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Abstract. The longest path problem is the problem of finding a path of maximum length in a

graph. Polynomial solutions for this problem are known only for small classes of graphs, while it is

NP-hard on general graphs, as it is a generalization of the Hamiltonian path problem. Motivated

by the work of Uehara and Uno in [22], where they left the longest path problem open for the

class of interval graphs, in this paper we show that the problem can be solved in polynomial time

on interval graphs. The proposed algorithm runs in O(n4) time, where n is the number of vertices

of the input graph, and bases on a dynamic programming approach.

Keywords: Longest path problem, interval graphs, polynomial algorithm, complexity, dynamic

programming.

1 Introduction

A well studied problem in graph theory with numerus applications is the Hamiltonian path
problem, i.e., the problem of determining whether a graph is Hamiltonian; a graph is said to be
Hamiltonian if it contains a Hamiltonian path, that is, a simple path in which every vertex of
the graph appears exactly once. Even if a graph is not Hamiltonian, it makes sense in several
applications to search for a longest path, or equivalently, to find a maximum induced subgraph
of the graph which is Hamiltonian. However, finding a longest path seems to be more difficult
than deciding whether or not a graph admits a Hamiltonian path. Indeed, it has been proved
that even if a graph has a Hamiltonian path, the problem of finding a path of length n−nε for
any ε < 1 is NP-hard, where n is the number of vertices of the graph [16]. Moreover, there is no
polynomial-time constant-factor approximation algorithm for the longest path problem unless
P=NP [16]. For related results see also [3, 8–10,24,25].

It is clear that the longest path problem is NP-hard on every class of graphs, on which
the Hamiltonian path problem is NP-complete. The Hamiltonian path problem is known to be
NP-complete in general graphs [11,12], and remains NP-complete even when restricted to some
small classes of perfect graphs, such as split graphs [14], chordal bipartite graphs, split strongly
chordal graphs [19], circle graphs [6], planar graphs [12], and grid graphs [15]. However, it makes
sense to investigate the tractability of the longest path problem on the classes for which the
Hamiltonian path problem admits polynomial time algorithms. Such classes include interval
graphs [18], circular-arc graphs [7], convex bipartite graphs [19], co-comparability graphs [5].
Note that the case of proper interval graphs is easy, since all connected proper interval graphs
have a Hamiltonian path [2].
� This research is co-financed by E.U.-European Social Fund (80%) and the Greek Ministry of Development-
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In contrast to the Hamiltonian path problem, there are few known polynomial time solu-
tions for the longest path problem, and these restrict to trees and some small graph classes.
Specifically, a linear time algorithm for finding a longest path in a tree was proposed by Dijkstra
around 1960, a formal proof of which can be found in [4]. Later, through a generalization of
Dijkstra’s algorithm for trees, Uehara and Uno [22] solved the longest path problem for weighted
trees and block graphs in linear time and space, and for cacti in O(n2) time and space, where n

and m denote the number of vertices and edges of the input graph, respectively. More recently,
polynomial algorithms have been proposed that solve the longest path problem on bipartite
permutation graphs in O(n) time and space [23], and on ptolemaic graphs in O(n5) time and
O(n2) space [21].

Furthermore, Uehara and Uno in [22] introduced a subclass of interval graphs, namely inter-
val biconvex graphs, which is a superclass of proper interval and threshold graphs, and solved
the longest path problem on this class in O(n3(m + n log n)) time. As a corollary, they showed
that a longest path of a threshold graph can be found in O(n + m) time and space. They left
open the complexity of the longest path problem on interval graphs.

In this paper, we resolve the open problem posed in [22] by showing that the longest path
problem admits a polynomial time solution on interval graphs. Interval graphs form an impor-
tant and well-known class of perfect graphs [14]; a graph G is an interval graph if its vertices can
be put in a one-to-one correspondence with a family of intervals on the real line, such that two
vertices are adjacent in G if and only if their corresponding intervals intersect. In particular,
we propose an algorithm for solving the longest path problem on interval graphs which runs in
O(n4) time using a dynamic programming approach. Thus, not only we answer the question left
open by Uehara and Uno in [22], but also improve the known time complexity of the problem
on interval biconvex graphs, a subclass of interval graphs [22].

Interval graphs form a well-studied class of perfect graphs, have important properties, and
admit polynomial time solutions for several problems that are NP-complete on general graphs
(see e.g. [1, 14, 17]). Moreover, interval graphs have received a lot of attention due to their ap-
plicability to DNA physical mapping problems [13], and find many applications in several fields
and disciplines such as genetics, molecular biology, scheduling, VLSI circuit design, archaeology
and psychology [14].

The rest of this paper is organized as follows. In Section 2, we review some properties of
interval graphs and introduce the notion of normal paths, which is central for our algorithm.
In Section 3, we present our algorithm for solving the longest path problem on an interval
graph, which includes three phases. In Section 4 we prove the correctness and compute the time
complexity of our algorithm. Finally, some concluding remarks are given in Section 5.

2 Theoretical Framework

We consider finite undirected graphs with no loops or multiple edges. For a graph G, we denote
its vertex and edge set by V (G) and E(G), respectively. An edge is a pair of distinct vertices
u, v ∈ V (G), and is denoted by uv. Let S be a set of vertices of a graph G. Then, the cardinality
of the set S is denoted by |S| and the subgraph of G induced by S is denoted by G[S]. The
set N(v) = {u ∈ V (G) : uv ∈ E(G)} is called the neighborhood of the vertex v ∈ V (G) in G,
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sometimes denoted by NG(v) for clarity reasons. The set N [v] = N(v)∪ {v} is called the closed
neighborhood of the vertex v ∈ V (G).

Let G be a graph and let P = (v1, v2, . . . , vi−1, vi, vi+1, . . . , vj , vj+1, vj+2, . . . , vk) and
P0 = (vi, vi+1, . . . , vj) be two paths of the graph G. Sometimes, we shall denote the path P

by P = (v1, v2, . . . , vi−1, P0, vj+1, vj+2, . . . , vk). Moreover, we denote by V (P ) the set of vertices
in the path P , and define the length of the path P to be the number of vertices in P , i.e.,
|P | = |V (P )|. We call right endpoint of a path P = (v1, v2, . . . , vk) the last vertex vk of P .

2.1 Structural Properties of Interval Graphs

A graph G is an interval graph if its vertices can be put in a one-to-one correspondence with
a family F of intervals on the real line such that two vertices are adjacent in G if and only
if the corresponding intervals intersect; F is called an intersection model for G [1]. The class
of interval graphs is hereditary, that is, every induced subgraph of an interval graph G is also
an interval graph. Ramalingam and Rangan [20] proposed a numbering of the vertices of an
interval graph; they stated the following lemma.

Lemma 1. (Ramalingam and Rangan [20]): The vertices of any interval graph G can be num-
bered with integers 1, 2, . . . , |V (G)| such that if i < j < k and ik ∈ E(G), then jk ∈ E(G).

As shown in [20], the proposed numbering, which results after sorting the intervals of the
intersection model of a graph G on their right ends [1], can be obtained in O(|V (G)| + |E(G)|)
time. An ordering of the vertices according to this numbering is found to be quite useful in
solving some graph-theoretic problems on interval graphs [1, 20]. Throughout the paper, such
an ordering is called a right-end ordering of G. Let u and v be two vertices of G; if π is a right-end
ordering of G, denote u <π v if u appears before v in π. In particular, if π = (u1, u2, . . . , u|V (G)|)
is a right-end ordering of G, then ui <π uj if and only if i < j.

The following lemma appears to be useful in obtaining some important results.

Lemma 2. Let G be an interval graph, and let π be a right-end ordering of G. Let
P = (v1, v2, . . . , vk) be a path of G, and let v� /∈ V (P ) be a vertex of G such that v1 <π v� <π vk

and v�vk /∈ E(G). Then, there exist two consecutive vertices vi−1 and vi in P , 2 ≤ i ≤ k, such
that vi−1v� ∈ E(G) and v� <π vi.

