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A New Intersection Model for Multitolerance Graphs,
Hierarchy, and Efficient Algorithms

George B. Mertzios∗

Abstract. Tolerance graphs model interval relations in such a way that intervals can tolerate a
certain degree of overlap without being in conflict. This class of graphs has attracted many research
efforts, mainly due to its interesting structure and its numerous applications, while a number of
variations of this model has appeared. In particular, one of the most natural generalizations of
tolerance graphs, namely multitolerance graphs, has been introduced in 1998 [25], where two
tolerances are allowed for each interval. These two tolerances – one from the left and one from the
right side of the interval – define an infinite number of the so called tolerance-intervals, which make
the multitolerance model inconvenient to cope with. The main subclass of multitolerance graphs,
namely bounded multitolerance graphs, coincide with the widely known class of trapezoid graphs
that has been extensively studied. In this article we introduce the first non-trivial intersection
model for general multitolerance graphs, given by objects in the three-dimensional space called
trapezoepipeds, which unifies in a simple and intuitive way the trapezoid representation for bounded
multitolerance graphs and the recently introduced parallelepiped representation for tolerance
graphs [22]. Apart from being important on its own, this new intersection model proves to be a
powerful tool for designing efficient algorithms. Given a multitolerance graph with n vertices and
m edges, we present three new algorithms that compute a minimum coloring and a maximum
clique in optimal O(n log n) time, and a maximum weight independent set in O(m+ n log n) time
– this algorithm also improves the best known running time of O(n2) for the same problem on
tolerance graphs [22]. Moreover, we prove several structural results on the class of multitolerance
graphs, complementing thus the hierarchy of perfect graphs given in [11]. The resulting hierarchy
of classes of perfect graphs is complete, i.e. all inclusions are strict.

Keywords: Multitolerance graphs, tolerance graphs, intersection model, minimum coloring, max-
imum clique, maximum weight independent set.

1 Introduction

A graph G = (V,E) on n vertices is a tolerance graph if there exists a collection I = {Iv | v ∈ V }
of closed intervals on the real line and a set t = {tv | v ∈ V } of positive numbers, such that for
any two vertices u, v ∈ V , uv ∈ E if and only if |Iu ∩ Iv| ≥ min{tu, tv}, where |I| denotes the
length of the interval I. The pair 〈I, t〉 is called a tolerance representation of G. If G has a
tolerance representation 〈I, t〉, such that tv ≤ |Iv| for every v ∈ V , then G is called a bounded
tolerance graph and 〈I, t〉 a bounded tolerance representation of G.

Tolerance graphs have been introduced in [8], in order to generalize some of the well known
applications of interval graphs. The main motivation was in the context of resource allocation
and scheduling problems, in which resources, such as rooms and vehicles, that normally would be
used exclusively by one user, can tolerate sharing among users [11]. These graphs find numerous
applications in constrained-based temporal reasoning, data transmission through networks to
efficiently scheduling aircraft and crews, as well as contributing to genetic analysis and studies
of the brain [10, 11]. Since their introduction, tolerance graphs have attracted many research
efforts [1, 4, 5, 9–11, 14, 17, 22–24] as they generalize in a natural way both interval and permu-
tation graphs [8]. Moreover, quite a number of variations of the model of tolerance graphs has
appeared, such as max-tolerance, sum-tolerance etc. For a detailed survey we refer to the book
of tolerance graphs [11].
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In particular, a natural generalization of tolerance graphs, namely multitolerance graphs, has
been introduced in 1998 [25]. The main idea is to allow two different tolerances to each interval,
one to the left and one to the right side. That is, in the context of scheduling and resource
allocation, a user can tolerate differently the sharing of a resource from the left and from the
right side. It has been proved that the difference between the pathwidth and the treewidth of
a multitolerance graph is at most one [25]. Furthermore, the minimum fill-in problem can be
solved in polynomial time, when a multitolerance representation is given [25].

Formally, let I = [l, r] be a closed interval on the real line and lt, rt ∈ I be two numbers
between l and r, called tolerant points. For every λ ∈ [0, 1], we define the interval Ilt,rt(λ) =
[l + (rt − l)λ, lt + (r − lt)λ]. Furthermore, we define the set I(I, lt, rt) = {Ilt,rt(λ) | λ ∈ [0, 1]}
of intervals. That is, I(I, lt, rt) is the set of all intervals that we obtain when we linearly trans-
form [l, lt] into [rt, r]. For an interval I, the set of tolerance-intervals τ of I is defined either as
τ = I(I, lt, rt) for some values lt, rt ∈ I of tolerant points, or as τ = {R}. A graph G = (V,E)
is a multitolerance graph if there exists a collection I = {Iv | v ∈ V } of closed intervals on the
real line and a family t = {τv | v ∈ V } of sets of tolerance-intervals, such that: for any two
vertices u, v ∈ V , uv ∈ E if and only if there exists an element Qu ∈ τu (resp. Qv ∈ τv) with
Qu ⊆ Iv (resp. Qv ⊆ Iu). Then, the pair 〈I, t〉 is called a multitolerance representation of G. If
G has a multitolerance representation 〈I, t〉, in which τ 6= {R} for every v ∈ V , then G is called
a bounded multitolerance graph and 〈I, t〉 a bounded multitolerance representation of G.

A graph is perfect if the chromatic number of every induced subgraph equals the clique
number of this subgraph. Perfect graphs include many important families of graphs, and serve to
unify results relating colorings and cliques in those families. For instance, the minimum coloring,
maximum clique, and maximum independent set problems can all be solved in polynomial time
on perfect graphs using the Ellipsoid method [13]. Since multitolerance graphs are perfect [25],
these problems can be solved in polynomial time on multitolerance graphs as well. However,
these algorithms are not very efficient; thus, as it happens for most known subclasses of perfect
graphs, it makes sense to design specific fast algorithms for these problems on multitolerance
graphs.

A graph G = (V,E) with n vertices is the intersection graph of a family F = {S1, . . . , Sn}
of distinct nonempty subsets of a set S if there exists a bijection µ : V → F such that for
any two distinct vertices u, v ∈ V , uv ∈ E if and only if µ(u) ∩ µ(v) 6= ∅. Then, F is called
an intersection model of G. Note that every graph has a trivial intersection model based on
adjacency relations [20]. Note that a multitolerance representation is not an intersection model,
since two intervals may intersect without the corresponding vertices being necessarily adjacent.
Some intersection models provide a natural and intuitive understanding of the structure of a
class of graphs, and turn out to be very helpful to obtain structural results, as well as to find
efficient algorithms to solve optimization problems [20]. Therefore, it is of great importance to
establish non-trivial intersection models for families of graphs. In particular, many important
graph classes can be described as intersection graphs of set families that are derived from some
kind of geometric configuration. For instance, a permutation (resp. parallelogram and trapezoid)
graph is the intersection graph of line segments (resp. parallelograms and trapezoids) between
two parallel lines L1 and L2 [7]. Such a representation with line segments (resp. parallelograms
and trapezoids) is called a permutation (resp. parallelogram and trapezoid) representation of
this graph.

A comparability graph is a graph which can be transitively oriented. A cocomparability graph
is a graph whose complement is a comparability graph. Permutation graphs are a strict subset
of parallelogram graphs [3]. Furthermore, parallelogram graphs are a strict subset of trapezoid
graphs [26], and both are subsets of cocomparability graphs [7, 11]. On the other hand, not
every tolerance graph is a cocomparability graph [7, 11]. Bounded tolerance graphs coincide
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with parallelogram graphs [1, 18]. Recently, a natural intersection model for general tolerance
graphs has been presented in [22], given by parallelepipeds in the three-dimensional space.
This parallelepiped representation generalizes the widely known parallelogram representation
of bounded tolerance graphs, and has been used to improve the time complexity of three NP-
hard problems on tolerance graphs [22].

Bounded multitolerance graphs (also known as bounded bitolerance graphs [2,11,16]) coincide
with trapezoid graphs [25]. Thus, in particular, multitolerance graphs generalize also trapezoid
graphs except tolerance graphs. Trapezoid graphs (or bounded bitolerance graphs) have received
considerable attention in the literature, see e.g. [2,6,11,16,21]. However, the intersection model
of trapezoids between two parallel lines can not cope with general multitolerance graphs, in
which the set τv of tolerance-intervals for a vertex v can be τv = {R}. Therefore, the only way
until now to deal with general multitolerance graphs was to use the inconvenient multitolerance
representation, which uses an infinite number of tolerance-intervals. This is the main reason
why only few algorithmic results concerning general multitolerance graphs are known [25].

Our contribution In this article we introduce the first non-trivial intersection model for general
multitolerance graphs, given by objects in the three-dimensional space, called trapezoepipeds.
This trapezoepiped representation unifies in a simple and intuitive way the widely known trape-
zoid representation for bounded multitolerance graphs and the parallelepiped representation for
tolerance graphs [22]. The main idea is to exploit the third dimension to capture the information
of the vertices with τv = {R} as the set of tolerance-intervals. This intersection model can be
constructed efficiently (in linear time), given a multitolerance representation.

Apart of being important on its own, the trapezoepiped representation can be also used to
design efficient algorithms. Given a multitolerance graph with n vertices andm edges, we present
three algorithms that compute a minimum coloring and a maximum clique in O(n log n) time
(which is optimal), and a maximum weighted independent set in O(m + n log n) time (where
Ω(n log n) is a lower bound for the complexity of this problem). Note here that, although the
parallelepiped representation of tolerance graphs is similar to the trapezoepiped representation
of multitolerance graphs, the coloring and clique algorithms presented in [22] do not extend
to the case of multitolerance graphs, and thus the here presented algorithms are new. On
the contrary, the algorithm presented in [22] for the maximum weight independent set with
complexity O(n2) on tolerance graphs can be extended with the same time complexity to the
case of multitolerance graphs; nevertheless we present here a new algorithm for multitolerance
graphs that achieves a better running time O(m+n log n), which also improves the best known
running time of O(n2) on tolerance graphs [22]. To the best of our knowledge, no algorithm for
these problems on multitolerance graphs has appeared until now, and thus the previously best
known running times for these problems were those on perfect graphs [13].

Moreover, we prove several structural results on the class of multitolerance graphs, using
our new intersection model and some known results from the hierarchy of perfect graphs given
in [11]. In particular, we prove that multitolerance graphs strictly include tolerance and trapezoid
graphs, as well as that they are strictly included in weakly chordal and in co-perfectly orderable
graphs. Furthermore, we prove that multitolerance graphs are incomparable with alternately
orientable and cocomparability graphs, i.e. none of these classes includes the other one. These
results complement the hierarchy of perfect graphs given in [11], by placing multitolerance
graphs in it. The resulting hierarchy of classes of perfect graphs is complete, i.e. all inclusions
are strict.

Notation In this article we follow standard notation and terminology, see for instance [11]. We
consider finite, simple, and undirected graphs. Given a graph G = (V,E), we denote by n the
cardinality of V . An edge between vertices u and v is denoted by uv, and in this case vertices u
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and v are said to be adjacent. G denotes the complement of G, i.e. G = (V,E), where uv ∈ E if
and only if uv /∈ E. Given a subset of vertices S ⊆ V , the graph G[S] denotes the graph induced
by the vertices in S, i.e. G[S] = (S,F ), where for any two vertices u, v ∈ S, uv ∈ F if and only if
uv ∈ E. A subset S ⊆ V is an independent set in G if the graph G[S] has no edges. For a subset
K ⊆ V , the induced subgraph G[K] is a clique if each two of its vertices are adjacent. The
maximum cardinality of a clique in G is denoted by ω(G) and is termed the clique number of
G. A proper coloring of G is an assignment of different colors to adjacent vertices, which results
in a partition of V into independent sets. The minimum number of colors for which there exists
a proper coloring is denoted by χ(G) and is termed the chromatic number of G. A partition of
V into χ(G) independent sets is a minimum coloring of G.

A graph G is called alternately orientable if there exists an orientation F of G which is
transitive on every chordless cycle of length at least 4, i.e. the directions of the oriented edges
must alternate. A graph G is called weakly chordal (or weakly triangulated) if G has no induced
subgraph isomorphic to the chordless cycle Cn with n vertices, or to its complement Cn, for
any n ≥ 5. A vertex order ≺ of a graph G is called perfect if and only if G contains no induced
path abcd with a ≺ b and d ≺ c. A graph G is called co-perfectly orderable if its complement G
admits a perfect order. For more definitions we refer to [11].

Organization of the paper We present the new intersection model for multitolerance graphs in
Section 2. In Section 3 we present a canonical representation of multitolerance graphs and an
algorithm that computes it in O(n log n) time. Then, using this algorithm, we present in Sec-
tion 4 optimal O(n log n) coloring and clique algorithms for multitolerance graphs. In Section 5
we present an O(m+ n log n) algorithm that computes a maximum weight independent set. In
Section 6 we classify multitolerance graphs in the hierarchy of perfect graphs of [11]. Finally,
we discuss the presented results and further research in Section 7.

2 An intersection model for multitolerance graphs

In this section we present a three-dimensional intersection model for general multitolerance
graphs, which unifies the intersection model of trapezoids in the plane for bounded multitoler-
ance graphs [11] and that of parallelepipeds in the 3-dimensional space for tolerance graphs [22].
Given a multitolerance graph G = (V,E) along with a multitolerance representation 〈I, t〉 of G,
recall that vertex v ∈ V corresponds to an interval Iv = [lv, rv] on the real line and a set τv of
tolerance-intervals, where either τv = I(Iv, ltv , rtv ) for some values ltv , rtv ∈ Iv of tolerant points,
or τv = {R}.

Definition 1. Given a multitolerance representation of a multitolerance graph G = (V,E),
vertex v ∈ V is bounded if τv = I(Iv, ltv , rtv ) for some values ltv , rtv ∈ Iv. Otherwise, v is
unbounded. VB and VU are the sets of bounded and unbounded vertices in V , respectively.
Clearly V = VB ∪ VU .

Definition 2. For a vertex v ∈ VB (resp. v ∈ VU ) in a multitolerance representation of G, the
values tv,1 = ltv − l

v
and tv,2 = r

v
−rtv (resp. tv,1 = tv,2 =∞) are the left tolerance and the right

tolerance of v, respectively. Moreover, if v ∈ VU , then tv = ∞ is the tolerance of v.

It can be now easily seen by Definition 2 that if we set tv,1 = tv,2 for every vertex v ∈ V ,
then we obtain a tolerance representation, in which tv,1 = tv,2 is the (unique) tolerance of v.
We may assume w.l.o.g. that no two bounded vertices share an endpoint or tolerant point,
i.e. {lu, ru, ltu , rtu} ∩ {lv , rv, ltv , rtv} for all u, v ∈ VB with u 6= v [25]. Furthermore, by possibly
performing a small shift of the endpoints and the tolerant points, we may assume w.l.o.g. that
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Tu
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y
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rtu
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lv = rtv
rv = ltv

Fig. 1. Trapezoids Tu and T v correspond to bounded vertices u and v, respectively, while Tw corresponds to an
unbounded vertex w.

tv,1, tv,2 > 0 for every v ∈ V and that the left and right tolerances for every bounded vertex
are distinct, i.e. {tu,1, tu,2}∩{tv,1, tv,2} = ∅ for all u, v ∈ VB with u 6= v. Similarly, if tv,1 6= |Iv|
(resp. tv,2 6= |Iv|) for a bounded vertex v ∈ VB , we may assume w.l.o.g. that also tv,2 6= |Iv|
(resp. tv,1 6= |Iv|). That is, for every v ∈ VB , either tv,1 = tv,2 = |Iv|, or tv,1 < |Iv| and tv,2 < |Iv|.
For more details in the cases of tolerance and bounded multitolerance graphs we refer to [11,16].

Let now L1 and L2 be two parallel lines at unit distance in the Euclidean plane. In the
following we define for every vertex v ∈ V a trapezoid T v in the plane between the lines L1

and L2. The values tan φ and cotφ = 1

tanφ
denote the tangent and the cotangent of a slope φ,

respectively. Furthermore, φ = arc cot x is the slope φ, for which cot φ = x.

Definition 3. Given an interval Iv = [lv , rv] and tolerances tv,1, tv,2, T v is the trapezoid
in R2 defined by the points cv, bv on L1 and av, dv on L2, where av = lv, bv = rv,
cv = min {rv, lv + tv,1}, and dv = max {lv, rv − tv,2}. The values φv,1 = arc cot (cv − av) and
φv,2 = arc cot (bv − dv) are the left slope and the right slope of T v. Moreover, for every un-
bounded vertex v ∈ VU , φv = φv,1 = φv,2 is the slope of T v.

