
Aachen
Department of Computer Science

Technical Report

Automatic Verification of the

Correctness of the Upper Bound of a

Maximum Independent Set Algorithm

Felix Reidl, Fernando Sánchez Villaamil

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2009-10

RWTH Aachen · Department of Computer Science · May 2009

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Automatic Verification of the Correctness of the

Upper Bound of a Maximum Independent Set

Algorithm

Felix Reidl, Fernando Sánchez Villaamil

Dept. of Computer Science
RWTH Aachen University, Germany

Email: {felix.reidl, fernando.sanchez}@rwth-aachen.de

Abstract. Kneis, Langer and Rossmanith presented a new exact algorithm for
the Maximum Independent Set problem [3]. As part of the proof of the upper
runtime bound millions of special cases where automatically generated. In this
technical report we present a verification method that checks the correctness of
this case distinction. We focus on the theoretical aspects of this verification and
give a general overview of its implementation.

1 Introduction

Maximum Independent Set is one of the most well-known NP-hard problems in
the field of theoretical computer science. Due to its importance, several exact al-
gorithms have been developed for it; the first non-trivial one dating back to 1977:
Tarjan and Trojanowski [8] achieved a runtime bound of O∗(1.261n). Jian [4] and
Robson [7] improved this further to O∗(1.235) and O∗(1.228)n), respectively. In
the same paper, Robson was also able to proof an upper bound of O∗(1.211n) us-
ing exponential space. Fomin, Grandoni and Kratsch [2] employed their Measure
& Conquer technique to devise a new algorithm for Maximum Independent Set

with a runtime bounded by O∗(1.2201n). Only recently, Kneis, Langer and Ross-
manith [3] used a similar approach with an even better bound of O∗(1.2132n) by
automatically analyzing millions of special cases. Here we will present a verifier
for the computerized part of that analysis and proof the correctness of the same
by Kneis, Langer and Rossmanith independently.

We will proof the theoretical foundations of the verifier first and then provide
some details on the actual implementation in C++.

2 Preliminaries

The proof conducted in [3] uses so called graphlets, which represent small sections
of a bigger graph and thus convey a picture of the extended neighborhood around
a central vertex.

Definition 1 (Graphlet). Let G = (I ∪ O,E) be a graph and v ∈ I such that
I = {v} ∪ I1 ∪ I2 with I1 = N(v), I2 = N2(v), O = N3(v) and deg(u) = 1 for
u ∈ O. Moreover, let deg(v) ≥ deg(u) for all u ∈ I. We call (G, v) graphlet of
radius 2 with inner vertices I, consisting of orbits I1, I2 and the root vertex, and
outer vertices O. The set of edges between I and O are called anonymous edges,
where a(u) = |{(u,w) ∈ E(G) | w ∈ O}| denotes the number of anonymous edges
incident to a given vertex u ∈ I.

Definition 2 (Subgraphlet). Let (G, v) and (H, r) be graphlets with inner ver-
tices I and J . (H, r) is subgraphlet of (G, v) if there exists a mapping f : V (H) →
V (G) which conforms to the following conditions:

1. (u,w) ∈ E(H) ⇒ (f(u), f(w)) ∈ E(G)
2. f(r) = v

3. f(Ji) = Ii for i ∈ {1, 2}
4. a(f(u)) ≤ a(u) for all u ∈ V (H)

As the algorithm’s performance on graphlets is invariant under isomorphism,
we are interested only in one representative for each isomorphism class. Isomor-
phism for graphlets is a natural extension of graph isomorphism, additionally
preserving the root label and membership of vertices to I1, I2 or O.

Definition 3 (Graphlet isomorphism). Two graphlets (G1, v1) and (G2, v2)
are isomorphic iff (G1, v1) is a subgraphlet of (G2, v2) and vice versa. The class
of all isomorphic graphlets to a given graphlet G1 is written as [G1].

For the scope of this paper, the definition of graphlets is still too broad —
we are only interested in a certain subset of graphlets with limited size, because
only these are relevant for the computerized part of the proof. We will call these
graphlets valid graphlets.

Definition 4 (Valid graphlet). A graphlet (G, v) is called valid iff for all
u ∈ V (G) the degree fulfills the constraint 3 ≤ deg(u) ≤ 4 and each vertex in I1

is connected to at least one vertex in I2. Furthermore, the bounds 1 ≤ |I1| ≤ 4 and
1 ≤ |I2| ≤ 7 must hold. We will call the representative set of all valid graphlets
S.

Remark 1. In the following it will be assumed that all the vertices in every graph-
let are the numbers from 0 to the number of vertices minus one, where 0 is the
root vertex and all the vertices in I1 are smaller than the vertices I2. This is also
consistent with the implementation.

The aim of this verifier will be to generate S and compare this set against
the certificate given for the proof. First we will prove the correctness of the
generating methods of this verifier in Section 4. Afterward we will present some
details of the actual implementation and the tools used to verify the certificate
in Section 5. In essence, this method and its implementation are meant to be
as readable as possible while still being fast enough to generate the enormous
number of graphlets needed. The following outlines our approach:

1. Generate all graphlets:
(a) Generate all base graphlets (see Definition 5).
(b) Add edges to each vertex which does not yet have minimal degree in every

possible way.
(c) Add edges in every possible way to the graphlets generated in Step 1b

while no vertex has more than the maximal degree.
2. Perform a full isomorphism test on all graphlets generated in step 1, i.e. leave

only unique graphlets in the set.
3. See if the remaining graphlets from Step 2 are all found in the certificate.
4. Calculate all the branching vectors and compare them to the certificate.

4

Definition 5 (Base graphlet). A graphlet B is called a base graphlet if the
following conditions are met:

1. For each vertex u in I1 there is at least one vertex v ∈ I2 so that (u, v) ∈
E(B).

2. If any edge of the base graphlet is removed either the above condition is vio-
lated or some other condition for a graphlet is broken.

3. a(v) = 0 for all v ∈ V (B).

The set of all base graphlet with fixed orbits I1, I2 is denoted by B|I1|,|I2|

At first it could appear as if only trees could fulfill this property. This not
the case, as can be seen in Figure 1 which depicts representatives for all base
graphlets with four vertices in orbit one and seven in orbit two.

Fig. 1. Base graphlets with four vertices in I1 and seven in I2

3 Recursive Graphlet Generation

A common aspect of all algorithms used in the steps outlined in Listing 2 is
that they recursively take a graph (some early stages cannot be called graphlets)
and output a set of graphs build from that input by adding certain edges. All
of them avoid redundant computations by reducing the number of isomorphic
graphs (graphlets) which are taken as an input. These similarities suggest that
a theoretical generalization might simplify the forthcoming proofs in Section 4,
therefore we introduce the following definitions and lemmata.

