
Aachen
Department of Computer Science

Technical Report

Satellites and Mirrors for Solving

Independent Set on Sparse Graphs

Joachim Kneis and Alexander Langer

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2009-08

RWTH Aachen · Department of Computer Science · April 2009

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Satellites and Mirrors for Solving

Independent Set on Sparse Graphs⋆

Joachim Kneis, Alexander Langer

Dept. of Computer Science, RWTH Aachen University, Germany

Abstract. We study the well-known Maximum Independent Set (MIS) prob-
lem and introduce the notion of satellites of a node. Branching on nodes with
satellites is extremely simple. Nevertheless, satellites can be used to overcome a
couple of hard cases in previous algorithms. Together with the notion of mirrors,
introduced by Fomin, Grandoni, and Kratsch, they can be used to solve MIS in
time bounded by O∗(1.1928m−n), which is O∗(1.0922n) for cubic graphs. This
improves over previous results for sparse graphs.

1 Introduction

In this paper, we study the well-known Maximum Independent Set (MIS)
problem: Given a graph G = (V,E) with n nodes and m edges, the problem
is to find an independent set I ⊆ V of maximum size α(G), i.e., a set I ⊆ V
such that no two nodes in I are adjacent. This problem is known to be NP-
complete [11] even on graphs of a maximum degree of three (cubic graphs).
Being a problem with a long research history, there are already numerous results
regarding approximation algorithms, randomized algorithms, or other approaches
for MIS on sparse graphs, see, e.g., [1, 3, 4, 9]. Here, we concentrate on exact
algorithms for sparse graphs. For exact algorithms on arbitrary graphs, we refer
the reader to the latest corresponding results, which are due to Robson [13] and
due to Fomin, Grandoni, and Kratsch [7].

Recently, there have been various new results for MIS on sparse graphs:
In 1999, Beigel [2] introduced an O∗(1.082m) algorithm, which implies a run
time bounded by O∗(1.1259n) for cubic graphs. This result was improved to
O∗(1.1254n) by Chen, Kanj, and Xia [6]. Fürer [10] was the first to analyze the
run time of algorithms for MIS in m − n, which eases the analysis of folding,
an important reduction rule for nodes of degree two. He obtains a run time of
O∗(1.2365m−n), which is O∗(1.1120n) for cubic graphs. Subsequent improvements
are due to Razgon [12] (to O∗(1.1034n)), and only recently to O∗(1.2048m−n),
i.e., O∗(1.0977n) on cubic graphs, by Bourgeois, Escoffier, and Paschos [5]. In
this paper, we improve the bound to O∗(1.1928m−n), which is O∗(1.0922n) for
cubic graphs.

While this improvement is of interest on its own, the new—to our best
knowledge—notion of satellites can be used beyond the scope of this paper:
firstly, if a node v has two adjacent satellites, then α(G) = α(G[V \ {v}]). Sec-
ondly, many exact algorithms for MIS use a bounded search tree technique and
branch on some node v. Here, it is often disadvantageous if there are many
edges in the neighborhood N of v, but few between N and the remaining graph.
For example, four of the five worst case recurrences in the algorithm by Fomin,

⋆ Supported by the DFG under grant RO 927/7

Grandoni, and Kratsch are graphs that contain satellites of v. These hard cases
probably become easier when using our new technique. Analyzing the new run
time, however, is very complex and subject to further research.

As we will demonstrate below, satellites can furthermore be combined effi-
ciently with mirrors, a notation introduced by Fomin, Grandoni, and Kratsch [7],
even though we cannot branch on mirrors and satellites simultaneously.

2 Preliminaries

Let G = (V,E) be a graph. The set of nodes of G is denoted by V (G). For a node
v ∈ V , the (open) neighborhood of v is denoted by N(v) and the closed neighbor-
hood of v is denoted by N [v] := N(v)∪v. Similarly, N2(v) :=

⋃

u∈N(v) N(u)\N [v]

and N2[v] := N2(v) ∪ N [v]. This notation is extended to sets U ⊆ V as follows:
N(U) :=

⋃

u∈U N(u)\U , N [U] := N(U)∪U , N2(U) :=
⋃

u∈U N2(u)\N [U], and
N2[U] := N2(U) ∪ N [U].

For U \ V , we by G \ U denote the induced subgraph G[V \ U] of V . As we
will see later, trees play an important role for the run time analysis. We say G
contains a tree, iff G has a maximal connected component that is a tree.

We now introduce satellites. Satellites allow for improved branching and let
us introduce a new reduction rule.

Definition 1. Let G be a graph v ∈ V . A node u ∈ N2(v) is called a satellite
of v, if there is u′ ∈ N(v) such that N [u′] \ N [v] = {u}. In this case we also say
u′ defines u (as a satellite). The set of all satellites of a node v is denoted by
S(v) := {u ∈ N2(v) | u is a satellite of v }.

Lemma 1. Let G = (V,E) be a graph and v ∈ V . Then either α
(

G \ {v}
)

=
α(G), or α

(

G \N [{v} ∪S(v)]
)

= α(G)− |{v} ∪S(v)|. If there are u,w ∈ V such
that u,w ∈ S(v) and {u,w} ∈ E, then α(G) = α

(

G \ {v}
)

.

Proof. Assume that every optimal independent set for G contains v. If there is a
satellite u of v that is not contained in some optimal independent set I, we can
replace v be the unique node in N(v) ∩ N(u) and obtain a new independent set
of equal size, a contradiction. If v has two adjacent satellites u and w, α(G) =
α
(

G \ {v}
)

is concluded immediately. ⊓⊔

We also use mirrors, a notion introduced by Fomin, Grandoni, and Kratsch [7].

Definition 2. Let G be a graph v ∈ V . A node u ∈ N2(v) is called a mirror of
v if N(v) \ N(u) is a clique. We let M(v) := {u ∈ N2(v) | u is a mirror of v }.

Lemma 2 (Fomin, Grandoni, Kratsch [7]). Let G = (V,E) be a graph,
v ∈ V and let I be an independent set of size k in G that does not contain v.
Then G \ ({v} ∪ M(v)) contains in independent set of size k as well.

Since the Measure & Conquer technique [8] can often be used to improve
the run time bounds, we do not simply measure the run time of our analysis
in m − n, but allow edges and nodes to weighted differently. Although it turns
out that λ = µ = 1 is optimal for the branching vectors obtained in this paper,
future improvements for some of our branches might lead to other better optimal
values of λ and µ, which is why we keep λ and µ as variables.