Proof. Consider the intersection model F of G, from we each we obtain the right-end ordering
π of G. Let Ii denote the interval which corresponds to the vertex vi in F , and let l(Ii) and
r(Ii) denote the left and the right endpoint of the interval Ii, respectively. Without loss of
generality, we may assume that all values l(Ii) and r(Ii) are distinct. Since P = (v1, v2, . . . , vk)
is a path from v1 to vk, it is clear from the intersection model F of G that at least one vertex
of P sees v�. Recall that vkv� /∈ E(G); let vi−1, 2 ≤ i ≤ k, be the last vertex of P such that
vi−1v� ∈ E(G), i.e., vjv� /∈ E(G) for every index j, i ≤ j ≤ k. Thus, since v� <π vk, it follows
that r(I�) < l(Ij) < r(Ij) for every index j, i ≤ j ≤ k and, thus, v� <π vj . Therefore, in
particular, v� <π vi. This completes the proof. ��
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2.2 Normal Paths

Our algorithm for constructing a longest path of an interval graph G uses a specific type of
paths, namely normal paths. We next define the notion of a normal path of an interval graph
G.

Definition 1. Let G be an interval graph, and let π be a right-end ordering of G. The path
P = (v1, v2, . . . , vk) of G is called a normal path, if v1 is the leftmost vertex of V (P ) in π, and
for every i, 2 ≤ i ≤ k, the vertex vi is the leftmost vertex of N(vi−1) ∩ {vi, vi+1, . . . , vk} in π.

The notion of a normal path of an interval graph G is a generalization of the notion of a typical
path of G; the path P = (v1, v2, . . . , vk) of an interval graph G is called a typical path, if v1

is the leftmost vertex of V (P ) in π. The notion of a typical path was introduced by Arikati
and Rangan [1], in order to solve the path cover problem on interval graphs; they proved the
following result.

Lemma 3. (Arikati and Rangan [1]): Let P be a path of an interval graph G. Then there exists
a typical path P ′ in G such that V (P ′) = V (P ).

The following lemma is the basis of our algorithm for solving the longest path problem on
interval graphs.

Lemma 4. Let P be a path of an interval graph G. Then there exists a normal path P ′ of G,
such that V (P ′) = V (P ).

Proof. Let G be an interval graph, let π be a right-end ordering of G, and let P = (v1, v2, . . . , vk)
be a path of G. If k = 1, the lemma clearly holds. Suppose that k ≥ 2. We will prove that for
every index i, 2 ≤ i ≤ k, there exists a path Pi = (v′1, v

′
2, . . . , v

′
k), such that V (Pi) = V (P ), v′1 is

the leftmost vertex of V (Pi) in π, and for every index j, 2 ≤ j ≤ i, the vertex v′j is the leftmost
vertex of N(v′j−1) ∩ {v′j , v′j+1, . . . , v

′
k} in π. The proof will be done by induction on i.

Due to Lemma 3, we may assume that P = (v1, v2, . . . , vk) is typical, i.e., that v1 is the
leftmost vertex of V (P ) in π. Let i = 2. Assume that vj ∈ V (P ), j > 2, is the leftmost vertex
of N(v1) ∩ {v2, v3, . . . , vk} in π. Then, since G[V (P )] is an interval graph, v1 <π vj <π v2, and
v1v2, v1vj ∈ E(G), it follows that N [vj ]∩ {v1, v2, . . . , vk} ⊆ N [v2]∩ {v1, v2, . . . , vk}. Thus, there
exists a path

P2 = (v′1, v
′
2, . . . , v

′
k) = (v1, vj , vj−1, . . . , v3, v2, vj+1, vj+2 . . . , vk)

of G, such that V (P2) = V (P ), v′1 is the leftmost vertex of V (P2) in π, and v′2 is the leftmost
vertex of N(v′1) ∩ {v′2, v′3, . . . , v′k} in π. This proves the induction basis.

Consider now an arbitrary index i, 2 ≤ i ≤ k − 1, and let Pi = (v′1, v′2, . . . , v′k) be a path
of G, such that V (Pi) = V (P ), v′1 is the leftmost vertex of V (Pi) in π, and for every index j,
2 ≤ j ≤ i, the vertex v′j is the leftmost vertex of N(v′j−1)∩{v′j , v′j+1, . . . , v

′
k} in π. In particular,

it follows that the subpath (v′1, v′2, . . . , v′i) of Pi is normal. We will now prove that for any vertex
v′� ∈ {v′i+1, v

′
i+2, . . . , v

′
k}, where v′� <π v′i, it holds v′�v

′
i ∈ E(G). Indeed, suppose otherwise that

v′�v
′
i /∈ E(G), for such a vertex v′�. Then, since v′1 <π v′� <π v′i, it follows by Lemma 2 that

there are two consecutive vertices v′j−1 and v′j in Pi, 2 ≤ j ≤ i, such that v′j−1v
′
� ∈ E(G) and
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v′� <π v′j . Thus, v′j is not the leftmost vertex of N(v′j−1) ∩ {v′j , v′j+1, . . . , v
′
�, . . . , v

′
k} in π, which

is a contradiction. Therefore, for any vertex v′� ∈ {v′i+1, v
′
i+2, . . . , v

′
k}, where v′� <π v′i, it holds

v′�v
′
i ∈ E(G).

Assume that v′j ∈ V (Pi), j > i + 1, is the leftmost vertex of N(v′i) ∩ {v′i+1, v
′
i+2, . . . , v

′
k}

in π. Consider first the case where v′i <π v′j. Then, for every vertex v′� ∈ {v′i+1, v
′
i+2, . . . , v

′
k}

it holds v′i <π v′�. Indeed, suppose otherwise that v′� <π v′i <π v′j for such a vertex v′�. Then,
as we have proved above, v′�v

′
i ∈ E(G), which is a contradiction, since v′j is the leftmost

vertex of N(v′i) ∩ {v′i+1, v
′
i+2, . . . , v

′
k} in π and v′� <π v′j . Thus, v′i <π v′� for every vertex

v′� ∈ {v′i+1, v
′
i+2, . . . , v

′
k}. Therefore, since G[V (Pi)] is an interval graph, v′i <π v′j <π v′i+1,

and v′iv
′
i+1, v

′
iv

′
j ∈ E(G), it follows that N [v′j ] ∩ {v′i, v′i+1, . . . , v

′
k} ⊆ N [v′i+1] ∩ {v′i, v′i+1, . . . , v

′
k}.

Then, there exists the path

Pi+1 = (v′′1 , v′′2 , . . . , v′′i , v′′i+1, . . . , v
′′
k) = (v′1, v

′
2, . . . , v

′
i, v

′
j , v

′
j−1, . . . , v

′
i+2, v

′
i+1, v

′
j+1, . . . , v

′
k)

of G, such that V (Pi+1) = V (Pi), v′′1 is the leftmost vertex of V (Pi+1) in π, and for every index
j, 2 ≤ j ≤ i + 1, the vertex v′′j is the leftmost vertex of N(v′′j−1) ∩ {v′′j , v′′j+1, . . . , v

′′
k} in π.

Consider now the case where v′j <π v′i. Then, v′j is the leftmost vertex of {v′i+1, v
′
i+2, . . . , v

′
k}

in π. Indeed, suppose otherwise that v′� <π v′j <π v′i for a vertex v′� ∈ {v′i+1, v
′
i+2, . . . , v

′
k}. Then,

as we have proved above, v′�v
′
i ∈ E(G), which is a contradiction, since v′j is the leftmost vertex

of N(v′i) ∩ {v′i+1, v
′
i+2, . . . , v

′
k} in π and v′� <π v′j . Thus, there exists by Lemma 3 a typical path

P0, such that V (P0) = {v′i+1, v
′
i+2, . . . , v

′
k}. Since P0 is typical and v′j is the leftmost vertex of

V (P0) in π, it follows that v′j is the first vertex of P0. Then, since v′iv
′
j ∈ E(G), there exists the

path

Pi+1 = (v′′1 , v′′2 , . . . , v′′i , v′′i+1, . . . , v
′′
k) = (v′1, v

′
2, . . . , v

′
i, P0)

of G, such that V (Pi+1) = V (Pi), v′′1 is the leftmost vertex of V (Pi+1) in π, and for every index
j, 2 ≤ j ≤ i + 1, the vertex v′′j is the leftmost vertex of N(v′′j−1) ∩ {v′′j , v′′j+1, . . . , v

′′
k} in π. This

proves the induction step.