Definition 6 (Isomorphic Distance). Let G1 and G2 be graphlets with equal
sized orbits. If there exists a graph G ∈ [G1] which is a subgraph of G2 then the
isomorphic distance is

d(G1, G2) = min{|E(G) − E(G1)| : G ∈ [G2]}

else
d(G1, G2) = ∞

Lemma 1. For two graphlets G1 ≤ G2, iff G1 ≃ G2 then d(G1, G2) = 0.

Proof. We will proof this in two steps.

⇒ If G1 ≃ G2 then there exists a mapping f(G2) = G1 which means that under
that mapping |E(G1)−E(f(G2))| = 0. Since the distance can not me smaller
that zero this has to be the minimum and therefore d(G1, G2) = 0.

5

⇐ If d(G1, G2) = 0 it means that there is a graphlet G ∈ [G2] for which |E(G)−
E(G1)| = 0. This means that G and G1 are equal, since they have got by
the definition the same amount of vertices and we have shown that the same
edges too. This means that G1 ≃ G ≃ G2. ⊓⊔

Lemma 2. d(G1, G) is the same for all G ∈ [G2].

Proof. This follows directly from the fact that [G] = [G2] for all G ∈ [G2]. ⊓⊔

Lemma 3. d(G,G2) is the same for all G ∈ [G1].

Proof. Say

d(G1, G2) = min{|E(G) − E(G1)| : G ∈ [G2]} = |E(I) − E(G1)|

for some I ∈ [G2]. Let G′ be an isomorphic graphlet to G1 and f the mapping
for which f(G1) = G′. It is then clear that

d(G1, G2) = min{|E(G) − E(G1)| : G ∈ [G2]}

= min{|E(f(G)) − E(f(G1))| : G ∈ [G2]}

but since [G2] = [f(G2)] this implies

d(G1, G2) = min{|E(f(G)) − E(f(G1))| : G ∈ [G2]}

= min{|E(G) − E(G′)| : G ∈ [G2]} = d(G′, G2)

which is what we wanted to proof. ⊓⊔

Definition 7 (Expanding Algorithm). An expanding algorithm A over a
set of graphs G is a set {e(G), s(G)} consisting of an expansion function e : G →
2G and a selection function s : G → {0, 1} conforming to H ≃ G ⇒ s(H) =
s(G). The history HA(G) ⊆ G of A on a given graph G is recursively defined as

1. G ∈ HA(G)

2. H ∈ HA(G) ⇒ e(H) ⊆ HA(G)

and the output OA(HA(G)) is simply defined as

OA(HA(G)) = {H ∈ HA(G) | s(H) = 1}

Definition 8 (Monotone Expansion Function). Let G be a set of graph
and let e : G → 2G be a function. We call e(G) monotone expanding over G if

∀H ∈ e(G) : |E(G)| < |E(H)|

holds for all graphs G ∈ G.

Definition 9 (Monotone Expanding Algorithm). Let A = {e(G), s(G)} be
an algorithm with monotone expansion function e(G) over G and G ∈ G be a set
of graphs. If for every Gi ∈ HA(G) and Gt ∈ OA(HA(G)) with ∞ > d(G,Gt) ≥
d(Gi, Gt) > 0 there exists a Gi+1 ∈ e(Gi) with d(Gi, Gt) > d(Gi+1, Gt) we call A
a monotone expanding algorithm on G.

6

Definition 10 (Choice Function). Let A = {e(G), s(G)} be a monotone
expanding algorithm over G and c : 2G → G ∪ {⊥}, c(G) ∈ G ∪ {⊥} be a choice
function. Then we call HA,c(G) =

⋃

i∈N
CAi the history of (A, c) over G with

CA0 = {G}

CAi =

{

CAi−1 − c(CAi−1) + e(c(CAi−1)) if c(CAi−1) 6= ⊥
∅ if c(CAi−1) = ⊥

where c(S) = ⊥ must imply that for each subset S′ ⊆ S ⇒ c(S′) = ⊥ holds.
We call c a valid choice function of A on G if OA(HA,c(G)) ≃ OA(HA(G)).

A choice function therefore introduces a certain order in which graphs are
expanded. If c(S) = ⊥ ⇔ S = ∅ holds, we can immediately see that the resulting
output (and even the history) of A, c and A are equal. But the possibility to not
expand every graph is exactly what we will need later on, thus we need a criteria
to decide which graph we must expand in order to obtain a valid choice function.

Definition 11 (Economical Choice Function). Let c be a choice function
of a monotone expanding algorithm A = {e(G), s(G)} on a graph G. Consider
two graphs Gi ∈ HA(G) and Gt ∈ OA(HA(G)), Gt 6= G with ∞ > d(Gi, Gt) > 0.
If c chooses a Gj for some k, i.e. Gj = c(CAk), and d(Gj , Gt) < d(Gi, Gt) then
c is called economical choice function of A on G.

Lemma 4. There is always at least one choice set CAk which contains such a
Gj .

Proof. Assume Gi = c(AAl) — as d(G,Gt) > 0, such a Gi must exist (remember
that CA0 = {G}). In Definition 9 it is demanded that e(Gi) contains at least one
graph G′

j for which the d(G′
j , Gt) < d(Gi, Gt) holds, therefore Gj can be chosen

from GA(l+1).

Lemma 5 (Validity of Economical Choice Functions). Every economical
choice function c of monotone expanding algorithm A on a graph G is valid.

Proof. We need to show that for each Gt ∈ OA(HA(G)) there exists a G′
t ∈

OA(HA,c(G)) with G′
t ≃ Gt. Consider such a Gt with Gt 6≃ G. Because d(G,Gt) >

0 — otherwise a monotone expanding algorithm could not generate Gt from G

— there exists at least one graph G0 with d(G0, Gt) > 0. Then, by the definition
of c, G1 with d(G1, Gt) < d(G0, Gt) is chosen at some point. If d(G1, Gt) = 0 we
are done because that implies G1 ≃ Gt. Otherwise, d(G0, Gt) > d(G1, Gt) > 0
holds and can apply the definition of c again, thus constructing a chain of graphs
G0, G1, . . . , Gi with d(G0, Gt) > d(G1, Gt) > · · · > d(Gi, Gt) (Lemma 4 states
that this is always possible). As d(G,Gt) is finite, at some point this chain must
end in a graph Gj with d(Gj , Gt) = 0 and therefore Gj ≃ Gt. ⊓⊔

We therefore do not have to follow every path of expansion to a certain output
graph Gt, like implicated in Definition 9, but only have to make sure that at some
point a graph that reduces the distance to Gt further is chosen.

Lemma 6 (Reduced Choices). A choice function c which only chooses H ′

with H ′ ≃ H ∈ HA(G) and c(CAk) = H ′ ⇒ c(CAj) 6≃ H ′ for all j < k is
economical.

