
Aachen
Department of Computer Science

Technical Report

SAT Encodings:
From Constraint-Based Termination
Analysis to Circuit Synthesis

Carsten Fuhs

ISSN 0935–3232 · Aachener Informatik-Berichte · AIB-2011-17

RWTH Aachen · Department of Computer Science · September 2012

The publications of the Department of Computer Science of RWTH Aachen University

are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

http://aib.informatik.rwth-aachen.de/

SAT Encodings: From Constraint-Based

Termination Analysis to Circuit Synthesis

Von der Fakultät für Mathematik, Informatik und

Naturwissenschaften der RWTH Aachen University zur

Erlangung des akademischen Grades eines Doktors der

Naturwissenschaften genehmigte Dissertation

vorgelegt von

Diplom-Informatiker

Carsten Fuhs

aus

Düren

Berichter: Prof. Dr. Jürgen Giesl

Prof. Dr. Michael Codish

Tag der mündlichen Prüfung: 21. Dezember 2011

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.

Carsten Fuhs

Lehr- und Forschungsgebiet Informatik 2

fuhs@informatik.rwth-aachen.de

Aachener Informatik-Bericht AIB-2011-17

Herausgeber: Fachgruppe Informatik

RWTH Aachen University

Ahornstr. 55

52074 Aachen

GERMANY

ISSN 0935-3232

Abstract

Termination is one of the most prominent undecidable problems in computer science.

At the same time, the problem whether a given program terminates for all inputs is

sufficiently important for the area of program verification to spur decades-long efforts in

developing sufficient criteria for concluding termination. In the last decade, the focus

of this research has been on automation, giving rise to several powerful fully automatic

termination provers. However, the search problems that arise during the synthesis of a

successful termination proof are typically NP-complete.

To tackle these algorithmic challenges, over the last years a two-stage process has turned

out to be extremely successful in practice: First encode the arising problem instance to

the satisfiability problem of propositional logic (SAT), and then invoke a state-of-the-art

SAT solver on this SAT instance. The solution found by the SAT solver is then used in

the termination proof.

While in the worst case still prohibitive due to NP-completeness of SAT, this approach

has increased performance on practical problem instances for existing termination tech-

niques by orders of magnitude. At the same time, the approach has also made new

automated techniques possible that were out of reach before. This thesis contributes effi-

cient SAT-based automation both for several existing termination techniques and also for

new techniques that we have developed in the dependency pair framework for termination

analysis of term rewriting.

The usefulness of SAT encodings goes beyond the field of termination analysis. We have

transferred the approach used for termination techniques to the—at first glance—quite

distinct application domain of circuit synthesis, allowing us to obtain a provably optimal

implementation of a part of the Advanced Encryption Standard.

The contributions of this thesis are implemented within our fully automated termination

prover AProVE. The significance of our results is demonstrated also by AProVE reaching

the highest scores in the annual International Termination Competitions of 2007 – 2011.

At these competitions, the leading automated termination analysis tools try to prove or

disprove termination of programs originating from various areas of computer science.

Acknowledgments

First of all, I would like to thank my PhD advisor Jürgen Giesl. Over the years I have

been working in his group, he has always been at the same time trusting, demanding,

and supporting. He granted me the freedom to expand to new directions of research, and

there was always time for discussion.

I am also very grateful to Mike Codish for agreeing to be the second supervisor of this

thesis. We had many enriching discussions, we shared many a cup of coffee all around the

world, and our joint work and mutual research visits have always turned out to be very

satisfying.

I would also like to thank my colleague and friend Peter Schneider-Kamp for going the

way together with me. Together we explored new topics and directions, which broadened

both our perspectives, and our mutual research visits have always been very rewarding.

Additionally, I am also thankful to Peter for co-developing the SAT framework of AProVE.

Many thanks go as well to René Thiemann, with whom I enjoyed several detailed

discussions on the intricacies of the dependency pair framework, and to Stephan Swiderski,

who often provided interesting and helpful perspectives.

My thanks go also to my office mates Fabian Emmes and Thomas Ströder for providing

a relaxed yet at the same time also productive atmosphere, and also to my colleagues

Marc Brockschmidt, Carsten Otto, and Martin Plücker for many interesting discussions.

Especially, I would like to thank Thomas Ströder, Stephan Falke, and Peter Schneider-

Kamp for proof-reading preliminary versions of this thesis.

I am also grateful to my co-authors for the fruitful cooperation and to the members of

the AProVE team for their contributions. Likewise, I wish to thank the members of the

MOVES and the Theory of Hybrid Systems groups for the pleasant working atmosphere.

Moreover, I enjoyed the presence of and the work with our international guests Beatriz

Alarcón, Yoav Fekete, Raúl Gutiérrez, Cynthia Kop, and Fausto Spoto.

Finally, I would like to thank my family for supporting me and for being there for me

during all those years.

Carsten Fuhs

Contents

1 Introduction 1

2 Preliminaries 23

2.1 Term Rewriting . 23

2.2 The Dependency Pair Framework . 25

2.3 Weakly Monotone Algebras and Polynomial Interpretations 30

3 Polynomials with Negative Constants 37

3.1 Polynomial Interpretations with a Negative Constant 38

3.2 SMT-Based Automation . 41

3.3 A Necessary Criterion for Negative Constants 47

3.4 Experiments . 53

3.5 Summary and Outlook . 55

4 Maximal Termination 59

4.1 Max-Polynomial Interpretations . 60

4.2 SMT-Based Automation . 61

4.3 Shape Heuristics and Optimizations . 65

4.4 Experiments . 73

4.5 Summary and Outlook . 74

5 SAT Encodings for Arctic Termination Revisited 77

5.1 Arctic Interpretations . 78

5.2 A Binary SAT Encoding for Arctic Constraints 85

5.3 A Unary SAT Encoding for Arctic Constraints 90

5.4 Related Work . 94

5.5 Experiments . 95

5.6 Summary and Outlook . 101

II Contents

6 Lazy Abstraction for Size-Change Termination 103

6.1 Size-Change Termination and Dependency Pairs 105

6.2 Tuple-Typed DP Problems . 107

6.3 Approximating SCT in NP . 112

6.4 A Challenge Example . 125

6.5 SAT-Based Automation . 127

6.6 Experiments . 129

6.7 Summary and Outlook . 131

7 SAT Encodings for Optimal XOR Circuits 133

7.1 Linear Straight-Line Programs . 134

7.2 Encoding to Propositional Logic . 139

7.3 From Decision Problem to Optimization 144

7.4 Case Study: Advanced Encryption Standard 145

7.5 Handling the UNSAT Case . 148

7.6 Summary and Outlook . 150

8 Conclusion 153

Bibliography 157

Index 179

1 Introduction

Termination analysis of programs is a major task in the area of software verification.

Although the problem whether a given program will terminate on all inputs is in general

not even semi-decidable, in recent years there has been a wealth of research in correct,

yet incomplete automated methods for showing program termination. This approach

is considered worthwhile for practical application since the termination argument the

programmer has in mind (implicitly or explicitly) often is sufficiently simple to make a

fully automated termination proof feasible.

Termination analysis has been a topic of active research for several programming

paradigms, including logic programming [BCG+07, CLS05, DD94, LMS03, NDGS11,

NGSD08, SGN10, SGS+10, Sma04], functional programming [Abe04, Gie95, GWB98,

LJB01, MV06, PS97, SJ05, Wal94, Xi02], and also imperative programming [BCDO06,

BMS05, CS02, CPR05, CPR09, PR04a, PR04b, Tiw04, Tur49].

One of the most prevalent areas for research in termination analysis, however, is term

rewriting. The reason is that while term rewriting is a Turing-complete calculus which

allows for a convenient representation of user-defined data-structures, at the same time

it provides a suitably simple mathematical model for analysis. Indeed, in recent years,

there have been ongoing successful efforts to use term rewriting as back-end language for

termination analysis for programs written in widely used programming languages. These

approaches are based on automated translations to term rewrite systems (TRSs), and

they have turned out to be viable for languages from different programming paradigms,

such as logical programming languages like Prolog (cf., e.g., [Ohl01, SGST09]), functional

languages like Haskell [GSST06, GRS+11] or the ML-like functional language used in the

proof assistant Isabelle/HOL ([KST+11], cf. also [NPW02]), and recently also imperative

languages like the object-oriented language Java Bytecode [OBEG10, BOEG10, BOG11]

or the compiler intermediate language LLVM-IR [FKS11a, FKS11b].

Therefore, any advance for automated termination analysis for TRSs also has an impact

on termination analysis for programming languages. Keeping this in mind, the primary

goal of the present thesis is to improve upon the state of the art of termination analysis,

with respect to both efficiency and power.

Termination analysis for TRSs has been studied for many years now. Here, initially

the focus of research was mainly to find reduction orders [MN70] to prove termination

directly, cf., e.g., [Der82, Der87, KB70, KL80, Lan79, Les83, Ste95]. Later, transforma-

2 Chapter 1. Introduction

tional techniques such as the dependency pair (DP) approach [AG00] or semantic labeling

[Zan95] were developed. These approaches are designed to yield simpler constraints for a

termination proof via orders on terms.

Building on [AG00], in recent work Giesl et al. propose the dependency pair (DP)

framework [GTS05a, HM05, GTSF06, Thi07]. This framework allows for modular de-

composition of termination problems and an incremental application and combination of

termination techniques (in this setting called DP processors).

With the beginning of the 21st century, the focus in termination analysis shifted more

and more towards automation. Since 2004, each year the International Termination

Competition1 has taken place with many different participating termination tools.2

Starting from termination analysis of term rewriting, the Termination Competition

has in the mean time extended its scope significantly. This extension has taken place

with respect to the supported input languages (in addition to various flavors of rewriting,

nowadays also inputs from logical languages like Prolog, higher-order functional languages

like Haskell, and imperative languages like Java Bytecode are used as benchmarks at

the competition). Also for the statement that is to be shown, extensions have been

introduced. After initially, only the question “Is this program terminating on all inputs?”

was asked, nowadays there are dedicated categories where this question has been refined

to the problem statement “Give upper/lower bounds on the asymptotic complexity of the

program”.

The benchmarks used for the competition are collected in the Termination Problem

Data Base (TPDB),3 which nowadays contains several thousands of termination problems

from different programming paradigms.

At the Termination Competition, each termination tool is provided with a termination

problem and a timeout of 60 seconds to provide an answer to the statement on termi-

nation (or complexity) together with a human- or machine-readable termination proof.

Since soundness is crucial for verification tools and since thus a wrong answer on a termi-

nation problem leads to disqualification, it is naturally vital to use only provably sound

termination techniques for the proof steps.

To ensure soundness, since 2007 also categories with certified termination proofs are

part of the competition. In a two-stage-approach, first the participating termination tools

provide machine-readable termination proofs as certificates in a standardized format.4 In

the second stage, the participating certification tools are invoked on these certificates and

check whether the given certificates indeed are valid termination proofs for the original

1For details, see also: http://termination-portal.org/wiki/Termination_Competition
2See http://termination-portal.org/wiki/Category:Tools for an up-to-date list of termination

tools. As of this writing, 26 tools are reported there.
3More information on the TPDB is available at: http://termination-portal.org/wiki/TPDB
4Nowadays the standard Certification Problem Format (CPF) is used. For more information on CPF

see also: http://cl-informatik.uibk.ac.at/software/cpf/

http://termination-portal.org/wiki/Termination_Competition
http://termination-portal.org/wiki/Category:Tools
http://termination-portal.org/wiki/TPDB
http://cl-informatik.uibk.ac.at/software/cpf/

3

TRSs. These proof certification tools are based on a trusted theorem prover such as

Coq [Coq10] or Isabelle [NPW02]. Examples for projects that have sent certification

tools to the termination competition are A3PAT [CCF+07, CPU+10] with the tool CiME

[CCF+11], CoLoR [BK11] with the tool Rainbow (both tools invoke the theorem prover

Coq for analysis of the termination proof certificates), and IsaFoR [TS09] with the tool

CeTA, which is generated from Isabelle via code extraction.

Since the beginning of the annual termination competition in 2004, our automated ter-

mination prover AProVE [GST06] has been reaching the highest score for most categories

concerned with term rewriting. AProVE has also reached the highest scores for functional

and logic programs, and it has reached top positions in the categories for Java Bytecode.

These results were made possible among other things also by the efficient SAT-based

automation of the termination techniques that ultimately solve the rewriting problems

obtained from the translations of the input programs. In particular, AProVE uses integer

term rewrite systems (ITRSs) [FGP+09] (i.e., TRSs where also pre-defined operations for

the integers can be used) as a back-end translation target for the analysis of program-

ming languages. This thesis provides a precursor of the main termination technique used

for ITRSs. Moreover, in the years 2009 – 2011 AProVE scored highest in the category

SRS Standard, where string rewrite systems (SRSs) are analyzed for termination. This

category is renowned for its particularly hard problems, and without the contributions of

this thesis, AProVE would not have risen to the top in this category.

Historical Development of Constraint-Based Termination Analysis

However, one question that is crucial for automation remains: How to solve the search

problems associated with finding the termination argument in the individual proof steps?

Since these problems often are NP-hard, devising corresponding algorithms that are effi-

cient at least on practical problem instances is far from trivial.

Recently, it has become a very active topic of research to solve such problems not

via dedicated algorithms developed from scratch, but via encodings to a suitable class

of constraints and subsequently using satisfiability solvers (SAT solvers). This way, the

search for proof steps using certain classes of well-founded orders is reduced to a satis-

fiability problem. Here, satisfiability is meant in a broad sense: Of course, satisfiability

of propositional logic (this quintessential NP-complete decision problem [Coo71] is com-

monly denoted by the SAT problem) is a target for many translations. In addition, also

instances of the satisfiability problem for Pseudo-Boolean (PB) constraints (also known as

0-1 linear programming; linear integer inequalities where variables may only be assigned 0

or 1) and instances of satisfiability modulo theories (SMT) problems (first-order formulas

where the semantics of certain function and predicate symbols is fixed by a background

theory) are reduction targets.

4 Chapter 1. Introduction

In 1999, Kondo and Kurihara pioneered the area of satisfiability-based automated ter-

mination analysis. In [KK99a, KK99b], they describe an encoding for the class of lexico-

graphic path orders (LPOs) [KL80] for a given TRS to a (reduced ordered) binary decision

diagram (BDD) (cf. also [KK04]). This BDD is used to represent the Boolean function

(or formula) that maps from Boolean variables parameterizing the precedence of an LPO

to the truth value of the following question: “Does this LPO prove termination of the

given TRS?” By construction of BDDs, then satisfiability can trivially be checked for an

explicitly given BDD via a disequality test with the zero BDD.

However, it was not until 2006 that the topic of automating termination techniques

by encodings as Boolean formulas (or related formalisms) received broader attention by

the termination community. Starting with these first papers [ACG+06, CLSS06, CLS06,

CSL+06, EWZ06, HW06, ZM06], it has become widely accepted to avoid the explicit

construction of BDDs, which can be a time-consuming process. Instead, a representation

of Boolean formulas as SAT instances in conjunctive normal form is chosen, This way,

the burden of the satisfiability check is shifted from purely symbolical level to dedicated

SAT solvers.

In later work, also Pseudo-Boolean constraints [FGM+07, ZM07, ZHM09, Zan09] and

SMT instances [BLN+09, FK09, ZHM09, BLO+12, FKS11a] are targeted; the latter usu-

ally being solved by SMT tools, which use dedicated internal theory solvers in addition to

a SAT front-end for the Boolean skeleton of the formula. Note that the SMT formalism

also allows for higher-level problem descriptions which can nevertheless still boil down

to standard SAT encodings. For instance, for the case of non-linear integer arithmetic

(NIA) and the corresponding SMT problem class SAT modulo non-linear integer arith-

metic (SMT-NIA), earlier SAT encodings [FGM+07, Fuh07, EWZ08] can be harnessed to

render all required theory knowledge explicit on Boolean level via an eager encoding of the

atomic subformulas. Via this bit-blasting approach, now also standard propositional SAT

solvers suffice to provide answers for formulas from a richer language. This layered ap-

proach turns out to be beneficial for ease of description and implementation of many later

works (e.g., [FGM+07, GTSS07, FGM+08, ZM08, FGP+09, ZM09, CFGS10, NDGS11]),

where SAT encodings for SMT problems can be used as “black boxes”. It should be

noted, though, that satisfiability of non-linear integer arithmetic is undecidable due to

the undecidability of Hilbert’s 10th problem [Mat70]. Hence, these encodings only provide

a sufficient criterion for satisfiability of non-linear integer arithmetic, which is nonetheless

very powerful in practice.

Techniques

A common theme in almost all encoded termination proving techniques is that satisfia-

bility of the encoded instance implies that at least a part of the termination problem (a

5

TRS or a dependency pair problem) can be deleted and need not be considered for further

analysis any more. This is done by using orders on terms (or, more generally speaking, on

the program states). Usually one searches for an order that orients all rules of a termina-

tion problem weakly and at least one rule strictly, allowing to delete the strictly oriented

rules. This way, to advance a termination proof, it suffices to solve a formula over (weak

or strict) inequalities over terms.

Broadly, the termination techniques following this scheme that have been encoded to

satisfiability problems in recent years can be grouped as follows:

• As mentioned earlier, the first encodings for precedence-based path orders like the

lexicographic path order via Boolean functions by Kurihara and Kondo [KK99a,

KK99b, KK04] use a BDD representation. Via encodings to satisfiability instances

in conjunctive normal form, this approach has been improved and extended in sev-

eral papers since 2006 by Annov, Codish, Giesl, Lagoon, Schneider-Kamp, Stuckey,

and Thiemann to encompass quasi-precedences [CLS06, CLS08], argument filterings

[CSL+06], and permutations as well as multiset comparison [STA+07]. These publi-

cations finally culminate in a SAT-based implementation of full recursive path orders

[Der82, KL80, Les83] also combined with argument filterings and quasi-precedences

[Sch08, CGST12]. As these publications report, the SAT-based approaches outper-

form dedicated solving techniques to search for path orders by orders of magnitude

on practical example collections.

In [AY09] Aoto and Yamada mention an adaption of the encodings from [CLS06,

STA+07] to the setting of simply-typed S-expression rewriting systems (STSRSs)

[Yam01], a framework for higher-order rewriting without binders.

In the context of path orders, one should also mention the polynomial path order

(POP ∗) [AM08]. This restriction of the multiset path order can be used to show not

only termination, but also polynomial bounds on the innermost runtime complexity

of a given TRS, i.e., the length of the longest derivation from a constructor-based

term t [AM08] as a function of its size. (Here, a constructor-based term is a term

t = f(t1, . . . , tn) such that the only occurrence of a non-constructor-symbol is at

the root of t; in later work [AM09] also called a basic term.) For automation, the

authors adapt previous encodings for precedences [ZHM07] and multiset comparison

[STA+07] to the setting of POP∗.

Likewise, a termination proof using the exponential path order (EPO ∗) [AEM11a]

implies an exponential upper bound on the innermost runtime complexity of a given

TRS. In the corresponding technical report [AEM11b], the authors describe automa-

tion of EPO∗ by means of a SAT encoding.

• Knuth-Bendix orders (KBOs) are similar to classic path orders since also here we

have an explicit precedence on function symbols. In addition, KBOs also have

6 Chapter 1. Introduction

an arithmetic aspect since each function symbol has an associated non-negative

weight. For this class of orders, Korovin and Voronkov [KV03] provide a dedicated

polynomial-time algorithm. Successful later work on encoding KBOs has been con-

ducted by Hirokawa, Middeldorp, and Zankl, who also support argument filterings.

Here, they successively develop a SAT encoding [ZHM07], an encoding to Pseudo-

Boolean constraints [ZM08], and an encoding to SAT modulo the theory of linear

integer/rational/real arithmetic [ZHM09, Zan09]. Perhaps a bit surprisingly at first

glance, the authors of [ZHM09, Zan09] report that also their search procedures

based on encodings to SAT and to Pseudo-Boolean constraints, where generally

exponential runtime in the worst case may occur with current solving back-ends,

outperform implementations of the polynomial-time algorithm of [KV03] on bench-

mark sets arising in practice.

• In recent years, a lot of research has been done on term orders that are based on

interpretations to weakly or extended monotone algebras [EWZ08], both on concep-

tual level and on the level of automation. A common theme here is to choose an

algebra equipped with a well-founded order as well as a compatible quasi-order and

to identify a class of (weakly or strongly) monotonic functions on the carrier that

is closed under composition. By interpreting (term) function symbols as monotonic

functions (on the algebra) and by extending this interpretation homomorphically

to terms, the order on the algebra then induces a corresponding order on terms as

well.

For automation, one usually fixes the algebra and a certain shape of parametric

functions [CMTU05] as interpretations for the symbols in advance. While in many

cases the orders are not decidable even for concrete interpretations, one can nonethe-

less often identify decidable sufficient criteria. By using suitable constraint solving

techniques for the resulting constraints on the parameters, one then finds concrete

interpretations automatically from a—usually exponentially sized—set of functions.

– Perhaps the most classic shape of such interpretations uses the algebra with car-

rier N = {0, 1, 2, . . .}, with the usual orders “≥” and “>” on N, and with “+”

and “∗” as operations used as components for the interpretations of function

symbols. This gives rise to interpreting function symbols (and terms) as polyno-

mial functions (or polynomials), and the correspondingly induced term orders

are known as polynomial orders [Lan79, BL87].5 In the paper [CMTU05],

Contejean et al. propose a completely automatic approach to search for such

orders. Using parametric interpretations and the absolute positiveness crite-

rion [HJ98] to eliminate universal quantification, Contejean et al. encode the

5In this thesis, we often do not distinguish between (classes of) term interpretations and the correspond-
ing (classes of) term orders if the difference is clear from the context or irrelevant.

7

search for polynomial orders fulfilling given term constraints to a quantifier-free

conjunction of atomic constraints in non-linear integer arithmetic (NIA).

However, existence of a decision procedure for satisfiability of even this sub-

set of SMT-NIA would be in contradiction to undecidability of Hilbert’s 10th

problem [Mat70]. Thus, Contejean et al. [CMTU05] restrict the search space

for the satisfiability check to finite integer intervals, and hence to a finite do-

main constraint satisfaction problem. Following [CMTU05], standard solving

techniques for this general class of problems from constraint logic programming

(CLP) [CD96, JL87] make use of an adapted Davis-Putnam procedure [DP60]

for SAT solving. Inspired by techniques used in CLP for linear constraints,

[CMTU05] provide a variant of this general approach to the case of non-linear

constraints. So instead of a SAT encoding, [CMTU05] present a dedicated

algorithm based on ideas that are also used in current SAT solvers.

Despite its sophistication, however, performance of this algorithm turns out

to be lacking on many examples arising in termination proving practice. In

[FGM+07, Fuh07], we present an alternative approach to solving the resulting

NIA constraints based on bit-blasting of the unknowns and the corresponding

arithmetic operations to a SAT instance. Using the same idea, we also provide

a similar encoding to Pseudo-Boolean constraints; both encodings can be com-

puted in polynomial time w.r.t. the size of the SMT-NIA problem [FGM+07].

Experimental results in [FGM+07, Fuh07] indicate that these encoding-based

approaches outperform the algorithm of [CMTU05] by orders of magnitude

when applied in the same setting for termination proving. A further advantage

of the SAT-based approach in [FGM+07, Fuh07] is that an extension from con-

junctions of NIA constraints to SMT-NIA is straightforward. In later work,

Borralleras et al. [BLN+09, BLO+12] present a polynomial-size encoding of

SMT-NIA to SAT modulo linear integer arithmetic (SMT-LIA) with empirical

results comparable to those of [FGM+07, Fuh07].

By these performance improvements on the side of the back-end, also more

complex encodings of constraint-based termination techniques to SMT-NIA

have become feasible for practical problem instances, paving the ground for

several further publications. Here, more involved settings for the underlying

algebras are considered.

For instance, in [FGM+07] we provide an SMT-NIA encoding to search for

polynomial orders where the interpretations may also contain negative con-

stants [HM07]. Here, well-definedness of the interpretation to N is ensured by

considering the maximum of 0 and the polynomial (possibly with a negative

constant). The SMT-NIA encoding makes use of the convenient expressiveness

of Boolean connectives provided by the SMT formalism.

8 Chapter 1. Introduction

Moreover, the paper [GTSS07] presents work on automatically proving inner-

most termination for term rewriting by bounded increase. Here, the underlying

algebra uses Z as carrier, and also negative coefficients are allowed in the inter-

pretations of (certain) function symbols. In this setting, termination is shown

by proving boundedness of any assumed infinitely decreasing dependency pair

chain [AG00] (corresponding to an infinite sequence of function calls in the

TRS). Since for the standard order “>” on Z, any infinite >-chain eventually

exceeds any given fixed bound, an interpretation of terms to Z here leads to a

valid termination argument, even though the order “>” is not well founded.

In [FGM+08] we show how to use “max” (and “min”) together with “+” and

“∗” as constituent operations in interpretations used for showing (full) termi-

nation. Moreover, we also propose an SMT-NIA-based automation for inter-

pretations with “max” in combination with negative coefficients [HM07], where

we enhance the DP framework accordingly to allow for further improvements

over [HM07].

Zankl and Middeldorp present increasing interpretations [ZM08, ZM09, Zan09],

where polynomial orders can be used in the DP framework also if they lead

to an increase in some dependency pairs, as long as over each cycle of the

dependency graph (≈ the control-flow graph) an overall decrease occurs. Also

here, SMT-NIA is used as reduction target for automation.

In [SPG+09, FGP+11] we integrate inductive theorem provers into the DP

framework for proving innermost termination. Here, automation also makes

use of an underlying order on terms with certain monotonicity requirements,

which can again be expressed, e.g., for polynomial orders by using an SMT-NIA

encoding.

– Polynomial orders have also been extended to the non-negative rational and

real numbers Q≥0 and R≥0, respectively. After initial work by Dershowitz

[Der79], where the polynomial orders are restricted to simplification orders,

Lucas [Luc05, Luc07] uses a minimum distance δ > 0 for strict comparison

(i.e., x >δ y :⇔ x − y ≥ δ) to ensure well-foundedness of the strict order

(cf. also [Ges90, Hof01]). For automation with satisfiability-based techniques,

Lucas [Luc05] proposes a reduction to SMT-NIA by expressing parametric

non-negative rational coefficients c as c = a
b

(where a ≥ 0 and b > 0) and

by subsequently multiplying with the common denominator. Our experiments

with an SMT-NIA-based implementation of this approach [FNO+08] (combined

with bit-blasting) indicate that this reduction has beneficial results in practice.

– Generalizing linear polynomial orders, Endrullis, Hofbauer, Waldmann, and

Zantema present matrix orders in [HW06, EWZ06, EWZ08]. Here, instead of

9

N, now the set of tuples (or vectors) from Nd for some d ≥ 1 is considered as

carrier of the monotone algebra. As coefficients of these vectors, square matri-

ces from Nd×d are used, and addition and multiplication are the corresponding

standard matrix operations.

For automation, [HW06, EWZ06, EWZ08] propose an approach similar to the

one described in [CMTU05]. Again, parametric interpretations are used, which

give rise to an SMT-NIA instance over the parameters. For solving such SMT-

NIA problems, [HW06] propose a satisfiability-based approach. The authors

remark that they put a bound on the search space to render the problem de-

cidable, represent the integer variables by sequences of propositional variables

in unary or binary notation, and use formulas to express relations over the

variables. Further details on the encoding are not given in [HW06], however.

In [EWZ06], the authors state that integer variables are encoded to a list of

Boolean variables in binary representation. For intermediate results, likewise

additional variables are introduced. The journal version [EWZ08] provides

more detail on the SAT encodings for SMT-NIA, describing an encoding that

essentially coincides with that of [FGM+07, Fuh07], but has been developed

independently.

Analogously to polynomial orders, recently also matrix orders have been ex-

tended to carriers like Qd
≥0 and Rd

≥0 [GHW07, ALN09, ZM10]. In the paper

[Luc10], Lucas discusses the interplay between the required dimensions of ma-

trix interpretations and the required search space for the matrix entries for

successful termination proofs. Here both interpretations to Nd and Qd
≥0 are

considered. In [ST10], Sternagel and Thiemann lift the setting of polynomial

interpretations with negative constants [HM07] to matrix orders where Nd and

also Qd
≥0 are considered as carriers.

For automation, [GHW07] proposes evolutionary algorithms. Later, Zankl and

Middeldorp [ZM10] improve the encoding approach employed for polynomial

orders in [FNO+08] for use with rational matrix orders by a heuristic that

enforces cancellation in fractions. Moreover, they introduce extensions of the

SAT encoding allowing to search also for irrational real numbers as matrix

entries.

– As underlying monotone algebras for interpretation-based termination methods

in string and term rewriting, recently also structures known as exotic algebras

(cf., e.g., [Kro98]) have been introduced [Wal07, KW08, KW09]. These algebras

are semi-rings where “max” or “min” are used as semi-ring addition operation

and standard addition is used as semi-ring multiplication. Instead of, e.g.,

only N as carrier, also the neutral element of the semi-ring addition operation is

included in the carrier (−∞ for “max”,∞ for “min”). Semi-ring multiplication

10 Chapter 1. Introduction

and the comparison operations are adapted accordingly. To highlight the role

of the operations, one often also writes “�” instead of “max” or “min” and

“�” instead of “+” for a given semi-ring. The semi-ring (N ∪ {∞},min,+)

is known as the tropical semi-ring, and the semi-ring (N ∪ {−∞},max,+) is

known as the arctic semi-ring.6 So here the building blocks of interpretations

for function symbols are, besides numbers from N, also the operations “+”

and “min” (or “max”) together with the respective neutral elements for the

operations (not only 0, but also ∞ or −∞.) As for standard (semi-)rings, also

here matrix orders with vectors of tropical (or arctic, respectively) numbers

are used as the underlying framework. In the case of arctic matrix orders,

[KW08, KW09] also present a variant of orders with negative numbers from Z
as matrix entries (similar to those described in [HM07, FGM+07]). In [Wal07],

Waldmann also considers the algebra (N ∪ {−∞,∞},min,max), relating it to

the automata-based match-bounds termination technique [GHW04].

For automation of the search for matrix orders over these algebras, Koprowski

and Waldmann [Wal07, KW08, KW09] propose a parametric approach simi-

lar to that of [CMTU05, HW06, EWZ06, EWZ08], with suitable modifications

for the properties of the algebra operations. To encode the resulting symbolic

constraints with the operations “max” and “+” arising with arctic algebras,

[KW08, KW09] suggest a representation of numbers from N in binary. More-

over, an extra Boolean variable is used to represent −∞. The paper [Wal07]

suggests an analogous encoding for symbolic constraints with “min” and “+”.

Moreover, for the algebra (N ∪ {−∞,∞},min,max), [Wal07] also proposes an

encoding in unary notation, corresponding to an order encoding representa-

tion [CB94, TTKB09]. Later, [HKW10] suggests also unary SAT encodings for

constraints with “min” and “+” that stem from tropical algebras. For repre-

senting the “+” operation, [HKW10] suggests the use of sorting networks (cf.

[ES06]). As an alternative, [HKW10] also suggests mixed linear programming

[JLN+10].

– In [ZW07], Zantema and Waldmann present quasi-periodic interpretations as

a means of proving termination of string rewrite systems by quasi-periodic

functions, i.e., functions f : N → N with f(x + p) = f(x) + s ∗ p, where p is

called the period and s the slope of the function.

For automation, Zantema and Waldmann again use a parametric approach.

Given fixed values for p, s and the maximum numbers of bits for function values

6According to [Gat06], the tropical semi-ring is named as such because Imre Simon, who was among the
first to investigate this particular structure, comes from the tropical country Brazil. Correspondingly,
in [Goo98] the arctic semi-ring (using R ∪ {−∞} as carrier) is named as such because “max” is
the “opposite” operation to “min” and likewise, arctic latitudes are located “opposite” to tropical
latitudes on Earth.

11

and intermediate results respectively, they propose a SAT encoding based on

binary representation of natural numbers.

In [KW09], Koprowski and Waldmann show that for string rewrite systems,

arctic matrix orders subsume weakly monotonic quasi-periodic interpretations

of slope 1. In [ZW07], Zantema and Waldmann report that in their implemen-

tation of quasi-periodic interpretations using slopes higher than 1 does not add

much power on the TPDB when combined with other termination techniques.

– Context-dependent interpretations [Hof01] are a variant of polynomial interpre-

tations that can be used to assess the derivational complexity of a TRS (i.e.,

the length of the longest derivation in a given TRS from an arbitrary term t

as a function of its size).7 The paper [MS08] presents an NIA encoding for the

subclasses of ∆-linear and ∆-restricted interpretations [MS08] via parametric

interpretations. The parametric approach is similar to that of [CMTU05] and

enables SMT-based search also for this class of interpretations.

• Koprowski and Middeldorp [KM07] provide a SAT encoding for the simultaneous

search for a predictive labeling [HM06] over N in combination with a lexicographic

path order on the labeled DP problem that allows to delete at least one dependency

pair from the original DP problem. Here, encodings for LPO [CSL+06, ZHM07]

(adapted for infinite sets of term constraints), for quasi-models based on matrix in-

terpretations [EWZ06, EWZ08], and for finite branchingness of the labeled (infinite)

TRS are combined.