An example is depicted in Figure 1, where Tu and T v correspond to bounded vertices u and v,
and Tw corresponds to an unbounded vertex w. For each of these trapezoids, the corresponding
interval (together with the associated tolerant points, if the vertex is bounded) is drawn above
the trapezoid for better visibility. The left (resp. right) tolerant points are depicted by a square
(resp. cycle). Observe that when a vertex v is bounded, the values cv and dv coincide with the
tolerant points ltv and rtv , respectively, while φv,1 = arc cot tv,1 and φv,2 = arc cot tv,2. On the
other hand, when a vertex v is unbounded, the values cv and dv coincide with the endpoints
bv and av of Iv, respectively, while φv,1 = φv,2 = arc cot|Iv|. Observe also that in both cases
where tv,1 = t

v,2
= |Iv| and tv,1 = t

v,2
= ∞, the trapezoid T v is reduced to a line segment (cf. T v

and Tw in Figure 1). Furthermore, similarly to the above, we can assume w.l.o.g. that all
endpoints and slopes of the trapezoids are distinct, i.e. {au, bu, cu, du}∩{av , bv, cv , dv} = ∅ and
{φu,1, φu,2}∩{φv,1, φv,2} = ∅ for every u, v ∈ V with u 6= v. Since |Iv| > 0 and tv,1, tv,2 > 0 for
every vertex v, it follows that 0 < φv,1 <

π
2
and 0 < φv,2 < π

2
for all slopes φv,1, φv,2.

Definition 4. Let u ∈ VB be a bounded vertex in a multitolerance representation and
au, bu, cu, du be the endpoints of the trapezoid T u. Let x ∈ [au, du] and y ∈ [cu, bu] be two points
on the lines L2 and L1, respectively, such that x = λau + (1− λ)du and y = λcu + (1− λ)bu for
the same value λ ∈ [0, 1]. Then φu(x) is the slope of the line segment with endpoints x and y on
the lines L2 and L1, respectively.

In the example of Figure 1, two points x ∈ [au, du] and y ∈ [cu, bu] are depicted on the lines
L2 and L1, respectively, such that x = λau + (1 − λ)du and y = λcu + (1 − λ)bu for the same
value λ ∈ [0, 1]. Then, the interval [x, y] on the real line, with values x and y as endpoints,
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coincides with the tolerance-interval Iltu ,rtu (1−λ) = [lu+(rtu − lu)(1−λ), ltu +(ru− ltu)(1−λ)]
of I(Iu, ltu , rtu) (cf. the definition of a multitolerance representation). Furthermore, for the
slope φu(x), as defined in Definition 4 (cf. Figure 1), it follows that cot φu(x) = y − x =
λ(cu − au) + (1 − λ)(bu − du). Therefore, since cotφu,1 = cu − au and cot φu,2 = bu − du, the
next observation follows.

Observation 1 Let x = λau+(1−λ)du for a bounded vertex u ∈ VB and some value λ ∈ [0, 1].
Then, cotφu(x) = λ cot φu,1 + (1− λ) cot φu,2.

Note that, in Definition 3, the endpoints av, bv, cv , dv of any trapezoid T v (on the lines L1

and L2) lie on the plane z = 0 in R3. Therefore, since we assumed that the distance between
the lines L1 and L2 is one, these endpoints of T v correspond to the points (av, 0, 0), (bv, 1, 0),
(cv , 1, 0), and (dv, 0, 0) in R3, respectively. For the sake of presentation, we may not distinguish
in the following between these points in R3 and the corresponding real values av, bv, cv , dv,
whenever this slight abuse of notation does not cause any confusion.

For a set X of points in R3, denote by Hconvex(X) the convex hull defined by the points of X.
That is, T v = Hconvex(av , bv, cv , dv) for every vertex v ∈ V by Definition 3, where av, bv, cv , dv
are points of the plane z = 0 in R3. We are now ready to give the main definition of this article.

Definition 5. Let G = (V,E) be a multitolerance graph with a multitolerance representation
{Iv = [av, bv], τv | v ∈ V } and ∆ = max{bv | v ∈ V } −min{av | v ∈ V } be the greatest distance
between two interval endpoints. For every vertex v ∈ V , the trapezoepiped Tv of v is the convex
set of points in R3 defined as follows:

(a) if tv,1, tv,2 ≤ |Iv| (that is, v is bounded), then Tv = Hconvex(T v, a
′
v , b

′
v, c

′
v , d

′
v),

(b) if tv = tv,1 = tv,2 = ∞ (that is, v is unbounded), then Tv = Hconvex(a
′
v, c

′
v),

where a′v = (av , 0,∆ − cotφv,1), b′v = (bv, 1,∆ − cotφv,2), c′v = (cv , 1,∆ − cotφv,1), and
d′v = (dv , 0,∆ − cotφv,2). The set of trapezoepipeds {Tv | v ∈ V } is a trapezoepiped represen-
tation of G.

Note by the definition of ∆ that ∆ − cotφv,1 ≥ 0 and ∆ − cot φv,2 ≥ 0 for every v ∈ V .
Furthermore, observe that for each interval Iv, the trapezoid T v of Definition 3 (see also Fig-
ure 1) coincides with the projection of the trapezoepiped Tv on the plane z = 0. An ex-
ample of this construction is given in Figure 2. A multitolerance graph G with seven ver-
tices {v1, v2, . . . , v7} is depicted in Figure 2(a), while the trapezoepiped representation of G
is illustrated in Figure 2(b). The set of bounded and unbounded vertices in this represen-
tation are VB = {v3, v4, v6, v7} and VU = {v1, v2, v5}, respectively. We illustrate the endpoints
avi , bvi , cvi , dvi and a′vi , b

′
vi
, c′vi , d

′
vi

of Tvi , as well as the relationship between the interval Ivi and
the corresponding trapezoepiped Tvi for one unbounded and one bounded vertex, cf. v1 and v6,
respectively. Note that av1 = dv1 , a

′
v1

= d′v1 , cv1 = bv1 , and c′v1 = b′v1 , since v1 is unbounded. In
the case where tvi,1, tvi,2 < |Ivi |, the trapezoepiped Tvi is three-dimensional, cf. Tv3 , Tv4 , and Tv6 ,
while in the border case where tvi,1 = tvi,2 = |Ivi | it degenerates to a two-dimensional rectangle,
cf. Tv7 . In these two cases, each Tvi corresponds to a bounded vertex vi. In the remaining case
where vi is unbounded, i.e. tvi = tvi,1 = tvi,2 = ∞, the trapezoepiped Tvi degenerates to an
one-dimensional line segment above plane z = 0, cf. Tv1 , Tv2 , and Tv5 .

We now prove that the trapezoepiped representation forms a three-dimensional intersection
model for the class of multitolerance graphs (namely, that every multitolerance graph G can be
viewed as the intersection graph of the corresponding trapezoepipeds Tv). To this end, we first
prove the next two lemmas.

Lemma 1. Let u ∈ V and v ∈ VU in a trapezoepiped representation of a multitolerance graph
G = (V,E). If cv < cu on the line L1, then Tu ∩ Tv = ∅.
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a′v1

Iv1
Iv6

∆ x

y
z

hu7,1 = hu7,2

(b)

Fig. 2. (a) A multitolerance graph G and (b) a trapezoepiped representation R of G. Here, hvi,j = ∆− cotφvi,j

for every bounded vertex vi ∈ VB and j ∈ {1, 2}, while hvi = ∆− cot φvi for every unbounded vertex vi ∈ VU .

Proof. Let first u ∈ VU , i.e. u is unbounded. Then Tu and Tv are both line segments on the
disjoint planes z = ∆ − cotφu and z = ∆ − cotφv of R3, and thus Tu ∩ Tv = ∅. Let now
u ∈ VB , i.e. u is bounded. If T u ∩ T v = ∅, then also Tu ∩ Tv = ∅ by Definition 5. Suppose
that T u ∩ T v 6= ∅. Then, since we assumed that cv < cu, it follows that au < av. Therefore in
particular φv > φu,1, and thus also tan φv > tanφu,1, i.e. ∆ − cotφv > ∆ − cotφv,1. Suppose
first that du < av, i.e. au < du < av. Then also φv > φu,2, i.e. ∆ − cot φv > ∆ − cotφv,1 and
∆− cot φv > ∆ − cotφv,2. Therefore the line Tv lies completely above the trapezoepiped Tu in
R3, and thus Tu ∩ Tv = ∅. Suppose now that av < du, i.e. au < av < du. Consider any point
x ∈ [au, av] ⊆ [au, du] on the line L2. Then, x = λau + (1 − λ)du for some value λ ∈ [0, 1].
Consider also the point y ∈ [cu, bu] on the line L1, such that y = λcu + (1 − λ)bu for the
same value of λ. Then, the maximum height z of the trapezoepiped Tu above the point x is
λ(∆ − cotφu,1) + (1 − λ)(∆ − cot φu,2), which is equal to ∆ − cotφu(x) by Observation 1. If
Tu ∩ Tv 6= ∅, then there exists such a point x ∈ [av , dv] on the line L2 (and the corresponding
point y ∈ [cv , bu] on the line L1), such that ∆−cotφu(x) > ∆−cot φv, i.e. φu(x) > φv. However,
x ≤ av and cv < cu ≤ y, and thus φu(x) < φv, which is a contradiction. Therefore Tu ∩ Tv = ∅.

⊓⊔

Lemma 2. Let u ∈ VB and v ∈ VU in a trapezoepiped representation of a multitolerance graph
G = (V,E). Let au, du, and av = dv be the endpoints of T u and T v, respectively, on the line L2.
If av < au, then Tu ∩ Tv 6= ∅ if and only if Tu ∩ T v 6= ∅. If du < av, then Tu ∩ Tv = ∅. Finally,
if au < av < du, then Tu ∩ Tv 6= ∅ if and only if φv ≤ φu(av).

Proof. Recall first that av = dv and cv = bv, since v is unbounded. Let av < au. If T u ∩ T v = ∅,
then also Tu ∩ Tv = ∅ by the definition of a trapezoepiped representation (cf. Definition 5). If
T u ∩ T v 6= ∅, then cv > cu, since we assumed that av < au. Therefore, in particular φv < φu,1,
and thus also tan φv < tanφu,1, i.e. ∆ − cotφv < ∆ − cotφu,1. Therefore the line Tv intersects
the trapezoepiped Tu in R, i.e. Tu ∩ Tv 6= ∅.
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Let now du < av. If T u ∩ T v = ∅, then also Tu ∩ Tv = ∅ by Definition 5. Suppose that
T u ∩ T v 6= ∅. Then, since we assumed that du < av, it follows that cv < bu. Therefore in
particular φv > φu,2, i.e. ∆− cot φv > ∆− cot φu,2. Suppose first that cv < cu, i.e. cv < cu < bu.
Then also φv > φu,1, i.e. ∆ − cotφv > ∆ − cot φu,1 and ∆ − cot φv > ∆ − cotφu,2. Therefore
the whole trapezoepiped Tu lies completely below the plane z = ∆− cotφv of R3, on which the
line Tv lies, and thus Tu ∩ Tv = ∅. Suppose now that cu < cv , i.e. cu < cv < bu. Consider any
point y ∈ [cv, bu] ⊆ [cu, bu] on the line L1. Then, y = λcu + (1 − λ)bu for some value λ ∈ [0, 1].
Consider also the point x ∈ [au, du] on the line L2, such that x = λau + (1 − λ)du for the
same value of λ. Then, the maximum height z of the trapezoepiped Tu above the point y is
λ(∆ − cotφu,1) + (1 − λ)(∆ − cot φu,2), which is equal to ∆ − cotφu(x) by Observation 1. If
Tu ∩ Tv 6= ∅, then there exists such a point y ∈ [cv, bu] on the line L1 (and the corresponding
point x ∈ [au, du] on the line L2), such that ∆−cotφu(x) > ∆−cotφv, i.e. φu(x) > φv. However,
x ≤ du < av and cv ≤ y, and thus φu(x) < φv, which is a contradiction. Therefore Tu ∩ Tv = ∅.

Let finally au < av < du. Then, av = λau + (1− λ)du for some value λ ∈ [0, 1]. Consider the
point y ∈ [cu, bu] on the line L1, such that y = λcu + (1 − λ)bu for the same value of λ. Since
v ∈ VU , the line Tv lies on the plane z = ∆− cotφv of R3. Suppose first that φv ≤ φu(av), and
thus in particular y ≤ cv. Then the maximum height of the trapezoepiped Tu above the point
av of L2 is ∆− cotφu(av) ≥ ∆− cot φv. Therefore Tu∩Tv 6= ∅ if φv ≤ φu(av). Suppose now that
φv > φu(av), and thus in particular cv < y. Then the maximum height of the trapezoepiped Tu

above the point av of L2 is ∆−cotφu(av) < ∆−cotφv. If cv < cu, then Tu∩Tv = ∅ by Lemma 1.
Suppose now that cu < cv, i.e. cu < cv < y < bu. Then cv = λ′cu + (1 − λ′)bu for some value
λ′ ∈ [0, 1]. Note that λ′ > λ, since cv < y = λcu+(1−λ)bu. Consider the point x ∈ [au, du] on the
line L2, such that x = λ′au+(1−λ′)du for the same value λ′ > λ. Then the maximum height of
the trapezoepiped Tu above the points cv and x is λ′(∆−cot φu,1)+(1−λ′)(∆−cot φu,2), which
is equal to ∆ − cotφu(x) by Observation 1. Furthermore, since λ′ > λ, it follows that x < av.
Thus, since also cv < y, it follows that φu(x) < φv, i.e. ∆−cot φu(x) < ∆−cotφv. Summarizing,
the maximum height of the trapezoepiped Tu above the point av of L2 (resp. above the point cv
of L1) is ∆− cotφu(av) < ∆− cot φv (resp. ∆− cot φu(x) < ∆− cotφv). Therefore, since Tu is
convex, it follows that the line Tv lies above the trapezoepiped Tu in R3. Therefore Tu ∩ Tv = ∅
if φv > φu(av). This completes the proof of the lemma. ⊓⊔

Theorem 1. Let G = (V,E) be a multitolerance graph with a multitolerance representation
{Iv = [av, bv], τv | v ∈ V }. Then for every u, v ∈ V , uv ∈ E if and only if Tu ∩ Tv 6= ∅.

Proof. Let au, bu, cu, du and av, bv , cv, dv be the endpoints of the trapezoids Tu and T v that
correspond to vertices u and v, respectively (cf. Figure 1). Note that Iu = [au, bu] and Iv =
[av, bv ] for the corresponding intervals in the multitolerance representation. W.l.o.g. we may
assume that au < av. Suppose first that both u and v are unbounded. Then Tu and Tv are
both line segments on the disjoint planes z = ∆ − cotφu and z = ∆ − cot φv of R3, and thus
Tu ∩ Tv = ∅. On the other hand, uv /∈ E, since no two unbounded vertices are adjacent in a
multitolerance graph G. Suppose in the following of the proof that u ∈ VB or v ∈ VB (or both).

Suppose that T u ∩ T v = ∅, i.e. du < av and bu < cv. Then also Tu ∩ Tv = ∅. On the other
hand, let Qu = [p, q] ∈ τu (resp. Qv = [p, q] ∈ τv) be a (non-infinite) tolerance-interval of vertex
u, if u ∈ VB (resp. of vertex v, if v ∈ VB). Then, p ≤ du < av (resp. bu < cv ≤ q), and thus
Qu * Iv = [av, bv ] (resp. Qv * Iu = [au, bu]). Therefore uv /∈ E.

Suppose in the following that T u ∩ T v 6= ∅. We distinguish now two cases according to the
relative positions of the points du and av on the line L2.

Case 1. du < av. Then, since we assumed that T u∩T v 6= ∅, it follows that cv < bu. Therefore
in particular φv,1 > φu,2, and thus also tanφv,1 > tan φu,2, i.e. ∆− cotφv,1 > ∆− cotφv,2.
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Case 1a. Suppose first that v ∈ VB . Then, necessarily Tu ∩ Tv 6= ∅ by the definition of
a trapezoepiped representation, since T u ∩ T v 6= ∅ and ∆ − cot φv,1 > ∆ − cotφv,2. On the
other hand, consider the tolerance-interval Qv = [av, cv] ∈ τv (Qu exists, since v ∈ VB). Then
Qv ⊆ [au, bu] = Iu, since au ≤ du < av < cv < bu, and thus uv ∈ E. That is, Tu ∩ Tv 6= ∅ and
uv ∈ E.