7

Proof. Consider Gt ∈ OA(HA(G)) and Gi ∈ HA(G) with d(Gi, Gt) > 0. As HA

contains at least one graph Gj with d(Gj , Gt) < d(Gi, Gt), c can choose this
graph or an isomorphic version of it — d is invariant under isomorphism, so each
choice would satisfy Definition 11. ⊓⊔

Corollary 1. A choice function c which only chooses H ′ with H ′ ≃ H ∈ HA(G)
and c(CAk) = H ′ ⇒ ∄H ′′ ∈ Rk and H ′′ ≃ H ′ with Rk ⊂

⋃

i<k c(CAi) is econom-
ical.

Proof. This follows directly as this choice function chooses a superset of graphs
w.r.t. a choice function operating like proposed in Lemma 6. ⊓⊔

4 Generation of Graphlets

As was already stated before, the process of generating the graphlets is subdi-
vided in three steps (see Step 1, Listing 2), the last of which outputs all valid
graphlets S. Each of those steps takes the output of the preceding one, thus the
correctness of the whole process follows from the correctness of each single step.

Lemma 7. Let S be a seed graph with two designated sets of vertices I ′1, I ′2 of
sizes i1 = |I ′1|, i2 = |I ′2| and a root vertex v, where v is connected to each vertices
of I1 but not other edges exists. Then generateBaseGraphs(S) generates all base
graphlets with I1 = I ′1 and I2 = I ′2.

Proof. First we will prove that the function generateBaseGraphs(S), without
the isomorphism test in lines 8-12, given in Listing 1.1 is equivalent to a mono-
tone expanding algorithm A. Afterward we will prove that its output OA(HA(S))
contains indeed all base graphlets of a fixed size, that is OA(HA(S)) ≃ Bi1,i2 .
Finally we will prove the isomorphism test in lines 8-12 to be equivalent to an
economic choice function on S.

Consider the following expanding algorithm A:
e(G): If there exists a subset V1 ⊆ I1 of vertices which are not connected to I2,
then

e(G) =
{

G′ | G′ = G ∪ (v,w), v ∈ V1, w ∈ I2

}

otherwise, if there exists a subset V2 ⊆ I2 of vertices which are not connected to
I1, then

e(G) =
{

G′ | G′ = G ∪ (v,w), v ∈ I1, w ∈ V2

}

otherwise e(G) = ∅.

s(G): s(G) = 1 ⇔ G is a base graphlet.

First we need to assure that HA(S) contains all base graphlets. This can be
verified easily: given a base graphlet B, we can generate it from S by successively
adding all necessary edges via the expansion.

We want to prove that A is a monotone expanding algorithm. It is easy to
see that A only adds edges to a graphlet, thereby e is a monotone expanding
function, so what is left to show is that for every base graphlet B ∈ OA(HA(S))

8

and each graph G ∈ HA(S) with d(G,B) > 0 there exists a G′ ∈ e(G) with
d(G′, B) < d(G,B). Assume that in I1 of G there exists a vertex v which is not
connected to I2. As all possible edges that can connect v to I2 are added to
G, one of those edges will decrease the distance to B, as all vertices in B are
connected via some edge to I2. The same argumentation holds for the case that
all vertices in v already have a neighbor in I2 and edges are added to vertices of
I2 instead. Therefore, A is a monotone expanding algorithm.

To see that the pseudo-code provided in Listing 1.1 (without lines 8-12) is
equivalent to A, let us think of the recursion employed there as a choice function
c that simply acts upon a stack of graphs (initially empty) and the loop in lines
26-33 and lines 47-53 simply fill that stack with the graphs generated by e(G)
(the order is not important).

Consider the isomorphism check in lines 8-12 next, which prevents that
any intermediate graph is expanded twice. Would this prevent any graph to
be expanded twice, the corresponding choice function c′ would, according to
Lemma 6, be economical. As space is limited, not all graphs can be saved, thus
c′ operates in the sense of Corollary 1 — either way, c′ is economical and thus
OA(HA, c) ≃ OA(HA(S)) ≃ Bi1,i2. ⊓⊔

Listing 1.1. Generate all base graphs of a given size

1 generateBaseGraphs(){
2 Graph seed;
3 connect each orbit1 vertex with the root vertex;
4 generateBaseGraphs(seed);
5 }
6

7 generateBaseGraphs(Graph G){
8 if (G not in graph set) {
9 add G to graph set;

10 } else {
11 return;
12 }
13

14 // Search for an invalid orbit1 vertex
15 int v = 1;
16 while v < |orbit1|+1 {
17 if v has no edge to any vertex in orbit2
18 break;
19 v++;
20 }
21

22 if (v < |orbit1|+1) {
23 // v is an unconnected vertex in orbit1 .
24 // Consider all possibilities to connect it with vertices from orbit2.
25 int w = |orbit1|+1;
26 while w < |orbit1|+|orbit2|+1 {
27 if ((v,w) is edge in G)
28 continue;
29

30 if (degree(w) < maxDegree && degree(v) < maxDegree)
31 generateBaseGraphs(G + (v,w));
32 w++;
33 }

9

34 } else {
35 // No invalid vertex was found in orbit1 .
36 // Search for an invalid orbit1 vertex
37 int v = |orbit1|+1;
38 while v < |orbit1|+|orbit2|+1 {
39 if v has no edge to any vertex in orbit1
40 break;
41 v++;
42 }
43

44 if (v < |orbit1|+|orbit2|+1) {
45 // v is an unconnected vertex in orbit2 .
46 int w = 1;
47 while w < |orbit1|+1 {
48 if ((v,w) is edge in G)
49 continue;
50

51 if (degree(w) < maxDegree && degree(v) < maxDegree)
52 generateBaseGraphs(G + (v,w));
53 }
54 } else {
55 if (isBaseGraph(G)) {
56 // The graph is a valid base graph
57 add G to results ;
58 }
59 }
60 }
61 }

Definition 12 (Minimal Graphlet). A minimal graphlet is a valid graphlet
(see Definition 4), where no edge can be removed without the graphlet becoming
invalid.

Notice that in a minimal graphlet some vertices may have a degree greater
than the minimal degree (see Figure 2)

Lemma 8. Every valid graphlet has at least one base graphlet as a subgraphlet.

Proof. Let G be a graphlet. First we can remove all anonymous edges. If then
G is not yet a base graphlet there exists some edge e which can be removed
without either changing I1 and I2 or leaving a vertex without a neighbor in
the respective other orbit. Successively removing such edges e will at some point

Fig. 2. A minimal graphlet with four vertices in I1 and seven in I2 . Dashed lines represent
anonymous edges.

