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Abstract. Algorithmic Differentiation is a widely used technique for computing
derivatives of implemented mathematical functions. In this technical report we
want to introduce the tool dco/c++ written by the authors implementing algo-
rithmic differentiation by overloading for C/C++. After a general picture of the
capabilities dco/c++ provides, we show its performance with emphasis on adjoint
computations in comparison to four other freely available overloading tools.

1 Introduction

dco/c++ is a development at the institute Software and Tools for Computational

Engineering implementing Algorithmic Differentiation (AD) [4] by overloading
in C++. The range of capabilities covered by dco/c++ is driven by different
applications and research subjects. Current projects are in the area of financial
engineering, atmospheric physics, or fluid mechanics. dco/c++ is also used in
research on the generation of discrete adjoints using parallel environments, in
particular OpenMP and MPI. The objective is to provide an efficient and robust
tool for the computation of projections of derivatives of arbitrary order of a
function given as an implementation in C/C++. Additionally, the capability of
coupling the robust overloading technique with optimized computer generated
or hand-written external computations of adjoint projections is provided.

During various collaborative research and development projects, we were able
to compute fast adjoints for real world applications. For example, we provided an
adjoint version of the Juelich Rapid Spectral Simulation Code Version 2 [9] writ-
ten at the Institute of Energy and Climate Research – Stratosphere at Research
Center Jülich, which solves a large-scale inverse problem with gradient-based
methods. Here we were able to achieve a factor of roughly 3.5 for the ratio

R =
Run time of one adjoint computation

Run time of one function evaluation
.

In Section 4 we will compare R for different, freely available AD tools.

2 Algorithmic Differentiation

For a given implementation of the function F : IRn → IRm as a computer program
AD enables us to compute derivatives of arbitrary order with an accuracy up to
machine precision. Derivatives are meant as the sensitivities ∂y

∂x
of the output

y ∈ IRm with respect to the inputs x ∈ IRn, y = F (x), yielding the Jacobian
∇F (x). This is done either via source code transformation or operator overloading
techniques - or via a coupling of both. AD offers two fundamental modes, the



tangent-linear or forward mode and the adjoint or reverse mode. The tangent-
linear mode computes tangent-linear projections1

y(1) = ∇F (x) · x(1) (1)

during one augmented (forward) function evaluation. The adjoint mode computes
adjoint projections

x(1) = ∇F (x)T · y(1) (2)

and requires a data-flow reversal. Therefore required data is saved with the for-
ward section and used by the reverse section of the adjoint code. dco/c++ intro-
duces new data types and an additional data structure – the tape – that records
data and dependency information in the forward section used in the reverse sec-
tion (tape interpretation). Most overloading tools follow a similar strategy.

For more detailed information about Algorithmic Differentiation refer to the
text books [4, 3].

3 Capabilities of dco/c++

In this section we present (from the user’s perspective) the capabilities of dco/c++.
This part is intentionally kept brief. Refer to the dco/c++ user documentation
or feel free to contact the authors for further information.

3.1 Basic Data Types for First- and Higher-Order Derivatives

dco/c++ provides data types for computing first derivatives in forward and re-
verse modes. All types and functions are defined in the namespace dco. Addi-
tionally, every mode is defined as nested namespaces. The data type is written
as a template and can be instatiated with arbitrary base data types (default is
double).

For computing the tangent-linear projection of first order, the data type

dco:: t1s :: type

can be used. t1s corresponds to tangent-linear projection of 1st-order scalar type.
Furthermore, a vector mode can be used with a vector size defined by the user
at compile time. The data type to be used is

dco::t1v :: type,

where t1v corresponds to tangent-linear projection of 1st-order vector type.

For computing the adjoint projection of first order, the data type

dco::a1s :: type

can be used. a1s corresponds to adjoint projection of 1st-order scalar type. A tape
is used. The memory allocation strategy can be chosen to be static or dynamic
(chunk tape), which results in one large allocation at the beginning or dynamic
reallocation during tape recording, respectively.

1 The following notation is taken from [4].



dco/c++ supports derivatives of arbitrary order by nesting of the basic data
types. For second-order types, we have predefined namespaces

dco:: t2s a1s :: type , dco::t2v a1s :: type and dco:: t2s t1s :: type

for forward-over-reverse mode in scalar or vector fashion and forward-over-forward
mode, respectively.