Thus, the path P ′ = Pk is a normal path of G, such that V (P ′) = V (P ). ��

3 Interval Graphs and the Longest Path Problem

In this section we present our algorithm, which we call Algorithm LP Interval, for solving the
longest path problem on interval graphs; it consists of three phases and works as follows:

• Phase 1: it takes an interval graph G and constructs the auxiliary interval graph H;
• Phase 2: it computes a longest path P on H using Algorithm LP on H;
• Phase 3: it computes a longest path ̂P on G from the path P ;

The proposed algorithm computes a longest path P of the graph H using dynamic program-
ming techniques and, then, computes a longest path ̂P of G from the path P . We next describe
in detail the three phases of our algorithm and prove properties of the constructed graph H

which will be used for proving the correctness of the algorithm.
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3.1 The interval graph H

In this section we present Phase 1 of the algorithm: given an interval graph G and a right-end
ordering π of G, we construct the interval graph H and a right-end ordering σ of H.

� Construction of H and σ: Let G be an interval graph and let π = (v1, v2, . . . , v|V (G)|)
be a right-end ordering of G. Initially, set V (H) = V (G), σ = π, and A = ∅. Traverse the
vertices of π from left to right and do the following: for every vertex vi add two vertices
ai,1 and ai,2 to the sets V (H) and A, and make both these vertices to be adjacent to
every vertex in NG[vi] ∩ {vi, vi+1, . . . , v|V (G)|}. Update σ such that a1,1 <σ a1,2 <σ v1, and
vi−1 <σ ai,1 <σ ai,2 <σ vi for every i, 2 ≤ i ≤ |V (G)|.

We call the constructed graph H the stable-connection graph of the graph G. Hereafter, we
will denote by n the number |V (H)| of vertices of the graph H and by σ = (u1, u2, . . . , un)
the constructed ordering of H. By construction, the vertex set of the graph H consists of the
vertices of the set C = V (G) and the vertices of the set A. We will refer to C as the set of the
connector vertices c of the graph H and to A as the set of stable vertices a of the graph H; we
denote these sets by C(H) and A(H), respectively. Note that |A(H)| = 2|V (G)|.

By the construction of the stable-connection graph H, all neighbors of a stable vertex
a ∈ A(H) are connector vertices c ∈ C(H), such that a <σ c. Moreover, observe that all neigh-
bors of a stable vertex form a clique in G and, thus, also in H. For every connector vertex
ui ∈ C(H), we denote by uf(ui) and uh(ui) the leftmost and rightmost neighbor of ui in σ,
respectively, which appear before ui in σ, i.e., uf(ui) <σ uh(ui) <σ ui. Note that uf(ui) and uh(ui)

are distinct stable vertices, for every connector vertex ui.

Lemma 5. Let G be an interval graph. The stable-connection graph H of G is an interval
graph, and the vertex ordering σ is a right-end ordering of H.

Proof. Consider the intersection model F of G, from we each we obtain the right-end ordering
π = (v1, v2, . . . , v|V (G)|) of G. Let Ii denote the interval which corresponds to the vertex vi in
F , and let l(Ii) and r(Ii) denote the left and the right endpoint of the interval Ii, respectively.
Without loss of generality, we may assume that all values l(Ii) and r(Ii) are distinct. Let ε be
the smallest distance between two interval endpoints in F .

For every interval Ii which corresponds to a vertex vi ∈ C, we replace its right end-
point r(Ii) by r(Ii) + ε

2 , and we add two non-intersecting intervals Ii,1 = [r(Ii), r(Ii) + ε
8 ] and

Ii,2 = [r(Ii) + ε
4 , r(Ii) + 3ε

8 ] (one for each vertex ai,1 and ai,2 of A, respectively). The two new
intervals do not intersect with any interval Ik, such that r(Ik) < r(Ii). Additionally, the two
new intervals intersect with the interval Ii, and with every interval I�, such that r(I�) > r(Ii)
and I� intersects with Ii. After processing all intervals Ii, 1 ≤ i ≤ |V (G)|, of the intersection
model F of G, we obtain an intersection model of H. Thus, H is an interval graph, and the
ordering which results from numbering the intervals after sorting them on their right ends is
identical to the vertex ordering σ of H and, thus, σ is a right-end ordering of H. ��
Definition 2. Let H be the stable-connection graph of an interval graph G, and let
σ = (u1, u2, . . . , un) be the right-end ordering of H. For every pair of indices i, j, 1 ≤ i ≤ j ≤ n,
we define the graph H(i, j) to be the subgraph H[S] of H, induced by the the set
S = {ui, ui+1, . . . , uj} \ {uk ∈ C(H) : uf(uk) <σ ui}.

8



The following properties hold for every induced subgraph H(i, j), 1 ≤ i ≤ j ≤ n, and they
are used for proving the correctness of Algorithm LP on H.

Observation 1 Let uk be a connector vertex of H(i, j), i.e., uk ∈ C(H(i, j)). Then, for every
vertex u� ∈ V (H(i, j)), such that uk <σ u� and uku� ∈ E(H(i, j)), u� is also a connector vertex
of H(i, j).

Observation 2 No two stable vertices of H(i, j) are adjacent.

Lemma 6. Let P = (v1, v2, . . . , vk) be a normal path of H(i, j). Then:

(a) For any two stable vertices vr and v� in P , vr appears before v� in P if and only if vr <σ v�.
(b) For any two connector vertices vr and v� in P , if v� appears before vr in P and vr <σ v�,

then vr does not see the previous vertex v�−1 of v� in P .

Proof. The proof will be done by contradiction.

(a) Let vr and v� be any two stable vertices of H(i, j) that belong to the normal path
P = (v1, v2, . . . , vk), such that vr appears before v� in P , and assume that v� <σ vr. Then,
clearly v� �= v1, since vr appears before v� in P . Since P is a normal path of H(i, j), v1 is
the leftmost vertex of V (P ) in σ. Thus, v1 <σ v� <σ vr, and since no two stable vertices
of H(i, j) are adjacent due to Observation 2, it follows that vrv� /∈ E(H(i, j)). Thus, by
Lemma 2 there exist two consecutive vertices u and u′ in P that appear between v1 and vr

in P , such that uv� ∈ E(H(i, j)) and v� <σ u′. Thus, since P is a normal path, v� should be
the next vertex of u in P instead of u′, which is a contradiction. Therefore, vr <σ v�.

(b) Let vr and v� be any two connector vertices of H(i, j) that belong to the normal path
P = (v1, v2, . . . , vk), such that v� appears before vr in P and vr <σ v�. Since P is a normal
path of H(i, j), v1 is the leftmost vertex of V (P ) in σ. Since vr <σ v�, it follows that
v� �= v1 and, thus, there exists a vertex v�−1 which appears before v� in P . Assume that
vrv�−1 ∈ E(H(i, j)). Since vr <σ v�, and since P is a normal path, vr should be the next
vertex of v�−1 in P instead of v�, which is a contradiction. Therefore, vrv�−1 /∈ E(H(i, j)).

��

3.2 Finding a longest path on H

In this section we present Phase 2 of Algorithm LP Interval. Let G be an interval graph and
let H be the stable-connection graph of G constructed in Phase 1. We next present Algorithm
LP on H, which computes a longest path of the graph H. Let us first give some definitions and
notations necessary for the description of the algorithm.

Definition 3. Let H be a stable-connection graph, and let P be a path of H(i, j), 1 ≤ i ≤ j ≤ n.
The path P is called binormal if P is a normal path of H(i, j), both endpoints of P are stable
vertices, and no two connector vertices are consecutive in P .

Notation 1 Let H be a stable-connection graph, and let σ = (u1, u2, . . . , un) be the right-
end ordering of H. For every stable vertex uk ∈ A(H(i, j)), we denote by P (uk; i, j) a longest
binormal path of H(i, j) with uk as its right endpoint, and by �(uk; i, j) the length of P (uk; i, j).

9



Algorithm LP on H

Input: a stable-connection graph H , a right-end ordering σ = (u1, u2, . . . , un) of H .