In [Ava10], Avanzini presents a SAT encoding for POP∗ [AM08] in combination

with semantic labeling [Zan95] over finite carriers with the goal of proving upper

bounds for the innermost runtime complexity of TRSs.

• Real-life programming languages usually come with pre-defined datatypes, e.g., the

built-in integers. With the goal of non-termination preserving translations from

programming languages to term rewriting in mind, we have extended classic term

rewriting by infinitely many rules for predefined operations over the integers and the

Booleans, calling the resulting formalism integer term rewriting [FGP+09]. Build-

ing on ideas from [GTSS07, FGM+08], we adapt the DP framework and also the

SMT-NIA encodings for polynomial orders to the setting of the integers, where the

usual well-founded term orders are not directly applicable. In the mean time, inte-

ger term rewriting has been used as a translation target language for Java Bytecode

[OBEG10, BOEG10, BOG11], which renders these adaptions of SMT-based termi-

nation techniques for rewriting accessible also for termination analysis of imperative

7In this sense, complexity analysis is a refinement of termination analysis. One not only wishes to state
that a given TRS is terminating, but also to give an asymptotic upper bound for how quickly it is
terminating. Any upper bound on the derivational complexity of a TRS implies its termination.

12 Chapter 1. Introduction

languages.

At approximately the same time, Falke and Kapur [FK08, FK09, Fal09] introduce

PA-based TRSs (where PA denotes Presburger arithmetic, i.e., linear integer arith-

metic (LIA)) as a back-end formalism for termination analysis of imperative pro-

grams. Here, rewrite rules may take SMT-LIA formulas as constraints that must

be satisfied for a rule to be applicable. In [FK10] they extend their approach by

allowing context-sensitive rewrite restrictions. In contrast to [FGP+09], non-linear

arithmetic operations such as multiplication of variables are not supported.

Falke and Kapur use SMT-LIA encodings to compute the dependency graph (called

a termination graph in [FK09]; it is worth noting that [FK09] does not allow nested

user-defined function symbols, which renders the dependency graph for a PA-based

TRS decidable, e.g., using an SMT-LIA solver) and to search for polynomial inter-

pretations (also here, the restricted term structure renders SMT-LIA directly appli-

cable) via SMT solving. This way, [FK09] achieves significantly better performance

when compared to [FGP+09] on similar TRSs with built-in integers. However, this

performance comes at the expense of expressivity and power, since non-linear com-

binations of variables and user-defined data-structures in imperative input programs

have to be linearized by a suitable abstraction to allow for an encoding of imperative

programs (without side effects) to PA-based TRSs. These points highlight that the

approaches from [FGP+09] and [FK09] are complementary.

In [FKS11a, FKS11b], Falke, Kapur, and Sinz adapt this approach to int-based

TRSs, which are an extension of the PA-based TRSs of [FK09] where also multipli-

cation is allowed. This way, one can also represent division and modulo operations

via slack variables. Due to these non-linear operations on integer variables, the de-

pendency graph becomes undecidable for int-based TRSs, but one can still apply an

SMT-LIA solver to get an approximation of the dependency graph. The SMT-LIA

encoding from [FK09] for finding polynomial interpretations directly carries over to

this setting. In [FKS11a, FKS11b] the authors successfully use int-based TRSs as

the target of a non-termination-preserving translation from programs in the com-

piler intermediate language LLVM-IR [LA04]. LLVM-IR is a compiler intermediate

representation used in the LLVM compiler framework. Since this framework has

front-ends, e.g., for the languages C, Objective-C, C++, . . ., one can thus use the

approach of [FKS11a, FKS11b] to prove termination of programs written in these

languages. As a restriction of this approach, however, user-defined data-structures

in imperative input programs again must be eliminated by abstraction beforehand.

Such fixed abstractions are applied in a preprocessing step, e.g., by the termination

tool KITTeL, which implements the approach of [FKS11a, FKS11b].

• Also outside of term rewriting, constraint-based methods for the automated dis-

13

covery of termination arguments have been applied. In [PR04a], Podelski and

Rybalchenko present a complete method to discover linear ranking functions for

linear arithmetic simple while programs, i.e., imperative programs where all vari-

ables range over Z and where update statements are given by linear inequalities.

Thus, also non-deterministic updates are possible. Similar to the imperative lan-

guage considered in the later work [FK09], this formalism requires that non-linear

arithmetic operations and user-defined data structures have been eliminated by suit-

able abstraction techniques before this technique is applied. However, in contrast to

[FK09], Podelski and Rybalchenko require for analysis of imperative programs that

moreover also all control structures like conditional statements or inner loops have

been eliminated in a preprocessing step, e.g., by abstraction. For automation of

the constraint-based method, [PR04a] proposes the use of linear programming over

rationals [Hol95] (one can also use an SMT solver for Linear Rational Arithmetic

(LRA)).

Also for direct termination analysis of logic programming, techniques based on en-

codings to NIA are in use nowadays. For instance, the termination analyzer Polytool

[NDGS11], which is based on an adaption of polynomial interpretations from term

rewriting to logic programming, automates the search for polynomial interpretations

via a reduction to NIA (using our tool AProVE [GST06] as NIA solver [FGM+07]).

• The size-change termination principle [LJB01] is used in a variety of different set-

tings for termination proving (cf. Section 6 for a more in-depth discussion). Here,

one usually first abstracts a program to a representation via size-change graphs,

which then in a second stage are analyzed to check whether this abstract program

is terminating with respect to the size-change termination criterion. Thiemann and

Giesl present a suitable adaption of this first stage to term rewriting in [TG05].

Classically, for automation of the second stage one applies a purely graph-based al-

gorithm in order to construct a closure under composition. In [CLSS06], Codish et

al. encode the check for size-change termination to BDDs instead, resulting in sig-

nificant performance improvements in practice. Still, the question whether a given

set of size-change graphs is size-change terminating is PSPACE-complete [LJB01],

and the resulting BDDs may require exponential time and space [CLSS06]. Based

on an equivalent characterization of size-change termination via a class of ranking

functions published in [Lee09], in [BC08] Ben-Amram and Codish identify an NP-

complete fragment of size-change termination which they name Size-Change in NP

(SCNP). They automate this new criterion via a suitable SAT encoding for the sub-

class of ranking functions corresponding to SCNP. In [CFGS10], we integrate SCNP

into the DP framework as a class of reduction pairs, allowing to use SCNP as a

component of the widely applied reduction pair processor [GTS05a, GTSF06]. For

14 Chapter 1. Introduction

automation, we extend the SAT encoding of [BC08] to defer the abstraction step

of the first stage. Benefiting from compositionality of SAT encodings, we combine

SAT encodings for term orders (giving rise to size-change graphs) and for SCNP

(implying termination of these size-change graphs). This way, we encode the first

and the second stage of size-change termination analysis into a single SAT problem.

Monotonicity constraints [CLS05] are an extension of size-change graphs for the set-

ting of constraints over Z, which (with its usual comparison “>”) is not well founded

(cf. also [GTSS07, FGP+09]), in contrast to the setting where size-change termina-

tion is usually applied. Also here, classically one applies a graph-based algorithm

for automation, and the question whether a given set of monotonicity constraints is

terminating is PSPACE-complete. In [CGB+11], we identify an NP-complete sub-

class of monotonicity constraints which we name Monotonicity Constraints in NP

(MCNP). For automation, we lift the SAT encoding from [BC08] to this setting,

where additional difficulties arise because Z is not well founded.

In his overview paper [Cod08], Codish identifies a common aspect shared by most

SAT encodings used in termination analysis: Finite domain integer variables are repre-

sented as binary numbers with explicit bit representation, and operations on these bit

tuples are encoded via Boolean functions. This aspect occurs in many of the more re-

cent encodings for path orders (cf. [CGST12]), for Knuth-Bendix orders (cf. [ZHM09]),

and for interpretation-based orders (cf. e.g. [FGM+07, EWZ08, KW08, ZM10]). Here,

finite-domain integers are used to represent either numbers as such or elements of a (fi-

nite) partial order like a precedence on function symbols for path orders or Knuth-Bendix

orders.

It is worth mentioning that techniques like polynomial or matrix interpretations have

applications beyond termination analysis. For instance, in the setting of complexity

analysis, polynomial interpretations (with certain additional restrictions) can be used

to deduce asymptotic upper bounds on the runtime complexity of innermost rewriting

[HM08, NEG11]. Similarly, [MSW08] presents triangular matrix interpretations, where a

direct termination proof with such an interpretation of dimension d induces an asymptotic

upper bound by a polynomial of degree d on the derivational complexity of the analyzed

TRS.

SAT encodings for orders on terms can also be used as a black box to improve tech-

niques like (Knuth-Bendix) completion [KB70], where an equivalent convergent TRS is

synthesized from a given set of term equations. This TRS can then be used to solve the

word problem for this set of equations in an automated way. While the original procedure

requires a given order on terms, in very recent work Klein and Hirokawa [KH11] propose

an encoding to MaxSAT (i.e., to an optimization problem, where the number of oriented

term equations is maximized). This way, now a whole class of orders such as RPOs,

15

KBOs, or polynomial orders can be used for a single run of the completion procedure,

which leads to improved flexibility and applicability.

Finally, SAT and SMT encodings have also been used successfully in proofs of non-

termination. In [Zan09, ZSHM10], Zankl, Sternagel, Hofbauer, and Middeldorp provide

a SAT encoding for looping non-termination of string rewrite systems (SRSs), a Turing-

complete subclass of term rewrite systems where all function symbols have exactly one

argument. The encoding is parameterized by the maximal length of the loops and by the

maximal length of the strings (i.e., depth of the terms) to be considered.

In [BSOG12], Brockschmidt, Ströder, Otto, and Giesl describe an SMT-based approach

to detect non-termination and occurrences of NullPointerExceptions in Java Bytecode

programs. Here, the target theories are both linear and non-linear integer arithmetic.

Contributions of this Thesis

The author of this thesis has made several important contributions to this satisfiability-

based research effort in termination analysis, which have been published in the 8 con-

ference and journal papers [FGM+07, FGM+08, FNO+08, FGP+09, SPG+09, CFGS10,

CGB+11, FGP+11] and have ultimately led to the Chapters 3 – 6 of the present thesis.

Moreover, in the papers [KST+11, FK11] co-authored by the author of the present thesis,

we provide suitable translations to make these contributions accessible also for termina-

tion analysis of functional HOL programs used in the proof assistant Isabelle [NPW02]

and for termination analysis of higher-order rewriting (cf., e.g., [KOR93]). In addition,

we have performed a method transfer from termination analysis to the area of synthesis

of optimal Boolean circuits. The corresponding results have been published in [FS10] and

have given rise to Chapter 7.

The contributions of this thesis can be summarized as follows:

(i) The paper [HM07] presents an extension of polynomial interpretations as a reduc-

tion pair where negative constants are allowed. However, the paper addresses the

question of automation only partially, and it remains unclear how to conduct an

automated synthesis of suitable interpretations in general.

To remedy this issue, we present a novel SMT-NIA encoding of the search problem

for polynomial interpretations with negative constants and prove its correctness.

This way, for the first time a systematic search for such interpretations becomes

possible. Moreover, we provide and prove a novel necessary condition for negative

constants to be successfully applicable (in contrast to using the constant 0) using

the approach of [HM07], which reduces the search space notably. We show that

with these improvements, our automation for this class of interpretations is orders

of magnitude faster than previous techniques.

16 Chapter 1. Introduction

(ii) Polynomial interpretations lack the ability to express that a value is the maximum

of two other values. However, this form of abstraction can be helpful for termination

proofs in certain cases.

We present an extension of polynomial interpretations by the max- and the min-

operations. We show how to automate this extension via an encoding to SMT-NIA.

Finally, we demonstrate the need for heuristics for such interpretations by showing

that the worst-case behavior of our automation leads to an exponential blowup, and

we present suitable heuristics to remedy this issue. This way, we obtain a technique

that can be mechanized efficiently and at the same time improves the overall power

of a modern termination tool.

(iii) Arctic matrix interpretations [KW08, KW09] are an interesting new technique for

termination analysis which provides an alternative means for expressing the max-

function. However, the SAT encoding proposed by [KW08, KW09] based on a

binary representation of numbers is not beneficial for the performance of modern

SAT solvers.

Therefore, we propose an alternative SAT encoding which is based on a unary encod-

ing of arithmetic. Our experiments show that this leads to a notable improvement

in performance. In fact, it is likely that AProVE found the highest number of termi-

nation proofs in the SRS Standard category of the Termination Competition 2009

only because of this improvement.

(iv) The size-change termination principle [LJB01] is a widely used means of proving

termination. Here, classically one first applies some abstraction to the input program

and only then is the check for termination via the size-change criterion performed.

In this approach, it is not clear how to select a suitable abstraction in advance such

that a proof of size-change termination of the abstracted program becomes possible

later. Therefore, the state of the art here still is to use a generate-and-test approach

for obtaining abstractions for a size-change proof.

We show how to overcome this limitation via the compositionality of SAT encodings.

For automation, we combine a SAT encoding for an important fragment of size-

change termination called Size-Change termination in NP (SCNP) [BC08] with

given SAT encodings for term orders (which constitute the abstractions used for

terms). This development is underpinned by our formalization of this termination

criterion as a reduction pair, which allows for a smooth integration into the DP

framework.

For the correctness proof of our contribution, we introduce the novel notion of

tuple-typed dependency pair problems and show that in practically important cases

it suffices to consider this class of problems. This way, intuition from the original

17

dependency pair approach [AG00] carries over to the more general dependency pair

framework [GTS05a], which facilitates the integration of approaches to termination

proving originating outside the area of term rewriting like SCNP. We conjecture that

this contribution will also be used for integration of further termination techniques

into the DP framework.

Moreover, we present a challenge example that can be solved due to this contri-

bution. The example highlights that SCNP can add, e.g., max-comparison for

dependency pairs also in case of base orders such as matrix orders that do not allow

max-comparison on their own.

SAT encodings are not only beneficial in the area of termination analysis. In fact, the

methods used for SAT encodings also carry over to quite distinct application domains (cf.,

e.g., the overview article [Mar08]). This way, expertise on SAT encodings developed in

one domain of application transfers to other domains as well. This further indicates the

versatility of SAT encodings as a technology.

In Chapter 7 of the present thesis, we substantiate this claim for the application domain

of circuit synthesis. Concretely, our goal is to generate minimal circuits containing only

XOR gates. Such circuits can be used to represent straight-line programs over the Galois

field of two elements, GF(2). A prominent application of such circuits is the S-box that is

used as a part of an AES [Fed01] implementation in cryptography. So far, only incomplete

heuristics [BP10] were known to approach this problem.

This setting gives rise to the contribution of Chapter 7, which is distinct from the other

contributions by its application area, yet surprisingly similar by the applied methods:

(v) We propose a novel SAT encoding for synthesizing linear straight-line programs

over GF(2) from a specification, where we aim for optimality, i.e., for shortest such

programs. This class of programs represents Boolean circuits which are composed

of XOR gates. We show that we can both obtain small programs and that we can

also prove their optimality within reasonable time. We substantiate this claim via

an empirical case study where we optimize part of the S-box of the AES cipher.

Here, we obtain both an optimal solution and also a proof of its optimality.

Implementation and Empirical Evaluation

Not only have the above theoretical contributions been elaborated on paper, but they

have been implemented as well. This implementation mostly took place in our automated

termination analyzer AProVE [GST06] and—for Contribution (v)—partly in an external

tool [FS10] building upon AProVE. In the course of the development of AProVE, the author

of the present thesis has been one of the lead developers and contributed over 57 000 lines

18 Chapter 1. Introduction

of code to the sources of AProVE, which is implemented in Java. Additionally, the author

has also conducted extensive experiments to evaluate this implementation empirically.

The practical contributions of this thesis can be summarized as follows:

(vi) We have implemented the encodings described in contributions (i) – (iii) in such

a way that they can be plugged into different processors of the dependency pair

framework [GTS05a].

We have conducted extensive empirical evaluations to assess the impact of these

contributions. Here, our experiments show performance improvements by orders of

magnitude over existing algorithms for Contribution (i). For Contributions (ii) and

(iii) we report on notable improvements of power of our termination tool AProVE

in practical settings.

(vii) For Contribution (iv), we provide the first implementation that allows for a system-

atic search of suitable abstractions for the size-change termination method for term

rewriting. Prior to our contributions, the state of the art was to enumerate possible

abstractions and then to check for size-change termination.

Using suitable SAT encodings, we obtain the first implementation of size-change

termination that allows to search for the abstraction at the same time as for the

size-change termination argument. In our empirical evaluation, this implementation

shows significant improvements in power and speed over previous implementations

of size-change termination analysis for term rewriting.

(viii) We have built a small stand-alone tool for synthesis of Boolean XOR circuits on top

of the SAT framework of AProVE. Using this tool and an arbitrary SAT solver as

a back-end, we can automatically obtain minimal circuits (or, equivalently, linear

straight-line programs over GF(2)) for a given specification. This class of programs

has applications, e.g., in cryptography, and using our tool, we have obtained a

minimal implementation as well as an optimality proof for an important part of the

widely used symmetric cipher AES.

The significance of Contributions (vi) and (vii) is also underlined by the fact that

AProVE could maintain its highest score in the term rewriting category of the International

Termination Competition over the years 2007 – 2011 and that AProVE has been scoring

highest in the string rewriting category since 2009.

The SMT Perspective

From the point of view of SMT solving, the contributions of this thesis are interesting on

different levels.

19

• From a high-level perspective, Contributions (i) and (ii) have the particularly nice

property that the encodings lead to constraints in the rather expressive SMT-NIA

language. While nowadays SAT encodings indeed do constitute the state of the art

for this class of constraints, with the ongoing advances in SMT solving, it is quite

possible that in the future other means of constraint solving are developed which

are more efficient for the SMT-NIA instances from our applications. These can then

directly be used as drop-in replacements for the current SAT-based approaches to

solving SMT-NIA instances.

From an SMT perspective, Contributions (i) and (ii) are thus concerned with the

generation of constraints in SMT-NIA.

• Contribution (iii) in contrast primarily advances the state of the art in SAT encod-

ings for SAT modulo the theory of linear arctic arithmetic. Thus, this contribution is

independent of the application area of termination analysis and can also be used as a

back-end for constraints from linear arctic arithmetic arising from entirely different

applications.

From an SMT perspective, Contribution (iii) is thus primarily concerned with solving

of SMT problems (for linear arctic arithmetic).

• Contribution (iv) is based on an underlying SAT encoding. Since any SMT solver

also includes a SAT solver, this contribution can also directly be lifted to underlying

SMT encodings for the base orders instead of SAT encodings.

From an SMT perspective, Contribution (iv) is thus concerned with building on a

given (SAT or SMT) encoding to generate a more complex problem instance.

• Contribution (v) is presented by means of a SAT encoding. Here, we give the

building blocks of this encoding on a sufficiently high level to allow for an easy

implementation of the encoding also in a richer language. For instance, in [Ban10],

Mutsunori Banbara reports on his implementation of the encoding in the input

language of the Constraint Satisfaction Problem (CSP) solver Sugar [TTKB09] based

on our problem description in [FS10].

Thus, from an SMT perspective, Contribution (v) again is about generating SAT

instances, which can also be implemented in richer SMT languages. In contrast to

Contributions (i) – (iv), here not only a satisfiability proof is helpful, but also an

unsatisfiability proof is needed if one wants to show optimality.

Hitherto Unpublished Contributions

The author has already published preliminary versions of important parts of this the-

sis in 14 joint articles in international journals and peer-reviewed conference proceed-

20 Chapter 1. Introduction

ings [SES+12, FK11, KST+11, FGP+11, CGB+11, CFFS11, CFGS10, FS10, SPG+09,

FGP+09, AEF+08, FNO+08, FGM+08, FGM+07].

Nevertheless, this thesis contains a large number of significant contributions that have

not been published so far:

• Contribution (i) extends the conference publication [FGM+07] by the correctness

proof for the presented SMT-NIA encoding. Moreover, we provide a novel neces-

sary syntactic criterion for negative constants for the presented class of polynomial

orders with negative constants, along with the correctness proof and an empirical

evaluation.

• Contribution (ii) extends the conference publication [FGM+08] by means of several

successful heuristics for the shape of the used max-interpretations. The need for

such heuristics is pointed out both by empirical observations in practice as well as

by showing that the presented technique may lead to an exponential blowup in size

if no suitable heuristics are employed. This latter example also constitutes a novel

contribution. Additionally, we provide novel transformation rules which allow to

avoid the exponential blowup in certain cases. Moreover, we assess the applicability

of Contribution (ii) for the setting of Contribution (i) in practice.

• Contribution (iii) is novel and unpublished.

• Contribution (iv) extends the conference paper [CFGS10] by the correctness proof

for the presented technique. To facilitate this proof, we propose the novel notion

of tuple-typed dependency pair problems as well as criteria for switching between

the classic untyped and the tuple-typed setting. This new contribution allows for

smoother adaptions of termination techniques that originate outside of term rewrit-

ing. Also the example TRS which demonstrates the advantages of SCNP has not

been present in the conference paper.

• Contribution (v) extends the conference paper [FS10] by a new optimality proof for

our AES case study, which has not been formally published.

Thesis Structure

This thesis is organized as follows. In Chapter 2, we set up the scenario for most of

the contributions of the thesis. Here, we recapitulate the basics of term rewriting, the

dependency pair framework, and weakly monotone algebras for termination proving as

well as the parametric approach to automatically search for suitable such algebras. In

Chapter 3 we present Contribution (i) of this thesis, i.e., the novel SMT-based automation

of polynomials with a negative constant. Contribution (ii) about extending polynomial

interpretations by the maximum function is given in Chapter 4. We provide Contribution

21

(iii) on an improved SAT encoding for the constraints arising in termination analysis with

arctic matrix interpretations in Chapter 5. Chapter 6 then contains Contribution (iv),

i.e., the first automation of size-change termination in NP for term rewriting allowing

to search for the underlying term abstraction and for the size-change termination argu-

ment via a single SAT instance. Contribution (v), which lifts the parametric approach

followed throughout this thesis to the area of synthesis of optimal Boolean XOR circuits,

is presented in Chapter 7. Finally, in Chapter 8 we conclude this thesis with an outlook

on possible next steps in the endeavors of automated termination analysis and, more

generally, improving the methodology of problem solving via SAT and SMT encodings.

2 Preliminaries

In this chapter we set up the scenario in which the first chapters of this thesis takes place.

In Section 2.1 we recapitulate the basic definitions and theorems of (first-order) term

rewriting (cf. [BN98]). Section 2.2 deals with dependency pairs [AG00] and the depen-

dency pair framework (following [GTSF06]). In Section 2.3 we discuss weakly monotone

algebras [EWZ08] and, specifically, polynomial interpretations [Lan79] to N and their

automation [CMTU05, FGM+07]. Throughout this thesis, we define the set of natural

numbers to be N := {0, 1, 2, . . .}.
Note that our main goal in the first chapters of this thesis is to make the dependency pair

framework more powerful in practice. On the one hand, we aim for improving automation

of existing techniques such that we need less resources to drive the automated termination

proof effort and thus effectively increase the number of successful termination proofs

within a given time limit. On the other hand, we define extensions of the dependency

pair framework in the form of new reduction pairs and processors. This way, we increase

termination proving power also from a theoretical point of view.

2.1 Term Rewriting

In this section we briefly recapitulate the basics and underlying concepts of term rewriting

and fix the corresponding notations. For more details, we refer to the textbook [BN98],

which also forms the basis for the presentation in this section.

A signature F is a non-empty finite set of function symbols. Each function symbol f

has an associated arity ar(f) = n ∈ N. Function symbols with arity 0 are called constant

symbols or constants. For a signature F and a (finite or infinite) set of variables V with

F ∩V = ∅, the set of terms T (F ,V) (over V) is inductively defined via (1) V ⊆ T (F ,V)

and (2) f ∈ F , ar(f) = n, t1, . . . , tn ∈ T (F ,V)⇒ f(t1, . . . , tn) ∈ T (F ,V). For constants

c, we write c instead of c() to denote the term that only consists of the symbol c. We write

T (F) to abbreviate T (F ,∅), i.e., the set of all terms without variables or ground terms.

For a term t, Var(t) denotes the set of all variables occurring in t, and for T ⊆ T (F ,V),

we define Var(T) =
⋃
t∈T Var(t). Likewise, F(t) denotes the set of all function symbols

occurring in t, and for T ⊆ T (F ,V), we define F(T) =
⋃
t∈T F(t).

Pos(t) denotes the set of all positions of t for a term t where Pos(t) is the smallest subset

of N∗ with (1) ε ∈ Pos(t) and (2) t = f(t1, . . . , tn), 1 ≤ i ≤ n, π ∈ Pos(ti)⇒ iπ ∈ Pos(t).

24 Chapter 2. Preliminaries

The size of a term t is defined as |t| = |Pos(t)|. For π ∈ Pos(t), we write t|π to denote the

subterm of t at position π defined inductively via (1) t|ε = t and (2) f(t1, . . . , tn)|iπ = ti|π.

To denote that s is a subterm of t at some position π, we also write t � s. We call s a

strict subterm of t if s is a subterm of t and s 6= t and write s � t. If t and s are terms

and if π ∈ Pos(t), we write t[s]π to denote the term resulting from t if t|π is replaced

by s, i.e., (1) t[s]ε = s and (2) f(t1, . . . , tn)[s]iπ = f(t1, . . . , ti[s]π, . . . , tn). The function

root : (T (F ,V) \ V)→ F is used to map a non-variable term t = f(t1, . . . , tn) to its root

symbol f at the root position ε.

A substitution is a mapping σ : V → T (F ,V). DOM (σ) = {x ∈ V | σ(x) 6= x} denotes

the domain of σ.8 We often write {x/σ(x) | x ∈ DOM (σ)} to represent the substitution σ

if DOM (σ) is finite. The notion of a substitution σ extends homomorphically to a mapping

σ : T (F ,V) → T (F ,V), i.e., σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)). We also write tσ for

σ(t). We call a relation ∼ stable if s ∼ t implies sσ ∼ tσ for all substitutions σ and

terms s, t. A relation ∼ is monotonic if s ∼ t implies f(u1, . . . , ui−1, s, ui+1, . . . , un) ∼
f(u1, . . . , ui−1, t, ui+1, . . . , un) for all n ∈ N, f ∈ F with ar(f) = n, 1 ≤ i ≤ n, and

u1, . . . , ui−1, s, t, ui+1, . . . , un ∈ T (F ,V).

A (rewrite) rule (over a signature F and a set of variables V) is a pair (`, r) of two

terms `, r ∈ T (F ,V) (usually written ` → r) where (1) Var(r) ⊆ Var(`) and (2) ` /∈ V .

For a rule `→ r, we call ` the left-hand side (lhs) and r the right-hand side (rhs). A term

rewrite system (TRS) (over F and V) is a set of rewrite rules. We only consider finite

TRSs.

The (term) rewrite relation →R⊆ T (F ,V)×T (F ,V) for a TRS R is defined such that

s →R t iff s = s[`σ]π and t = s[rσ]π for a position π ∈ Pos(s), a rule ` → r ∈ R, and a

substitution σ. We call s →R t a (term) rewrite step, and s is reduced at position π. A

term s is called an (R-)redex (reducible expression) iff there exist a rule ` → r ∈ R and

a substitution σ such that s = `σ (i.e., s can be rewritten by R at the root position). A

(finite or infinite) sequence of rewrite steps t1 →R t2 →R t3 →R . . . is also called a rewrite

sequence. A term s is in normal form w.r.t. a TRS R iff there is no t with s→R t.
A TRS R is terminating iff→R is well founded, i.e., there is no infinite rewrite sequence

t0 →R t1 →R t2 →R

Example 2.1 (Bits, version 1). Consider the following TRS over the signature F =

{0, s, half, bits}. Here s represents the successor function, half(x) computes bx
2
c, and bits(x)

8Note that we also allow infinite domains for substitutions.

2.2. The Dependency Pair Framework 25

is the number of bits needed to represent all numbers up to x.

half(0)→ 0 (2.1)

half(s(0))→ 0 (2.2)

half(s(s(x)))→ s(half(x)) (2.3)

bits(0)→ 0 (2.4)

bits(s(0))→ s(0) (2.5)

bits(s(s(x)))→ s(bits(s(half(x)))) (2.6)

For the term t = bits(s(s(half(0)))) we have the following rewrite sequence (where we

underline the subterm `σ at which the reduction takes place):

bits(s(s(half(0))))→R bits(s(s(0)))→R s(bits(s(half(0))))→R s(bits(s(0)))→R s(s(0))

There is also the following alternative rewrite sequence starting from t:

bits(s(s(half(0))))→R s(bits(s(half(half(0)))))→R s(bits(s(half(0))))→R s(bits(s(0)))

→R s(s(0))

2.2 The Dependency Pair Framework

In this section, we describe the main components of the dependency pair framework (DP

framework). This framework has become the de facto standard setting for automated

termination proofs for term rewrite systems, and we have embedded also the contributions

of this thesis for term rewriting into this framework. For more details on the DP framework

cf., e.g., [GTSF06, Thi07].

Given a TRS R over a signature F , the defined symbols DR ⊆ F are the set of root

symbols of the left-hand sides of the rules of R. We often write D instead of DR if R
is clear from the context (or irrelevant). For each defined symbol f ∈ D, we introduce a

corresponding fresh tuple symbol f] with the same arity as f . For the sake of readability,

in examples we often write F instead of f]. If t = g(t1, . . . , tn) with g ∈ D, t] denotes the

term g](t1, . . . , tn).

Now we can define the notion of dependency pairs.

Definition 2.2 (Dependency Pair [AG00]). The set of dependency pairs (DPs) for a

TRS R is DP(R) = {`] → t] | `→ r ∈ R, r � t, root(t) ∈ DR}.

Intuitively, a dependency pair corresponds to a function call that occurs because of a

rewrite step.

26 Chapter 2. Preliminaries

Example 2.3 (Dependency Pairs for Example 2.1). The dependency pairs DP(R) of the

TRS R from Example 2.1 are:

HALF(s(s(x)))→ HALF(x) (2.7)

BITS(s(s(x)))→ HALF(x) (2.8)

BITS(s(s(x)))→ BITS(s(half(x))) (2.9)

We can use dependency pairs for proving termination of the rewrite relation →R. For

this, we need the concept of chains. Intuitively, a chain of dependency pairs corresponds

to a sequence of function calls that occur during the reduction of a term. Here, we assume

different occurrences of dependency pairs to be variable disjoint.

Definition 2.4 ((P ,R)-Chain [GTSF06]). Let P and R be TRSs. A (finite or infinite)

sequence of pairs s1 → t1, s2 → t2, . . . from P is a (P ,R)-chain (or just chain) iff

there exists a substitution σ such that tiσ →∗R si+1σ holds for every two consecutive pairs

si → ti and si+1 → ti+1. The (P ,R)-chain is minimal if there exists no tiσ with an

infinite reduction tiσ →R u1 →R u2 →R . . . for some u1, u2, . . .

In other words, a chain is minimal if all arguments of the right-hand sides of the pairs are

terminating with respect to →R. This corresponds to function calls where all arguments

of the call themselves are terminating. Hence, one must evaluate the function call at the

root of the term itself in order to obtain an infinite evaluation sequence.

Theorem 2.5 (Termination Criterion with (P ,R)-Chains [AG00, GTS05a]). A TRS R
is terminating iff no infinite minimal (DP (R),R)-chain exists.

Absence of infinite minimal chains for (DP (R),R) thus implies that there cannot be

infinitely many function calls during any reduction of an arbitrary term t. Of course, this

implies that absence of infinite minimal (DP (R),R)-chains is undecidable.

To prove automatically that there is no infinite minimal chain, we consider the notions

of DP problems and of DP processors to transform such DP problems. Together, these

definitions result in the DP framework. This way, we can perform modularized and incre-

mental termination proofs since we can transform and simplify intermediate subproblems

independently from each other via different techniques.

Definition 2.6 (DP Problem [GTS05a, GTSF06, Thi07]). A dependency pair problem

(DP problem) is a pair (P ,R) of two TRSs P and R.9 By extension of the DP approach

9For the sake of readability, we do not use a set Q of terms for fine-grained control over the rewrite
strategy of the rewrite relation [GTS05a, Thi07]. Neither do we introduce a flag which indicates if we
consider full or innermost termination (as in [GTSF06]). In this thesis, we do not impose any strategy
restriction on the rewrite relation. Note that a proof of (full) termination also implies termination
w.r.t. arbitrary rewrite strategies.

Moreover, we do not introduce a flag which states whether we regard arbitrary chains or only
minimal chains (as in [GTS05a, Thi07]). To present the contributions of this thesis, it suffices to
regard minimal chains.

2.2. The Dependency Pair Framework 27

[AG00], we call a rule from P also a dependency pair.

We call a DP problem (P ,R) finite if no infinite minimal (P ,R)-chain exists.