3.2 Expression Templates and Statement-Level Preaccumulation

Expression templates are used to implement statement-level preaccumulation.
Expression templates are a C++ template metaprogramming technique in

which templates are used to represent part of an expression. Expression templates
are heavily used in dco/c++. Internally dco/c++ holds two kinds of data types.
First, the active type, which represents a program variable occuring on the left-
or right-hand sides of an expression (instantiations are the data types introduced
in Section 3.1). Second, the intermediate variables, which are compiler generated
from all operations like +,−, sin, pow, ... occuring only on the right-hand side.
This yields advantages in the forward vector mode as well as in reverse mode AD.
In both cases the gains are achieved by statement-level preaccumulation [3], i. e.,
a preaccumulation of the local gradients of each assignement (an occurance of
’=’). The gradient entries are the partial derivatives of the left-hand side program
variable w. r. t. all program variables occuring on the right-hand side.

In forward vector mode AD the naive approach generates intermediate tan-
gent vectors for each operation. This requires a huge amount of allocations and
deallocations as well as many operations. With statement-level preaccumulation,
we achieve remarkable improvements in the computational efficiency.

In reverse mode AD we can ommit the generation of tape entries for each
intermediate veriable. From the local statement gradients we only save the partial
derivatives (as edge weights in the linearized computational graph – see [3]).
Thereby the forward section becomes more expensive. However, the tape size can
be reduced significantly yielding less memory consumption and a more efficient
reverse section (tape interpretation).

3.3 Thread Safety and OpenMP

Tangent-linear types of any order have only local data dependencies, so they are
thread safe by default. In adjoint mode, there are two ways to guarantee thread
safety in dco/c++. First of all, one can switch to multiple tape mode, which
means that each thread has its own tape. This implementation requires no global
data and also has only local data dependency. Therefore no synchronisation of
the threads is needed, which results in good speed-ups.2 Nevertheless, for the
multiple tape approach, manual effort is needed as well as a deeper understanding
of adjoint dependencies is required.

There is also a black-box thread/OpenMP-safe mode implemented, where
all threads share one global tape. dco/c++ internally takes care about multiple
write accesses in order to generate one consistent global tape. If multiple threads
need to access the global tape at the same time, then this normally results in

2 Note that the overall memory performance still can be a limitating factor.



a slow-down. Nevertheless, due to the statement-level preaccumulation dco/c++

needs only one update for each statement as opposed to every operation. So for
expensive right-hand sides a speed-up is possible. A small case study can be
found in Appendix A.

dco/c++ has also an interface to the adjoint MPI library (AMPI) [8] (see
Appendix B).



Fig. 1. Flow field after 1.5 s. Colored by x-velocity.

4 Case Study – Run time and Memory Consumption

In this section we analyse run time and memory for computing adjoint projec-
tions for a case study. The latter is done indirectly by limiting the available
memory the tools are allowed to allocate. The results for dco/c++ are shown in
comparison to different AD-tools listed on the webpage www.autodiff.org, namely
ADOL-C3, CppAD4, FADBAD++5 and Sacado6. To the best of our knowledge,
no significant improvement can be achieved in terms of performance unless ma-
jor manual intervention by highly educated users of the respective AD-tools is
performed. We invite developers/users of these tools to verify this claim in or-
der to ensure best possible comparability. In the current setup we assume users
with basic knowledge in AD following the available user documentations of the
respective tools.

As the case study we use an in-house implemented code for the simulation
of a 3D unsteady incompressible flow. The original Fortran code was written
by Johannes Lotz at the Institute of Meteorology and Climatology, University
Hanover, numerically identical to PALM [6] and reimplemented in C++ by the
authors. The equations are given by the Boussinesq-approximation coupling mo-
mentum, energy, and mass conservation.

We use a rectangular domain with equidistant Arakawa-C staggered grid [1].
A SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm is

3 http://www.coin-or.org/projects/ADOL-C.xml
4 http://www.coin-or.org/CppAD/
5 http://www.fadbad.com/fadbad.html
6 http://trilinos.sandia.gov/packages/sacado/



used with an explicit Euler time stepping scheme, the Piascek-Williams scheme
[5] for the spacial discretization of the advection term and central finite differences
for spacial discretization of the diffusion term. The linear equation system is
solved by a matrix-free SOR (successive over relaxation) solver, which is the
computationally most expensive part [2].