Output: a longest binormal path of H .

for j = 1 to n

for i = j downto 1

if i = j and ui ∈ A(H) then

�(ui; i, i)← 1; P (ui; i, i) = (ui);

if i �= j then

for every stable vertex uk ∈ A(H), i ≤ k ≤ j − 1

�(uk; i, j)← �(uk; i, j − 1); P (uk; i, j) = P (uk; i, j − 1); {initialization}
if uj is a stable vertex of H(i, j), i.e., uj ∈ A(H) then

�(uj ; i, j)← 1; P (uj ; i, j) = (uj);

if uj is a connector vertex of H(i, j), i.e., uj ∈ C(H) and i ≤ f(uj) then

execute process(H(i, j));

compute the max{�(uk; 1, n) : uk ∈ A(H)} and the corresponding path P (uk; 1, n);

where the procedure process() is as follows:

process(H(i, j))

for y = f(uj) + 1 to j − 1

for x = f(uj) to y − 1 {ux and uy are adjacent to uj}
if ux, uy ∈ A(H) then

w1 ← �(ux; i, j − 1); P ′
1 = P (ux; i, j − 1);

w2 ← �(uy ; x + 1, j − 1); P ′
2 = P (uy; x + 1, j − 1);

if w1 + w2 + 1 > �(uy; i, j) then

�(uy; i, j)← w1 + w2 + 1; P (uy; i, j) = (P ′
1, uj , P

′
2);

return the value �(uk; i, j) and the path P (uk; i, j), for every vertex uk ∈ A(H(f(uj) + 1, j − 1));

Fig. 1. The algorithm for finding a longest binormal path of H .

Since any binormal path is a normal path, Lemma 6 also holds for binormal paths. Moreover,
since P (uk; i, j) is a binormal path, it follows that its right endpoint uk is also the rightmost
stable vertex of P in σ, due to Lemma 6(a).

Algorithm LP on H, which is presented in Figure 1, computes for every induced subgraph
H(i, j) and for every stable vertex uk ∈ A(H(i, j)), the length �(uk; i, j) and the corresponding
path P (uk; i, j). Since H(1, n) = H, it follows that the maximum among the values �(uk; 1, n),
where uk ∈ A(H), is the length of a longest binormal path P (uk; 1, n) of H. In Section 4.2 we
prove that the length of a longest path of H equals to the length of a longest binormal path of
H. Thus, the binormal path P (uk; 1, n) computed by Algorithm LP on H is also a longest path
of H.

3.3 Finding a longest path on G

During Phase 3 of our Algorithm LP Interval, we compute a path ̂P from the longest binormal
path P of H, computed by Algorithm LP on H, by simply deleting all the stable vertices of P .
In Section 4.2 we prove that the resulting path ̂P is a longest path of the interval graph G.
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Algorithm LP Interval

Input: an interval graph G and a right-end ordering π of G.

Output: a longest path ̂P of G.

1. Construct the stable-connection graph H of G and the right-end ordering σ of H ;

let V (H) = C∪A, where C = V (G) and A are the sets of the connector and stable vertices of H , respectively;

2. Compute a longest binormal path P of H , using Algorithm LP on H ;

let P = (v1, v2, . . . , v2k, v2k+1), where v2i ∈ C, 1 ≤ i ≤ k, and v2i+1 ∈ A, 0 ≤ i ≤ k;

3. Compute a longest path ̂P = (v2, v4, . . . , v2k) of G, by deleting all stable vertices {v1, v3, . . . , v2k+1} from the

longest binormal path P of H ;

Fig. 2. The algorithm for solving the longest path problem on an interval graph G.

In Figure 2, we present our Algorithm LP Interval for solving the longest path problem on
an interval graph G; note that Steps 1, 2, and 3 of the algorithm correspond to the presented
Phases 1, 2, and 3, respectively.

4 Correctness and Time Complexity

In this section we prove the correctness of our algorithm and compute its time complexity. More
specifically, in Section 4.1 we show that Algorithm LP on H computes a longest binormal path
P of the graph H (in Lemma 13 we prove that this path is also a longest path of H), while in
Section 4.2 we show that the length of a longest binormal path P of H is equal to 2k +1, where
k is the length of a longest path of G. Finally, we show that the path ̂P constructed at Step 3
of Algorithm LP Interval is a longest path of G.

4.1 Correctness of Algorithm LP on H

We next prove that Algorithm LP on H correctly computes a longest binormal path of the
graph H. The following lemmas appear useful in the proof of the algorithm’s correctness.

Lemma 7. Let H be a stable-connection graph, and let σ = (u1, u2, . . . , un) be the right-end
ordering of H. Let P be a longest binormal path of H(i, j) with uy as its right endpoint, let uk

be the rightmost connector vertex of H(i, j) in σ, and let uf(uk)+1 ≤σ uy ≤σ uh(uk). Then, there
exists a longest binormal path P ′ of H(i, j) with uy as its right endpoint, which contains the
connector vertex uk.

Proof. Let P be a longest binormal path of H(i, j) with uy as its right endpoint, which does
not contain the connector vertex uk. Assume that P = (uy). Since uk is a connector vertex
of H(i, j) and uf(uk) is a stable vertex of H(i, j), we have that ui ≤σ uf(uk) <σ uy <σ uk.
Thus, there exists a binormal path P1 = (uf(uk), uk, uy) such that |P1| > |P |. However, this is a
contradiction to the assumption that P is a longest binormal path of H(i, j).

Therefore, assume now that P = (up, . . . , uq, u�, uy). By assumption, P is a longest binormal
path of H(i, j) with uy as its right endpoint that does not contain the connector vertex uk.
Since the connector vertex u� sees the stable vertex uy and, also, since uk is the rightmost
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connector vertex of H(i, j) in σ, it follows by Observation 1 that uf(uk) <σ uy <σ u� <σ uk.
Thus, uk sees the connector vertex u�. Consider first the case where uk does not see the stable
vertex uq, i.e., uq <σ uf(uk) <σ uy <σ u� <σ uk. Then, it is easy to see that the connector vertex
u� sees uf(uk), where uf(uk) is always a stable vertex, and also, from Lemma 6(a) it follows
that the vertex uf(uk) does not belong to the path P . Therefore, there exists a binormal path
P2 = (up, . . . , uq, u�, uf(uk), uk, uy) in H(i, j), such that |P2| > |P |. This is a contradiction to
our assumption that P is a longest binormal path.

Consider now the case where uk sees the stable vertex uq. Then there exists a path
P ′ = (up, . . . , uq, uk, uy) of H(i, j) with uy as its right endpoint that contains the connector
vertex uk, such that |P | = |P ′|; since P is a binormal path, it is easy to see that P ′ is also
a binormal path. Thus, the path P ′ is a longest binormal path of H(i, j) with uy as its right
endpoint, which contains the connector vertex uk. ��

Lemma 8. Let H be a stable-connection graph, and let σ be the right-end ordering of H. Let
P = (P1, v�, P2) be a binormal path of H(i, j), and let v� be a connector vertex of H(i, j). Then,
P1 and P2 are binormal paths of H(i, j).

Proof. Let P = (v1, v2, . . . , v�−1, v�, v�+1, . . . , vk) be a binormal path of H(i, j). Then, from
Definition 1, v1 is the leftmost vertex of V (P ) in σ, and for every index r, 2 ≤ r ≤ k, the
vertex vr is the leftmost vertex of N(vr−1) ∩ {vr, vr+1, . . . , vk} in σ. It is easy to see that
P1 = (v1, v2, . . . , v�−1) is a normal path of H(i, j). Indeed, since V (P1) ⊂ V (P ), then v1 is
also the leftmost vertex of V (P1) in σ, and additionally, vr is the leftmost vertex of N(vr−1) ∩
{vr, vr+1, . . . , v�−1} in σ, for every index r, 2 ≤ r ≤ �− 1. Furthermore, since P is binormal and
v� is a connector vertex, it follows that v�−1 is a stable vertex and, thus, P1 is a binormal path
of H(i, j) as well.