4

Definition 3. Let G = (V,E) be graph and let λ, µ ∈ R+, such that λ ≥ µ. We
call ϕ(G) := λ · |E| − µ · |V | the measure of G.

We now introduce the reductions rules applied by our algorithm. The first
trivial reduction rule is to remove isolated nodes. Note that this reduction rule
increases our measure by µ, hence we must be careful whenever isolated nodes
appear. We will later show that all reduction rules only increase the measure
when applied to maximal components that are trees.

Definition 4. Let G = (V,E) be a graph. For two adjacent nodes u, v ∈ V , we
say u dominates v iff N [u] ⊇ N [v]. If v ∈ V is a node of degree two, let u1, u2 be
the neighbors of v in G and N := N(u2)\{v}. The operation of adding the edges
{v′, u1} for all v′ ∈ N to G and removing v and u2 from G is called folding.

Note that dominating nodes can easily removed from the graph, as this does
not change the size of an optimal independent set. In particular, if a graph
contains a node of degree one, its neighbor is removed.

Folding is a well-known reduction rule and can be applied to all nodes of
degree two that are not part of triangle. However, nodes of degree two that are
contained in a triangle are dominated by both neighbors. Thus, our graphs never
contain nodes of degree two or less after the reduction rules have been applied.
It is easy to see that folding does not increase the measure.

Lemma 3 (Fürer [10]). Let G = (V,E) be a connected graph, and let v, u ∈ V
such that G \ {u, v} consists of two components G1, G2 that are not connected
to each other. If ϕ(G1) ≤ c for some fixed c, there is a graph G′ such that
V (G) ⊆ V (G2) ∪ {v, u}, G2 is an induced subgraph of G′ and α(G′) = α(G) + k
and ϕ(G′) ≤ ϕ(G), where k depends only on G1.

We can therefore assume that our graphs never contain separators of size at
most two: either one component is small and we apply Fürer’s reduction rule,
or all components are big and branching on the separator is efficient, since the
graph decomposes into big connected components, each of which contributes to
the running time only additively. Furthermore, if there are no small separators,
we do not end up with a forest when a set of nodes is removed from the graph,
i.e., G contains at least one maximal connected component that is not a tree.
This will be useful in the analysis.

The last reduction rule is to remove induced cycles of length four whose
nodes are all of degree three (cubic cycles). Again, this reduction rule eases our
analysis. Note that if such an cycle is not induced, i.e., it contains a chord, one
of its nodes is removed because of domination. See Figure 1 for an example.

Lemma 4. Let G be a graph that contains an induced cycle (u1, u2, u3, u4) of
length four, such that deg(ui) = 3 for all 1 ≤ i ≤ 4. Let G′ be the graph obtained
from G by removing {u1, . . . , u4} and adding edges for the cycle (u′

1, u
′

2, u
′

3, u
′

4)
where {u′

i} = N(ui) \ {u1, u2, u3, u4} and they do not yet exist. Then α(G) =
α(G′) + 2 and ϕ(G) ≥ ϕ(G′).

Proof. Let U ′ := {u′

1, u
′

2, u
′

3, u
′

4} (see Figure 1). By a simple exchange argument,
first note that there is an optimal independent set I in G that contains two
nodes from U := {u1, u2, u3, u4}. Wlog, assume {u1, u3} ⊆ I, and therefore

5

u1

u2

u3

u4

u′

1

u′

2

u′

3

u′

4

u′

1

u′

2

u′

3

u′

4

Fig. 1. Reduction rule for cubic cycles of length four, such that α(G) = α(G′) + 2.

Algorithm 1 Input: A graph G = (V,E), Output: α(G)
Reduce G according to the reduction rules;
If G contains t > 1 maximal connected components G1, . . . , Gt, then

return α(G1) + · · · + α(Gt);
Pick v ∈ V such that branching on v yields the best branching vector;
If the mirror branch of v yields a better branching vector, then

return max
`

α
`

G \ ({v} ∪ M(v))
´

, α
`

G \ N [v]
´

+1
´

;
else

return max
`

α
`

G \ {v}
´

, α
`

G \ N [v ∪ S(v)]
´

+ 1 + |S(v)|
´

;

I ∩ {u′

1, u
′

2, u
′

3, u
′

4} ⊆ {u′

2, u
′

4}. Since I ′ = I \ U is an independent set for G′,
α(G) ≤ α(G′) + 2.

Similarly, any optimal independent set I ′ in G′ either has I ′ ∩ U ′ ⊆ {u′

1, u
′

3}
or I ′ ∩ U ′ ⊆ {u′

2, u
′

4}. Wlog, assume I ′ ∩ U ′ ⊆ {u′

1, u
′

3}. Then I ′ ∪ {u2, u4} is an
independent set for G, implying α(G′) + 2 ≤ α(G).

Let m′ be the number of edges in G[U ′]. Then ϕ(G) = mλ − nµ ≥ (m − 4 −
m′)λ − (n − 4)µ = ϕ(G′). ⊓⊔

Definition 5. Let G = (V,E). We call the graph R(G) obtained from G by
applying the reduction rules above, i.e., removing nodes with adjacent satellites,
removing dominating nodes, applying folding and Fürer’s reduction rule as well
as applying Lemma 4 until no further reduction rules can be applied, the reduced
graph of G. A graph G is called reduced, if G = R(G).

For U ⊆ V , the measure difference between G and R(G \ U) is defined as

∆ϕ(U) := ϕ(G) − ϕ(R(G \ U)).

We can now combine all reduction rules as well as our branching rules for
mirrors and satellites into Algorithm 1. Note that we do not branch simultane-
ously on mirrors and satellites, as there are graphs where this does not result
in a correct solution. For readability, we simply branch on the node that yields
the best branching vector, i.e., guarantees the best run time. However, a more
efficient strategy to select v can easily obtained, when using the same nodes as in
the proofs of Lemmata 7, 8, and 9. The correctness of Algorithm 1 easily follows
from the lemmata above.

Lemma 5. Let G = (V,E) be a graph that does not contain a tree and let U ⊆ V .
Then, ∆ϕ(U) ≥ 0.