Case 1b. Suppose now that v ∈ VU , and thus u ∈ VB . Then τv = {R}, and thus Qv * Iu
for any Qv ∈ τv. Consider any tolerance-interval Qu = [p, q] ∈ τu. Then p ≤ du < av, and thus
Qu * Iv = [av, bv]. Therefore uv /∈ E. On the other hand, Tu ∩ Tv = ∅ by Lemma 2, since
du < av. That is, Tu ∩ Tv 6= ∅ and uv ∈ E.

Case 2. av < du. That is, au < av < du, and thus in particular u ∈ VB (since au 6= du).
Case 2a. Suppose first that v ∈ VB . Then, necessarily Tu ∩ Tv 6= ∅ by the definition of a

trapezoepiped representation, since both u, v ∈ VB and T u∩T v 6= ∅. We will now prove that also
uv ∈ E. Let first cv < bu on the line L1 and consider the tolerance-interval Qv = [av, cv] ∈ τv.
Then Qv ⊆ Iu = [au, bu], since au < av < cv < bu, and thus uv ∈ E. Let now bu < cv on the
line L1 and consider the tolerance-interval Qu = [du, bu] ∈ τu. Then Qu ⊆ Iv = [av, bv], since
av < du < bu < cv, and thus uv ∈ E. That is, Tu ∩ Tv 6= ∅ and uv ∈ E.

Case 2b. Suppose now that v ∈ VU . Then, av = λau + (1 − λ)du for some value λ ∈ [0, 1],
since au < av < du. Consider the point y ∈ [cu, bu] on the line L1, such that y = λcu+(1−λ)bu
for the same value of λ. Since v ∈ VU , the line Tv lies on the plane z = ∆− cotφv of R3.

Let first φv ≤ φu(av), and thus in particular y ≤ cv. Then Tu ∩ Tv 6= ∅ by Lemma 2. On the
other hand, consider the tolerance-interval Qu = [av , y] ∈ τu. Then, Qu ⊆ Iv = [av, bv], since
av < y ≤ cv = bv, and thus uv ∈ E. That is, Tu ∩ Tv 6= ∅ and uv ∈ E, if φv ≤ φu(av).

Let now φv > φu(av), and thus in particular y > cv. Then Tu ∩ Tv = ∅ by Lemma 2. On the
other hand, consider any tolerance-interval Qu = [p, q] ∈ τu. Then, p = λ′au + (1 − λ′)du and
q = λ′cu + (1 − λ′)bu, for some value λ′ ∈ [0, 1]. If λ′ > λ, then p < av, and thus Qu = [p, q] *
[av, bv ] = Iv = [av, bv ]. If λ

′ ≤ λ, then q ≥ y > cv = bv, and thus again Qu = [p, q] * Iv = [av, bv].
Therefore Qu * Iv for every Qu ∈ τu, and thus uv /∈ E. That is, Tu ∩ Tv = ∅ and uv /∈ E, if
φv > φu(av). ⊓⊔

Clearly, for each v ∈ V the trapezoepiped Tv can be constructed in constant time; therefore
the next lemma follows directly.

Lemma 3. Given a multitolerance representation of a multitolerance graph G with n vertices,
a trapezoepiped representation of G can be constructed in O(n) time.

3 A canonical representation of multitolerance graphs

In this section we introduce a canonical representation of multitolerance graphs, which is a
special kind of a trapezoepiped representation. Moreover, we present an efficient algorithm
that constructs in O(n log n) time a canonical representation of a multitolerance graph G with
n vertices, given any trapezoepiped representation of G. This algorithm proves to be useful
for designing efficient algorithms on multitolerance graphs for the minimum coloring and the
maximum clique problems with optimal running time O(n log n), as we will present in Section 4.
First, we state the following definition, similarly to the case of tolerance graphs [22] (see also [10,
11]).

Definition 6. An unbounded vertex v ∈ VU of a multitolerance graph G is called inevitable
(for a certain trapezoepiped representation), if replacing Tv by Hconvex(T v, a

′
v, c

′
v) creates a new

edge uv in G; then u is a hovering vertex of v and the set H(v) of all hovering vertices of v is
the hovering set of v. Otherwise, v is called evitable.
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Recall that a′v = d′v and c′v = b′v for every unbounded vertex v ∈ VU , and thus
Hconvex(T v, a

′
v, c

′
v) = Hconvex(T v, a

′
v , b

′
v, c

′
v , d

′
v) in Definition 6. Therefore, replacing Tv by

Hconvex(T v, a
′
v, c

′
v) in the trapezoepiped representation of G is equivalent with replacing in the

corresponding multitolerance representation of G the infinite tolerance tv = ∞ by the finite
tolerances tv,1 = tv,2 = |Iv|, i.e. with making v a bounded vertex. Note that the hovering set of
an inevitable unbounded vertex v can have more than one elements, since the replacement of
Tv by Hconvex(T v, a

′
v, c

′
v) may create more than one new edges in G. Furthermore, uv /∈ E for

every hovering vertex u of v, while u can be both bounded or unbounded.

Lemma 4. Let G = (V,E) be a multitolerance graph, R be a trapezoepiped representation of
G, and v ∈ VU be an inevitable unbounded vertex in R. Then, N(v) ⊆ N(u) for every hovering
vertex u of v.

Proof. Note first that av = dv and cv = bv, since v is unbounded. Let u be a hovering vertex
of v in R, i.e. uv /∈ E and replacing Tv by Hconvex(T v, a

′
v, c

′
v) in R creates the new edge uv in G

by Definition 6. Thus, in particular T u ∩ T v 6= ∅, while the line Tv lies above Tu in R. Consider
a vertex w ∈ N(v). Then w is bounded, since v is unbounded and no two unbounded vertices
are adjacent. Furthermore Tv ∩ Tw 6= ∅ and T v ∩ Tw 6= ∅, since w ∈ N(v). We will prove that
also w ∈ N(u), in both cases where u is bounded and unbounded.

Case 1. u is bounded. If dw < av, then Tv ∩ Tw = ∅ by Lemma 2, which is a contradiction.
Thus av < dw. Suppose that av < au. Then, since Tu∩T v 6= ∅, Lemma 2 implies that Tu∩Tv 6= ∅,
and thus uv ∈ E, which is a contradiction. Thus au < av, i.e. au < av < dw.

Since both u and w are bounded, Tu ∩ Tw 6= ∅ if and only if T u ∩ Tw 6= ∅ (cf. Definition 5).
Therefore, in order to prove that w ∈ N(u), it suffices to prove that T u ∩ Tw 6= ∅, i.e. that the
corresponding trapezoids in the plane intersect. Suppose otherwise that T u ∩ Tw = ∅. Then,
since au < dw, it follows that trapezoid Tu lies completely to the left of the trapezoid Tw.
Therefore, since both T v ∩ T u 6= ∅ and T v ∩ Tw 6= ∅, it follows that either du < aw < av
and cv < bu < cw, or av < du < aw and bu < cw < cv.

Case 1a. du < aw < av and cv < bu < cw. Recall now that av < dw, i.e. aw < av < dw.
Furthermore, note that cv < cw ≤ y for every point y ∈ [cw, bw] on the line L1. There-
fore φv > φw(av), and thus Tv ∩ Tw = ∅ by Lemma 2, i.e. w /∈ N(v), which is a contradiction.

Case 1b. av < du < aw and bu < cw < cv. Consider the tolerance-interval Qu = [du, bu] ∈ τu.
Then Qu ⊆ Iv = [av, bv ], since av < du < bu < cv = bv. Therefore uv ∈ E, which is a
contradiction.

Therefore Tu ∩ Tw 6= ∅, and thus also Tu ∩ Tw 6= ∅, i.e. w ∈ N(u), since both u and w are
bounded.

Case 2. u is unbounded. Then au = du and cu = bu. Furthermore ∆− cot φu < ∆− cotφv,
since the line Tv lies above Tu in R, and thus φu < φv. Therefore au < av and cu > cv.
If dw < av, then Tv ∩ Tw = ∅ by Lemma 2, which is a contradiction, since w ∈ N(v). Suppose
that av < aw. Then cv > cw, since T v ∩ Tw 6= ∅. That is, au < av < aw and cu > cv > cw,
and thus in particular T u ∩ Tw 6= ∅. Then Tu ∩ Tw 6= ∅ by Lemma 2, i.e. w ∈ N(u). Suppose
now that aw < av < dw, i.e. av = λaw + (1− λ)dw for some value λ ∈ [0, 1]. Consider the point
y ∈ [cw, bw] on the line L1, such that y = λcw + (1 − λ)bw for the same value of λ. Since
Tv ∩ Tw 6= ∅, Lemma 2 implies that φv ≤ φw(av), and thus y < cv. That is, au < av and
y < cv < cu. Consider now the tolerance-interval Qw = [av, y] ∈ τw. Then Qw ⊆ Iu = [au, bu],
since au < av < y < cu = bu. Therefore w ∈ N(u) in the case where u is unbounded. This
completes the proof of the lemma. ⊓⊔

In the next definition we introduce the notion of a canonical representation of a multitoler-
ance graph G.
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Definition 7. A trapezoepiped representation of a multitolerance graph G is called canonical if
every unbounded vertex is inevitable.

For example, in the multitolerance graph depicted in Figure 2, v2 and v5 are inevitable
unbounded vertices, v1 and v4 are hovering vertices of v2 and v5, respectively, while v1 is an
evitable unbounded vertex. Therefore, this representation is not canonical for the graph G.
However, if we replace Tv1 by Hconvex(T v1 , a

′
v1
, c′v1), we get a canonical representation for G.

The next lemma follows now by Definitions 6 and 7 and by Lemma 4.

Lemma 5. Let R be a canonical representation of a multitolerance graph G and v ∈ VU be an
inevitable unbounded vertex of multitolerance graph G (in the representation R). Then, there
exists a hovering vertex u of v, which is bounded.

Proof. Since R is a canonical representation of G, all unbounded vertices of G in R are inevitable
unbounded by Definition 7. Suppose that there exists an unbounded vertex v, such that every
hovering vertex of v is unbounded, and let v be the vertex with the smallest slope φv among
them. Let u be a hovering vertex of v in R, i.e. replacing Tv by Hconvex(T v, a

′
v, c

′
v) in R creates

the new edge uv in G by Definition 6. Thus, in particular T u ∩ T v 6= ∅, while the line Tv lies
above Tu in R. Therefore, ∆ − cotφv > ∆ − cot φu, and thus φv > φu. Furthermore, since
T u ∩ T v 6= ∅ and both u and v are unbounded, it follows that au < av and cv < cu. Moreover
N(v) ⊆ N(u) by Lemma 4.

Since R is a canonical representation and u is unbounded, it follows that u is an inevitable
unbounded vertex of G in R. Then, since φv > φu, it follows by the choice of v that the
unbounded vertex u has at least one hovering vertex u′ in R, which is bounded. That is,
u′u /∈ E and replacing Tu by Hconvex(T u, a

′
u, c

′
u) in R creates the new edge u′u in G. Therefore

Tu′ ∩ Tu = ∅ and T u′ ∩ T u 6= ∅. Furthermore, since u′ /∈ N(u) and N(v) ⊆ N(u), it follows that
also u′ /∈ N(v). Therefore Tu′ ∩ Tv = ∅.

We will now prove that T u′ ∩ T v 6= ∅. If au < au′ , then Tu′ ∩ Tu 6= ∅ if and only if
T u′ ∩ T u 6= ∅ by Lemma 2. This is a contradiction, since Tu′ ∩ Tu = ∅ and T u′ ∩ T u 6= ∅.
Therefore au′ < au. Suppose that au′ < au < du′ . Then, since u′u /∈ E, i.e. Tu ∩ Tu′ = ∅,
Lemma 2 implies that φu > φu′(au). Therefore cu < y for some point y ∈ [cu′ , bu′ ] on the line
L1, and thus cu < bu′ . That is, au′ < au < av and cv < cu < bu′ , and thus T u′ ∩T v 6= ∅. Suppose
now that du′ < au, i.e. du′ < au < av. Then, since T u′ ∩ T u 6= ∅, it follows that cu < bu′ . That
is, du′ < au < av and cv < cu < bu′ , and thus again T u′ ∩ T v 6= ∅.

Summarizing, Tu′ ∩Tv = ∅ and T u′ ∩T v 6= ∅ in every case. Therefore, the replacement of Tv

by Hconvex(T v, a
′
v, c

′
v) in R creates the new edge u′v in G. Thus, u′ is a hovering vertex of v. This

is a contradiction to the assumption on v, since u′ is bounded. Therefore, for every inevitable
unbounded vertex v ∈ VU , there exists a hovering vertex u of v, which is bounded. ⊓⊔

3.1 The construction of a canonical representation

In this section we present an algorithm that constructs a canonical representation of a multi-
tolerance graph G, given a trapezoepiped representation of G.

Definition 8. Let L be a set of line segments in the plane. The lower envelope Env(L) of L is
the set of those points p = (x, y) of the line segments of L, such that the point (x, y′) does not
belong to any line segment of L, for any y′ < y.

An example of a set L of non-vertical line segments in the Euclidean plane is illustrated in
Figure 3. In this figure, the lower envelope Env(L) of L is drawn gray for better visibility. Fur-
thermore, the lower envelope Env(L) of such a set L consists also of line segments (cf. Figure 3),
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Fig. 3. A set L = {ℓ1, . . . , ℓ6} of line segments in the plane and the lower envelope Hlower(L) of L, which consists
of the line segments {s1, . . . , s10}.

and thus Env(L) can be also specified by the endpoints of its segments. Given a set of n line
segments in the plane, the lower envelope of these segments can be computed in O(n log n) time
using the algorithm presented in [15]. During the computation of Env(L) by this algorithm,
we can in the same time also store for every line segment s of Env(L) the line segment ℓ of L,
in which s belongs. We define now two subsets U1 and U2 of the set of inevitable unbounded
vertices.

Definition 9. Let v ∈ VU be an inevitable unbounded vertex. Then, v ∈ U1 (resp. v ∈ U2) if
there exists at least one hovering vertex u ∈ H(v) of v, such that u is unbounded (resp. u is
bounded).

Note that, given a trapezoepiped representation of a multitolerance graph G, the sets U1

and U2 are not necessarily disjoint, since an unbounded vertex may have both unbounded and
bounded hovering vertices. On the other hand, since every inevitable unbounded vertex has
at least one hovering vertex (cf. Definition 6), U1 ∪ U2 coincides with the set of inevitable
unbounded vertices.

We associate now with every unbounded vertex v ∈ VU the point pv = (xv , yv) in the
Euclidean plane, where xv = av and yv = ∆ − cot φv. Moreover, we associate with every
bounded vertex u ∈ VB three points pu,1 = (xu,1, yu,1) = (au,∆− cot φu,1), pu,2 = (xu,2, yu,2) =
(du,∆− cot φu,2), and pu,3 = (xu,3, yu,3) = (bu,∆) in the plane. Furthermore, we associate with
every bounded vertex u ∈ VB two line segments ℓu,1 = (pu,1, pu,2) and ℓu,2 = (pu,2, pu,3) in the
plane, which have the points pu,1, pu,2 and pu,2, pu,3 as endpoints, respectively. An example of
this construction is given in Figure 4, where the points pv1 and pv2 are associated with the
unbounded vertices v1 and v2, respectively,while the points pu,1, pu,2, pu,3 and the line segments
ℓu,1, ℓu,2 are associated with the bounded vertex u.

In the following, let L = {ℓu,1, ℓu,2 | u ∈ VB} be the 2|VB | line segments that are associated
with the bounded vertices u ∈ VB. For an arbitrary point p = (x, y) in the plane, we say that p
lies above Env(L) (resp. above the line segment ℓu,1 or ℓu,2 of L) if there exists a point p

′ = (x, y′)
of Env(L) (resp. of ℓu,1 or ℓu,2), such that y > y′. The next lemma, which is crucial for the
analysis of Algorithm 1, characterizes the vertices of U2 using the lower envelope Env(L) of L.