10

result in a graph which cannot be reduced further — it therefore fulfills all criteria
(cf. Definition 5) of a base graphlet. As we only removed edges — anonymous or
not — this resulting graphlet clearly is a subgraphlet of G. ⊓⊔

Lemma 9. Every valid graphlet has at least one minimal graphlet as a sub-
graphlet.

Proof. If a graphlet G is not minimal it means that there is an edge we could
remove so that the graphlet remains valid. We can remove all such edges itera-
tively and at some point no edge will be removable anymore. This graphlet must
by definition be a minimal graphlet and a subgraphlet of G. ⊓⊔

Before we begin with the actual proof of the correctness let us gain a lit-
tle insight into the logic of the complete(Graph G) algorithm. The actual work
in the algorithm is done by the functions complete(Graph G, minDegreeFlags,

maxDegreeFlags) and completeNode(Node v, Graph G, prohibited, num-

berAnonymousEdges, numberConections)which call each other recursively. The
logic behind that split is that first complete(Graph G, minDegreeFlags, max-

DegreeFlags) chooses a vertex whose degree is smaller than the minimal degree.
For the vertex it has chosen it calculates how many edges are missing till achieving
minimal degree. It then enumerates all possible partitions between anonymous
edges and non-anonymous edges on that number and calls completeNode(Node

v, Graph G, prohibited, numberAnonymousEdges, numberConections) on
each one of them. This function will then enumerate every possible way to
map this partition on edges on the graphlet G and call complete(Graph G,

minDegreeFlags, maxDegreeFlags) on the new generated graphlets (Unless an
isomorphic graphlet was already expanded). This will go on like this until an ex-
pansion generates a minimal graphlet; a minimal graphlet can not be expanded
so that another minimal graphlet is generated, which means we can stop the
recursion.

Listing 1.2. Give every vertex at least minimal degree

1 void complete(Graph G) {
2

3 nodesWithMaxDegree = All nodes with minimal degree;
4 nodesWithMinDegree = All nodes with maximal degree;
5

6 complete(G, nodesWithMinDegree, nodesWithMaxDegree);
7 }
8

9 void complete(Graph G, minDegreeFlags, maxDegreeFlags) {
10

11 // Search a vertex which has a degree smaller
12 // than the minimal degree.
13

14 Node v = First node in the first orbit ;
15 while(v < totalVertices) {
16 v++;
17

18 if (degree(v) > minDegree){
19 continue;
20 }
21

22 // Denotes how many edges are needed until the vertex v

11

23 // reaches minimal degree.
24 int degreeLeft = minDegree − degree(v);
25

26 prohibited = {u : (v, u) ∈ E(G)} + self + maxDegreeFlags;
27

28 if (v in orbit1) {
29 // Vertex in orbit one cannot have anonymous edges
30 completeNode(v, G, prohibited, minDegreeFlags, maxDegreeFlags, degreeLeft, 0

);
31 } else {
32 // Enumerates the different possibilities for
33 // a vertex to have anonymous edges.
34 for (int i = 0; i <= degreeLeft; ++i) {
35 completeNode(v, G, prohibited, minDegreeFlags, maxDegreeFlags, (

degreeLeft − i), i);
36 }
37 }
38 }
39

40 The Graph is complete, write it to file ;
41 }
42

43 completeNode(Node v, Graph G, prohibited, minDegreeFlags, maxDegreeFlags,
numberAnonymousEdges, numberConections) {

44

45 minDegreeFlags += {v};
46

47 if (numberConections == 0) { // Set only anonymous edges.
48 E = G;
49 E.setAnonymousEdges(v, numberAnonymousEdges);
50 if E is not known
51 complete(E);
52 } else {
53

54 foreach valid set S of nodes the size of numberConnections {
55 newMinDegreeFlags = minDegreeFlags;
56 newMaxDegreeFlags = maxDegreeFlags;
57

58 if the set has nodes that are in the prohibited set
59 continue;
60

61 E = G;
62 E.setAnonymousEdges(v, numberAnonymousEdges);
63 for each edge (v. i) in S {
64 E.setEdge(v,i) ;
65 if (degree(i) >= minDegree {
66 newMinDegreeFlags += {i};
67 if (degree(i) == maxDegree)
68 newMaxDegreeFlags += {i};
69 }
70 }
71

72 if E can still be minimal and E ist not known
73 complete (E);
74 }
75 }
76 }

12

First we will proof some lemmas for which we will have a careful look at the
pseudo code that we will later use as small part of a more formal proof of the
correctness of the algorithm.

Lemma 10. The sets minDegreeFlags and maxDegreeFlags are always consis-
tent with the graphlet G on any call of complete(Graph G, minDegreeFlags,

maxDegreeFlags).

Proof. We will proof this by induction:

Base Case The first time the function is called it is called by complete(Graph

G) which calculates this sets directly from the graphlet G.
Induction Step In complete(Graph G, minDegreeFlags, maxDegreeFlags)

the flag sets are not changed. When completeNode(Node v, Graph G, pro-

hibited, minDegreeFlags, maxDegreeFlags, numberAnonymousEdges,

numberConections) is called the first thing we do is mark the vertex v as
having minimalDegree. It can not have maximal degree since we are assuming
that the maximal degree is greater than the minimal. In case the node does
not get minimal degree, i.e. there is no subset with is not prohibited in the
loop at line 54, then no recursive call is made, which makes what happens
to the flags irrelevant. Before we make any change to the graphlet we copy
the sets for the new graphlet on lines 55 and 56. If a non-prohibited subset is
found the if-clauses at lines 65 and 67 will look what happens with other node
on the edge. This makes the new sets in the variables newMinDegreeFlags

and newMaxDegreeFlags correct on the recursive call to complete(Graph G,

minDegreeFlags, maxDegreeFlags).
⊓⊔

Lemma 11. When a vertex v is selected in complete(Graph G, minDegree-

Flags, maxDegreeFlags) it achieves minimal degree in every possible way.

Proof. If we have already selected a vertex v we are at line 24, where the re-
maining number of edges degreeLeft is calculated. Let |M | = degreeLeft be a
set of valid edges which are to be added to v. If v is a vertex in the first orbit
then no anonymous edges can be in M . This makes the call on line 30 correct.
Otherwise it does not matter what amount of the edges in M are anonymous,
the right amount will be selected at some point by the for-loop on line 34, since
no valid set M can have a node which is in the prohibited set. ⊓⊔

Lemma 12. If the function complete(Graph G) given in Listing 1.2 is called
upon every base graphlet every minimal graphlet is generated.

Proof. To prove the correctness of the algorithm, we will first proof that the
algorithm is a monotone expanding algorithm, which generates every minimal
graphlet G where d(B,G) < ∞ when called on a base graphlet B. We will
demonstrate that there are always graphlets generated to which the distance to
the desired graphlet is always smaller than before. This can be repeated until the
distance becomes zero, which is equivalent to the graphlets being isomorphic.