6

Proof. All reduction rules except removing isolated nodes do not increase the
measure ϕ = ϕ(G), since always more edges than nodes are removed from G.
Furthermore, only removing nodes in U or removing nodes because of domination
can increase the number of maximal connected components.

Firstly, we iteratively remove the nodes u ∈ U and each iteration decreases
the measure ϕ by λdeg(u) − µ ≥ µ(deg(u) − 1) (note that particularly ϕ is in-
creased by µ when isolated nodes are removed). Furthermore, when u is removed,
the number of trees is increased by at most deg(u) − 1: A (maximal) connected
component of G decomposes into at most deg(u) new components, but this max-
imum occurs only if the component that contains u itself already is a tree. If u
is an isolated node, ϕ increases by µ, while t decreases by one. Hence, G \ U
contains at most t ≤ (ϕ(G) − ϕ(G \ U))/µ trees.

G \ U contains t trees and since applying the reduction rules for trees elim-
inates these trees, the measure increases by at most µ for each tree created by
the removal of U . An analogous argument holds for all trees created by the
domination reduction rule.

Therefore,

ϕ(G \ U) ≥ ϕ(R(G \ U)) − µt

and

ϕ(G) ≥ µt + ϕ(G \ U) ≥ µt + ϕ(R(G \ U)) − µt = ϕ(R(G \ (U))).

⊓⊔

Setting U := ∅, this lemma implies that the reduction rules do not increase
the measure of graphs without trees. If G is a tree, R(G) is the empty graph,
and thus ϕ(G) − ϕ(R(G)) ≥ −µ. Hence, if G contains t trees, removing these
trees increases the measure by tµ. In the analysis of our algorithm, it is therefore
sufficient to estimate an increase of at most µ in the measure whenever a tree is
created.

3 Branching and Analysis

In this section, we study the change of the measure ϕ(G) when an algorithm
branches on the two cases G \ {v} (v is not contained in an optimal independent
set) and G \N [v] (v is contained in the solution). The actual branching in Algo-
rithm 1 uses all information given in the previous section, including the rules for
mirrors and satellites. Unfortunately, some branches turn out to be insufficiently
efficient. However, in these cases we can guarantee the existence of a node of
degree four, which then allows for a better combined branch.

Lemma 6. Let G be a reduced graph of maximum degree d ≥ 5 and v ∈ V
such that deg(v) = d. Then branching as described in Algorithm 1 either yields a
branching vector at least as good as (5λ − µ, 13λ − 6µ) or (6λ − µ, 13λ − 7µ), or
yields at least the branching vector (5λ − µ, 13λ − 7µ), but R(G \ {v}) contains
a node of degree at least four.

Proof. For λ = µ = 1, a similar result can already be found in [5]. We give a
more detailed proof for arbitrary λ ≥ µ.

7

v u

S

v u

S

v u

S

Fig. 2. Branching on graphs with mirrors. Dashed edges are known to exist, although their
endpoints are unknown. S contains neighbors of degree three shared by v and its mirror u. The
case |S| = 4 is depicted on the left, the second picture shows |S| = 3 and deg(u) = 3. For
|S| = 2, the right picture is an example why no path of length three can exist in G \ {u, v}
(domination by u).

Note that G \ {v} does not contain a tree since there are no nodes of degree
one. Therefore, ∆ϕ(v) ≥ dλ−µ. If G \N [v] does not contain a tree, ∆ϕ(N [v]) ≥
13λ−6µ: each node in N(v) is of degree at least three and since no node in N(v)
is dominated, each u ∈ N(v) has at least one neighbor in N2(v).

Now assume G \ N [v] contains t trees. Since there are at least three edges
between N(v) and each tree, and there are at least three edges from N(v) to
nodes in the remaining graph (no small separators), and since each node in N(v)
has at least one neighbor in N2(v) (domination), there are at least 3t + 3 ≥ d
edges between N(v) and N2(v). Moreover, there are d edges between v and N(v)
and thus at least

3t + 3 + d +

⌈(
∑

u∈N(v) deg(u)
)

− (3t + 3 + d)

2

⌉

≥ 3t + 3 + d +

⌈

3d − (3t + 3 + d)

2

⌉

=: ∆m(t, d)

edges incident to N [v], because each node is of degree at least three and only edges
in G[N(v)] might be counted twice. Thus, ∆ϕ(N [v]) ≥ ∆m(t, d)λ− (d + t + 1)µ.

If t ≥ 2 or d ≥ 6, we already have ∆ϕ(N [v]) ≥ 15λ − 8µ. If t = 1, d = 5, and
N(v) contains at least one node of degree four, we obtain ∆ϕ(N [v]) ≥ 14λ−6µ−µ.
However, if t = 1, d = 5, and all nodes in N(v) are of degree three, we only obtain
∆ϕ(N [v]) ≥ 13λ − 6µ − µ. Fortunately, in this case, R(G \ {v}) either contains
a node of degree four because of folding, or we gain an additional edge because
of folding or domination, and therefore ∆ϕ(v) ≥ (5 + 1)λ − µ. ⊓⊔

Lemma 7. Let G = (V,E) be a reduced graph of maximum degree four, v ∈ V
such that M(v) 6= ∅ and deg(v) = 4. Then branching as described in Algorithm 1
yields at least the branching vector (7λ − 2µ, 10λ − 5µ).

Proof. Let u ∈ M(v) and let S = {u′ ∈ N(v) | u′ ∈ N(u),deg(u′) = 3 }. Then, a
node w has degree one in G\{v, u} if and only if w ∈ S. Note that by domination
all nodes in N [S] are removed in R(G \ {v, u}). Moreover, G[S] does not contain
an edge {w,w′}, because otherwise w and w′ dominated each other.

If |S| = 4, S = N(v) implies that N2[v] is completely removed in R(G\{v, u}).
Thus, we gain twelve edges and six nodes when removing N [v] ∪ {u}. Since
|N2(v)\{u}| ≥ 3 (no small separators), and since each w ∈ N(v) is of degree three
and connected to both u and v, G\N [v]∪{u} does not contain a tree. Therefore,
removing all remaining nodes in N2(v) \ {u} and applying the reduction rules

8

afterwards cannot increase the measure by Lemma 5 and hence ∆ϕ({v, u}) ≥
12λ − 6µ.