The initial DP problem for termination analysis of a TRS R has the form (DP(R),R).

Using Theorem 2.5 and Definition 2.6, we can now restate the termination criterion:

Corollary 2.7 (Termination Criterion for DP Problems [GTS05a, GTSF06, Thi07]). A

term rewrite system R is terminating iff the DP problem (DP(R),R) is finite.

With the goal of showing termination of the original term rewrite system, we transform

DP problems via termination proving techniques in the form of dependency pair processors

(DP processors).

Definition 2.8 (DP Processor [GTS05a, GTSF06, Thi07]). A dependency pair processor

(DP processor) is a function Proc that takes a DP problem as input and returns a (possibly

empty) set of DP problems as output. A DP processor Proc is sound if for all DP problems

d, d is finite whenever Proc(d) is a set of finite DP problems.

Soundness of Proc is required to use Proc as part of a proof of termination. Corollary

2.9, which is a consequence of Corollary 2.7 and Definition 2.8, then yields a framework

for termination analysis where several different DP processors can be combined. We

start with the initial DP problem (DP (R),R) and transform the resulting DP problems

repeatedly by sound DP processors. If the final processors return empty sets of DP

problems, termination is proved.

Corollary 2.9 (Dependency Pair Framework [GTS05a, GTSF06, Thi07]). Let R be a

TRS. We construct a tree whose nodes are labeled with DP problems or “yes” and whose

root is labeled with (DP (R),R). For every inner node labeled with d, there is a sound DP

processor Proc that satisfies one of the following conditions:

• Proc(d) = ∅ and the node has just one child, labeled with “yes”

• Proc(d) 6= ∅, and the children of the node are labeled with the DP problems in

Proc(d)

If all leaves of the tree are labeled with “yes”, then R is terminating.10

Well-founded orders on terms are among the most classic techniques for showing termi-

nation. In the DP framework, these are used most prominently in the form of reduction

pairs.

10Analogously, [GTS05a, GTSF06, Thi07] define a more extended version of the DP framework which
can also be used for proofs of non-termination. There, processors can also return “no” instead of a set
of DP problems. This allows to conclude non-termination of the original input TRS, provided that all
processors applied on the path to the root of the tree are complete (a dual property to sound). Since
the present thesis is not about non-termination, we omit this aspect of the definition of DP processors
and the DP framework.

28 Chapter 2. Preliminaries

Definition 2.10 (Reduction Pair). Let % be a stable and monotonic quasi-ordering, let

� be a (not necessarily monotonic) stable and well-founded ordering. Moreover, let % ◦ �
⊆ � and � ◦ % ⊆ � (i.e., � is compatible with %). Here, ◦ denotes the composition

of two relations, i.e., �1 ◦ �2 = {(a, c) | ∃b : a �1 b ∧ b �2 c}. Then we call (%,�) a

(weakly monotonic) reduction pair. If moreover � is monotonic as well, we call (%,�)

a strongly monotonic reduction pair. Given a reduction pair (%,�) and a rule s → t,

we say that the reduction pair orients the rule strictly if s � t holds, and we call the rule

strictly decreasing. Moreover, we say that the reduction pair orients the rule weakly if

s % t holds, and we call the rule weakly decreasing.

For the application of reduction pairs to a DP problem in the DP framework, in many

cases it suffices not to deal with all rules of R in (P ,R). Instead, it suffices to orient

only the usable rules. These include all rules that can be used to reduce the terms in

right-hand sides of P when their variables are instantiated with normal forms. We use

the following definition of usable rules:

Definition 2.11 (Usable Rules [AG00, GTS05b]). Let R be a TRS. For any function

symbol f , let Rls(f) = {`→ r ∈ R | root(`) = f}. For any term t, the usable rules UR(t)

are the smallest set such that

• UR(x) = ∅ for every variable x and

• UR(f(t1, . . . , tn)) = Rls(f) ∪ ⋃`→r∈Rls(f) UR(r) ∪ ⋃1≤i≤n UR(ti)

For a TRS P, its usable rules are UR(P) =
⋃
s→t∈P UR(t).

Example 2.12 (Initial DP Problem and Usable Rules for Example 2.1). Consider again

the TRS R from Example 2.1. The initial DP problem for termination analysis of R is

(DP(R),R) (cf. Example 2.3). The usable rules for the set of dependency pairs DP(R)

are the half-rules, i.e., UR(DP(R)) = {(2.4), (2.5), (2.6)}.
An additional requirement on the quasi-order % of the reduction pair is needed to

make the restriction to the usable rules in the reduction pair processor sound. One has

to demand that % is Cε-compatible, i.e., that c(x, y) % x and c(x, y) % y hold for a fresh

function symbol c [GTSF06, HM07].11

Using reduction pairs, we can now formulate a corresponding DP processor which allows

to delete dependency pairs from a DP problem:

Theorem 2.13 (Reduction Pair Processor [GTSF06]). Let (%,�) be a reduction pair.

Then the following DP processor Proc, called the reduction pair processor, is sound.12

11This is not a strong restriction in practice since most commonly used quasi-orders in reduction pairs
are Cε-compatible. An exception are equivalence relations.

12A more sophisticated version of the reduction pair processor also makes use of usable rules w.r.t. the
(implicit) argument filtering of the reduction pair. To present the contributions of this thesis, this
simpler version of the reduction pair processor is sufficient.

2.2. The Dependency Pair Framework 29

Here, Proc((P ,R)) =

• {(P \ �,R)}, if P ⊆ � ∪ % and one of the following holds:

– UR ⊆ % and % is Cε-compatible

– R ⊆ %

• {(P ,R)}, otherwise

Example 2.14 (Reduction Pair Processor Constraints for Example 2.1). Consider again

the TRS R from Example 2.1, its initial DP problem (DP(R),R), and the usable rules

UR(DP(R)) (cf. Example 2.12). We can use the reduction pair processor to delete all de-

pendency pairs fromDP(R) in the DP problem (DP(R),R) if we can find a Cε-compatible

reduction pair (%,�) such that the following term constraints hold:

HALF(s(s(x))) � HALF(x) (2.10)

BITS(s(s(x))) � HALF(x) (2.11)

BITS(s(s(x))) � BITS(s(half(x))) (2.12)

half(0) % 0 (2.13)

half(s(0)) % 0 (2.14)

half(s(s(x))) % s(half(x)) (2.15)

Of course, it is worth mentioning that the literature contains many more DP processors.

Another widely applied DP processor is the dependency graph processor. It is based on

the notion of the dependency graph [AG00] of a DP problem. In a dependency graph

for a DP problem (P ,R), the nodes are DPs from P , and there is an edge between two

DPs s → t and u → v iff a (P ,R)-chain s → t, u → v exists. Since this is undecid-

able, one works on overestimations of the dependency graph. The dependency graph

processor [AG00, GTS05a] then deletes DPs that are not on a cycle in the dependency

graph and decomposes the dependency graph into its strongly connected components

with the sets of nodes P1, . . . ,Pn. As output, one then obtains the set of DP problems

{(P1,R), . . . , (Pn,R)}. This way, one can conduct termination proofs in a modularized

way (i.e., termination proofs for functions that are not mutually recursive can be per-

formed separately).

Moreover, there are processors using DP transformations like narrowing, rewriting, or

instantiation [GTSF06], which essentially perform partial and symbolic evaluation on the

DPs to simplify DP problems. Techniques like the A-transformation [GTS05b, Thi07]

and uncurrying [HMZ08, ST11a] allow to convert a DP problem in higher-order curried

notation into uncurried representation. One can apply strongly monotonic reduction pairs

to delete not only DPs, but also rules from R using the rule removal processor [GTS05a].

Furthermore, the size-change termination [LJB01] criterion has been adapted to the DP

30 Chapter 2. Preliminaries

framework by [TG05, CFGS10]. Several variants of semantic labeling [Zan95] are available

as DP processors (cf., e.g., [Thi07, SM08, ST11b]). This list is by far not exhaustive; see,

e.g., [Thi07] for further DP processors.

2.3 Weakly Monotone Algebras and Polynomial

Interpretations

Many of the orders considered in this thesis stem from interpretations of function symbols

and terms to a weakly monotone algebra, like polynomial interpretations with a negative

constant [HM07] in Chapter 3, the max-polynomial interpretations of Chapter 4, and arctic

interpretations [KW08] in Chapter 5. We also use standard polynomial interpretations

over N [Lan79] in examples throughout this thesis. To set up the symbolic constraints for

the automatic search for polynomial interpretations, we follow the parametric approach

of [CMTU05].

Definition 2.15 (Weakly Monotone Algebra [EWZ08]). An F-algebra A = (A, [·]A)

consists of a non-empty carrier set A and, for every f ∈ F with ar(f) = n, a function

[f]A : An → A. We call [f]A (= [f]A(x1, . . . , xn)) an interpretation of f .

Interpretations extend homomorphically from function symbols to terms, i.e., [x]A = x

for all x ∈ V and [f(t1, . . . , tn)]A = [f]A([t1]A, . . . , [tn]A) for all function symbols f of

arity n and all terms t1, . . . , tn. We often write [f] for [f]A and [t] for [t]A if A is clear

from the context or irrelevant.

A function [f] : An → A is monotonic with respect to a relation ∼ ⊆ A× A if for all

1 ≤ i ≤ n and all a1, . . . , ai−1, b, c, ai+1, . . . , an ∈ A where b ∼ c, we also have:

[f](a1, . . . , ai−1, b, ai+1, . . . , an) ∼ [f](a1, . . . , ai−1, c, ai+1, . . . , an)

We then call (A,≥, >) a weakly monotone algebra iff

• For all f ∈ F , [f] is monotonic with respect to ≥,

• > is well founded,

• > ◦ ≥ ⊆ >,

• ≥ ◦ > ⊆ >,

• > is transitive, and

• ≥ is reflexive and transitive.13

13The last three properties are not required in [EWZ08, Def. 1]. However, these additional requirements
conveniently correspond to our definition of reduction pairs, which in turn simplifies proofs in Section 6,
and we are not aware of any weakly monotone algebra (as in [EWZ08, Def. 1]) used in termination
proving practice where these requirements do not hold.

2.3. Weakly Monotone Algebras and Polynomial Interpretations 31

The relations ≥, > ⊆ A × A carry over to relations %A,�A on terms s, t, where w.l.o.g.

Var(s) ∪ Var(t) = {x1, . . . , xk}, by:

s %A t iff ∀x1, . . . , xk ∈ A : [s] ≥ [t]

s �A t iff ∀x1, . . . , xk ∈ A : [s] > [t]

If the carrier and the relations associated to a weakly monotone algebra are clear from the

context, we often only give the interpretation explicitly.

The pair of relations (≥, >) on the algebra A thus gives rise to a pair of relations

(%A,�A) on terms.

Theorem 2.16 (Weakly Monotone Algebras Give Rise to Reduction Pairs). Let (A,≥, >)

be a weakly monotone algebra. Then (%A,�A) is a reduction pair.

Proof. [EWZ08, Theorem 2, Part 2] and its proof directly carry over to our definition of

weakly monotone algebras and the induced term relations. This adapted theorem then

implies the present theorem (cf. also [ZM09, Theorem 3], which makes a corresponding

statement for polynomial interpretations).

One of the most classic (weakly) monotone algebras in termination proving for term

rewriting uses N as carrier and the standard orders ≥ and > for comparison. All in-

terpretation functions are polynomial functions (also simply called polynomials). Such

functions can be defined by composing the operations “+” and “∗” on variables and con-

stants from N. This way, one always obtains weakly monotonic interpretations.14 Such

interpretations are also known as polynomial interpretations [Lan79].

Example 2.17 (Polynomial Interpretation for Example 2.14). Consider the weakly mono-

tone algebra (A,≥, >) with carrier N and the following polynomial interpretation

[BITS](x1) = x1 (2.16)

[HALF](x1) = x1 (2.17)

[half](x1) = x1 (2.18)

[s](x1) = x1 + 1 (2.19)

[0] = 0 (2.20)

With this interpretation, the constraints from Example 2.14 are satisfied. Since there are

no dependency pairs left in the resulting DP problem, there cannot be any infinite chain,

and we can conclude termination of the TRS from Example 2.1.

14In recent work [NMZ10], the authors present criteria for weak monotonicity of certain polynomial func-
tions on N where coefficients may be negative, e.g., [f](x) = x2−x. Since this result is independent of
the contributions of this thesis, for simplicity we do not use weak monotonicity of such interpretations.

32 Chapter 2. Preliminaries

Note that in general it is not decidable whether s �A t or s %A t holds. For instance,

if A uses polynomial interpretations to N, then undecidability of s �A t and s %A t

follows from undecidability of Hilbert’s 10th problem [Mat70]. Therefore, for automation

it is common to use decidable sufficient criteria instead. For polynomial interpretations,

a widely used criterion is the absolute positiveness criterion.

Theorem 2.18 (Absolute Positiveness Criterion [HJ98]). Let p by a polynomial which

w.l.o.g. has the following shape, where p0, . . . , pn are integers, where all ei,j ∈ N, and

where for all i we have e1i + . . .+ eni ≥ 1.

p = p0 + p1 x
e11
1 . . . xen1

n + · · ·+ pk x
e1k
1 . . . xenk

n (2.21)

Instead of inequalities or equalities of the form p > 0, p ≥ 0, or p = 0 (where x1, . . . , xn are

implicitly universally quantified over N), it suffices15 to require the following constraints

[HJ98], respectively:

αp>0 = (p0 > 0 ∧ p1 ≥ 0 ∧ . . . ∧ pk ≥ 0) (2.22)

αp≥0 = (p0 ≥ 0 ∧ p1 ≥ 0 ∧ . . . ∧ pk ≥ 0) (2.23)

αp=0 = (p0 = 0 ∧ p1 = 0 ∧ . . . ∧ pk = 0) (2.24)

Corollary 2.19. If p is a polynomial as in (2.21) where for all i we have e1i+. . .+eni = 1

(i.e., p is a “linear polynomial”), then

• p > 0 holds iff αp>0 holds,

• p ≥ 0 holds iff αp≥0 holds, and

• p = 0 holds iff αp=0 holds.

To see that the given polynomial interpretation from Example 2.17 indeed satisfies

the term constraints from Example 2.14, consider, e.g., the constraint BITS(s(s(x))) �
BITS(s(half(x))). Using this interpretation, we obtain the corresponding polynomial con-

straint x+ 2 > x+ 1 or, equivalently, 1 + 0 ·x > 0. To check via the absolute positiveness

criterion whether this constraint holds, instead we consider the constraint α1+0·x>0 = 1 >

0 ∧ 0 ≥ 0. Since α1+0·x>0 indeed holds, we get that 1 + 0 · x > 0 holds for all x ∈ N.

Therefore, the given interpretation indeed satisfies BITS(s(s(x))) � BITS(s(half(x))).

For automation of the search for a polynomial interpretation to give rise to a reduction

pair which solves a set of term constraints, [CMTU05] propose a parametric approach. The

carrier N and the orders ≥ and > are fixed beforehand, whereas suitable interpretations

of the function symbols still need to be found. Initially, [CMTU05] fix the shape of the

15Of course, αp>0 and αp≥0 are sufficient, but in general not necessary for p > 0 and p ≥ 0. Stronger
criteria are presented, e.g., in [NMZ10].

2.3. Weakly Monotone Algebras and Polynomial Interpretations 33

polynomial interpretations, which is often specified by the degree of the polynomial, but

they do not fix the values for the coefficients.

Definition 2.20 (Parametric Polynomial, Interpretation, Coefficient [CMTU05]). In a

parametric (polynomial) interpretation each n-ary symbol f is mapped to a parametric

polynomial of the form

a0 + a1 x
e11
1 . . . xen1

n + . . . + am xe1m
1 . . . xenm

n (2.25)

Here, the eij are actual numbers, so the degree and the shape of the polynomials are fixed

beforehand. In contrast, the coefficients ai are left open (i.e., they are parametric or

variable coefficients).

In practice, linear polynomial interpretations are a rather widely used choice for this

setting.

Example 2.21 (Parametric Interpretation for Example 2.14). For the term constraints

from Example 2.14, we could use a parametric interpretation [·]B with linear polynomials

[BITS](x1) = B1 x1 + B0, [HALF](x1) = H1 x1 + H0, [half](x1) = h1 x1 + h0, [s](x1) =

s1 x1 + s0, and [0] = z0. Here, B0, B1, H0, . . . are the parameters of the interpretation.

Extending a parametric interpretation to terms and term constraints then works exactly

the same way as for a concrete interpretation.

Example 2.22 (Example 2.21 continued). In case of the term constraints (2.13), (2.14),

and (2.15), we obtain the following polynomial constraints:

h0 + h1z0 ≥ z0 (2.26)

h0 + h1s0 + h1s1z0 ≥ z0 (2.27)

h0 + h1s0 + h1s1s0 + h1s
2
1x ≥ s0 + s1h0 + s1h1x (2.28)

The term constraints (2.10), (2.11), and (2.12) yield the following constraints:

H0 +H1s0 +H1s1s0 +H1s
2
1x > H0 +H1x (2.29)

B0 +B1s0 +B1s1s0 +B1s
2
1x > H0 +H1x (2.30)

B0 +B1s0 +B1s1s0 +B1s
2
1x > B0 +B1s0 +B1s1h0 +B1s1h1x (2.31)

Note that only the variable x is (implicitly) universally quantified.

Also absolute positiveness is applicable in the parametric setting.

34 Chapter 2. Preliminaries

Example 2.23 (Example 2.22 continued). Towards applying the absolute positiveness

criterion, we simplify the constraints from Example 2.22 and obtain

h0 + h1z0 − z0 ≥ 0 (2.32)

h0 + h1s0 + h1s1z0 − z0 ≥ 0 (2.33)

h0 + h1s0 + h1s1s0 − s0 − s1h0 + (h1s
2
1 − s1h1)x ≥ 0 (2.34)

H1s0 +H1s1s0 + (H1s
2
1 −H1)x > 0 (2.35)

B0 +B1s0 +B1s1s0 −H0 + (B1s
2
1 −H1)x > 0 (2.36)

B1s1s0 −B1s1h0 + (B1s
2
1 −B1s1h1)x > 0 (2.37)

Having transformed the constraints into the shape required in Theorem 2.18, we now

replace all constraints p > 0 and p ≥ 0 by αp>0 and αp≥0, respectively. This way,

the universally quantified variables (here: x) are eliminated. We obtain the following

conjunction:

h0 + h1z0 − z0 ≥ 0 ∧ (2.38)

h0 + h1s0 + h1s1z0 − z0 ≥ 0 ∧ (2.39)

h0 + h1s0 + h1s1s0 − s0 − s1h0 ≥ 0 ∧ (2.40)

h1s
2
1 − s1h1 ≥ 0 ∧ (2.41)

H1s0 +H1s1s0 > 0 ∧ (2.42)

H1s
2
1 −H1 ≥ 0 ∧ (2.43)

B0 +B1s0 +B1s1s0 −H0 > 0 ∧ (2.44)

B1s
2
1 −H1 ≥ 0 ∧ (2.45)

B1s1s0 −B1s1h0 > 0 ∧ (2.46)

B1s
2
1 −B1s1h1 ≥ 0 (2.47)

In order to make sure that only non-negative solutions are found, we explicitly introduce

suitable side constraints on the parametric variables:

B0 ≥ 0 ∧B1 ≥ 0 ∧H0 ≥ 0 ∧H1 ≥ 0 ∧ h0 ≥ 0 ∧ h1 ≥ 0 ∧ s0 ≥ 0 ∧ s1 ≥ 0 ∧ z0 ≥ 0 (2.48)

So to solve a set of term constraints we have to show the satisfiability of such Diophan-

tine constraints.16 Definition 2.24 introduces their syntax and semantics.

Definition 2.24 (Diophantine Constraints). Let A be a set of Diophantine variables.

The set of polynomials P is the smallest set with

16In honor of the ancient Greek mathematician Diophantus of Alexandria, formulas over integer arith-
metic (in)equalities are often also referred to as Diophantine constraints.

2.3. Weakly Monotone Algebras and Polynomial Interpretations 35

• A ⊆ P and N ⊆ P

• If {p, q} ⊆ P then {p+ q, p− q, p ∗ q} ⊆ P

The set of Diophantine constraints (also called (quantifier-free) SMT-NIA formulas) C is

the smallest set with

• {true, false} ⊆ C

• If {p, q} ⊆ P then {p ≥ q, p > q, p = q} ⊆ C

• If {α, β} ⊆ C then {¬α, α ∧ β, α ∨ β, α→ β, α↔ β, α⊕ β} ⊆ C

A Diophantine interpretation D is a mapping D : A → Z. It can be extended to polynomi-

als by defining D(n) = n for all n ∈ Z, D(p+ q) = D(p) +D(q), D(p− q) = D(p)−D(q),

and D(p ∗ q) = D(p) ∗D(q). It can also be extended to Diophantine constraints as follows

(i.e., we then have D : C → {0, 1}, where 0 stands for “false” and 1 stands for “true”).

As usual, D is called a model of a constraint α iff D(α) = 1.

• D(true) = 1, D(false) = 0

• D(p ≥ q) = 1 if D(p) ≥ D(q) and D(p ≥ q) = 0, otherwise

• D(p > q) = 1 if D(p) > D(q) and D(p > q) = 0, otherwise

• D(p = q) = 1 if D(p) = D(q) and D(p = q) = 0, otherwise

• D(¬α) = 1 if D(α) = 0 and D(¬α) = 0, otherwise,

and similarly for the other Boolean connectives, where ⊕ is exclusive-or

For example, let a ∈ A and let D with D(a) = 2. Then D(2∗a) = D(2)∗D(a) = 2∗2 = 4

and D(1 + a) = 3. Thus, D(2 ∗ a > 1 + a) = 1, since 4 > 3.

Similarly, the constraint (2.40) is satisfied by the interpretation D with D(h1) =

D(s0) = D(s1) = 1 and D(h0) = 0. This Diophantine interpretation instantiates the

parametric polynomial interpretation [·]B from Example 2.21 with [half]B = h1 x1 + h0

and [s]B = s1 x1 + s0 to the concrete polynomial interpretation [·]A from Example 2.17

with [half]A = x1 and [s]A = x1 + 1 (i.e., we also write17 D([·]B) = [·]A and D(B) = A).

This way, we can use an assignment of the parametric coefficients (i.e., Diophantine

variables) to natural numbers that satisfies the above constraints to instantiate the pa-

rameters of the parametric interpretation [·]B. Any such assignment then yields a concrete

interpretation [·]A such that the given term constraints hold for the corresponding reduc-

tion pair (%A,�A).

17D only instantiates parametric coefficients like h0, h1, s0, s1. For variables xi which are not parametric
coefficients (i.e., not Diophantine variables) we define D(xi) = xi. Thus D(h1 x1+h0) = 1∗x1+0 = x1.

36 Chapter 2. Preliminaries

Note that in Example 2.23 we obtain polynomial constraints which are non-linear over

the parameters of our polynomial interpretation. This is the case even though the original

parametric interpretation and the resulting polynomial constraints are linear over the

(universally quantified) variables. The reason is that nesting of function symbols in general

leads to non-linear constraints because multiplication of (parametric) coefficients takes

place when the interpretation of a term is obtained.

This way, the search for a reduction pair on terms that satisfies certain term constraints

is reduced to showing satisfiability of Diophantine constraints, i.e., SMT-NIA formulas.

While also in general satisfiability of such constraints in quantifier-free non-linear integer

arithmetic is undecidable (again, this is due to undecidability of Hilbert’s 10th problem

[Mat70]), several powerful (albeit, of course, necessarily incomplete) techniques have been

developed over the last years to solve such SMT-NIA problems.

For instance, in [FGM+07, Fuh07] we propose an (incomplete, but sound) encoding

from satisfiability of Diophantine constraints (and hence SMT-NIA) to the satisfiability

problem for propositional logic (the SAT problem). Our implementation of this encoding

in the termination tool AProVE coupled with the SAT solver MiniSAT [ES04] (resulting in

the SMT solver AProVE NIA) subsequently scored highest among all competing tools in

the category QF NIA (i.e., quantifier-free non-linear integer arithmetic) at the SMT Com-

petition 2011 (SMTCOMP ’11), the annual international competition of SMT solvers.18

A similar encoding is also given in [EWZ08].

In [BLN+09, BLO+12], the authors present an (incomplete, but sound) encoding from

SMT-NIA to SMT-LIA, which has also been applied successfully for solving problem

instances that arise in the setting of finding termination proofs for term rewriting.

18See also http://www.smtcomp.org/2011/ for details.

http://www.smtcomp.org/2011/

3 Polynomials with Negative Constants

While the class of polynomial interpretations is already very useful in practice, it can

be convenient to use also polynomials whose constant addend is negative. Hirokawa and

Middeldorp present this class of interpretation functions in recent work [HM07]. As

demonstrated by the tools TTT [HM07] and AProVE [GST06] in the termination competi-

tions, such polynomials (in connection with the DP method) are very helpful in practice.

To ensure well-definedness on the carrier set N, Hirokawa and Middeldorp propose us-

ing the maximum of such a polynomial and the value 0 as an interpretation. Thus, for

comparing two term interpretations, we also need to take the max-operator into account.

To deal with expressions which may also contain max(·, 0), they propose polynomial ap-

proximations for the interpretations as sufficient criteria for comparisons. While these

approximations can be computed efficiently for a concrete interpretation, [HM07] does

not present any satisfactory automation to find such approximations for a parametric in-

terpretation. Due to the presence of “max”, the parametric approach for generation of

Diophantine constraints (i.e., SMT-NIA formulas) presented by [CMTU05] is not directly

applicable here. We tackle this problem in the present chapter of this thesis by a suit-

able encoding to an SMT problem for non-linear integer arithmetic. Our experimental

results using a SAT-based implementation as an SMT back-end in the termination prover

AProVE [GST06] indicate performance improvements by orders of magnitude.

In Section 3.1 we review the setting of polynomial interpretations with a negative

constant [HM07] as weakly monotone algebras for termination analysis. Section 3.2 then

deals with means of automation by polynomial approximations [HM07] and present a

novel SMT-NIA encoding for these approximations. Based on these approximations, in

Section 3.3 we also present a syntactic criterion stating that for certain function symbols

a negative constant does not increase power for given input term constraints. Moreover,

we prove completeness of this criterion (i.e., it is never harmful to consider only non-

negative constants for these symbols). Hence, this criterion allows to prune infeasible

parts of the search space for the SMT-NIA encoding further, leading to smaller encodings

and additional improvements for solving time. In Section 3.4 we provide empirical results

confirming the practical usefulness of the contributions of this chapter. Section 3.5 then

concludes this chapter.

38 Chapter 3. Polynomials with Negative Constants

3.1 Polynomial Interpretations with a Negative Constant

Example 3.1 (Bits, version 2 [AG01]). To motivate the usefulness of polynomial inter-

pretations with a negative constant, consider the following modification of Example 2.1,

which is taken from [AG01, Example 4.28]. In this TRS R the rules (2.5) and (2.6) from

Example 2.1 are replaced by the single rule (3.1).

half(0)→ 0 (2.1)

half(s(0))→ 0 (2.2)

half(s(s(x)))→ s(half(x)) (2.3)

bits(0)→ 0 (2.4)

bits(s(x))→ s(bits(half(s(x)))) (3.1)

We obtain the following dependency pairs (where (3.2) and (3.3) are new):

HALF(s(s(x)))→ HALF(x) (2.7)

BITS(s(x))→ HALF(x) (3.2)

BITS(s(x))→ BITS(half(s(x))) (3.3)

So the initial DP problem is ({(2.7), (3.2), (3.3)}, {(2.1), (2.2), (2.3), (2.4), (3.1)}). In a

first step, we can remove the dependency pairs (2.7), (3.2) using the reduction pair proces-

sor with the polynomial interpretation [·] where [BITS](x1) = [HALF](x1) = [half](x1) =

x1, [s](x1) = x1 + 1, and [0] = 0. Afterwards, we only need to show finiteness of the DP

problem ({(3.3)}, {(2.1), (2.2), (2.3), (2.4), (3.1)}).

Following Theorem 2.13, we need to find a (Cε-compatible) reduction pair (%,�) such

that the following term constraints hold:

BITS(s(x)) � BITS(half(s(x))) (3.4)

half(0) % 0 (2.13)

half(s(0)) % 0 (2.14)

half(s(s(x))) % s(half(x)) (2.15)

However, now no linear polynomial interpretation over N can be used to solve these

term constraints. To see this, consider a linear polynomial interpretation with [BITS] =

B0 +B1 x1, [half] = h0 + h1 x1, [s] = s0 + s1 x1, and [0] = z0 (cf. Example 2.21).

From (3.4) we obtain the polynomial constraint

B0 +B1s0 +B1s1x > B0 +B1h0 +B1h1s0 +B1h1s1x (3.5)

3.1. Polynomial Interpretations with a Negative Constant 39

equivalent to:

B1s0 −B1h0 −B1h1s0 + (B1s1 −B1h1s1)x > 0 (3.6)

The absolute positiveness criterion (which in this case is also a necessary criterion, cf.

Corollary 2.19) yields:

B1s0 −B1h0 −B1h1s0 > 0 ∧ (3.7)

B1s1 −B1h1s1 ≥ 0 (3.8)

From the term constraints (2.13), (2.14), and (2.15) we again obtain the constraints on

the parameters (2.38), (2.39), (2.40), and (2.41) that also need to be satisfied:

h0 + h1z0 − z0 ≥ 0 ∧ (2.38)

h0 + h1s0 + h1s1z0 − z0 ≥ 0 ∧ (2.39)

h0 + h1s0 + h1s1s0 − s0 − s1h0 ≥ 0 ∧ (2.40)

h1s
2
1 − s1h1 ≥ 0 (2.41)

From (3.7) we can conclude that B1s0 > B1h1s0 must already hold. This is only possible

if B1s0 ≥ 1, which requires B1 ≥ 1 and s0 ≥ 1. Moreover, we necessarily have h1 = 0

because otherwise B1s0 > B1h1s0 cannot hold. This simplifies (3.7) to B1s0 > B1h0.

Since B1 ≥ 1, this reduces to s0 > h0.

However, with h1 = 0 the constraint (2.40) simplifies to h0 ≥ s0 + s1h0, which necessi-

tates h0 ≥ s0. Thus we have s0 > h0 ≥ s0, which is a contradiction.

Note that [GTSF06, Theorem 26] presents an improved version of the reduction pair

processor which states that it suffices to consider the usable rules w.r.t. the (implicit)

argument filtering of the reduction pair [GTSF06, Definition 21]. In our example, this

means that if B1 = 0, then we do not have to consider the constraints (2.38), (2.39),

(2.40), and (2.41) anymore since then the half-rules are not usable. However, with B1 = 0

the constraint (3.7) simplifies to the contradiction 0 > 0. Hence, a linear polynomial

interpretation in combination with the improved reduction pair processor from [GTSF06,

Theorem 26] would not help here either.19

Here, the hard term constraint is (3.4). The problem is that we essentially need to show

that s(x) � half(s(x)) holds, where half(s(x)) is syntactically greater than s(x).

One possible solution for this problem is to use a polynomial interpretation with a

negative constant [HM07] (i.e., in (2.25) we have a0 < 0) for the function symbol half.

All other coefficients still have to be natural numbers. Indeed, with [half](x1) = x1 − 1

19See also [Zan09, Example 3.5] for similar reasoning showing that the reduction pair processor cannot
be successfully applied on a certain problem if only linear polynomial interpretations on N are used.

40 Chapter 3. Polynomials with Negative Constants

and with [s](x) = x + 1, the term constraint s(x) � half(s(x)) leads to the polynomial

constraint x+ 1 > x, which holds for all x ∈ N.

However, we still need to ensure well-definedness of such an interpretation on the carrier

set N. The problem is that a polynomial whose constant addend is negative can take

negative values, e.g., if all variables are instantiated by 0. Therefore, we consider the

maximum of such a polynomial and the value 0. This way, we always obtain a function

that is both weakly monotonic and well defined. For instance, here the interpretation for

half is modified to [half](x1) = max(x1 − 1, 0).20 The term constraint s(x) � half(s(x))

then leads to the constraint max(x+ 1, 0) > max(max(x+ 1, 0)− 1, 0), i.e., we again have

x+ 1 > x.

Example 3.2 (Solving Bits, version 2). With a reduction pair that is based on an in-

terpretation to N with [·]A given by [BITS]A(x1) = x1, [half]A(x1) = max(x1 − 1, 0),

[s]A(x1) = x1 + 1, and [0]A = 0, we can solve all of the term constraints (3.4), (2.13),

(2.14), and (2.15). This way, the reduction pair processor transforms the DP problem

({(3.3)}, {(2.1), (2.2), (2.3), (2.4), (3.1)})

to the DP problem

(∅, {(2.1), (2.2), (2.3), (2.4), (3.1)}).

Since the first component of this DP problem is empty, we can conclude that it is finite

and thus also that the TRS from Example 3.1 is indeed terminating.

The next definition formalizes the notion of a polynomial interpretation with negative

constants.