First some comment on the formalization: The function that will be called
on every base graphlet will be complete(Graph G) but this function is only
called once for every base graphlet. This function will then call complete(Graph

13

G, minDegreeFlags, maxDegreeFlags), which will either stop the recursion
or call completeNode (Node v, Graph G, prohibited, numberAnonymous-

Edges, numberConections) which itself will call complete(Graph G, min-

DegreeFlags, maxDegreeFlags) again. Since these two function call each other
recursively we can consider them as one single function, replacing calls to com-

pleteNode(Node v,Graph G, prohibited, numberAnonymousEdges, number-

Conections) by “inlining” that function. We will call this simply the completion
algorithm.

e(G): We want to show that part of the functionality of the completion algo-
rithm can be regarded as a monotone expanding algorithm. e(G) will then
be the whole function except line 40 and the if-clauses where the recursion
is stopped if the graphlet is already known or an edge has been added which
makes it impossible for the graph to be minimal.

1. It is clear that the only changes the function can make to any graphlet is
adding edges; either it does not select any vertex in the loop between line
15 and 20, which means that on the graphlet G upon which the function
was called e(G) = ∅ or it does select a vertex. In the second case it will
add some edge to the graphlet either on line 49, 62 or 64. This means
that e(G) is a monotone expansion function.

2. For the algorithm to be a monotone expanding algorithm e(G) has to
work in a specific way: For every graphlet Gs and minimal graphlet G

with 0 < d(Gs, G) < ∞ there has to be a graphlet G′ ∈ e(Gs) for which
d(G′, G) < d(Gs, G).

From the definition of the distance function we know that for d(Gs, G) =
k < ∞ a mapping f has to exist where |E(Gs) − E(f(G))| = k, where
Gs is a subgraphlet of f(G). Since we are assuming that 0 < d(Gs, G) we
know Gs can not be a minimal graphlet, since any minimal graphlet has
to have a distance to G of either 0 or ∞. Let then v be the vertex that
is selected at the beginning of complete(Graph G, minDegreeFlags,

maxDegreeFlags). Now the algorithm will add edges to v in every pos-
sible way so that it achieves minimal degree, this will cause at some
point the distance between d(G′, f(G)) and d(Gs, f(G)) to decrease. From
this follows that d(G′, G) = d(G′, f(G)) < d(Gs, f(G)) = d(Gs, G) since
f(G) ≃ G which is what we wanted to show.

s(G): This function has to select at least all the minimal graphlets. On every
call of complete(Graph G, minDegreeFlags, maxDegreeFlafs) line 40 is
executed. There the minimality of each vertex is tested, which is a necessary
condition for minimal graphlets, and if every vertex has at least minimal
degree the graphlet is written to a file, which is the same as the graphlet
being part of the output. Notice under this definition s(G) is called on every
graphlet in the history, which make s(G) a valid selection function in A.

choice function: The choice function consist of the lines 50 and 72. This se-
lects for every graphlet G which is generated at some point on the algorithm
without the choice function (the same functions only with this if-clauses re-
moved) at least one graphlet G′ ∈ [G]. It also throws away every graphlet
the function generates which has an edge that can be removed, since that
means that whatever graphlet is generated by expanding such a graphlet it

14

can not be minimal. This in conjunction with Lemma 6 suffices to show that
this choice function does not falsify the result.

Now we see that the algorithm is a monotone expanding algorithm and that
e(G) will expand some graphlet in the history to decrease the distance to any
minimal graphlet G on any graphlet whose distance to G is finite. But this follows
directly from Lemma 8, since from this lemma we can deduce that for a base
graphlet B the distance d(B,G) < ∞. Since the distance is finite and always
decreases at some point is has to become zero. This means that an isomorphic
version of G is generated in any case. ⊓⊔

Let us move on to addPossibleEdges(Graph G, Node v). This function is
pretty straightforward compared to the previous one; it is executed on every
minimal graphlet with the first vertex in the first orbit as the second argument
to generate all valid graphlets. The algorithm either adds an edge to v — if
possible — and call itself recursively on the vertex v again, or do nothing with
v and call itself recursively on the next vertex (in the order of the labeling). By
doing that it adds every subset of the set of all edges that can be added to a
minimal graphlet.

Listing 1.3. Add all possible edges to the graphs generated in the second step

1 addPossibleEdges(Graph G, Node v) {
2 if (v > numberVertices) {
3 Write G to file ;
4 return;
5 }
6

7 if degree(v) < maximalDegree {
8 foreach pair (v,w) where w > v {
9 if (G.adjacent(v,w))

10 continue;
11

12 if degree(w) < maximalDegree {
13 E = G;
14 E.setEdge(v,w);
15

16 if E is not known
17 addPossibleEdges(E, v);
18 }
19 }
20

21

22 if v in second orbit {
23 E = G;
24 E.addOneAnonymousEdgeToNode(v);
25

26 if E is not known
27 addPossibleEdges(E, v);
28 }
29 }
30

31 addPossibleEdges(G, v + 1);
32 }

15

Lemma 13. Every valid graphlet is generated by addPossibleEdges(...) at
some point, if it is called on every minimal graphlet with Node v = 1 as the
second argument.

Proof. It is obvious that if it was not for the isomorphism test on lines 16 and 26
then every set of edges that can be added to a minimal graphlet would be added
and so that every valid graphlet would be generated.

We still have to show that the isomorphism test does not impede the creation
of a graphlet G for every valid graphlet GV with G ∈ [GV]. The correctness of
this assertion follows from the depth-first recursion the algorithm employs.

Let G be a graphlet upon which the function would have been called with i

as a second argument — assuming it is not, because an isomorphic version was
already encountered before — and let (v,w) with w > v ≥ i be any edge we
could have added to G. Let G′ ≃ G be the isomorphic version upon which the
function was called and f the mapping for which G′ = f(G). The edge (v,w)
becomes (f(v), f(w)) = (u, u′) where u′ > u. Furthermore, let i′ be the second
argument on the call upon G′.

If i′ ≤ u for all edges (v,w) then, by using the recursive call on line 31 (which
is always executed), we can reach a moment where the second argument is u and
the edge is added.

If i′ > u for some edge (v,w) then there is a subgraphlet G′′ of G′ upon which
the function was called (else this call would not exist) for which the the second
argument equaled u which means that the edge is added. There is a path that
adds all the edges missing in G′′ that are in G′.

