07% 9.53%
Mean FPGA 4.56% 23.71% 2.59% 36.84% 8.83%
Median MCU 0.8% 18.5% 0.03% 10.1% 5.1%
Median FPGA 1.9% 20.1% 0.6% 31.2% 4.0%

Table 5.3.: Mean and median values of the fraction of failures made on different
hardware platforms (20 final versions)

TB2 TB4 TB8 TB9 TB4b
Mean MCU 0.95% 1.80% 25.31% 8.26% 27.86%
Mean FPGA 4.64% 0.99% 35.59% 10.17% 12.68%
Median MCU 0.81% 0.04% 8.75% 2.92% 28.36%
Median FPGA 1.50% 0.36% 29.60% 5.58% 7.89%
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Derivations of these results from those achieved in the first experiment can
be observed. In the main and final versions, the measurement accuracy of
constant and slowly changing input values seems to be improved in this second
experiment (TB2 and TB4). But fast changes in the input values seem to lead
to more failures than in the first experiment (TB3, TB8 and TB9). The reason
for this derivation can be seen in the changes in the acceptance test. As the
values could be tested more strictly in the second experiment, more effort was
put into achieving sufficient accuracy by the students. Moreover, multimeters
for measuring the input frequencies were provided in this experiment the first
time. These multimeters allowed better testing of the measurement function by
the students. However, the additional effort in the measurement function was
resulting in longer or more complex measurements, which was often a drawback
on measurement speed. Nevertheless, the types of faults identified in these
systems are similar as presented in Section 6.2.1.
Moreover, specific test runs were conducted to test specific aspects formulated

in the hypotheses driving this evaluation (see Section 4.4). These test runs will
be described in the context of the corresponding hypothesis in the following
section.

5.2.4. Hypothesis Testing

In this section, the differences between hardware platforms with respect to
encapsulation of real-time tasks are investigated. Therefore, the different hy-
potheses formulated in Section 4.4 are tested in the following.

Test of Hypothesis H2a

The main task contained three subtasks that are depicted in Fig 4.3. The
first subtask is a speed measurement, which requires the counting of four input
signals for a certain time period while the time period has to be adapted to
the input frequency. Second, a processing of the measured values is required to
transform the measurement result in the format needed in the CAN message.
Finally, the third subtask is the CAN communication, which is necessary for
sending the measured and processed values via the CAN bus. In this section,
the influence of the first two subtasks on the third subtask is investigated to
test hypothesis H2a (see Section 4.4). Thus, the input frequency fed into the
DUTs (and thus the execution of subtasks one and two) has been modified
and changes in the CAN communication (subtask 3) have been recorded. Two
different frequencies (6% and 100% of the max. value specified) were used
as input and the time between two consecutive message on the CAN bus was
recorded in both cases. The results can be found in the 2nd column of Tab. 5.4.
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Table 5.4.: Experiment results regarding encapsulation
Impact of input Impact of user Impact of user

Version frequency on button 1 on buttons on the
the timing of the timing of values in the

the CAN messages the CAN messages CAN messages
MCU 2 yes (+1.0%) no no
MCU 3 no no yes (button3)
MCU 4 no no yes (button1)
MCU 5 yes (-44.4%) no no
MCU 6 yes (+2.4%) yes (stopped) yes (button1)
MCU 7 yes (+9.8%) yes (+5.5%) no
MCU 8 no no no
MCU 9 no no no
MCU 10 no no no
MCU 11 yes (+3.7%) yes (+1.2%) no
FPGA 2 no no no
FPGA 3 no no no
FPGA 4 no no no
FPGA 5 no no no
FPGA 6 no no no
FPGA 7 no no no
FPGA 8 no no no
FPGA 9 no no no
FPGA 10 no no no
FPGA 11 no no no

According to these results, the timing of the CAN-bus communication was not
affected by changes in the input frequencies in case of the FPGA versions. In
case of the MCUs, the CAN communication was slowed down with increasing
input frequency in case of 4 of the 10 versions (see 2nd column of Tab. 5.4,
raise stated in brackets), while the decrease in version MCU5 was intended
(longer measurement interval for low frequency input ⇒ was not considered for
hypothesis testing). The other four versions changed their timing because of
longer program execution times according to the higher input values. Thus, an
impact of the speed measurement functionality on the timing behavior of the
CAN communication cannot be neglected for MCU versions. The corresponding
test of the null-hypothesis is conducted as follows (all values in [ms]):

H02a :
∑N

1 |∆TFPGA(fL, fH , Vf )|
N

≥
∑N

1 |∆TMCU (fL, fH , Vf )|
N
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⇒
∑ {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

10
≥

∑ {1, 0, 0, 0, 2, 8, 0, 0, 0, 3}
10

⇒ 0 ≥ 1.4⇒ disagreement

Accordingly, the null-hypothesis H02a could be refused and the hypothesis
H2a was accepted.
The significance of the difference between MCU and FPGA versions was deter-

mined by using the resampling method on the observed values (see Section 4.7.2).
In this simulation, a difference equal or larger than the observed difference oc-
curred in only 5.10% of all random samples. While a value of ≤5% would have
stated the significance of the observed difference, the calculated value indicates
a limitation of the significance (see Section 7.1 for further discussion).

Test of Hypothesis H2b

For the test of hypothesis H2b (less changes in the timing of the CAN com-
munication in the FPGA versions than in the MCU versions according to the
integration of additional tasks, see Section 4.4), the timing of the CAN commu-
nication of the main versions was compared with the timing of those versions
including the additional tasks (final versions). In case of 5 MCU versions, the
inclusion of the additional tasks led to changes in the timing of the CAN commu-
nication (increase of time between two consecutive CAN-messages from 0.5ms
to 20ms as displayed in the equation below) while the CAN communication was
not affected by the additional tasks in any FPGA version. As depicted in the
third column of Tab. 5.4, this difference was even increased by pressing user
button 1 (changes behavior from displaying the CAN status to displaying the
input frequencies on LEDs) in three MCU versions. In one of these versions,
the execution was stopped completely in this case. These results are leading to
the following hypothesis test (all values in [ms]):

H02b :
∑N

1 |∆TFPGA(Vf , Vm, fH)|
N

≥
∑N

1 |∆TMCU (Vf , Vm, fH)|
N

⇒
∑ {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

10
≥

∑ {0, 0, 1, 20, 0.5, 2, 0.5, 0, 0, 0}
10

⇒ 0 ≥ 2.4⇒ disagreement

Therefore, H02b could be rejected leading to the acceptance of the corre-
sponding hypothesis H2b. Again, the significance of the observed difference was
evaluated by using the resampling method. In this case, the determined value is
6.14% representing a value larger than the accpeted threshold on 5%. While the
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result is still considered as valuable, the observed difference is not statistically
significant (see Section 7.1).

Test of Hypothesis H2c

As in the previous hypothesis testing, versions implementing the main task only
(main versions) were compared with versions including the additional tasks for
the test of hypothesis H2c. However, instead of impacts on the timing of the
CAN messages, content failures in these messages were considered in this case.
Nevertheless, those tasks activated by user buttons were not activated for the
evaluation of this hypothesis but will be considered in the test of hypothesis
H2d. In [98], we applied a manual comparison of the 20 versions based on the
results of four different test benches. According to the formalized null hypothesis
H02c used for this work, the analysis itself had to be formalized. Therefore, the
difference of the failure rates of the main and final versions was calculated for
all versions and four test benches. Next, the average increase of the failure
rates was calculated, which is depicted in the last column of Tab. 5.5. Positive
values indicate an increase of the failure rate while negative values represent a
decrease and therefore an improvement of the final versions.
It had been expected that the final versions lead to more failures according

to their increased complexity. However, five of the final MCU versions (No. 2,
4, 6, 10, 11) showed fewer failures than the corresponding main versions while
only two demonstrated more failures (No. 7 and 9). It has to be noted, that
for this evaluation only values > 1 were considered as well as cases with no
disagreement between the results of the four test benches. As a reason, we
presume constant improvement of the code that represents the main function
during implementation of the additional tasks. However, it has to be mentioned
that one of the final MCU versions (MCU6) stopped all CAN activity if user
button 1 was pressed and frequencies higher than ∼33% of the maximum fre-
quency specified were fed into the DUT, while the main version was working
well for specified inputs. Regarding the FPGA versions, only one of the final
versions showed significantly fewer failures (No. 11), while two revealed more
failures (No. 2 and 5) than the respective main versions.
On basis of these values, the hypothesis has been tested as follows:

H02c : Md[∆λFPGA(Vf , Vm, fTB)] ≥Md[∆λMCU (Vf , Vm, fTB)]

⇒ 0.17% ≥ −0.04%⇒ agreement

As expected after the previous observation, H02c could not be refused. There-
fore, the hypothesis H2c could not be accepted, which is in accordance with
the results presented in [98].
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Table 5.5.: Differences between failure rates of main and final versions for dif-
ferent test benches (values printed bold if value > 1 or if values of
TBs do not have different signs)

∆λx = λ(Vfinalx , fTB)− λ(Vmainx , fTB)
Version TB2 TB4 TB8 TB9 Σ TB
MCU 2 0.00% 0.00% -0.01% -0.10% -0.11%
MCU 3 0.00% 0.00% 0.09% -0.06% 0.03%
MCU 4 -0.05% 0.07% -1.55% -0.33% -1.85%
MCU 5 0.05% -0.01% 0.54% -0.04% 0.54%
MCU 6 -1.19% 0.00% -0.03% 0.03% -1.20%
MCU 7 0.00% 17.14% 6.13% 4.36% 27.63%
MCU 8 0.00% 0.05% 0.06% -0.01% 0.10%
MCU 9 0.24% 0.00% 4.79% -0.65% 4.37%
MCU 10 0.10% 0.01% -40.27% -3.61% -43.77%
MCU 11 -0.24% 0.02% -7.07% -4.74% -12.03%
median 0.00% 0.01% 0.03% -0.08% -0.04%
FPGA2 -0.05% 0.00% 2.41% 0.01% 2.37%
FPGA3 0.33% 0.05% -0.05% -0.01% 0.33%
FPGA4 -0.29% -0.02% -0.20% 0.43% -0.08%
FPGA5 0.81% -0.60% -1.21% 29.35% 28.35%
FPGA6 -0.14% 0.01% -0.02% 0.03% -0.12%
FPGA7 0.48% 0.06% -0.48% 0.03% 0.09%
FPGA8 -0.19% 0.03% -0.13% 0.84% 0.54%
FPGA9 0.00% -0.01% 0.18% 0.07% 0.24%
FPGA10 0.00% -0.03% -0.46% 0.31% -0.18%
FPGA11 -0.05% -0.01% -9.19% -1.03% -10.28%
median -0.02% -0.01% -0.17% 0.05% 0.17%

Test of Hypothesis H2d

In order to investigate how the execution of the additional tasks is influencing
the main functionality, a new test bench (TB4b) that contained also test sig-
nals for the three buttons was used. In this test bench, all buttons were driven
sequentially and also in combination. The analysis of the test results revealed
that three MCU versions included failures according to button activities. In this
context, the versions MCU4 and MCU6 were failing in case of an activity of but-
ton 1 and version MCU3 in case of an activity of button 3 (see also last column
of Tab. 5.4). Otherwise, no FPGA version was affected by button activities.
The test of the corresponding hypothesis H02d was conducted accordingly:
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H02d : N [FFPGA(Vf , fTBbutton
)] ≥ N [FMCU (Vf , fTBbutton

)]

⇒ 0 ≥ 3⇒ disagreement

Thus, the null hypothesis H02d could be rejected leading to the acceptance of
the hypothesis H2d. The corresponding significance of the difference between
MCUs and FPGAs determined by resampling has a value of 0.0549. As this
value is slightly higher than the usual acceptance value of 0.05, the significance
of the difference is limited. Nevertheless, the result is considered as relevant
as no FPGA version revealed failures according to button activities (see also
Section 7.1).
Further analysis and interpretation of the results achieved by the four hypoth-

esis tests can be found in Section 6.3.

5.3. Software Review on Different Hardware
Platforms (Exp.3)

In contrast to the previous two experiments, no source code was developed
for this experiment. Instead, existing final versions developed in the previous
experiment on MCUs and FPGAs were evaluated by review in order to test
hypothesis H3 described in Section 4.4.

5.3.1. Preparation

Participants

As described in Section 4.6.2, the review process was conducted with student
assistants. Accordingly, three student assistants familiar with the experiment
task and both hardware platforms were selected as reviewers4. According to
the fact that all student assistants had participated in one of our previous
experiments, no additional introductory course was needed.

Materials

The guidance for the review process was given in form of a written review
guideline and a review report form (see Section 4.6.2). The review report form
included a section in which specific aspects of the specification should be eval-
uated and a section in which the function of the implementation had to be
evaluated for specific scenarios. The scenarios had to be determined by the first

4for organizational reasons, the third review had to be split on two different student assis-
tants.
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two reviewers themselves (only one example was given), while the third reviewer
had to review the same scenarios as the first one (to ease comparability).
Ideally, all versions available would have been used for this evaluation. How-

ever, the execution of reviews is considered as time consuming, especially as
we allowed only one review per day to avoid reciprocal effects. To avoid that
a single reviewer is repeatably reviewing too many versions, either the number
of reviewers had to be increased or the number of versions had to be reduced.
As the number of suitable reviewers was very limited in our case, we decided
for the latter case. Therefore, 12 versions (6 MCU and 6 FPGA) were selected
randomly from the 20 final versions available from the second experiment.

5.3.2. Execution

For the execution of the review, each reviewer had three hours (at most 4 hours)
time for each version. Every reviewer had to review all 12 versions in a given
order as described in 4.6.2 while only one review was allowed per day.
In the review form, each reviewer had to fill out how long it took him or her

to review each version. Further on, a grading of the quality of each version as
well as a grading of the reviewability of each version had to be added.

Finally, a certain control of the review activities was given by the time frame
of three hours and the review report form (the report required to investigate
scenarios and to list features of the specification which had been tested).

5.3.3. Variable Measurement

Certain variables could be measured and achieved directly as the time needed for
review as well as the grading of the reviewability of each version. For the testing
of the number of faults identified correctly by review, the statements given in
the review reports were tested by the automatic test environment described in
Section 4.7.4. Review results for three different scenarios were considered in this
experiment and the corresponding results can be found in the following section.

5.3.4. Hypothesis Testing

The identification of faults by review is investigated in this section in order to
test the hypotheses H3a and H3b.

Test of Hypothesis H3a

A comparison of test and review results has been conducted for the 12 versions
reviewed regarding three different scenarios as described above. The correspond-

89



5. Operation of Empirical Studies

ing results are depicted in Fig. 5.3 for the three scenarios and each of the three
reviewers Rev.1, Rev.2, and Rev.3.
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Figure 5.3.: Compliance of test and review results

The result of each evaluation (three reviewers and three scenarios) of each
version (6 MCU and 6 FPGA versions) is represented in this figure by a box.
All review results, which were in accordance with our test results, can be found
above the zero line, while all results that led to different results can be found
below this line. In some cases, a reviewer did not contribute to a specific
scenario so that no results were included in the graphic for these scenarios. The
hypothesis test compares the number of review results that are compliant with
the test results:

H03a :
i∑
1

N∑
1

n∑
1

ΨFPGA(Ri, VfN
, Sn) ≤

i∑
1

N∑
1

n∑
1

ΨMCU (Ri, VfN
, Sn)

⇒ 29 ≤ 32⇒ agreement

As no higher compliance could be observed for the FPGA versions, the null
hypothesis H03a could not be rejected. Accordingly, hypothesis H3a was not
accepted.
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Figure 5.4.: Grading of the reviewability

Test of Hypothesis H3b

For the test of hypothesis H3b, the grading of the reviewability given by all
reviewers for each version was evaluated and presented graphically in Fig. 5.4
(grades: 1=very good,...,5=not possible). It has to be noted that the grading
was normalized by dividing the values by the average grading of the correspond-
ing reviewer. This normalization was applied to allow a better comparison
between the different reviewers. As depicted in this graphic, very good as well
as very bad gradings were assigned for MCU and FPGA versions while a team
creating an MCU version with good reviewability did not necessarily create an
FPGA version with good reviewability and vice versa.
The hypothesis test for H3b, which compared the reviewability of versions

implemented on MCUs and FPGAs showed the following:

H03b :
∑i

1

∑N
1 <FPGA(VfN

, Ri)
i ·N ≥

∑i
1

∑N
1 <MCU (VfN

, Ri)
i ·N

⇒
∑ {0.97, 0.87, 0.97}

3
≥

∑ {1.03, 1.13, 1.03}
3

⇒ 0.94 ≥ 1.06⇒ disagreement

Therefore, H03b could be refused. Again, the significance of the difference
of the results for MCU and FPGA versions was determined by applying the
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resampling method described in Section 4.7.2. As the determined value is 0.176
> 0.05, the significance of the difference between MCU and FPGA versions is
only limited. As the average grading of each reviewer was better for the FPGA
than for the MCU versions, we still see a certain hint for a higher reviewability
on FPGAs. Therefore, hypothesis H03b was accepted in the end, although
further investigations with higher numbers of reviewers are required to support
this result (see Section 6.4.1 and Section 7.1).
Further analysis and interpretation of the results obtained by the testing of

H3a and H3b can be found in Section 6.4.