Lemma 6. Let be v ∈ VU be an unbounded vertex and pv = (xv, yv) be the associated point in
the plane. Then, v ∈ U2 if and only if pv lies above Env(L). Furthermore, if pv lies above the
segment ℓu,1 or ℓu,2 of L, then the bounded vertex u is a hovering vertex of v.

Proof. Let u ∈ VB be a bounded vertex and consider an arbitrary point x0 ∈ [xu,1, xu,2] =
[au, du]. Then x0 = λxu,1 + (1 − λ)xu,2 = λau + (1 − λ)du for some value λ ∈ [0, 1]. Thus, the
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Fig. 4. Two inevitable unbounded vertices v1, v2 ∈ U2, where the bounded vertex u ∈ VB is a hovering vertex
of both v1 and v2: (a) the trapezoids Tu, T v1 , T v2 and (b) the line segments ℓu,1, ℓu,2 of vertex u and the
points pv1 , pv2 of vertices v1, v2, respectively, where yu,1 = ∆− cot(φu,1), yu,2 = ∆− cot(φu,2), yu,3 = ∆, and
yv,j = ∆− cot(φu,j) for every j = 1, 2.

point of the line segment ℓu,1 with abscissa x0 is p0 = (x0, λyu,1 + (1 − λ)yu,2). Recall that
yu,1 = ∆ − cotφu,1 and yu,2 = ∆ − cotφu,2. Therefore λyu,1 + (1 − λ)yu,2 = ∆ − (λ cot φu,1 +
(1 − λ) cot φu,2), and thus λyu,1 + (1 − λ)yu,2 = ∆ − cotφu(x0) by Observation 1. That is, the
point of the line segment ℓu,1 with abscissa x0 ∈ [au, du] is p0 = (x0,∆ − cotφu(x0)).

Consider now a point x0 ∈ [xu,2, xu,3] = [du, bu]. Then x0 = λxu,2 + (1 − λ)xu,3 = λdu +
(1 − λ)bu for some value λ ∈ [0, 1]. Thus, the point of the line segment ℓu,2 with abscissa x0 is
p0 = (x0, λyu,2 + (1− λ)yu,3). Recall that yu,3 = ∆ and that yu,2 = ∆− cotφu,2. Note also that
cotφu,2 = bu − du, and thus yu,2 = ∆− bu + du. Therefore λyu,2 + (1− λ)yu,3 = ∆− λbu + λdu,
and thus λyu,2+(1−λ)yu,3 = ∆− bu+ x0, since x0 = λdu +(1−λ)bu. That is, the point of the
line segment ℓu,2 with abscissa x0 ∈ [du, bu] is p0 = (x0,∆− bu + x0).

Let v ∈ VU be an unbounded vertex, such that the point pv = (xv, yv) lies above Env(L).
That is, there exists a point p′ = (xv, y

′) ∈ Env(L), such that yv > y′. This point p′ belongs
to the line segment ℓu,1 or to the line segment ℓu,2, for some bounded vertex u ∈ VB. In the
example of Figure 4(b), the point pv1 (resp. pv2) that is associated to the unbounded vertex
v1 (resp. v2) lies above the line segment ℓu,1 (resp. ℓu,2) that is associated with the bounded
vertex u (cf. Figure 4(b)).

Suppose that p′ belongs to a line segment ℓu,1, where u ∈ VB . Then xv ∈ [xu,1, xu,2] = [au, du],
and thus p′ = (xv, y

′) = (xv ,∆ − cot φu(xv)), as we proved above. Furthermore, since yv > y′,
it follows that yv = ∆− cotφv > ∆− cotφu(xv), and thus φv > φu(xv). That is, there exists a
bounded vertex u ∈ VB , such that au < xv = av < du and φv > φu(xv), and thus Tu∩Tv = ∅ by
Lemma 2. Moreover Tu∩T v 6= ∅, since au < av < du, and thus replacing Tv byHconvex(T v, a

′
v , c

′
v)

in the trapezoepiped representation creates the new edge uv in G. Therefore v is an inevitable
unbounded vertex and the bounded vertex u is a hovering vertex of v by Definition 6. In
particular, v ∈ U2.

Suppose now that p′ belongs to a line segment ℓu,2, where u ∈ VB. Then xv ∈ [xu,2, xu,3] =
[du, bu], and thus p′ = (xv , y

′) = (xv,∆−bu+xv), as we proved above. Recall that yv = ∆−cotφv

and that cot φv = cv − av, and thus yv = ∆ − cv + av. Therefore, since yv > y′, it follows that
yv = ∆ − cv + av > ∆ − bu + xv. Thus, since xv = av, it follows that cv < bu. That is, there
exists a bounded vertex u ∈ VB , such that du < xv = av and cv < bu, and thus Tu ∩ T v 6= ∅.
Moreover Tu ∩ Tv = ∅ by Lemma 2, since du < av, and thus replacing Tv by Hconvex(T v, a

′
v , c

′
v)

in the trapezoepiped representation creates the new edge uv in G. Therefore v is an inevitable
unbounded vertex and the bounded vertex u is a hovering vertex of v by Definition 6. In
particular, v ∈ U2.

Conversely, let v ∈ U2. Then, replacing Tv by Hconvex(T v, a
′
v, c

′
v) in the trapezoepiped rep-

resentation creates a new edge uv in G, where u is a bounded hovering vertex of v. That is,
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Algorithm 1 Construction of a canonical representation of a multitolerance graph G
Input: A trapezoepiped representation R of a given multitolerance graph G = (V,E)
Output: A canonical representation R′ of G and a hovering vertex u for every inevitable unbounded vertex v

of G

1: L← ∅; R′ ← R; R′′ ← R \ {Tv | v ∈ VB}
2: for every vertex v ∈ V do

3: if v ∈ VU then

4: pv ← (av,∆− cotφv)
5: else {v ∈ VB}
6: pv,1 ← (av, ∆− cot φv,1); pv,2 ← (dv,∆− cotφv,2); pv,3 ← (bv,∆)
7: ℓv,1 = (pv,1, pv,2); ℓv,2 = (pv,2, pv,3); L← L ∪ {ℓv,1, ℓv,2}

8: Compute the set U1 of inevitable unbounded vertices in R′′ and a hovering vertex u ∈ VU of v, for every
v ∈ U1, by the algorithm of [22]

9: Compute the lower envelope Env(L) of L by the algorithm of [15]
{During the computation of Env(L), store for every line segment s of Env(L), the line segment ℓu,1 or ℓu,2
of L, in which s belongs}

10: for every vertex v ∈ Vu \ U1 do

11: if v lies above a segment s of Env(L) then {v ∈ U2 \ U1}
12: Let ℓu,1 or ℓu,2 be the line segment of L, in which s belongs
13: u ∈ VB is a hovering vertex of v
14: else {v is evitable unbounded}
15: Replace Tv by Hconvex(T v, a

′
v, c

′
v) in R′ {v is made bounded}

16: return R′

Tu ∩ Tv = ∅ and Tu ∩ T v 6= ∅. If av < au, then Lemma 2 implies that Tu ∩ Tv 6= ∅ if and only
if T u ∩ T v 6= ∅, which is a contradiction. Therefore au < av. Suppose first that au < av < du,
or equivalently xu,1 < xv < xu,2. Then φv > φu(av) by Lemma 2, since Tu ∩ Tv = ∅. Therefore
∆ − cotφv > ∆ − cotφu(av). Recall now that the point of the line segment ℓu,1 with abscissa
xv = av ∈ [au, du] is p = (xv ,∆− cotφu(av)). Therefore, since yv = ∆− cotφv > ∆− cotφu(av),
it follows that the point pv = (xv, yv) lies above the line segment ℓu,1, and thus pv lies above
Env(L).

Suppose now that du < av. Then, since T u ∩ T v 6= ∅, it follows that cv < bu. Recall that
av < cv (cf. Definition 3 and Figure 1), and thus du < av < cv < bu, i.e. av ∈ [du, bu]. Note that
yv = ∆ − cotφv = ∆ − (cv − av). Furthermore, recall that the point on the line segment ℓu,2
with abscissa xv = av ∈ [du, bu] is p = (av,∆− bu+ av). Therefore, since cv < bu, it follows that
yv = ∆ − cv + av > ∆ − bu + av, and thus the point pv = (xv, yv) lies above the line segment
ℓu,2, i.e. pv lies above Env(L). This completes the proof of the lemma. ⊓⊔

The next theorem shows that, given a trapezoepiped representation, we can construct by
Algorithm 1 a canonical representation in O(n log n) time. This result is crucial for the time
complexity analysis of the algorithms of Section 4.

Theorem 2. Every trapezoepiped representation of a multitolerance graph G with n vertices
can be transformed by Algorithm 1 to a canonical representation of G in O(n log n) time.

Proof. We describe and analyze Algorithm 1 that generates a canonical representation R′ of
G. The main idea is to efficiently detect the evitable and the inevitable unbounded vertices in
the given trapezoepiped representation R of G. Then, we replace Tv by Hconvex(T v, a

′
v, c

′
v) for

every evitable unbounded vertex v ∈ VU , and thus the resulting trapezoepiped representation
is canonical.

First, we compute the point pv in the plane for every unbounded vertex v ∈ VU and the
three points pv,1, pv,2, pv,3 in the plane for every bounded vertex v ∈ VB . Moreover, we specify
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for every v ∈ VB the two line segments ℓv,1 and ℓv,2 in the plane with endpoints pv,1, pv,2 and
pv,2, pv,3, respectively, and we compute the set L = {ℓv,1, ℓv,2 | v ∈ VB} of 2|VB | line segments.

Then, we consider the part R′′ of the initial trapezoepiped representation R that consists
only of the trivial trapezoepipeds (lines) Tv, for every unbounded vertex v ∈ VU . Note that the
graph induced by the vertices of VU is an independent set with cardinality |VU |, since no two
unbounded vertices in a multitolerance graph are adjacent. Furthermore, R′′ is a special case
of a parallelogram representation∗ (see [22]). We use now Algorithm 1 of [22] that computes in
particular all inevitable unbounded vertices v of a given parallelogram representation, as well as
a hovering vertex u for each one of them. Observe now that the computed inevitable unbounded
vertices v by this algorithm are exactly the vertices of U1 (cf. Definition 9). Furthermore, for
each of these vertices v ∈ U1, the computed hovering vertex u is unbounded.

In the sequel, we use the algorithm presented in [15] to compute the lower envelope Env(L)
of the computed set L of 2|VB | line segments. During the computation of Env(L) by this
algorithm, we also store in the same time for every line segment s of Env(L) the line segment
ℓ of L, in which s belongs.

After the lower envelope Env(L) of L has been computed, we check for every unbounded
vertex v ∈ VU \U1 whether the point pv lies above Env(L). We distinguish the following cases:

Case 1. pv lies above Env(L). Let s be the line segment of Env(L), above which the point pv
lies, and let ℓu,1 or ℓu,2 be the line segment of L, in which s belongs, for some u ∈ VB. Then,
Lemma 6 implies that v is an inevitable unbounded vertex (v ∈ U2) and that u is a bounded
hovering vertex of v.

Case 2. pv does not lie above Env(L). Then v /∈ U2 by Lemma 6. Furthermore, since
also v /∈ U1, it follows that v is not an inevitable unbounded vertex, i.e. v is evitable. Then we
replace the trapezoepiped Tv by Hconvex(T v, a

′
v, c

′
v) in the current trapezoepiped representation

and we consider from now on v as a bounded vertex. This replacement does not add any new
edge to G, since v is evitable.

Regarding the time complexity, the initialization of the trapezoepiped representations R′

and R′′ in line 1, as well as the computation of the O(n) points and O(n) line segments in
lines 2-7 can be done in linear O(n) time. Furthermore, lines 8 and 9 of Algorithm 1 can be
executed in O(n log n) time [15, 22]. Recall that, during the computation of Env(L) by the
algorithm presented in [15], we also store in the same time for every line segment s of Env(L)
the line segment ℓ of L, in which s belongs. Furthermore, note that the endpoints of the line
segments of Env(L) are returned sorted increasingly according to their x values [15].

After the lower envelope Env(L) of L has been computed, we check for every unbounded
vertex v ∈ VU in O(log n) time whether the point pv = (xv, yv) lies above Env(L) (cf. line 11).
This can be done as follows. Among all endpoints of the line segments of Env(L), we compute
in O(log n) time the endpoint p1 = (x1, y1) (resp. p2 = (x2, y2)), such that x1 (resp. x2) is the
greatest (resp. the smallest) value with x1 < xv (resp. xv < x2). Then, we test in constant time
whether the points p1 and p2 define a line segment s of Env(L) and whether the point pv lies
above this segment s. If p1 and p2 do not define a segment s of Env(L), or if p1 and p2 define
such a segment s and pv does not lie above s, then pv does not lie above Env(L). Otherwise,

∗Note here that, in a parallelepiped representation of a tolerance graph, the height of the line Pv that
corresponds to an unbounded vertex v, equals the slope φv of the line P v, which is the projection of Pv to
the plane z = 0; for details, see [22]. On the other hand, in the trapezoepiped representation R′′ (cf. line 1 of
Algorithm 1), the height of the line Tv that corresponds to the unbounded vertex v ∈ VU equals ∆ − cot(φv),
where φv is the slope of the line T v, which is the projection of Tv to the plane z = 0. Note that for every two
unbounded vertices u, v ∈ VU of the multitolerance graph G, ∆− cot(φv) > ∆− cot(φu) if and only if φv > φu.
Therefore, R′′ can be considered as a special case of a parallelogram representation by changing the height of
every line Tv, where v ∈ VU , from ∆− cot(φv) to φv, since this change of the heights of the lines does not change
the relative position of any two lines in R′′.
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Algorithm 2 Computation of a minimum coloring of a multitolerance graph G
Input: A trapezoepiped representation R of a given multitolerance graph G = (V,E)
Output: A minimum coloring of G

1: Construct a canonical representation R′ of G by Algorithm 1, where a hovering vertex uv is associated with
every inevitable unbounded vertex v

2: Let VB and VU be the bounded and (inevitable) unbounded vertices of G in R′, respectively

3: Color G[VB ] by the algorithm of [6]

4: for every vertex v ∈ VU do

5: Create a pointer from the hovering vertex uv of v to the vertex v

6: for every vertex u ∈ VB that has at least one pointer do
7: Assign the color of u to every vertex v ∈ VU that is reachable from u by a sequence of pointers

if pv lies above the line segment s of Env(L) defined by the points p1 and p2, then pv lies
above Env(L).

Then, the execution of each of the lines 12, 13, and 15 can be simply done in constant time.
Therefore, since the lines 11-15 are executed |VU \ U1| = O(n) times, the complexity of the
lines 10-15 is O(n log n). Summarizing, the total time complexity of Algorithm 1 in O(n log n).
This completes the proof of the theorem. ⊓⊔

4 Coloring and clique Algorithms in O(n logn) time

In this section we present optimal O(n log n) algorithms for the minimum coloring and the max-
imum clique problems on a multitolerance graph G with n vertices, given any trapezoepiped
representation of G. To the best of our knowledge, no algorithm for these problems on multi-
tolerance graphs has appeared until now, and thus the previously best known running times for
these problems were those of perfect graphs [13].

4.1 Minimum coloring

In the next theorem we present an optimal O(n log n) algorithm for computing a minimum
coloring of a multitolerance graph G with n vertices, given any trapezoepiped representation of
G. This algorithm uses Algorithm 1 to compute efficiently a canonical representation of G, as
well as the algorithm of [6] that computes a coloring of a given trapezoid graph with n vertices
in optimal O(n log n) time.

Theorem 3. A minimum coloring of a multitolerance graph G with n vertices can be computed
in optimal O(n log n) time.

Proof. We present Algorithm 2 that computes a minimum coloring of G. First, we compute
from the initial trapezoepiped representation R of G a canonical representation R′ of G by
Algorithm 1. Denote by VB and VU the sets of bounded and unbounded vertices of G in the
canonical representation R′, respectively. Then, the induced subgraph G[VB ] of G on the vertices
of VB is a bounded multitolerance (also called bounded bitolerance) graph, i.e. a trapezoid
graph [11,25]. Thus, we compute a minimum coloring of G[VB ] using the algorithm of [6].