If |S| = 3 and deg(u) = 4, G \ {v, u} contains at most one tree as there
are only three nodes of degree one and each tree has at least two leafs. Thus
∆ϕ({v, u}) ≥ 8λ − 2µ − µ, since we remove eight edges and two nodes.

If |S| = 3 and deg(u) = 3, at least two nodes in S must be connected to
different nodes in N2(v) \ {u}, i.e., also not be connected to the remaining node
in N(v) \ S (otherwise G contains a separator of size two). See Figure 2 for an
example. But then G \ {v, u} contains no tree: at least two nodes of degree one
are connected to different nodes of degree three. Since there are only three nodes
of degree one in G \ {v, u} at all, this subgraph cannot be a tree. Therefore, we
remove seven edges and two nodes and gain ∆ϕ({v, u}) ≥ 7λ − 2µ.

If S = {u1, u2}, every tree contained in G\{v, u} must be path, because there
are only two nodes of degree one (namely u1 and u2). Assume, there is such a
path P . Since u1 and u2 are not connected, P must contain at least one additional
node, which then has degree two. Removing v and u only influences the degree
of nodes in N({v, u}), hence all nodes in V \N [{v, u}] are still of degree at least
three in G\{v, u}. Therefore, P ⊆ N({v, u}). Similarly, N [w] ⊆ N({v, u}) for all
nodes w ∈ P , because if some w ∈ P has a neighbor w′ in V \N [v, u], then P is
not a path in G\{v, u} (deg(w′) ≥ 3). If a node w ∈ P is adjacent to both u1 and
u2, i.e., P contains three nodes, w is dominated by v or u (see Figure 2, where
domination by u is depicted). If P contains at least four nodes, (N(v)∪N(u))\P
is a separator of size at most two, because |N(v) ∪ N(u)| ≤ 6. Thus, G \ {v, u}
contains no tree.

Finally, if |S| = 1, then G\{v, u} cannot contain a tree either (only one node
has degree one) and thus we obtain ∆ϕ({v, u}) ≥ 7λ− 2µ for |S| ≤ 2 (four edges
for v, at least three edges for u).

For the second component of the branching vector, ∆ϕ(N [v]) ≥ 10λ − 5µ is
easily obtained, if G\N [v] contains no tree. If G\N [v] contains t trees, there must
be at least 3t edges between N(v) and these trees, at least three edges from N(v)
to further nodes since there are no small separators, and of course there are four
edges between v and N(v). Therefore, if t ≥ 2, ∆ϕ(N [v]) ≥ (3t+7)λ− (5+ t)µ ≥
13λ − 7µ. If t = 1, there must be at least one additional edge incident to N(v),
because the minimum degree is three. Hence, ∆ϕ(N [v]) ≥ (3+7+1)λ−(5+1)µ =
11λ− 6µ. This argument is similar to the one given by Bourgeois, Escoffier, and
Paschos [5] for λ = µ = 1.

Overall, we obtain at least the branching vector (7λ − 2µ, 10λ − 5µ). ⊓⊔

Lemma 8. Let G = (V,E) be a reduced graph of maximum degree four, v ∈ V
such that deg(v) = 4, M(v) = ∅, and S(v) 6= ∅. Then branching as described in
Algorithm 1 yields at least the branching vector (9λ − 4µ, 7λ − 2µ).

Proof. Let u ∈ S(v) and let {w} ∈ N(u)∩N(v) define u. Since the only neighbor
of w in N2(v) is u, v dominates w in G \ {u}. Similarly to the two cases |S| ≤ 2
in the proof of Lemma 7, G \ {v, u} does not contain a tree (the argument given
there did not use the mirror property of u). Thus, ∆ϕ(u) ≥ 7λ − 2µ, as at least
seven edges and exactly two nodes are removed.

If deg(u) = 4, we obtain ∆ϕ(N [u]) ≥ 10λ − 5µ, again as in the proof of
Lemma 7. Thus, we can now assume deg(u) = 3.

9

v
w u

u1 u2

v
w u

u1 u2u′

1

u′

2

Fig. 3. A satellite u of v on a triangle. Existence of dashed edges is given by a minimum degree of
three per node, although their endpoints are unknown. a) If s := deg(w)+deg(u1)+deg(u2) > 9,
then ∆ϕ(N [u]) ≥ 9λ− 4µ. b) If s = 9, removing N [u]∪ {u′

1, u
′

2} affects at least eleven edges. A
possible lower bound is shown.

If G \ N [u] contains a tree, this tree is not an isolated node x: Assume x is
an isolated node. Then due to degree reasons, x must be adjacent to all nodes
in N(u), and one of these nodes is w. Since w defines u as a satellite, x ∈ N [v].
If x 6= v, x is not an isolated node in G \ N [u], since x is still adjacent to v.
If x = v, then |N(v) ∩ N(u)| = 3, i.e., u ∈ M(v), a contradiction. Hence, if
G\N [u] contains a tree, then there are at least four edges from N(u) to the tree.
Since there are no separators of size at most two, there are at least ten edges
incident to N [u]. Similarly, the number of trees in G \ N [u] can be bounded
by one, since there are at most nine edges between N(u) and N2(u). Therefore
∆ϕ(N [u]) ≥ 10λ − 4µ − µ when G \ N [u] contains a tree.

Hence, we now assume G \ N [u] does not contain a tree. If N(u) contains at
least two nodes of degree four, we easily obtain ∆ϕ(N [u]) ≥ 9λ − 4µ. Similarly,
if u is not part of a triangle, there are at least nine edges incident to N [u] and
hence ∆ϕ(N [u]) ≥ 9λ − 4µ.

Finally, assume that u is part of some triangle. Note that this implies N [w]∩
N(u) = {w}: If there is a node w′ ∈ N(u) ∩ N(w), either w dominates w′ or
w′ dominates w, since at most one node in N(u) is of degree four. Thus, u is
contained in exactly the triangle (u, u1, u2) where N(u) \ N [w] = {u1, u2}. For
an example, see Figure 3. If deg(u′) = 4 for some u′ ∈ N(u), this implies again
∆ϕ(N [u]) ≥ 9λ − 4µ.