The computational domain of our test case is a cube (3D) or square (2D) with
identical side lengths (1 × 1 × 1m3 or 1 × 1m2, respectively). The test case is
shown in Fig. 1 after 1.5 s of simulation time from zero initial condition. We have
a fixed inflow (Dirichlet boundary for velocity) at the lower left and the outflow
(Dirichlet boundary for pressure) at the lower right yielding a large eddy in the
upper part. The 3D test case setup is obtainded by inducing cyclic boundary
conditions in the third dimension.

4.1 Run time and Memory Analysis

The run time is measured for a computation of two time steps in the simula-
tion. The passive run time corresponds to the computation of function values
only, while the tools have the challenge to compute the gradient of a single out-
put with repect to the starting values (setup as an inverse problem). We show
measurements for the 2D as well as the 3D test case.
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Fig. 2. Run time – comparison for the 2D test case.

All measurements are made on a Linux system with gcc 4.6.1 and maximum
optimization (-O4). The system is an Intel(R) Core(TM)2 Extreme CPU Q9300
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Fig. 3. Ratio R(n) – comparison for the 2D test case.

running at 2.53GHz and 16GB of RAM. The executables are limited to the use
of maximum 10GB of RAM defined by ulimit -v 10000000.

We plot the run times of one passive execution as well as for all the tools for
the 2D and the 3D test case, respectively. We divide the measurements into the
time used for the recording step (forward section), the interpretation step (reverse
section) and the sum of both. dco/c++ is used with a static tape and a chunk
tape (see Section 3.1). The timing figures show the data in double logarithmic
scale, which yields linear curves for a polynomial dependence of the run time t on
the problem size n (t(n) = a ·ne), where n corresponds to the degrees of freedom
of the problem and the length of the gradient. We observe the original problem
as well as the gradient computation of all tools to be roughly polynomial with
the same exponent e (same slope in double logarithmic scale – see Fig. 2 and
Fig. 4). The coefficient a on the other hand is different for all tools (corresponds
to different y-intercepts in double logarithmic scale). This yields the ratio of one
adjoint projections to one passive function evaluation R (see also Section 1) to
be roughly a constant in the problem size n. This is shown in Fig. 3 and Fig. 5
in linear scale for the 2D and the 3D test cases, respectively. For dco/c++ with
chunk tape, a kink can be observed for n ≈ 103.6. This can be explained by the
reallocation of a new chunk for the tape. This, of course, has no effect on the
reverse section.

The mean ratio R = 1
n
·
∑

all problem sizesR(n) for the different tools is
shown in Table 1. In light of the theoretical minimum of R ≈ 3, dco/c++ yields
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Fig. 4. Run time – comparison for the 3D test case.

dco/c++ dco/c++ chunk ADOL-C CppAD FADBAD++ Sacado

2D 8.0 12.3 38.1 30.0 51.7 67.7

3D 8.3 12.9 39.3 33.3 56.9 72.0

Table 1. The mean ratios R of one adjoint projection w.r.t. one passive function evaluation.
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Fig. 5. Ratio R(n) – comparison for the 3D test case.

very good results. Of course, source code transformation code could achieve a
better ratio, but in cosideration of the wide range of the C++ language, the over-
loading technique is the only alternative. The benefits in the sense of robustness,
applicability and maintanance over source code transformation approaches are
beyond all question. Nevertheless, turning away from the black-box approach
and coupling overloading techniques and source code transformation code can
lead to the possibility of good applicability and even better efficiency.

Whenever a tool exceeds the memory limit of 10GB, the corresponding curve
ends. The corresponding problem sizes are shown in Table 2.

dco/c++ ADOL-C CppAD FADBAD++ Sacado

2D 29584 15376 29584 15376 13456

3D 37044 19652 37044 19652 13500

Table 2. Problem size n possible with 10GB of RAM.

References

1. A. Arakawa and V.R. Lamb. Computational design of the basic dynamical processes of the
ucla general circulation model. Methods in computational physics, 17:173–265, 1977.

2. BA Carre. The determination of the optimum accelerating factor for successive over-
relaxation. The Computer Journal, 4(1):73–78, 1961.