Note that every unbounded vertex v ∈ VU is inevitable, since R′ is canonical. Furthermore,
exactly one hovering vertex uv is assigned to every v ∈ VU by Algorithm 1. Now, for every
v ∈ VU , we create a pointer from uv to v. Since every v ∈ VU has exactly one hovering vertex
uv assigned to it, it follows that after the execution of lines 4-5 every v ∈ VU has exactly one
incoming pointer from some vertex uv.
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Consider now an arbitrary inevitable unbounded vertex v ∈ VU and its hovering vertex uv.
If uv ∈ VB , then a color has been assigned to uv by the coloring of the graph G[VB ]. Suppose
that uv ∈ VU . Then, uv is unbounded in both the canonical representation R′ and in the initial
representation R of G. Furthermore, if we replace Tv by Hconvex(T v, a

′
v, c

′
v) in R, we create the

new edge uvv in G. Thus, since both uv and v are unbounded in R, it follows in particular that
∆ − cot(φv) > ∆ − cot(φuv), i.e. φv > φuv . That is, if a vertex uv ∈ VU has a pointer to a
vertex v ∈ VU , then φv > φuv . Therefore, for every vertex v = v0 ∈ VU , there exists a maximal
chain (v0, v1, . . . , vk) of vertices in VU , such that vi has a pointer to vi−1 and φvi−1

> φvi , for
every i = 1, 2, . . . , k. Then, since vi is a hovering vertex of vi−1 for every i = 1, 2, . . . , k, it
follows by Lemma 4 that N(v0) ⊆ N(v1) ⊆ . . . ⊆ N(vk). Furthermore, since R′ is canonical,
the unbounded vertex vk is inevitable unbounded, and thus vk has an incoming pointer from
a hovering vertex uvk of vk. In particular, uvk is bounded in R′, i.e. uvk ∈ VB , due to the
maximality of the chain (v0, v1, . . . , vk) in VU . Moreover N(vk) ⊆ N(uvk) by Lemma 4, since uvk
is a hovering vertex of vk, and thus also N(v0) ⊆ N(vk). That is, for every vertex v ∈ VU , there
exists exactly one vertex u ∈ VB, such that v can be reached by a sequence of pointers from u
and N(v) ⊆ N(u).

Now, starting from every bounded vertex u ∈ VB , we assign the color of u (in the coloring
of G[VB ]) to every unbounded vertex v that is reachable from u by a sequence of pointers. It
remains to prove that this coloring is a proper coloring of G. Suppose otherwise that there exists
a vertex v ∈ VU and a vertex w ∈ N(v), such that u and w have the same color. Then w is
bounded in both representations R and R′, since two unbounded vertices are never adjacent
and w ∈ N(v). Let u ∈ VB be the unique vertex in G, such that v can be reached from u by a
sequence of pointers. Then N(v) ⊆ N(u) by the previous paragraph, and thus also w ∈ N(u).
Furthermore, all u, v, and w have the same color. This is a contradiction, since u,w ∈ VB

and the coloring of G[VB ] is proper. Therefore, for every vertex v ∈ VU , all vertices w ∈ N(v)
have different color than v, and thus the constructed coloring of G is proper. Furthermore, this
coloring is minimum, since the constructed coloring of G[VB ] in line 3 is also minimum [6].

Regarding the time complexity, the computation of the canonical representation R′ of G
can be done in O(n log n) time by Theorem 2. Furthermore, a minimum coloring of G[VB ] can
be computed by the algorithm of [6] in O(n log n) time. The execution of the lines 4-5 can be
done in linear O(n) time, since we visit every vertex v ∈ VU once. Finally, the execution of the
lines 6-7 can be also done in linear O(n) time, by traversing the graph G following the pointers
that we created in lines 4-5. Summarizing, Algorithm 2 computes a minimum coloring of G
in O(n log n) time. Moreover, since Ω(n log n) is a lower bound for the time complexity of the
minimum coloring problem on tolerance graphs [22] and on trapezoid graphs [6], it follows that
Algorithm 2 has also optimal running time. ⊓⊔

4.2 Maximum clique

In the next theorem we present an optimal O(n log n) algorithm for computing a maximum clique
of a multitolerance graph G with n vertices, given any trapezoepiped representation of G. This
algorithm uses the Algorithm 1 for the efficient construction of a canonical representation of G,
as well as the algorithm of [6] that computes a maximum clique of a given trapezoid graph with
n vertices in optimal O(n log n) time.

Theorem 4. A maximum clique of a multitolerance graph G with n vertices can be computed
in optimal O(n log n) time.

Proof. First we compute a canonical representation of G in O(n log n) time by Algorithm 1. By
the correctness of Algorithm 2, cf. the proof of Theorem 3, it follows that χ(G) = χ(G[VB ]),
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where χ(H) denotes the chromatic number of a given graph H. Since multitolerance graphs are
perfect graphs [25], ω(G) = χ(G) and ω(G[VB ]) = χ(G[VB ]), where ω(H) denotes the clique
number of a given graph H. Therefore ω(G) = ω(G[VB ]). We compute now a maximum clique Q
of the bounded multitolerance (i.e. trapezoid) graph G[VB ] in O(n log n) time by the algorithm
presented in [6] for trapezoid graphs. Then, since ω(G) = ω(G[VB ]), Q is a maximum clique of
G as well. Finally, since Ω(n log n) is a lower bound for the time complexity of the maximum
clique problem on tolerance graphs [22] and on trapezoid graphs [6], it follows that the clique
algorithm for multitolerance graphs has also optimal running time. ⊓⊔

5 Weighted independent set algorithm in O(m + n logn) time

In this section we present an algorithm that computes a maximum weight independent set
in a multitolerance graph G = (V,E) with n vertices and m edges in O(m + n log n) time,
given a trapezoepiped representation of G and a weight w(v) > 0 for every vertex v ∈ V .
Although the algorithm presented in [22] for the maximum weight independent set on tolerance
graphs with complexity O(n2) can be extended with the same time complexity to the case
of multitolerance graphs with a given trapezoepiped representation, we present here a new
algorithm for multitolerance graphs that achieves a better running time O(m + n log n). Thus
this algorithm improves also the best known running time of O(n2) for the maximum weight
independent set on tolerance graphs [22]. Note here that Ω(n log n) is a lower bound for the time
complexity of this problem on trapezoid graphs [6], and thus also on multitolerance graphs.

First, given a trapezoepiped representation of a multitolerance graph G = (V,E), we sort
on the line L2 the points {av, dv | v ∈ V } of the trapezoids T v, v ∈ V , and we visit these points
sequentially from right to left. Note that av = dv for every unbounded vertex v ∈ VU . A vertex
v is called processed only after we visit the endpoint av. During the execution of the algorithm
we maintain two finite sets M and H of O(n) weighted markers each on the line L1, which are
placed on some points cv, where v ∈ V . We maintain the sets M and H in such a way that
values can be inserted to and deleted from these sets, as well as the predecessor or successor of
a given query value can be found. Using binary search trees, for instance AVL-trees, all these
operations can be executed in O(log n) time [12].

The markers of the set M are placed at points cv on the line L1, for some bounded ver-
tices v ∈ VB . After an iteration of the algorithm, where the vertices of the set U ⊆ V have been
processed, the weight W (m) of a marker m placed at the point cv on the line L1 equals the
maximum weight of an independent set, which includes only vertices u ∈ U such that cv ≤ cu.
Moreover, a marker m is placed at cv only if such a maximum weight independent set includes
the (bounded) vertex v.

The markers of the set H are placed at points cv on the line L1, where v ∈ VU . After an
iteration of the algorithm, where the vertices of the set U ⊆ V have been processed, there is a
weighted marker h ∈ H placed at the point cv on L1, for every unbounded vertex v ∈ Vu ∩ U ,
while the weight w(h) of h equals the weight w(v) of vertex v. Furthermore, in the AVL-tree
of the set H, we store at every internal vertex x also a label with the total weight of the tree
that consists of x and its right subtree. Note that after an insertion of a new marker h to the
AVL-tree that stores H, we can update in O(log n) time these labels of the internal vertices, as
follows. First, we need to update a constant number of labels during the “trinode restructure”
operation (for more details, see [12]). Then, following the path from the interval vertex that
stores the new marker h to the root, we add the weight w(h) of h to the label of every internal
vertex that has h in its right subtree. For every marker m ∈ M (resp. h ∈ H), we denote by pm
(resp. ph) the point of L1, at which the marker m (resp. h) is placed.
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Algorithm 3 Maximum weight independent set of a multitolerance graph G
Input: A trapezoepiped representation of a given multitolerance graph G = (V,E)
Output: The value of a maximum weight independent set of G

1: Place a marker m0 at the point pm0
= max{bv | v ∈ V }+ 1 of the line L1

2: W (m0)← 0; M ← {m0}

3: for every v ∈ VB do {initialization}
4: W (v)← 0
5: Compute the value w̃v =

∑
{w(u) | u ∈ VU , cu ∈ (cv, bv)}

6: for every u ∈ N(v) do
7: if u ∈ VU and cu ∈ (cv, bv) then {v is not a hovering vertex of u}
8: w̃v ← w̃v − w(u)

9: for each point p ∈ {av, dv | v ∈ V } from right to left do {p lies on the line L2}

10: if p = av for some v ∈ VU then {the unbounded vertex v is being processed}
11: Insert a new marker h ∈ H at the point ph = cv
12: w(h)← w(v)
13: m← the leftmost marker of M to the right of cv on L1

14: Remove all markers m′ ∈M to the left of m, for which W (m′) ≤W (m) +w(H [pm′ , pm))

15: if p = dv for some v ∈ VB then

16: m← the leftmost marker of M to the right of bv on L1

17: W (v)← (w(v) + w̃v) +W (m) +w(H [bv, pm)) {do not modify the markers of M}

18: if p = av for some v ∈ VB then {the bounded vertex v is being processed}
19: m← the leftmost marker of M to the right of cv on L1

20: if W (v) > W (m) + w(H [cv, pm)) then
21: Insert a new marker m′ ∈M at the point pm′ = cv
22: W (m′)←W (v)
23: Remove all markers m′′ ∈M to the left m′, for which W (m′′) ≤W (m′) + w(H [pm′′ , pm′))

24: return W (m) + w(H [c, pm)), where c = min{cv | v ∈ V } − 1 and m is the leftmost marker of M

For every two points q and q′ on L1, where q < q′, denote for simplicity by H[q, q′)
(resp. H[q,+∞)) the set of the markers h in the current set H that have been placed in
the semi-closed interval [q, q′) (resp. in the subline [q,+∞)) of L1. Denote also by w(H[q, q′))
(resp. w(H[q,+∞))) the sum of the weights of the markers h ∈ H[q, q′) (resp. h ∈ H[q,+∞)).
For simplicity, in the case where q′ = q, we set w(H[q, q)) = 0. Furthermore, note that if
q ≤ q′ ≤ q′′, then w(H[q, q′′)) = w(H[q, q′)) + w(H[q′, q′′)). For every point q on L1, we can
compute in O(log n) time the value w(H[q,+∞)), as follows. First, we locate in O(log n) time
the leftmost marker h ∈ H that has been placed at a point q′, such that q ≤ q′. Then, we follow
in the AVL-tree of H the path from the root to the internal vertex x that stores h and sum
up the label stored at x and the labels stored at the internal vertices of this path, at which we
follow the left child. Furthermore, since w(H[q, q′)) = w(H[q,+∞)) − w(H[q′,+∞)) for every
two points q, q′ on the line L1 such that q ≤ q′, we can compute the value w(H[q, q′)) in O(log n)
time as well.

In the following we present our Algorithm 3 that computes the value of a maximum weight
independent set of a multitolerance graph G, given a trapezoepiped representation of G. A slight
modification of this algorithm computes in the same time also a maximum weight independent
set of G, instead of its value. For every marker m ∈ M (resp. h ∈ H), we denote by pm (resp. ph)
the point of L1, at which the marker m (resp. h) is placed.

We now prove in the next lemma that Algorithm 3 maintains a monotonicity property of
the weights of the markers in the set M , which is crucial for the proof of correctness of the
algorithm.

21



Lemma 7. Let m1 and m2 be two markers of M after an iteration of Algorithm 3, such that
pm2

< pm1
. Then W (m2) > W (m1) + w(H[pm2

, pm1
)).

Proof. The proof is done by induction on the iterations of the algorithm. The condition of the
lemma clearly holds before the first iteration, since initially the set M has only one marker
m0. This proves the induction basis. Suppose that the condition of the lemma holds after an
iteration of the algorithm. For the induction step, consider the next iteration, during which the
algorithm visits a point p ∈ {av, dv | v ∈ V } on the line L2. We distinguish in the following the
cases regarding the point p.

Case 1. p = av for some unbounded vertex v ∈ VU , i.e. v is being processed at this iteration.
Let m be the leftmost marker of M to the right of cv on L1 (cf. line 13 of Algorithm 3). The
algorithm adds a marker h to the set H at the point cv of the line L1 with weight w(h) = w(v).
Furthermore, the algorithm removes all markers m′ ∈ M , such that pm′ < pm and W (m′) ≤
W (m)+w(H[pm′ , pm)) (cf. line 14 of Algorithm 3). Consider two markersm1,m2 ∈ M , such that
pm2

< pm1
, i.e.m2 is lies to the left ofm1 on the line L1 after the iteration in which v is processed.

Note that cv 6= pm1
and cv 6= pm2

, since v is an unbounded vertex and the points pm1
and pm2

correspond to bounded vertices. Suppose first that cv < pm2
< pm1

or pm2
< pm1

< cv. Then
the values W (m1), W (m2), and w(H[pm2

, pm1
)) are the same before and after v is processed,

and thus W (m2) > W (m1) + w(H[pm2
, pm1

)) by the induction hypothesis. Suppose now that
pm2

< cv < pm1
. If m1 = m, then W (m2) > W (m1) + w(H[pm2

, pm1
)), since otherwise the

marker m2 would be removed fromM after the process of v, which is a contradiction. Ifm1 6= m,
then pm2

< cv < pm < pm1
by definition of m. Note that W (m2) > W (m) + w(H[pm2

, pm)),
since otherwise m2 would be removed from M , which is again a contradiction. Furthermore
W (m) > W (m1) + w(H[pm, pm1

)), as we proved above, since cv < pm < pm1
. Summing up

the last two inequalities, it follows that W (m2) > W (m1) +w(H[pm2
, pm)) + w(H[pm, pm1

)),
i.e. W (m2) > W (m1) + w(H[pm2

, pm1
)).

Case 2. p = dv for some bounded vertex v ∈ VB. Then, v is not being processed at this
iteration and the algorithm does not modify the sets M and H. Thus the condition of the lemma
holds by the induction hypothesis.

Case 3. p = av for some bounded vertex v ∈ VB, i.e. v is being processed at this iteration.
Note that the value W (v) has been computed previously (at a previous iteration, if av < dv,
or at the current iteration, if av = dv). Let m be the leftmost marker of M to the right of cv
on L1 (cf. line 19 of Algorithm 3). If W (v) ≤ W (m) + w(H[cv , pm)), then the sets M and H
are not modified (cf. line 20 of Algorithm 3), and thus the condition of the lemma holds by the
induction hypothesis. Suppose that W (v) > W (m) + w(H[cv , pm)). Then, the algorithm adds
a new marker m′ to the set M at the point cv with weight W (m′) = W (v). Furthermore, it
removes from M all markers m′′, such that pm′′ < pm′ and W (m′′) ≤ W (m′) + w(H[pm′′ , pm′))
(cf. line 23 of Algorithm 3).