This means that in every step we find a graphlet for which a path in the code
exists that generates all expansion of G. Since a path is only interrupted when
an isomorphic version is found this path must either complete or be interrupted
because of one of the reasons stated before or because a graphlet on the path
can only be expanded to graphlets that already exist on this path. ⊓⊔

From the previously proved lemmas the following central theorem follows:

Theorem 1. Every valid graphlet is generated by first generating the base graph-
lets, then calling complete Graph(Graph G) on every base graphlet and lastly
calling addPossibleEdges(Graph G, 1) on every graphlet generated by com-

pleteGraph(Graph G).

5 Implementation

In this section we will outline our implementation of the above algorithm written
in C++ as well as the tools we developed to compare the output of our verifier
with the certificate. We also introduce a data structure which efficiently spots
isomorphic graphlets1 and thus contributes significantly to the good performance
of the verification process.

1 To be precise: graphlets and subgraphs of graphlets, as the generateBaseGraphs() works on
not yet complete graphlets

16

5.1 Subset Representation and Enumeration

The algorithm addPossibleEdges(Graph G, Node v) uses sets of vertices for
certain optimization, which we model by using unsigned integers, assuming that
the program will be run on an architecture with at least 32 bit (which should be
commonly enough). Each position in the binary representation of the integer is
seen as a flag which denotes whether a specific vertex is part of the set or not.

If we regard the bit-strings as being ordered from right to left, the first po-
sition will be the root node, then come all the positions for the vertices in the
first orbit and then all the ones for the vertices in second orbit.

This way of representing set allows to speed up some operation, for example
testing whether a certain set is a subset of another or whether two sets have at
least one element in common, both of which become simple integer operations.

To enumerate subsets we use a bithack known as Gosper’s Hack, which is
described int the 0. fascicle of the 4. book of The Art of Computer Program-
ming [6].

5.2 Data Structure: Graphlet Trie

Listings 1.1, 1.2 and 1.3 require a way to determine whether a given graphlet
was already encountered during the recursion of the algorithm. The following
abstract data structure concretises this premise:

Definition 13 (Graphlet set). A graphlet set is any data structure which
provides the operations insert and contains for graphlets. These operations must
conform to the following contracts:

insert Inserts a given graphlet into the set.
contains Returns true if the graph or an isomorphic version was inserted

before, otherwise false.

As space is quite limited while the amount of graphlets grows exponentially
w.r.t the number of vertices, the following less restrictive definition is introduced
(this corresponds to Corollary 1)

Definition 14 (Limited graphlet set). A limited graphlet set is any data
structure which provides the operations insert and contains conforming to the
following contracts:

insert Inserts a given graphlet into the set if there is enough space.
contains Returns true if the graph or an isomorphic version is contained,

otherwise false.

Furthermore it must be deducible whether the limited graphlet set can save further
graphs or not, i.e. by initializing the structure with a certain amount of memory
or the maximum number of graphlets that should be stored.

Under this definition, even a trivial data structure which never saves graphlets
and always returns false when asked whether a certain graphlet is contained
is a valid limited graphlet set and our algorithm would work correctly, albeit
slowly, with it. But of course the intent is to reduce the amount of redundant

17

computations, so a good limited graphlet set will try to save as many graphlets
as possible and to recognize a lot of isomorphisms.

While a a simple set data structure would work reasonable well to store
graphlets, the amount of comparisons that would have to be made for a single
isomorphism check would outweigh the gain by far. Therefore, we introduced the
graphlet trie which pre-sorts graphlets into buckets by generating a characteristic
sequence for each of them:

Definition 15 (Graphlet characteristic sequence). A characteristic se-
quence I(G) of a given graphlet G is any sequence of integers that conforms
to

I(G) = I(H) for all H ≃ G

A simple example for a characteristic sequence is a sorted list containing the
degrees of each vertex or – trivially – the sequence of length one containing always
a zero. If any method to generate such a characteristic sequence is supplied,
checking for isomorphic versions of a graph must only be conducted on the bucket
identified by that sequence as the equality of the characteristic sequences is, by
definition, a necessary precondition.

Note that even if the characteristic sequences of two isomorphic graphs would
differ or if any other kind of (logical) error would occur, the above is still a valid
limited graphlet set ; it would not dismiss any graphlet that was not encountered
yet. Furthermore, if used as a basis for isomorphism tests, a mistake in the
implementation of the characteristic sequence can only cause a false negative,
never a false positive.

Our method of generating characteristic sequences is to calculate the char-
acteristic polynomial of the adjacency matrix2 and use the coefficients sorted
by the order of their respective terms. The calculation itself is done by an it-
erative variant of the Berkowitz-algorithm[1] which calculates the characteristic
polynomial without divisions and therefore is not susceptible to numerical errors.

We want to stress that the isomorphism check, which enumerates all feasible
mappings (e.g. it does not try to map a vertex from I1 to a vertex of I2) for two
graphlets, is robust in the sense that the mapping is applied to the graphlet and
then tested for equality against the other — again this only makes false negatives
possible, not false positives3.

5.3 Full Test for Isomorphism

In order to compare the generated graphs we need to remove all non-unique
graphs from our set of graphlets (see Section 5.4 for an explanation why). This is
accomplished by comparing each graph from our set against all others while con-
sidering all possible isomorphic versions, thus filtering out all isomorphic variants.
We again employ a limited graphlet set, but with two additional operations:

2 We managed to gain a better discrimination of graphlets by adding a little more information
to the matrix (and thus to the characteristic sequence): for each vertex v on the second orbit,
1 + a(v) is written on the respective diagonal entry of the matrix, thus orbit one and orbit
two vertices become more ’distinguishable’ in the resulting sequence.

3 We trust that our equality test is correct.

18

Definition 16 (Limited graphlet checking set). A limited graphlet check-
ing set is a limited graphlet set which provides two additional operations flag and
allFlagged:

flag Marks a graphlet contained in this set
allFlagged Returns whether all graphlets inside this set have been marked

Furthermore the limited graphlet checking set must assure that if enough memory
is provided every graph inserted will be stored and that the memory limit can be
controlled in some manner.

To avoid missing graphs due to the limited number of graphs saved inside the
limited graphlet checking set we have to filter iteratively: each steps loads a new
chunk of graphs – small enough to fit into the limited graphlet checking set –
from the total set and compares it to the already reduced parts of the set.

Listing 1.4. Graphlet set reduction

1 function filterGraphs(S, maxGraphsInMemory) {
2

3 R = {}; // Empty set
4

5 while (S is not empty) {
6 I = takeChunk(S, maxGraphsInMemory);
7 S = S − {Graphs isomorphic to graphs in I};
8 R += I;
9 }

10

11 return R;
12 }

We use the graphlet trie (c.f. Section 5.2) – which supports the above op-
erations – for that purpose: a set of valid graphlets from the file F0 is loaded
into the trie which, since the trie will not exceed its capacity and thus not dis-
miss graphlets4, are pairwise non-isomorphic. These graphs are written to the
resulting file R, afterward all remaining graphs from F0 are compared against the
graphlets contained in the trie — if an isomorphic version is found, the graphlet
is dismissed, otherwise it is written to a new file F1. The next iteration loads as
many graphlets as possible from F1 into the trie and repeats the process, until
no graphlets are left.