Definition 3.3 (Polynomial Interpretation with Negative Constants). Let F be a signa-

ture. We call A = (N, [·]A) a polynomial interpretation with negative constants if for all

f ∈ F , we have

[f]A(x1, . . . , xn) = max(p0, 0) (3.9)

for a polynomial p0 = a0 + a1 x
e11
1 . . . xen1

n + . . . + am xe1m
1 . . . xenm

n where a0 ∈ Z,

a1, . . . , am, e11, . . . , enm ∈ N, and where for all i we have e1i + . . .+ eni ≥ 1.21

The following corollary states that we may indeed use polynomial interpretations with

negative constants to obtain reduction pairs as ingredients for the reduction pair processor

of Theorem 2.13.

20Strictly speaking, because of the max-operator such interpretations are not polynomials anymore.
However, we follow [HM07] and by slight abuse of terminology nonetheless refer to this class of
interpretations as “polynomial interpretations”.

21We identify max(p, 0) with p if p cannot take negative values.

3.2. SMT-Based Automation 41

Corollary 3.4 (Polynomial Interpretations with Negative Constants Give Rise to Weakly

Monotone Algebras [HM07]). Let A = (N, [·]A) be a polynomial interpretation with nega-

tive constants as in Definition 3.3. Then (A,≥, >) is a weakly monotone algebra.

3.2 SMT-Based Automation

So now every interpretation for a function symbol f has the shape max(p0, 0) where p0

is a polynomial with a possibly negative constant and non-negative coefficients in the

non-constant part. Thus, previously existing criteria for comparing two term interpreta-

tions are not applicable anymore. The reason is that because of the max-operator, the

interpretations are not polynomials any longer. Still, in this setting “max” is used only

in a rather restricted way (one of the arguments is always the number 0). Therefore, in

[HM07] Hirokawa and Middeldorp propose a sufficient criterion for showing that ` %A r

or ` �A r hold if the weakly monotone algebra (A,≥, >) uses polynomial interpretations

over N where negative constants may occur. For this purpose, they use approximations

for [`]A and [r]A which are polynomials. This way, existing criteria for comparing term

interpretations can be used again.

For the automatic synthesis of suitable interpretations, we are interested in parametric

polynomial interpretations with variable coefficients. To find values for the coefficients for

interpretations that do not use the max-operator, inequalities like [`] ≥ [r] are transformed

into Diophantine constraints by building α[`]−[r]≥0 etc., cf. Corollary 2.19. Here, we simply

require all coefficients of the polynomial [`]− [r] to be non-negative. However, now [`]− [r]

contains the max-operator (i.e., it is no longer a polynomial). Thus, it is unclear how to

transform [`] ≥ [r] into Diophantine constraints.

To solve this problem, let us first regard concrete polynomial interpretations (where

the coefficients are actual numbers). In [HM07], Hirokawa and Middeldorp present an

approach to transform inequalities like [`] ≥ [r] into ordinary polynomial inequalities

without the max-operator. The idea is to define an under-approximation [·]left and an

over-approximation [·]right which are “proper” polynomials that do not contain “max”

anymore. Then instead of [`] ≥ [r] one requires [`]left ≥ [r]right , which can be checked

using techniques like the absolute positiveness criterion of Theorem 2.18.

Definition 3.5 ([·]left and [·]right for Concrete Interpretations [HM07]). For every poly-

nomial p we denote its constant part by con(p) and the non-constant part p − con(p)

by ncon(p), i.e., for a polynomial p as in Definition 3.3, we have con(p) = a0 and

ncon(p) = a1 xe111 . . . xen1
n + . . . + am xe1m

1 . . . xenm
n . For any concrete polynomial

interpretation with negative constants [·]A and any term t, we define the polynomials [t]leftA

42 Chapter 3. Polynomials with Negative Constants

and [t]rightA as follows:22

[t]left =

t if t is a variable

0 if t = f(t1, . . . , tn), ncon(p1) = 0, and 0 > con(p1)

p1 if t = f(t1, . . . , tn), otherwise

[t]right =

t if t is a variable

ncon(p2) if t = f(t1, . . . , tn) and 0 > con(p2)

p2 if t = f(t1, . . . , tn), otherwise

where we have

• [f](x1, . . . , xn) = max(p0(x1, . . . , xn), 0) for a polynomial p0 with a possibly negative

constant and non-negative coefficients in the non-constant part, where p0 must be

weakly monotonic on Z,

• p1 = p0([t1]
left , . . . , [tn]left), and

• p2 = p0([t1]
right , . . . , [tn]right).

Corollary 3.6 (Constant Part of a Polynomial). Let p(x1, . . . , xn) be a polynomial in the

variables x1, . . . , xn. Then con(p(x1, . . . , xn)) = p(0, . . . , 0).

As shown in [HM07], we have [t]left ≤ [t] ≤ [t]right for all terms t. Moreover, if the

polynomial interpretation has no negative constants, then we have [t]left = [t] = [t]right .

For the polynomial interpretation with [half]A = max(x1 − 1, 0), we obtain

[half(x)]leftA = x− 1 [half(x)]A = max(x− 1, 0) [half(x)]rightA = x (3.10)

The reason is that for both i ∈ {1, 2}, with [half](x) = max(x−1, 0) we have pi = x−1 and

thus ncon(pi) = x and con(pi) = −1. This example also indicates that this approximation

is incomplete. Obviously, half(x) %A half(x) holds since %A is reflexive, yet we have

[half(x)]leftA 6≥ [half(x)]rightA . However, as also indicated by our experiments, this sufficient

criterion for ` % r is still very useful in practice.

Example 3.7 (Solving Bits, version 2 using [·]left and [·]right). Using the interpreta-

tion from Example 3.2, we obtain [`]left > [r]right for the dependency pair (3.3) and

[`]left ≥ [r]right for all rules ` → r ∈ {(2.1), (2.2), (2.3)}. Thus, the proof step with the

reduction pair processor in Example 3.2 can now easily be verified automatically using

the approximations [·]left and [·]right .

The disadvantage of Definition 3.5 is that one can only compute [t]left and [t]right for

22If A is clear from the context, we again omit the subscript A.

3.2. SMT-Based Automation 43

concrete polynomial interpretations.23 However, if one wants to find the coefficients of the

polynomial interpretations automatically, then it would be better to start with parametric

polynomial interpretations again where the coefficients ai in Definition 3.3 are left open

(i.e., they are variable coefficients).

In our example, we would use a parametric interpretation [·]B with [half]B(x1) =

max(a x1 + b, 0). Here, a may only be instantiated by natural numbers, whereas we

denote parameters like b that may be instantiated by integers in bold face. However,

to compute [half(x)]leftB and [half(x)]rightB we would have to decide whether ncon(p1) = a x

and con(pi) = b are equal to or less than 0, respectively. This of course depends on the

instantiation of the parametric coefficients a and b.

Therefore, we now modify Definition 3.5 to make it suitable for parametric polynomial

interpretations. The idea is to introduce new Diophantine variables24 b left
t and brightt for

any term t to denote the constant parts of [t]left and [t]right , respectively. Note that

[t]left is an under-approximation of [t], so b left
t can also take negative values. Similarly,

[t]right is an over-approximation of [t], so it suffices to consider non-negative values for

brightt (the constant part of [t]right is always non-negative, cf. Definition 3.5). Then we

still need to create Diophantine constraints αleft
t and αright

t which guarantee that b left
t and

brightt are instantiated correctly. To this end, we express the conditions ncon(p1) = 0 and

0 > con(pi) from Definition 3.5 as Diophantine constraints.

Definition 3.8 ([·]left and [·]right for Parametric Interpretations). For any parametric

polynomial interpretation [·]A such that every concretization [·]D(A) is weakly monotonic

on Z and for any term t, we define:

• If t is a variable, then [t]left = t, [t]right = t, αleft
t = true, and αright

t = true.

• If t = f(t1, . . . , tn), then25 [t]left = ncon(p1) + b left
t , [t]right = ncon(p2) + brightt ,

αleft
t = αleft

t1 ∧ . . . ∧ αleft
tn ∧ (αncon(p1)=0 ∧ 0 > con(p1) → b left

t = 0)

∧ (¬(αncon(p1)=0 ∧ 0 > con(p1)) → b left
t = con(p1))

αright
t = αright

t1 ∧ . . . ∧ αright
tn ∧ (0 > con(p2) → brightt = 0)

∧ (¬(0 > con(p2)) → brightt = con(p2))

Here, both p1 and p2 are defined as in Definition 3.5, and αncon(p1)=0 is defined as in

Theorem 2.18.
23Thus, previous implementations for polynomial interpretations with negative constants like TTT and

AProVE simply test several choices for the coefficients. More sophisticated algorithms for systemati-
cally finding coefficients like [CMTU05] only work for non-negative coefficients.

24Note that it can be helpful to use different ranges for different Diophantine variables. In particular,
it is recommendable to use a larger range for the fresh variables b left

t and brightt , since they stand
for the values of complex polynomials con(pi) which contain sums and multiplications of many other
Diophantine variables.

25Note that according to Definition 3.5, [t]left = ncon(p1) if ncon(p1) = 0 and 0 > con(p1).

44 Chapter 3. Polynomials with Negative Constants

For [half]B(x1) = max(a x1+b, 0), t = half(x), and [t]B, we have ncon(p0) = a x, con(p0) =

b, and:

[half(x)]leftB = a x+ b left
t and [half(x)]rightB = a x+ brightt (3.11)

αleft
t = ((a = 0 ∧ 0 > b)→ b left

t = 0) ∧ (¬(a = 0 ∧ 0 > b)→ b left
t = b) (3.12)

αright
t = ((0 > b)→ brightt = 0) ∧ (¬(0 > b)→ brightt = b) (3.13)

Theorem 3.9 shows that Definition 3.8 extends Definition 3.5 to parametric interpreta-

tions correctly.

Theorem 3.9 (Correspondence of Definition 3.5 and 3.8). Let D be a Diophantine in-

terpretation (which may only map bold variables also to negative numbers). Let [·]B be

a parametric polynomial interpretation, and let t be a term. Then D(αleft
t) = 1 implies

D([t]leftB) = [t]leftD(B) and D(αright
t) = 1 implies D([t]rightB) = [t]rightD(B).

Proof. We use structural induction on t and only prove the part D([t]leftB) = [t]leftD(B). The

part D([t]rightB) = [t]rightD(B) is proved in an analogous way.

In this proof, we write “for t we have p1A . . . ” to denote that with the interpretation

[·]A, the polynomial p1 of Definition 3.5 or Definition 3.8 for t is p1A (analogously for p2).

Thus, assume D(αleft
t) = 1.

If t is a variable, then we have

D([t]leftB) = D(t) by Definition 3.8

= t cf. Footnote 17

= [t]leftD(B)

Next, we regard the case t = f(t1, . . . , tn). For t, we have p1B = p0([t1]
left
B , . . . , [tn]leftB)

and p1D(B) = D(p0)([t1]
left
D(B), . . . , [tn]leftD(B)), where [f]B(x1, . . . , xn) = max(p0(x1, . . . , xn), 0).

First consider the subcase ncon(p1D(B)) = 0, and 0 > con(p1D(B)). As D(αleft
t) = 1,

we also have D(αleft
ti) = 1 for all i ∈ {1, . . . , n}. So the induction hypothesis implies

D([ti]
left
B) = [ti]

left
D(B). Hence for t we have

D(p1B) = D(p0([t1]
left
B , . . . , [tn]leftB))

= D(p0)(D([t1]
left
B), . . . ,D([tn]leftB))

= D(p0)([t1]
left
D(B), . . . , [tn]leftD(B)) by the induction hypothesis

= p1D(B)

Therefore, we also have

D(ncon(p1B)) = ncon(p1D(B)) and D(con(p1B)) = con(p1D(B)).

3.2. SMT-Based Automation 45

This implies26

ncon(p1D(B)) = 0 iff D(ncon(p1B)) = 0 iff D(αncon(p1B)=0) = 1

and

0 > con(p1D(B)) iff D(0 > con(p1D(B))) = 1.

Therefore, D(αleft
t) = 1 implies D(b left

t) = 0. Thus,

D([t]leftB) = D(ncon(p1B) + b left
t)

= D(ncon(p1B)) +D(b left
t)

= ncon(p1D(B)) + 0

= 0

= [t]leftD(B)

Finally, for t = f(t1, . . . , tn) we regard the remaining subcase where ncon(p1D(B)) 6= 0 or

0 ≤ con(p1D(B)). Similar to the previous subcase, one can show that D(αleft
t) = 1 implies

D(b left
t) = D(con(p1B)) = con(p1D(B)).

Hence,

D([t]leftB) = D(ncon(p1B) + b left
t)

= D(ncon(p1B)) +D(b left
t)

= ncon(p1D(B)) + con(p1D(B))

= p1D(B)

= [t]leftD(B)

For example, let D be a Diophantine interpretation which turns the parametric polyno-

mial interpretation [·]B into the concrete interpretation [·]A, where we have D(a) = 1 and

D(b) = −1. Then indeed, D([half]B) = D(max(a x1+b, 0)) = max(x1 − 1, 0) = [half]A.

To satisfy the Diophantine constraints αleft
t and αright

t in (3.12) and (3.13), we must have

D(b left
t) = −1 and D(brightt) = 0. Then by (3.10) and (3.11), we indeed obtain

D([half(x)]leftB) = D(ax+ b left
t) = x− 1 = [half(x)]leftA

D([half(x)]rightB) = D(ax+ brightt) = x = [half(x)]rightA

To summarize, we now proceed as follows to automate the search for a polynomial

interpretation with negative constants for a set of term constraints ` � r or ` % r, as

needed for the reduction pair processor:

26Note that by (2.24), αp=0 requires that all coefficients of p must be 0. Thus, we indeed have D(αp=0) =
D(p = 0) for all Diophantine interpretations D.

46 Chapter 3. Polynomials with Negative Constants

(i) Fix a parametric polynomial interpretation [·]B and transform the inequalities ` � r

or ` % r into [`]left − [r]right > 0 or [`]left − [r]right ≥ 0, respectively. Add the

conjunction of all corresponding constraints αleft
` and αright

r , and add constraints to

ensure that non-bold Diophantine variables are only instantiated with non-negative

numbers.

(ii) Replace [`]left−[r]right > 0 by α[`]left−[r]right > 0 and [`]left−[r]right ≥ 0 by α[`]left−[r]right ≥
0, respectively.

(iii) Use an SMT-NIA solver to determine a solution D for the resulting Diophantine

constraint. If the SMT solver finds a satisfying Diophantine interpretation, in-

stantiate the parametric polynomial interpretation [·]B to a concrete interpretation

[·]D(B). The corresponding weakly monotone algebra then induces a reduction pair

that solves the initial term constraints.

Given a DP problem (P ,R), in practice one often searches for a reduction pair that ori-

ents at least one rule from P strictly and all other rules from P and the usable rules UR(P)

weakly. This can be expressed by the following constraint on terms, which [CGST12] calls

the usable rule constraint : ∧
`→r ∈ P ∪UR(P)

` % r ∧
∨

`→r ∈ P

` � r (3.14)

For the case of using a weakly monotonic algebra, these term constraints become the

following constraint over the algebra:∧
`→r ∈ P ∪UR(P)

[`] ≥ [r] ∧
∨

`→r ∈ P

[`] > [r] (3.15)

In the setting of this chapter, we obtain the following sufficient criterion:∧
`→r ∈ P ∪UR(P)

[`]left ≥ [r]right ∧
∨

`→r ∈ P

[`]left > [r]right (3.16)

In practice, one usually provides the SMT-NIA solver with additional information on the

search space for the Diophantine variables. For instance, for solving term constraints in

termination proving with polynomial interpretations, one usually only searches for values

of the coefficients which are close to 0. This claim is substantiated by our experiments in

[FGM+07] which indicate that for linear polynomial interpretations on N, searching for

coefficients which exceed the value 6 is hardly beneficial in practice. Thus, it pays off to

restrict the search space in order to benefit from knowledge about the application domain

(here: solving term constraints) which is hard to recover for the SMT solver or even gets

lost in the encoding process altogether.

3.3. A Necessary Criterion for Negative Constants 47

In the next section, we present a criterion which, given a set of term constraints, indi-

cates for which symbols negative constants do not lead to any additional power in combi-

nation with the approximations from Definition 3.5. This way, especially transformational

approaches to solving SMT-NIA instances such as the SAT encoding of [FGM+07, EWZ08]

or the SMT-LIA encoding of [BLO+12] benefit. The reason is that the increased search

space does not need to be represented explicitly on symbolic level (i.e., the encodings

become smaller), and the actual search starts earlier.

3.3 A Necessary Criterion for Negative Constants

Consider again the term constraint (3.4)

BITS(s(x)) � BITS(half(s(x))) (3.4)

from Example 3.1. The reason that we can successfully apply the interpretation [·]A with

a negative constant in [half]A(x1) = max(x1−1, 0) from Example 3.2 is that the argument

of half (i.e., s(x)) is always interpreted as a value which is > 0 (i.e., [s(x)]A = x + 1).

This way, the interpretation of the argument s(x) compensates for the negative constant

of [half]A(x1) = max(x1− 1, 0). Therefore, and since moreover the sum of [s(x)]A = x+ 1

and the negative constant −1 from [half]A(x1) is non-negative, for the term t = half(s(x))

the approximation [t]rightA = (x + 1) − 1 = x is identical to the actual interpretation

[t]A = max(max(x+ 1, 0)− 1, 0) = max((x+ 1) − 1, 0) = max(x, 0) = x.

In contrast, consider again the term constraints from Example 2.14:

HALF(s(s(x))) � HALF(x) (2.10)

BITS(s(s(x))) � HALF(x) (2.11)

BITS(s(s(x))) � BITS(s(half(x))) (2.12)

half(0) % 0 (2.13)

half(s(0)) % 0 (2.14)

half(s(s(x))) % s(half(x)) (2.15)

Note that here we have no right-hand side of a term constraint where half is applied to

a term that is always interpreted as a positive value. The only occurrences of half are

in (2.12) and (2.15) in the subterm half(x). Since x can also take the value 0, also the

approximation [half(x)]rightA = x cannot benefit from the negative constant of [half]A(x1) =

max(x1 − 1, 0). In contrast, for the left-hand side of a term constraint, it is beneficial to

use interpretations which map to high values. So we might as well use an interpretation

[half](x1) = x1 for the term constraints from Example 2.14 (which is the interpretation

for half that is used in Example 2.17).

48 Chapter 3. Polynomials with Negative Constants

Also for the automation via parametric interpretations of Definition 3.8, it would be

good if the search space could be restricted right from the start such that, e.g., for the

constraints from Example 2.14, one would not try to search for negative values for the

constant addend of [half] in the first place. This way, we can achieve an additional

speed-up for the automation by omitting an infeasible part of the search space. This is

especially important since the current state of the art of SMT-solving for non-linear integer

arithmetic uses encoding-based approaches like bit-blasting to SAT [FGM+07, EWZ08] or

translations to SMT-LIA [BLO+12]. In both cases, each additional value for some variable

that must be considered for the search space leads to an increase of the size of the problem

instance and also to an increase in encoding time. So even if the back-end solving engine

should recognize early during the exploration of the search space that negative values are

infeasible for certain parameters of the interpretation, we would nonetheless unnecessarily

lose time while constructing the input for the solver.

Generalizing from these observations, we can now state a general criterion for applica-

bility of negative constants. It is based on the notion of potentially negative symbols for

a term t, i.e., symbols where an interpretation with a negative constant could be helpful.

Definition 3.10 (Potentially Negative Symbols). For a term t we define its potentially

negative symbols N (t) as

• N (x) = ∅ for every variable x and

• N (f(t1, . . . , tn)) =

⋃

1≤i≤n N (ti) ∪ {f} if F({t1, . . . , tn}) \ {f} 6= ∅⋃
1≤i≤n N (ti) otherwise

For a set of terms T its potentially negative symbols are N (T) =
⋃
t∈T N (t).

Note that we do not consider a symbol f to be potentially negative for t only because of

a subterm s = f(t1, . . . , tn) of t where only the symbol f itself and variables occur in s. For

example, consider a term t = g(f(f(x))). Here we get N (x) = N (f(x)) = N (f(f(x))) = ∅.

Moreover, we get N (t) = {g} since F({f(f(x))}) \ {g} = {f} 6= ∅.

Now consider the subterm s = f(f(x)). If we use a polynomial interpretation [·]A
with a negative constant for the interpretation of f, i.e., [f]A(x1) = max(p0(x1), 0) where

con(p0) < 0, then we also have [f(x)]rightA = ncon(f([x]rightA)) and thus con([f(x)]rightA) =

con(ncon(f([x]rightA))) = 0. Together with the negative constant con(p0) for f, we have

con(p0([f(x)]rightA)) < 0, which yields con([s]rightA) = 0 again. Thus, here we could as well

use an interpretation [·]B where [f]B(x1) = max(ncon(p0(x1)), 0), i.e., an interpretation

where the constant for f is 0. This would yield [s]rightA = [s]rightB = 0.

Based on this notion of potentially negative symbols, we now state a criterion for

considering negative constants for certain function symbols, and we prove that it is a

necessary criterion. In other words, we do not lose any power if we restrict the search

3.3. A Necessary Criterion for Negative Constants 49

space for the constant of the interpretation for these function symbols to non-negative

numbers.

Consider an automation for polynomial interpretations with negative constants where

the approximations of Definition 3.5 are used to check if a term constraint `
(
%

)
r holds

(` % r and ` � r can be treated analogously). For term constraints `1 (
%

)
r1∧ . . .∧`n (

%
)
rn

it then suffices to consider negative constants for symbols f ∈ N ({r1, . . . , rn}). Formally:

Theorem 3.11 (Necessary Criterion for Negative Constants). Let [·]A be a polynomial

interpretation with negative constants where Definition 3.5 is applicable (i.e., for each

f ∈ F , we have [f]A(x1, . . . , xn) = max(pf (x1, . . . , xn), 0) where pf (x1, . . . , xn) is weakly

monotonic on Z).

Moreover, let [`1]
left
A (
≥

)
[r1]

right
A ∧. . .∧[`n]leftA (

≥
)
[rn]rightA hold. Let [·]B be defined as follows:

• [f]B = ncon(pf), if f /∈ N ({r1, . . . , rn}), [f]A = max(pf , 0), and 0 > con(pf),

• [f]B = [f]A, otherwise.

Here pf (x1, . . . , xn) is a polynomial with a possibly negative constant. Then also the

polynomial constraint [`1]
left
B (
≥

)
[r1]

right
B ∧ . . . ∧ [`n]leftB (

≥
)
[rn]rightB holds.

Proof. As in the proof of Theorem 3.9, we write “for t we have p1A . . . ” to denote that

with the interpretation [·]A, the polynomial p1 of Definition 3.5 or Definition 3.8 for t is

p1A (analogously for p2).

Without loss of generality, assume that [`1]
left
A ≥ [r1]

right
A ∧ . . . ∧ [`n]leftA ≥ [rn]rightA holds.

This is not a restriction since on N we can express x > y equivalently as x ≥ y + 1. Let

[·]A, [·]B be defined as above. To prove the theorem, we now show the following stronger

claims:

(i) For all t ∈ T (F ,V), we have

• [t]leftB ≥ [t]leftA and

• ncon([t]leftB) = 0 iff ncon([t]leftA) = 0.

(ii) For all subterms r of any term in {r1, . . . , rn}, we have [r]rightA = [r]rightB

We prove Claim (i) by induction over the structure of t. If t is a variable, we have

[t]leftB = t ≥ t = [t]leftA . Moreover, we have both ncon([t]leftB) = t 6= 0 and ncon([t]leftA) = t 6=
0.

Now let t = f(t1, . . . , tn). Then by the induction hypothesis we have for 1 ≤ i ≤ n:

[ti]
left
B ≥ [ti]

left
A and ncon([ti]

left
B) = 0 iff ncon([ti]

left
A) = 0. There are two cases to consider:

(a) [f]A(x1, . . . , xn) = [f]B(x1, . . . , xn) = max(p0(x1, . . . , xn), 0)

(b) [f]A(x1, . . . , xn) = max(p0(x1, . . . , xn), 0), [f]B(x1, . . . , xn) = ncon(p0(x1, . . . , xn)),

and 0 > con(p0)

50 Chapter 3. Polynomials with Negative Constants

We only give the proof for Case (a); the proof for Case (b) is analogous.

So let [f]A(x1, . . . , xn) = [f]B(x1, . . . , xn) = max(p0(x1, . . . , xn), 0).

By the induction hypothesis and by monotonicity of p0 on Z, we have:

p1B = p0([t1]
left
B , . . . , [tn]leftB) ≥ p0([t1]

left
A , . . . , [tn]leftA) = p1A (3.17)

We now show that also the following property of p1 holds:

ncon(p1B) = 0 iff ncon(p1A) = 0 (3.18)

In the following, we call a function p(x1, . . . , xn) independent from its ith argument iff

for all v1, . . . , vn, w we have p(v1, . . . , vi, . . . , vn) = p(v1, . . . , w, . . . , vn). Now to see that

(3.18) holds, note that:

ncon(p1A) = 0

iff
∧

1≤i≤n

ncon([ti]
left
A) = 0 ∨ p0(x1, . . . , xn) is independent from its ith argument

iff
∧

1≤i≤n

ncon([ti]
left
B) = 0 ∨ p0(x1, . . . , xn) is indep. from its ith arg. (by ind. hyp.)

iff ncon(p1B) = 0

By (3.18) it suffices to consider the following two cases:

• ncon(p1A) 6= 0 and ncon(p1B) 6= 0

• ncon(p1A) = 0 and ncon(p1B) = 0

If we have ncon(p1A) 6= 0 and ncon(p1B) 6= 0, then we also have [t]leftB = p1B ≥ p1A =

[t]leftA , ncon([t]leftA) 6= 0, and ncon([t]leftB) 6= 0.

So now consider ncon(p1A) = 0 and ncon(p1B) = 0. If 0 ≤ con(p1A), then we have

[t]leftA = p1A

≤ p1B by (3.17)

= [t]leftB (3.17) and con(p1A) ≥ 0 imply con(p1B) ≥ 0

This also implies ncon([t]leftA) = 0 and ncon([t]leftB) = 0.

If however 0 > con(p1A), we have [t]leftA = 0. If also 0 > con(p1B), we get [t]leftB = 0 ≥ 0 =

[t]leftA . If 0 ≤ con(p1B), we get [t]leftB = p1B = con(p1B) ≥ 0 = [t]leftA . Both for 0 > con(p1B)

and for 0 ≤ con(p1B), we thus also have ncon([t]leftA) = 0 and ncon([t]leftB) = 0.

We prove Claim (ii) by induction over the structure of the term r. If r is a variable, we

have [r]rightA = r = [r]rightB .

3.3. A Necessary Criterion for Negative Constants 51

Now consider r = f(t1, . . . , tn). There are two cases: First, consider [f]A(x1, . . . , xn) =

[f]B(x1, . . . , xn) = max(p0(x1, . . . , xn), 0). By the induction hypothesis we have:

p2A = p0([t1]
right
A , . . . , [tn]rightA) = p0([t1]

right
B , . . . , [tn]rightB) = p2B (3.19)

If 0 ≤ con(p2B), then we have

[r]rightB = p2B

= p2A by (3.19)

= [r]rightA

Now let 0 > con(p2B). Then we have [r]rightB = ncon(p2B) = ncon(p2A) = [r]rightA .

Thus, let f /∈ N ({r1, . . . , rn}), 0 > con(p0), [f]A(x1, . . . , xn) = max(p0(x1, . . . , xn), 0),

and [f]B(x1, . . . , xn) = ncon(p0)(x1, . . . , xn).

Since f /∈ N ({r1, . . . , rn}) and since r is a subterm of a term from {r1, . . . , rn}, we can

conclude that r ∈ T ({f},V), i.e., r only contains variables and the function symbol f .

To complete the proof, we will use the following statement:

Let q1, . . . , qn, p be polynomials with con(q1) = . . . = con(qn) = 0.

Then con(p(q1, . . . , qn)) = con(p(x1, . . . , xn)).
(3.20)

To see that (3.20) holds, let q1, . . . , qn, p be polynomials with con(q1) = . . . = con(qn) = 0.

We then have:

con(p(q1, . . . , qn))

= p(q1, . . . , qn)(0, . . . , 0) by Corollary 3.6

= p(q1(0, . . . , 0), . . . , qn(0, . . . , 0))

= p(con(q1), . . . , con(qn))

= p(0, . . . , 0)

= con(p) by Corollary 3.6

Using (3.20), we now show the following auxiliary statement by induction:

For all u ∈ T ({f},V), we have con([u]rightA) = 0. (3.21)

If u is a variable, we have con([u]rightA) = con(u) = 0. So let u = f(u1, . . . , un). Then the

induction hypothesis of (3.21) states con([u1]
right
A) = . . . = con([un]rightA) = 0. Thus, we can

apply the statement (3.20) and get con(p0([u1]
right
A , . . . , [un]rightA)) = con(p0(x1, . . . , xn)) <

0. Thus, we have [u]rightA = ncon(p0([u1]
right
A , . . . , [un]rightA)) and con([u]rightA) = 0.

52 Chapter 3. Polynomials with Negative Constants

Having proved (3.21), we continue with the induction step for Claim (ii). As r ∈
T ({f},V), by (3.21) we have con([r]rightA) = 0. Thus:

[r]rightA

= ncon([r]rightA)

= ncon(p0([t1]
right
A , . . . , [tn]rightA))

= ncon(p0([t1]
right
A , . . . , [tn]rightA)) + con(p0([t1]

right
A , . . . , [tn]rightA))

− con(p0([t1]
right
A , . . . , [tn]rightA))

= p0([t1]
right
A , . . . , [tn]rightA)− con(p0([t1]

right
A , . . . , [tn]rightA))

= (p0 − con(p0))([t1]
right
A , . . . , [tn]rightA) using (3.20) with:

for all i, ti ∈ T ({f},V), so by (3.21) con([ti]
right
A) = 0

= (ncon(p0))([t1]
right
A , . . . , [tn]rightA)

= (ncon(p0))([t1]
right
B , . . . , [tn]rightB) by induction hypothesis

= [r]rightB

Note that as a special case, it is always safe to permit only non-negative constant

addends for constant function symbols, even if one does not use the approximations from

Definition 3.5. The reason is that a constant symbol has no arguments, and max(c, 0)

always takes the value 0 if c is negative.

It is also worth noting that in Theorem 3.11, the restriction to the approximations

of Definition 3.5 is necessary for completeness. This is demonstrated by the following

example.

Example 3.12 (Completeness of Theorem 3.11 Requires Approximations). Consider

again Example 3.1, where we now also add the rule half(x)→ g(x) to the TRS. Similar to

Example 3.1, we then need to solve the following term constraints to prove termination:

BITS(s(x)) � BITS(half(s(x))) (3.4)

half(0) % 0 (2.13)

half(s(0)) % 0 (2.14)

half(s(s(x))) % s(half(x)) (2.15)

half(x) % g(x) (3.22)

If we extend the interpretation [·]A from Example 3.2 to an interpretation [·]A′ to interpret

g by [g]A′(x1) = max(x1 − 1, 0), the term constraint (3.22) yields the constraint max(x−
1, 0) ≥ max(x − 1, 0). Since this constraint obviously holds (≥ is reflexive), we can

conclude termination also of this extended TRS.

3.4. Experiments 53

But the criterion from Theorem 3.11 would not consider g to be a potentially negative

symbol and thus would not allow to use the negative constant −1 as part of an interpre-

tation for g. This shows that using this criterion, in general we lose interpretations that

would actually have solved our term constraints.

However, with the approximations from Definition 3.5, we obtain [half(x)]leftA′ = x−1 6≥
x = [g(x)]rightA′ . Indeed, now there is no possible extension of [·]A to the new symbol g

that would allow us to solve this term constraint with these approximations. The reason

is that [half(x)]leftA = x− 1 can also become negative (for x = 0), but [g(x)]right is always

non-negative, regardless of the interpretation used for g.

Note that Theorem 3.11 would not allow negative constants for the interpretation of g

in the first place. So with the approximations of Definition 3.5, we indeed do not lose any

power if we use the criterion from Theorem 3.11.

3.4 Experiments

We implemented our new SMT-based approach for polynomial interpretations with nega-

tive constants in the termination prover AProVE [GST06]. To solve the arising SMT-NIA

problems, we used our implementation of our SAT-based approach from [FGM+07] with

the MiniSAT solver [ES04] as back-end. To convert formulas to CNF, we applied SAT4J’s

[LP10] implementation of Tseitin’s algorithm [Tse68]. As our implementation of our SAT-

based approach from [FGM+07] scored highest among all the competing tools at the SMT

Competition 2011 in the category QF NIA, we believe that it is a natural choice for this

setting. This way, in our experiments it is a SAT solver like MiniSAT that makes the

choice of the interpretation that should be used.