5.4. Fault Removal by Test and Review (Exp.4)

While the previous experiments were based on two different hardware platforms,
the investigations in this experiment focus on effects of review and testing on
a single hardware platform as described in Section 4.6.3. The experiment was
driven by hypothesis H4 (see Section 4.4 for details) aiming at a comparison of
software versions improved by review and testing with those based on N-version
programming developed in the first and second experiment.

5.4.1. Preparation

Participants

This forth experiment took place in a lab course as the first two experiments. In
this case, 19 students (computer science, 5th semester or higher) participated
forming 12 teams. Although only microcontrollers had to be programmed in
this experiment, an introductory course was given prior to the experiment in
the same way it was given in the first experiment. As the test environments,
which the participants used for their testing activities, were based on FPGAs,
back ground information for this device was considered as beneficial. Moreover,
a brief introduction into testing and review was given.

Materials

Besides the materials provided in the second experiment (specification of the
experiment task, the experiment guidelines, development guidelines and the ini-
tial and final questionnaire) further materials were required in this experiment.
These additional materials included the test and review guidelines as well as
review and test forms. Furthermore, a test environment had to be provided to
the students for their testing activities. This test environment was based on
a simplified version of the test environment used for evaluation testing in the
previous experiments and is described at the end of Section 4.7.4.
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5.4. Fault Removal by Test and Review (Exp.4)

Moreover, the acceptance test with the semi automated test environment used
in the second experiment was applied in this experiment before and after the
review and test phase.

5.4.2. Execution

The lab course, in which the experiment took place was comprised of 15 weekly
appointments with three hours each. As in the first and second experiment,
the students had to fill out the initial questionnaire before the experiment start
while the final questionnaire had to be filled out after the completion of the
experiment. The final questionnaire was modified as no FPGA implementation
was required in this experiment. On the other hand, questions targeting the
review and testing activities were added.
The students were asked to store their final and intermediate versions in the

same way as it was done in the second experiment. Additionally, two acceptance
tests were conducted on each version in this experiment, as it had been done in
the second experiment (first acceptance test after the completion of the main
task, second acceptance test after the implementation of all additional tasks).
In this experiment, the versions of all 12 teams passed both acceptance tests
and were considered for later evaluation.
In the following phase, review and test activities took part as described in the

experiment design (see Section 4.6.3). After this phase, all participants had the
chance to improve their versions based on the achieved review and test results.
After these modifications, the acceptance test was conducted again to assure
that the modified versions still fulfill the acceptance criteria.
The activity of storing the intermediate versions by the students was con-

trolled as in the second experiment. Moreover, the test and review activities
had to be controlled. This control was achieved by time slots given for both
activities and by checking the test and review report forms for completeness. As
the results should not be influenced by the experiment supervisor, the checks of
the reports were limited to quantitative aspects (e.g. number of aspects tested
from specification, number of scenarios used for evaluation, completeness of ex-
planation fields). To improve the quality of the grading given by the reviewers
and testers, each grading had to be explained. It was assumed that this expla-
nation reduces those cases in which a grade is chosen randomly. Therefore, the
completeness of these explanation fields was checked, too.

5.4.3. Variable Measurement

The most important variable in this experiment was the type and the num-
ber of faults identified in each version. Therefore, all review and test reports
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 review  test

1

Spec.: Identify if one wheel is > 50% faster/slower than the 

other wheel on the same axis. 

Problem: 50% faster ≠ 50% slower

spec. 2 1

2

Spec.: Send a CAN message containing the peak speed 

values since the last request (…). Problem: It is not defined 

if values occuring during test messages should be 

considered for peak value determination.

spec. 1 1

3
As above, but: Not defined if a second peak message must 

be sent if the peak message process is interrupted
spec. 1 0

4
Spec.: Displaying of values on LEDs: Not defined if LEDs 

must be switched ON or OFF in case of a logic 1
spec. 2 0

5
Numbering of testmessage starts with 0x01 instead ot 0x00 

(present in 5 versions, identified in 4 versions)
impl. 3 1

6

Fast changes in the input frequencies lead to response 

times longer than specified (present in all undebugged 

versions)

appl. 8 9

7
CAN transmit LED is activated in cases in which no CAN 

message is sent
impl. 1 0

8
No CAN messages sent if input frequency is zero or very 

low (present in at least two, identified in one version)
impl. 1 1

ProblemNo.
identified byType of 

problem

Figure 5.5.: Problems identified by review and test

were evaluated manually to determine whether problems known from previous
experiments (especially Experiment 2) were identified. In this evaluation, two
aspects had to be considered. First of all, it was of interest whether the students
identified the problem itself (e.g. it could be challenging to fulfill a certain re-
quirement in a certain situation). The second aspect was to determine, whether
the identified problem was tested successfully in the corresponding implementa-
tion. To distinguish between these two aspects, a field was included in the test
and review report forms in which the students could list all requirements they
could not verify by review and/or testing.

A listing of the most important problems identified by review and testing
can be found in Fig. 5.5. Moreover, the source of each problem was determined
and included in this figure (spec. = specification specific problem, appl. =
application specific problem, impl. = implementation specific problem).

Finally, all teams had the chance to improve their version on basis of the test
and review results. To determine the quality of these improved versions, they
were tested by using the automatic test environment. The failure distribution
of these versions can be found in Tab. 5.6.
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Table 5.6.: Mean and median values of the fraction of failures in debugged final
versions (not all faults identified could be removed)

TB2 TB4 TB8 TB9 TB4b
Mean MCU 1.73 1.88% 21.75% 6.16% 12.74%
Median MCU 0.8% 0.3% 3.9% 1.6% 3.7%

5.4.4. Hypothesis Testing

In this section, the hypotheses introduced in Section 4.4 are tested.

Test of Hypothesis H4a

The number of experiment teams, who identified the problem according to fast
changes in the inputs by review and testing, can be found in Fig. 5.5. Therefore,
the test of hypothesis H4a (identification of failures according to fast changes in
the input frequencies by at least 3/4 of the experiment teams, see Section 4.4)
could be performed as presented below.

H04a :
N(Vf (Fdetected))

N(Vf (Fdetected)) +N(Vf (Fundetected))
<

3
4

⇒ 4 + 3 + 5
12

<
3
4

⇒ 1 <
3
4
⇒ disagreement

As the failure was identified by review, testing or both techniques in case of
all versions, the null hypothesis could be rejected, leading to the acceptance
of hypothesis H4a. However, it has to be noted that the failure was even
considered as detected, when just the problem of changes in the inputs had
been identified and no further statements were given.
Moreover, the chosen experiment design allowed to increase the precision of

the results by arranging that each team conducted a review as well as a test (see
Section 4.6.3). However, learning effects during the first test or review activity
on the verification of the second versions have to be considered. The problem
was identified by 5 of the 6 initial review teams as well as by 5 of the 6 initial
test teams. These results might have influenced the second verification part,
but surprisingly the problem was identified in fewer versions in the second part
of the verification (only 3/6 of review teams and 4/6 of test teams identified
the problem). However, it has to be mentioned that the resulting failures ac-
cording to this problem differ in intensity so that differences might exist in the
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possibilities of detecting these failures. Additionally, few review teams claimed
that statements about the timing behavior of the code were not possible by
review. To summarize, no undesired learning effects could be observed in this
experiment.

Test of Hypothesis H4b

The four known ambiguous statements in the specification are listed in Fig. 5.5
(No. 1-4) together with the number of teams who identified these problems
during their test and review activities. These values could be used directly to
test hypothesis H4b (the four known ambiguous statements in the specification
are identified by at least 3/4 of the teams, see Section 4.4), respectively the
corresponding null hypothesis:

H04b :
N(Vf (ASidetected

))
N(Vf (ASidetected

)) +N(Vf (ASiundetected
))
<

3
4
, i ∈ {1, 2, 3, 4}

⇒ 1
12

<
3
4
,

2
12

<
3
4
,

1
12

<
3
4
,

2
12

<
3
4

⇒ agreement

In each case, only one or two teams identified each problem in the specification
so that the null-hypothesis could not be refused. Therefore, hypothesis H4b
could not be accepted.

Test of Hypothesis H4c

Unfortunately, most students were not able to correct all faults identified within
the given time. Especially the problem with the handling of fast changes in the
inputs could not be solved by many teams. Thus, only minor corrections were
applied successfully, which makes a suitable test of hypothesis H4c impossible.
Nevertheless, the test results obtained with the corrected versions showed im-
provements in case of the critical test benches TB8, TB9, and TB4b. In these
cases, values lower than in Experiment 2 were determined for the medium and
the arithmetic mean of the failure rates.
Further analysis and interpretation of the results obtained by the three hy-

pothesis tests presented above can be found in Section 6.2.2.
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5.5. Reusability on Different Hardware Platforms
(Exp.5)

In this experiment a common specification was implemented on the same two
hardware platforms applied in the second experiment. The difference to the
second experiment conducted is the integration of an existing software compo-
nent in the design (see Section 4.6.4). This integration enables the testing of
hypothesis H5 described in Section 4.4.

5.5.1. Preparation

Initial Study

As described in Section 4.7.1, the software component, which had to be reused,
was a life beat component (LB component). A first reuse of this LB component
took place in an initial study conducted with one student assistant. During
this first integration of the LB component, differences were discovered for the
implementation on FPGAs and MCUs. These aspects will be discussed briefly
in the following.
In case of the MCU, only a limited number of counter/timer units was avail-

able so that the frequencies of the four measurement channels had to be mea-
sured in a software based fashion (interrupts were applied). This approach had
an influence on the measurement accuracy of the LB component. The LB itself
was sampled periodically in the interrupt service routine of a timer unit, but the
interrupt of this timer unit was assigned to a comparable low interrupt priority.
In case of high interrupt activity in the measurement channels, this low priority
led to measurement errors in case of the LB determination. To fix this problem,
the interrupt priority of this timer had to be increased. Another problem in
case of the MCU was that it had been forgotten to set back the timer after each
compare event. While this fault led to problems in the new application, it was
not detected in the original program, because this register was reset in the main
routine in this case. After the problems identified were removed, the impacts
of the LB component on the main application were tested. Tests with the cor-
rected LB component showed no influence of the LB signal on the application.
The reason can be seen in the timer unit used for this measurement, which
allowed certain independence from other tasks executed on the common CPU.
Eventually, the required integration of the functionality to read the status of
the CAN controller5 was comparatively easy to implement in case of the MCU.
In case of the FPGA, the original LB component could be reused by inte-

grating the component in the overall circuitry. Undesired interactions between
5see also Fig. 4.11 for a description of the overall system.

97



5. Operation of Empirical Studies

the LB component and the remaining functions did not appear. However, the
original LB component had to be modified in order to enable the read access to
the CAN controller. The reason is the difficulty to access the interface to the
controller directly from two processes within the VHDL design (additional mea-
sures are needed to assure that not both components are accessing this interface
at the same time).
Finally, for the reuse of the LB component on the MCU, strict restrictions

were needed to assure that the chip resources, which were reserved for the LB
functionality, were not occupied by other components. On the other hand,
no specific restrictions were needed in case of the FPGA. Only generic chip
resources were used by the LB component on the FPGA and the allocation of
these resources is done automatically by the corresponding synthesis tool.

Participants

The actual experiment took place in a lab course, which was hold in form
of a two-week block course with 24 students (computer science, 5th semester
or higher) forming 12 teams. As in the other experiments conducted in lab
courses, we offered a mandatory two-day introductory course as described in
Section 4.7.2.

Materials

In addition to the material provided in the second experiment (specification
of the experiment task, the experiment guidelines, development guidelines and
the initial and final questionnaire) further materials were required in this ex-
periment. These additional materials included an interface description of the
components to be reused in the MCU and the FPGA as well as guidelines for
their integration. Finally, the components6 for reuse had to be provided.
The acceptance test applied in this experiment was based on the semi au-

tomated test environment described in 4.7.4. In order to test also the basic
functionality of the integrated software component, the test environment was
extended by another output for the life beat signal. Moreover, failed acceptance
tests were documented in this experiment as described in Section 4.6.6. For doc-
umentation, the sheets used for the acceptance tests were extended by fields for
the time, the date and the reason of failed acceptance tests.

6Note: The same LB functionality was implemented in VHDL as well as in the language C.
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5.5.2. Execution

According to the block structure of the lab course, this experiment took place
at 9 appointments with 8 hours each. As in previous experiments, the initial
questionnaire had to be filled out by the students before the start of the exper-
iment while the final questionnaire was filled out after the completion of the
experiment.
The procedure of acceptance tests as well as the storing of final and interme-

diate versions was conducted as in the second experiment, while a basic test
of the life beat functionality was added to the acceptance tests as mentioned
above. In this experiment, all 24 versions passed both acceptance tests and
were considered for later evaluation.

5.5.3. Variable Measurement

For this experiment, all versions which passed the acceptance tests were evalu-
ated by the test environment. Minor adaptations of the test environment had
to be made to allow a testing of the additional software component integrated.
These adaptations include a generation of the LB signal as well as the corre-
sponding extensions in the analysis tools (see Section 4.7.4). A summary of the
test results obtained with final versions is given in Tab. 5.7, while a more de-
tailed listing of all failures observed can be found in Appendix A. Further small
test benches were used to test the specific aspects of the hypotheses stated in
Section 4.4. Results of two of these stress tests (TB12 and TB13) on the mea-
surement results are included in Tab 5.7. It has to be noted that more than 50%
of the failures listed for these two test benches did not occur in the measurement
values but resulted from messages which had arrived too late.