5.4 Comparison of Graphlets Sets

After obtaining a reduced graphlet set the comparison against another graphlet
set can be made. Again a limited graphlet checking set is employed to spot iso-
morphic versions of each graphlet. The sets are checked iteratively by loading
appropriate sized chunks from the reduced set and comparing it against all not
yet encountered graphlets from the other set, see Listing 1.5:

Listing 1.5. comparing two sets

1 function boolean compareGraphs(S, T, maxGraphsInMemory) {

4 The implementation is a little more robust: the graphlet trie is initialized with endless ca-
pacity and a simple counter keeps track of the amount of graphlets inserted.

19

2

3 while (S is not empty) {
4 I = takeChunk(S, maxGraphsInMemory);
5 S = S − I;
6 Mark graphs in I which are found in T;
7 T = T − {Graphs isomorphic to graphs in I};
8 if (not all graphs in I marked)
9 return false; // T misses graphs

10 }
11

12 if (T is not empty)
13 return false; // S misses graphs
14

15 // S equals T
16 return true;
17 }

A set of valid graphlets from the first file is loaded into the trie which, since
it was reduced earlier (see Section 5.3) all elements are pairwise non-isomorphic.
Afterward all valid graphlets from the other file are compared against the con-
tents of the trie, eliminating each graphlet to which a corresponding isomorphic
version can be found, while the remaining graphs are saved to a file. This process
is then repeated; again a chunk of graphs is loaded from the first file and compare
against the, now reduced, second file. At some point, no graphs are left to be
checked and the number of missing graphs in each file is reported.

5.5 Branching Vector Comparison

The final step in the process is the verification of the certificate’s branching
vectors. Alongside the file containing representatives of S the certificate provides
a file with branching vectors of those graphs, ordered so that the i-th branching
vector in the one file belongs to the i-th graph in the other. Obviously, if the
verifier first testified that the graphlet file was complete and then does not find
any faulty calculated branching vector, the upper bound calculated from these
branching vectors is correct.

6 Conclusion

We have provided an in-depth overview of the algorithms employed to verify
the results by Kneis, Langer and Rossmanith[3] and a proof for its correctness.
The source code available at [5] can be examined to verify that those algorithms
are correctly implemented. As the certificate has been successfully verified, the
upper bound of O∗(1.2132n) for Maximum Independent Set seems to hold.

References

1. S. J. Berkowitz. On computing the determinant in small parallel time using a small number
of processors. Information Processing Letters, 18:147–150, 1984.

2. F. Fomin, F. Grandoni, and D. Kratsch. Measure and conquer: A simple O(20.288n) in-
dependent set algorithm. In Proceedings of the 17th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 18–25, 2006.

3. P. Rossmanith J. Kneis, A. Langer. A fine-grained analysis of a simple independent set
algorithm, 2009. submitted for publication.

20

4. T. Jian. An O(20.304n) algorithm for solving Maximum Independent Set problem. IEEE
Transactions on Computers, 35(9):847–851, 1986.

5. J. Kneis, A. Langer, and P. Rossmanith. Independent set proof homepage, 2009.
http://www.tcs.rwth-aachen.de/independentset/.

6. D. E. Knuth. Introduction to combinatorial searching, 2008. The Art of Computer Pro-
gramming, Pre-Fascicle 0.

7. J. M. Robson. Algorithms for maximum independent sets. Journal of Algorithms, 7:425–440,
1986.

8. R. E. Tarjan and A. E. Trojanowski. Finding a Maximum Independent Set. SIAM Journal
on Computing, 6(3):537–550, 1977.

21

22

Aachener Informatik-Berichte

This list contains all technical reports published during the past five years.

A complete list of reports dating back to 1987 is available from http://aib.

informatik.rwth-aachen.de/. To obtain copies consult the above URL or

send your request to: Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55,

52056 Aachen, Email: biblio@informatik.rwth-aachen.de

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003

2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic

2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting

2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming

2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on Func-

tional and (Constraint) Logic Programming

2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming

2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination

2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information

2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity

2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules

2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004

2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer

School Applied IT Security”

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-

proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for

the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing

Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Informa-

tion

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-

ploring a Root-Cause Methodology to Prevent Distributed Denial-of-

Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With

Applications To Max-Cut

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General

Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts

2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture

23

2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-

ficient Reductions for Wait-Free Termination Detection in Faulty Dis-

tributed Systems

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting

Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization

2005-15 Uwe Naumann: The Complexity of Derivative Computation

2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)

2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedu-

ral Adjoint Code)

2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-

berger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann,

Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-

Entwicklungsprozess - Abschlußbericht des GI-Arbeitskreises “Features”

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented

LL-Parsers

2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbil-

dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-

bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-

gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit

BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-

ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-

ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:

Decision Making Based on Approximate and Smoothed Pareto Curves

2005-24 Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering

with Motes: Real-World Physical Attacks on Wireless Sensor Networks

2006-01 ∗ Fachgruppe Informatik: Jahresbericht 2005

2006-02 Michael Weber: Parallel Algorithms for Verification of Large Systems

2006-03 Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Generated

by the Differentiation-Enabled NAGWare Fortran Compiler

2006-04 Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static

Memory Jacobian Accumulation

2006-05 Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozyurt,

Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint

Code by Source Transformation with OpenAD/F

2006-06 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Divide-

and-Color

2006-07 Thomas Colcombet, Christof Löding: Transforming structures by set in-

terpretations

2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-

Expression-Use Graphs

2006-09 Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic

Model Checking

24

2006-10 Mesut Günes, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,

Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid

MCG-Mesh Testbed

2006-11 Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowalewski:

Model Checking Software for Microcontrollers

2006-12 Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker:

Replaying Play in and Play out: Synthesis of Design Models from Sce-

narios by Learning

2006-13 Wong Karianto, Christof Löding: Unranked Tree Automata with Sibling

Equalities and Disequalities

2006-14 Danilo Beuche, Andreas Birk, Heinrich Dreier, Andreas Fleischmann,

Heidi Galle, Gerald Heller, Dirk Janzen, Isabel John, Ramin Tavakoli

Kolagari, Thomas von der Maßen, Andreas Wolfram: Report of the GI

Work Group “Requirements Management Tools for Product Line Engi-

neering”