Suppose first that cv < pm2
< pm1

or pm2
< pm1

< cv. Then the values W (m1), W (m2),
and w(H[pm2

, pm1
)) are the same before and after v is processed, and thus W (m2) >

W (m1) + w(H[pm2
, pm1

)) by the induction hypothesis. Suppose that cv = pm1
, i.e. m′ = m1

and pm2
< cv = pm1

= pm′ . Then W (m2) > W (m1) + w(H[pm2
, pm1

)), since otherwise the
marker m2 would be removed from M after the process of v, which is a contradiction.
Suppose that cv = pm2

, i.e. m′ = m2 and cv = pm2
< pm ≤ pm1

by definition of m. Then
W (m′) = W (v) > W (m) + w(H[cv ,m)) by definition of W (m′), i.e. W (m2) > W (m) +
w(H[pm2

, pm)). If m1 6= m, then W (m) > W (m1) +w(H[pm, pm1
)), as we proved above, since

in this case cv < pm < pm1
. Therefore, summing up the last two inequalities, it follows that

W (m2) > W (m1) + w(H[pm2
, pm)) + w(H[pm, pm1

)), i.e. W (m2) > W (m1) + w(H[pm2
, pm1

)).
If m1 = m, then it follows by substitution that W (m2) > W (m1) + w(H[pm2

, pm1
)), since

W (m2) > W (m) + w(H[pm2
, pm)).
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Suppose now that pm2
< cv < pm1

, i.e. pm2
< cv = pm′ < pm ≤ pm1

by definition of m
and m′. Recall that W (v) > W (m) + w(H[cv , pm)). Thus, since W (m′) = W (v) and cv = pm′ ,
it follows that W (m′) > W (m) + w(H[pm′ , pm)). Furthermore, note that W (m2) > W (m′) +
w(H[pm2

, pm′)), since otherwise the marker m2 would be removed from M after the process
of v, which is a contradiction. Therefore, summing up the last two inequalities, it follows that
W (m2) > W (m) + w(H[pm2

, pm′)) + w(H[pm′ , pm)), i.e. W (m2) > W (m) + w(H[pm2
, pm)). If

m1 = m, then it follows by substitution that W (m2) > W (m1) + w(H[pm2
, pm1

)). If m1 6= m,
then W (m) > W (m1) + w(H[pm, pm1

)), as we proved above, since in this case cv < pm <
pm1

. Recall now that W (m2) > W (m) + w(H[pm2
, pm)). Therefore, summing up the last two

inequalities, it follows that W (m2) > W (m1) + w(H[pm2
, pm)) + w(H[pm, pm1

)), i.e. W (m2) >
W (m1) + w(H[pm2

, pm1
)).

Summarizing Cases 1, 2, and 3, W (m2) > W (m1) + w(H[pm2
, pm1

)) for every two markers
m1,m2 ∈ M such that pm2

< pm1
after the iteration, during which the algorithm visits the

point p ∈ {av , dv | v ∈ V }. This completes the induction step, and thus the lemma follows. ⊓⊔

Recall that w(H[q, q′)) = w(H[q,+∞))−w(H[q′,+∞)) for every two points q, q′ on the line
L1 such that q ≤ q′. Therefore, the next corollary follows directly by Lemma 7.

Corollary 1. Let m1 and m2 be two markers of M after an iteration of Algorithm 3. Then
pm2

< pm1
if and only if W (m2)− w(H[pm2

,+∞)) > W (m1)− w(H[pm1
,+∞)).

Definition 10. Let U ⊆ V be a set of vertices and y be a point of the line L1. Then we define
Opt(U, y) to be a maximum weight independent set, which includes only vertices u ∈ U such
that y ≤ cu. The weight w(Opt(U, y)) is the total weight of the vertices of Opt(U, y).

Suppose now that Algorithm 3 visits the point p ∈ {av, dv | v ∈ V } of the line L2 at some
iteration. Then, U = {u ∈ V | p ≤ av} is the set of vertices that have been processed after this
iteration by the algorithm. For every point y ≤ pm0

of the line L1, the next lemma determines
the value w(Opt(U, y)) using only the markers of the sets M and H after this iteration. For the
sake of presentation, we may not distinguish in the following between the set H[q, q′) of markers
(for some points q, q′ on the line L1) and the set of the corresponding unbounded vertices,
whenever this slight abuse of notation does not cause any confusion.

Lemma 8. Let U ⊆ V be the set of vertices that have been processed after an iteration of
Algorithm 3. Let y ≤ pm0

be a point on the line L1 and my be the leftmost marker of M after
this iteration, for which y ≤ pmy . Then w(Opt(U, y)) = W (my) + w(H[y, pmy )).

Proof. The proof is done by induction on the iterations of the algorithm. Before the first it-
eration of the algorithm, U = ∅. Furthermore, in this case my = m0, while W (m0) = 0 and
w(H[y, pmy )) = 0. Thus, before the first iteration, W (my)+w(H[y, pmy )) = 0 equals the weight
w(Opt(U, y)) = 0 of a maximum weight independent set Opt(U, y), which includes only vertices
u ∈ U = ∅ such that y ≤ cu. This proves the induction basis.

Suppose that the condition of the lemma holds after an iteration of the algorithm, where
the vertices of the set U ⊆ V have been processed. For the induction step, consider the next
iteration, during which the algorithm visits a point p ∈ {av , dv | v ∈ V } on the line L2. Let my

(resp. m′
y) be the leftmost marker of M , for which y ≤ pmy (resp. y ≤ pm′

y
) after (resp. before)

the iteration of the algorithm that the point p is visited. We distinguish in the following the
cases regarding the currently visited point p of L2.

Case 1. p = av for some unbounded vertex v ∈ VU . Then, v is being processed at this
iteration, i.e. after this iteration the vertices of the set U ∪ {v} have been processed. Let m∗

be the leftmost marker of M to the right of cv on L1 (cf. line 13 of Algorithm 3). Note that
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the marker m∗ belongs to M before, as well as after the process of v. The algorithm adds a
marker h to the set H at the point ph = cv of the line L1, while the weight of h is w(h) = w(v).
Moreover, the algorithm removes all markers m′ ∈ M , such that pm′ < pm∗ and W (m′) ≤
W (m∗) + w(H[pm′ , pm∗)). Note that, during the process of the unbounded vertex v, no new
marker is inserted to M , while some markers of M may be removed. Therefore, in particular
marker my exists in the set M also before the process of v, i.e. pm′

y
≤ pmy by definition of m′

y.
We distinguish in the following the cases regarding the position of the point ph = cv on the line
L1. Note that ph 6= pmy and ph 6= pm′

y
, since the point ph corresponds to an unbounded vertex

and the points pmy and pm′
y
correspond to bounded vertices.

Suppose first that ph < y. Then for every vertex u ∈ U ∪ {v} such that y ≤ cu, it follows
that u 6= v, i.e. u ∈ U . Therefore Opt(U ∪ {v}, y) = Opt(U, y). Furthermore m′

y = my, since
during the process of v only markers to the left of ph = cv on L1 may be removed from M .
Thus, since w(Opt(U, y)) = W (m′

y) +w(H[y, pm′
y
)) by the induction hypothesis, it follows that

also w(Opt(U ∪ {v}, y)) = Opt(U, y) = W (my) + w(H[y, pmy )). Since ph < y, note here that
the values w(H[y, pm′

y
)) and w(H[y, pmy )) remain the same before and after the addition of the

marker h to H.

Suppose now that y ≤ ph. Recall by the induction hypothesis that w(Opt(U, y)) = W (m′
y)+

w(H[y, pm′
y
)), where the value w(H[y, pm′

y
)) is computed before the process of v, i.e. before the

addition of the marker h to H.

Let Sv be a maximum weight independent set, which includes the unbounded vertex v
and vertices u ∈ U such that y ≤ cu. We will prove that the total weight of the vertices of Sv

is w(Sv) = W (m∗) + w(H[y, pm∗)), where the value w(H[y, pm∗)) is computed after the insertion
of h to H. To this end, let u ∈ U be a bounded vertex of Sv. Then av < au, since v is
processed by the algorithm after u ∈ U . If cu < cv = ph, then T u ∩ T v 6= ∅, and thus also
Tu ∩ Tv 6= ∅ by Lemma 2. That is, uv ∈ E, which is a contradiction, since Sv is an independent
set. Therefore ph = cv < cu for every bounded vertex of Sv. Consider now the point ph = cv
of L1 before the process of vertex v. The induction hypothesis implies that w(Opt(U, ph)) =
W (m∗) + w(H[ph, pm∗)), where here the value w(H[ph, pm∗)) is computed before the process
of v, i.e. without the weight w(h) = w(v). Note that for every vertex u of the independent set
Opt(U, ph) we have ph < cu. Therefore, for every vertex u ∈ Opt(U, ph) and every unbounded
vertex u′ ∈ {v} ∪H[y, ph), Lemma 1 implies that Tu ∩ Tu′ = ∅, i.e. uu′ /∈ E, since cu′ ≤ ph < cu
for all such vertices u, u′. Thus, since Opt(U, ph) is optimal (before the process of v), it follows
that the set Opt(U, ph) ∪ {v} ∪ H[y, ph) is a maximum weight independent set that includes
vertex v, as well as unbounded vertices u ∈ U with y ≤ cu and bounded vertices u′ ∈ U
with ph < cu′ . Therefore, since ph = cv < cu for every bounded vertex u of Sv, it follows that
the independent sets Sv and Opt(U, ph) ∪ {v} ∪H[y, ph) have the same total weight. Moreover,
note that the weight of Opt(U, ph)∪{v}∪H[y, ph) is equal to W (m∗)+w(H[y, pm∗)) (after the
insertion of h to H). Therefore w(Sv) = W (m∗) + w(H[y, pm∗)), where the value w(H[y, pm∗))
is computed after the insertion of h to H.

For the sequel of the analysis for Case 1, we will compare the total weight w(Sv) of Sv with
the weight w(Opt(U, y)) of the independent set Opt(U, y) that does not include vertex v. It
is easy to see that if w(Sv) ≥ w(Opt(U, y)), then w(Opt(U ∪ {v}, y)) = w(Sv). Furthermore,
if w(Sv) ≤ w(Opt(U, y)), then w(Opt(U ∪ {v}, y)) = w(Opt(U, y)). Note that the induction
hypothesis implies that Opt(U, y) = W (m′

y)+w(H[y, pm′
y
)), where here the value w(H[y, pm′

y
))

is computed before the insertion of h to H. Recall that y ≤ ph. Therefore, either y ≤ ph < pm′
y

or y ≤ pm′
y
< ph, as we distinguish in the following cases.

Case 1a. y ≤ ph < pm′
y
. Then m′

y belongs to M also after the process of v, since during the
process of v only markers to the left of ph = cv on L1 may be removed from M . Therefore m′

y =
my. Furthermore m′

y = m∗ by the definition of m∗. Thus, it follows by the induction hypothesis
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that w(Opt(U, y)) = W (m∗) + w(H[y, pm∗)), where the value w(H[y, pm∗)) is computed before
the insertion of h to H. Recall that w(Sv) = W (m∗) + w(H[y, pm∗)), where here the value
w(H[y, pm∗)) is computed after the insertion of h to H. Therefore w(Sv) > w(Opt(U, y)), since
w(h) = w(v) > 0, and thus w(Opt(U ∪ {v}, y)) = w(Sv) = W (m∗) + w(H[y, pm∗)) after the
insertion of h to H. Therefore, since m∗ = m′

y = my, it follows that w(Opt(U ∪ {v}, y)) =
W (my) + w(H[y, pmy )) after the insertion of h to H.

Case 1b. y ≤ pm′
y
< ph. Recall that m

∗ is the leftmost marker of M to the right of ph = cv
on L1 (cf. line 13 of Algorithm 3). Then y ≤ pm′

y
< ph < pm∗ . Recall also by the induction

hypothesis that w(Opt(U, y)) = W (m′
y) +w(H[y, pm′

y
)). Note here that the value w(H[y, pm′

y
))

remains the same before and after the insertion of h to H, since pm′
y
< ph.

Suppose first that m′
y is removed from M during the process of v, i.e. W (m′

y) ≤ W (m∗) +
w(H[pm′

y
, pm∗)) after the insertion of h to H (cf. line 14 of Algorithm 3). Therefore, after

the insertion of h to H, W (m∗) + w(H[y, pm∗)) = W (m∗) + w(H[y, pm′
y
)) + w(H[pm′

y
, pm∗)) ≥

W (m′
y)+w(H[y, pm′

y
)), i.e.W (m∗)+w(H[y, pm∗)) ≥ w(Opt(U, y)), where the value w(H[y, pm∗))

is computed after insertion of h to H. We will now prove that m∗ = my. Consider any marker
m of M with pm′

y
< pm < pm∗ before the process of v, i.e. pm′

y
< pm < ph < pm∗ . Then

Lemma 7 implies that W (m) + w(H[pm′
y
, pm)) < W (m′

y) before the process of v. Therefore,
since W (m′

y) ≤ W (m∗) +w(H[pm′
y
, pm∗)) after the insertion of h to H, it follows that W (m) +

w(H[pm′
y
, pm)) < W (m∗) + w(H[pm′

y
, pm∗)) after the insertion of h to H, and thus W (m) ≤

W (m∗)+w(H[pm, pm∗)) after the insertion of h to H, since w(H[pm′
y
, pm∗)) = w(H[pm′

y
, pm))+

w(H[pm, pm∗)). That is, every marker m, for which pm′
y
≤ pm < pm∗ , is removed from M

during the process of v in line 14 of Algorithm 3. Therefore m∗ is the leftmost marker of M
to the right of y on the line L1 after the process of v, i.e. m∗ = my. Recall that w(Sv) =
W (m∗)+w(H[y, pm∗ )) ≥ w(Opt(U, y)) after the insertion of h to H. Therefore, since m∗ = my,
it follows that w(Opt(U ∪ {v}, y)) = w(Sv) = W (my) + w(H[y, pmy )) after the insertion of h
to H.

Suppose now that m′
y is not removed from M during the process of v, i.e. m′

y = my. Then
the induction hypothesis implies that w(Opt(U, y)) = W (my) + w(H[y, pmy )), since m′

y = my.
Note here that the value w(H[y, pmy )) remains the same before and after the insertion of h to H,
since pmy = pm′

y
< ph. Recall now that y ≤ pmy = pm′

y
< ph < pm∗ . Therefore Lemma 7 implies

that W (my) > W (m∗)+w(H[pmy , pm∗)), i.e. W (my) + w(H[y, pmy )) > W (m∗) + w(H[y, pm∗))
after the addition of h to H. This is equivalent to w(Opt(U, y)) > w(Sv), and thus
w(Opt(U ∪ {v}, y)) = w(Opt(U, y)) = W (my) + w(H[y, pmy )) after the insertion of h to H.

Case 2. p = dv for some bounded vertex v ∈ VB . Then, no new vertex is being processed at
this iteration, i.e. the set U is not modified. Furthermore, the algorithm does not modify the
sets M and H, and thus the induction step follows in this case by the induction hypothesis. At
this iteration, the algorithm computes and stores a value W (v). This value will be used at the
iteration where the algorithm visits the point av of the bounded vertex v, i.e. when vertex v
is processed. If a new marker m′ is inserted to M during that iteration (at the point cv of the
line L1, cf. line 21 of Algorithm 3), then the value W (v) is assigned as the weight W (m′) of m′

(cf. line 22).

We will now prove that the computed value W (v) equals the maximum weight of an inde-
pendent set, which includes the bounded vertex v and vertices of the set U ′ = {u ∈ V | av <
au, cv < cu}. This fact will be used for the proof of the induction step in Case 3. First observe
that the value w̃v that is computed in lines 3-8 of Algorithm 3 equals the total weight of the
unbounded vertices u, such that v is a hovering vertex of u and cv < cu < bv. Note that av < au
for every such unbounded vertex u. Indeed, otherwise au < av and cv < cu, i.e. T u ∩ T v 6= ∅,
and thus also Tu ∩ Tv 6= ∅ by Lemma 2, which is a contradiction, since uv /∈ E.
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Consider a maximum weight independent set S that includes the bounded vertex v and
vertices of U ′. Observe that for every vertex u ∈ S \ {v}, either v is a hovering vertex of the
unbounded vertex u, or bv < cu and dv < au. Let v be a hovering vertex of the unbounded
vertex u ∈ S \ {v}, and suppose that bv < cu. Then, since v is a hovering vertex of u, it
follows that T u ∩ T v 6= ∅, and thus au < dv. That is, au < dv and bv < cu, and thus φu < φv,2.
Therefore, the line Tu intersects the trapezoepiped Tv in the trapezoepiped representation of
G, and thus uv ∈ E, which is a contradiction. Thus cu < bv, if v is a hovering vertex of
the unbounded vertex u ∈ S \ {v}, and thus cv < cu < bv, since u ∈ U ′ by assumption.
Let now m be the leftmost marker of M on the line L1, such that bv < pm (cf. line 16 of
Algorithm 3). The induction hypothesis implies that w(Opt(U, bv)) = W (m) + w(H[bv , pm)).
Note that Opt(U, bv) is the maximum weight independent set among all vertices u, such that
bv < cu and dv < au (since the algorithm visits the point p = dv after all vertices u ∈ U
have been processed). Therefore, since the value w̃v equals the total weight of the unbounded
vertices u, such that v is a hovering vertex of u and cv < cu < bv, it follows that the total
weight of S equals (w(u) + w̃v) + w(Opt(U, bv)) = (w(u) + w̃v) +W (m) + w(H[bv , pm)), which
equals the value W (v) computed in line 17 of Algorithm 3. That is, W (v) equals the maximum
weight of an independent set, which includes the bounded vertex v and vertices of the set
U ′ = {u ∈ V | av < au, cv < cu}.