Table 5.7.: Mean and median values of the fraction of failures made on different
hardware platforms (final versions)

TB2 TB4 TB4b TB12 TB13
Mean MCU 11.82% 5.97% 32.65% 44.58% 40.22%
Mean FPGA 11.50% 3.96% 42.45% 45.63% 34.11%
Median MCU 0.52% 0.05% 27.56% 30.00% 28.00%
Median FPGA 3.20% 1.47% 33.25% 23.75% 14.67%

Moreover, the failures resulting in failed acceptance tests have been docu-
mented in this experiment. The overview of all failed acceptance tests presented
in Fig. 5.6 includes the results of the 12 MCU and the 12 FPGA versions. Ver-
sions that were implemented first can be found in the left half of the table
while the versions that were implemented second can be found on the right of
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Team
1st 

version

acceptance 

test 1

acceptance

 test 2

2nd 

version

acceptance

 test 1

acceptance

 test 2

1 MCU 0 AT3(BTN) FPGA 0 0

2 FPGA 0 0 MCU 0 0

3 MCU MT (0/1) AT3(blink), AT5 FPGA 0 AT6

4 FPGA 0 0 MCU 0 AT6

5 MCU 0 AT6 FPGA 0 AT2, AT3 (read)

6 FPGA 0 AT2, AT3 (read) MCU MT (init) MT (overflow)

7 MCU 0 MT , AT5 FPGA 0 0

8 FPGA 0 AT3 (read) MCU MT (0/1) 0

9 MCU MT (EMI) 0 FPGA 0 0

10 FPGA 0 AT6 MCU MT (init) AT3 (blink)

11 MCU 0 0 FPGA 0 MT*

12 FPGA MT* AT6 MCU 0 AT5

Note: MT = main task, AT = additional task, * = failure according to bad design practice

Figure 5.6.: Documentation of failed acceptance tests

the same table (see Section 4.6.4 for details of the design of experiment). The
reasons for failing in the acceptances tests are indicated in this figure and will
be described briefly in the following.
The first acceptance test was not passed in case of 5 MCU versions and 1

FPGA version. The version MCU3 failed to determine very low frequencies
while the version MCU8 only showed this problem if a high differences was
present between the input frequencies for the last two channels (Measurement
of low frequencies had worked only if all channels received low frequencies). The
version MCU6 did not pass the first acceptance test according to a wrong ini-
tialization of the CAN message contents and version MCU10 did not initialize
one of the microcontroller ports correctly, leading to an incorrect LB-function.
An interference problem, which could be mitigated easily later on, was the rea-
son why version MCU9 did not pass the first acceptance test. The only FPGA
version, which did not pass the first acceptance test, was version FPGA12. In
this case, one of the measurement channels was not stable enough, resulting in
faulty results. Bad design practice was the reason for these faults, which could
be mitigated by a restructuring of the design.
In the following second acceptance test, the additional tasks were tested be-

side the main task. At the first try, 8 MCU and 7 FPGA versions failed in this
second acceptance test for different reasons. First, problems in the main task oc-
curred in the versions MCU6, MCU7 and FPGA11. The problem in the version
MCU6 was that certain values remained zero after changes of the input values.
The reason for this behavior was identified as an overflow in a variable. Next,
version MCU7 failed the second acceptance test according to highly increased
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reaction times in case of changes in the measurement channels. In the version
FPGA11, the CAN communication was stopped at a specific input frequency
(1750Hz). This failure in sending included the LB component, which should
have taken over the sending in case of errors in the remaining circuitry. The
reason for this behavior has been identified as bad design practice (e.g.: differ-
ent clock frequencies have been used without specific measures at the interfaces
of the clock domains). While the circuitry still worked at the first acceptance
test, the implementation of the additional tasks had changed the behavior of
the main function. A redesign of the implementation removed this failure.
The remaining versions showed no failures in the main function, but in sev-

eral additional tasks. In case of the additional task 2 (AT2: indicate out of date
values in the CAN message), two FPGA versions (FPGA5, FPGA6) frequently
indicated their measurement values causelessly as out of date. During the test
of additional task 3 (AT3: if button is pressed: display status of CAN controller
on LEDs, else: display input signals on LEDs in original frequency and a fre-
quency divided by 16) it could be observed that two MCU versions (MCU 3,
MCU10) had problems displaying the signals with 1/16 of the input frequency
in case of low frequency input. Another team (MCU1) did not use the button at
all and displayed the frequencies only. In case of three FPGA versions (FPGA5,
FPGA6, FPGA8), the read access to the CAN controller did not work correctly
and an incorrect CAN status was displayed on the LEDs for this reason. With
respect to the additional task 5 (AT5: determine the peak values of each mea-
surement channel and send them in a CAN message on request via a button),
three failures were observed in the MCU versions. In the version MCU3, the
interval of sending the CAN message containing the peak values was too long
while the reset of the peak values did not work correctly in the versions MCU7
and MCU12. Moreover, the flag, indicating a message containing peak values,
was not set correctly in version MCU7. Finally, bits indicating a difference
in frequency greater 50% between two measurement channels (AT6) were set
incorrectly in the versions MCU4, MCU5, FPGA10, FPGA12. The same was
true for version FPGA3, but here the failure occured only if a difference had to
be indicated between two pairs of measurement channels at the same time.
Beside the LB-problems in the versions MCU10 and FPGA11 mentioned

above, no problems with the LB functionality could be revealed in the accep-
tance tests. As mentioned before, the results of failed acceptance tests are used
within the later evaluation in Section 6.5.

Finally, a questionnaire had to be filled out by the experiment participants
beside their implementation (see Section 4.7.2). In this questionnaire, students
had to document the advantages and disadvantages of the two different hard-
ware platforms they observed during implementation. Contents of these ques-
tionnaires will be used for evaluation in Section 6.7.

101



5. Operation of Empirical Studies

5.5.4. Hypothesis Testing

The hypotheses introduced for this experiment in Section 4.4 are tested in the
following three subsections.

Test of Hypothesis H5a

In order to test hypothesis H5a (functions implemented beside the reused func-
tion lead to less content failures in the reused function in case of the FPGA
versions, see Section 4.4), test benches TB2 and TB4 were applied as test input
for the four frequency measurement channels. The LB signal was taken from
the fourth measurement channel in this case (the fourth channel and the input
for the LB signal received the same frequency). Further on, the test bench
TB4b was used to also test the additional tasks. In this context, the LB signal
was switched on and off by a variable in the test bench. As a result, the LB
function was working properly for all test inputs and in case of both platforms.max input frequency
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Figure 5.7.: Range of input frequencies (measurement channels)

Therefore, a new test bench was generated. In this case, two discrete frequen-
cies (0Hz and 10Hz) were fed to the LB component while the frequency fed into
the four frequency measurement channels of the main application varied from
0Hz to 100kHz (∼ 16 · fmax). It has been assumed that the increased input
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frequency would lead to an increased computation time in case of the MCU
versions and therefore influence the LB functionality. The effects of the input
frequencies are depicted in Fig. 5.7. In this figure, the maximum frequency
that could be fed into the measurement channels in order to remain a correct
evaluation of the LB signal is displayed.
As introduced in the definition of the hypothesis, values up to 18kHz were

intended. Based on this limit, 5 of the MCU versions failed in this test while
the FPGA versions were not affected by the increased inputs. The results were
used for the corresponding hypothesis test, in which the number of versions that
failed in the described test is compared for the MCU and FPGA versions:

H05a : N [FLBFPGA
(Vf , fM , fLB)] ≥ N [FLBMCU

(Vf , fM , fLB)]

⇒ 0 ≥ 5⇒ disagreement

Based on these results, the null-hypothesis could be rejected as more fail-
ures occurred in the MCU versions. Thus the hypothesis H5a was accepted.
Again, the resampling approach was applied to determine the significance of
the difference between the results achieved for the MCU and FPGA versions.
As expected, the corresponding value of 0.011 < 0.05 represents a very high sig-
nificance of the results. Whether the MCU versions could have been designed
in a better way to mitigate the problems in these versions is discussed as part
of the evaluation in Section 6.5.

Test of Hypothesis H5b

Another aspect that was evaluated in this context was the interval of sending
the LB messages. In the original application, the LB messages were sent every
109ms. In the new context, this timing was changed in case of 6 MCU versions
while the timing was not changed in case of the FPGA versions (see Fig. 5.8).
The values measured were used for the test of hypothesis H5b introduced in
Section 4.4. This hypothesis test is presented below (all values in [ms]):

H05b :
∑N

1 |∆TLBFPGA
(Vf , fM , fLB)|

N
≥

∑N
1 |∆TLBMCU

(Vf , fM , fLB)|
N

⇒
∑ {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

12
≥

∑ {1, 0, 4, 0, 0, 0, 0, 2, 0, 1, 3, 1}
12

⇒ 0 ≥ 1⇒ disagreement

The null-hypothesis could be rejected, as the average change in the interval of
sending was higher in case of the MCU versions. Accordingly, the corresponding
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Figure 5.8.: Interval of sending LB messages (min. and max. values)

hypothesis H5b was accepted. The significance of the difference between the
results for the MCU and FPGA versions was determined as significant (Resam-
pling approach: significance = 0.013 < 0.05). Moreover, further investigations
were conducted to clarify whether the frequencies fed into the measurement
channels also have an impact on the interval of sending of the LB messages.
However, no dependencies between these four frequencies and the interval of
sending could be determined.

Test of Hypothesis H5c

During the execution of the test mentioned in the previous sections, no impact
of the LB function on the remaining functions could be observed. Thus, an-
other test case was used that consisted of different frequencies for the LB signal
ranging from 0Hz to >100kHz, while the frequencies fed into the measurement
channels were kept at a moderate frequency (∼ 0.5 · fmax). However, no im-
pacts of the LB function could be identified. Therefore, the null hypothesis
H05c introduced in Section 4.4 could not be refused. Hence, the hypothesis
H5c (inclusion of the function to be reused (LB component) leads to less fail-
ures in the remaining functions in case of the FPGA versions, see Section 4.4)
was not accepted.
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Further interpretation and analysis of the results presented in this and the
previous two sections can be found in Section 6.5.

5.6. ISO26262 Development on Different HW
Platforms (Exp.6)

This experiment was based on another experiment task than the previous ex-
periments. Therefore, this experiment differs in preparation and execution as
described in the following.

5.6.1. Preparation

The experiment task was more complex than in the previous experiments as
described in Section 4.3.1. For this reason, the experiment could not be con-
ducted in a lab course but was conducted within the context of two diploma
theses.

Participants

The experiment was conducted with two computer science students within the
scope of two diploma theses. Preconditions for the selection of the students
were sufficient previous knowledge in the development of software and the par-
ticularities of embedded systems. To ease the work with the safety standard
ISO26262 [48], an introduction to the structure and the basic principles of this
standard was given before the actual experiment. Moreover, two student assis-
tants were employed to assist the two students with the implementation work.

Materials

The most important material for this experiment was the specification docu-
ment. While the task is based on a real application, only rudimentary specifi-
cation documents in combination with a simulation of the functional behavior
were available. The complete specification included confidential information
and was not accessible for this reason. On basis of the limited material, a new
specification document was developed. In contrast to the previous experiment,
this specification document had to be adapted during the operation of the ex-
periment, as a result of incompleteness of the specification and the existence of
ambiguous statements.
Further materials were the safety standard ISO26262 [48] and the coding

guidelines for the programming languages C and VHDL (see Section 4.7.3 for
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details), which were provided to the participants. Moreover, an operating sys-
tem7 with the corresponding documentation was provided.
Furthermore, a test and simulation environment was required for the devel-

opment and test activities. This environment was developed alongside to the
actual application and is further described in Section 4.7.4 and in [27]. A first
working version of this environment was available in the last fifth of the experi-
ment.
Finally, the development effort had to be documented. For this purpose, a

suitable table (Excel sheet) was constructed. In addition, similar sheets were
provided for the documentation of all failed acceptance tests.

5.6.2. Execution

As mentioned above, the experiment was conducted within the context of two
diploma theses and had a duration of approximately 6 month. According to
the design of the experiment presented in Section 4.6.5, the students developed
the application in a first step following the safety requirements of the ISO26262.
While the development activities are described in more detail in [92], the key
aspects will be presented briefly in the following.
During safety analysis, two potential hazards were identified. First, the roof

could start unintentional to open or close while the car is driving at high speed.
This movement could result in the hazard that the roof breaks off and hits
people and/or other vehicles on the street. Second, unintentional movement of
the roof could clamp body parts of humans. Therefore, a fault tree analysis
was performed to determine possible causes for these hazards. As depicted in
Fig. 5.9, possible causes for the first hazard could be faults in the CAN message
including the information of the vehicle’s speed, faults in the control panel, and
faults in the control unit itself. Similar causes are present for the second hazard
as depicted in Fig. 5.10. In this case, faults in the CAN message including the
status of the ignition key are an additional cause while the vehicle’s speed is not
relevant in this case. Based on these hazards, the safety goals were formulated
representing the hazard free situations. Next, a safety concept was developed
to achieve these safety goals, which is presented in Fig. 5.11. According to the
safety analysis, the hydraulic pump that is responsible for any movement of the
roof was identified as the safety-relevant actuator. Thus, a safety function was
introduced which is monitoring the application and can disable the movement
of this actuator. For the decision whether to disable the actuator or not, the
safety function receives the corresponding information from relevant sensors

7Two different operating systems were applied which were both compliant to the OSEK
standard. Further information on OSEK can be found here: http://www.osek-vdx.org
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or from the controller executing the application. In all cases in which safety-
related information is received from the application itself (in this case: CAN
messages), this information has to be checked for potential faults. These checks
were achieved by including information redundancy into the CAN messages
and checking the redundant information for consistency in the safety function.
After completion of the safety concept, this concept was verified by another
fault tree analysis including all safety measures introduced above. According
to this analysis, the chosen safety concept was suitable to fulfill the considered
safety goals (see [92] for details).
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Figure 5.11.: Safety concept for the application

In the next step, a mapping of this safety concept on the two hardware
platforms took place (design of technical safety concept). In case of the dual-
core microcontroller, the application was mapped on one core while the safety
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function was executed on the second core. Additionally, the communication
between the two cores was achieved via an exchange RAM available in this
microcontroller device. During operation, both cores are equipped with their
own program and data memories. However, common mode failures as faults in
the common clock or power supply have to be considered. Therefore, a time
windowed watchdog is triggered by the safety function to detect failures of the
overall chip. Moreover, this watchdog includes a brown-out circuit performing
a reset of the chip if supply voltages drop below a certain threshold. Further on,
an operating system was used only on the first core while no operating system
was applied on the second core. The decision not to use an operating system for
the core executing the safety function was made for the following two reasons:
First, an operating system is comparatively complex and therefore complicates
verification activities. Moreover, the complexity of the safety function was low,
which was the second reason an operating system was considered as not useful.
Further details of this implementation can be found in [113].
For the combination of MCU and FPGA, the application was executed on the

MCU as it was suited best for this hardware platform while the safety function
was mapped on the FPGA. Moreover, the communication between the two de-
vices takes place via a serial connection (SPI). To enable a safe communication,
information redundancy was applied in combination with message counters. As
both devices can be provided with independent clock and power supplies, no
additional measures for the handling of common mode failures are needed. As
in the case of the dual-core microcontroller, an operating system was applied
only on the MCU executing the roof control application. Additional details of
this implementation can be found in [17].
Finally, both technical safety concepts were evaluated regarding the require-

ments given in the ISO26262. Accordingly, two fault metrics8 and the achieved
diagnostic coverage were determined for both architectures. As no sufficient
reliability data was available for the devices applied in this experiment, data
available for similar components was used for an estimation. As a result, both
technical safety concepts could fulfill the safety requirements (see [92] for details
of the fault metrics and the determination of the diagnostic coverage).
After the design and implementation phase, which took about 4.5 months,

the student assistants started to test both implementations with the test envi-
ronment. As mentioned before, acceptance criteria present in the specification
were used for testing. Moreover, fault injection was used to test the effectiveness
of the implemented safety mechanisms. Faults identified during test activities
were documented and removed in this phase. Further on, additional properties
of the implementations (see Section 4.4) were evaluated by the students.

8Single Point Faults Metric and Latent Faults Metric
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5.6.3. Variable Measurement

According to the design of the experiment described in Section 4.6.5, the de-
velopment progress as well as existing development problems were documented
and discussed with the experiment participants in weekly meetings. Moreover,
the time needed for each implementation was measured. The testing of the ac-
ceptance criteria revealed several faults in the roof control application in case of
both implementations. However, these faults could be removed later on. During
the fault injection tests9 applied for the testing of the safety measures, all faults
could be handled correctly. Further properties of the implementations were
analyzed later on. For an evaluation of the reliability, the behavior of the devel-
oped systems in defined fault scenarios was compared, while the modifiability
was evaluated by given scenarios of modification.

5.6.4. Hypothesis Testing

The main hypothesis of this experiment stated differences in the development ef-
fort between the two hardware platforms (H6a, see Section 4.4). However, the
safety concept developed for both hardware platforms presented in Fig. 5.11
differed only with respect to the implementation of the safety function on the
two hardware platforms. As described in Section 5.6.2, this safety function was
implemented on the second core of the dual-core microcontroller in one case. In
the other case, the FPGA was used for the implementation of this function. In
both cases, only minor problems occurred during implementation. In case of the
dual-core device, certain challenges resulted from using the exchange RAM for
communication between the two cores. In case of the MCU+FPGA approach,
the implementation of a successful SPI connection was challenging. However,
both problems were identified as "beginner problems". The main application
was developed on a microcontroller core in both cases and determined the ma-
jority of the development effort. Therefore, the development effort was very
similar for both hardware platforms. Finally, the time for implementation was
measured. However, only small variations were present between the two groups.
As only two teams were used, this difference was not significant. Therefore, it
is obvious that the hypothesis H06a could not be refused.
Although not formulated in form of hypotheses, the remaining aspects were

evaluated. The evaluation and further discussion of the results gained in this
section are present in Section 6.6.

9Note: 20 fault types were injected into 6 components (ROM, RAM, I/O, CPU, CAN, supply
voltage). The fault type "overvoltage", all clock faults, and stuck at faults in the memories
were not tested for technical reasons.
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This chapter includes an evaluation of the results obtained by the variable mea-
surement and hypothesis testing in the previous chapter. The evaluations are
centered around the six main hypotheses and are presented in the sections 6.2-
6.6. Before the actual evaluation, general threats to the validity of these results
are discussed (Section 6.1). Furthermore, potential validity threats that are rel-
evant for particular experiments only are considered within the sections of the
corresponding experiment evaluations. Moreover, we summarize development
problems we observed during the operation of our experiments in Section 6.7.
We published the results gained by Experiment 1 in [106]. Results of the

second and third experiment can be found in [98] while parts of the results
achieved by the forth experiment were published in [96, 97]. Finally, the results
of the fifth experiment were presented in [101].

6.1. General Threats to Validity

The general threats to internal and external validity are discussed in this section.
In this context, internal validity represents the correctness of the experiment
itself while external validity represents the portability of the results to other
applications [126].