2006-15 Sebastian Ullrich, Jakob T. Valvoda, Torsten Kuhlen: Utilizing optical

sensors from mice for new input devices

2006-16 Rafael Ballagas, Jan Borchers: Selexels: a Conceptual Framework for

Pointing Devices with Low Expressiveness

2006-17 Eric Lee, Henning Kiel, Jan Borchers: Scrolling Through Time: Improv-

ing Interfaces for Searching and Navigating Continuous Audio Timelines

2007-01 ∗ Fachgruppe Informatik: Jahresbericht 2006

2007-02 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, and Harald Zankl: SAT Solving for Termination Anal-

ysis with Polynomial Interpretations

2007-03 Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-

Kamp: Proving Termination by Bounded Increase

2007-04 Jan Buchholz, Eric Lee, Jonathan Klein, and Jan Borchers: coJIVE: A

System to Support Collaborative Jazz Improvisation

2007-05 Uwe Naumann: On Optimal DAG Reversal

2007-06 Joost-Pieter Katoen, Thomas Noll, and Stefan Rieger: Verifying Con-

current List-Manipulating Programs by LTL Model Checking

2007-07 Alexander Nyßen, Horst Lichter: MeDUSA - MethoD for UML2-based

Design of Embedded Software Applications

2007-08 Falk Salewski and Stefan Kowalewski: Achieving Highly Reliable Em-

bedded Software: An empirical evaluation of different approaches

2007-09 Tina Kraußer, Heiko Mantel, and Henning Sudbrock: A Probabilistic

Justification of the Combining Calculus under the Uniform Scheduler

Assumption

2007-10 Martin Neuhäußer, Joost-Pieter Katoen: Bisimulation and Logical

Preservation for Continuous-Time Markov Decision Processes

2007-11 Klaus Wehrle (editor): 6. Fachgespräch Sensornetzwerke

2007-12 Uwe Naumann: An L-Attributed Grammar for Adjoint Code

2007-13 Uwe Naumann, Michael Maier, Jan Riehme, and Bruce Christianson:

Second-Order Adjoints by Source Code Manipulation of Numerical Pro-

grams

25

2007-14 Jean Utke, Uwe Naumann, Mike Fagan, Nathan Tallent, Michelle Strout,

Patrick Heimbach, Chris Hill, and Carl Wunsch: OpenAD/F: A Modular,

Open-Source Tool for Automatic Differentiation of Fortran Codes

2007-15 Volker Stolz: Temporal assertions for sequential and concurrent programs

2007-16 Sadeq Ali Makram, Mesut Güneç, Martin Wenig, Alexander Zimmer-

mann: Adaptive Channel Assignment to Support QoS and Load Balanc-

ing for Wireless Mesh Networks

2007-17 René Thiemann: The DP Framework for Proving Termination of Term

Rewriting

2007-18 Uwe Naumann: Call Tree Reversal is NP-Complete

2007-19 Jan Riehme, Andrea Walther, Jörg Stiller, Uwe Naumann: Adjoints for

Time-Dependent Optimal Control

2007-20 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, and Verena Wolf:

Three-Valued Abstraction for Probabilistic Systems

2007-21 Tingting Han, Joost-Pieter Katoen, and Alexandru Mereacre: Compo-

sitional Modeling and Minimization of Time-Inhomogeneous Markov

Chains

2007-22 Heiner Ackermann, Paul W. Goldberg, Vahab S. Mirrokni, Heiko Röglin,

and Berthold Vöcking: Uncoordinated Two-Sided Markets

2008-01 ∗ Fachgruppe Informatik: Jahresbericht 2007

2008-02 Henrik Bohnenkamp, Marielle Stoelinga: Quantitative Testing

2008-03 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, Harald Zankl: Maximal Termination

2008-04 Uwe Naumann, Jan Riehme: Sensitivity Analysis in Sisyphe with the

AD-Enabled NAGWare Fortran Compiler

2008-05 Frank G. Radmacher: An Automata Theoretic Approach to the Theory

of Rational Tree Relations

2008-06 Uwe Naumann, Laurent Hascoet, Chris Hill, Paul Hovland, Jan Riehme,

Jean Utke: A Framework for Proving Correctness of Adjoint Message

Passing Programs

2008-07 Alexander Nyßen, Horst Lichter: The MeDUSA Reference Manual, Sec-

ond Edition

2008-08 George B. Mertzios, Stavros D. Nikolopoulos: The λ-cluster Problem on

Parameterized Interval Graphs

2008-09 George B. Mertzios, Walter Unger: An optimal algorithm for the k-fixed-

endpoint path cover on proper interval graphs

2008-10 George B. Mertzios, Walter Unger: Preemptive Scheduling of Equal-

Length Jobs in Polynomial Time

2008-11 George B. Mertzios: Fast Convergence of Routing Games with Splittable

Flows

2008-12 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, Verena Wolf: Ab-

straction for stochastic systems by Erlang’s method of stages

2008-13 Beatriz Alarcón, Fabian Emmes, Carsten Fuhs, Jürgen Giesl, Raúl

Gutiérrez, Salvador Lucas, Peter Schneider-Kamp, René Thiemann: Im-

proving Context-Sensitive Dependency Pairs

2008-14 Bastian Schlich: Model Checking of Software for Microcontrollers

2008-15 Joachim Kneis, Alexander Langer, Peter Rossmanith: A New Algorithm

for Finding Trees with Many Leaves

26

2008-16 Hendrik vom Lehn, Elias Weingärtner and Klaus Wehrle: Comparing

recent network simulators: A performance evaluation study

2008-17 Peter Schneider-Kamp: Static Termination Analysis for Prolog using

Term Rewriting and SAT Solving

2008-18 Falk Salewski: Empirical Evaluations of Safety-Critical Embedded Sys-

tems

2009-03 Alexander Nyßen: Model-Based Construction of Embedded

Real-Time Software - A Methodology for Small Devices

2009-04 Daniel Klünder: Entwurf eingebetteter Software mit abstrakten Zus-

tandsmaschinen und Business Object Notation

2009-05 George B. Mertzios, Ignasi Sau, Shmuel Zaks: A New Intersection Model

and Improved Algorithms for Tolerance Graphs

2009-06 George B. Mertzios, Ignasi Sau, Shmuel Zaks: The Recognition of Tol-

erance and Bounded Tolerance Graphs is NP-complete

2009-07 Joachim Kneis, Alexander Langer, Peter Rossmanith: Derandomizing

Non-uniform Color-Coding I

2009-08 Joachim Kneis, Alexander Langer: Satellites and Mirrors for Solving In-

dependent Set on Sparse Graphs

2009-11 Kyriaki Ioannidou, George B. Mertzios, Stavros D. Nikolopoulos: The

Longest Path Problem is Polynomial on Interval Graphs

2009-12 Martin Neuhäußer, Lijun Zhang: Time-Bounded Reachability in

Continuous-Time Markov Decision Processes

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

27