Consider now the path P2 = (v�+1, v�+2, . . . , vk) of H(i, j). Since P is a binormal path and
v� is a connector vertex, it follows that v�+1 is a stable vertex and, thus, v�+1 <σ v� due to
Observation 1. We first prove that v�+1 is the leftmost vertex of V (P2) in σ. Since P is a
binormal path, we obtain from Lemma 6(a) that v�+1 is the leftmost stable vertex of V (P2)
in σ. Moreover, consider a connector vertex vt of P2. Then, its previous vertex vt−1 in P2 is a
stable vertex and, thus, vt−1 <σ vt due to Observation 1. Since v�+1 is the leftmost stable vertex
of V (P2) in σ, we have that v�+1 ≤σ vt−1 and, thus, v�+1 <σ vt. Therefore, v�+1 is the leftmost
vertex of V (P2) in σ. Additionally, since P is a binormal path, it is straightforward that for
every index r, � + 2 ≤ r ≤ k, the vertex vr is the leftmost vertex of N(vr−1)∩ {vr, vr+1, . . . , vk}
in σ. Thus, P2 is a normal path. Finally, since P is binormal and v�+1 is a stable vertex, P2 is
a binormal path as well. ��

Lemma 9. Let H be a stable-connection graph, and let σ = (u1, u2, . . . , un) be the right-end
ordering of H. Let P1 be a binormal path of H(i, j − 1) with ux as its right endpoint, and let P2

be a binormal path of H(x+1, j−1) with uy as its right endpoint, such that V (P1)∩V (P2) = ∅.
Suppose that uj is a connector vertex of H and that ui ≤σ uf(uj) ≤σ ux. Then P = (P1, uj , P2)
is a binormal path of H(i, j) with uy as its right endpoint.

Proof. Let P1 = (v1, v2, . . . , vp−1), P2 = (vp+1, vp+2, . . . , v�), and P = (P1, uj , P2) =
(v1, v2, . . . , vp−1, vp, vp+1, vp+2, . . . , v�), where vp = uj is a connector vertex of H and
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ui ≤σ uf(uj) ≤σ ux. On the one hand, uf(uj ) ≤σ ux = vp−1 and, thus, vp = uj sees vp−1. On
the other hand, since vp+1 ∈ V (H(x + 1, j − 1)), we have uf(uj) ≤σ ux <σ ux+1 ≤σ vp+1 <σ uj

and, thus, vp = uj sees vp+1. Therefore, since V (P1) ∩ V (P2) = ∅, it follows that P is a path
of H. Additionally, since H(i, j − 1) and H(x + 1, j − 1) are induced subgraphs of H(i, j), it
follows that P is a path of H(i, j).

We first show that P = (v1, v2, . . . , vp, . . . , v�) is a normal path. Since v1 is the leftmost
vertex of V (P1) in σ, it follows that v1 ≤σ ux. Furthermore, since for every vertex vk ∈ V (P2)
it holds ux <σ ux+1 ≤σ vk, it follows that v1 is the leftmost vertex of V (P ) in σ. We next show
that for every k, 2 ≤ k ≤ �, the vertex vk is the leftmost vertex of N(vk−1) ∩ {vk, vk+1, . . . , v�}
in σ.

Consider first the case where 2 ≤ k ≤ p − 1, i.e., vk ∈ V (P1). Since P1 is a normal path,
vk is the leftmost vertex of N(vk−1) ∩ {vk, vk+1, . . . , vp−1} in σ. Assume that vk−1 is a stable
vertex. Then, Lemma 6(a) implies that vk−1 <σ vp−1 = ux and, due to Observation 2, it follows
that N(vk−1) ∩ {vk, vk+1, . . . , v�} is a set of connector vertices. Since every connector vertex
vr ∈ V (P2) is a vertex of H(x + 1, j − 1), it follows that vk−1 <σ ux+1 ≤σ uf(vr) and, thus,
vr /∈ N(vk−1). Additionally, since vp = uj is the rightmost vertex of H(i, j) in σ, it follows
that vk <σ vp. Therefore, since vk is the leftmost vertex of N(vk−1) ∩ {vk, vk+1, . . . , vp−1} in
σ, it follows that vk is the leftmost vertex of N(vk−1) ∩ {vk, vk+1, . . . , v�} in σ. Assume now
that vk−1 is a connector vertex. Since P1 is a binormal path, vk is a stable vertex, such that
vk ≤σ ux and vk is the leftmost vertex of N(vk−1)∩ {vk, vk+1, . . . , vp−1} in σ. Since for every r,
p + 1 ≤ r ≤ �, the vertex vr ∈ V (H(x + 1, j − 1)), it follows that vk ≤σ ux <σ vr. Additionally,
vk <σ ux+1 <σ vp. Therefore, vk is the leftmost vertex of N(vk−1) ∩ {vk, vk+1, . . . , v�} in σ.

Consider now the case where k = p. Since P1 is a normal path and vp−1 = ux is a stable
vertex, N(vp−1) ∩ {vp, vp+1, . . . , v�} is a set of connector vertices, due to Observation 2. Addi-
tionally, since every connector vertex vr ∈ V (P2) is a vertex of H(x + 1, j − 1), it follows that
vp−1 <σ ux+1 ≤σ uf(vr) and, thus, vr /∈ N(vp−1). Therefore, N(vp−1) ∩ {vp, vp+1, . . . , v�} = {vp}
and, thus, vp is the leftmost vertex of N(vp−1) ∩ {vp, vp+1, . . . , v�} in σ. Now, in the case
where k = p + 1, we have that vp+1 is the leftmost vertex of V (P2) = {vp+1, vp+2, . . . , v�} in
σ, since P2 is a normal path. Therefore, it easily follows that vp+1 is the leftmost vertex of
N(vp) ∩ {vp+1, vp+2, . . . , v�} in σ. Finally, in the case where p + 2 ≤ k ≤ �, since P2 is a normal
path it directly follows that vk is the leftmost vertex of N(vk−1) ∩ {vk, vk+1, . . . , v�} in σ.

Concluding, we have shown that P is a normal path of H(i, j). Additionally, since P1 and P2

are binormal paths of H(i, j), the path P has stable vertices as endpoints and no two connector
vertices are consecutive in P . Therefore, P is a binormal path of H(i, j) with uy as its right
endpoint. ��
Next, we prove the correctness of Algorithm LP on H.

Lemma 10. Let H be a stable-connection graph, and let σ be the right-end ordering of H. For
every induced subgraph H(i, j) of H, 1 ≤ i ≤ j ≤ n, and for every stable vertex uy ∈ A(H(i, j)),
Algorithm LP on H computes the length �(uy; i, j) of a longest binormal path of H(i, j) which
has uy as its right endpoint and, also, the corresponding path P (uy; i, j).

Proof. Let P be a longest binormal path of the stable-connection graph H(i, j), which has a
vertex uy ∈ A(H(i, j)) as its right endpoint. Consider first the case where C(H(i, j)) = ∅; the
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graph H(i, j) is consisted of a set of stable vertices A(H(i, j)), which is an independent set, due
to Observation 2. Therefore, in this case Algorithm LP on H sets �(uy; i, j) = 1 for every vertex
uy ∈ A(H(i, j)), which is indeed the length of the longest binormal path P (uy; i, j) = (uy)
of H(i, j) which has uy as its right endpoint. Therefore, the lemma holds for every induced
subgraph H(i, j), for which C(H(i, j)) = ∅.

We examine next the case where C(H(i, j)) �= ∅. Let C(H) = {c1, c2, . . . , ck, . . . , ct} be the
set of connector vertices of H, where c1 <σ c2 <σ . . . <σ ck <σ . . . <σ ct. Let σ = (u1, u2, . . . , un)
be the vertex ordering of H constructed in Phase 1. Recall that, by the construction of H, n = 3t,
and A(H) = V (H) \ C(H) is the set of stable vertices of H.

Let H(i, j) be an induced subgraph of H, and let ck be the rightmost connector vertex of
H(i, j) in σ. The proof of the lemma is done by induction on the index k of the rightmost
connector vertex ck of H(i, j). More specifically, given a connector vertex ck of H, we prove
that the lemma holds for every induced subgraph H(i, j) of H, which has ck as its rightmost
connector vertex in σ. To this end, in both the induction basis and the induction step, we dis-
tinguish three cases on the position of the stable vertex uy in the ordering σ: ui ≤σ uy ≤σ uf(ck),
uh(ck) <σ uy ≤σ uj , and uf(ck)+1 ≤σ uy ≤σ uh(ck). In each of these three cases, we examine first
the length of a longest binormal path of H(i, j) with uy as its right endpoint and, then, we
compare this value to the length of the path computed by Algorithm LP on H. Moreover, we
prove that the path computed by Algorithm LP on H is a binormal path with uy as its right
endpoint.