6.1.1. Threats to Internal Validity

As mentioned in Section 4.7.2, the control of variables is a major concern in
experiments. Since independent development of all experiment versions is a
precondition for the evaluations, the possibility of plagiarism has to be con-
sidered. This consideration includes the exchange of ideas for solving certain
problems but also the copying of complete parts of source code. The following
measures were taken in the experiments 1, 2, 4, and 5 to overcome this prob-
lem: First, the students were asked explicitly to work on their own and to ask
the experiment supervisor in case of any problem. As discussed in 4.7.2, the
supervisor did not provide any concrete solutions, but offered help to find an
individual solution (e.g.: recommended to test all modules separately to find
out which one is not working). Second, a software tool1 was used to search

1JPlag, URL: https://www.ipd.uni-karlsruhe.de/jplag/
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for eventual plagiarism in the final MCU versions. This tool was also used in
exercises and identified plagiarism in this context. Otherwise, it did not indi-
cate any critical matches in our experiment outcomes. Versions with increased
compliance were inspected manually, but the similarities found resulted from
the common specification. In case of the FPGA versions, no tool was available
which could consider the syntax of VHDL as it was the case for the language
C. Therefore, the analysis could be performed on text level only. However, no
critical matches were found by this evaluation. Independent activities could be
also achieved in the remaining two experiments. In Experiment 3, the reviewers
did not work at the same time and possibilities of exchange were therefore very
low. Finally, the risk of uncontrolled exchange in Experiment 6 is considered as
low as only one team implemented the application on each hardware platform.
Further on, the previous knowledge of the experiment participants might be

a threat to validity. According to a questionnaire conducted at the beginning of
all lab courses, students were generally more experienced in C/MCUs than in
VHDL/FPGAs. This difference was tried to adjust by a two-day introductory
course prior to the experiment, which is described in Section 4.7.2. Addition-
ally, the personal contentment was rated similarly by the students in the final
questionnaires for both implementations.
Another aspect we observed in the final questionnaires was the amount of

work the students performed at home. In case of the experiments conducted
in weekly lab courses, a high amount of the students also worked on their
implementation at home. On the other hand, less than 50% of the participants
worked on the code at home in case of the block course (experiment5). Since
the amount of work conducted at home was similar for both treatments in most
cases, the impact of this aspect is considered as low. As the main focus of these
experiments was not the development effort but the quality of the implemented
versions (assured by acceptance test), we see no threat on validity in this aspect.

Moreover, one compilation of VHDL code took up to 2 minutes while the C
code was compiled in a few seconds. While this aspect might have influenced
the development, no threat to internal validity is seen in this aspect since it is
a given difference between FPGA and MCU programming.

6.1.2. Threats to External Validity

With respect to generalization of the experiment results, the results could de-
pend on the type and the complexity of the task applied. Therefore, a minimum
complexity of the experiment task is required to allow representative results.
The task chosen for the experiments conducted in the lab courses included
several real-time requirements (four channel frequency measurement, communi-
cation, etc.) typical for embedded systems. While the complexity with respect
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Version 1 2 3 4 5 6 7 8 9 10 11 12

LOC MCU 480 483 510 376 995 787 383 500 413 362 446 -

FPGA - 689 747 384 871 862 574 394 424 616 623 505

Figure 6.1.: Lines of code, excluding comments and blank lines (Exp.2)

to the lines of code (see Fig.6.1 for final versions of Experiment 2) was slightly
lower than in a comparable experiment [63], sufficient challenges were present in
this application according to several concurrent real-time tasks. Hence, we are
of the opinion that the given requirements are fulfilled by our experiment task,
but additional experiments are desirable to minimize remaining dependencies
between the task and the results. Finally, the application used in Experiment 6
is representative as it is taken from a real automotive application. The applica-
tion was reduced only slightly in complexity to allow its implementation within
the scope of a diploma thesis.
Another important threat to external validity is the quality of the participants

regarding experience and development knowledge. Although this problem is ap-
plicable to our experiments, the aim here was to show general differences of
effects and not to give an absolute assessment. In this context, using students
to test the initial hypothesis is a viable approach referring to [115]. Addition-
ally, it is stated in [19] that no difference of programming expertise between
professional and non-professional developers could be found, while [45] states
that at least last-year software engineering students and professional software
developers have a comparable assessment ability.
In the experiments 1, 2, 4, and 5, most teams chose an interrupt based ap-

proach for their MCU implementation. However, the task might allow a cyclic
scanning approach (static scheduling) which could have a positive impact on
the aspect of encapsulation in MCUs (e.g. computation would depend less on
inputs). However, this approach is suitable for periodic input signals only or re-
quires very short cycles resulting in a need for higher CPU frequencies. For this
reason, we expect no threat to external validity in this aspect, but nevertheless,
an investigation with this alternative approach would be desirable.

6.2. Software Diversity and Fault Removal (H1,H4)

While in the sections 6.3 to 6.6 the results of single experiments are evaluated,
this section represents a combined evaluation of results achieved in the experi-
ments 1, 2, and 4. In the following subsection, the aspect of software diversity is
discussed (based on experiments 1 and 2), while this approach is compared with
the approach of testing and review (based on Experiment 4) in Section 6.2.2.
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6.2.1. Software Diversity by Diverse Hardware (H1)

Our first experiment revealed an extremely low likelihood for the property of fail-
ure independence between pairs of MCUs and CPLDs (H1a, see Section 5.1.4).
While an improvement of the failure independence by using diverse hardware
platforms could be shown (H1b, see Section 5.1.4), the corresponding effect was
small.
The results of both hypothesis tests indicate the existence of difficulties that

remain difficult even in different development approaches. Therefore, the ver-
sions of the first experiment were inspected with respect to failures identified
during evaluation. Moreover, this failure analysis was conducted also on the ver-
sions created in the second experiment. The corresponding failures are depicted
as part of Fig. 6.2 and are discussed in the following sections.

Failures in Experiment 1

The hypothesis testing on the versions developed in Experiment 1 showed high
numbers of dependent failures (see Section 5.1.4). For the analysis in this sec-
tion, failures identified were examined and listed in Fig. 6.2 (Exp.1). The first
failure mentioned in this table was present in the first messages after reset in
all MCU versions and one CPLD version. The behavior after reset was not ex-
plicitly specified (resulting in the same requirements as during runtime) which
could have led to this failure. Another reason might be improper initialization
methods, especially in case of the MCUs. According to the parallel structure of
the CPLD and the fact that less initializations are needed in case of this type
of hardware (no interrupt handlers, timers, etc. have to be initialized), this
specific fault occurred only in one CPLD version. Therefore, forced diversity
by different hardware platforms was successful in this case.
The following failures (No. 2-4) result from not considering certain input

situations like very low, very high or rapidly changing inputs. These failures oc-
curred in many MCU and CPLD versions, however, differences can be observed
between both hardware platforms. In the CPLD versions, the use of different
measurement intervals was usually avoided (most probably because it was com-
plicated to implement on this hardware platform). For this reason, changes of
the input frequencies were handled faster with CPLDs (No. 4), coming at the
cost that the accuracy in case of low input frequencies is insufficient (No. 2).
Finally, cross talk between cables carrying the measurement signals was a

problem in most CPLD versions while this problem did not occur in any MCU or
FPGA version (No.13). While external measures2 could mitigate the crosstalk,
two CPLD versions still had major problems in processing four different input

2Note: Filter elements and shorter cables were applied
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Exp.3

MCU CPLD MCU FPGA MCU

1
Wrong or delayed CAN messages after reset, especially if 

the input signal frequency is high.

Impl./ 

Spec.
100% 10% 36% 20% 25%

2

Wrong values in the CAN message as soon as input 

signals are of very low frequency (<5Hz). 

→ measurement interval is probably too short

Appl. 33% 80% 18% 40% 25%

3

Wrong values in the CAN message as soon as input 

signals are close above a certain threshold* 

→ Overflows or wrong determination of maximum output 

value

Impl./ 

Appl.
42% 20% 0% 0% 0%

4
Missing or delayed CAN messages or messages with 

wrong values if subsequent input values change quickly.
Appl. 83% 40% 91% 100% 75%

5

Wrong or delayed results as soon as different values are 

fed into the four measurement channels while changes of 

subsequent input signal values are limited to 200Hz → et 

al.: faulty determination of the measurement interval

Appl. n.a. n.a. 82% 90% 75%

6

Test cases with only equal test values at all inputs do not 

always lead to 4 identical results (not necessarily a 

failure).

Impl. 33% 30% 64% 20% 42%

7
Device stops sending of CAN messages as soon as the 

input frequency has been above a certain threshold*
Impl. 0% 0% 9% 0% 0%

8
No messages after reset if the input signal frequency is 

low
Impl. 0% 0% 0% 0% 8%

9

Device stops sending of CAN messages as soon as two 

buttons are pressed sequentially with high frequency → 

probably leading to an undefined state in state machine

Impl. n.a. n.a. 0% 10% 0%

10

Testmessage counter does not always start with 0 as 

specified → at least in some cases: faulty interaction 

between testmessage counter and sending method

Impl. n.a. n.a. 27% 60% 17%

11

Testmessage counter is not incremented correctly (is 

incremented by more than 1) → faulty interaction between 

testmessage counter and sending method

Impl. n.a. n.a. 0% 60% 0%

12

User input via buttons changes the number of wrong 

values for the worse → real-time properties affected by 

user input

Impl. n.a. n.a. 27% 0% 8%

13
Crosstalk between measurement channels leads to 

failures in the measurement
Impl. 0% 90% 0% 0% 0%

12 10 11 10 12

No. Failure description

# versions with this failure in

Exp. 1 Exp. 2

Impl. = Implementation, Appl. = Application, Spec. = Specification

Exp.3: versions have been debugged according to individual test and review reports

*close above the maximum input signal frequency explicitly specified if no button in pressed

number of versions used for analysis:

Type of 

problem

Figure 6.2.: Failures found during evaluation
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frequencies (see test results of TB3s in Annex A). Thus, different hardware
platforms allowed an increase of the failure diversity in this specific case.

Failures in Experiment 2

A more complex task was applied for Experiment 2 as presented in Section 4.3.1.
To avoid the comparatively simple errors found in the first experiment (over-
flows, etc.), we conducted a stronger acceptance test in this second experiment.
The results can clearly be seen in Fig. 6.2 (Exp. 2, No. 2 and 3): Overflows
were detected by the acceptance test as well as most of the problems with low
frequency input. As before, a high number of dependent failures occurred as
presented in Fig. 6.2 (Exp. 2, No. 4, 5, 6). Moreover, new requirements (addi-
tional tasks and a stricter acceptance test) increased the problems of response
times and accuracy, especially in FPGA versions (compared to CPLD, No. 4).
Further on, a dependent failure could be identified in the additional tasks (No.
10). Several versions did not implement the test message counter as specified
so that it starts with an incorrect value (failure is described in more detail in
Section 6.2.2). The second failure within the test message (No. 11) resulted
from insufficient interaction between parallel processes in FPGA versions.
Obviously, some fault sources identified are implementation dependent (No.

1, No. 6-13) while others seem to be implementation independent (No. 2-5).
According to our results, the N-version programming approach applied might
be more suitable to mitigate implementation specific faults than to deal with
implementation independent faults. Therefore, a classification of fault sources
was conducted, which is presented in the following section.

Fault Classification & Limitations of N-version Programming

During evaluation of the experiments 1 and 2, it became obvious that different
sources exist for the failures found. Those failure sources (faults) have been
identified as follows:

• Specification specific faults: the specification was misleading, incom-
plete or ambiguous. Moreover, statements in the specification could be
even wrong, but this was not the case in our experiments.

• Application specific faults: application specific problems and chal-
lenges have not been understood and thus have not been handled suffi-
ciently (e.g. forget to handle a certain scenario/input constellation).

• Implementation specific faults: specification and application specific
problems have been identified correctly, but faults have been made during
implementation (e.g. incomplete case structure).
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The failures found in the experiments have been analyzed with respect to
these fault categories and many implementation specific faults identified in
Fig. 6.2 could be mitigated by our approach of diverse hardware NVP. Oth-
erwise, even implementation specific faults as No. 10 (test message counter, see
Section 6.2.1) occurred in several versions developed independently on diverse
hardware platforms.
Whereas it is stated in [10] that the specification must be correct to allow a

successful application of NVP, potentials of NVP to deal with specification spe-
cific faults are seen in other publications [39]. Some specification specific faults
could have been tolerated by diverse hardware NVP in our experiments if one
hardware platform guided to the correct implementation, as it was the case for
the failure No.1 (Fig. 6.2) in the first experiment. Further specification specific
faults will only be found if different teams interpret the specification differently.
According to our results, different developers interpret the specification differ-
ently, but for us this is no hint that the majority of the resulting versions is
correct. For this reason, NVP might uncover specification problems, but redun-
dancy concepts based on majority voting, as for example a two out of three
(2oo3, TMR) system, would probably be no solution to mask the specification
specific faults present in our experiment data.
As a third fault category, we introduced application specific faults, which re-

vealed to be a challenging problem in NVP. Despite the immense effort put
into different development processes, languages and programming styles by us-
ing completely different hardware platforms in our NVP experiments, several
problems remained the same in all implementations leading to identical wrong
results in several cases. These problems (No. 2-5, Fig. 6.2) result from the
application itself, are implementation independent and thus cannot be avoided
by this approach of NVP. Results of another NVP experiment published in [28]
indicate that "lack of understanding by the programmers of key points in the
specification was a major contributor to faults that caused coincident failures".
This result goes well with our observations that NVP is not suitable to mitigate
these implementation independent problems.
Accordingly, the approach of NVP applied for these experiments seems only

useful to mitigate implementation specific faults. Nevertheless, even a depen-
dent implementation specific fault was identified in versions developed indepen-
dently on different hardware platforms. Therefore, possible solutions to this
problem are discussed in Section 6.2.4. Nevertheless, recent publications as [21]
support the application of NVP for mission-critical applications. According to
their investigations, a supportive evidence for NVP could be provided. While
our intention is not to neglect positive effects of NVP, our aim is to emphasize
the specific limitations of this approach. As mentioned above, the most critical
limitation is that certain faults are closely related to the specification and the
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application itself. This relation makes a mitigation of these faults very unlikely,
even by the improved NVP approach presented in this thesis.
Otherwise, the failures present in the majority of the versions created in these

two experiments seem to be found easily as soon as they have been identified
once. Furthermore, we had added ambiguous statements to the specification
which had not been identified by any experiment participant in the first and
second experiment. Thus, the potentials of review and testing to identify these
problems are discussed in the following section.

6.2.2. Software Diversity vs. Fault Removal (H4)

As part of the hypothesis testing in Section 5.4.4, the most common failures
identified in Experiment 4 during the review and test activities were evaluated.
Hypothesis testing investigated two aspects. One aspect referred to ambiguous
and unclear statements in the specification (hypothesis H4b). While these prob-
lems occurred in every review and testing process, each of them was revealed
only by one or two teams during their test and review activities. Therefore,
the hypothesis H4b, stating that at least 3/4 of the teams would identify these
problems, could not be accepted. One might wonder why they were not iden-
tified by all or at least the majority of the teams. However, ambiguities could
have been identified only if the verification team understood the specification
differently than the team that implemented the code or if the ambiguity itself
was identified. Obviously, this difference in understanding or the identification
of the problem in the statement itself occurred only in the minority of the cases.
On the other hand, hypothesis H4a stating that at least 3/4 of the teams

would identify the application specific problem according to fast changes of
frequency values at the inputs could be accepted (see Section 5.4.4). Obviously,
this fault was comparatively easy to detect. Thus, it seems interesting that the
problem was not identified during the implementation activities. It is assumed
that it will be more efficient if not the own code is evaluated but the code
developed by a different team.
Moreover, implementation specific faults in one or more versions have been

identified (see No. 5, 7, 8 of Fig. 5.5 in Section 5.4.4). Of special interest is
problem No. 5, as it occurred in several versions: A test counter had to be
realized that starts with 0x00 and increments by 1 with every CAN message
sent. In 5 of the 12 undebugged versions, the test counter did not start with
0x00 but with 0x01. One reason for this failure was that the line of code for
the incrementation was placed incorrectly (incrementation took place before the
counter value was read for the first time). This problem was identified in 4/5
of the versions, mostly by review.
In a last step, all experiment participants had the opportunity to improve
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their versions. The results are listed in the last column of Fig. 6.2 (Exp.3).
While many failures were identified and removed, the mitigation of some fail-
ures (as No. 4 and 5 of Fig. 6.2) would have needed major changes in the
software architecture. According to the limited time for these changes, many
final versions of Experiment 4 still contain faults. In this context, the inability
to deal with fast changes of the input values within the specified time is a fault
that remained in most versions.
In the following, the results of our application of NVP are compared with

those of the fourth experiment in which review and testing were applied for
reliability improvement. Originally, this comparison was planned by testing
hypothesis H4c (see Section 5.4.4). As certain faults could not be removed,
the versions were compared with the help of the observed failures presented in
Fig. 6.2 and Fig. 5.5.
As expected, diverse hardware NVP allowed to mitigate most of the imple-

mentation specific faults (e.g. No.7-9, 11, 12 in Fig. 6.2). One exception was
the implementation of the test counter (No. 10). This easy task was faulty in
several versions for the reasons already described. In case of review and testing,
many, but not all implementation specific problems were identified. In case of
the non real-time tasks, reviews uncovered more faults while testing was more
successful in case of the real-time functionalities3. Thus, all three approaches
showed potentials regarding the mitigation of implementation specific faults.
Application specific faults were present in the majority of all versions, even

in those created on different hardware platforms. Some of these application
specific faults occurred less often on the first hardware while others were found
less often on the other hardware. However, these differences were usually small
(exceptions are No.2, Exp.1 and No.6, Exp2. in Fig. 6.2). For this reason, only
low to medium potentials are expected for diverse hardware NVP to mitigate
application specific faults. On the other hand, testing and review discovered
most application specific problem as No.6 in Fig. 5.5. With respect to applica-
tion specific faults, testing showed slightly more advantages in comparison to
review. The reason is that also unexpected faults were identified during testing
while reviewers typically concentrated on finding known problems in the code.