To evaluate our new SAT-based implementation of polynomial interpretations with

negative constants (AProVE-SAT), we compare it with the non-SAT-based implementa-

tions in the termination tools AProVE 1.2 and TTT [HM07]. To investigate the effect of

negative constants, we moreover compare with the results for conventional polynomial

interpretations without negative constants (cf. in Section 2.3) reported in [FGM+07]. As

for AProVE-SAT, the solving back-end of this configuration is the SAT solver MiniSAT.

Therefore, we name this configuration AProVE-SAT ≥ 0.

We tested the tools on all 865 TRSs from the TPDB, version 3.2.27 This is the collection

of examples used in the International Termination Competition of 2006.28 For our exper-

iments to compare the different search procedures for polynomial interpretations with a

negative constants, the tools were run on an AMD Athlon 64 at 2.2 GHz. To measure

the effect of the different implementations for polynomial interpretations with negative

27This version of the data base is available from http://www.lri.fr/~marche/tpdb/.
28These experiments were conducted already for an earlier version of this chapter published in [FGM+07].

Therefore, we report on our results with this previous version of the TPDB.

http://www.lri.fr/~marche/tpdb/

54 Chapter 3. Polynomials with Negative Constants

AProVE-SAT AProVE 1.2 TTT AProVE-SAT ≥ 0
Range Yes TO Time Yes TO Time Yes TO Time Yes TO Time

1 440 0 98.0 441 22 1863.7 341 106 7307.3 421 0 45.5
2 479 1 305.4 460 126 8918.3 360 181 12337.3 431 0 91.8
3 483 4 1092.4 434 221 15570.9 361 247 16927.7 434 0 118.6

Figure 3.13: Empirical Results for Different Implementations of Negative Polynomials

constants, we configured all tools to use only a basic version of the DP method and no

other termination technique.

For each example, we imposed a time limit of 60 seconds (corresponding to the way

tools are evaluated in the annual competition). In Figure 3.13, the columns “Yes” and

“TO” show the number of TRSs for which proving termination with the given config-

uration succeeds or times out. Finally, “Time” gives the total time in seconds needed

for analyzing all 865 examples.29 The column “Range” specifies the range of the coeffi-

cients of polynomials (i.e., if the “Range” is n, then we only searched for coefficients from

{0, . . . , n} and constants from {−n, . . . , n}). For the configuration AProVE-SAT ≥ 0, we

searched for values from {0, . . . , n} also for the constants.

The SAT-based configuration for the search for polynomial orders with a negative con-

stant is much faster and substantially more powerful than the non-SAT-based ones.30

Even for larger ranges, only few timeouts occur, whereas increasing the range with the

previous approaches leads to a drastic increase in the number of timeouts.

Another interesting point is the comparison of power and speed of the approaches based

on polynomials with a negative constant and on standard polynomials without negative

29For these experiments we executed AProVE in batch mode, i.e., we started up AProVE only once, per-
formed runs on several TRS for just-in-time-compilation, and only then performed the measurements
for all TRSs from the TPDB in the same session. This way, we make sure that we do not measure
the time for startup of the Java Virtual Machine and AProVE and also just-in-time compilation. Since
this overhead amounts to at least 0.9 seconds per TRS, i.e., more than 770 seconds for the whole
TPDB, runtime of some of the configurations in Figure 3.13 would be affected by more than an order
of magnitude, which is hardly non-negligible. This is also interesting since we compare to tools which
are statically compiled to native machine code in advance such as TTT and thus do not suffer from
this overhead.

30Note that for range 1, AProVE 1.2 discovers a termination proof where AProVE-SAT does not. This
is the case for the example TRS/AProVE 06/identity.xml (prior to a recent reorganization of the
TPDB, this TRS could be found in the TPDB as TRS/Thiemann/identity.trs). Here AProVE 1.2
uses an interpretation with [half](x1) = max(x1 − 1, 0) and [g](x1, x2) = max(x2 − 1, 0) to solve the
term constraint half(x) % g(h, x). With this interpretation, this yields the constraint max(x− 1, 0) ≥
max(x− 1, 0). The search procedure of AProVE 1.2 recognizes that we have identical expressions on
both sides of the (non-strict) inequality and concludes that the inequality holds. In contrast, here
approaches like AProVE-SAT that only use the approximations from [HM07] (cf. Definition 3.5) would
obtain the polynomial constraint x − 1 ≥ x, which obviously does not hold. This indicates that
incompleteness of the approximations can also surface in practical examples. However, the fact that
only a single example from the whole TPDB is affected shows that in practice, incompleteness of
the approximations is only rarely noticeable, at least when compared to AProVE 1.2. Moreover, this
particular example is easily solved by AProVE also, e.g., with our SMT-NIA-based implementation of
rational polynomial orders [Luc05, FNO+08].

3.5. Summary and Outlook 55

AProVE-SAT AProVE-SAT + Theorem 3.11

Range Yes TO Time Yes TO Time
1 561 14 3627.5 (2333.3) 561 14 3482.7 (2188.5)
2 620 18 4182.2 (2888.0) 620 16 3900.5 (2606.3)
3 626 25 5209.9 (3915.7) 625 23 4576.9 (3282.7)

Figure 3.14: Empirical Effects of Theorem 3.11

constants, respectively. Here, our results indicate a significant increase in power by ad-

mitting negative constants. In the most powerful configuration with negative constants,

over 10.1 % more examples can be solved compared to the corresponding configuration

where only non-negative constants are considered. At the same time, the increases in

runtime are only moderate and timeouts are still few.

To experiment with our implementation and for further details on the above experi-

ments, please see http://aprove.informatik.rwth-aachen.de/eval/SATPOLO/.

Finally, we recently conducted experiments to assess the impact of Theorem 3.11. Here,

we used an Intel Xeon 5140 at 2.33 GHz, and we executed AProVE on the 1438 TRSs from

the TPDB (version 8.0.1) that are used for the “TRS standard” category. The results are

given in Figure 3.14. Since we did not run AProVE in batch mode for this experiment, it

is sensible to disregard the constant overhead of approx. 0.9 seconds induced by startup

of the Java Virtual Machine and of AProVE. Therefore, here we give both the measures

runtimes and in parentheses also the runtimes where the overhead of 0.9 seconds per

example has been subtracted. This way, one can compare both the measured raw data

for the runtimes and also the processed runtimes where the effect of the constant overhead

has been removed.

We observe a reduction in runtime after startup of up to 16.2 % for range 3. This

shows that our novel complete criterion from Theorem 3.11 to prune the search space

beforehand also has a noticeable impact in a practical setting.31

3.5 Summary and Outlook

In this chapter we have discussed automation of the search for weakly monotone al-

gebras based on polynomial interpretations with negative constants. The basis of this

encoding are the polynomial approximations of Definition 3.5 introduced by [HM07], In

Definition 3.8, we have presented an SMT-NIA encoding for these polynomial approxi-

mations (and proved its correctness in Theorem 3.9) which then allows an SMT solver

such as our award-winning SAT-based approach from [FGM+07] to find a suitable inter-

31For range 3, the example TRS/Transformed CSR 04/PEANO complete noand iGM.xml was proved ter-
minating by AProVE-SAT without this criterion within 56.3 seconds, whereas the termination proof
using AProVE-SAT + Theorem 3.11 took 67.8 seconds, leading to a timeout.

http://aprove.informatik.rwth-aachen.de/eval/SATPOLO/

56 Chapter 3. Polynomials with Negative Constants

pretation. This way, for the first time we provide a systematic search procedure for this

class of interpretations. Our experimental results indicate performance improvements by

orders of magnitude over the state of the art. Additionally, in Theorem 3.11 we present a

novel necessary criterion for negative constants in the setting of [HM07], which is helpful

for restricting the search space for parametric interpretations. Also here, our experiments

indicate additional notable performance improvements.

Note that using an SMT-NIA encoding instead of a (more low-level) SAT encoding

allows for additional flexibility. Currently, SAT encodings like our work from [FGM+07]

(cf. also [EWZ08]) are a state-of-the-art technique for solving SMT-NIA problems. How-

ever, with the rapid progress in SMT solving, it is quite likely that over the next years,

alternative solving techniques for SMT-NIA are developed which do not use this partic-

ular SAT encoding. Indeed, for instance the paper [BLO+12] presents an encoding from

SMT-NIA to SMT-LIA which allows to use off-the-shelf SMT-LIA solvers to tackle SMT-

NIA problems. By giving an encoding to SMT-NIA instead of a classical SAT encoding

for propositional logic, we thus also make the search for polynomial interpretations with

a negative constant accessible to SMT-LIA solvers.

As future work, it would be interesting to extend our parametric approach to encompass

also the—in theory more powerful—criterion of AProVE 1.2 for comparing terms using a

given polynomial interpretation with negative constants (cf. Footnote 30).

Moreover, one could implement an approach without approximations, which could be

based on a finite case analysis. For instance, for an (implicitly universally quantified) con-

straint ϕ(x, y) = max(2 x+ y− 2, 0) ≥ q(x, y) for some polynomial q, we can equivalently

write ϕ(0, 0)∧ ϕ(0, 1)∧ ϕ(x1 + 1, y1)∧ ϕ(x2, y2 + 2) (i.e., we enumerate the finitely many

cases where 2x+y−2 6= max(2x+y−2, 0). Partial evaluation then yields the constraint

0 ≥ q(0, 0) ∧ 0 ≥ q(0, 1) ∧ 2x1 + y1 ≥ q(x1 + 1, y1) ∧ 2x2 + y2 ≥ q(x2, y2 + 2), which does

not contain max anymore and can be evaluated using standard techniques. Of course,

this reasoning would still need to be lifted to the parametric setting. We conjecture that

the approach using Definition 3.8 still outperforms the one just sketched, but it would

nevertheless be interesting to investigate how much power is lost by the approximations

of Definition 3.5 compared to an approach that does not use incomplete approximations.

While in the present chapter, we have also used the max-operator, this has only been

the case in the special setting max(· , 0). In Chapter 4 we investigate a general integration

of the max-operator into polynomial interpretations for weakly monotone algebras that

can be used for automated termination analysis.

Moreover, in related work Koprowski and Waldmann propose Arctic Interpretations

below Zero [KW08, KW09], where the max-operator is applied in the context of max-

plus-algebras. This is also a class of interpretations with negative numbers as ingredients

that can be used in weakly monotone algebras. We discuss this setting and satisfiability-

based means of automation further in Chapter 5.

3.5. Summary and Outlook 57

In their IsaFoR [TS09] formalization of the technique of this chapter in the proof as-

sistant Isabelle [NPW02] for certification, Sternagel and Thiemann [ST10] extend the

theoretical setting to carriers like the non-negative rational or real numbers and also to

matrix interpretations [EWZ08] where some parts of the constant vector may be negative.

Our contributions to automation given in this chapter should carry over directly to the

extensions proposed by Sternagel and Thiemann.

Acknowledgments

We thank Daniel Le Berre for helpful comments on an earlier version of this chapter.

4 Maximal Termination

As the previous chapter shows, using the max-operator in combination with polynomial

interpretations can lead to notable increases in power for termination analysis of TRSs

via weakly monotone algebras.

In a related application, Marion and Péchoux [MP09] propose a combination of poly-

nomials with the max-operator for use as sup-interpretations. Such interpretations can be

applied to yield upper bounds for the worst-case size complexity of the functions defined

by TRSs. Here size complexity denotes the size of the output of a function with respect

to the size of its input. However, they do not discuss automation.

Also in applications such a termination analysis of heap-based imperative programming

languages like Java Bytecode, automated tools like COSTA [AAC+08] and Julia [SMP10]

rely on abstractions of heap structures to their path length [AAG+07, SMP10]. This

essentially means that for an object which has pointers to several other objects on the

heap, the maximum of the abstractions of these other objects to natural numbers is used

as an ingredient for the abstraction (i.e., the interpretation) of the current object. This

way, one can interpret an object as the maximum number of consecutive dereferencing

steps possible from this object.

These observations and applications of the max-operator in analysis of TRSs and, more

generally, programs motivate investigation of a more flexible integration of the max-

operator with polynomial interpretations for termination analysis of TRSs. Here we per-

mit arbitrary combinations of polynomials and the max-operator (i.e., max-polynomials),

e.g., we could use p+ max(q,max(r, s)) where p, q, r, s are polynomials.

In this chapter we set up the class of weakly monotone algebras with max-polynomial

interpretations in Section 4.1. In Section 4.2 we discuss means of automation of max-

polynomials via encodings to SMT-NIA, which can then be further reduced to SAT or

to SMT-LIA, as in the previous chapters. We also discuss a possible application of the

setting of this chapter to the polynomial interpretations with a negative constant, as

discussed in Chapter 3. Section 4.3 motivates the need for suitable heuristics for the

shape of a max-polynomial interpretation. For this, we give a family of terms showing

that n occurrences of the max-operator in an interpretation of a term can lead to 2n

symbolic constraints. To render max-polynomial interpretations applicable in practice,

we present heuristics for shapes of parametric max-polynomial interpretations which are

based on the structure of the rewrite rules that are supposed to be oriented. We also

60 Chapter 4. Maximal Termination

provide an alternative way of dealing with the max-operator, which can be helpful in

some cases. In Section 4.4 we present experimental results highlighting the impact of our

contribution, and in Section 4.5 we conclude.

4.1 Max-Polynomial Interpretations

Example 4.1. Consider the TRS SUBST from [HL86] and [Zan03, Ex. 6.5.42], which is

also available in the TPDB as TRS/Zantema 05/z10.xml:

λ(x) ◦ y → λ(x ◦ (1 ? (y ◦ ↑))) (4.1)

(x ? y) ◦ z → (x ◦ z) ? (y ◦ z) (4.2)

(x ◦ y) ◦ z → x ◦ (y ◦ z) (4.3)

id ◦ x→ x (4.4)

1 ◦ id→ 1 (4.5)

↑ ◦ id→ ↑ (4.6)

1 ◦ (x ? y)→ x (4.7)

↑ ◦ (x ? y)→ y (4.8)

The dependency pairs for this TRS are:

λ(x) ◦] y → x ◦] (1 ? (y ◦ ↑)) (4.9)

λ(x) ◦] y → y ◦] ↑ (4.10)

(x ? y) ◦] z → x ◦] z (4.11)

(x ? y) ◦] z → y ◦] z (4.12)

(x ◦ y) ◦] z → x ◦] (y ◦ z) (4.13)

(x ◦ y) ◦] z → y ◦] z (4.14)

Example 4.2. For the DP problem corresponding to Example 4.1, we use the reduction

pair (%A,�A) based on the weakly monotone algebra (A,≥, >) with carrier N and with

[·]A as follows:32

[λ]A = x1 + 1 [?]A = max(x1, x2)

[◦]A = [◦]]A = x1 + x2 [1]A = [id]A = [↑]A = 0

Then all (usable) rules and dependency pairs are weakly decreasing (w.r.t. %A). Further-

more, the DPs (4.9) and (4.10) are strictly decreasing (w.r.t. �A) and can be removed by

32Since not only the operations “+” and “∗”, but also “max” are weakly monotonic on N, the algebras
considered in this chapter are all weakly monotone.

4.2. SMT-Based Automation 61

Theorem 2.13. Afterwards, we use the following interpretation [·]B where the remaining

DPs are strictly decreasing and the rules are still weakly decreasing:

[◦]]B = x1 [?]B = max(x1, x2) + 1

[◦]B = x1 + x2 + 1 [λ]B = [1]B = [id]B = [↑]B = 0

Note that including the function “max” as a building block for interpretations along

with “+”, “∗”, numbers from N, and variables still leads to a weakly monotone algebra,

such that for this example the reduction pair processor is indeed applicable with the given

interpretations.

Note that termination of SUBST cannot be proved with Theorem 2.13 using reduction

pairs based on linear polynomial interpretations. Thus, this example shows the usefulness

of polynomial interpretations with “max”. Previously, only restricted forms of such in-

terpretations were available in termination tools. For example, already in 2004, TTT used

(non-monotonic) interpretations like max(x1 − x2, 0) (cf. [HM07]), but no tool offered

arbitrary interpretations with polynomials and “max” like max(x1, x2) + 1.

While SUBST’s original termination proof was very complicated [HL86], easier proofs

were developed later, using the techniques of distribution elimination [Zan94] or semantic

labeling [Zan03]. Indeed, the only tool that could prove termination of SUBST automat-

ically prior to this research (TPA [Kop06]) used semantic labeling as part of its proof.33

In contrast, Example 4.2 now shows that there is an even simpler proof without semantic

labeling.

4.2 SMT-Based Automation

The most efficient implementations to search for polynomial interpretations are based on

encodings to SMT-NIA instances [CMTU05], which for solving then usually are translated

further to SAT or SMT-LIA instances [FGM+07, EWZ08, BLO+12]. In Chapter 3 we

have presented an extension of this approach to interpretations of the form max(p−n, 0)

where p is a polynomial with natural coefficients and n ∈ N. Thus, in Chapter 3 we permit

interpretations like max(x1 − 1, 0), but not interpretations like max(x1, x2) (as needed in

Example 4.1). In contrast, here our goal is to be able to search for arbitrary interpretations

using polynomials and the max-operator using SMT-NIA solvers.34 Compared to the

33For the semantic labeling, TPA uses only a (small) fixed set of functions, including certain fixed polyno-
mials and the function “max”. So in contrast to our automation in Section 4.2, TPA does not use more
general parametric combinations of polynomials and “max”. Moreover, TPA employs a labeling over
an infinite carrier which leads to a TRS with infinitely many rules. This poses additional difficulties
for the integration of the method into existing termination tools designed to analyze problems with
only finite explicit representations.

34Of course, in an analogous way, one can also integrate the minimum function and indeed, we did this
in our implementations. We present more details on using the minimum function in Section 4.3.

62 Chapter 4. Maximal Termination

approach presented in Chapter 3, this poses an additional challenge since it is not clear

how one could adapt, e.g., the polynomial approximations presented in Definition 3.5 to

arbitrary combinations of “max” with polynomials without losing too much power.

Definition 4.3 (max-polynomial). Let V be the set of variables. The set of max-

polynomials PM over a set of numbers M is the smallest set such that

• M ⊆ PM and V ⊆ PM

• if p, q ∈ PM , then p+ q ∈ PM , p ∗ q ∈ PM , and max(p, q) ∈ PM

Concretely, we focus on the case where M = N. So here we map every function symbol

to a max-polynomial over PN. Obviously, then (%A,�A) is a Cε-compatible reduction pair

(since also max is a weakly monotonic function on N).

As in the previous chapters, to find such interpretations automatically we start with

a parametric max-polynomial interpretation. It maps each function symbol to a max-

polynomial over a set A of parametric coefficients. In other words, we have to determine

the degree and the shape of the max-polynomial in advance of the search, but the actual

coefficients are left open. For example, for the TRS of Example 4.1 we could use a

parametric polynomial interpretation [·]A where [?]A = max(a1 x1 + a2 x2, a
′
1 x1 + a′2 x2),

[↑]A = b, [◦]A = x1 + x2, etc.35 Here, a1, a2, a
′
1, a
′
2, b are parametric coefficients.

Now to apply the reduction pair processor of Theorem 2.13, we have to find an instantia-

tion of the parametric coefficients satisfying the following condition. Then all dependency

pairs that are strictly decreasing (i.e., [s] ≥ [t] + 1, which on N is equivalent to [s] > [t])

can be removed (cf. (3.14)).∧
`→r ∈ P ∪UR(P)

[`]A ≥ [r]A ∧
∨

s→t ∈ P

[`]A ≥ [r]A + 1 (4.15)

Here, all rules in P ∪ UR(P) are variable-renamed to have pairwise different variables. The

expressions [s]A, [t]A, etc. are again max-polynomials over A. So with the interpretation

[·]A above, to make the last rule of Example 4.1 weakly decreasing (i.e., ↑ ◦ (x ? y) %A y)

we obtain the inequality [↑ ◦ (x ? y)]A ≥ [y]A:

b+ max(a1 x+ a2 y, a
′
1 x+ a′2 y) ≥ y (4.16)

We have to find an instantiation of the parametric coefficients a1, a2, . . . such that (4.16)

holds for all instantiations of the variables x and y. In other words, the variables from V
occurring in such inequalities are again universally quantified.

35Here ◦’s interpretation is fixed beforehand to simplify the presentation. Our implementations use
heuristics to determine when to use an interpretation with “max”, cf. Section 4.3.

4.2. SMT-Based Automation 63

Transformation Rules

Several techniques have been proposed to transform such inequalities further in order

to remove such universally quantified variables [HJ98] (cf. Theorem 2.18). However, the

existing techniques only operate on inequalities without “max”. Therefore, we now present

new inference rules to eliminate “max” from such inequalities.

Our inference rules operate on conditional constraints of the form

p1 ≥ q1 ∧ . . . ∧ pn ≥ qn ⇒ p ≥ q (4.17)

Here, n ≥ 0 and p1, . . . , pn, q1, . . . , qn are polynomials with parametric coefficients without

“max”. In contrast, p, q are max-polynomials with parametric coefficients.

The first inference rule eliminates an inner occurrence of “max” from the inequality

p ≥ q. If p or q have a sub-expression max(p′, q′) where p′ and q′ do not contain “max”,

then we can replace this sub-expression by p′ or q′ when adding the appropriate condition

p′ ≥ q′ or q′ ≥ p′ + 1, respectively.

I. Eliminating “max”

ϕ ⇒ . . .max(p′, q′) . . .

ϕ ∧ p′ ≥ q′ ⇒ . . . p′ . . . ∧
ϕ ∧ q′ ≥ p′ + 1 ⇒ . . . q′ . . .

if p′ and q′ do not contain “max” and
where ϕ = p1 ≥ q1 ∧ . . . ∧ pn ≥ qn

Obviously, by repeated application of inference rule (I), all occurrences of “max” can

be removed. In our example, the constraint (4.16) is transformed into the following new

constraint that does not contain “max” anymore.

a1 x+ a2 y ≥ a′1 x+ a′2 y ⇒ b+ a1 x+ a2 y ≥ y ∧ (4.18)

a′1 x+ a′2 y ≥ a1 x+ a2 y + 1 ⇒ b+ a′1 x+ a′2 y ≥ y (4.19)

Since the existing methods for eliminating universally quantified variables only work for

unconditional inequalities, the next inference rule eliminates the conditions pi ≥ qi from a

constraint of the form (4.17).36 To this end, we introduce two new parametric polynomials

p and q (that do not contain “max”). The polynomial q over the variables x1, . . . , xn is

used to “measure” the polynomials p1, . . . , pn and q1, . . . , qn, respectively, in the premise

of (4.17). Similarly, the unary polynomial p over x1 measures the polynomials p and q in

the conclusion of (4.17). We write q(p1, . . . , pn) to denote the result of instantiating the

variables x1, . . . , xn in q by p1, . . . , pn, etc.

36Such conditional polynomial constraints also occur in other applications, such as the termination
analysis of logic programs. Indeed, [NDGS11] uses a rule similar to inference rule (II) in the tool
Polytool for termination analysis of logic programs. However, Polytool only applies classical polynomial
interpretations without “max”.

64 Chapter 4. Maximal Termination

II. Eliminating Conditions

p1 ≥ q1 ∧ . . . ∧ pn ≥ qn ⇒ p ≥ q
p(p)− p(q) ≥ q(p1, . . . , pn)− q(q1, . . . , qn)

if q and p do not contain “max”, p is strongly
monotonic, and q is weakly monotonic

Here, the monotonicity conditions mean that x > y ⇒ p(x) > p(y) must hold and

similarly that x1 ≥ y1 ∧ . . . ∧ xn ≥ yn ⇒ q(x1, . . . , xn) ≥ q(y1, . . . , yn).

To see why Rule (II) is sound, let p(p) − p(q) ≥ q(p1, . . . , pn) − q(q1, . . . , qn) hold and

assume that there is an instantiation σ of all variables in the polynomials with numbers

that refutes p1 ≥ q1 ∧ . . .∧ pn ≥ qn ⇒ p ≥ q. Now p1σ ≥ q1σ ∧ . . . ∧ pnσ ≥ qnσ implies

q(p1, . . . , pn)σ ≥ q(q1, . . . , qn)σ by weak monotonicity of q. Hence, p(p)σ − p(q)σ ≥ 0.

Since the instantiation σ is a counterexample to our original constraint, we have pσ 6≥ qσ

and thus pσ < qσ. But then strict monotonicity of p would imply p(p)σ − p(q)σ < 0,

which gives a contradiction.

If we choose37 the parametric polynomials p = c x1 and q = d x1 for (4.18) and p =

c′ x1 and q = d′ x1 for (4.19), then (4.18) and (4.19) are transformed into the following

unconditional inequalities. (Note that we also have to add the inequalities c ≥ 1 and

c′ ≥ 1 to ensure that p is strongly monotonic.)

c · (b+ a1 x+ a2 y)− c · y ≥ d · (a1 x+ a2 y)− d · (a′1 x+ a′2 y) ∧ (4.20)

c′ · (b+ a′1 x+ a′2 y)− c′ · y ≥ d′ · (a′1 x+ a′2 y)− d′ · (a1 x+ a2 y + 1) (4.21)

Of course, such inequalities can be transformed into inequalities with 0 on their right-hand

side. For example, (4.20) is transformed to

(c a1 − d a1 + d a′1) x + (c a2 − c− d a2 + d a′2) y + c b ≥ 0 (4.22)

Thus, we again have to ensure non-negativeness of “polynomials” over variables like x, y,

where the “coefficients” are polynomials over the parametric variables like c a1 − d a1 +

d a′1. For this purpose, we make use of the absolute positiveness criterion presented in

Theorem 2.18 (cf. [HJ98]) and require that all these “coefficients” are ≥ 0. This way, we

can again eliminate all universally quantified variables like x, y, and (4.22) is transformed

into the Diophantine constraint

c a1 − d a1 + d a′1 ≥ 0 ∧ c a2 − c− d a2 + d a′2 ≥ 0 ∧ c b ≥ 0

Formulated as an inference rule for constraints on max-polynomials, the absolute posi-

tiveness criterion is expressed as follows:

37In this setting a good heuristic is to choose q = b1x1 + . . . + bnxn where all bi are from {0, 1} and
p = a · x1 where 1 ≤ a ≤ max(Σni=1bi, 1).

4.3. Shape Heuristics and Optimizations 65

III. Eliminating Universally Quantified Variables

p0 + p1 x
e11
1 . . . xen1

n + · · ·+ pk x
e1k
1 . . . xenk

n ≥ 0

p0 ≥ 0 ∧ p1 ≥ 0 ∧ . . . ∧ pk ≥ 0

if the pi neither contain “max”
nor any variable from V

To search for suitable values for the parametric coefficients that satisfy the resulting

Diophantine constraints, in practice we fix an upper bound for these values.

Moreover, for soundness we need to make sure that the parametric coefficients a are

instantiated by natural numbers only. Therefore, for all occurring parametric coefficients a

we also need to provide the information a ≥ 0 to the SMT-NIA solver. In our example,

the constraints resulting from the initial inequality (4.16) are satisfied, e.g., by a1 = 1,

a2 = 0, a′1 = 0, a′2 = 1, b = 0, c = 1, d = 1, c′ = 1, d′ = 0.38 With these values, the

parametric interpretation max(a1 x1 +a2 x2, a
′
1 x1 +a′2 x2) for ? is turned into the concrete

interpretation max(x1, x2).

Negative Constants

Actually, we can be even more general with the shapes of max-polynomials used for

interpretations than in Definition 4.3. For instance, we can also allow max-polynomial in-

terpretations to use negative constants, as long as the overall interpretation of a function

symbol is always non-negative. This way, we can also use max-polynomial interpreta-

tions to implement polynomial interpretations with a negative constant as in Chapter 3

and possibly render the method more efficient or more powerful than the automation of

the approximations of Definition 3.5 via Definition 3.8 described in Chapter 3. As our

experiments show, however, this approach has severe performance issues in practice (cf.

Section 4.4). Therefore, we recommend the dedicated approach from Chapter 3 for this

special setting.

4.3 Shape Heuristics and Optimizations

Exponential Blowup

Max-polynomials conveniently provide further expressive power over standard polynomi-

als. However, as the following example shows, too unrestricted occurrences of “max” in

an interpretation may cause severe problems in the initial phase of their automation.

Example 4.4 (Exponential Blowup for Handling “max” Automatically). Consider the

following family of terms T = {ti | i ∈ N} over a signature F , where a ∈ F and ar(a) = 2:

• t0 = y,

• tn+1 = a(xn+1, tn).

38To ease readability, we write a1 = 1 instead of D(a1) = 1, etc.

66 Chapter 4. Maximal Termination

Note that the term tn has size 2n+1. Consider moreover a max-polynomial interpretation

with [a](x1, x2) = max(x1, x2). A term constraint tn % y then becomes [tn] ≥ [y], i.e.,

max(xn,max(xn−1, . . . ,max(x1, y) . . .)) ≥ y. Then repeated application of inference rule

(I) (possibly in combination with (II)) from Section 4.2 to eliminate all occurrences of max

from [tn] yields 2n conditional constraints. (This follows with a direct inductive argument

using [tn+1] = max(xn+1, [tn]).)

Although this example is rather artificial, it illustrates that an unrestricted application

of even very simple shapes of max-polynomial interpretations can lead to an exponential

blowup already on symbolical level, before the SMT solver is even invoked.

Moreover, while also the underlying term shape of Example 4.4 may look very arti-

ficial, in fact it is rather common to have TRSs over a signature that only contains

constants and a single binary function symbol. This class of TRSs is also known as

applicative TRSs (ATRSs). For instance, in applicative notation, the TRS rule (2.6),

i.e., bits(s(s(x))) → s(bits(s(half(x)))), would be represented as a(bits, a(s, a(s, x))) →
a(s, a(bits, a(s, a(half, x)))). ATRSs are frequently used to express programs with higher-

order functions via first-order TRSs, and the current TPDB (version 8.0.2) contains almost

200 ATRSs.

Heuristics for Interpretation Shapes

Another burden that comes with the increased flexibility of max-polynomials is that it

is less clear which shape to use for the parametric interpretations than with classical

polynomial interpretations. For instance, even if one only wishes to use an interpretation

like
∑
aik,jk max(xik , xjk) for some ik and jk, it is a priori not clear which ik and jk are

suitable candidates. For an n-ary function symbol f , we already obtain n2−n
2

possible

expressions max(xi, xj) (here we already take into account that we can safely require

i < j since max(x, y) = max(y, x) and max(x, x) = x).

Due to these issues, one should use suitable heuristics to determine for which func-

tion symbols of a set of term constraints and in what way one should use “max” (and,

analogously, “min”).

A common theme for the following heuristics is that for function symbols f with ar(f) =

n, we always regard parametric interpretations of the shape

[f](x1, . . . , xn)

= f0 + f1 x1 + . . .+ fn xn +
∑

aik,jk max(xik , xjk) +
∑

bi′`,j′` min(xi′` , xj′`)
(4.23)

Here all fi, ai,j, bi,j are parametric coefficients that are only used in the interpretation

of the symbol f . In other words, we use linear polynomial interpretations where we

additionally allow applications of the maximum (or minimum) function to two variables

4.3. Shape Heuristics and Optimizations 67

as addends (multiplied with a parametric coefficient).

The following heuristic detects cases where a rule duplicates a variable below a binary

constructor symbol:

Heuristic 4.5 (Duplication Heuristic). Let (P ,R) be a DP problem, let c be a binary

constructor symbol. If P ∪R contains a rule39 `→ C[c(t1, t2)] for some context C where

Var(t1) ∩ Var(t2) 6= ∅, then include a1,2 · max(x1, x2) as an addend for the parametric

max-polynomial [c].

The intuition for this heuristic is that interpretations like [c](x1, x2) = max(x1, x2) allow

to solve a term constraint like x % c(x, x) since the resulting max-polynomial constraint

x ≥ max(x, x) holds over N. At the same time, we do not need to filter an argument i

of c by the interpretation (i.e., use an interpretation that is independent of xi). This can

become relevant for solving other term constraints at the same time.40

As an example for the applicability of Heuristic 4.5 consider again the TRS SUBST

from Example 4.1 and, specifically, its rule:

(x ? y) ◦ z → (x ◦ z) ? (y ◦ z) (4.2)

Zantema [Zan94] identifies rule (4.2) as a distribution rule for ?, i.e., the rule has the shape

C[a(x1, . . . , xn)]→ a(C[x1], . . . , C[xn]) for a non-trivial context C where ? corresponds to

the symbol a. As part of his termination proof, Zantema uses a specialized technique for

distribution rules called distribution elimination [Zan94] to remove the distribution rule

for ? from the TRS. Also in our proof, the symbol ? gets a special treatment, i.e., it is

the only symbol where we use the max-operator as a building block for its interpretation.

Indeed, Heuristic 4.5 recognizes the symbol ? as a candidate for using max(x1, x2) as part

of its interpretation because of rule (4.2).

The next heuristic is based on identifying projection rules :

Heuristic 4.6 (Variable Projection Heuristic). Let (P ,R) be a DP problem, let f be a

function symbol of arity n. If P∪R contains two rules C1[f(s1, . . . , si−1, y, si+1, . . . , sn)]→
y and C2[f(t1, . . . , tj−1, z, tj+1, . . . , tn)]→ z for variables y and z where i < j, then include

ai,j ·max(xi, xj) as an addend for the parametric max-polynomial [f].