3. A. Griewank and A. Walther. Evaluating Derivatives: Principles and Techniques of Algo-

rithmic Differentiation, Second Edition. Society for Industrial and Applied Mathematics
(SIAM), 2008.

4. U. Naumann. The Art of Differentiating Computer Programs. An Introduction to Algorithmic

Differentiation. SIAM, 2011.
5. S.A. Piascek and G.P. Williams. Conservation properties of convection difference schemes.

J. Comput. Phys., 6:392–362, 1970.
6. S. Raasch and M. Schroter. Palm-a large-eddy simulation model performing on massively

parallel computers. Meteorologische Zeitschrift, 10(5):363–372, 2001.
7. M. Schanen, M. Förster, B. Gendler, and U. Naumann. Compiler-based Differentiation of

Numerical Simulation Codes. In ICCGI 2011, The Sixth International Multi-Conference on

Computing in the Global Information Technology, pages 105–110. IARIA, 2011.
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A Using OpenMP

dco/c++ offers a built-in OpenMP-support for single tape adjoint computation.
Potential data races are taken care of internally. The more efficient alternative
is, of course, handling the parallelization of adjoints explicitly using the multiple
tape support of dco/c++ (see Section 3.3).

The built-in support exploits the parallelism during tape recording (forward
section) while preaccumulating the local gradient of each statement (see Sec-
tion 3.2). This yields better speed-up for right-hand sides with a greater work
load. We show the speed-up of the code

#pragma omp p a r a l l e l for
for ( int i = 0 ; i < n ; ++i ) {

y [ i ] = exp (3∗ s i n ( s i n ( x1 [ i ] ) + cos ( x2 [ i ] ) + exp ( x3 [ i ] )
+ atan ( x4 [ i ] ) ) ) ;

}

with problem size n, input variables x1[n], x2[n], x3[n] and x4[n], and output
variable y[n]. For the measurements we chose n=21E6 on a core-i5, 2.5GHz with
4 cores. In Fig. 6(a) the speed-up for a passive function evaluation is shown as well
as the speed-up of the overloaded function call. The latter is split into the speed-
up of the forward section (tape recording – see Section 2) labeled with “dco/c++
tape recording” and the global speed-up including also the reverse section (tape
interpretation). The tape interpretation step in the built-in OpenMP-support
is currently not parallelized and therefore a constant offset to the speed-up. In
Fig. 6(b) the ratios

RS =
Run time of one OpenMP accelerated adjoint computation

Run time of one serial function evaluation

and

RP =
Run time of one OpenMP accelerated adjoint computation

Run time of one OpenMP accelerated function evaluation
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Fig. 6. Speed-Ups and run time ratios.

are shown. As the speed-up for the overloaded function is a little lower than
the speed-up of the passive function, also the ratio RP gets a little worse with a
growing number of cores. Nevertheless it is important to note that the ratio RS is
falling below 1 (exactly 0.91), which means that the adjoint projection using the
OpenMP-accelerated dco/c++ version is faster than a serial passive execution.
The very good ratios are obtained due to the relatively complex right-hand side
in the given example.

B Using AdjointMPI

In the context of the case study presented in Section 4, we also implemented an
MPI enabled version based on a domain decomposition of the given grid. At
each update of the grid values, they are synchronized at the boundaries. This is
achieved through non-blocking MPI calls. Finally, global values are synchronized
by relying on MPI reduction routines.

As AD implies a complete data flow reversal this especially holds true for the
MPI communication. Essentially, sending data in between processes amounts
to assignments of variables across the processes. Therefore, the adjoint of MPI
communication amounts to an incremental assignment for each communicated
adjoint. This logic is handled by the Adjoint MPI library (AMPI) [8]. AMPI
is coupled with dco/c++ internally through a well-defined interface. All MPI
routines are to be replaced by the corresponding AMPI (Adjoint MPI) routines
all named with a leading A (e.g. MPI Init() → AMPI Init()).

AMPI applied to our case study Section 4 is still work in progress in terms of
scalability. Hence, we present here the run time results of a matrix multiplication
based on an implementation of the Cannon algorithm without AD in Fig. 7(a)
and with AD in Fig. 7(b). It is adjoined using dco/c++, AMPI and dcc[7].
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brenik, René Thiemann: Automated Termination Analysis for Logic Pro-

grams with Cut

2010-11 Martin Zimmermann: Parametric LTL Games
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