Case 3. p = av for some bounded vertex v ∈ VB . Then, v is being processed at this iteration,
i.e. after this iteration the vertices of the set U ∪ {v} have been processed. Let m∗ be the
leftmost marker of M to the right of cv on L1 (cf. line 19 of Algorithm 3). Note that the
induction hypothesis implies that Opt(U, y) = W (m′

y) + w(H[y, pm′
y
)).

Suppose first that cv < y. Then for every vertex u ∈ U ∪ {v} such that y ≤ cu, it follows
that u 6= v, i.e. u ∈ U . Therefore Opt(U ∪ {v}, y) = Opt(U, y). Furthermore m′

y = my, since
the markers of M to the right of cv (and thus also to the right of y) remain the same before
and after the process of v. Therefore, the induction hypothesis implies that Opt(U ∪ {v}, y) =
Opt(U, y) = W (my) + w(H[y, pmy )), since m′

y = my.

Suppose now that y ≤ cv . Let Sv be a maximum weight independent set, which includes
the bounded vertex v and vertices u ∈ U such that y ≤ cu. We will prove that the total weight
of the vertices of Sv is w(Sv) = W (v) + w(H[y, cv)). First note that, since all vertices of U
have been processed by the algorithm before v, it follows in particular that av < au for every
u ∈ Sv\{v}. Suppose that cu < cv for a bounded vertex u ∈ Sv\{v}. Then T u∩T v 6= ∅, and thus
also Tu ∩ Tv 6= ∅, since both u and v are bounded. That is, uv ∈ E, which is a contradiction,
since Sv is an independent set. Therefore cv < cu for every bounded vertex u ∈ Sv \ {v}.
Thus, every vertex u ∈ Sv \ {v} with cu < cv is an unbounded vertex that corresponds to a
marker of the set H[y, cv). Recall by the analysis of Case 2 that W (v) equals the maximum
weight of an independent set, which includes the bounded vertex v and vertices of the set
U ′ = {u ∈ V | av < au, cv < cu}. Furthermore, Lemma 1 implies that Tu ∩Tu′ = ∅, i.e. uu′ /∈ E,
for every unbounded vertex u ∈ H[y, cv) and every vertex u′ with cv ≤ cu′ . Therefore, since we
assumed that v ∈ Sv, it follows that w(Sv) = W (v) + w(H[y, cv)).

For the sequel of the analysis for Case 3, we will compare the total weight w(Sv) of Sv with
the weight w(Opt(U, y)) of the independent set Opt(U, y) that does not include vertex v. It is
easy to see that if w(Sv) ≥ w(Opt(U, y)), then w(Opt(U ∪ {v}, y)) = w(Sv). Furthermore, if
w(Sv) ≤ w(Opt(U, y)), then w(Opt(U ∪ {v}, y)) = w(Opt(U, y)).

Consider the case where W (v) ≤ W (m∗) + w(H[cv , pm∗)). Then the algorithm does
not modify the sets M and H (cf. line 20 of Algorithm 3), and thus in particular
my = m′

y. Therefore, the induction hypothesis implies that w(Opt(U, y)) = W (my) +
w(H[y, pmy )), since my = m′

y. Recall that y ≤ cv and cv < pm∗ , and thus y <
pm∗ . Therefore, y ≤ my ≤ pm∗ by definition of my, and thus Lemma 7 implies that
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W (my) ≥ W (m∗) + w(H[pmy , pm∗)) (note that here the equality holds only if my = m∗).
Therefore, since w(Opt(U, y)) = W (my) + w(H[y, pmy )), it follows that w(Opt(U, y)) ≥
W (m∗) + w(H[y, pm∗)), i.e. w(Opt(U, y)) ≥ W (m∗) + w(H[y, cv)) + w(H[cv , pm∗)). Further-
more, since W (m∗) + w(H[cv , pm∗)) ≥ W (v) by our assumption on W (v), it follows
that w(Opt(U, y)) ≥ W (v) + w(H[y, cv)) = w(Sv). That is, w(Opt(U, y)) ≥ w(Sv), and thus
w(Opt(U ∪ {v}, y)) = w(Opt(U, y)) = W (my) + w(H[y, pmy )).

Consider now the case where W (v) > W (m∗) + w(H[cv , pm∗)). Then, the algorithm adds
a marker m′ to the set M at the point pm′ = cv of the line L1, while the weight of m′ is
W (m′) = W (v) (cf. lines 21 and 22 of Algorithm 3). Moreover, the algorithm removes all mark-
ers m′′ ∈ M , such that pm′′ < pm′ and W (m′′) ≤ W (m′) + w(H[pm′′ , pm′)) (cf. line 23 of
Algorithm 3). Recall that y ≤ pm′ = cv, and thus y ≤ pmy ≤ pm′ by definition of my. Then,
either y ≤ pmy < pm′ or y ≤ pmy = pm′ , as we distinguish in the following cases.

Case 3a. y ≤ pmy < pm′ . Then W (my) > W (m′) + w(H[pmy , pm′)), since otherwise the
marker my would be removed from M after the addition of m′ to M (cf. line 23 of Algo-
rithm 3). We will now prove that m′

y = my, i.e. that my was the leftmost marker of M to the
right of y, also before the process of v. Suppose otherwise that m′

y 6= my, i.e. pm′
y
< pmy and the

marker m′
y has been removed from M during the process of v (cf. line 23 of Algorithm 3). Then,

since pm′
y
< pmy , Lemma 7 implies that W (m′

y) > W (my) + w(H[pm′
y
, pmy)) before the pro-

cess of vertex v. Therefore, since W (my) > W (m′) + w(H[pmy , pm′)), it follows that W (m′
y) >

W (m′) + w(H[pm′
y
, pm′)), and thus m′

y has not been removed from M during the process of
v in line 23, which is a contradiction. Thus m′

y = my. Therefore the induction hypothesis im-
plies that w(Opt(U, y)) = W (my)+w(H[y, pmy )), since m

′
y = my. Furthermore, since W (my) >

W (m′)+w(H[pmy , pm′)), it follows that w(Opt(U, y)) > W (m′)+w(H[y, pm′ )). Therefore, since
W (m′) = W (v) and pm′ = cv, it follows that w(Opt(U, y)) > W (v) +w(H[y, cv)) = w(Sv), and
thus w(Opt(U ∪ {v}, y)) = w(Opt(U, y)) = W (my) + w(H[y, pmy )).

Case 3b. y ≤ pmy = pm′ . Then, since the marker my = m′ was not in the set M before the
process of v, it follows that either y ≤ pm′

y
< pmy = pm′ or y ≤ pmy = pm′ < pm′

y
.

Suppose first that y ≤ pm′
y
< pmy = pm′ . Then, the marker m′

y is removed from M during
the process of v, since my is after the process of v the leftmost marker of M to the right of y on
the line L1. Thus W (m′

y) ≤ W (m′) + w(H[pm′
y
, pm′)) (cf. line 23 of Algorithm 3). Recall that

w(Opt(U, y)) = W (m′
y) + w(H[y, pm′

y
)) by the induction hypothesis, and thus w(Opt(U, y)) ≤

W (m′) + w(H[y, pm′)). Therefore, since W (my) = W (m′) = W (v) and pmy = pm′ = cv , it
follows that w(Opt(U, y)) ≤ W (v) + w(H[y, cv)) = w(Sv), and thus w(Opt(U ∪ {v}, y)) =
w(Sv) = W (my) + w(H[y, pmy )).

Suppose finally that y ≤ pmy = pm′ < pm′
y
. Recall that m∗ is the leftmost marker of M

to the right of cv on L1 (cf. line 19 of Algorithm 3). Then m∗ = m′
y by the definition of the

markers m∗ and m′
y, since the marker m′ = my was not in the set M before the process of v.

Recall that W (m′) = W (v) > W (m∗)+w(H[cv , pm∗)), since otherwise the marker m′ would not
be inserted to M , which is a contradiction. Therefore, since m∗ = m′

y and cv = pm′ , it follows
that W (m′) > W (m′

y) + w(H[pm′ , pm′
y
)). Recall that w(Opt(U, y)) = W (m′

y)+w(H[y, pm′
y
)) by

the induction hypothesis, and thus w(Opt(U, y)) = W (m′
y) + w(H[y, pm′)) + w(H[pm′ , pm′

y
)),

i.e. w(Opt(U, y)) < W (m′) + w(H[y, pm′)). Therefore, since W (my) = W (m′) = W (v) and
pmy = pm′ = cv, it follows that w(Opt(U, y)) < W (v) + w(H[y, cv)) = w(Sv), and thus
w(Opt(U ∪ {v}, y)) = w(Sv) = W (my) + w(H[y, pmy )).

Summarizing Cases 1, 2, and 3, it follows that the condition of the lemma holds also after
the iteration of the algorithm, during which the algorithm visits the point p ∈ {av, dv | v ∈ V }
on the line L2. This completes the induction step and the lemma follows. ⊓⊔

We are now ready to present the main theorem of this section.
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Theorem 5. A maximum weight independent set of a multitolerance graph G = (V,E) with n
vertices and m edges can be computed using Algorithm 3 in O(m+ n log n) time.

Proof. Let c = min{cv | v ∈ V } − 1 and m be the leftmost marker of M on the line L1 after
the last iteration of the algorithm, i.e. after all vertices of G have been processed. Recall by
Definition 10 that Opt(V, c) denotes a maximum weight independent set, which includes vertices
u ∈ V such that c ≤ cu, and thus Opt(V, c) is a maximum weight independent set of G. Then,
Lemma 8 implies that the returned value W (m) + w(H[c, pm)) equals the weight w(Opt(V, c))
of Opt(V, c). This implies the correctness of Algorithm 3.

Algorithm 3 can be implemented to run in O(|E| + n log n) time, as follows. First, for the
initialization phase of lines 3-8 of the algorithm, we sort in O(n log n) time all unbounded
vertices u ∈ VU increasingly according to their endpoints cu on the line L1. As we described in
the preamble of Algorithm 3, we can store the unbounded vertices in an AVL-tree, such that
for any two points q, q′ on the line L1 we can compute in O(log n) time the total weight of the
unbounded vertices u ∈ VU with cu ∈ [q, q′) (cf. the weight w(H[q, q′)) in the set H of markers).
Thus, the initialization of the value w̃v in line 5 of the algorithm can be done in O(log n) time
for every v ∈ VB . Then, for every v ∈ VB we need O(|N(v)|) time to execute lines 6-8 of the
algorithm. Note that

∑
v∈VB

|N(v)| = O(|E|). Therefore, the initialization phase of lines 3-8
needs O(|E|+ n log n) time.

We now analyze the time complexity of lines 10-23 in the main part of the algorithm. As
we described in the preamble of the algorithm, the insertion and the location of a marker in
the sets M and H can be executed in O(log n) time if we implement the sets M and H with
AVL-trees. Therefore, each of the lines 11, 13, 16, 19, and 21 of the algorithm can be executed
in O(log n) time. Furthermore, as we described in the preamble of the algorithm, we can compute
the value w(H[q, q′)) for two given points q, q′ of the line L1 in O(log n) time. Therefore, lines 17
and 20 of the algorithm can be also executed in O(log n) time each.

Consider now the lines 14 and 23 of Algorithm 3. Recall by Corollary 1 that for any
two markers m1,m2 ∈ M after an iteration of Algorithm 3, pm2

< pm1
if and only if

W (m2)− w(H[pm2
,+∞)) > W (m1)− w(H[pm1

,+∞)), i.e. the values W (m)−w(H[pm,+∞))
for the markers m ∈ M are increasing from right to left on the line L1. Note that this mono-
tonicity property on the set M is restored in the line 14 (resp. in the line 23) of Algorithm 3
when a new marker is added to the set H (resp. when a new marker is added to the set M).

Consider first the restoration of the monotonicity property in line 14, when a new marker h
is added to the set H at the position ph = cv, for some unbounded vertex v ∈ VU (cf. line 11).
Let m∗ be the leftmost marker of M to the right of ph = cv (cf. line 13). Then, for every
marker m′ to the left of m∗, the value W (m′) − w(H[pm′ ,+∞)) decreases by w(h) after the
addition of h to H. In line 14 we want to find and remove from M all markers m′ to the left
of m∗, such that W (m′)− w(H[pm′ ,+∞)) ≤ W (m∗)− w(H[pm∗ ,+∞)) after the addition of h
to H, or equivalently W (m′)− w(H[pm′ ,+∞)) ≤ w(h) +W (m∗)− w(H[pm∗ ,+∞)) before the
addition of h to H.

Consider now the restoration of the monotonicity property in line 23, when a new marker m′

is added to the set M at the position pm′ = cv , for some bounded vertex v ∈ VB (cf. line 21). Let
m∗ be the leftmost marker of M to the right of cv (cf. line 19). Then, since W (m′) = W (v) >
W (m∗) + w(H[cv , pm∗)) (cf. lines 20 and 22), the monotonicity property of Corollary 1 holds
also after the addition of m′ to M (cf. line 21) for the markers to the right of m′ on the line L1.
In line 23 we want to find and remove from M all markers m′′ to the left of m′, such that
W (m′′)− w(H[pm′′ ,+∞)) ≤ W (m′)− w(H[pm′ ,+∞)). Equivalently, before the addition of m′

to M , we want to find and remove from M all markers all markers m′′ to the left of m∗, such
that W (m′′)− w(H[pm′′ ,+∞)) ≤ W (v)− w(H[cv ,+∞)).
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Therefore, in both lines 14 and 23 of Algorithm 3, we want to find and remove from M all
markers all markers m to the left of m∗, such that the value W (m)−w(H[pm,+∞)) is smaller
than or equal to a given query value Q. This can be implemented as follows. Except for the two
AVL-trees that store the values of M and of H, respectively, we also maintain in a balanced
binary search tree, for instance an AVL-tree, the markers of the union M ∪H on the line L1.
Denote by x.left and x.right the left and the right child of an arbitrary internal vertex of this
tree, respectively. Furthermore, at every internal vertex x of the AVL-tree of M ∪H that stores
a marker m ∈ M (resp. a marker h ∈ H), we store except the weight W (m) (resp. w(h)) also
a label ℓ(x), which equals the total weight of the markers of H that are stored in the subtree
rooted at x. Observe here that the value w(H[pm,+∞)) for any marker m ∈ M can be computed
as follows: in the path of the AVL-tree from the root to the internal vertex x that stores m,
we sum up the values (ℓ(x)− ℓ(x.left)) and (ℓ(y)− ℓ(y.left)), for every internal vertex of this
path, at which we follow the left child.

We first find in O(log n) time in the AVL-tree of M the first marker m∗∗ of M to the left
of m∗ on the line L1. Then, we locate in O(log n) time the marker m∗∗ in the AVL-tree of M∪H.
Furthermore, following in this tree the path from the root to the internal vertex that stores m∗∗,
we compute in O(log n) time the value w(H[pm∗∗ ,+∞)) by the labels ℓ(x) of the internal vertices
x. If W (m∗∗) + w(H[pm∗∗ ,+∞)) ≤ Q, where Q is the given query value, then we remove the
marker m∗∗ from M (in both AVL-trees for M and for M ∪H, respectively). We iterate until
there is no marker of M to the left of m∗ on the line L1, or until W (m∗∗)+w(H[pm∗∗ ,+∞)) > Q
for the first marker m∗∗ of M to the left of m∗. In the latter case there is no other marker of
M to remove (cf. lines 14 and 23 of Algorithm 3), since the values W (m)− w(H[pm,+∞)) for
the markers m ∈ M are increasing from right to left on the line L1.

Furthermore, we can update in O(log n) time the labels ℓ(x) of the internal vertices x of the
AVL-tree of M∪H, whenever the sets H or M are modified, as follows. If a marker m is inserted
to or removed from M , cf. the lines 14, 21, and 23 of Algorithm 3, then we need to update
a constant number of labels ℓ(x) during each one of at most O(log n) “trinode restructure”
operations (see [12] for more details). Suppose now that a marker h is inserted to H, cf. line 11
of Algorithm 3 (that is, h is inserted in the AVL-tree that stores the markers of H in line 11).
Note that we add h to the AVL-tree that stores the markers of M ∪H after the update of the
set M in line 14. Then, we update similarly a constant number of labels ℓ(x) during each one
of at most O(log n) “trinode restructure” operations (see [12]). Moreover, following the path
from the internal vertex x that stores h to the root, we add the weight w(h) to the label ℓ(y)
for every internal vertex y of this path that includes vertex x in the subtree rooted at y.