Hence, we can assume deg(u′) = 3 for all u′ ∈ N [u]. Since deg(u1) =
deg(u2) = 3, there is a u′

1 ∈ N(u1) \ N(u2) (and similarly u′

2). Otherwise, u1 is
dominated by u2. Note that u′

1, u
′

2 ∈ S(u), and thus, both are not adjacent. Since
deg(w) = 3, |N(w) ∩ {u′

1, u
′

2}| ≤ 1, because the two nodes on N(w) \ {u} are
connected, i.e., N(w) \ {u} ⊆ N [v] and v ∈ N(w) \ {u} (recall that w defines u).
This situation is exemplified in Figure 3, under the assumption that u′

1 ∈ N(w).
Therefore, there are at least eleven edges incident to N [u]∪{u′

1, u
′

2}: four edges
in G[N [u]], four edges between N(u) and N2(u) because G[N [u]] contains exactly
one triangle, and three other edges incident to {u′

1, u
′

2} (four if |N(w)∩{u′

1, u
′

2}| =
0).

Recall now that u′

1 and u′

2 are satellites of u and we therefore can branch on
G \ (N [u] ∪ {u′

1, u
′

2}): If G \ (N [u] ∪ {u′

1, u
′

2}) contains no tree, we thus obtain
∆ϕ(N [{u, u′

1, u
′

2}]) ≥ 11λ − 6µ by Lemma 5. If G \ (N [u] ∪ {u′

1, u
′

2}) contains t
trees, there at least 3t+3 edges between N [u]∪{u′

1, u
′

2} and V \(N [u]∪{u′

1, u
′

2})
and thus ∆ϕ(N [{u, u′

1, u
′

2}]) ≥ (3t + 3 + 6)λ − 6µ − tµ ≥ 12λ − 7µ, by applying
Lemma 5 to each component of G \ N [u] ∪ {u′

1, u
′

2} that is not a tree.

Overall, we obtain at least the branching vector (9λ − 4µ, 7λ − 2µ). ⊓⊔

10

Lemma 9. Let G = (V,E) be a reduced graph of maximum degree four, and
let v ∈ V such that M(v) = ∅ and S(v) = ∅. Then branching as described in
Algorithm 1 either yields a branching vector at least as good as (5λ−µ, 12λ−5µ),
(4λ−µ, 13λ− 5µ), or (7λ− 2µ, 9λ− 4µ), or yields a branching vector at least as
good as (4λ − µ, 12λ − 5µ), but R(G \ {v}) contains a node of degree four.

Proof. M(v) = ∅ implies that each node in N2(v) has at most two neighbors in
N(v), while S(v) = ∅ implies that each node in N(v) has at least two neighbors
in N2(v).

If all nodes in N(v) are of degree four, we obtain ∆ϕ(v) ≥ 4λ − µ. If N(v)
contains at least one node of degree three, either ∆ϕ(v) ≥ 5λ − µ, or ∆ϕ(v) ≥
4λ − µ, but R(G \ {v}) again contains a node of degree at least four.

Since there are at most twelve edges between N(v) and N2(v) and since each
node is of degree at least three, G\N [v] contains at most six nodes of degree one
(there are none of degree zero, because otherwise M(v) 6= ∅). Now if G \ N [v]
contains three trees, each of this trees consists of a single edge between two of
these nodes only. Hence, G either is of constant size or is not connected.

If G \ N [v] contains two trees T1 and T2, each of these trees contains at
least two nodes of degree one, which is only possible if there are eight edges
between T1 ∪ T2 and N(v). Since G does not contain a separator of size two,
N(v) must contain at least three nodes that are connected to three nodes in
N2(v) \ (V (T1)∪ V (T2)). But then, there are least 15 edges incident to nodes in
N [v] and thus ∆ϕ(N [v]) ≥ 15λ − 5µ − 2µ.

If G \ N [v] contains no tree, we immediately obtain ∆ϕ(N [v]) ≥ 13λ − 5µ,
if at least one node in N(v) is of degree four. Otherwise, we obtain ∆ϕ(N [v]) ≥
12λ − 5µ.

Let us therefore now assume that G \ N [v] contains exactly one tree. If all
nodes in N(v) are of degree four, we have ∆ϕ(N [v]) ≥ 14λ − 5µ − µ. If N(v)
contains at least one node of degree four, there are at least 13 edges incident to
N [v], because each node in N(v) has at least two neighbors in N2(v). Thus, we
have ∆ϕ(N [v]) ≥ 13λ − 6µ.

If deg(u) = 3 for all u ∈ N(v) and G\N [v] contains a tree, there are at most
five edges between N(v) and this tree. Therefore, the tree must be an isolated
edge {w1, w2} or a path (w1, w

′, w2) of length two (and deg(w1) = deg(w2) = 3
or deg(w1) = deg(w2) = deg(w′) = 3 in G, respectively). Otherwise, there are
at least six edges between N(v) and the tree which implies that N2(v) contains
at most two nodes that are not part of the tree, which yields a separator of size
two. Moreover, w1 and w2 share at most one neighbor in N(v), because otherwise
N(v) \ (N(w1) ∪ N(w2)) is again a separator of size two.

Assume G\N [v] contains a path (w1, w
′, w2) such that deg(w1) = deg(w2) =

deg(w′) = 3. If N(w1) ∩ N(w′) 6= ∅, then |N(w1) ∩ N(w′)| = 1 because of
the domination rule, and both v and the unique node u′ ∈ N(w1) \ N [w′] are
satellites of w′ and connected. This situation is depicted in Figure 4. Thus, wlog
N(wi) ∩ N(w′) = ∅. But then, N(w1) ∩ N(w2) \ {w

′} 6= ∅ since |N(v)| = 4, and
thus |(N(w1) ∪ N(w2)) \ {w

′}| = 3. Let {u′} = (N(w1) ∩ N(w2)) \ {w
′}. Then,

(w1, w
′, w2, u

′) is an induced cycle of length four, all whose nodes are of degree
three. Thus, G is not reduced by Lemma 4.