Finally, specification specific faults were a problem for all of the three ap-
proaches. In case of diverse hardware NVP, only few specification specific faults
could be avoided as described above. In case of testing and review, all known
specification problems were identified, but in several cases only by a minority of
the teams (No.1-4 in Fig. 5.5). Review seemed to have the highest potentials to
reveal specification specific problems, since the specification had been analyzed

3Note: This aspect is supported by the review reports as 7 out of 12 teams stated problems
in determining real-time properties by review.
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closely for review, while it was only used for test case generation in the test
process.
Comparisons of the software fault tolerance by NVP and the fault removal

by verification activities have been published before. An analytical evaluation
was presented in [83]. In this work, the effect of reliability growth on the de-
pendence between the failures of diverse software versions was investigated. As
a result, there is currently no evidence that the choice between design diver-
sity and other means of reliability improvements can be decided by general
arguments. We agree that each individual case has to be analyzed to allow a
suitable decision. However, argumentation could be improved in our opinion
by separating the comparison in the fault categories proposed above. Results
of another empirical evaluation comparing fault tolerance and fault removal are
presented in [112]. The techniques applied were code reading, static analysis,
software tests and back-to-back voting based on the versions developed indepen-
dently. As a result, multiversion voting is not considered as a substitute for
functional testing and should therefore not be reduced when using this software
fault tolerance technique. Additionally, multiversion voting tolerated different
faults than were detected by fault removal techniques. Both results support our
findings. While the focus of our work was to compare NVP with alternative ap-
proaches, further analysis and comparisons of these fault removal techniques as
well as references to further experiments investigating this aspect can be found
in [112].
Summarizing, diverse hardware NVP, review, and testing showed different po-

tentials of fault mitigation with respect to the three categories of failure sources.
While further empirical results are needed to help designers of safety-critical em-
bedded software to apply the optimal combination of reliability improvement
approaches, the presented results are considered as a first step in this direction.
Moreover, the categorization into specification specific, application specific and
implementation specific faults allows a more systematic comparison of alterna-
tive approaches.

6.2.3. Threats to Validity

All major potential threats to the validity of the results of the experiments
presented are included in Section 6.1. A further impact on the internal valid-
ity could be seen in the common background of the experiment participants4.
However, this threat is considered as uncritical for the investigation of the NVP
approach, especially as the intention was to force the diversity by different hard-
ware platforms.

4Note: Most of the participants were in the final stage of their computer science study at
RWTH Aachen University.
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Finally, education of the students with respect to test and review activities
was limited to theoretical knowledge in most cases. Although an introduction
into the topic as well as review and test guidelines were applied in Experiment
4, this lack of experience might be another threat to external validity. Neverthe-
less, it is expected that the typical benefits and limitations of the investigated
approaches could have been determined in this experiment.

6.2.4. Alternative Approaches for Software Diversity

A solution to the problems of dependent failures in versions developed indepen-
dently might be the approach of functional diversity described in [62]. This
approach offers higher independence of failure behavior according to different
functionalities implemented in the diverse software versions. An example is the
implementation of an equal function with different functional ranges as proposed
in [20]. The example given in this work is an autopilot, which is implemented
with full functionality in one version (allows smooth movement). In the second
version, this function is implemented with reduced functionality including only
the functionality to keep the plane in the air. All failures according to the higher
complexity of version 1 are therefore not present in version 2.
Another option is to realize a function with different functional principles as

described in [62]. An example for this approach is the safety function of a chem-
ical reactor, which should prevent an explosion of the tank. This prevention
is achieved by shutting down the reactor if the temperature is too high in one
version while the reactor is shut down if the pressure is above a critical thresh-
old in another version. While this approach clearly leads to the highest level of
independence, it might not be applicable in every application. Moreover, this
approach still comprises certain risks of common mode failures [62].

6.3. Impact of Hardware Platforms on Encapsulation
(H2)

In our second experiment, potentials of encapsulation were evaluated for soft-
ware developed on MCUs and FPGAs. In this context, four hypotheses regard-
ing the encapsulation of subtasks (H2a −H2d) have been tested as described
in Section 5.2.4. According to the test of the hypotheses H2a and H2b, the
timing of the subtask CAN communication is affected by changes in the mea-
surement functions as well as the inclusion of the additional tasks in more MCU
than FPGA versions. Moreover, different impacts on the contents of the CAN
messages occurred. On the one hand, higher failures rates in the contents of the
CAN messages according to the inclusion of the additional tasks (H2c) could
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not be shown for MCU versions. On the other hand, the execution of the ad-
ditional tasks that are activated via user buttons had only an impact on the
contents in the CAN message in case of the MCU versions, while the FPGA
versions were not affected (H2d).

The failures observed in the context of the additional tasks can be grouped
in failures, which represent faults in the measurement itself and those which
represent faults in the sending of the CAN messages. Accordingly, no FPGA
version revealed any faults in the measurement caused by user inputs while three
MCU versions contained major failures according to button inputs (MCU6:
stopped CAN communication, MCU3 and MCU4: content failures in CAN
messages, see also 4th column of Tab. 5.4). Otherwise, one MCU and four
FPGA versions revealed failures5 in the sending of CAN messages as soon as
more than one button had been pressed.
Even though some additional tasks revealed higher potentials for encapsula-

tion in FPGAs, the overall number of failures in the final FPGA versions was
increased in comparison to the main version while final MCU versions tended to
reveal less failures than their respective main versions. Further examination of
the failures revealed advantages for encapsulation of real-time tasks on FPGAs
if the functional interactions between the functions implemented was limited.
This aspect can be clarified with the following example: The encapsulation be-
tween the frequency measurement/value processing and the CAN bus communi-
cation was successful on FPGAs, as only the values measured and processed by
the measurement/processing component were given to the CAN communication
component at defined points in time. Otherwise, stronger interaction between
functions (as in case of additional tasks 2 and 3) tended to result in an undesired
coupling between the components in several FPGA versions in our experiment.
Summarizing, encapsulation seems to work better on FPGAs than on MCUs if
several real-time functions with only limited functional interactions have to be
implemented.
Finally, the aspect of encapsulation was not forced by explicit requirements

in this experiment. The effect of encapsulation was evaluated in a given imple-
mentation without the explicit requirement of the independence of the different
subfunctions. Therefore, encapsulation might be different, if this aspect is some-
how forced, e.g. by reusing a given component that is not allowed to be changed.
This aspect is discussed in Section 6.5.

5Common failure: As soon as two buttons are pressed, only the function with the highest
priority is executed (as specified). However, if only the button with the highest priority is
released, the function with the lower priority is not executed (probably edges are identified
as inputs only). Moreover, two FPGA versions (FPGA5 and FPGA7) do not start sending
CAN messages immediately after all buttons are released resulting in missing messages.
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6.3.1. Threats to Validity

A discussion of all major potential threats to validity is included in Section 6.1.
Furthermore, a minimum complexity of the task is necessary to allow reason-
able encapsulation. According to the presence of several real-time tasks in the
application used in this experiment, this requirement is considered as fulfilled.
Therefore, no further threats to validity are present in this experiment.

6.4. Impact of Hardware Platforms on Reviewability
(H3)

In the hypothesis testing in Section 5.3.4, a clear advantage of FPGAs over
MCUs with respect to reviewability could not be identified. While the reviewa-
bility was rated better on average for the FPGA versions by every reviewer
(H3b), the quality of the review results (H3a) was not higher in case of the
FPGAs.
However, we revealed differences in the problems during review6. Several

problems regarding the review of the MCU versions resulted from interrupts
and difficulties in determining the execution times of the subtasks. As an exam-
ple, the determination of the CAN transmission interval by review was exact
for the FPGA versions, while only intervals were given for the MCU versions.
Moreover, the use of a graphical representation for the structural descriptions
in the VHDL (generally, the top level of the design was a schematic describing
the interconnection of the individual VHDL components) facilitates the first
steps of understanding the FPGA versions. Such a description of the concur-
rent functions was not available in the code of MCU versions, which required
a description of these issues in the documentation of the code. Otherwise, cer-
tain properties of the FPGA versions were not recognized correctly. The reason
is seen in problems of understanding of the behavior of several interconnected
parallel processes in the FPGA versions.
Nonetheless, solutions might exist to improve the reviewability in case of

both hardware platforms. The application of coding guidelines might be an
approach that could improve the readability and understandability of C code
as well as VHDL code (see e.g. [25, 68]). Further measures as the application
of an operating system might improve the reviewability of the MCU software.
However, the verification of the correctness of the operating system itself is a
challenge in this approach [117] so that operating systems available for safety-
critical applications are often suitable for low safety integrity levels only.

6mostly by the comments given in the review report forms
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Table 6.1.: Time needed for review
Version Reviewer 1 Reviewer 2 Reviewer 3 Mean
MCU2 2 1.5 3 2.17
MCU5 3 2.5 4 3.17
MCU6 3 3 3.5 3.17
MCU7 2 2 2.8 2.27
MCU8 0.5 1.5 3 1.67
MCU9 1.8 2 3 2.27
FPGA2 1.7 1.75 3 2.15
FPGA5 1.1 1.5 4 2.20
FPGA6 2.5 3 4 3.17
FPGA7 1.5 1.5 3 2.00
FPGA8 1.5 2 3.5 2.33
FPGA9 1 2.5 3 2.17

Finally, the time needed for the review is depicted in Tab. 6.1 for each version
and reviewer. While a time frame of about 3 hours was given, it has been
possible to terminate the review earlier if the reviewers were sure about their
results (see Section 5.3). According to the results presented in Tab. 6.1 and
Fig. 5.4, most versions that have been reviewed for a comparatively short period
of time received a comparatively good grade for their reviewability. However,
no general correlation could be determined between these two aspects.

6.4.1. Threats to Validity

Beside the potential threats presented in Section 6.1, the number of reviewers in
this experiment could have an impact on the results (e.g. determination of the
significance). While three reviewers conducted the reviews for this experiment,
a higher number would be beneficial to support our results. However, we do
not expect fundamental changes in the results.
The selection of the scenarios for the evaluation of the review might have

influenced the test of hypothesis H3a. Since the same scenarios were applied
for both platforms, we expect no major threat to validity of this selection.
Another aspect is the review technique being used. In contrast to formalized

reviews, as for example code inspection described in [30], only three reviewers
worked independently in this experiment and the guidance of the reviewers
was limited to the review report form and a brief review guideline. While the
internal validity is not affected by this aspect (both platforms were reviewed
by the same technique), the external validity is limited to the review technique
used in this experiment.
Moreover, the different skills in the programming languages might have in-
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fluenced the structure and complexity of the resulting codes. This influence
might have affected the results with respect to reviewability and might have an
impact on the internal validity for this reason. Nevertheless, it is assumed that
higher skills in the VHDL language would not have led to codes with a lower
reviewability.

6.5. Impact of Hardware Platforms on Reusability
(H5)

In this section, the reuse of a given real-time function is evaluated for MCUs
and FPGAs. The evaluation is based on the results gained by hypothesis testing
in Section 5.5.4 as well as on a discussion of further review scenarios.

6.5.1. Results of Hypothesis Testing

As described in Section 5.5.4, possible side effects of the reused function on the
remaining functions were evaluated by feeding increased frequencies into the
reused life beat (LB) function. The idea was that the increased value could
increase the processing time needed for the determination of the LB signal and
thus influence the overall system (test of H5a). But in case of both hardware
platforms (MCU and FPGA), no impact of the increased LB frequency on
the main functionality or the LB function itself could be determined. This
independence has been expected for the FPGA versions since the evaluation
of the LB signal was realized in dedicated logic and parallel to the remaining
tasks. In case of the MCU, the independence was achieved by using a timer
unit as mentioned before. Based on this timer unit, the LB signal was sampled
at dedicated instances in time, which made this operation independent of the
input signal. While the low frequency of the valid LB signal (10Hz) made
this approach possible in this application, the measurement of a LB signal
with a higher frequency would require higher sampling rates. To handle these
increased sampling rates, higher clock frequencies are required for the MCU or
another timer unit has to be applied for the count process. On the contrary,
the implementation on the FPGA is not affected by the frequency of the signal
measured (if the frequency is sufficiently smaller than the operating frequency
of the FPGA).
Regarding the impacts of the remaining functions on the LB function, im-

pacts could be determined during the test of hypothesis H5b. While no impact
could be shown for the FPGA versions, all MCU versions were affected by high
inputs for the measurement channels. Moreover, this effect clearly depended
on the specific implementations of the individual teams as different maximum
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frequencies could be determined for the 12 MCU versions. Finally, the test
of hypothesis H5c revealed changes in the interval of sending LB message in
case of the reused software components. These changes occurred on the MCU
versions while the interval remained constant in all FPGA versions.

To summarize, side effects between the reused software component and the
remaining functions could be determined in the MCU versions only.

6.5.2. Discussion of Further Reuse

The experiment considered the reuse of the LB component in a new but similar
context. According to the specific requirements in the domain of embedded
systems, this simple reuse already represented certain challenges. However, to
determine potentials for effective reuse, possibilities of further reuse have to be
examined (see e.g. [59]). For this reason, further reuse scenarios are discussed
in the following.

Reuse scenario 1

New functional requirements (e.g. new algorithm, new user interface etc.) make
a change of the hardware platform necessary. The interesting aspect is how easy
the transfer of the given LB component to the new target is. The LB component
implemented on the FPGA is device independent (device independent VHDL
description). An easy transfer to another FPGA device is possible for this
reason. A change of the MCU platform can have a high impact on the LB
component. Since specific hardware resources are used in the LB component
(counter unit, I/O interface, interrupts), the C code has to be adapted with
respect to those resources which change from one MCU device to another. If
both, the original and the new device belong to the same microcontroller family,
only limited changes are required. On the other hand, major adaptations might
be necessary if the design is transferred to other types of microcontrollers.

Reuse scenario 2

While the determination of the correctness of the LB signal is limited to the
length of the high and low phase of the signal, a more complicated evaluation
might be needed in another application. An example could be a specific pat-
tern (e.g. 100ms high, 100ms low, 50ms high, 50ms low,...). This requirement
would complicate the evaluation in case of both hardware platforms, but the
implementation should be possible on the MCU as well as on the FPGA. If the
evaluation of the signal needs significantly more computation time, problems
could arise in case of the MCU (side effects with other tasks running on the
same CPU).
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Reuse scenario 3

In this case, not one but two or more LB signals have to be evaluated. In case
of the FPGA, the part of the LB component implementing the LB test could
simply be multiplied. The results of the additional LB tests would have to be
included into the CAN messages then. The LB component implemented in the
MCU samples the LB signal in a timer interrupt service routine. Therefore,
additional LB signals could be sampled in the same routine. However, it has to
be noted that the evaluation of further signals would increase the execution time
of this interrupt service routine which might have an impact on other real-time
functions.