We first show that the lemma holds for k = 1. In the case where ui ≤σuy ≤σ uf(c1) or
uh(c1) <σuy ≤σ uj , it is easy to see that the length �(uy; i, j) of a longest binormal path P

of H(i, j) with uy as its right endpoint is equal to 1. Indeed, in these cases, if uy �= uf(c1),
then uy does not see the unique connector vertex c1 of H(i, j) and, thus, the longest binor-
mal path with uy as its right endpoint is consisted of the vertex uy. Now, in the case where
uy = uf(c1), the connector vertex c1 sees uy, however, c1 does not belong to any binormal
path with uy as its right endpoint, since uy is the leftmost neighbor of c1 in σ. Therefore, in
the case where ui ≤σ uy ≤σ uf(c1) or uh(c1) <σ uy ≤σ uj , Algorithm LP on H computes the
length of the longest binormal path P (uy; i, j) = (uy) of H(i, j) with uy as its right endpoint.
In the case where uf(c1)+1 ≤σ uy ≤σ uh(c1), Algorithm LP on H computes (in the subroutine
process()) for every stable vertex ux of H(i, j), such that uf(c1) ≤σ ux ≤σ uy−1, the value
�(ux; i, j − 1) + �(uy;x + 1, j − 1) + 1 = 1 + 1 + 1 = 3 and sets �(uy; i, j) = 3. It is easy to see
that the path P (uy; i, j) = (ux, c1, uy), computed by Algorithm LP on H in this case, is indeed
a longest binormal path of H(i, j) with uy as its right endpoint.

Let now ck be a connector vertex of H, such that k ≤ t. Assume that the lemma holds
for every induced subgraph H(i, j) of H, which has c� as its rightmost connector vertex in σ,
where 1 ≤ � ≤ k − 1. That is, we assume that for every such graph H(i, j), the value �(uy; i, j)
computed by Algorithm LP on H is the length of a longest binormal path P (uy; i, j) of H(i, j)
with uy as its right endpoint. We will show that the lemma holds for every induced subgraph
H(i, j) of H, which has ck as its rightmost connector vertex in σ.

Case 1: ui ≤σ uy ≤σ uf(ck). In this case, it holds �(uy; i, j) = �(uy; i, h(ck)) (note that uh(ck)

is the previous vertex of ck in σ). Indeed, on the one hand, using similar arguments as in the
induction basis, it easily follows that the connector vertex ck does not belong to any binormal
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path of H(i, j) with uy as its right endpoint. On the other hand, since ck is the rightmost
connector vertex of H(i, j), it follows that every vertex u� of H(i, j), where ck <σ u� ≤σ uj , is
a stable vertex and, thus, u� does not see uy, due to Observation 2. Therefore, we obtain that
�(uy; i, j) = �(uy; i, h(ck)).

Next, we show that this is the result computed by Algorithm LP on H in this case. First,
we show that Algorithm LP on H has already computed the value �(uy; i, h(ck)), which is the
length of a longest binormal path P (uy; i, h(ck)) of H(i, h(ck)) with uy as its right endpoint.
Indeed, in the case where H(i, h(ck)) is a graph for which C(H(i, h(ck))) = ∅, it is easy to
see that Algorithm LP on H has already computed the value �(uy; i, h(ck)) in the iteration
where j was equal to h(ck). Consider now the case where H(i, h(ck)) is a graph for which
C(H(i, h(ck))) �= ∅. If c� is the rightmost connector vertex of H(i, h(ck)) in σ, it follows that
c� <σ ck, since uh(ck) <σ ck. Therefore, by the induction hypothesis, Algorithm LP on H has
already computed the length �(uy; i, h(ck)) of a longest binormal path of the graph H(i, h(ck))
with uy as its right endpoint and, also, the corresponding path P (uy; i, h(ck)).

We now show that in Case 1 Algorithm LP on H computes �(uy; i, j) = �(uy; i, h(ck)).
Indeed, in the case where uj is a connector vertex of H(i, j), i.e., uj = ck, Algorithm LP on H

computes �(uy; i, j) = �(uy; i, j−1), which equals to �(uy; i, h(ck)), since in this case j−1 = h(ck).
In the case where uj is a stable vertex, then again Algorithm LP on H computes �(uy; i, j) =
�(uy; i, j − 1), which is again equal to �(uy; i, h(ck)), since the vertex uh(ck)+1 = ck does not
belong to any binormal path of H(i, j) with uy as its right endpoint, and since every vertex u�,
such that uh(ck)+1 <σ u� ≤σ uj, is a stable vertex and does not see uy. Therefore, in the case
where ui ≤σ uy ≤σ uf(ck), Algorithm LP on H computes �(uy; i, h(ck)) as the length of a longest
path of H(i, j) with uy as its right endpoint and, also, computes P (uy; i, j) = P (uy; i, h(ck)).
Then, by the induction hypothesis, this path is binormal. Thus, in Case 1 the lemma holds.

Case 2: uh(ck) <σ uy ≤σ uj. Since ck is the rightmost connector vertex of H(i, j), and since uy is
a stable vertex, it follows that uy does not see any vertex of H(i, j). Thus, the longest binormal
path of H(i, j) with uy as its right endpoint is consisted of the vertex uy, i.e., �(uy; i, j) = 1.
One can easily see that in this case Algorithm LP on H computes the length �(uy; i, j) = 1, and
the path P (uy; i, j) = (uy), which is clearly a binormal path. Thus, in Case 2 the lemma holds.

Case 3: uf(ck)+1 ≤σuy ≤σ uh(ck). In this case, the connector vertex ck sees uy. Let
P = (ux′ , . . . ,ux, ck,uy′ , . . . ,uy) be a longest binormal path of H(i, j) with uy as its right end-
point, which contains the connector vertex ck; due to Lemma 7, such a path always exists.
Let ux be the previous vertex of ck in the path P ; thus, uf(ck) ≤σ ux <σ uy. Since P is a
binormal path, the vertices ux′ , ux, uy′ , and uy are all stable vertices. Also, since ck sees uy,
which is the rightmost stable vertex of P in σ, all stable vertices of P belong to the graph
H(i, h(ck)). Additionally, since ck is the rightmost connector vertex of H(i, j) in σ, all connec-
tor vertices of P belong to the graph H(i, h(ck) + 1). Therefore, all vertices of P belong to
the graph H(i, h(ck) + 1). Thus, the path P is a longest binormal path of H(i, h(ck) + 1) with
uy as its right endpoint, which contains the connector vertex ck. Therefore, for every graph
H(i, j), for which ck is its rightmost connector vertex in σ and h(ck) + 1 ≤ j, we have that
�(uy; i, j) = �(uy; i, h(ck) + 1). Thus, we will examine only the case where h(ck) + 1 = j, that is,
ck is the rightmost vertex uj of H(i, j) in σ.
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Next, we examine the length �(uy; i, j) of a longest binormal path of H(i, j) with uy as its
right endpoint, in the case where h(ck) + 1 = j. Consider removing the connector vertex ck

from the path P . Then we obtain the paths P1 = (ux′ , . . . , ux) and P2 = (uy′ , . . . , uy). Since P

is a binormal path of H(i, j), from Lemma 8 we obtain that P1 and P2 are binormal paths of
H(i, j). Since, as we have shown, all vertices of P belong to H(i, h(ck) + 1), and since ck = uj

is the rightmost vertex of H(i, j) in σ, it follows that all vertices of P1 and P2 belong to the
graph H(i, h(ck)) = H(i, j − 1). Since P is a binormal path, from Lemma 6(a) it follows that for
every stable vertex u�1 ∈ V (P1), we have ui ≤σ ux′ ≤σ u�1 ≤σ ux. Additionally, for every stable
vertex u�2 ∈ V (P2), we have ux <σ u�2 ≤σ uy ≤σ uj−1, where uj−1 = uh(ck) is the rightmost
vertex of H(i, j − 1) in σ, since uj = ck. Therefore, for every stable vertex u�1 ∈ V (P1) it holds
u�1 ∈ A(H(i, x)), and for every stable vertex u�2 ∈ V (P2) it holds u�2 ∈ A(H(x + 1, j − 1)).