Hence, if G\N [v] contains a tree, this tree must be a single edge {w1, w2}, and
there are exactly four edges between {w1, w2} and N(v), and thus also four edges

11

v

u′

w1 w′ w2

v

u′

w1 w′ w2

v

w1 w2

Fig. 4. Some cases we study when branching on v with M(v) = S(v) = ∅. If G \ N [v] contains
a path (w1, w

′, w2) as depicted on the left, v and u′ are adjacent satellites of w′. If w′ has
a neighbor out of N({w1, w2}) as depicted in the middle, then w1 and w2 have at least one
common neighbor u′ and thus an induced cubic cycle of length four exists. If G\N [v] contains an
isolated edge (w1, w2) as depicted on the right, then v ∈ M(w1) and we branch on w1 instead.

between N(v) and the remaining graph. Therefore, ∆ϕ(N [v]) ≥ 12λ − 5µ − µ.
However, in this case, either ∆ϕ(v) is larger or branching on w1 gives a better
result:

If |(N(w1) ∪ N(w2)) ∩ N(v)| = 3, i.e., one neighbor is shared, both w1 and
w2 dominate the unique node w′ ∈ N(w1) ∩ N(w2), after v is removed. Thus
four edges incident to v and five edges incident to {w1, w2} are removed and
∆ϕ(v) ≥ 9λ−4µ. Moreover, four nodes are removed (v, w1, w2, w′). The remain-
ing graph does not contain a tree, since the three remaining nodes in N(v) must
be connected to three different nodes in N2(v). This yields the branching vector
(12λ − 6µ, 9λ − 4µ).

If |N(w1)∪N(w2)| = 4, v is a mirror of w1 (see Figure 4). We now branch on
w1 instead: ∆ϕ({w1, v}) ≥ 7λ − 2µ and G \ {w1, v} does not contain a tree (the
only two nodes of degree one have neighbors of degree at least three). Similarly,
G \ N [w1] does not contain a tree, since there are no nodes of degree one at all.
Therefore, ∆ϕ(N [w1]) ≥ 9λ − 4µ.

In summary, if the first branch does not lead to a node of degree at least
four, we obtain branching vectors as least as good as either (5λ − µ, 12λ − 5µ),
(4λ − µ, 13λ − 5µ), or (7λ − 2µ, 9λ − 4µ). If otherwise the first branch yields at
least one node of degree at least four, we obtain a branching vector at least as
good as (4λ − µ, 12λ − 5µ). ⊓⊔

Lemma 10. Let G = (V,E) be a reduced graph of maximum degree three and let
v ∈ V be such that v is on a triangle (v, u1, v2). Then branching as described in
Algorithm 1 either yields a branching vector at least as good as (10λ− 6µ, 12λ−
7µ), or yields a branching vector at least as good as (7λ − 5µ, 12λ − 7µ), but
R(G \ {v}) contains a node of degree at least four.

Proof. Let v′, u′

1, u
′

2 be the unique neighbors of v, u1, and u2, respectively, that
are not in {v, u1, u2}. First note that |{v′, u′

1, u
′

2}| = 3, since otherwise at least
two nodes in {v, u1, u2} dominate each other. This also means that v′ is a satellite
of u1 and u2, u′

1 is a satellite of v and u2, as well as u′

2 is a satellite of v and u1.
Furthermore, if either two of {v′, u′

1, u
′

2} are connected, there are connected
satellites and there is no need to branch. For symmetry reasons, we can therefore
assume that there is no edge in G[{v′, u′

1, u
′

2}]. This situation is depicted in
Figure 5.

G\{v} does not contain a tree (no nodes of degree one). If v′1 and v′2, the other
neighbors of v′, are adjacent, we have ∆ϕ(v) ≥ 10λ − 6µ, else ∆ϕ(v) ≥ 7λ − 5µ,
but we obtain a node of degree four.

12

v

v′
v′
1

v′
2

v

Fig. 5. Branching on a cubic graph G. If G contains triangles, by the reductions rules for
domination and satellites we have the situation depicted on the left. Otherwise, G does neither
contain cycles of length three or four, and the situation is as depicted on the right. Again,
dashed edges are known to exist, although their endpoints are unknown.

G − N [v] − S(v) contains at most one tree, otherwise there is a separator of
size at most two in G. Counting only the edges in G[N [v ∪ S(v)] and the six
nodes in N [v] ∪ S(v), it therefore is ∆ϕ(N [v ∪ S(v)]) ≥ 12λ − 6µ − µ. ⊓⊔

Lemma 11. Let G = (V,E) be a reduced, triangle-free graph of maximum degree
three, and let v ∈ V . Then branching as described in Algorithm 1 either yields
a branching vector at least as good as (5λ − µ, 9λ − 4µ), or yields a branching
vector at least as good as (3λ − µ, 9λ − 4µ), but R(G \ {v}) contains a node of
degree at least four.

Proof. Since G is reduced and triangle-free, it does neither contain cycles of
length three nor of length four. Therefore, |N2(v)| = 6. This situation is depicted
in Figure 5. Since G does not contain cycles of length four, G \ {v} contains
exactly three nodes of degree two, namely N(v). Let N(v) = {u1, u2, u3}. Since
|N2(v)| = 6, folding u1 does not create an edge in N(u2) nor in N(u3). Therefore,
u2 can be folded, and again this does not create an edge in N(u3), so that finally
u3 can be folded. This yields three nodes of degree four (including parallel edges).
Applying the reduction rules now either retains at least one node of degree four,
or removes at least two further edges. Therefore, we have ∆ϕ(v) ≥ 3λ − 1µ and
R(G \ {v}) contains a node of degree at least four, or ∆ϕ(v) ≥ 5λ − 1µ. Note
that neither G−{v} nor G−N [v] does contain a tree, since all remaining nodes
have a minimum degree of two. ⊓⊔

Theorem 1. Independent Set can be solved in by Algorithm 1 in time bounded
by O∗(1.1928m−n). This is O∗(1.0922n) on cubic graphs.

Proof. The result is a direct consequence of Lemmata 6–11 for λ = µ = 1.
Whenever a branching vector is not sufficiently good on its own, a vertex of
degree at least four is known to exist, which then allows for a better combined
branching:

If G contains a node v of degree at least four, then by Lemmata 6, 7, 8, and
9, branching on v yields a branching vector at least as good as (4λ−µ, 12λ−5µ)
(5λ − µ, 13λ − 7µ), (5λ − µ, 12λ − 5µ), or (7λ − 2µ, 9λ − 4µ).