Reuse scenario 4

While the considered application is only able to send CAN messages, the main
function should also be able to read CAN messages in this final scenario. For
this purpose, the receive buffer of the external CAN controller can be read via
the read function implemented in the LB function each time a new incoming
message is signaled (e.g. via interrupt line). In case of the MCU, the function
for reading CAN messages could be integrated easily, e.g. in the main function
by another function call. However, a bottle neck in CPU time could occur if
a high rate of incoming messages has to be processed. For the FPGA versions,
this function could be included easily in the LB component itself (easy access to
all signals required) while an access outside the LB component would require the
design of a corresponding interface managing the multiple access to the CAN
controller interface. The development of this interface would probably require
an increased development effort. On the other hand, the data transfer from
the CAN controller to the main application could be implemented in dedicated
hardware on the FPGA, which would reduce the dependability with other tasks
present in the application.

6.5.3. Discussion of Results

The results of the initial study showed that the use of interrupts could have
an negative influence on the reuse of real-time software components. While
this problem is not present in FPGAs, the compatibility of reused components
with the new context has to be checked especially careful for all components
using interrupts. The inclusion of the read functionality indicated that the
implementation of new functionalities in the FPGA could request modifications
of the interface of the reused component. The reason is, in contrast to the MCU,
that the write access of more than one component on a specific signal has to be
implemented explicitly. Further on, a documentation of all on-chip peripherals

127



6. Evaluation of Empirical Results

used by a component has to be included in the reuse guidelines of an MCU
component. This documentation is usually not needed in FPGAs as illustrated
in Section 5.5.1.

The hypotheses H5a and H5b were accepted since it could be shown in the
experiment evaluation that the LB function was affected by the remaining func-
tions in several MCU versions but in no FPGA version that has passed the ac-
ceptance test. Reasons for the side effects in case of the MCU resulted from the
common CPU used by all components and the use of interrupts (needed in this
kind of resource restricted hard real-time application). On the other hand, the
evaluation of failed acceptance tests also showed undesired side effects in case of
the FPGAs. In one of the FPGA versions, these side effects even disabled the
CAN communication of the LB component and the remaining functions. The
cause was identified as bad design practice as aforementioned. Therefore, is has
to be assured that design guidelines are followed strictly in FPGA design to
avoid these side effects.

Otherwise, hypothesis H5c tested in the experiment could not be shown.
Moreover, even the evaluation of the failed acceptance tests could not identify
impacts of the LB component on the remaining system. It had been assumed
that the additional LB function would have a negative impact on the remaining
real-time functions on the MCU. However, on-chip peripherals, in this case the
timer unit, allow a sufficient computing of parallel tasks, which is only possible
in parallel hardware or several CPUs otherwise. Thus, the application of further
on-chip peripherals might also have avoided the side affects observed during the
hypothesis testing of H5a and H5b. Nevertheless, these on-chip resources have
only limited flexibility and their number is usually limited. They also lead to
a strong interdependency between hardware and software components which
could lead to problems if a change of the hardware platform is needed, as has
been discussed in reuse scenario one in the previous section. Moreover, the reuse
scenarios two and three (see Section 6.5.2) identified potential bottlenecks in
CPU time if the evaluation of the LB signal has to be changed.

Further on, challenges for reuse were identified in reuse scenario four. If the
functionality outside the LB component is changed in a way that it requires
a read access to the CAN bus, this change could affect the MCU as well as
the FPGA versions. In the first case, the changes in the LB component are
not considered critical, but the additional computation time needed for the
read functionality has to be provided in case of the MCUs. While the read
functionality could be implemented independently from the remaining system
in the FPGA, changes in the internal structure as well as in the interface of the
LB component would be needed in this case.
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6.5.4. Threats to Validity

Potential threats to the validity of the results are presented in Section 6.1.
Furthermore, the components used for reuse in this experiment could not be
identical for MCUs and FPGAs (one was written in C while the other had to
be written in a hardware description language). Differences in these two com-
ponents, which were not given by the different hardware platforms, could have
influenced the experiment results (threat to internal validity). To overcome
the problem of specific advantages/disadvantages in one of the two components,
both components were adapted to the new context by a single developer with
great care (as described in Section 5.5.1) and have been reviewed by another
developer. Nevertheless, further experiments reusing software components dif-
ferent from the one used in this experiment are desirable to support the results
gained in this experiment.

6.6. Impact of HW Platforms on ISO26262
Development (H6)

For the evaluation of potential impacts of different hardware platforms on the
development according to the standard ISO26262, a common safety-critical ap-
plication was implemented on two diverse hardware platforms. During the
hypothesis testing in Section 5.6.4, no differences in development effort could
be identified between the two hardware platforms investigated. However, the
actual application and the safety function are more similar in case of the dual-
core microcontroller than in case of the platform that includes the MCU and
the FPGA. This similarity is beneficial for the development effort, as parts of
the application can be reused for the safety function. However, higher diversity
between the application and the safety function might be desirable with respect
to fault diversity. Which aspect is considered as more important depends on the
individual application and the complexity of the safety function. As mentioned
before, the complexity of the safety function implemented in this experiment
is considered as low. Thus, no considerable benefits for the development effort
could be observed in this case.
Further on, an aspect that is considered to have a strong impact on the devel-

opment is the chosen functional safety concept. Therefore, potential impacts of
the safety concept are discussed in the following section. Moreover, differences
between the implementations with respect to reliability and modifiability are
discussed in the sections 6.6.2 and 6.6.3.
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6.6.1. Impact of Functional Safety Concept

The most important difference between the two hardware platforms is the im-
plementation of the functional safety concept. In both cases, an approach was
chosen that is based on the same safety concept (see Section 5.6.2). Only the
mapping of the safety concept depicted in Fig. 5.11 on the two hardware plat-
forms resulted in differences described in Section 5.6.2. The safety function
was implemented on the FPGA in case of the MCU+FPGA architecture and
on the second core of the dual-core approach. The development effort for both
approaches did not differ significantly as mentioned before. The reason is that
the implementation of the main application, which was very similar on both
platforms, required most development resources.
An obvious disadvantage of the safety concept chosen is the dependence on

the application. Thus, a new implementation of the safety function is required
for each new application as discussed in Section 6.6.3. Moreover, the success of
this approach depends on a sufficient safety analysis. Only aspects identified as
safety-related in this analysis are included in the safety function. Thus, aspects
not considered in the safety analysis are not covered by this approach.
An alternative approach is not to monitor the behavior of the application, but

to monitor the behavior of the hardware executing the application. Accordingly,
this approach could be realized independently from the application. An exam-
ple would be to use the second core of a dual-core microcontroller to monitor
the behavior of the first core. An intuitive option to achieve this monitoring is
to execute the same application on both cores and then to compare their results.
This way, a fault in one of the cores can be detected as the results of both cores
differ in this case. Comparison of the results could be achieved by comparisons
between the two cores at defined points in time. While this approach is possible
by applying general purpose devices, the implementation of the comparison in
software has a negative impact on the performance (impact depends on how
often comparisons are required). Otherwise, a lock-step approach could be cho-
sen (see e.g. [35]). In this approach, the results of both cores are compared
after each step of computation by dedicated logic, which is implemented in the
dual-core device. Furthermore, the second cores could periodically perform ap-
plication independent checks on the main core as proposed in [18]. However, if
one of these approaches is chosen, all possible faults in the hardware that could
violate the safety goal have to be considered. Therefore, not only faults in the
two cores have to be handled, but also faults in the memories, the bus systems,
the I/O peripherals and further on-chip resources. While this comprehensive
fault handling is possible in general, it generally requires further logic (specific
chip, see e.g. [35, 107]) or is resulting in an run-time overhead. Moreover, the
verification of sufficient fault coverage for all components is expected to be more
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challenging than the verification of sufficient functional supervision.
Another drawback of the generic approach is that the handling of hardware

faults without the consideration of the actual application does not allow to
distinguish between critical and uncritical faults. Approaches of fault recovery
could partly overcome this problem (see e.g. [107]), but each uncritical fault
that cannot be recovered by these measures is resulting in an undesired and
unnecessary reduction of the availability of the system. Finally, only hardware
faults could be mitigated by this approach, while the approach of functional
supervision could also handle most software faults. It cannot be assumed that
all software faults are handled as dependent faults might be present in the
application and the supervision function. Nevertheless, functional diversity (see
Section 6.2.4) could usually be achieved between application and safety function,
which is expected to sufficiently reduce the risk of dependent failures.

Table 6.2.: Comparison of fault handling approaches
functional supervision device supervision

− application dependent + application independent
− mitigates only aspects con-

sidered in the specific
safety concept

+ considers faults in the
microcontroller hardware
independently from the
safety concept

+ allows handling of SW
faults

− no handling of SW faults

+ knowledge of criticality of
faults

− no knowledge of criticality
of faults

+ intuitive fault handling
concept

− complex fault handling
concept

An overview of the advantages and disadvantages of the two approaches com-
pared above is given in table 6.2. Thus, the disadvantage of the approach chosen
is the dependency of the supervision function on the application. As discussed
in Section 6.6.3, the impact of this disadvantage is application specific. Another
disadvantage might be the dependence of this approach on a successful safety
analysis identifying all safety-related aspects, while the generic approach allows
to tolerate certain aspects independently from the safety concept (example: one
of the motors in Fig. 5.11 turns out to be safety-related, but is not considered
in the safety concept. While the safety function implemented in the chosen
approach does not handle any fault that leads to a critical movement of this
motor, the generic approach could at least handle hardware faults in the micro-
controller that could lead to this critical behavior). Summarizing, the decision
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for one of these approaches depends a lot on the application as well as the costs
and the technological maturity of devices that allow device supervision. At the
moment, we see significantly lower development effort in our approach compared
to the alternative considered, at least if the application is comparable to the
one investigated for this work (specific constellation of values could violate the
safety goal, safe state by deactivating the safety-related actuators).

6.6.2. Impact on Reliability

For an evaluation of the reliability7, the behavior of the developed systems was
compared for defined fault scenarios8. However, only minor differences could be
observed, which is not surprising as the same safety concept was applied in both
systems. Nevertheless, the following differences could be observed. First, the
communication between the MCU and the FPGA is considered as less reliable
than the on-chip communication on the dual-core microcontroller, as soldering
points and longer transmission lines are involved in this communication. Second,
the clock of the MCU is not supervised in the MCU+FPGA approach, while an
external watchdog is applied in the dual-core approach. Although this missing
clock supervision is considered as a drawback on the reliability of the application,
the supervision could be implemented subsequently on the FPGA with low
effort. As a third aspect, the FLASH memory containing the program code
of the application is not protected in the MCU+FPGA approach and is only
checked during system start in the dual-core approach. However, the second
core could perform cyclic checks of this memory and therefore increase the
reliability of the dual-core approach. Summarizing, the differences between the
considered platforms are low, but slight advantages of the dual-core approach
could be determined with respect to the reliability of the implementation.

6.6.3. Impact on Modifiability

Finally, the modifiability was evaluated by given scenarios of modification. The
first scenario is a change from a semi automatic roof control to a full automatic
roof control. As the roof is moving in this case even without the driver con-
stantly pressing the button, the hazard that a human is clamped in the roof
mechanic has to be handled by measuring the torque during roof movement.
Therefore, the measurement of this value has to be integrated into the safety
function. Moreover, the original safety function has to be modified in a way

7Reliability is defined in this context as the probability that the system is acting as specified.
8The following scenarios were considered: Faults in the RAM, the ROM, the SPI connection,
the exchange RAM, the I/O path, the CAN controller, the CPU, the clock, and the power
supply (see [92] for details).
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that the movement starts with the first activation of the button and has to
stop with the activation of the stop button or by reaching an end position. As
only single aspects of the safety concept have to be modified while the overall
structure remains unchanged, it is expected that these changes in the safety
function could be implemented easily.
A second scenario is the implementation of a door control unit responsible for

the movement of the side windows. Again, the safety function has to control all
safety-related signals. While the application is different, the same concept as
developed for the original application can be used in this case for both hardware
platforms (monitoring of user panel and torque, deactivation of motor in case
of hazardous conditions).
Summarizing, the safety concept developed in the experiment could be easily

transferred to other applications if the safety concept is similar (monitoring of
safety-relevant signals, deactivation of safety-related actuators if signals indicate
a violation of safety goals). Otherwise, modifications might require more effort
if the safety function is more complex, as it is, for example, expected in most
driver assistance applications.

6.6.4. Threats to Validity

As discussed in Section 6.1, the task selected might have an impact on the ex-
ternal validity. While the task selected for this experiment is certainly complex
enough, impacts of a task modification on the results have to be considered. In
this case, the results are transferable to applications that allow a comparable
safety concept, as discussed in Section 6.6.3.
Moreover, the knowledge and the skills of the experiment participants is a

potential threat to the validity. The participants had a comparatively long time
to get familiar with the design environments and hardware used. Therefore, we
see no major impact on validity in this aspect, especially as we investigated only
an effect (e.g. treatment A leads to better results than treatment B without
further quantification of the differences). Furthermore, the participants were
not experienced in the application of the safety standard ISO26262. While this
lack of experience might have influenced the development time, we see no threat
to the validity of our results in this aspect, especially as both approaches were
affected in the same way.
Finally, only two teams participated in this experiment for the reasons de-

scribed in Section 5.6. Thus, the results might depend on the individual experi-
ment participants. While we expect no changes in the results obtained, further
experiments as the one presented are desirable to support our results.
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6.7. Identified Development Problems

The development of different applications on different hardware platforms identi-
fied certain development problems. While most problems were of general nature
(e.g. the application specific problems described in 6.2.1), several problems were
specific for the hardware platform applied.
A first difference was observed during debugging activities of the experiment

participants. Debugging activities on the MCU could be performed on the ac-
tual hardware by applying breakpoints and the in-system emulation hardware.
This procedure seemed intuitive and each time students had to debug their
implementation they could analyze their code by step-wise execution. How-
ever, the application of this approach was limited during later design stages,
as an increasing number of interrupts complicated this sequential analysis of
the code. Nevertheless, the participants could usually mitigate this problem
by switching off all interrupts that did not contribute to the function investi-
gated or by using more than one breakpoint. Debugging activities were a little
different on the dual-core microcontroller applied in the last experiment. Al-
though debugging by using breakpoints in both cores was possible in general,
the simultaneous debugging of both cores turned out to be unpractical with our
debugging tools. Moreover, even the standard debugging process for one core
was less comfortable than in case of the Atmel MCU, which was used in the
previous experiments. However, it is expected that debugging capabilities for
dual-core microcontrollers will improve in the future.
In case of the FPGAs, no pre-designed debugging facilities were available.

A tool for the integration of debugging circuitry in the FPGA (Xilinx Chip
Scope) could have been used. However, test applications with students showed
that the successful application of this tool requires a comprehensive introduction
to the use of the tool, which could not be given within the scope of our experi-
ments. Therefore, the students were instructed to include their own debugging
circuitry in combination with LEDs, switches, and 7-segment displays. While
this approach worked well in many cases, students often missed the possibility
to evaluate their program step-wise as in case of the MCUs. This problem was
especially the case during the application of state machines. This aspect em-
phasized that MCUs are suited better for sequential operations, not only with
respect to the implementation aspect itself, but also with respect to debugging
options.
As another aspect, it has often been stated that parallel FPGA components

interact only via their interfaces and show less side affects for this reason. While
this separation is true for a correct design, side effects are possible according
to bad design practice. An example of this unwanted interaction is a design
with two clock domains that are connected without specific measures [88]. This
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structure may lead to a design which works intermittently as the two clocks
are asynchronous and therefore have an unknown phase relationship leading to
metastability as the clock domains are crossed. This effect occurred in one of
our experiment versions. The design worked fine first (first acceptance test),
but additional components in the system led to a different routing of the design,
which resulted in wrong behavior later on (second acceptance test). The reason
for this behavior, also described in Section 5.5.3, is assumed to be an increase
of the clock skew by adding new components. A warning was generated by the
design environment already before the first acceptance test, but was ignored by
the development team. Similar problems can also be introduced if input signals
are not correctly synchronized with the correct system clock.
The hardware related aspects mentioned above generally do not have to be

considered during software development for microcontrollers (e.g. synchroniza-
tion stages are present at all MCU inputs by default). Although challenges are
also present in these systems (deadlocks, problems resulting from interrupts and
memory violations) mitigation of these problems requires only limited knowl-
edge of the underlying hardware.
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Figure 6.3.: Results of questionnaire MCU vs. FPGA

In order to collect concrete feedback from the students, they were asked to
fill out an MCU vs. FPGA evaluation sheet in Experiment 5. While certain
aspects were given, the students had the option to add further aspects. Each
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aspect was graded from 1 (very good/very sufficient) to 5 (bad/not sufficient)
and the results are partly depicted in Fig. 6.3.
One aspect that has been graded worse for the FPGA development than for

the MCU development was the compilation time, which was significantly higher
for the FPGAs. This aspect is also considered in the validity evaluation.
The second aspect was a rating of the debugging capabilities of MCUs and

FPGAs. Also in this case, MCUs received a better grading than FPGAs. As
mentioned above, effective debugging is possible also on FPGAs, but generally
requires the development and integration of an own debugging circuitry in the
device. Advantages of FPGAs are that also sophisticated debugging facilities
could be implemented if sufficient chip resources are available. However, even
simple debugging facilities require more effort than in case of the MCU.
Next, the design environments have been rated similar in both cases while the

FPGA environment was rated slightly worse (reasons: too slow, less intuitive
than the MCU environment).
Further on, the aspect undesired side effects was on average rated slightly

better for the MCUs than for the FPGAs. While it has been expected that
FPGAs allow better control of side effects according to their parallelism, this
parallelism turned out to be the problem for several teams. Another disadvan-
tage in the FPGA design was that undesired side effects could occur according
to bad design practice as described above.
Another aspect rated better on MCUs than on FPGAs was the straightfor-

wardness to use arithmetical operations. As a reason could be seen that e.g.
floating point operations could be used in the C implementation (with a certain
run time overhead), but even simple divisions could not be synthesized directly
from VHDL descriptions.
Finally, real-time qualities have been rated better for FPGAs than for MCUs

by two teams (reason given: no side effects in FPGA by interrupts). The
initialization effort was also rated better for FPGAs (reason: all MCU resources
had to be parameterized while they could be "simply designed" in the FPGA).
Summarizing, development problems between MCUs and FPGAs differ in

several aspects and advantages of a specific hardware platform often depend on
the individual application.
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An evaluation of the validity of the results obtained in our experiments can
be found in Section 6 while further aspects are considered in this chapter. In
the following section, the problem of limited significance in the results of two
experiments is discussed. Further on, the experiment design is evaluated from
the organizational point of view in Section 7.2 while an evaluation from the
educational point of view can be found in Section 7.3.