Here the intuition is that if a function symbol f can be projected to several different

arguments xi and xj, then it could be beneficial to satisfy both

• f(s1, . . . , si−1, y, si+1, . . . , sn) % y and

39Of course, one could formulate the heuristics analogously for sets of term constraints instead of TRSs.
40In [FNO+08, Heuristic 19] we present a similar heuristic for applying polynomial interpretations

with non-negative rational coefficients like 1
2 . Also here, the intuition is that interpretations like

[c](x1, x2) = 1
2 x1 + 1

2 x2 allow to solve a term constraint x % c(x, x). With this interpretation we
obtain x ≥ 1

2 x+ 1
2 x, which holds over the non-negative rational numbers. Again, this interpretation

does not filter any argument of c.

68 Chapter 4. Maximal Termination

• f(t1, . . . , tj−1, z, tj+1, . . . , tn) % z

using an interpretation [f] that is as small as possible. The smallest such max-polynomial

p with p ≥ xi and p ≥ xj is p = max(xi, xj).

There are several typical functions defined by rewrite rules where this pattern is very

helpful. For instance, the function max which computes the maximum of two natural

numbers (in term notation) is usually defined via the following rules:

max(x, 0)→ x (4.24)

max(0, y)→ y (4.25)

max(s(x), s(y))→ s(max(x, y)) (4.26)

For typical uses of symbols like 0 and s for modeling natural numbers in TRSs, often the

interpretations [0] = 0 and [s](x1) = x1 + 1 turn out to be beneficial for the termination

proof. In this case, an interpretation [max](x1, x2) = max(x1, x2) indeed is the smallest

possible interpretation such that max(x, 0) % x and max(0, y) % y hold. Due to the

rules (4.24) and (4.25), Heuristic 4.6 would recognize that max is a suitable candidate for

max(x1, x2) as an ingredient of its interpretation.

Similarly, one often observes a function symbol if to model conditional expressions in

TRSs. The function can be defined, e.g., by the following two rules:

if(true, x, y)→ x (4.27)

if(false, x, y)→ y (4.28)

Also here, an interpretation [if](x1, x2, x3) = max(x2, x3) is frequently useful. For instance,

in [AEF+08] we prove termination of the leading example [AEF+08, Example 1], which

contains the rules (4.27) and (4.28), using such interpretations for if.41

As mentioned earlier, our implementation also offers the possibility to use “min” in a

way which is completely analogous to “max”. Also here, it is sensible to use a dedicated

heuristic to select in what way one should include “min” in a parametric interpretation.

For this purpose, we propose the following criterion.

Heuristic 4.7 (Ground Projection Heuristic). Let (P ,R) be a DP problem, let f be a

function symbol of arity n. If P∪R contains rules C1[f(s1, . . . , si−1, r1, si+1, . . . , sn)]→ r1

and C2[f(t1, . . . , tj−1, r2, tj+1, . . . , tn)]→ r2 for constructor ground terms r1, r2 where i < j

and if each term s1, . . . , si−1, si+1, . . . , sn, t1, . . . , tj−1, tj+1, . . . , tn contains variables, then

include bi,j ·min(xi, xj) as an addend for the parametric max-polynomial [f].

41Our paper [AEF+08] deals with proving termination of context-sensitive term rewriting [Luc98, Luc02].
This strategy restriction of term rewriting can conveniently be used to model the usual behavior of
if(t1, t2, t3): one may evaluate t1, but not t2 or t3.

4.3. Shape Heuristics and Optimizations 69

While in practice less frequently needed for termination proofs than “max”, also “min”

can be beneficial as an ingredient for max-polynomial interpretations. Heuristic 4.7 de-

tects cases where a function symbol projects to a ground argument at different argument

positions. This is the case for the usual implementation of the function min, which com-

putes the minimum of two terms representing natural numbers:

min(x, 0)→ 0 (4.29)

min(0, y)→ 0 (4.30)

min(s(x), s(y))→ s(min(x, y)) (4.31)

Heuristic 4.7 uses the rules (4.29) and (4.30) to detect that min might benefit from

min(x1, x2) as a building block of its interpretation.

In addition to using Heuristic 4.5, Heuristic 4.6, and Heuristic 4.7, in AProVE we only

allow “max” or “min” as part of our interpretation if we are not working on an ATRS (or a

DP problem with a corresponding signature). Moreover, we delete conditional constraints

where we can show that the premise is inconsistent or that it entails the conclusion for

all possible values of the parametric coefficients. Likewise, we also drop valid atoms from

constraint premises.

To see the effect of the heuristics in practice, consider the following example:

Example 4.8. The TRS TRS/Secret 06 TRS/tpa06.xml from the TPDB consists of the

above rules (4.24), (4.25), (4.26), (4.29), (4.30), (4.31) for max and min and the following

rules:

p(s(x))→ x (4.32)

f(s(x), s(y), s(z))→ f(max(s(x),max(s(y), s(z))), p(min(s(x),max(s(y), s(z)))),

min(s(x),min(s(y), s(z))))
(4.33)

f(0, y, z)→ max(y, z) (4.34)

f(x, 0, z)→ max(x, z) (4.35)

f(x, y, 0)→ max(x, y) (4.36)

Using max-polynomial interpretations, AProVE succeeds in finding a termination proof

automatically. In the final proof step of the modular termination proof for this challenge

example,42 the reduction pair processor needs to solve the following term constraints:

42This termination proof involves also several applications of the rewriting dependency pairs processor
[GTSF06, Thi07], which performs symbolic evaluation on the right-hand sides of dependency pairs.
This explains why the constraint (4.33) does not correspond to any dependency pair in DP(R) where
R is the original TRS TRS/Secret 06 TRS/tpa06.xml.

70 Chapter 4. Maximal Termination

F(s(x), s(y), s(z)) � F(s(max(x,max(y, z))), min(x,max(y, z)),

s(min(x,min(y, z))))
(4.37)

max(x, 0) % x (4.38)

max(0, y) % y (4.39)

max(s(x), s(y)) % s(max(x, y)) (4.40)

min(x, 0) % 0 (4.41)

min(0, y) % 0 (4.42)

min(s(x), s(y)) % s(min(x, y)) (4.43)

AProVE finds the following interpretation to solve these term constraints: [F](x1, x2, x3) =

x2 + x3, [max](x1, x2) = max(x1, x2), [min](x1, x2) = min(x1, x2), [s](x1) = x1 + 1, and

[0] = 0. Thus, AProVE can also successfully apply max-polynomial interpretations if more

complicated expressions with “max” and “min” are involved.

Containing the Blowup

In case of nested occurrences of the max-function in the conditional constraints, it turns

out that we are not obliged to suffer the exponential blowup.

Example 4.9 (Example 4.4 Revisited). Consider again the family of terms T from

Example 4.4. Recall that with the interpretation [·] the term constraint tn % y becomes

[tn] ≥ [y], i.e.:

max(xn,max(xn−1, . . . ,max(x1, y) . . .)) ≥ y

We can express this (conditional) max-polynomial constraint equivalently using a max-

operator of higher arity43 (here we use the arity n+ 1) and write:

max(xn, xn−1, . . . , x1, y) ≥ y

An adaption of inference rule (I) then yields only the following n+1 conditional constraints

which do not contain “max” anymore:

x1 ≥ x2 ∧ x1 ≥ x3 ∧ . . . ∧ x1 ≥ xn ∧ x1 ≥ y ⇒ x1 ≥ y (4.44)

x2 ≥ x1 ∧ x2 ≥ x3 ∧ . . . ∧ x2 ≥ xn ∧ x2 ≥ y ⇒ x2 ≥ y (4.45)

43Following Definition 4.3, “max” can only be used with exactly 2 arguments, but one can consider
max(p1, p2, . . . , pn−1, pn) to be an abbreviation for max(p1,max(p2, . . . ,max(pn−1, pn) . . .)). Since
“max” is associative (and commutative), this does not cause any problems.

4.3. Shape Heuristics and Optimizations 71

· · · (4.46)

xn ≥ x1 ∧ xn ≥ x2 ∧ . . . ∧ xn ≥ xn−1 ∧ xn ≥ y ⇒ xn ≥ y (4.47)

y ≥ x1 ∧ y ≥ x2 ∧ . . . ∧ y ≥ xn ∧ y ≥ xn ⇒ y ≥ y (4.48)

Here the intuition is that for finding out which value an expression max(p1, . . . , pr) takes,

it suffices to know which pi is the maximum element, i.e., at least as great as all other pj.

In contrast, we can ignore the explicit case analysis for the two cases pj ≥ pk and pk ≥ pj

with j 6= i and k 6= i since the conclusion is in both cases the same.

The following inference rule (IV) now allows us to merge two occurrences of “max”

where one of them is a direct argument of the other. This rule that we have also used in

Example 4.9 is in principle always applicable.

IV. Merging “max”

. . . ⇒ . . . max(p1, . . . , max(q1, . . . , qn), . . . , pr) . . .

. . . ⇒ . . . max(p1, . . . , q1, . . . , qn, . . . , pr) . . .

In general, the nesting of two nested occurrences of “max” in conditional constraints

does not have to be direct (i.e., other arithmetic operators can occur between two occur-

rences of “max”. Thus, we need the following additional inference rule (V) to normalize

max-polynomials accordingly.

V. Distributing “+” and “∗”

. . . ⇒ . . . max(p1, . . . , pr) ◦max(q1, . . . , qn) . . .

. . . ⇒ . . . max(p1 ◦ q1, . . . , p1 ◦ qn, . . . , pr ◦ q1, . . . , pr ◦ qn) . . .

if ◦ ∈ {+, ∗} and if p1, . . . , pr,

q1, . . . , qn do not contain “max”
and cannot become negative;
here we identify max(p) and p

For instance, inference rule (V) allows to replace max(x, y) + 3 by max(x + 3, y + 3),

and it allows to replace max(x, 2) ∗max(y, z) by max(xy, xz, 2y, 2z). Note that inference

rule (V) requires for soundness that p1, . . . , pr, q1, . . . , qn cannot take any negative values:

Consider the max-polynomial −1 ∗max(2, 3). Arithmetic evaluation yields the value −3.

If we applied inference rule (V) instead, we would obtain max(−1 ∗ 2,−1 ∗ 3), which

would evaluate to a different result, viz. −2. The problem here is that “∗” is not weakly

monotonic if negative numbers are considered as arguments.44

However, if we work on PN, then p1, . . . , pr, q1, . . . , qn can never take negative values

since N does not contain negative numbers, and we do not allow the “−”-operator in PM .

Now we can introduce the inference rule (VI), which is the adaption of inference rule

(I) for “max” of higher arities that we have used in Example 4.9.

44In contrast, for the operator “+”, inference rule (V) would actually be applicable also for negative
values since also in this case “+” is weakly monotonic.

72 Chapter 4. Maximal Termination

VI. Eliminating High-Arity “max”

ϕ ⇒ . . .max(p1, . . . , pn) . . .

ϕ ∧ p1 ≥ p2 ∧ p1 ≥ p3 ∧ . . . ∧ p1 ≥ pn ⇒ . . . p1 . . . ∧
ϕ ∧ p2 ≥ p1 ∧ p2 ≥ p3 ∧ . . . ∧ p2 ≥ pn ⇒ . . . p2 . . . ∧
. . .

ϕ ∧ pn ≥ p1 ∧ pn ≥ p2 ∧ . . . ∧ pn ≥ pn−1 ⇒ . . . pn . . .

if p1, . . . , pn do not
contain “max”

Note that inference rule (VI) is not a proper generalization of inference rule (I). Inference

rule (I) transforms, e.g., max(x, y) ≥ x to (x ≥ y ⇒ x ≥ x)∧(y ≥ x+1⇒ y ≥ x) (here the

premises describe disjoint cases), whereas inference rule (VI) transforms max(x, y) ≥ x

to (x ≥ y ⇒ x ≥ x) ∧ (y ≥ x⇒ y ≥ x) (here both premises hold for x = y).

Note also that the additional inference rules (IV) – (VI) in general do not solve the

problem that a term constraint is transformed into exponentially many conditional con-

straints, as shown by the following example.

Example 4.10 (Exponential Blowup for Handling “max”, version 2). Consider the fol-

lowing family of terms T ′ = {t′i | i ∈ N} over a signature F where a, cons, nil ∈ F ,

ar(a) = ar(cons) = 2, and ar(nil) = 0:

• t′0 = y,

• t′n+1 = cons(a(xn+1,1, xn+1,2), t
′
n).

Note that the term t′n has size 4n + 1. Consider moreover a max-polynomial interpre-

tation with [a](x1, x2) = max(x1, x2), [cons](x1, x2) = x1 + x2, and [nil] = 42. A term

constraint t′n % nil then becomes [t′n] ≥ [nil], i.e., max(xn,1, xn,2) + max(xn−1,1, xn−1,2) +

. . .+ max(x1,1, x1,2) + y ≥ 42. Then repeated application of inference rule (I) (possibly in

combination with (II)) from Section 4.2 to eliminate all occurrences of “max” from [t′n]

again yields 2n conditional constraints since n occurrences of “max” must be eliminated.

To render inference rule (VI) applicable, we need to apply rule (V) first so that “+” is

moved inside “max”. This, however, leads to a max-polynomial on the left-hand side

where “max” has 2n arguments of the shape xn,in + . . .+x1,i1 + y and all 2n combinations

of i1, . . . , in ∈ {1, 2} occur. Then inference rule (VI) also yields 2n conditional constraints

without “max”.

As Example 4.10 indicates, even with the new inference rules (IV) – (VI) we obtain an

exponential blowup already when interpreting a single function symbols as the maximum

of two of its arguments and otherwise using only linear polynomials. The problem is that

for interpreting a term t′n, here one needs to deal with sums of several expressions with

“max” at their root. This invokes the costly inference rule (V), which distributes “+”

over “max”.

Thus, depending on the desired shape of the parametric interpretation, the inference

rules (IV) – (VI) may be more suitable than the inference rule (I). However, in general

4.4. Experiments 73

these inference rules solve the complexity issues of this automation only for rather spe-

cialized parametric shapes of interpretations, and in most cases one should still apply

suitable heuristics to obtain parametric interpretations.

4.4 Experiments

Our results have been implemented in the systems AProVE [GST06] and TTT2 [KSZM09].

While AProVE and TTT2 were already the two most powerful termination provers for

TRSs at the International Termination Competition in 2007 [MZ07], our contributions

increase the power of both tools considerably without affecting their efficiency. More

precisely, when using a time limit of 60 seconds per example, AProVE and TTT2 can now

automatically prove termination of 15 additional examples from the Termination Problem

Data Base, version 4.0. Several of these examples had not been proved terminating by any

tool at the competitions before. To run the AProVE implementation via a web-interface

and for further details, we refer to http://aprove.informatik.rwth-aachen.de/eval/

maxpolo/.45

Moreover, we also conducted experiments for polynomial interpretations with a neg-

ative constant, as described at the end of Section 4.2, on the 1438 examples from the

TPDB, version 8.0.2 which are used for the category “TRS standard” in the annual

Termination Competition. We used a setting similar to that of Section 3.4 (i.e., we

used a basic version of the DP method and no other orders), and we ran the experi-

ments on an Intel Xeon 5140 at 2.33 GHz. With parametric interpretations of the shape

[f](x1, . . . , xn) = max(a1 x1 + . . . + an xn + b, 0) and parameter values from {−1, 0, 1}
where negative values are allowed only for b (and as an optimization only if n > 0), we

could only show termination for two additional examples: TRS/AProVE 06/identity.xml

and TRS/Transformed CSR 04/ExProp7 Luc06 GM.xml.

In both cases, the approach from Chapter 3 fails, whereas the implementation based on

the setting of this chapter succeeds. However, in both cases already the old search proce-

dure from AProVE 1.2 with its slightly more general criteria can easily prove termination

(cf. Footnote 30, which discusses this in detail for TRS/AProVE 06/identity.xml). For

TRS/Transformed CSR 04/ExProp7 Luc06 GM.xml, in its normal configuration AProVE

manages to prove termination quickly by repeated applications of strongly monotonic

polynomial orders to remove rules [Lan79, FGM+07], a switch to innermost termination

(which suffices to conclude full termination here), the dependency pair transformation

[AG00], an application of the dependency graph processor [GTS05a], removal of non-

usable rules [GTS05a], and finally a termination proof via the size-change termination

principle [LJB01, TG05].

45While this evaluation web page also reports on results for non-monotonic reduction pairs, the 15
additional examples on the TPDB are all due to the contributions of this chapter.

http://aprove.informatik.rwth-aachen.de/eval/maxpolo/
http://aprove.informatik.rwth-aachen.de/eval/maxpolo/

74 Chapter 4. Maximal Termination

While in this experiment, AProVE could show termination using the approximations

of Definition 3.8 for 561 examples with 14 timeouts after 60 seconds (total measured

runtime: 3482.7 seconds), with our implementation of the setting of the present chapter

AProVE could only prove 471 examples as terminating and 440 timeouts occurred (total

measured runtime: 33858.4 seconds). These results indicate that for polynomials with

a negative constants the specialized approximation-based automation of Chapter 3 is

much more suitable in practice than an automation following the more general approach

of this chapter. The reason is that in Chapter 3, we benefit from the special shape of

the used interpretations. Therefore, this particular setting allows us to work with an

approximation-based approach that uses only polynomials without “max” and at the

same time to lose only little power due to the approximations.

4.5 Summary and Outlook

In this chapter we have shown how to use polynomial interpretations with “max” in

weakly monotone algebras for termination proofs with DPs and developed a method to

encode the resulting search problems into SMT-NIA. Here, we have used a translation

via conditional polynomial constraints to standard unconditional polynomial constraints

without “max” . Moreover, we have shown that in general an unrestricted introduction

of “max” for parametric interpretations leads to an exponential blowup in the number of

constraints to be solved. We have also implemented polynomial interpretations with a

negative constant [HM07] as discussed in Chapter 3.

To deal with the exponential blowup, we have provided syntax-based shape heuristics

to tailor parametric max-polynomial interpretations for the needs of a given set of term

constraints. This way, “max” is used where it is needed, yet the resulting search problems

can still be handled with ease. Our experimental evaluation then shows two things: (i)

Modern termination tools like AProVE and TTT2 benefit notably from our automation of

max-polynomial interpretations, and (ii) for the special case of polynomial interpretations

with a negative constant (which also use “max”), our dedicated SMT-NIA encoding from

Definition 3.8, which makes use of the special shape of the interpretations, is significantly

more suitable than the more widely applicable automation of the present chapter.

Note that our approach captures a large class of interpretations, which allows for a high

degree of flexibility also for settings beyond termination analysis of conventional rewriting.

In particular, in follow-up work we apply max-polynomial interpretations for termination

analysis of integer term rewriting [FGP+09]. Here we introduce term rewriting with

built-in integers together with corresponding pre-defined operations and provide dedicated

methods based on max-polynomial interpretations to Z for termination analysis of integer

term rewriting. In the mean time, integer term rewriting has been applied successfully as a

dedicated translation target language for termination analysis of programming languages

4.5. Summary and Outlook 75

like Java Bytecode [OBEG10, BOG11]. Hence, the contributions of this chapter also have

a direct impact on automated termination analysis for Java Bytecode.

For future work, one direction is to lift the approach to rational or real max-polynomial

interpretations (cf., e.g., our work [FNO+08] on automation of rational polynomial inter-

pretations [Luc05] or the paper [ZM10] for interpretations to the reals). Similarly, one

could also extend max-interpretations to the setting of matrix interpretations (e.g., by a

component-wise extension).

For a restricted setting, which is however quite amenable to automation, related work

[KW08, KW09] already provides a variant of max-interpretations for matrix interpreta-

tions. There, Koprowski and Waldmann consider arctic interpretations, i.e., interpreta-

tions to max/plus algebras based on the arctic semi-ring, where also negative numbers

can be used. In Chapter 5 we look in more detail into this setting, review the current

state of the art in SAT encodings to automate arctic interpretations, and propose a novel

SAT encoding for arctic interpretations.

5 SAT Encodings for Arctic

Termination Revisited

In recent work [KW08, KW09], Koprowski and Waldmann also propose to make use of

the max-operation as building block for weakly monotone algebras. Here they embed

the max-operation into a more restricted setting than that of Chapter 4. Instead of

allowing combinations of “max” with arbitrary polynomials, they allow only the “+”-

function and constants as possible additional building blocks for interpretation functions.

Moreover, they impose the shape max(c1 + x1, . . . , cn + xn, c0) while at the same time

adding the value −∞ to the carrier of the weakly monotone algebra. Based on this

setting, they additionally provide both an extension to arctic matrix interpretations and

to arctic matrix interpretations with negative constants (named below zero interpretations

in [KW08, KW09]).46

To solve the constraints arising from parametric interpretations in the arctic setting,

Koprowski and Waldmann [KW08, KW09] give a SAT encoding which is based on a binary

encoding of numbers. In this chapter, we propose an alternative SAT encoding based on

a unary representation of numbers. Our experiments indicate that this—asymptotically

larger—representation of the constraints as a SAT problem leads to notable performance

improvements with the current state of the art in SAT solving, as exemplified, e.g., by

the solver MiniSAT [ES04].

In Chapter 5.1 we present the setting for this chapter. Here we also contribute a novel

transformation that allows for more flexible interpretations with negative values than

earlier work [KW08, KW09]. Chapter 5.2 presents the binary SAT encoding based on

[KW08, KW09] that we use as a reference encoding. In Chapter 5.3 we then present

our novel unary SAT encoding to search for arctic interpretations. Chapter 5.4 discusses

related work, both with respect to arctic interpretations and with respect to the approach

underlying our unary SAT encoding. In Chapter 5.5 we provide an empirical evalua-

tion of our novel encoding in several settings to demonstrate the practical impact of our

contribution, and in Chapter 5.6 we conclude.

46See also Footnote 6 for the origin of the term “arctic” in the context of algebras.

78 Chapter 5. SAT Encodings for Arctic Termination Revisited

5.1 Arctic Interpretations

This section sets up the scenario for constraint-based termination analysis using arctic

algebras. As in the previous chapters, a parametric approach à la [CMTU05] gives rise

to existential constraints over the carrier of the algebra. The presentation of this section

is based on [KW08, KW09].

Arctic Arithmetic

In the setting of arctic algebras, we consider the carriers AN = N ∪ {−∞} and AZ =

Z∪{−∞}. As building block of our interpretations, we use the operation “�” defined as

follows:

• x� y = max(x, y), if both x, y 6= −∞,

• x� y = x, if y = −∞, and

• x� y = y, otherwise.

Moreover, we use the operation “�” defined as follows:

• x� y = x+ y, if both x, y 6= −∞

• x� y = −∞, otherwise.

Thus, −∞ and 0 are the neutral elements of the �-operation and the �-operation,

respectively. Since “�” and “�” provide a direct generalization of the standard opera-

tions “max” and “+” to the additional carrier element −∞, algebras like (AN,�,�) and

(AZ,�,�) are also known as max/plus algebras. Since these algebras also satisfy the semi-

ring properties, they are also called max/plus semi-rings or arctic semi-rings. Because of

their role in arctic semi-rings, the operations “�” and “�” are often referred to as arctic

addition and arctic multiplication, respectively.47 Note that for the operations “�” and

“�” the usual arithmetic laws for addition and multiplication hold, i.e., both “�” and

“�” are associative and commutative, and by x� (y � z) = x� y � x� z we also have

distributivity.

Example 5.1 (Arctic Arithmetic). With the above operations, the following equalities

hold:

• (2 � 3) � (4 � 5) = 3 � 5 = 8

• −∞� 3 � 1 = −∞� 1 = 1

• (−∞� 3) � 1 = 3 � 1 = 4

47Therefore, we let “�” bind stronger than “�”.

5.1. Arctic Interpretations 79

As in [KW08, KW09], we compare values from an arctic algebra as follows:

• x ≥ y iff y = −∞ or x, y ∈ N (or Z) with x ≥N/Z y

• x� y iff y = −∞ or x, y ∈ N (or Z) with x >N/Z y

Note that � is neither a strict ordering nor well founded since we have −∞� −∞.

Arctic Matrix Interpretations

As interpretations [·] for function symbols, [KW08, KW09] propose linear functions on

vectors of arctic numbers with d ≥ 1 entries. The value d is also called the dimension of

the interpretation. These interpretations have the following shape:

[f](x1, . . . , xn) = F1 � x1 � . . . � Fn � xn � F0 (5.1)

Here, x1, . . . , xn and F0 are (column) vectors of d entries, and F1, . . . , Fn are d×d-matrices.

This is also the reason why such interpretations are commonly known as arctic matrix

interpretations .48 Depending on the setting, the entries of F0, F1, . . . , Fn are elements of

AN or AZ. We call an arctic number x finite iff x 6= −∞, and we call x positive iff x ≥ 0.

A vector F with arctic entries ai is called finite iff a1 is finite, and it is called positive iff

a1 is positive. A matrix G with arctic entries bi,j is called finite iff b1,1 is finite.

Note that so far we have only defined the operations “�” and “�” for arctic numbers,

not matrices or vectors. The extension of these operations from numbers to matrices (and

vectors) is completely analogous to standard matrix addition and multiplication. For two

k × n-matrices M and N with entries ai,j and bi,j, respectively, the entries ci,j of the

k × n-matrix M �N are defined as ci,j = ai,j � bi,j, i.e., “�” extends component-wise to

matrices. For a k×m-matrix M with entries ai,j and a m× n-matrix N with entries bi,j,

the entries ci,j of the k×n-matrix M�N are defined as ci,j = ai,1�b1,j � . . . � ai,m�bm,j.
For the comparison operations ≥ and� we use component-wise extensions to matrices

and vectors. By [KW08, Lemma 8], we get the following criterion for comparison of two

linear functions f and g on arctic vectors with f(x1, . . . , xn) = F1 � x1 � . . . � Fn �
xn � F0 and g(x1, . . . , xn) = G1 � x1 � . . . � Gn � xn � G0.

F1 ≥ G1 ∧ . . . ∧ Fn ≥ Gn ∧ F0 ≥ G0

implies ∀x1, . . . , xn : f(x1, . . . , xn) ≥ g(x1, . . . , xn)
(5.2)

F1 � G1 ∧ . . . ∧ Fn � Gn ∧ F0 � G0

implies ∀x1, . . . , xn : f(x1, . . . , xn) � g(x1, . . . , xn)
(5.3)

48For matrix interpretations with standard addition and multiplication, cf., e.g., [HW06, EWZ08] for the
carrier Nd and [GHW07, ALN09, ZM10] for the carriers Qd

≥0 and Rd≥0.

80 Chapter 5. SAT Encodings for Arctic Termination Revisited

As stated in [KW08], this criterion for comparison of linear arctic functions is the “arctic

counter-part” of the absolute positiveness criterion [HJ98] used for comparison of standard

polynomial functions (cf. Theorem 2.18). Note that in (5.3) we require a decrease with

� in all inequalities. The reason for this is that if we used ≥ instead of � (as in

Theorem 2.18), e.g., for f(x) = 0 � x � 2 and g(x) = 0 � x � 1 we would get the

constraints 0 ≥ 0 and 2 � 1, which are satisfied. However, for x = 3, we would get

f(3) = 0 � 3 � 2 = 3 6� 3 = 0 � 3 � 1 = g(3). As [KW08, KW09] mention, this is

because in general “�” requires a strict increase in both arguments in order to cause a

strict increase in the result. An exception is the case that one of the arguments is −∞.

Here indeed −∞�x� −∞�y always holds if x� y holds (which is also the explanation

that [KW08, KW09] give for defining −∞� −∞).

Of course, we can use these arctic variants of absolute positiveness also in the paramet-

ric setting. The resulting arctic constraints (over arctic variables) and their semantics

are then defined completely analogously to Diophantine constraints (over Diophantine

variables) and their semantics in Definition 2.24.

Weakly Monotone Arctic Algebras

Based on these preliminaries, [KW08, KW09] present two families of weakly monotone

algebras with arctic numbers.

Theorem 5.2 (Arctic Algebras Above Zero [KW08, Theorem 12]). Let d ∈ N, let A =

(N× Ad−1
N , [·]A) be an F-algebra. Moreover, for all f ∈ F let

[f](x1, . . . , xn) = F1 � x1 � . . . � Fn � xn � F0

as in (5.1) where all entries of F0, F1, . . . , Fn are elements of AN and where at least one

of F0, F1, . . . , Fn is finite. Then (A,≥,�) is a weakly monotone algebra.4950

Example 5.3 (Bits version 1, Revisited). Consider again the term constraints from

Example 2.14:51

HALF(s(s(x))) � HALF(x) (2.10)

BITS(s(s(x))) � HALF(x) (2.11)

BITS(s(s(x))) � BITS(s(half(x))) (2.12)

49While in this thesis we pose more requirements on weakly monotone algebras than [KW08, KW09],
the statement also holds in our setting.

50Note that � is well founded on N× Ad−1
N since � is well founded on N.

51Note that also arctic interpretations are Cε-compatible: Using [c](x1, x2) = x1 � x2, both c(x, y) ≥ x
and c(x, y) ≥ y are satisfied. This allows us to disregard the term constraints for the bits-rules here.

5.1. Arctic Interpretations 81

half(0) % 0 (2.13)

half(s(0)) % 0 (2.14)

half(s(s(x))) % s(half(x)) (2.15)

We now show how to translate these term constraints to satisfiability of a constraint

problem over an arctic carrier, thus automating Theorem 5.2. Analogous to Example 2.21,

we use a parametric arctic interpretation of dimension 1 (which suffices for the example

and eases readability) as follows: [BITS](x1) = B1 �x1 � B0, [HALF](x1) = H1 �x1 � H0,

[half](x1) = h1 � x1 � h0, [s](x1) = s1 � x1 � s0, and [0] = z0. Here, B0, B1, H0, . . . are

the parameters of the interpretation, and we can use values from AN to instantiate them.

Using this interpretation, we transform the above term constraints in an analogous way

to Example 2.22, and for the term constraints (2.13), (2.14), and (2.15), we obtain:

h0 � h1 � z0 ≥ z0 (5.4)

h0 � h1 � s0 � h1 � s1 � z0 ≥ z0 (5.5)

h0 � h1 � s0 � h1 � s1 � s0 � h1 � s1 � s1 � x ≥ s0 � s1 � h0 � s1 � h1 � x (5.6)

Here the term constraints (2.10), (2.11), and (2.12) yield the following constraints:

H0 � H1 � s0 � H1 � s1 � s0 � H1 � s1 � s1 � x� H0 � H1 � x (5.7)

B0 � B1 � s0 � B1 � s1 � s0 � B1 � s1 � s1 � x� H0 � H1 � x (5.8)

B0 � B1 � s0 � B1 � s1 � s0 � B1 � s1 � s1 � x

� B0 � B1 � s0 � B1 � s1 � h0 � B1 � s1 � h1 � x
(5.9)

As in Example 2.22, here only the variable x is (implicitly) universally quantified.

So far the treatment of the example is exactly analogous to standard linear polynomial

interpretations over N. However, in addition we now also need to impose that for each

symbol f , at least one of the coefficients of its interpretation is finite:

(H0 6= −∞∨H1 6= −∞) ∧ (5.10)

(B0 6= −∞∨B1 6= −∞) ∧ (5.11)

(h0 6= −∞∨ h1 6= −∞) ∧ (5.12)

(s0 6= −∞∨ s1 6= −∞) ∧ (5.13)

z0 6= −∞ (5.14)

In order to eliminate the universally quantified variable x from the constraints (5.4) –

(5.9), we apply the criteria from (5.2) and (5.3), i.e., arctic absolute positiveness. This

82 Chapter 5. SAT Encodings for Arctic Termination Revisited

way, here we obtain the following conjunction.

h0 � h1 � z0 ≥ z0 ∧ (5.15)

h0 � h1 � s0 � h1 � s1 � z0 ≥ z0 ∧ (5.16)

h0 � h1 � s0 � h1 � s1 � s0 ≥ s0 � s1 � h0 ∧ (5.17)

h1 � s1 � s1 ≥ s1 � h1 ∧ (5.18)

H0 � H1 � s0 � H1 � s1 � s0 � H0 ∧ (5.19)

H1 � s1 � s1 � H1 ∧ (5.20)

B0 � B1 � s0 � B1 � s1 � s0 � H0 ∧ (5.21)

B1 � s1 � s1 � H1 ∧ (5.22)

B0 � B1 � s0 � B1 � s1 � s0 � B0 � B1 � s0 � B1 � s1 � h0 ∧ (5.23)

B1 � s1 � s1 � B1 � s1 � h1 (5.24)

Now any model for the conjunction (5.10) – (5.24) can also be used to instantiate the

parametric arctic interpretation to a concrete arctic interpretation. This concrete arctic

interpretation then gives rise to a reduction pair that solves the initial term constraints.