Similarly, since P1 is a binormal path, ux is the rightmost stable vertex of V (P1) in σ,
due to Lemma 6(a). Moreover, since P1 is binormal, every connector vertex c�1 ∈ V (P1) sees
at least two stable vertices of P1 and, thus, ui ≤σ uf(c�1

) <σux. Therefore, for every connector
vertex c�1 ∈ V (P1), we have that c�1 ∈ C(H(i, j − 1)) \ {c� ∈ C(H(i, j − 1)) :ux ≤σ uf(c�)} ⊆
C(H(i, j − 1)) \ C(H(x + 1, j − 1)). Additionally, from Lemma 6(b) we have that every con-
nector vertex c�2 ∈ V (P2) does not see the vertex ux, i.e., ux <σ uf(c�2

) <σ c�2 ≤σ uj−1;
thus, c�2 ∈ C(H(x + 1, j − 1)). Summarizing, let H1 and H2 be the induced subgraphs of
H(i, j − 1), with vertex sets V (H1) = A(H(i, x)) ∪ C(H(i, j − 1)) \ C(H(x + 1, j − 1)) and
V (H2) = A(H(x + 1, j − 1)) ∪ C(H(x + 1, j − 1)), respectively. Note that, the graphs H1 and
H2 are defined with respect to a stable vertex ux, where uf(ck) ≤σ ux <σ uj−1, and that
H2 = H(x + 1, j − 1). Now, it is easy to see that V (H1) ∩ V (H2) = ∅. Moreover, P1 and P2

belong to the graphs H1 and H2, respectively and, therefore, V (P1) ∩ V (P2) = ∅.
Since P = (P1, ck, P2) is a longest binormal path of H(i, j) with uy as its right end-

point, and since the paths P1 and P2 belong to two disjoint induced subgraphs of
H(i, j), it follows that P1 is a longest binormal path of H1 with ux as its right end-
point, and that P2 is a longest binormal path of H2 with uy as its right endpoint. Thus,
since H2 = H(x + 1, j − 1), we obtain that |P2| = �(uy;x + 1, j − 1). We will now show that
|P1| = �(ux; i, j − 1). To this end, consider a longest binormal path P0 of H(i, j − 1) with
ux as its right endpoint. Due to Lemma 6(a), ux is the rightmost stable vertex of P0

in σ and, thus, all stable vertices of P0 belong to A(H1) = A(H(i, x)). Furthermore, since
P0 is binormal, every connector vertex c� of P0 sees at least two stable vertices of P0

and, thus, uf(c�) <σ ux, i.e., c� ∈ C(H1) = C(H(i, j − 1)) \ C(H(x + 1, j − 1)). It follows that
V (P0) ⊆ V (H1) and, thus, |P0| ≤ |P1|. On the other hand, |P1| ≤ |P0|, since H1 is an in-
duced subgraph of H(i, j − 1). Thus, |P1| = |P0| = �(ux; i, j − 1). Therefore, for the length
|P | = �(uy; i, j) of a longest binormal path P of H(i, j) with uy as its right endpoint, it fol-
lows that �(uy; i, j) = �(ux; i, j − 1) + �(uy;x + 1, j − 1) + 1.

Hereafter, we examine the results computed by Algorithm LP on H in Case 3. Let P ′ be
the path of the graph H(i, j) with uy as its right endpoint computed by Algorithm LP on H,
in the case where uf(ck)+1 ≤σ uy ≤σ uh(ck). Consider first the case where uj is a connector
vertex of H(i, j), i.e., uj = ck. It is easy to see that the path P ′ constructed by Algorithm
LP on H (in the subroutine process()) contains the connector vertex ck. Algorithm LP on H

computes the length of the path P ′ = (P ′
1, ck, P ′

2), for two paths P ′
1 and P ′

2 as follows. The path
P ′

1 = P (ux; i, j − 1) is a path of H(i, j −1) with ux as its right endpoint, where ux is a neighbor
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of ck, such that uf(ck) ≤σ ux <σ uy. The path P ′
2 = P (uy;x + 1, j − 1) is a path of H(x+1, j−1)

with uy as its right endpoint, where uf(ck)+1 ≤σ uy ≤σ uh(ck). Actually, in this case, Algorithm
LP on H computes (in the subroutine process()) the value w1 + w2 + 1 = |P ′

1| + |P ′
2| + 1,

for every stable vertex ux, where uf(ck) ≤σ ux <σ uy, and sets |P ′| to be equal to the maxi-
mum among these values. Additionally, Algorithm LP on H computes the corresponding path
P ′ = (P ′

1, ck, P
′
2).

By the induction hypothesis, Algorithm LP on H has already computed the values |P ′
1| = w1

and |P ′
2| = w2. Indeed, in the case where H(i, j − 1) is a graph for which C(H(i, j − 1)) = ∅,

it is easy to see that Algorithm LP on H has already computed the values |P ′
1| = w1 = 1 and

|P ′
2| = w2 = 1. Consider now the case where H(i, j − 1) is a graph for which C(H(i, j − 1)) �= ∅.

If c� is the rightmost connector vertex of the graph H(i, j−1) in σ, it follows that c� <σ ck, since
ck = uj . Therefore, by the induction hypothesis, Algorithm LP on H has already computed the
values |P ′

1| = �(ux; i, j − 1) and |P ′
2| = �(uy;x + 1, j − 1). Thus, Algorithm LP on H computes

(in the subroutine process()), for every stable vertex ux, where uf(ck) ≤σ ux <σ uy, the value
�(ux; i, j − 1) + �(uy;x + 1, j − 1) + 1, and sets |P ′| to be equal to the maximum among these
values.

Since by the induction hypothesis, P ′
1 and P ′

2 are binormal paths of H(i, j − 1) with ux

and uy as their right endpoints, respectively, it follows similarly to the above that P ′
1 and P ′

2

belong to the graphs H1 and H2, respectively. Recall that, the graphs H1 and H2 are defined
with respect to a stable vertex ux, where uf(ck) ≤σ ux <σ uj−1. Since, as we have shown,
V (H1) ∩ V (H2) = ∅, it follows that V (P ′

1) ∩ V (P ′
2) = ∅. Therefore, from Lemma 9 we obtain

that the computed path P ′ = (P ′
1, uj , P

′
2) is a binormal path as well and, thus, P ′ is a longest

binormal path of H(i, j) with uy as its right endpoint.
Consider now the case where uj is a stable vertex of H(i, j). Let ck be the rightmost

connector vertex of H(i, j) in σ; then h(ck) + 1 < j. Assume first that h(ck) + 1 = j − 1.
Since uj is a stable vertex and also the rightmost vertex of H(i, j), uj does not see
any vertex of H(i, h(ck) + 1). In this case, Algorithm LP on H correctly computes the
path P ′ = P (uy; i, j − 1) = P (uy; i, h(ck) + 1), with length |P ′| = �(uy; i, h(ck) + 1). Sim-
ilarly, in the case where h(ck) + 1 < j − 1, Algorithm LP on H computes the path
P ′ = P (uy; i, j − 1) = P (uy; i, h(ck) + 1), with length |P ′| = �(uy; i, j − 1) = �(uy; i, h(ck) + 1).
Algorithm LP on H has already computed the value �(uy; i, h(ck) + 1) at a previous iteration
where j was equal to h(ck)+1 (i.e., uj = ck) and, also, the computed path P ′ = P (uy; i, h(ck)+1)
is binormal.

Concluding, in both cases where uj is a connector or a stable vertex of H(i, j), the path P ′

of H(i, j) with uy as its right endpoint computed by Algorithm LP on H is a longest binormal
path P (uy; i, j) of H(i, j) with uy as its right endpoint, and |P ′| = �(uy; i, j). Thus, the lemma
holds in Case 3 as well. ��
Due to Lemma 10, and since the output of Algorithm LP on H is the maximum among the
lengths �(uy; 1, n), uy ∈ A(H(1, n)), along with the corresponding path, it follows that Algo-
rithm LP on H computes a longest binormal path of H(1, n) with right endpoint a vertex
uy ∈ A(H(1, n)). Thus, since H(1, n) = H, we obtain the following result.