If G is cubic, by Lemmata 10 and 11 there is v ∈ V such that branching
on v yields a branching vector at least as good as (5λ − µ, 9λ − 4µ), or there is
v ∈ V , such that branching on v yields a branching vector at least as good as

13

(3λ−µ, 9λ−4µ), but R(G\{v}) contains a node u of degree at least four. In the
latter case, we can then branch on u. This either yields a combined branching
vector as least as good as (8λ−2µ, 15λ−6µ, 9λ−4µ), (10λ−3µ, 12λ−5µ, 9λ−4µ),
or (7λ − 2µ, 16λ − 6µ, 9λ − 4µ), or this yields a combined branching vector at
least as good as (8λ− 2µ, 16λ− 8µ, 9λ− 4µ) or (7λ− 2µ, 15λ− 6µ, 9λ− 4µ), but
again the first branch yields a graph that contains a node of degree at least four.
If we repeat this one more time, we obtain branching vectors that are better than
(7λ − 2µ, 16λ − 6µ, 9λ − 4µ), which is good enough.

Optimizing λ and µ as λ = µ = 1 yields a run time bound of O∗(1.192767ϕ(G))
for Algorithm 1. A reduced cubic graph is three regular, and hence m = 1.5n
and 1.1927670.5n ≤ 1.092139n . ⊓⊔

4 Conclusion

The notion of satellites for Maximum Independent Set is a new tool in the
toolbox and allows—alongside previously known tools such as mirrors, folding,
or the small separator rule—to tackle many of the harder cases in branching
algorithms. Using satellites, we are able to improve the previously best bounds
for MIS to O∗(1.1928m−n). This is O∗(1.0922n) on cubic graphs. We are confident
that satellites can help to improve the upper bounds for arbitrary graphs as well,
but this is still subject to further research.

References

1. P. Alimonti and V. Kann. Some APX-completeness results for cubic graphs. Theor. Com-

put. Sci., 237(1-2):123–134, 2000.
2. R. Beigel. Finding maximum independent sets in sparse and general graphs. In Proc. of

10th SODA, pages 856–857, 1999.
3. P. Berman and T. Fujito. On the approximation properties of independent set problem in

degree 3 graphs. In Proc. of 4th WADS, volume 955 of LNCS, pages 449–460. Springer,
1995.

4. P. Berman and M. Fürer. Approximating maximum independent set in bounded degree
graphs. In Proc. of 5th SODA, pages 365–371, 1994.

5. N. Bourgeois, B. Escoffier, and V. T. Paschos. An O∗(1.0977n) exact algorithm for max
independent set in sparse graphs. In Proc. of 3rd IWPEC, number 5018 in LNCS, pages
55–65. Springer, 2008.

6. J. Chen, I. A. Kanj, and G. Xia. Labeled search trees and amortized analysis: Improved
upper bounds for np-hard problems. In Proc. of 14th ISAAC, number 2906 in LNCS, pages
148–157. Springer, 2003.

7. F. Fomin, F. Grandoni, and D. Kratsch. Measure and conquer: A simple O(20.288n) inde-
pendent set algorithm. In Proc. of 17th SODA, pages 18–25, 2006.

8. F. V. Fomin, F. Grandoni, and D. Kratsch. Measure and conquer: Domination – A case
study. In Proc. of 32nd ICALP, LNCS, pages 191–203. Springer, 2005.

9. A. M. Frieze and S. Suen. On the independence number of random cubic graphs. Random

Struct. Algorithms, 5(5):649–664, 1994.
10. M. Fürer. A faster algorithm for finding maximum independent sets in sparse graphs. In

Proc. of 7th LATIN, number 3887 in LNCS, pages 491–501. Springer, 2006.
11. M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-

completeness. Freeman, San Francisco, 1979.
12. I. Razgon. A faster solving of the maximum independent set problem for graphs with

maximal degree 3. In Proc. of 2nd ACID, pages 131–142, 2006.
13. J. M. Robson. Finding a maximum independent set in time O(2n/4). Technical Report

1251-01, Université Bordeaux I, LaBRI, 2001.

14

Aachener Informatik-Berichte

This list contains all technical reports published during the past five

years. A complete list of reports dating back to 1987 is available from

http://aib.informatik.rwth-aachen.de/. To obtain copies consult the above

URL or send your request to: Informatik-Bibliothek, RWTH Aachen, Ahorn-

str. 55, 52056 Aachen, Email: biblio@informatik.rwth-aachen.de

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003

2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic

2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting

2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming

2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on Func-

tional and (Constraint) Logic Programming

2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming

2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination

2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information

2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity

2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules

2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004

2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer

School Applied IT Security”

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-

proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for

the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing

Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Informa-

tion

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-

ploring a Root-Cause Methodology to Prevent Distributed Denial-of-

Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With

Applications To Max-Cut

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General

Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts

2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture

15

2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-

ficient Reductions for Wait-Free Termination Detection in Faulty Dis-

tributed Systems

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting

Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization

2005-15 Uwe Naumann: The Complexity of Derivative Computation

2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)

2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedu-

ral Adjoint Code)

2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-

berger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann,

Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-

Entwicklungsprozess - Abschlußbericht des GI-Arbeitskreises “Features”

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented

LL-Parsers

2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbil-

dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-

bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-

gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit

BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-

ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-

ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:

Decision Making Based on Approximate and Smoothed Pareto Curves

2005-24 Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering

with Motes: Real-World Physical Attacks on Wireless Sensor Networks

2006-01 ∗ Fachgruppe Informatik: Jahresbericht 2005

2006-02 Michael Weber: Parallel Algorithms for Verification of Large Systems

2006-03 Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Generated

by the Differentiation-Enabled NAGWare Fortran Compiler

2006-04 Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static

Memory Jacobian Accumulation

2006-05 Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozyurt,

Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint

Code by Source Transformation with OpenAD/F

2006-06 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Divide-

and-Color

2006-07 Thomas Colcombet, Christof Löding: Transforming structures by set in-

terpretations

2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-

Expression-Use Graphs

2006-09 Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic

Model Checking

16

2006-10 Mesut Günes, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,

Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid

MCG-Mesh Testbed

2006-11 Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowalewski:

Model Checking Software for Microcontrollers

2006-12 Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker:

Replaying Play in and Play out: Synthesis of Design Models from Sce-

narios by Learning

2006-13 Wong Karianto, Christof Löding: Unranked Tree Automata with Sibling

Equalities and Disequalities

2006-14 Danilo Beuche, Andreas Birk, Heinrich Dreier, Andreas Fleischmann,

Heidi Galle, Gerald Heller, Dirk Janzen, Isabel John, Ramin Tavakoli

Kolagari, Thomas von der Maßen, Andreas Wolfram: Report of the GI

Work Group “Requirements Management Tools for Product Line Engi-

neering”