For instance, the assignment B0 = h0 = −∞, B1 = H0 = h1 = s0 = 0, and H1 = s1 =

z0 = 1, solves the above constraints. This way, we obtain the concrete arctic interpretation

A with [BITS]A(x1) = 0�x1 �−∞, [HALF]A(x1) = 1�x1 � 0, [half]A(x1) = 0�x1 �−∞,

[s]A(x1) = 1 � x1 � 0, and [0]A = 1. This then yields the weakly monotone algebra

(A,≥,�) withA = (N, [·]A) and the corresponding reduction pair (%A,�A), which proves

termination of Example 2.1 also via an arctic interpretation.

It is interesting to note that in contrast to the max-polynomial interpretations of the

previous chapter, it is not necessary to perform case analyses to deal with the �-operation

(corresponding to the max-operation in Chapter 4).

The price to pay for this conveniently automatable setting, however, is that of ex-

pressivity. Note that, e.g., for dimension 1, one can use a max-polynomial interpreta-

tion to simulate the effect of an arctic interpretations [f]A(x1, . . . , xn) = F1 � x1 �
. . . � Fn � xn � F0 as used in Theorem 5.2, i.e., where F0, . . . , FN ∈ AN and where

F0 6= −∞ ∨ . . . ∨ fn 6= −∞. Such a max-polynomial interpretation [·]B would have

the shape [f]B(x1, . . . , xn) = max(f1,0 + f1,1 · x1, . . . , fn,0 + fn,1 · xn, f0,0). Here we set

fi,0 = fi,1 = 0 if Fi = −∞ and fi,0 = Fi, fi,1 = 1 otherwise. The intuition is that an arctic

coefficient Fi = −∞ is used to make [·]A filter away its argument xi. The same effect is

achieved by (classically) multiplying xi with a (classical) coefficient 0 in [·]B.

However, for a non-linear max-polynomial interpretation like [f](x1, x2) = x1 ·x2, there

is no corresponding interpretation on arctic level, where multiplication of variables cannot

be simulated easily. It is not even possible to express a polynomial interpretation by a

classical sum of variables [f](x1, x2) = x1 +x2 with the approach to arctic interpretations

5.1. Arctic Interpretations 83

described in this chapter (where the operation “�” is never applied to two variables).

Still, for the specific setting of string rewrite systems (SRSs), i.e., TRSs whose signature

only contains symbols with just a single argument, it turns out that these shortcomings

of arctic interpretations do not matter much in practice. The reason is that here one

does not have different arguments that one could combine by an arithmetic operation.

Indeed, as indicated by the termination competitions that took place since the publication

of [KW08], arctic interpretations have become a key technique for termination analysis

of SRSs. One of the reasons for this is the impact of arctic interpretations with numbers

below zero.

Theorem 5.4 (Arctic Algebras Below Zero [KW08, Theorem 14]). Let d ∈ N, let A =

(N× Ad−1
Z , [·]A) be an F-algebra. Moreover, for all f ∈ F let

[f](x1, . . . , xn) = F1 � x1 � . . . � Fn � xn � F0

as in (5.1) where all entries of F0, F1, . . . , Fn are elements of AZ and where F0 is positive.

Then (A,≥,�) is a weakly monotone algebra.

In contrast to classic polynomial interpretations with negative constants, for below

zero arctic interpretations there is no need for a special treatment via approximations (cf.

Chapter 3). Instead, the constraints arising from arctic interpretations below zero are

almost identical to those for arctic interpretations where only non-negative numbers are

considered (together with −∞).

Example 5.5 (Bits version 2, Revisited). Consider again the term constraints (3.4),

(2.13), (2.14), and (2.15), which arise during termination analysis of Example 3.1:

BITS(s(x)) � BITS(half(s(x))) (3.4)

half(0) % 0 (2.13)

half(s(0)) % 0 (2.14)

half(s(s(x))) % s(half(x)) (2.15)

To solve them, now we want to use a reduction pair based on Theorem 5.2.

We again use a parametric arctic interpretation of dimension 1 as follows: [BITS]B(x1) =

B1 � x1 � B0, [half]B(x1) = h1 � x1 � h0, [s]B(x1) = s1 � x1 � s0, and [0]B = z0. Again,

B0, B1, h0, . . . are the parameters of the interpretation. In contrast to Example 5.3, we

now consider values from AZ (including finite negative numbers) to instantiate these

parameters.

From the term constraints (2.13), (2.14), and (2.15) we again obtain the following

84 Chapter 5. SAT Encodings for Arctic Termination Revisited

constraints:

h0 � h1 � z0 ≥ z0 (5.4)

h0 � h1 � s0 � h1 � s1 � z0 ≥ z0 (5.5)

h0 � h1 � s0 � h1 � s1 � s0 � h1 � s1 � s1 � x ≥ s0 � s1 � h0 � s1 � h1 � x (5.6)

Likewise, from (3.4) we get

B0 � B1 � s0 � B1 � s1 � x

� B0 � B1 � h0 � B1 � h1 � s0 � B1 � h1 � s1 � x
(5.25)

From Theorem 5.4, we get the requirement that for each symbol f , the constant part of

its interpretation [f] must be positive:

B0 ≥ 0 ∧ h0 ≥ 0 ∧ s0 ≥ 0 ∧ z0 ≥ 0 (5.26)

Using the arctic absolute positiveness criteria from (5.2) and (5.3), we eliminate the

universally quantified variable x from the constraints (5.4), (5.5), (5.6), and (5.25). This

transformation yields the following conjunction:

h0 � h1 � z0 ≥ z0 ∧ (5.15)

h0 � h1 � s0 � h1 � s1 � z0 ≥ z0 ∧ (5.16)

h0 � h1 � s0 � h1 � s1 � s0 ≥ s0 � s1 � h0 ∧ (5.17)

h1 � s1 � s1 ≥ s1 � h1 ∧ (5.18)

B0 � B1 � s0 � B0 � B1 � h0 � B1 � h1 � s0 ∧ (5.27)

B1 � s1 � B1 � h1 � s1 (5.28)

Using the assignment h1 = −1, B0 = B1 = h0 = z0 = 0, and s0 = s1 = 1, we obtain the

concrete arctic interpretation [·]C where we have [BITS]C(x1) = 0 � x1 � 0, [half]C(x1) =

−1 � x1 � 0, [s]C(x1) = 1 � x1 � 1, and [0]C = 0. This way, we get the weakly monotone

algebra (C,≥,�) with C = (N, [·]C) and the corresponding reduction pair (%C,�C), which

can be used to conclude the termination proof for Example 3.1 via an arctic below zero

interpretation.

Shifting Negative Numbers

Koprowski and Waldmann [KW08, KW09] propose using two’s complement to represent

integer values in a SAT encoding. This classic encoding for CPU arithmetic allows to

represent (finite) values from {2−k, . . . , 2k−1} for some k. However, it can be desirable to

5.2. A Binary SAT Encoding for Arctic Constraints 85

use a search space {`1, . . . , `2} with `1 < 0 < `2 where `2 > −`1 holds. For instance, in the

Termination Competition of 2011, AProVE searched for below zero interpretations with

parameter values from {−∞,−1, 0, 1, 2, 3} (among several choices). Thus, to increase

flexibility regarding the set of values to be considered for the parametric interpretation,

here we advocate (and use) an alternative approach, which we illustrate by an example.

If we wish to search for finite values starting, e.g., from `1 = −1, we use a parametric

interpretation like [BITS]D(x1) = −1 �B′1 � x1 � −1 �B′0, [half]D(x1) = −1 � h′1 � x1 �
−1�h′0, [s]D(x1) = −1� s′1 �x1 � −1� s′0, and [0]D = −1� z′0. Here, for the parameters

B′0, B
′
1, h
′
0, . . . we now only need to consider values from AN. Then instead of the arctic

constraint (5.16), we get the following arctic constraint from the term constraint (2.14):

−1 � h′0 � −2 � h′1 � s′0 � −3 � h′1 � s′1 � z′0 ≥ −1 � z′0 (5.29)

To eliminate the finite negative constants from this constraint, we now shift the whole

constraint by an arctic multiplication with 3, which is the arctic multiplicative inverse to

the smallest finite number in the constraint (i.e., −3). Using distributivity, we obtain the

following arctic constraint:

2 � h′0 � 1 � h′1 � s′0 � h′1 � s′1 � z′0 ≥ 2 � z′0 (5.30)

We proceed similarly for all arctic constraints to eliminate negative numbers.

In our example, we only need to consider assignments of the parameters to arctic

numbers from AN, and we can find a corresponding assignment with h′1 = 0, B′0 = B′1 =

h′0 = z′0 = 1, and s′0 = s′1 = 2 to solve the overall resulting conjunction. This way, we can

instantiate [·]D to get [·]C.
Thus, in the following SAT encodings we only need to consider the case where we encode

variables and values over a subset of AN.

5.2 A Binary SAT Encoding for Arctic Constraints

In [KW08, KW09], Koprowski and Waldmann sketch a SAT encoding which is based on

a binary representation for (finite) numbers. In this section we elaborate on a concrete

SAT encoding based on this description. Based on the previous considerations on shifting

negative numbers, it suffices to consider the case where only −∞ and positive arctic

numbers are used.

So we are looking for an arctic constraint interpretation which assigns values from AN.

To obtain a finite SAT encoding, we render the search space finite, fix a value k ∈ N and

only consider interpretations {−∞, 0, . . . , 2k − 1}.52

52Using additional constraints to prohibit certain values, we can of course also search for interpretations

86 Chapter 5. SAT Encodings for Arctic Termination Revisited

Following [KW08, KW09], an arctic variable which may take values from the set

{−∞, 0, . . . , 2k − 1} is encoded to a bit tuple of k + 1 elements. So for an arctic variable

a, in a first encoding we would get a representation by a bit tuple 〈ak, . . . , a1 ; a0〉. If a0 is

set, the encoded value is −∞ (a0 is called the infinity bit). Otherwise, the (finite) value

of a is given by 2k−1 · ak + . . .+ 21 · a2 + 20 · a1, i.e., the bit ak is the most significant bit in

our representation.53 Koprowski and Waldmann additionally propose that a set infinity

bit should explicitly imply that all other bits are set to zero. This way, in the (binary)

SAT encoding || · ||bin we obtain the following representation for arctic variables a:

||a||bin = 〈ak ∧ ¬a0, . . . , a1 ∧ ¬a0 ; a0〉 (5.31)

As an example, consider an arctic variable a where k = 2, i.e., we allow values from the

set {−∞, 0, 1, 2, 3}. To ease readability, in the examples in this and also the next section

we write βi to denote ai ∧ ¬a0 for i ≥ 1. Then we get ||a||bin = 〈β2, β1 ; a0〉.
For arctic constants, we thus obtain the following encoding:

|| −∞||bin = 〈0 ; 1〉 (5.32)

||0||bin = 〈0 ; 0〉 (5.33)

||n||bin = 〈bm, . . . , b1 ; 0〉 for n > 0 (5.34)

Here we have bi ∈ {0, 1}, n = 2m−1 · bm+ . . .+ 21 · b2 + 20 · b1. For n > 0, we require bm = 1

to avoid unnecessary leading zeros. So we have, e.g., ||2||bin = 〈1, 0 ; 0〉.
In the following encodings of comparisons and operations for arctic expressions, let

||p||bin = 〈ϕk, . . . , ϕ1 ; ϕ0〉 and ||q||bin = 〈τk, . . . , τ1 ; τ0〉. We use 0-padding for the

most significant bits where necessary so that we can assume equal length of argument

tuples. We also apply Boolean simplifications so that, e.g., x↔ 0 becomes ¬x.

Unfortunately, Koprowski and Waldmann do not give details on their encoding for

comparisons of values from AN, so we adapt the corresponding encodings given in the

papers [CLS06, FGM+07, CLS08], where comparison on N is encoded. This gives rise to

the following encodings for arctic comparison.

||p� q||bin = τ0 ∨ (¬ϕ0 ∧B>(〈ϕk, . . . , ϕ1〉, 〈τk, . . . , τ1〉)) (5.35)

||p = q||bin = (ϕ0 ↔ τ0) ∧ (ϕ1 ↔ τ1) ∧ . . . ∧ (ϕk ↔ τk) (5.36)

||p ≥ q||bin = ||p� q||bin ∨ ||p = q||bin (5.37)

The encoding for comparison of formula tuples denoting (finite) natural numbers B> is

with values from {−∞, 0, . . . , `} if ` 6= 2k − 1 for any k ∈ N.
53To highlight the purpose of the infinity bit, we separate it via “;” and not via “,” from its neighboring

bit, cf. [KW08, KW09].

5.2. A Binary SAT Encoding for Arctic Constraints 87

taken from [CLS06, FGM+07, CLS08], i.e., we define:

B>(〈ϕ1〉, 〈τ1〉) = (ϕ1 ∧ ¬τ1) (5.38)

B>(〈ϕk, . . . , ϕ1〉, 〈τk, . . . , τ1〉) = (ϕk ∧ ¬τk) ∨ ((ϕk ↔ τk)

∧B>(〈ϕk−1, . . . , ϕ1〉, 〈τk−1, . . . , τ1〉)), if k ≥ 2
(5.39)

Thus, bit tuples are compared lexicographically on their finite parts, and the properties

of the infinity bits are taken into account.

To compute the arctic addition operation “�”, Koprowski and Waldmann propose to

use the maximum function for the finite part of an arctic value and the conjunction of the

infinity bits for the infinite part. To express p� q in binary, we use “if p� q then p else

q”, which we can easily express on bit level. This gives rise to the following encoding:

||p� q||bin = 〈η ? ϕk : τk, . . . , η ? ϕ1 : τ1 ; ϕ0 ∧ τ0〉 (5.40)

where η = ||p� q||bin (5.41)

Here α1 ? α2 : α3 is a ternary propositional connective which is equivalent to (α1 →
α2) ∧ (¬α1 → α3), i.e., “if-then-else”. Note that although in the above definition the

subformula η occurs several times, it is represented only once by our implementation in

AProVE. The reason is that we share identical subformulas, which is a technique referred

to as structural hashing, e.g., by [ES06]. This sharing effect is preserved by the later

conversion of the overall propositional formula to conjunctive normal form.

Note also that [KW08, KW09] do not give an explicit definition for the encoding of the

maximum function on natural numbers. Nevertheless, we believe that our representation

is a rather natural one that should also correspond sufficiently to the intended setting.

For instance, to encode 2 � a, we first need to encode 2� a as follows:54

||2� a||bin = a0 ∨ (¬0 ∧B>(〈1, 0〉, 〈β2, β1〉)) (5.42)

= a0 ∨ (¬0 ∧ ((1 ∧ ¬β2) ∨ ((1↔ β2) ∧B>(〈0〉, 〈β1〉)))) (5.43)

= a0 ∨ (¬0 ∧ ((1 ∧ ¬β2) ∨ ((1↔ β2) ∧ (0 ∧ ¬β1)))) (5.44)

= a0 ∨ ¬β2 (5.45)

Then we can construct the encoding for 2 � a itself:

||2 � a||bin = 〈(a0 ∨ ¬β2) ? 1 : β2, (a0 ∨ ¬β2) ? 0 : β1 ; 0 ∧ a0〉 (5.46)

= 〈(a0 ∨ ¬β2) ? 1 : β2, (a0 ∨ ¬β2) ? 0 : β1 ; 0〉 (5.47)

For the arctic multiplication operation “�” the authors of [KW08, KW09] state that

54To ease readability, we apply standard Boolean simplifications, e.g., we replace 1 ∧ ¬β2 by ¬β2, etc.

88 Chapter 5. SAT Encodings for Arctic Termination Revisited

the result of x � y is infinite if x or y is infinite. Moreover, they state that for finite x

and y the result is obtained via the encoding of the operation “+” on N on the finite

parts of x and y where one additionally again adds the requirement that the bits of the

finite parts of the result are only set if the infinity bit of the result is unset. Also for

the encoding of “+”, [KW08, KW09] do not give an explicit definition, but it is likely

that the intended encoding is that of [EWZ08] (corresponding to that of [FGM+07]) since

there is a non-empty intersection of the set of authors of the papers. This gives rise to

the following encoding:

||p� q||bin = 〈ξk+1 ∧ ¬(ϕ0 ∨ τ0), . . . , ξ1 ∧ ¬(ϕ0 ∨ τ0) ; ϕ0 ∨ τ0〉 (5.48)

where 〈ξk+1, . . . , ξ1〉 = B+(〈ϕk, . . . , ϕ1〉, 〈τk, . . . , τ1〉) (5.49)

Here B+ is defined as follows (cf. [FGM+07, EWZ08]):

B+(〈ϕ1〉, 〈τ1〉) = 〈ϕ1 ∧ τ1, ϕ1 ⊕ τ1〉 (5.50)

B+(〈ϕk, . . . , ϕ1〉, 〈τk, . . . , τ1〉) = 〈ψ, κ, θk−1, . . . , θ1〉 (5.51)

where k ≥ 2, ψ = (ϕk ∧ τk) ∨ (ϕk ∧ θk) ∨ (τk ∧ θk), (5.52)

κ = ϕk ⊕ τk ⊕ θk, (5.53)

and B+(〈ϕk−1, . . . , ϕ1〉, 〈τk−1, . . . , τ1〉) = 〈θk, . . . , θ1〉 (5.54)

To encode, e.g., the arctic expression a � 1, we thus construct the following auxiliary

formula tuples:

B+(〈β1〉, 〈1〉) = 〈β1 ∧ 1, β1 ⊕ 1〉 (5.55)

= 〈β1,¬β1〉 (5.56)

B+(〈β2, β1〉, 〈0, 1〉) = 〈(β2 ∧ 0) ∨ (β2 ∧ β1) ∨ (0 ∧ β1), β2 ⊕ 0⊕ β1,¬β1〉 (5.57)

= 〈β2 ∧ β1, β2 ⊕ β1,¬β1〉 (5.58)

Hence, we get:55

||a� 1||bin (5.59)

= 〈β2 ∧ β1 ∧ ¬(a0 ∨ 0), (β2 ⊕ β1) ∧ ¬(a0 ∨ 0),¬β1 ∧ ¬(a0 ∨ 0) ; a0 ∨ 0〉 (5.60)

= 〈β2 ∧ β1 ∧ ¬a0, (β2 ⊕ β1) ∧ ¬a0,¬β1 ∧ ¬a0 ; a0〉 (5.61)

= 〈β2 ∧ β1, (β2 ⊕ β1) ∧ ¬a0,¬β1 ∧ ¬a0 ; a0〉 (5.62)

55Note for the last equality that β1 ∧ ¬a0 = a1 ∧ ¬a0 ∧ ¬a0 = a1 ∧ ¬a0 = β1.

5.2. A Binary SAT Encoding for Arctic Constraints 89

Thus, for instance a constraint

a� 1� 2 � a (5.63)

is then encoded in binary representation as follows:

||a� 1� 2 � a||bin (5.64)

= 0 ∨ (¬a0 ∧B>(〈β2 ∧ β1, (β2 ⊕ β1) ∧ ¬a0,¬β1 ∧ ¬a0〉,
〈0, (a0 ∨ ¬β2) ? 1 : β2, (a0 ∨ ¬β2) ? 0 : β1〉))

(5.65)

= ¬a0 ∧B>(〈β2 ∧ β1, (β2 ⊕ β1) ∧ ¬a0,¬β1 ∧ ¬a0〉,
〈0, (a0 ∨ ¬β2) ? 1 : β2, (a0 ∨ ¬β2) ? 0 : β1〉)

(5.66)

= ¬a0 ∧ ((β2 ∧ β1 ∧ ¬0) ∨ ((β2 ∧ β1 ↔ 0) ∧
B>(〈(β2 ⊕ β1) ∧ ¬a0,¬β1 ∧ ¬a0〉, 〈(a0 ∨ ¬β2) ? 1 : β2, (a0 ∨ ¬β2) ? 0 : β1〉)))

(5.67)

= ¬a0 ∧ ((β2 ∧ β1) ∨ (¬(β2 ∧ β1) ∧
B>(〈(β2 ⊕ β1) ∧ ¬a0,¬β1 ∧ ¬a0〉, 〈(a0 ∨ ¬β2) ? 1 : β2, (a0 ∨ ¬β2) ? 0 : β1〉)))

(5.68)

= ¬a0 ∧ ((β2 ∧ β1) ∨ (¬(β2 ∧ β1) ∧
(((β2 ⊕ β1) ∧ ¬a0 ∧ ¬((a0 ∨ ¬β2) ? 1 : β2)) ∨

((β2 ⊕ β1) ∧ ¬a0 ↔ ((a0 ∨ ¬β2) ? 1 : β2)) ∧
B>(〈¬β1 ∧ ¬a0〉, 〈(a0 ∨ ¬β2) ? 0 : β1〉))))

(5.69)

= ¬a0 ∧ ((β2 ∧ β1) ∨ (¬(β2 ∧ β1) ∧
(((β2 ⊕ β1) ∧ ¬a0 ∧ ¬((a0 ∨ ¬β2) ? 1 : β2)) ∨

((β2 ⊕ β1) ∧ ¬a0 ↔ ((a0 ∨ ¬β2) ? 1 : β2)) ∧
¬β1 ∧ ¬a0 ∧ ¬((a0 ∨ ¬β2) ? 0 : β1))))

(5.70)

This example shows that while the resulting bit tuples are short (here, the longest bit

tuple ||a � 1||bin has length 4), the formulas needed even for simple constraints quickly

become rather complex. Note also that since this encoding relies on binary arithmetic,

the Boolean ⊕-connective is needed to encode the underlying adder circuits for the arctic

multiplication “�”. It is frequently remarked that the presence of parity constraints as

implemented by the ⊕-connective tends to degrade performance of CDCL SAT solvers

(cf., e.g., [ES06]). This motivates to investigate other encodings of arithmetic on natural

numbers.

In [KW08, KW09] the authors point out that one can encode both “�” and “�” with

a binary representation by linear-size formulas. As we shall see in the next section, also

a unary representation comes within reach.

90 Chapter 5. SAT Encodings for Arctic Termination Revisited

5.3 A Unary SAT Encoding for Arctic Constraints

Binary SAT encodings of arithmetic are convenient because of their compactness. How-

ever, size is not the only metric to regard for SAT encodings. Instead, we want to produce

a SAT encoding which minimizes the runtime of the SAT solver.56

While at first glance seemingly paradoxical, one can often observe that an (asymp-

totically) exponentially larger SAT encoding leads to notably better runtimes (cf., e.g.,

[GLP06]). For instance, this is the case for unary representations of numbers using order

encoding [CB94, TTKB09]. The reason is that such encodings can be beneficial for the

performance of current state-of-the-art algorithms for SAT solving that are improvements

of the DPLL algorithm [DP60, DLL62]. Such conflict-driven clause-learning (CDCL)

[MLM09] algorithms generally benefit from encodings which facilitate unit propagation.

Of course, this requires that the values that need to be represented by the SAT encod-

ing are still “sufficiently small”. This means that the improved propagation properties of

the encoding are not outweighed by its sheer size, which in the end of course also does

have an impact on the performance of the SAT solver. Fortunately, experience in termi-

nation analysis of term rewriting shows that in practice it often suffices to consider small

maximum parameter values for parametric interpretations. For instance, in [FGM+07]

we observe that for linear polynomial interpretations in the DP setting, with a timeout

of 10 minutes no additional termination proofs are found on the TPDB version 3.2 if the

maximum value for the parametric coefficients is increased from 6 to 63.

Order Encoding for Arctic Constraints

As in the previous section, we wish to obtain a finite SAT encoding. Thus, to render the

search space finite, we again fix a value ` ∈ N and only consider interpretations which

assign values from {−∞, 0, . . . , `} to arctic variables.

First, let us consider the case of finite values, i.e., values from {0, . . . , `}. To represent

such a(n unknown) value a in order encoding (cf., e.g., [CB94, TTKB09, MCLS11]), we

use `+1 propositional variables and obtain a bit tuple 〈a`, . . . , a1〉. We then get the value

of a from a`+ . . .+a1, so here each position has the same significance. To impose a unique

representation for a value by a bit tuple of a given length, order encoding uses the invariant

that a` ≤ a`−1 ≤ . . . ≤ a2 ≤ a1 must hold. Thus, a number n is represented by a bit tuple

of the shape 0∗1n, i.e., a bit tuple 〈0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
n times

〉. To ensure the desired invariant for the

representation of a, we additionally impose the global constraints a` → a`−1, . . . , a2 → a1

(which must be satisfied along with the remaining SAT encoding). By this invariant, if

the variable ai is set, we have that a ≤ i holds.

56More precisely, the goal is to obtain a SAT encoding where the runtime of the whole toolchain of SAT
encoder and SAT solver is as small as possible (otherwise precomputing a solution as a conjunction
of literals as part of the “encoding” process would be considered “optimal”).

5.3. A Unary SAT Encoding for Arctic Constraints 91

Lifting order encoding of atomic expressions to arctic values (including −∞) now works

similar to the binary setting. Using order encoding, we encode an arctic variable which

may take values from the set {−∞, 0, . . . , `} to a bit tuple of ` + 2 elements. So for an

arctic variable a, in a first encoding we get 〈a`, . . . , a1 ; a0〉, imposing the global constraints

a` → a`−1, . . . , a2 → a1. As before, if a0 is set, the encoded value is −∞ (we call a0 again

the infinity bit). Otherwise, the (finite) value of a is given by a`+ . . .+a2 +a1. We follow

the suggestion by Koprowski and Waldmann that a set infinity bit should imply that all

other bits in the bit tuple are set to zero, which is helpful to break symmetries in the

search problem.

This way, we obtain the following representation for arctic variables in our unary en-

coding || · ||un :

||a||un = 〈a` ∧ ¬a0, . . . , a1 ∧ ¬a0 ; a0〉 (5.71)

At the same time, we need to enforce the invariant of order encoding that (ai ∧ ¬a0) ≤
(ai−1∧¬a0) must hold for all 2 ≤ i ≤ `. To achieve this, it suffices to require the following

global constraints: a` → a`−1, . . . , a2 → a1.

Consider again the arctic constraint (5.63), i.e., a � 1 � 2 � a where a may take

values from the set {−∞, 0, 1, 2, 3}. We now illustrate step by step how to represent this

constraint using our unary SAT encoding. As in the previous section, we write βi to

denote ai ∧ ¬a0 for i ≥ 1. So we get ||a||un = 〈β3, β2, β1 ; a0〉 where we additionally need

to impose the global constraints a3 → a2 and a2 → a1 if the bit tuple ||a||un is used in

some formula.

Correspondingly, we obtain the unary encoding for arctic constants as follows:

|| −∞||un = 〈0 ; 1〉 (5.72)

||0||un = 〈0 ; 0〉 (5.73)

||n||un = 〈1, . . . , 1︸ ︷︷ ︸
n times

; 0〉 for n > 0 (5.74)

For instance, the constant 2 is represented by ||2||un = 〈1, 1 ; 0〉.

In the following encodings of comparisons and operations for arctic expressions, let

||p||un = 〈ϕk, . . . , ϕ1 ; ϕ0〉 and ||q||un = 〈τk, . . . , τ1 ; τ0〉. Again, we use 0-padding (on

the left) together with Boolean simplifications where necessary so that we can assume

equal length of argument tuples.

Perhaps a bit surprisingly, for comparisons it turns out to be beneficial to reuse the

corresponding encodings for the binary case and to modify only the encodings of arctic

92 Chapter 5. SAT Encodings for Arctic Termination Revisited

expressions (we reuse B> from (5.38) and (5.39)):

||p� q||un = τ0 ∨ (¬ϕ0 ∧B>(〈ϕk, . . . , ϕ1〉, 〈τk, . . . , τ1〉)) (5.75)

||p = q||un = (ϕ1 ↔ τ1) ∧ . . . ∧ (ϕk ↔ τk) (5.76)

||p ≥ q||un = ||p� q||un ∨ ||p = q||un (5.77)

Alternatively, one could represent p� q by τ0 ∨ (¬ϕ0 ∧ ((ϕ1 ∧ ¬τ1) ∨ . . . ∨ (ϕk ∧ ¬τk))).
However, experiments show that this representation leads to a (small) degradation in

performance.

Encoding the arctic addition operation “�” (i.e., the maximum function) is straight-

forward in the order encoding representation. The infinity bit of the result is set if the

infinity bits of both inputs are set (p � q = −∞ holds iff p = q = −∞). A bit in the

finite part of the result is set if the corresponding bit in one of the inputs is set (and if

the infinity bit is not set).

||p� q||un = 〈(ϕk ∨ τk) ∧ ¬η, . . . , (ϕ1 ∨ τ1) ∧ ¬η ; η〉 (5.78)

where η = ϕ0 ∧ τ0 (5.79)

Note that this encoding preserves the property that for ||p� q||un = 〈ξk, . . . , ξ1〉, we have

ξi ≤ ξi−1 for all 2 ≤ i ≤ k.

Consider again the expression 2 � a. We get the following unary encoding:

||2 � a||un (5.80)

= 〈(0 ∨ β3) ∧ ¬(0 ∧ a0), (1 ∨ β2) ∧ ¬(0 ∧ a0), (1 ∨ β1) ∧ ¬(0 ∧ a0) ; 0 ∧ a0〉 (5.81)

= 〈β3, 1, 1 ; 0〉 (5.82)

The bit tuple obtained here with the unary encoding has length 4, whereas the bit tuple

obtained in (5.47) with the binary encoding only has length 3. However, the structure

of the formulas in the bit tuples is much simpler for the unary encoding since we do not

need to construct a dedicated encoding for comparison.

For arctic multiplication “�”, we use an encoding which exhaustively enumerates the

possible situations where an output bit gets set.

||p� q||un = 〈ξ2k ∧ ¬η, . . . , ξ1 ∧ ¬η ; η〉 (5.83)

where η = ϕ0 ∨ τ0 (5.84)

ξ1 = ϕ1 ∨ τ1 (5.85)

ξ2 = ϕ2 ∨ (ϕ1 ∧ τ1) ∨ τ2 (5.86)

5.3. A Unary SAT Encoding for Arctic Constraints 93

ξ3 = ϕ3 ∨ (ϕ2 ∧ τ1) ∨ (ϕ1 ∧ τ2) ∨ τ3 (5.87)

. . .

ξi = ϕi ∨
∨
c,d≥1
c+d=i

(ϕc ∧ τd) ∨ τi (5.88)

. . .

ξ2k = ϕk ∧ τk (5.89)

Here we again use 0-padding and perform Boolean simplifications to ease readability (e.g.,

ϕj = 0 if j > k), and our implementation omits leading 0s. The intuition behind this

encoding is the following: For the infinity bit of the result, the reasoning is as for the

binary encoding—if p or q take the value −∞, then also p � q becomes −∞. Now let

us consider the case where p and q take finite values from N. Recall that ϕc is true iff

p ≥ c holds and that τd is true iff q ≥ d holds. Likewise, ξi is supposed to become true iff

p � q ≥ i holds. To achieve this, we use that p � q ≥ i holds (for finite i) iff there exist

c, d ∈ N with i = c+ d, p ≥ c, and q ≥ d. For this, we encode ξi as the disjunction of all

(at most i+ 1 many) combinations of ϕc and τd such that i = c+ d.

For example, this encoding represents the expression a� 1 as follows:

||a� 1||un (5.90)

= 〈β3 ∧ ¬(a0 ∨ 0), (β3 ∨ (β2 ∧ 1)) ∧ ¬(a0 ∨ 0), (β2 ∨ (β1 ∧ 1)) ∧ ¬(a0 ∨ 0),

(β1 ∨ 1) ∧ ¬(a0 ∨ 0) ; (a0 ∨ 0)〉
(5.91)

= 〈β3, (β3 ∨ β2) ∧ ¬a0, (β2 ∨ β1) ∧ ¬a0,¬a0 ; a0〉 (5.92)

Now we can revisit the arctic constraint (5.63) a� 1� 2 � a. Here, our unary encoding

yields:

||a� 1� 2 � a||un (5.93)

= 0 ∨ (¬a0 ∧B>(〈β3, (β3 ∨ β2) ∧ ¬a0, (β2 ∨ β1) ∧ ¬a0,¬a0〉, 〈0, β3, 1, 1〉)) (5.94)

= ¬a0 ∧B>(〈β3, (β3 ∨ β2) ∧ ¬a0, (β2 ∨ β1) ∧ ¬a0,¬a0〉, 〈0, β3, 1, 1〉) (5.95)

= ¬a0 ∧ ((β3 ∧ ¬0) ∨ ((β3 ↔ 0) ∧
B>(〈(β3 ∨ β2) ∧ ¬a0, (β2 ∨ β1) ∧ ¬a0,¬a0〉, 〈β3, 1, 1〉)))

(5.96)

= ¬a0 ∧ (β3 ∨ (¬β3 ∧B>(〈(β3 ∨ β2) ∧ ¬a0, (β2 ∨ β1) ∧ ¬a0,¬a0〉, 〈β3, 1, 1〉))) (5.97)

= ¬a0 ∧ (β3 ∨ (¬β3 ∧ (((β3 ∨ β2) ∧ ¬a0 ∧ ¬β3) ∨ (((β3 ∨ β2) ∧ ¬a0 ↔ ¬β3) ∧
B>(〈(β2 ∨ β1) ∧ ¬a0,¬a0〉, 〈1, 1〉)))))

(5.98)

94 Chapter 5. SAT Encodings for Arctic Termination Revisited

= ¬a0 ∧ (β3 ∨ (¬β3 ∧ (((β3 ∨ β2) ∧ ¬a0 ∧ ¬β3) ∨ (((β3 ∨ β2) ∧ ¬a0 ↔ ¬β3) ∧
(((β2 ∨ β1) ∧ ¬a0 ∧ ¬1) ∨ (((β2 ∨ β1) ∧ ¬a0 ↔ 1) ∧

B>(〈¬a0〉, 〈1〉)))))))
(5.99)

= ¬a0 ∧ (β3 ∨ (¬β3 ∧ (((β3 ∨ β2) ∧ ¬a0 ∧ ¬β3) ∨ (((β3 ∨ β2) ∧ ¬a0 ↔ ¬β3) ∧
(((β2 ∨ β1) ∧ ¬a0) ∧B>(〈¬a0〉, 〈1〉))))))

(5.100)

= ¬a0 ∧ (β3 ∨ (¬β3 ∧ (((β3 ∨ β2) ∧ ¬a0 ∧ ¬β3) ∨ (((β3 ∨ β2) ∧ ¬a0 ↔ ¬β3) ∧
(((β2 ∨ β1) ∧ ¬a0) ∧ ¬a0 ∧ ¬1)))))

(5.101)

= ¬a0 ∧ (β3 ∨ (¬β3 ∧ ((β3 ∨ β2) ∧ ¬a0 ∧ ¬β3))) (5.102)

Due to the Boolean simplifications, here we obtain a formula with no ⊕-connectives and

a rather simple Boolean structure in the end (the simplifications in the example can be

automated at very little cost). In this example, the unary encoding yields the bit tuple

||a� 1||un with length 5 as the longest bit tuple, whereas the binary encoding yields the

only slightly shorter bit tuple ||a� 1||bin with length 4 as the longest bit tuple.