Lemma 11. Let G be an interval graph. Algorithm LP on H computes a longest binormal path
of the stable-connection graph H of the graph G.
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4.2 Correctness of Algorithm LP Interval

We next show that Algorithm LP Interval correctly computes a longest path of an interval
graph G. The correctness proof is based on the following property: for any longest path P of
G there exists a longest binormal path P ′ of H, such that |P ′| = 2|P | + 1 and vice versa (this
property is proved in Lemma 12). Therefore, we obtain that the length of a longest binormal
path P of H computed by Algorithm LP on H, is equal to 2k + 1, where k is the length of a
longest path ̂P of G. Next, we show that the length of a longest binormal path of H equals
to the length of a longest path of H. Finally, we show that the path ̂P computed at Step 3 of
Algorithm LP Interval is indeed a longest path of the interval graph G.

Lemma 12. Let H be the stable-connection graph of an interval graph G. Then, for any longest
path P of G there exists a longest binormal path P ′ of H, such that |P ′| = 2|P | + 1 and vice
versa.

Proof. Let σ be the right-end ordering of H, constructed in Phase 1.

(=⇒) Let P = (v1, v2, . . . , vk) be a longest path of G, i.e., |P | = k. We will show that there
exists a binormal path P ′ of H such that |P ′| = 2k + 1. Since G is an induced subgraph of H,
the path P of G is a path of H as well. We construct a path ̂P of H from P , by adding to P

the appropriate stable vertices, using the following procedure. Initially, set ̂P = P and for every
subpath (vi, vi+1) of the path ̂P , 1 ≤ i ≤ k − 1, do the following: consider first the case where
vi <σ vi+1; then, by the construction of H, vi+1 is adjacent to both stable vertices ai,1 and ai,2

associated with the connector vertex vi. If ai,1 has not already been added to ̂P , then replace
the subpath (vi, vi+1) by the path (vi, ai,1, vi+1); otherwise, replace the subpath (vi, vi+1) by the
path (vi, ai,2, vi+1). Similarly, in the case where vi+1 <σ vi, replace the subpath (vi, vi+1) by the
path (vi, ai+1,1, vi+1) or (vi, ai+1,2, vi+1), respectively. Finally, consider the endpoint v1 (resp.
vk) of ̂P . If a1,1 (resp. ak,1) has not already been added to ̂P , then add a1,1 (resp. ak,1) as the
first (resp. last) vertex of ̂P ; otherwise, add a1,2 (resp. ak,2) as the first (resp. last) vertex of ̂P .

By the construction of ̂P it is easy to see that for every connector vertex v of P we add
two stable vertices as neighbors of v in ̂P , and since in H there are exactly two stable vertices
associated with every connector vertex v, it follows that every stable vertex of H appears at
most once in ̂P . Furthermore, since we add in total k + 1 stable vertices to P , where |P | = k,
it follows that | ̂P | = 2k + 1. Denote now by P ′ a normal path of H such that V (P ′) = V ( ̂P ).
Such a path exists, due to Lemma 4. Due to the above construction, the path ̂P is consisted of
k + 1 stable vertices and k connector vertices. Thus, since no two stable vertices are adjacent
in H due to Observation 2, and since P ′ is a normal path of H, it follows that P ′ is a binormal
path of H. Thus, for any longest path P of G there exists a binormal path P ′ of H, such that
|P ′| = 2|P | + 1.

(⇐=) Consider now a longest binormal path P ′ = (v1, v2, . . . , v�) of H. Since P ′ is binormal,
it follows that � = 2k + 1, and that P ′ has k connector vertices and k + 1 stable vertices, for
some k ≥ 1. We construct a path P by deleting all stable vertices from the path P ′ of H. By
the construction of H, all neighbors of a stable vertex a are connector vertices and form a clique
in G; thus, for every subpath (v, a, v′) of P ′, v is adjacent to v′ in G. It follows that P is a
path of G. Since we removed all the k + 1 stable vertices of P ′, it follows that |P | = k, i.e.,
|P ′| = 2|P | + 1.
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Summarizing, we have constructed a binormal path P ′ of H from a longest path P of G

such that |P ′| = 2|P | + 1, and a path P of G from a longest binormal path P ′ of H such that
|P ′| = 2|P | + 1. This completes the proof. ��

In the next lemma, we show that the length of a longest path of H is equal to the length of a
longest binormal path of H.

Lemma 13. For any longest path P and any longest binormal path P ′ of H, it holds |P ′| = |P |.

Proof. Since P ′ is a path of H, and P is a longest path of H, it holds clearly that |P ′| ≤ |P |.
Consider now a longest path P of H, and let k and � be the number of connector and stable
vertices of P , respectively. Since no two stable vertices of H are adjacent due to Observation
2, it holds clearly that � ≤ k + 1. Similarly to the second part of the proof of Lemma 12, we
can obtain a path ̂P of H with k vertices, by removing all � stable vertices from P . Then,
similarly to the first part of the proof of Lemma 12, there exists a binormal path P ′ of H, where
|P ′| = 2k + 1 ≥ k + � = |P |. It follows that |P ′| = |P |, for any longest path P and any longest
binormal path P ′ of H. ��

Let P be the longest binormal path of H computed in Step 2 of Algorithm LP Interval, using
Algorithm LP on H. Then, in Step 3 Algorithm LP Interval computes the path ̂P by deleting
all stable vertices from P . By the construction of H, all neighbors of a stable vertex a are
connector vertices and form a clique in G; thus, for every subpath (v, a, v′) of P , v is adjacent
to v′ in G. It follows that ̂P is a path of G. Moreover, since P is binormal, it has k connector
vertices and k + 1 stable vertices, i.e., |P | = 2k + 1, where k ≥ 1. Thus, since we have removed
all k + 1 stable vertices of P , it follows that | ̂P | = k and, thus, ̂P is a longest path of G due to
Lemma 12. Therefore, we have proved the following result.

Theorem 1. Algorithm LP Interval computes a longest path of an interval graph G.

4.3 Time Complexity

Let G be an interval graph on |V (G)| = n vertices and |E(G)| = m edges. It has been shown
that we can obtain the right-end ordering π of G, which results from numbering the intervals
after sorting them on their right ends, in O(n + m) time [1,20].

First, we show that Step 1 of Algorithm LP Interval, which constructs the stable-connection
graph H of the graph G, takes O(n2) time. Indeed, for every connector vertex ui, 1 ≤ i ≤ n, we
can add two stable vertices in V (H) in O(1) time and we can compute the specific neighborhood
of ui in O(n) time.

Step 2 of Algorithm LP Interval includes the execution of Algorithm LP on H. The sub-
routine process() takes O(n2) time, due to the O(n2) pairs of the neighbors ux and uy of the
connector vertex uj in the graph H(i, j). Additionally, the subroutine process() is executed
at most once for each subgraph H(i, j) of H, 1 ≤ i ≤ j ≤ n, i.e., it is executed O(n2) times.
Thus, Algorithm LP on H takes O(n4) time.

Step 3 of Algorithm LP Interval can be executed in O(n) time since we simply traverse the
vertices of the path P , constructed by Algorithm LP on H, and delete every stable vertex.

19



Therefore, we obtain the following result concerning the time complexity of the algorithm.

Theorem 2. A longest path of an interval graph can be computed in O(n4) time.

In order to compute the length of a longest path, we need to store one value for every induced
subgraph H(i, j) and for every stable vertex uy of H(i, j). Thus, since there are in total O(n2)
such subgraphs H(i, j), 1 ≤ i ≤ j ≤ n, and since each one has at most O(n) stable vertices, we
can compute the length of a longest path in O(n3) space. Furthermore, in order to compute and
report a longest path, instead of its length only, we have to store a path of at most n vertices
for every one of the O(n3) computed values. Therefore, the space complexity of Algorithm
LP Interval is O(n4).

5 Concluding Remarks

In this paper we presented a polynomial-time algorithm for solving the longest path problem on
interval graphs, which runs in O(n4) time and, thus, provided a solution to the open problem
stated by Uehara and Uno in [22] asking for the complexity status of the longest path problem
on interval graphs. It would be interesting to see whether the ideas presented in this paper can
be applied to find a polynomial solution to the longest path problem on convex and biconvex
graphs, the complexities of which still remain open [22].
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gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit

BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.
2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-

ited
2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-

ized Fair Exchange with Secret Shared Coins
2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:
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