Summarizing, we can implement in O(log n) time the removal of one marker from M in the
lines 14 and 23 of Algorithm 3. Thus, since during the execution of Algorithm 3 we need to
remove at most O(n) markers from the set M , the total time needed to execute lines 14 and 23
for all iterations of the algorithm is O(n log n). Recall now that the execution of each of the
lines 11, 13, 16, 17, 19, 20, and 21 of the algorithm can be done in O(log n) time. Therefore,
since the lines 10-23 of the algorithm are executed O(n) times, the execution of the lines 9-23
can be done in O(n log n) time. Furthermore, the line 24 can be executed in O(log n) time
by just locating the leftmost marker m ∈ M and computing the value w(H[c, pm)). Therefore,
since the initialization phase of lines 3-8 needs O(|E|+ n log n) time, it follows that Algorithm 3
computes the value of a maximum weight independent set of G in O(|E|+ n log n) time.

After computing the value w(Opt(V, c)) of a maximum weight independent set Opt(V, c)
in G, we can easily compute in O(n log n) time the set Opt(V, c) itself, instead of its value, as
follows. Initially compute the set of unbounded vertices {u ∈ VU | cu ∈ (c, pm)} and set Opt(V, c)
to be equal to this set. Note that this set of unbounded vertices has total weight w(H[c, pm))
(cf. line 24 of Algorithm 3). Then, visit sequentially all markers of M from left to right. For
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Fig. 5. The classification of multitolerance graphs in the hierarchy of perfect graphs in [11]. This hierarchy is
complete, i.e. every inclusion is strict.

every m ∈ M , which is placed at the point pm = cv on the line L1 for some bounded vertex
v ∈ VB , we augment the current set Opt(V, c) by {v}. Moreover, compute the set of unbounded
vertices {u ∈ VU | cu ∈ (cv, bv), u /∈ N(v)} and augment Opt(V, c) by this set. Note that this
set of unbounded vertices has total weight w̃v (cf. the lines 5-8 of Algorithm 3). Furthermore,
for every two consecutive markers m1,m2 in M , where pm1

= cv1 < pm2
for a bounded ver-

tex v1 ∈ VB , compute the set of unbounded vertices {u ∈ Vu | cu ∈ (bv1 , pm2
), u /∈ N(v1)} and

augment Opt(V, c) by this set. Note that the latter set of unbounded vertices has total weight
w(H[bv1 , pm2

)) (cf. the line 17 of Algorithm 3). After these computations, it follows easily that
the computed set Opt(V, c) is a maximum weight independent set of G.

Regarding the complexity of these computations, we need linear time O(n) to traverse M
from left to right. For the computation of the above O(n) sets of unbounded vertices, we partition
the unbounded vertices u ∈ VU (i.e. the markers of the set H) into |M | + 1 = O(n) subsets,
according to the position of the endpoints cu on the line L1. We can determine each of these
subsets in O(log n) time using binary search in the AVL-tree that stores the set H. After a
partition has been determined, we need constant time for every vertex u ∈ VU in this partition.
Therefore, after the termination of Algorithm 3, we can compute in O(n log n) time a maximum
weight independent set Opt(V, c) of G, instead of its value. This completes the proof of the
theorem. ⊓⊔

6 Classification of multitolerance graphs

In this section we classify the class of multitolerance graphs inside the hierarchy of perfect graphs
given in Figure 2.8 of [11]†. The resulting hierarchy of classes of perfect graphs is complete, i.e. all
inclusions are strict. This hierarchy is schematically presented in Figure 5. We prove these results
by using the trapezoepiped representation of multitolerance graphs presented in Section 2, as
well as some known results on the hierarchy of perfect graphs given in [11].

Theorem 6. Multitolerance graphs strictly include tolerance and trapezoid graphs, while they
are strictly included in weakly chordal graphs.

†It was claimed in [25] (in Theorem 3.1(b)) that the class of tolerance graphs is strictly included in the
class of multitolerance graphs; however, in the proof of that theorem only inclusion has been shown, and not
strict inclusion. We prove strict inclusion in Theorem 6. Moreover, it has been correctly shown in [25] that a
multitolerance graph does not contain any chordless cycle Cn, where n ≥ 5. We prove in Theorem 6 that actually
the same holds also for the complements Cn of Cn, where n ≥ 5, and thus every multitolerance graph is weakly
chordal.
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Fig. 6. The graphs (a) T2, (b) B (the Berlin graph), and (c) H .

Proof. First recall that any tolerance graph G = (V,E) is also a multitolerance graph, in which
the left and right tolerances of every vertex coincide, i.e. tv,1 = tv,2 for every v ∈ V (cf. Defini-
tion 2). Furthermore, a graph G is a trapezoid graph if and only if G is a bounded multitolerance
graph [25] (also known as bounded bitolerance graph [11]). Therefore, any trapezoid graph G is
also a multitolerance graph. The graph T2, which is illustrated in Figure 6(a), is a tolerance but
not a trapezoid graph [11]. Furthermore, the Berlin graph B, which is illustrated in Figure 6(b),
is a trapezoid but not a tolerance graph [11]. Therefore, the graph T2 is a multitolerance but
not a trapezoid graph, while the graph B is a multitolerance but not a tolerance graph, and
thus multitolerance graphs strictly include both tolerance and trapezoid graphs.

We will now prove that every multitolerance graph is weakly chordal. To this end, we have
to prove by the definition of weakly chordal graphs that every multitolerance graph G has no
induced subgraph isomorphic to the chordless cycle Cn, with n vertices, or to its complement
Cn, for any n ≥ 5. Since multitolerance graphs are hereditary, it suffices to prove that neither
Cn nor its complement Cn are multitolerance graphs, for any n ≥ 5. Suppose otherwise that
Cn (resp. Cn) is a multitolerance graph, and let R be a trapezoepiped representation of Cn

(resp. of Cn). Since bounded multitolerance graphs, i.e. trapezoid graphs, are known to be
weakly chordal [11], it follows that Cn (resp. Cn) is not bounded multitolerance. Therefore,
there exists at least one inevitable unbounded vertex v in the trapezoepiped representation
R of Cn (resp. of Cn). Let u be a hovering vertex of v. Then uv /∈ E by Definition 6 and
N(v) ⊆ N(u) by Lemma 4. However, it is easy to verify that for any n ≥ 5, the graph Cn

(resp. Cn) has no pair of non-adjacent vertices u and v, such that N(v) ⊆ N(u). This is a
contradiction, and thus neither Cn nor its complement Cn are multitolerance graphs, for any
n ≥ 5. Therefore every multitolerance graph is weakly chordal.

Consider finally the complement H of the graph H that is illustrated in Figure 6(c). The
graph H is a weakly chordal but not a trapezoid graph [11]. Suppose that H is a multitolerance
graph and let R be a trapezoepiped representation ofH. SinceH is not a trapezoid (i.e. bounded
multitolerance) graph, it follows that R has at least one inevitable unbounded vertex v in
the trapezoepiped representation R of H. Let u be a hovering vertex of v. Then uv /∈ E by
Definition 6 and N(v) ⊆ N(u) by Lemma 4. It is now easy to verify that the graph H has no
pair of non-adjacent vertices u and v, such that N(v) ⊆ N(u). This is a contradiction, and thus
H is not a multitolerance graph. That is, H is a weakly chordal but not a multitolerance graph,
and thus multitolerance graphs are strictly included in weakly chordal graphs. This completes
the proof of the theorem. ⊓⊔

Theorem 7. Multitolerance graphs are strictly included in co-perfectly orderable graphs.

Proof. First we prove that the complement G of every multitolerance graph G is perfectly
orderable, using the trapezoepiped representation of multitolerance graphs. Let G = (V,E) be
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a multitolerance graph and R be a trapezoepiped representation of G. Recall that for every
vertex v ∈ V , Tv denotes the trapezoepiped of v in the trapezoepiped representation R, while
the trapezoid T v denotes the projection of Tv on the plane z = 0, cf. Figures 1 and 2. We define
the linear order ≺ of a the vertex set V as follows: for every u, v ∈ V , u ≺ v if and only if
av < au in the representation R. We will prove that ≺ is a perfect order of the complement
G of G. Suppose otherwise that there exists an induced path v1v2v3v4 of G, such that v1 ≺ v2
and v4 ≺ v3. Note that, since v1v2v3v4 is an induced path of G, it follows that v2v4v1v3 is an
induced path of G.

Since v1v2 /∈ E, it follows that Tv1 ∩ Tv2 = ∅. Suppose that T v1 ∩ T v2 6= ∅. Then, at
least one of the vertices v1 and v2 is unbounded, since otherwise Tv1 ∩ Tv2 6= ∅, which is a
contradiction. Furthermore, either replacing Tv1 by Hconvex(T v1 , a

′
v1
, c′v1) or replacing Tv2 by

Hconvex(T v2 , a
′
v2
, c′v2) in R creates the new edge v1v2 in G. That is, either v2 is a hovering vertex

of the unbounded vertex v1 or v1 is a hovering vertex of the unbounded vertex v2. If v2 is
a hovering vertex of the unbounded vertex v1, then N(v1) ⊆ N(v2) by Lemma 4. This is a
contradiction, since v3 ∈ N(v1) \ N(v2). Therefore v1 is a hovering vertex of the unbounded
vertex v2. Furthermore av2 < av1 by the definition of the vertex order ≺, since v1 ≺ v2. If
v1 ∈ VB , then Lemma 2 implies that Tv1 ∩ Tv2 6= ∅ if and only if T v1 ∩ T v2 6= ∅. This is a
contradiction, since we Tv1 ∩Tv2 = ∅ and T v1 ∩T v2 6= ∅ (as we assumed). Suppose that v1 ∈ VU ,
i.e. both v1 and v2 are unbounded. Then, since av2 < av1 and T v1 ∩ T v2 6= ∅, it follows that
cv1 < cv2 , and thus in particular φv1 > φv2 , i.e. ∆ − cot φv1 > ∆ − cot φv2 . Therefore, the line
Tv1 lies above the line Tv2 in R, and thus replacing Tv2 by Hconvex(T v2 , a

′
v2
, c′v2) in R does not

create the new edge v1v2 in G. That is, v1 is not a hovering vertex of the unbounded vertex v2,
which is a contradiction. Therefore T v1 ∩ T v2 = ∅, i.e. either T v2 lies completely to the left or
completely to the right of T v1 . Thus, since av2 < av1 , it follows that T v2 lies completely to the
left of T v1 .

Similarly to the case of v1 and v2, it follows for the symmetric case of v4 and v3 that
T v3 ∩ T v4 = ∅, i.e. either T v3 lies completely to the left or completely to the right of T v4 .
Furthermore av3 < av4 by the definition of the vertex order ≺, since v4 ≺ v3. Therefore, T v3 lies
completely to the left of T v4 .

Consider now the vertices v2 and v3. Since v2v3 /∈ E, it follows that Tv2 ∩ Tv3 = ∅. Suppose
that T v2 ∩ T v3 6= ∅. Then, at least one of the vertices v2 and v3 is unbounded, since otherwise
Tv2∩Tv3 6= ∅, which is a contradiction. Furthermore, either replacing Tv2 byHconvex(T v2 , a

′
v2
, c′v2)

or replacing Tv3 by Hconvex(T v3 , a
′
v3
, c′v3) in R creates the new edge v2v3 in G. That is, either v3 is

a hovering vertex of the unbounded vertex v2 or v2 is a hovering vertex of the unbounded vertex
v3. If v3 is a hovering vertex of the unbounded vertex v2, then N(v2) ⊆ N(v3) by Lemma 4.
This is a contradiction, since v4 ∈ N(v2) \N(v3). On the other hand, if v2 is a hovering vertex
of the unbounded vertex v3, then N(v3) ⊆ N(v2) by Lemma 4. This is a contradiction, since
v1 ∈ N(v3) \ N(v2). Therefore T v2 ∩ T v3 = ∅, i.e. either T v2 lies completely to the left or
completely to the right of T v3 .

Suppose that T v2 lies completely to the left of T v3 . Then, since T v3 lies completely to the
left of T v4 , as we proved above, it follows that T v2 lies completely to the left of T v4 , and thus
T v2 ∩ T v4 = ∅ and Tv2 ∩ Tv4 = ∅. This is a contradiction, since v2v4 ∈ E. On the other hand,
suppose that T v2 lies completely to the right of T v3 , i.e. T v3 lies completely to the right of T v2 .
Then, since T v2 lies completely to the left of T v1 , as we proved above, it follows that T v3 lies
completely to the left of T v1 , and thus T v3 ∩ T v1 = ∅ and Tv3 ∩Tv1 = ∅. This is a contradiction,
since v3v1 ∈ E.

Summarizing, there exists no induced path v1v2v3v4 of G, such that v1 ≺ v2 and v4 ≺ v3.
Therefore the vertex order ≺ is perfect, i.e. the complement G of G is perfectly orderable. Fi-
nally, the complement C6 of the chordless cycle C6 with six vertices is a co-perfectly orderable
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but not a tolerance graph [11]. Moreover, C6 is not a multitolerance graph, since every multi-
tolerance graph is weakly chordal by Theorem 6. Therefore, C6 is a co-perfectly orderable but
not a multitolerance graph, and thus multitolerance graphs are strictly included in co-perfectly
orderable graphs. ⊓⊔

Theorem 8. Multitolerance graphs are incomparable with alternately orientable and with co-
comparability graphs.

Proof. The Berlin graph B, which is illustrated in Figure 6(b), is a trapezoid but not an al-
ternately orientable graph [11]. Furthermore the graph T2, which is illustrated in Figure 6(a),
is a tolerance but not a cocomparability graph [11]. Therefore, since trapezoid (resp. toler-
ance) graphs are also multitolerance graphs (cf. Theorem 6), it follows that B (resp. T2) is a
multitolerance but not an alternately orientable (resp. cocomparability) graph.

On the other hand, the chordless cycle C6 with six vertices is an alternately orientable
graph, while its complement C6 is a cocomparability graph [11]. However, C6 and C6 are
not weakly chordal by the definition of weakly chordal graphs, and thus C6 and C6 are also
not multitolerance graphs by Theorem 6. Therefore, C6 (resp. C6) is an alternately orientable
(resp. cocomparability) but not a multitolerance graph, and thus multitolerance graphs are
incomparable with alternately orientable and with cocomparability graphs. ⊓⊔

7 Conclusions and further research

In this article we proposed the first non-trivial intersection model for general multitolerance
graphs, given by objects in the three-dimensional space, called trapezoepipeds. This trape-
zoepiped representation unifies in a simple and intuitive way the well known trapezoid repre-
sentation for bounded multitolerance graphs and the recently introduced parallelepiped rep-
resentation for tolerance graphs in [22]. Using this representation, we presented three new
efficient algorithms that compute a minimum coloring, a maximum clique, and a maximum
weight independent set on a multitolerance graph, respectively. The running times of the first
two algorithms are optimal, while the third algorithm also improves the best known running
time for the maximum weight independent set on tolerance graphs [22]. To the best of our
knowledge, no algorithm for these problems on multitolerance graphs has appeared until now,
and thus the previously best known running times for these problems were those of perfect
graphs. Furthermore, we proved several structural results on the class of multitolerance graphs,
which complement the hierarchy of perfect graphs given in [11]. It can be expected that the
proposed intersection model will prove useful for deriving new algorithmic and structural results
on multitolerance graphs. It is important to note here that the recognition problem for general
multitolerance graphs, remains an interesting open problem. On the contrary, it is known that
trapezoid (i.e. bounded multitolerance) graphs can be recognized efficiently [19, 21], while it is
NP-complete to recognize tolerance and bounded tolerance graphs [23].
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2009-12 Martin Neuhäußer, Lijun Zhang: Time-Bounded Reachability in

Continuous-Time Markov Decision Processes

2009-13 Martin Zimmermann: Time-optimal Winning Strategies for Poset Games

2009-14 Ralf Huuck, Gerwin Klein, Bastian Schlich (eds.): Doctoral Symposium

on Systems Software Verification (DS SSV’09)

2009-15 Joost-Pieter Katoen, Daniel Klink, Martin Neuhäußer: Compositional
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