7.1. Significance of Experiment Outcomes

According to our evaluations by using the resampling method, significant re-
sults were obtained in the first and the fifth experiment, while the results in
Experiment 4 and 6 are not suited for statistical evaluations1.
In case of the hypothesis testing in Experiment 2, the value of the statistical

significance determined by resampling is generally slightly above the accepted
value of 5% (see also second column of Tab. 7.1). Accordingly, the effect mea-
sured is not strong enough to be demonstrated with the available number of
versions. To determine the required number of versions to achieve the desired
significance of the results, the resampling process introduced in Section 4.7.2
was modified. In a first step, not 20 but 24 samples were drawn in each re-
sampling step simulating 24 versions. As can be seen in the third column of
Tab. 7.1, this number of versions is expected to be sufficient to achieve a sig-
nificant result in case of the hypotheses H02a and H02d. In a second step, we
increased the number of versions to 44, resulting in a sufficient significance for
hypothesis H02b.
A similar problem occurred in Experiment 3. Here, the significance of the

result obtained by the testing of hypothesis H03b (17.6%) was a lot higher than
the threshold of 5%. It might be possible to increase the significance of the
observed results by increasing the number of the reviewers and/or the number
of reviewed versions (in order to obtain more review results). According to
another simulation a doubling of the considered review results would have lead

1Note: The reason is the type of hypothesis in Experiment 4 and the low number of experi-
ment participants in Experiment 6.
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Table 7.1.: Significance of the results in Experiment 2
Hypothesis Significance Significance Significance

20 versions 24 versions 44 versions
H02a 5.10% 3.62% 0.73%
H02b 6.14% 5.68% 3.02%
H02d 5.49% 2.26% 0.30%

to a significance of ∼9% while a quadrupling would have lead to a significance
of 2.57%.
These considerations show that higher numbers of versions are required for the

evaluations to allow an improvement of the significance of the results. In case
of Experiment 2, a sufficient number of teams was available, but not all teams
managed to pass the acceptance test with both implementations. Therefore,
the possibility that not all teams finish the experiment successfully should be
considered during the planning phase of each experiment.

7.2. Organizational Aspects of the Experiments

The conduction of the experiments revealed several challenges. First, the execu-
tion of the experiments 1, 2, 4, and 5 required good planning, as a high number
of different devices (development boards, debugging hardware, CAN interface)
and tools had to be provided to the students. In this context, the common
CAN bus turned out to be a very useful output for the experiment application.
The values of all teams present on the CAN bus could be recorded with a single
CAN monitor and were simply displayed via a video projector. Moreover, each
team was equipped with a small frequency generator, which we developed for
this purpose, to test the main task of these experiments. Therefore, this appli-
cation allowed comparatively easy tests by the experiment participants during
their development phase while the acceptance test also profited from this struc-
ture. Summarizing, the chosen approach could support the idea of design for
testability introduced in Section 4.6.6.
Further on, the acceptance and evaluation tests of the experiments 1-5 re-

quired specific equipment that was developed for this purpose. As described in
Section 4.3, the use of a common basic task for these 5 experiments allowed the
use of a common test environment, which could reduce the overall development
effort in this field. In this context, the test environment turned out to be very
flexible, which facilitated the adaptation of the test environment for the differ-
ent experiments. One aspect that allowed this flexibility was the separation of
the different test aspects, namely the test case generation, the test signal gen-
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eration, the test run coordination and recording, and the later off-line analysis
(see Section 4.7.4). Another aspect that allowed to support this high flexibility
was the use of an FPGA for the test signal generation. This way, high numbers
of independent and individual signals could be generated easily. While the per-
formance of the test environment was sufficient for the chosen application, the
bottleneck of the system can be seen in the serial connection between the PC
and the remaining test hardware. However, this connection could be replaced
if higher communication bandwidth is required in future test applications (e.g.
by USB).
Moreover, the effort of developing a suitable specification was reduced sig-

nificantly by using a common basic task for several experiments. Thus, only
modifications had to be integrated into the specification and the amount of
testing during experiment development could be reduced. Finally, comparisons
of the results obtained in the different experiments were possible that way (e.g.
comparison of the results of the experiments 1, 2 and 4 in Section 6.2).
Furthermore, the conduction of questionnaires turned out to be very useful,

especially to evaluate threats to the validity of our results (see Section 6.1).
In case of experiments involving verification activities, it has to be distin-

guished between two main aspects: On the one hand, it could be evaluated
which aspects are investigated by the experiment participants (What is veri-
fied?). On the other hand, it might be interesting to compare the verification
results of several participants regarding a given aspect (What is the verification
result?). In Experiment 4, we were interested in the first aspect. Therefore, we
gave no guidelines to the students regarding the concrete aspects that should be
verified. In Experiment 3, we were interested in a comparison between the re-
view results of the three reviewers. Problems regarding comparability occurred
in this case, as the second reviewer partly chose different review scenarios than
the first one. To increase the comparability between the results, we provided
the review scenarios selected by the first reviewer to the third reviewer. There-
fore, we recommend always to determine the focus of the investigation first. If
it is on a comparison of the review results, equal review scenarios should be
provided to all reviewers to ease comparison of the review results.
An aspect, which could be approved for following experiments, was the time

available for corrections in Experiment 4. However, the aspects of interest for
this work could be evaluated without completed corrections as described in
Section 6.2.2.
Finally, Experiment 6 was based on another application. The reason for

choosing this application was the need for a more complex application with
explicit safety goals. The new application was resulting in additional effort for
the specification and the development of the test- and simulation environment.
Nevertheless, it has to be noted that minor parts of the test environment de-
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veloped for the first five experiments could be reused in this test environment
(e.g. signal generation with an FPGA connected to a PC via serial connection,
CAN controller interface on the FPGA). The reuse was limited as this appli-
cation required a more sophisticated simulation of its environment (windows,
roof, trunk,...), which necessitated to develop a model of the environment as
described in Section 4.7.4. In the end, further experiments with this application
are desirable to compensate the effort for the additional specification and the
new test environment.

7.3. Educational Aspects of the Experiments

As mentioned before, experiments are often conducted in lab courses or as
projects in universities. As a reason, it is often the only possibility to con-
duct experiments involving implementation activities with a sufficient number
of participants. While the impacts on the experiment results of this approach
are discussed in Section 6.1, the impacts of experiments on educational aspects
are discussed briefly in this section.
First of all, experiments in lab courses and university projects come with a

few educational advantages. In most cases, the experiment task represents a
carefully designed specification of an application example or even a real applica-
tion. This type of application is considered as a real-world task for the students
in contrast to weekly step by step exercises. While this type of task is certainly
more realistic, a higher level of knowledge and skills of the students is required
for this form of teaching. Therefore, experiments seem to be especially suitable
in later stages of the study period. Moreover, the combination of research and
educational aspects allows higher investments of time and money in the design
of the corresponding project than following these aspects independently. Fur-
ther on, it is beneficial that by combining experiments with education, both
parties are interested in completing the experiment task successfully. The stu-
dents are interested in a successful implementation in order to receive their
certificate, while the experiment supervisor has the same interest as successful
implementations are usually required for later evaluations.
Moreover, the experiment design of the experiments 1, 2, and 5 was in line

with the educational aspect behind these experiments. According to this struc-
ture, the participants were able to implement a common specification in two
different ways, clarifying differences in their specific benefits and drawbacks
(see [105] for further information on these educational aspects). While this ap-
proach was not possible in Experiment 4, feedback of the students on the review
and test activities was also positive.
On the other hand, certain disadvantages could arise. If students fail to han-
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dle certain tasks of the experiment, only limited support can be given in order
to avoid unintended influences of the experiment supervisor on the experiment
outcome (see Section 4.7.2). Otherwise, the team could be removed from those
teams which are considered for the experiment evaluation. In this case, indi-
vidual help could be provided, but this treatment is regarded as problematic
for the internal validity of the experiment as unwanted outcomes may be re-
moved this way. In addition, it has to be assured that this special treatment is
not affecting the motivation of the remaining teams. In our experiments, weak
teams could be supported by giving additional time for completing the tasks.
However, usually not all teams could pass all acceptance tests conducted in the
corresponding experiment.
Additionally, the anonymization of the experiment participants is desirable for

the conduction of the experiment (see e.g. [16], page 49). However, anonymiza-
tion is often not possible in education as the certification of the successful partic-
ipation in the lab course or project is generally dependent on the performance
of each individual student. Therefore, each team received a random number in
our experiments, but a document existed in which the students were assigned
to these numbers. However, only for the issuing of the students’ certificates we
checked whether the team with the corresponding number fulfilled the accep-
tance criteria. Thus, a certain level of anonymization could be achieved.
Accordingly, educational and experimental responsibility tend to conflict so

that well thought decisions have to be taken. Thus, additional effort is required
to perform experiments in lab courses that suit experimental and educational
needs. Nevertheless, we are of the opinion that this additional effort paid off
very well in our experiments.
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The main aspects of this work are summarized briefly in this chapter and the
corresponding conclusions are drawn. Moreover, a short discussion of possible
future work is presented.

8.1. Conclusion

According to the importance of embedded systems in safety-critical applications,
impacts of design decisions on safety aspects were discussed. The handling of
faults in the software and hardware parts of these systems turned out to be an
important aspect for the assessment of safety-related impacts. Moreover, we
observed potential dependencies between the selection of a specific hardware
platform and fault handling activities. Thus, two different hardware platforms
(microcontrollers and FPGAs/CPLDs) were selected for the investigations con-
ducted for this work followed by the evaluation of fault handling aspects in
these devices in Chapter 3. During the evaluation, we observed a lack of well
founded results in case of several fault handling aspects. Particularly few pieces
of information could be found regarding the assessment of fault handling tech-
niques that depend on human factors as many activities in the development of
software for safety-critical applications. Accordingly, the impact of hardware
platform selection on five of these aspects, software diversity, encapsulation, re-
viewability, resusabilty, and development according to ISO26262, were chosen
for investigation in this work. Furthermore, the approach of software diversity
was compared with a fault removal approach.

Empirical evaluations, experiments to be more precise, were identified as a
suitable methodology for the evaluation of the selected aspects. The planning
of these experiments, which is described in Chapter 4, required a consideration
of the specialties of embedded systems. In contrast to pure software experi-
ments, these experiments require specific materials. Therefore, development
boards and the corresponding equipment had to be provided in sufficient num-
bers. Next, the experiment application had to allow a reasonable operation
and testing during the execution of the experiment as well as an efficient eval-
uation testing of the experiment outcomes. An automotive application was
chosen, which turned out to be very suitable for this purpose. In this context,
the consideration of testing issues, as the design for testability and a suitable
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process for the conduction of the acceptance tests, were important aspect of
the experiment design. Further on, specific test environments had to be devel-
oped for acceptance and evaluation testing. The development effort for test
environments could be reduced by using a common basic task for the first five
experiments. This task was extended by additional tasks to suit the needs of
the individual experiments. Moreover, the use of a common basic task for these
experiments made it possible to reduce the effort for the development of the
experiment task specification. On the other hand, a different task was required
for the last experiment. While minor parts of the existing test environment
could be reused, a complete new specification had to be developed.
The operation of the experiments is described in Chapter 5. The experiments

were mostly conducted in lab courses (experiments 1, 2, 4, and 5) to allow for
sufficient numbers of experiment participants. The remaining experiments had
to be conducted with lower numbers of student assistants (Experiment 3) or
within the scope of diploma theses (Experiment 6) as the experiment task was
not suitable for a conduction in lab courses. The results obtained by hypothesis
testing and the corresponding analysis in Chapter 6 are summarized in the
following for each aspect investigated.

8.1.1. Experiment Results

Software diversity

First, software diversity could be increased by the application of diverse hard-
ware platforms. However, the effect was low and we disproved the hypothesis of
statistical independence of the failures. Reasons for the dependent failures were
identified in the specification, the application itself and the implementation.
According to the results we obtained in the first and the second experiment,
software diversity is not suited to tolerate application and specification specific
faults. Moreover, even one implementation specific fault was identified in several
versions developed independently on different hardware platforms.

Test and Review vs. N-Version Programming

The approach of fault tolerance was compared with fault removal by test and re-
view in Experiment 4. As a result, test and review identified application specific
faults, which were not covered by software diversity. Otherwise, specification
specific faults (ambiguous and incomplete statements) were identified only by
a minority of the teams during their review and test activities. Moreover, not
all implementation specific faults were identified by review and testing. Accord-
ingly, the approaches have their strength in different fault categories (software
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diversity for implementation specific faults, fault removal for application specific
faults), while specification specific faults remain a problem for both approaches.

Encapsulation

Potentials of encapsulation were investigated for MCUs and FPGAs (Experi-
ment 2). While it was expected that encapsulation of real-time tasks benefits
from the parallel structure of FPGAs, not all hypotheses investigated could
support this assumption. As a general result, this encapsulation is expected to
work better on FPGAs than on MCUs if several real-time functions with only
limited functional interactions have to be implemented. Stronger interaction
between the implemented tasks counteracts this advantage.

Reusability

Encapsulation with respect to the reuse of real-time functions was investigated
in Experiment 5. During evaluation, different impacts on the reused component
could be observed in many MCU versions while no effects occurred in any FPGA
version. According to our evaluations, FPGAs will have an advantage if real-
time components can be reused without modifications. In this case, faults can
occur only in case of an incorrect interface between the reused component and
the new application. This is different in case of real-time software components
reused in an MCU. While on-chip peripherals as timer/counter units could ease
the concurrent execution of several real-time functions, undesired side effects
by the common CPU have been identified in our evaluations. Moreover, the use
of on-chip peripherals increases the hardware-software dependencies on MCUs,
while software for FPGAs is in general developed completely hardware indepen-
dent. However, problems could occur in FPGAs if design guidelines are not
followed strictly. Furhtermore, changes in the functionality of the reused com-
ponent could require major modifications of its internal structure and interface.
These problems were identified as less critical for MCU software.

Reviewability

Moreover, the application of reviews was investigated for the software written
for MCUs and FPGAs (Experiment 3). As in the case of encapsulation, it was
assumed that the parallel nature of the FPGA would ease the process of evalu-
ating real-time software. The reviewability of FPGA software was (on average)
rated better by each of our reviewers than the reviewability of the MCU software.
However, the significance of the observed difference is not given, but might be
achieved by higher numbers of reviewers as demonstrated in Section 7.1. Other-
wise, a check of the review results by testing showed higher compliance of test
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and review results in case of MCU versions. Therefore, the FPGA versions con-
cealed certain faults from the reviewers, although their reviewability was rated
higher on average.