2006-15 Sebastian Ullrich, Jakob T. Valvoda, Torsten Kuhlen: Utilizing optical

sensors from mice for new input devices

2006-16 Rafael Ballagas, Jan Borchers: Selexels: a Conceptual Framework for

Pointing Devices with Low Expressiveness

2006-17 Eric Lee, Henning Kiel, Jan Borchers: Scrolling Through Time: Improv-

ing Interfaces for Searching and Navigating Continuous Audio Timelines

2007-01 ∗ Fachgruppe Informatik: Jahresbericht 2006

2007-02 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, and Harald Zankl: SAT Solving for Termination Anal-

ysis with Polynomial Interpretations

2007-03 Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-

Kamp: Proving Termination by Bounded Increase

2007-04 Jan Buchholz, Eric Lee, Jonathan Klein, and Jan Borchers: coJIVE: A

System to Support Collaborative Jazz Improvisation

2007-05 Uwe Naumann: On Optimal DAG Reversal

2007-06 Joost-Pieter Katoen, Thomas Noll, and Stefan Rieger: Verifying Con-

current List-Manipulating Programs by LTL Model Checking

2007-07 Alexander Nyßen, Horst Lichter: MeDUSA - MethoD for UML2-based

Design of Embedded Software Applications

2007-08 Falk Salewski and Stefan Kowalewski: Achieving Highly Reliable Em-

bedded Software: An empirical evaluation of different approaches

2007-09 Tina Kraußer, Heiko Mantel, and Henning Sudbrock: A Probabilistic

Justification of the Combining Calculus under the Uniform Scheduler

Assumption

2007-10 Martin Neuhäußer, Joost-Pieter Katoen: Bisimulation and Logical

Preservation for Continuous-Time Markov Decision Processes

2007-11 Klaus Wehrle (editor): 6. Fachgespräch Sensornetzwerke

2007-12 Uwe Naumann: An L-Attributed Grammar for Adjoint Code

2007-13 Uwe Naumann, Michael Maier, Jan Riehme, and Bruce Christianson:

Second-Order Adjoints by Source Code Manipulation of Numerical Pro-

grams

17

2007-14 Jean Utke, Uwe Naumann, Mike Fagan, Nathan Tallent, Michelle Strout,

Patrick Heimbach, Chris Hill, and Carl Wunsch: OpenAD/F: A Modular,

Open-Source Tool for Automatic Differentiation of Fortran Codes

2007-15 Volker Stolz: Temporal assertions for sequential and concurrent programs

2007-16 Sadeq Ali Makram, Mesut Güneç, Martin Wenig, Alexander Zimmer-

mann: Adaptive Channel Assignment to Support QoS and Load Balanc-

ing for Wireless Mesh Networks

2007-17 René Thiemann: The DP Framework for Proving Termination of Term

Rewriting

2007-18 Uwe Naumann: Call Tree Reversal is NP-Complete

2007-19 Jan Riehme, Andrea Walther, Jörg Stiller, Uwe Naumann: Adjoints for

Time-Dependent Optimal Control

2007-20 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, and Verena Wolf:

Three-Valued Abstraction for Probabilistic Systems

2007-21 Tingting Han, Joost-Pieter Katoen, and Alexandru Mereacre: Compo-

sitional Modeling and Minimization of Time-Inhomogeneous Markov

Chains

2007-22 Heiner Ackermann, Paul W. Goldberg, Vahab S. Mirrokni, Heiko Röglin,

and Berthold Vöcking: Uncoordinated Two-Sided Markets

2008-01 ∗ Fachgruppe Informatik: Jahresbericht 2007

2008-02 Henrik Bohnenkamp, Marielle Stoelinga: Quantitative Testing

2008-03 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, Harald Zankl: Maximal Termination

2008-04 Uwe Naumann, Jan Riehme: Sensitivity Analysis in Sisyphe with the

AD-Enabled NAGWare Fortran Compiler

2008-05 Frank G. Radmacher: An Automata Theoretic Approach to the Theory

of Rational Tree Relations

2008-06 Uwe Naumann, Laurent Hascoet, Chris Hill, Paul Hovland, Jan Riehme,

Jean Utke: A Framework for Proving Correctness of Adjoint Message

Passing Programs

2008-07 Alexander Nyßen, Horst Lichter: The MeDUSA Reference Manual, Sec-

ond Edition

2008-08 George B. Mertzios, Stavros D. Nikolopoulos: The λ-cluster Problem on

Parameterized Interval Graphs

2008-09 George B. Mertzios, Walter Unger: An optimal algorithm for the k-fixed-

endpoint path cover on proper interval graphs

2008-10 George B. Mertzios, Walter Unger: Preemptive Scheduling of Equal-

Length Jobs in Polynomial Time

2008-11 George B. Mertzios: Fast Convergence of Routing Games with Splittable

Flows

2008-12 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, Verena Wolf: Ab-

straction for stochastic systems by Erlang’s method of stages

2008-13 Beatriz Alarcón, Fabian Emmes, Carsten Fuhs, Jürgen Giesl, Raúl

Gutiérrez, Salvador Lucas, Peter Schneider-Kamp, René Thiemann: Im-

proving Context-Sensitive Dependency Pairs

2008-14 Bastian Schlich: Model Checking of Software for Microcontrollers

2008-15 Joachim Kneis, Alexander Langer, Peter Rossmanith: A New Algorithm

for Finding Trees with Many Leaves

18

2008-16 Hendrik vom Lehn, Elias Weingärtner and Klaus Wehrle: Comparing

recent network simulators: A performance evaluation study

2008-17 Peter Schneider-Kamp: Static Termination Analysis for Prolog using

Term Rewriting and SAT Solving

2008-18 Falk Salewski: Empirical Evaluations of Safety-Critical Embedded Sys-

tems

2009-03 Alexander Nyßen: Model-Based Construction of Embedded

Real-Time Software - A Methodology for Small Devices

2009-05 George B. Mertzios, Ignasi Sau, Shmuel Zaks: A New Intersection Model

and Improved Algorithms for Tolerance Graphs

2009-07 Joachim Kneis, Alexander Langer, Peter Rossmanith: Derandomizing

Non-uniform Color-Coding I

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

19