ISO26262 Development

In the last experiment, the development of a safety-critical application follow-
ing the safety standard ISO26262 was evaluated for two hardware platforms.
According to the common safety concept chosen for both hardware platforms,
only minor differences were identified between both implementations, as de-
scribed in Section 6.6. Otherwise, differences were identified between the safety
concept chosen, which is based on functional supervision, and an alternative ap-
proach based on device supervision. Several advantages could be identified for
our approach (handling of software faults, knowledge of the criticality of faults,
intuitive fault handling concept) while advantages of the alternative concept
were limited to the independence of this approach on the safety concept and
the application. A comparison of the advantages and disadvantages of both
approaches revealed, that the decision for one of these approaches depends a lot
on the application. While the costs and the technological maturity of today’s de-
vices allowing device supervision makes them unsuitable for many safety-critical
embedded applications, this concept might gain importance in the future, es-
pecially for applications that do not allow an intuitive concept of functional
supervision.

Identified Development Problems

Furthermore, the observed development problems regarding MCUs and FPGAs
were discussed in Section 6.7. Aspects as long compilation times and a less
intuitive way of debugging the software were identified as disadvantages in the
FPGA design. Moreover, design guidelines are more important in FPGA design
to allow a reliable design (hardware aspects have to be considered). Otherwise,
trends to develop FPGA designs on higher levels (e.g. by using Xilinx Embedded
Development Kit(EDK)) can be observed, which might ease the handling of
hardware effects in future FPGA designs.

8.1.2. Evaluation

Potential threats on the validity of the presented results were discussed (Chap-
ter 6). Accordingly, no major threats on the validity could be identified. Never-
theless, additional experiments are desirable to extend the general applicability
of the results presented in this work. Further improvements of the experiment
structure are discussed in the outlook on future work.
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Moreover, the experiment design was evaluated in Chapter 7 regarding the
significance of the experiment outcomes as well as organizational and educa-
tional issues. Accordingly, the significance of certain results observed in our
experiments might be further improved by increasing the number of evaluated
versions. To summarize the organizational aspects, the approach used for the ex-
periments 1-5 presented in this work allowed to reduce the overall effort needed
for preparation, execution and evaluation of the experiments. Thus, the ap-
proach presented could be applied for further experiments with a similar or
different task to increase the validity of our results as mentioned above. Fur-
ther experiments, based on the task applied in Experiment 6, are especially
interesting to compensate the planning and development effort of this experi-
ment. Finally, advantages and disadvantages with respect to education have
been identified for experiments conducted in lab courses. In our opinion, the
biggest advantage in the combination of educational and experimental aspects
is the possibility of higher investments of time and money for each purpose
compared to an independent following of both aspects. On the other hand,
educational and experimental requirements tend to conflict. However, if well
thought decisions are taken, we consider this approach as suitable to fit both
needs.
Summarizing, we identified potential impacts of hardware platform selection

and introduced a methodology for the investigation of open issues in this field.
Further on, we presented empirical results based on the experiments conducted
for the evaluations of these issues. The identified impacts of hardware platform
selection on the safety of embedded systems hopefully help developers of these
systems with their design decision. Finally, further investigations are desirable
to support our results and to investigate the remaining open issues.

8.2. Future Work

Two main aspects are interesting for future work. First, further empirical eval-
uations are desirable to cover the remaining open issues presented in Section 3,
which is discussed in the following section. Moreover, the results gained by em-
pirical evaluations could be collected to support constructive approaches, which
are presented in Section 8.2.2.

8.2.1. Further Empirical Evaluations

Further Impacts on Fault Handling

Investigations in experiments require a change of only the independent variable
to allow precise results with respect to the dependent variable. Thus, several of
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the potential impacts listed in Chapter 3 could not be investigated in this work
so that further experiments might be desirable to investigate these open issues.
Aspects that might be of particular interest are the impact of hardware abstrac-
tion and operating systems or the impact of model based design techniques
on fault handling aspects. Moreover, additional approaches of software fault
handling could be further investigated, as the approach we presented in [22].

Further Experiment Designs

With a larger financial budget, improvements to increase the number of suitable
participants could be achieved. One approach would be to employ students for
the experiments. This approach allows higher numbers of experiment partici-
pants, particularly in case of experiments that are not suited for a conduction
in lab courses for educational reasons (as Experiment 3).
Furthermore, alternative approaches might be suitable to increase the num-

ber of participants. An example would be an experiment application which
could be accessed via the internet (e.g. application that can be programmed,
executed and monitored via internet; supervision of application via webcam).
This approach would allow participants all over the world to take part in the
experiment, which could improve the significance of the results. However, these
types of experiments might be more difficult to control.

Further Use of Experiment Data

The program versions developed in the different experiments can be used for
further evaluations. As an example, several experiment versions were used for
a case study of the model checker developed at our institute [111].

8.2.2. Constructive Approaches

The idea of constructive approaches is to improve the reliability and safety of
a system by applying suitable design rules. While certain guidance is given by
safety standards [46, 48], several aspects remain untouched. For a successful
application of constructive approaches further information, e.g. by empirical
evaluations as applied in this thesis, is required for this reason. To enable an
efficient application of this information obtained, it could be included in a de-
sign pattern catalog, as proposed in [3]. Moreover, the information could be
provided in the form we proposed in [99] for supporting hardware platform de-
sign decisions. This approach is based on two steps presented in Fig. 8.1. First,
hardware attributes of a specific hardware platform are identified and evaluated
(left part of Fig. 8.1). They represent how much a given platform contributes to
the corresponding system qualities (e.g. the hardware attribute testability of a
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specific hardware platform represents how this platform contributes to the sys-
tem quality testability). The hardware attributes considered in our approach are
depicted in Fig. 8.2 in form of an attribute tree. Second, all hardware features
that have a possible impact on the different attributes have to be considered to
allow an evaluation of the hardware attributes for a specific hardware platform
(right part of Fig. 8.1). As an example, encapsulation capabilities regarding
real-time functions (hardware feature) have an impact on different hardware
attributes of the corresponding hardware platform, as reliability, safety and
reusability. Based on the result of this two step approach, the hardware at-
tributes of different hardware platforms can be compared. The designer can
then decide which hardware attributes are the most important ones and which
are of minor interest. Thus, an overall picture is used for comparison and single
aspects are not forgotten which might turn out to be important later on. The
application of the selection process, the hardware attribute tree as well as the
relationship between hardware attributes and hardware features is described in
more detail in [99]. Moreover, the approach was applied in [104] for a survey
on the suitability of FPGAs for industrial applications.
Finally, trade-offs between different design solutions could be supported by

the application of Kiviat graphs, as proposed in [72].
The integration of the results obtained in this work into the approaches men-

tioned above is desirable for two reasons. On the one hand, it would ease the
access to the results obtained and simplifies their application in design decisions
in safety-critical systems. On the other hand, the integration of empirical results
into these approaches would hopefully motivate further empirical investigation
in the field of safety-critical embedded systems.
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While only mean and median values of the test results are presented in Chapter 5,
the results measured for each version are included in this appendix for the
experiments 1, 2, 4, and 5. During the evaluation of the measurement results we
distinguished between timing failures (message too late), silent failures (message
lost), and content failures (values in the message are wrong). Moreover, we
distinguished between major content failures (value differs more than 1 from
the closest correct value) and minor content failures (value differs by 1 from the
closest correct value). According to the limited space, only the sum of these
failures could be included while a listing of all individual failures is available
in electronic form. As a failure could be a content and a timing failure at the
same time, the sum of all failures could exceed the value of 100%. Moreover,
versions that were implemented in the first half of an experiment are indicated
in the tables of the experiments 1, 2, and 5 as follows: "-1-" = this is an initial
version, " 1 " = this version was developed in the second half of the experiment.
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Table A.1.: Results Experiment 1
Test bench

Team TB2 TB3 TB3s TB4 TB8
-1- 0.4% 2.8% - 0.0% 0.6%
2 0.1% 1.9% - 0.2% 20.7%
3 10.8% 2.4% - 7.0% 4.7%
-4- 1.1% 0.7% - 4.3% 8.6%
5 0.2% 0.8% - 0.0% 0.7%
6 1.8% 15.6% - 5.7% 5.2%

MCU -7- 1.7% 1.2% - 0.1% 8.5%
-8- - - - - -
-9- 0.7% 0.8% - 0.2% 8.2%
10 12.1% 2.9% - 7.9% 4.6%
-11- 0.9% 65.0% - 0.0% 0.0%
12 - - - - -

Mean 2.98% 9.41% - 2.54% 6.19%
Median 1.00% 2.16% - 0.18% 4.96%

1 11.8% 98.6% 3.8% 3.2% 1.6%
-2- 10.3% 94.8% 95.6% 6.2% 10.9%
-3- 7.3% 98.6% 3.4% 2.7% 1.3%
4 12.8% 99.7% 3.2% 3.1% 1.6%
-5- 0.1% 94.5% 1.2% 0.0% 0.7%
-6- 1.6% 95.7% 93.8% 1.1% 0.7%

CPLD 7 1.5% 0.7% 1.0% 1.0% 0.5%
8 - - - - -
9 11.1% 99.7% 3.8% 3.7% 2.3%

-10- 2.1% 98.9% 1.2% 1.1% 0.4%
11 1.9% 99.2% 1.2% 1.0% 0.4%
-12- - - - - -
Mean 6.05% 88.04% 20.82% 2.32% 2.04%
Median 4.69% 98.60% 3.32% 1.92% 1.00%

Note: TB3s = shortened version of TB3, used for the
evaluation of crosstalk effects in CPLD versions.
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Table A.2.: Results Experiment 2 (main versions)
Test bench

Team TB2 TB3 TB4 TB8 TB9
-1- - - - - -
2 0.8% 2.7% 0.0% 1.4% 1.8%
3 1.4% 6.1% 0.0% 3.5% 2.7%
-4- 0.5% 6.4% 0.1% 2.3% 0.6%
-5- 0.8% 0.7% 0.0% 0.1% 1.0%
-6- 2.7% 18.5% 0.0% 10.1% 6.7%

MCU 7 2.1% 63.9% 0.2% 84.3% 38.4%
-8- 0.2% 11.9% 0.1% 7.4% 2.5%
9 0.3% 23.1% 0.0% 34.1% 5.1%
10 1.4% 31.9% 0.2% 55.3% 6.8%
-11- 0.5% 77.6% 0.0% 92.0% 22.3%
12 2.1% 64.1% 0.2% 84.3% 17.1%

Mean 1.15% 27.90% 0.09% 34.07% 9.53%
Median 0.8% 18.5% 0.03% 10.1% 5.1%

1 - - - - -
-2- 0.9% 17.6% 0.0% 37.4% 2.5%
-3- 7.8% 2.0% 2.3% 1.3% 1.8%
4 1.9% 8.2% 0.5% 14.0% 2.9%
5 0.2% 20.9% 0.6% 29.5% 3.9%
6 0.5% 1.2% 0.0% 0.8% 0.5%

FPGA -7- 18.9% 18.6% 1.9% 31.2% 6.8%
8 7.0% 66.6% 2.3% 85.9% 17.6%
-9- 0.2% 52.0% 0.1% 86.1% 19.4%
-10- 1.4% 20.1% 0.3% 28.9% 4.0%
11 6.8% 33.4% 2.4% 49.8% 12.2%
-12- 4.7% 20.2% 18.1% 40.1% 25.4%
Mean 4.56% 23.71% 2.59% 36.84% 8.83%
Median 1.9% 20.1% 0.6% 31.2% 4.0%

Note: As team 1 did not deliver an FPGA version, also
their MCU version was not considered for evaluation.

153



A. Experiment Results

Table A.3.: Results Experiment 2 (final versions)
Test bench

Team TB2 TB4 TB8 TB9 TB4b
-1- - - - - -
2 0.8% 0.0% 1.4% 1.7% 0.6%
3 1.4% 0.0% 3.6% 2.7% 12.4%
-4- 0.4% 0.1% 0.7% 0.3% 0.0%
-5- 0.9% 0.0% 0.7% 0.9% 49.7%
-6- 1.5% 0.0% 10.1% 6.7% 61.5%

MCU 7 2.1% 17.4% 90.4% 42.7% 31.8%
-8- 0.2% 0.1% 7.4% 2.5% 25.0%
9 0.5% 0.0% 38.9% 4.4% 45.9%
10 1.5% 0.3% 15.0% 3.2% 9.9%
-11- 0.3% 0.1% 84.9% 17.5% 42.0%
12 - - - - -

Mean 0.95% 1.80% 25.31% 8.26% 27.86%
Median 0.81% 0.04% 8.75% 2.92% 28.36%

1 - - - - -
-2- 0.8% 0.0% 39.9% 2.6% 6.7%
-3- 8.1% 2.4% 1.3% 1.8% 0.0%
4 1.6% 0.5% 13.8% 3.4% 51.7%
5 1.0% 0.0% 28.3% 33.2% 21.1%
6 0.3% 0.1% 0.8% 0.6% 0.0%

FPGA -7- 19.3% 1.9% 30.8% 6.9% 15.1%
8 6.9% 2.4% 85.8% 18.4% 1.7%
-9- 0.2% 0.1% 86.3% 19.5% 0.2%
-10- 1.4% 0.2% 28.4% 4.3% 9.1%
11 6.7% 2.4% 40.6% 11.2% 21.0%
-12- - - - - -
Mean 4.64% 0.99% 35.59% 10.17% 12.68%
Median 1.50% 0.36% 29.60% 5.58% 7.89%

Note: As team 12 did not deliver a final MCU version, also
their final FPGA version was not considered for evaluation.
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Table A.4.: Results Experiment 4 (debugged versions)
Test bench

Team TB2 TB4 TB8 TB9 TB4b
1 1.5% 1.3% 0.3% 1.6% 2.8%
2 0.0% 0.2% 1.8% 0.7% 2.8%
3 1.4% 0.3% 2.3% 1.6% 0.0%
4 0.1% 0.0% 19.7% 2.3% 65.7%
5 2.6% 19.1% 44.9% 13.7% 13.2%
6 0.5% 0.0% 50.3% 6.9% 14.6%

MCU 7 0.6% 0.5% 1.6% 0.9% 3.9%
8 0.0% 0.4% 0.2% 0.2% 3.1%
9 10.9% 0.2% 0.3% 1.5% 2.8%
10 0.8% 0.0% 5.5% 1.1% 36.6%
11 1.5% 0.3% 39.1% 2.8% 3.5%
12 0.8% 0.2% 95.0% 40.6% 4.0%

Mean 1.73% 1.88% 21.75% 6.16% 12.74%
Median 0.8% 0.3% 3.9% 1.6% 3.7%
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Table A.5.: Results Experiment 5
Test bench

Team TB2 TB4 TB4b TB12 TB13
-1- 0.4% 0.4% 27.5% 22.5% 42.7%
2 3.4% 2.3% 29.2% 52.5% 34.7%
-3- 0.2% 0.1% 27.5% 17.5% 16.0%
4 1.2% 1.8% 27.5% 30.0% 29.3%
-5- 0.2% 0.0% 27.5% 37.5% 24.0%
6 47.6% 22.4% 38.4% 112.5% 104.0%

MCU -7- 0.2% 0.1% 27.6% 30.0% 26.7%
8 1.5% 0.0% 27.5% 22.5% 20.0%
-9- 0.3% 0.1% 27.5% 30.0% 30.7%
10 0.0% 0.0% 44.0% 27.5% 20.0%
-11- 0.6% 0.1% 35.5% 22.5% 18.7%
12 86.0% 44.5% 52.0% 130.0% 116.0%

Mean 11.82% 5.97% 32.65% 44.58% 40.22%
Median 0.52% 0.05% 27.56% 30.00% 28.00%

1 3.5% 11.9% 33.0% 105.0% 97.3%
-2- 25.2% 13.2% 33.5% 100.0% 98.7%
3 1.1% 0.9% 27.6% 5.0% 0.0%
-4- 7.0% 1.4% 27.6% 17.5% 8.0%
5 0.9% 0.6% 28.4% 10.0% 6.7%
-6- 15.8% 6.9% 52.3% 142.5% 98.7%

FPGA 7 1.2% 0.9% 27.6% 17.5% 8.0%
-8- 2.9% 1.5% 89.8% 30.0% 17.3%
9 0.2% 0.0% 35.9% 15.0% 6.7%

-10- 6.0% 3.3% 35.7% 55.0% 33.3%
11 1.2% 1.5% 89.8% 17.5% 12.0%
-12- 72.9% 5.8% 28.2% 32.5% 22.7%
Mean 11.50% 3.96% 42.45% 45.63% 34.11%
Median 3.2% 1.5% 33.3% 23.8% 14.7%
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