5.4 Related Work

Arctic Interpretations

In [Ama05] Amadio proposes arctic interpretations (with non-negative rational numbers

instead of natural numbers) for analysis of space complexity of a simply-typed functional

language via quasi-interpretations. In 2007, Waldmann uses arctic interpretations for

termination analysis of string rewrite systems [Wal07]. Koprowski and Waldmann lift

the approach to TRSs in [KW08, KW09] and also allow values below zero as parts of

the interpretation. These papers provide the setting on which this chapter is based. In

2010, Sternagel and Thiemann [ST10] generalize both standard arctic interpretations and

arctic interpretations below zero to a uniform setting. Our contributions to solving arctic

constraints are orthogonal to this recent improvement.

SAT Encodings for Arctic Constraints

In [Wal07], Waldmann proposes a binary SAT encoding for tropical constraints. This

encoding is similar to the encoding for arctic constraints of [KW08, KW09]. Moreover,

[Wal07] discusses both a binary and a unary (order) SAT encoding for fuzzy algebras, where

(only) the max- and the min-functions are used for interpretations in weakly monotonic

algebras. For this setting a unary encoding is much more straightforward than for arctic

algebras since the �-operation does not need to be encoded in unary. That attaining

suitable unary representations in the arctic setting is more difficult is also confirmed by

5.5. Experiments 95

the later follow-up works [KW08, KW09], where Koprowski and Waldmann still suggest

a binary SAT encoding for arctic constraints.

Independent of the present work, [HKW10] proposes using sorting networks to encode

the �-operation for tropical algebras. Tropical algebras are dual to arctic algebras since

one considers “min” and +∞ instead of “max” and −∞, but the �-operation is essentially

the same.

Order Encoding

Concerning related applications of order encoding, an early work is [CB94], where or-

der encoding is applied to solve scheduling problems. Independently from our work, in

[TTKB09] Tamura et al. apply order encoding to tackle linear finite constraint satisfaction

problems via SAT solving. In a preprocessing step, they propose a conversion of linear

arithmetic constraints over a finite domain to a conjunctive normal form of comparisons

of the shape x ≤ c (here x is a variable and c ∈ Z). This conversion is closely related

to our encoding of the �-operation. In [MCLS11], Metodi et al. propose a SAT compiler

translating from a high-level problem description to an optimized CNF representation via

order encoding. They successfully apply their system on several benchmark suites from

the area of constraint satisfaction problems.

5.5 Experiments

We have implemented both the binary encoding and the unary encoding described in

the chapter in the termination prover AProVE [GST06]. Here we have also used the

optimization described for standard matrix orders in [EWZ08] that for the root symbols

of the dependency pairs, it suffices to use values different from the zero element of the

semi-ring for the matrix and vector entries in the first row. Here, this means that all

other entries are filled with −∞. This optimization is complete if the root symbols of

dependency pairs do not occur anywhere else, which is virtually always the case in practice

(and we only apply the optimization if this premise holds).

It is worth noting that [KW08, KW09] use the same bitwidth both for arctic variables

and also for arctic intermediate expressions. In contrast, we only impose a bound on the

bitwidth for arctic variables, but we do not do so for the intermediate expressions.

Note that a setting where the bitwidth is bounded for intermediate expressions is most

likely more favorable for unary encodings than for binary encodings, provided that in

both cases one uses the same search space {−∞, 0, . . . , n} for the arctic variables. This

is opposed to using the same bitwidth, which would mean that in k bits for the bit tuple,

one could represent only values up to k−1 in unary, whereas exponentially greater values

2k−1 − 1 could still be represented in binary.

96 Chapter 5. SAT Encodings for Arctic Termination Revisited

The main disadvantage of the unary encoding is that it could lead to exponentially

longer bit tuples than its binary counter-part, e.g., in case of deeply nested terms. With

a fixed bitwidth, this is effectively prevented.

For greater flexibility, in all settings we used the previously described approach of shift-

ing negative numbers when searching for below-zero interpretations instead of introducing

an additional sign bit for two’s complement.

To investigate the impact of our unary encoding in practice, we conducted several

experiments using our implementation of the encodings described in this chapter in the

automated termination prover AProVE [GST06]. As SAT solver we use version 2 of

MiniSAT [ES04], and for conversion of propositional formulas to CNF we use SAT4J [LP10].

Direct Comparison

Similar to the experiments of Chapter 3, we configured AProVE to use only a basic version

of the DP method, i.e., we applied the DP transformation to the initial DP problem,

followed by repeated applications of the dependency graph processor and the reduction

pair processor with arctic interpretations. For automation of the reduction pair processors,

here we experimented with arctic interpretations above and below zero both in the classic

binary and in our novel unary setting. As parameters of the explored search space, we

used different values for the dimension of the matrices and also for the minimum and the

maximum finite arctic numbers in the search space (using Theorem 5.2 if this minimum

was ≥ 0, and Theorem 5.4, otherwise). We always include −∞ in the search space for

the arctic variables. We report on our results for the unary and for the binary setting in

different combinations of settings.

As benchmark set, here we used the 1316 SRSs considered for the category SRS Standard

of the Termination Competition 2011 (TPDB version 8.0.1). As discussed in Section 5.1,

arctic interpretations are especially well suited for rewrite systems where function symbols

have only one argument, i.e., SRSs, which motivates this choice.

The results of these runs on an Intel Xeon 5140 at 2.33 GHz are reported in Figure 5.6.

Here the configuration AProVE binary uses the binary SAT encoding described in Sec-

tion 5.2, and the configuration AProVE unary uses the novel unary SAT encoding de-

scribed in Section 5.3. The columns “d”, “min”, and “max” describe the used dimension,

the minimum value and the maximum value for finite arctic numbers, respectively. The

column “Yes” states the number of termination proofs found within a timeout of 60 sec-

onds (as in the Termination Competition), and the column “TO” indicates the number

of examples on which runtime exceeds 60 seconds and which thus time out. Since the

TPDB contains many very challenging SRSs, we observe several hundreds of timeouts.

Thus, here we do not focus on total runtime on all examples, but in the column “Avg.

Runtime(Yes)” we give the measured average runtime in seconds for the cases where a

5.5. Experiments 97

AProVE unary AProVE binary

d min max Yes TO Avg. Runtime(Yes) Yes TO Avg. Runtime(Yes)
1 0 1 61 278 2.95 61 277 2.94
1 0 2 70 319 3.30 70 302 3.10
1 0 3 81 385 4.24 82 306 3.58
1 0 4 83 426 5.57 85 337 4.34
1 0 5 83 461 5.90 87 364 5.34
1 -1 1 91 325 5.62 92 308 5.20
1 -1 2 108 399 5.74 115 327 5.14
1 -1 3 118 446 6.27 128 371 6.05
1 -3 4 106 537 6.86 129 420 7.47
2 0 1 237 544 6.23 215 567 4.74
2 0 5 226 638 4.53 229 638 4.29
2 -1 3 269 624 4.10 266 641 4.23
3 0 1 290 620 4.02 276 672 4.68
3 0 2 319 739 5.74 294 844 7.71
3 0 3 311 882 7.45 299 904 8.53
3 0 4 288 973 7.89 272 987 9.80
3 -1 2 316 934 7.26 292 962 9.15
3 -1 3 305 992 8.08 262 1040 9.85
3 -2 2 301 980 8.20 248 1039 9.53
3 -2 3 292 1020 8.84 250 1061 10.29
4 0 1 294 874 5.24 267 971 9.39
4 0 2 285 1022 8.10 239 1077 14.14
4 -1 1 287 968 8.73 217 1074 14.57
5 0 1 267 1009 8.04 216 1084 13.83
5 -1 3 207 1109 15.61 75 1241 23.41
7 0 1 204 1102 14.28 86 1227 20.82
7 -1 2 116 1200 24.24 28 1288 12.92

Figure 5.6: Unary and Binary Arctic SAT Encodings for Different Dimensions

termination proof was found by the respective prover (i.e., we only consider the “Yes”-

examples and give average times).57 In each row, we highlight the respective best result

in bold face.

These measurements allow for the following observations and conclusions:

• The precision of termination analysis via arctic matrix interpretations improves sig-

nificantly if one considers matrices of dimension > 1. The overall most successful

configuration in these experiments (dimension 3, minimum value 0, maximum value

2, unary encoding) yields 319 termination proofs, whereas with matrices of dimen-

sion 1 we only obtain 129 termination proofs in the most successful measured setting

57Note that in general this measurement is favorable to tools which time out on hard examples instead
of finding a proof after a relatively high runtime. Thus, one should always take also the number of
successful termination proofs of a given configuration into account when drawing conclusions from
the average runtime.

98 Chapter 5. SAT Encodings for Arctic Termination Revisited

(min. value −3, max. value 4, binary encoding).

This general observation is not surprising since also conventional matrix interpreta-

tions [EWZ08] benefit from dimensions greater than 1 (cf., e.g., [ZM10]).

• For dimension 1, the results of AProVE binary are slightly better than those of

AProVE unary, both w.r.t. number of successful proofs and w.r.t. timeouts and av-

erage runtime. For instance, with dimension 1 the most successful configuration

of AProVE binary (min. value −3, max. value 4) discovers 129 termination proofs,

whereas the most successful configuration of AProVE unary (min. value −1, max.

value 3) in our experiments only finds 118 termination proofs, i.e., approx. 8.5 %

less proofs.

The effect becomes more noticeable as the size of the search space per variable (given

by |{−∞,min, . . . ,max − 1,max}| = max −min + 2) increases. For instance, for

the search space with min. value 0 and max. value 1, we have almost identical results

of the two configurations, whereas for the search space with min. value −3 and max.

value 4 AProVE binary succeeds on 129 SRSs, whereas AProVE unary succeeds only

on 106 SRSs, i.e., on approx. 17.8 % less examples.

A likely reason is that for dimension 1, the asymptotic size increase of the unary

encoding over the binary encoding still has more impact on the runtimes than po-

tentially beneficial aspects of the unary encoding for propagation inside the SAT

solver. Since in this case (arctic) matrix multiplication corresponds to (arctic) scalar

multiplication, the structure of the arithmetic operations that need to be encoded

is relatively simple.

• The more the dimension d of the used matrices increases, the better are the results of

AProVE unary compared to those of AProVE binary. The effect is noticeable already

for dimension 2, where with a min. value of 0 and a max. value of 1, AProVE binary

only finds 215 termination proofs within 60 seconds, whereas AProVE unary finds 237

termination proofs, i.e., 10.2 % more termination proofs. For the notably greater

search space per variable with min. value of 0 and a max. value of 5, however,

AProVE binary discovers 229 termination proofs, whereas AProVE unary discovers

only 226 termination proofs, i.e., 1.3 % less.

For the (high) dimension of 7, with a min. value of 0 and a max. value of 1, AProVE

binary only finds 86 termination proofs within 60 seconds, whereas AProVE unary

still finds 204 termination proofs, i.e., over 137 % more.

• Among the considered configurations, the most successful variant of AProVE binary

(dimension 3, min. value 0, max. value 3) discovers only 299 termination proofs,

whereas the most successful variant of AProVE unary (dimension 3, min. value 0,

max. value 2) discovers 319 termination proofs, i.e., 20 proofs or almost 6.7 % more.

5.5. Experiments 99

A likely explanation for this point and also for the previous one is that for higher

matrix dimensions, the unary encoding benefits both from the simplicity of the rep-

resentation of the �-operation (i.e., arctic addition) and from the absence of the

⊕-connective (i.e., Boolean XOR) in the representation of the �-operation (i.e.,

arctic multiplication). These operations need to be encoded especially often if the

matrix dimension is high, which consequently also leads to higher complexity of

(arctic) matrix multiplication. In contrast, the impact of the more verbose repre-

sentation of intermediate values by unary bit tuples instead of binary bit tuples

seems to be less pronounced.

Effects on a Full Termination Proving Strategy

While arctic interpretations do provide a powerful termination technique already in a

stand-alone setting, it is desirable to embed them into the overall strategy of a termi-

nation tool which orchestrates many termination techniques (e.g., in the DP framework

[GTS05a]). In this setting, it is especially important to provide a termination proof step

within a short period of time to ensure progress of the overall termination proof, which can

then possibly be completed by entirely different techniques. In case such a termination

proof step is not possible with the configuration of the termination technique at hand, it

is desirable to detect this early and leave more resources to other techniques for proving

(non-)termination. So even if termination of an example cannot be shown solely based

on arctic interpretations, it is nevertheless advantageous to automate them efficiently.

Thus, to assess the impact of the unary encoding for arctic interpretations on a fully-

fledged termination tool such as AProVE, which combines many termination proving tech-

niques, we ran the competition versions of AProVE of the years 2009, 2010, and 2011 in

two setups. In the first setup AProVE TC original unary58 we used our original strategies

from the respective competitions, where the SAT-based search for arctic matrices was

conducted using our unary encoding. For the second setup AProVE TC binary, we modi-

fied these strategies so that we would encode the search for arctic interpretations not in

unary, but in binary.

As benchmark set, here we again used the 1316 SRSs considered for the category SRS

Standard of the Termination Competition 2011 (TPDB version 8.0.1). This is a superset

of the SRSs actually used at the competitions up to 2011 (to keep runtimes manageable

and also to increase excitement, since 2009 only a randomly chosen subset of the TPDB

examples is used in the competitions). The results of these runs with a timeout of 60

seconds on an Intel Xeon 5140 at 2.33 GHz are reported in Figure 5.7.

As the figure shows, for all the competition versions of AProVE from 2009 – 2011, the

precision of termination analysis constantly increases by at least 17 examples on the SRSs

58Here “TC” stands for “Termination Competition”.

100 Chapter 5. SAT Encodings for Arctic Termination Revisited

AProVE TC original unary AProVE TC binary

Year Yes No Yes+No Yes No Yes+No
2009 609 99 708 596 98 694
2010 609 98 707 596 98 694
2011 687 91 778 671 90 761

Figure 5.7: Competition Versions AProVE 2009 – 2011 with Unary and Binary SAT En-
codings for Arctic Interpretations

AProVE TTT2
Year Yes No Yes+No Yes No Yes+No Total
2009 149 36 185 145 20 165 214
2010 162 32 194 181 13 194 289
2011 132 27 159 132 14 146 215

Figure 5.8: Some Results from the Category SRS Standard of the Termination Competi-
tions 2009 – 2011

of the current TPDB if one modifies only the search for arctic interpretations to use a

unary SAT encoding (which we also used in the competitions) instead of a binary encoding

for arctic constraints.

To show that also a seemingly small difference in successful termination proofs can

make a difference for a competition setting, consider the results of the termination tools

AProVE [GST06] and TTT2 [KSZM09] in the category SRS Standard of the Termination

Competitions 2009, 2010, and 2011, given in Figure 5.8.59 In each of these years, the tools

AProVE and TTT2 reached the highest scores among all participants in this category.60 In

Figure 5.8, we again highlight the best results in bold face.

Note that in 2009 AProVE only found 4 more proofs of termination than TTT2, in 2010

AProVE and TTT2 reached an equal score in discovered proofs of (non-)termination, and in

2011 AProVE and TTT2 reached an equal score in found termination proofs. Together with

Figure 5.7, this makes it seem quite likely that without the contributions of this chapter,

AProVE would not have reached the top positions in this category. More concretely,

AProVE would most likely not have found the highest number of termination proofs in 2009

and 2011, and AProVE would not have reached the (shared) first place of the competition

in 2010.

59These results have been taken from the Termination Competition Platform at: http://termcomp.
uibk.ac.at/

60Note that the numbers in Figure 5.8 are not directly comparable between different years since each
year a different random subset of the TPDB is used to obtain the benchmarks for the competition.

http://termcomp.uibk.ac.at/
http://termcomp.uibk.ac.at/

5.6. Summary and Outlook 101

SAT Competition 2009

The impact of our novel unary encoding is also observable in the results of the SAT

Competition61 of 2009.62 In the benchmark submission to this competition by the author

of this thesis, we included also two encodings of the same proof step with arctic below

zero interpretations (using 4 × 4-matrices with coefficients from {−1, 0, 1}) for the TRS

SRS/Endrullis/04.srs from the TPDB version 5.0.2.63 Before this proof step, we ap-

plied the dependency pair transformation and two steps using linear polynomial interpre-

tations to delete dependency pairs. The corresponding (satisfiable) SAT instances for the

arctic proof step are SAT09/APPLICATIONS/aprove09/AProVE09-20.cnf for the binary

encoding and SAT09/APPLICATIONS/aprove09/AProVE09-21.cnf for the unary (order)

encoding.64 All 16 SAT solvers which entered the second stage of the competition in the

main track proved satisfiability for SAT09/APPLICATIONS/aprove09/AProVE09-21.cnf

in less time than for SAT09/APPLICATIONS/aprove09/AProVE09-20.cnf (and indeed, in

all tracks, every solver performed at least as good on the instance AProVE09-21.cnf as

on the instance AProVE09-20.cnf). This indicates that the beneficial properties of our

encoding are robust among the current generation of SAT solvers, i.e., our results apply

independent of the SAT solver which is used as back-end. This is especially noteworthy

since the instances in question are satisfiable, and thus a SAT solver only needs to explore

the search space until the first model of the SAT instance is found. Depending on the

heuristics for variable selection that the solver employs, this can happen also early during

the search on an otherwise structurally hard instance (i.e., the solver “can be lucky” in

the search for a model).

Of course, most solvers that are successful on real-world applications are currently

based on the prevailing CDCL paradigm, which is a descendant of the DPLL algorithm.

Thus, it is possible that SAT solvers using entirely different approaches may show different

behavior.

5.6 Summary and Outlook

In this chapter we have provided a novel SAT encoding for automating interpretations

based on max/plus algebras, which are also known as arctic algebras. This SAT encoding

61See http://www.satcompetition.org/ for more details on this international bi-annual competition
of SAT solvers.

62The author of this thesis conducted a significant part of the research underlying this chapter of the
thesis already in November and December 2008.

63Following a reorganization of the TPDB, since version 7.0 this TRS can be found in the TPDB as
TRS/Mixed SRS/04.xml.

64These instances were run as part of the application category at the SAT Competition 2009. The
corresponding full benchmark suite is available at http://www.cril.univ-artois.fr/SAT09/bench/
appli.7z. We also provide further information on our benchmarks in the booklet of the competition
[Fuh09].

http://www.satcompetition.org/
http://www.cril.univ-artois.fr/SAT09/bench/appli.7z
http://www.cril.univ-artois.fr/SAT09/bench/appli.7z

102 Chapter 5. SAT Encodings for Arctic Termination Revisited

is based on a unary representation of numbers via order encoding [CB94, TTKB09].

This representation is particularly useful if the arising bit tuples are relatively small,

which is indeed the case for the constraints arising from termination analysis via arctic

interpretations. Additionally, we have shown that it is not necessary to apply a special

SAT encoding for interpretations which contain below zero values. To achieve this, we

propose to shift negative constants via arctic multiplication.

Our empirical results indicate notable performance improvements by our novel unary

encoding if matrices of dimension > 1 are applied. These results have been confirmed

both in a stand-alone setting and also embedded in the versions of AProVE used for the

Termination Competitions of the years 2009 – 2011. For the competition versions, it is

likely that without the contributions of this chapter, AProVE would not have reached the

highest scores in the category SRS Standard of the respective Termination Competitions

(other powerful participants like, e.g., TTT2 [KSZM09] render the SRS Standard category

particularly competitive).

We have also submitted SAT instances based on the binary and unary encodings pre-

sented in this chapter as benchmarks to the SAT Competition 2009. The results of the

SAT solvers competing on these instances indicate that a wide variety of modern SAT

solvers benefits from this alternative encoding.

As far as future work is concerned, one obvious next step would be to apply our SAT en-

coding also in the generalized setting for arctic interpretations proposed by Sternagel and

Thiemann in [ST10]. In a recent talk [HKW10], Waldmann suggests using sorting net-

works (cf. [ES06]) for encoding tropical multiplication (corresponding to classic addition,

analogous to the setting of this chapter) in unary when performing termination analysis

via tropical interpretations, i.e., using min/plus algebras (cf. [Wal07]). This approach can

easily be adapted to our setting of arctic multiplication, and it would be interesting to

integrate this approach with our contributions.

Finally, in [HKW10], Waldmann also mentions mixed linear programming (cf., e.g.,

[JLN+10]) as an alternative to SAT encodings for tropical interpretations, which carries

over also to arctic interpretations and is thus also worth considering.

6 Lazy Abstraction for Size-Change

Termination

Size-change termination is a widely used means of proving termination where source

programs are first abstracted to size-change graphs which are then analyzed to determine

if they satisfy the size-change termination property. Here, the choice of the abstraction

is crucial to the success of the method, and it is an open problem how to choose an

abstraction such that no critical loss of precision occurs. In this chapter we show how

to couple the search for a suitable abstraction and the test for size-change termination

via an encoding to a single SAT instance. In this way, the problem of choosing the

right abstraction is solved en passant by a SAT solver. We show that for the setting

of term rewriting, the integration of this approach into the dependency pair framework

works quite smoothly and gives rise to a new class of size-change reduction pairs. We

implemented size-change reduction pairs in the termination prover AProVE and evaluated

their usefulness in extensive experiments.

One of the challenges of termination analysis is to design a program abstraction that

captures the properties needed to prove termination as often as possible, while provid-

ing a decidable sufficient criterion for termination. The size-change termination (SCT)

method [LJB01] is one such technique where programs are abstracted to size-change

graphs which describe how the sizes of program data are affected by the transitions made

in a computation. Size is measured by a well-founded base order. A set of size-change

graphs has the SCT property iff for every path through any infinite concatenation of

these graphs, a value would descend infinitely often w.r.t. the base order. This con-

tradicts the well-foundedness of the base order, which implies termination of the orig-

inal program. Lee et al. prove in [LJB01] that the problem to determine if a set of

size-change graphs has the SCT property is PSPACE-complete. The size-change ter-

mination method has been successfully applied in a variety of different application ar-

eas [Ave06, CT99, JB04, PR04b, SJ05, TG05].

Another approach emerges from the term rewriting community where termination

proofs are performed by identifying suitable well-founded orders on terms in the form

of reduction pairs and showing that every transition in a computation leads to a reduc-

tion w.r.t. the order. This approach provides a decidable sufficient termination criterion

for a given class of reduction pairs and can be considered as a program abstraction because

104 Chapter 6. Lazy Abstraction for Size-Change Termination

terms are viewed modulo the reduction pair.

A major bottleneck when applying SCT is due to the fact that it is a two-phase process:

First, a suitable program abstraction must be found, and then, the resulting size-change

graphs are checked for termination. It is an open problem how to choose an abstraction

such that no critical loss of precision occurs. Thus, our aim is to couple the search for a

suitable abstraction with the test for size-change termination. To this end we model the

search for an abstraction as the search for a reduction pair. Then we can encode both the

abstraction and the test for the SCT property into a single SAT instance.

Using a SAT-based search for orders to prove termination is well established by now, cf.

the discussion of related work in Chapter 1. However, there is one major obstacle when

using SAT for SCT. SCT is PSPACE-complete and hence (unless NP = PSPACE), there

is no polynomial-size encoding of SCT to SAT. Thus, we focus on a subset of SCT which

is in NP and can therefore be effectively encoded to SAT. This subset, called SCNP, is

introduced by Ben-Amram and Codish in [BC08] where experimental evidence indicates

that the restriction to this subset of SCT hardly makes any difference in practice. We

illustrate our approach in the context of term rewrite systems (TRSs). The basic idea is

to give a SAT encoding for the following question:

For a given TRS (and a class of base orders such as polynomial orders), is

there a base order such that the resulting size-change graphs have the SCT

property?

In [TG05], Thiemann and Giesl also apply the SCT method to TRSs and show how to

couple it with the dependency pair method [AG00]. However, they take the two-phase

approach, first (manually) choosing a base order, and then checking if the induced size-

change graphs satisfy the SCT property. Otherwise, one might try a different order. The

implementation of [TG05] in the tool AProVE [GST06] only uses the (weak) embedding

order in combination with argument filters [AG00] as base order. It performs a naive

search which enumerates all argument filters. The new approach presented in this chapter

leads to a significantly more powerful implementation.

Using SCNP instead of SCT has an additional benefit. SCNP can be directly simulated

by a new class of orders which can be used for reduction pairs in the DP framework that are

amenable for automation. We require only a small restriction on the input DP problems

(they must have the “tuple property” [FGP+11], i.e., for a DP problem with DPs s→ t,

root(s) and root(t) may only occur at the roots of DPs) which is satisfied by virtually all

instances that occur in practice. Thus, the processors of the DP framework usually do

not have to be modified at all for the combination with SCNP. This makes the integration

of the size-change method with DPs much smoother than in [TG05] and it also allows

to use this integration directly in (future) extensions of the DP framework. The orders

simulating SCNP are novel in the rewriting area.

6.1. Size-Change Termination and Dependency Pairs 105

This chapter is structured as follows: Section 6.1 briefly presents the SCT method for

DPs. In Section 6.2 we present an extension of the DP framework that allows us to

integrate SCNP seamlessly while at the same time not requiring any changes to existing

processors. Section 6.3 adapts the SCNP approach to term rewriting in the DP framework.

In Section 6.4 we give a challenge example that highlights the scenarios where SCNP can

be particularly useful. Section 6.5 then shows how to encode the search for a base order

which satisfies the SCNP property into a single SAT problem. Section 6.6 presents our

experimental evaluation using our termination tool AProVE [GST06]. We conclude in

Section 6.7.

6.1 Size-Change Termination and Dependency Pairs

Size-change termination [LJB01] is a program abstraction where termination is decidable.

As mentioned in the introduction, an abstract program is a finite set of size-change graphs

which describe, in terms of size-change, the possible transitions between consecutive func-

tion calls in the original program.

Size-change termination and the DP framework have some similarities: (i) size-change

graphs provide a representation of the paths from one function call to the next, and (ii)

in a second stage, we show that these graphs do not allow infinite descent.

Also in the DP framework, the basic idea is (i) to describe all (finitely many) paths in

the input program (i.e., input TRS) from one function call to the next by dependency

pairs. Then (ii) one has to prove that these paths cannot follow each other infinitely

often in a computation. So these steps correspond to steps (i) and (ii) in size-change

termination.

The main difference between SCT and the DP method is the stage when the undecidable

termination problem is abstracted to a decidable one. For SCT, we use a base order to

obtain the finite representation of the paths by size-change graphs. For DPs, no such

abstraction is performed and, indeed, the termination (i.e., finiteness) of a DP problem

is undecidable. Here, the abstraction step is only the second stage where typically a

decidable class of base orders is used.

The SCT method can be used with any base order. It only requires the information

which arguments of a function call become (strictly or weakly) smaller w.r.t. the base

order. To prove termination, the base order has to be well founded. For the adaptation

to term rewriting, we will use a reduction pair (%,�) for this purpose and introduce the

notion of a size-change graph directly for DP problems.

If the DP problem has a DP F (s1, . . . , sn)→ G(t1, . . . , tm), then the corresponding size-

change graph has nodes {F1, . . . , Fn, G1, . . . , Gm} representing the argument positions of

F and G. The labeled edges in the size-change graph indicate whether there is a strict or

weak decrease between these arguments.

106 Chapter 6. Lazy Abstraction for Size-Change Termination

(a) F1
//

��8
8

8
8 F1

F2 F2

F1

��8
8

8
8 F1

F2

BB�������
F2

(b) F1
//

��8888888 F1

F2 F2

F1 F1

F2
//

BB�������
F2

F1
// F1

F2
// F2

Figure 6.2: Size-change graphs from Example 6.3

Definition 6.1 (size-change graphs). Let (%,�) be a (possibly non-monotonic) reduction

pair on base terms, and let F (s1, . . . , sn) → G(t1, . . . , tm) ∈ P for a DP problem (P ,R).

The size-change graph resulting from F (s1, . . . , sn)→ G(t1, . . . , tm) and from (%,�) is the

graph (Vs, Vt, E) with source vertices Vs = {F1, . . . , Fn}, target vertices Vt = {G1, . . . , Gm},
and labeled edges E = {(Fi, Gj,�) | si � tj} ∪ {(Fi, Gj,%) | si % tj}.

Size-change graphs are depicted as in Figure 6.2. Each graph consists of source vertices,

on the left, target vertices, on the right, and edges drawn as full and dashed arrows to

indicate strict and weak decrease (i.e., corresponding to “�” and “%”, respectively). We

introduce the main ideas underlying SCT by example.

Example 6.3 (Showing SCT Property by Composition). Consider the following TRS

R = {(6.1), (6.2)}.

f(s(x), y)→ f(x, s(x)) (6.1)

f(x, s(y))→ f(y, x) (6.2)

It has the DPs (6.3) and (6.4).

F(s(x), y)→ F(x, s(x)) (6.3)

F(x, s(y))→ F(y, x) (6.4)

For analysis of full termination, we thus obtain the initial DP problem (P ,R) with P =

{(6.3), (6.4)}.
We use a reduction pair (%,�) based on the embedding order, i.e., s(x) � x, s(y) � y,

s(x) % s(x), s(y) % s(y) hold. Then we get the size-change graphs in Figure 6.2(a).

Between consecutive function calls, the first argument decreases in size or becomes smaller

than the original second argument. In both cases, the second argument weakly decreases

compared to the original first argument. By repeated composition of the size-change

graphs, we obtain the three “idempotent” graphs in Figure 6.2(b). All of them exhibit

in situ decrease (i.e., there is an edge (Fi, Fi,�) for some i) at F1 in the first graph, at

F2 in the second graph, and at both F1 and F2 in the third graph. This means that the

original size-change graphs from Figure 6.2(a) satisfy the SCT property.

6.2. Tuple-Typed DP Problems 107

Earlier work [TG05] shows how to apply SCT on TRSs. Let R be a TRS and (%,�)

a reduction pair such that if s � t (or s % t), then t contains no defined symbols of R,

i.e., no root symbols of left-hand sides of rules from R.65 Let G be the set of size-change

graphs resulting from all DPs with (%,�). In [TG05] the authors prove that if G satisfies

SCT then R is terminating w.r.t. an innermost rewriting strategy.66

Example 6.4. If one restricts the reduction pair in Example 6.3 to just terms without

defined symbols, then one still obtains the same size-change graphs. Since these graphs

satisfy the SCT property, one can conclude that the TRS is indeed terminating w.r.t. an

innermost evaluation strategy. Note that to show termination without SCT, an order like

RPO would fail (since the first rule requires a lexicographic comparison and the second

requires a multiset comparison). While termination could be proved by polynomial orders,

as in [TG05] one could unite these rules with the rules for the Ackermann function. Then

SCT with the embedding order would still work, whereas a direct application of RPO or

polynomial orders fails.

So our example illustrates a major strength of SCT. A proof of termination is obtained

by using just a simple base order and by considering each idempotent graph in the closure

under composition afterwards. In contrast, without SCT, one would need more complex

termination arguments.

In [TG05] the authors show that when constructing the size-change graphs from the

DPs, one can even use arbitrary reduction pairs as base orders, provided that all rules of

the TRS are weakly decreasing. In other words, this previous work essentially addresses

the following question for any DP problem (P ,R):

For a given reduction pair where R is weakly decreasing, do all idempotent

size-change graphs, under composition closure, exhibit in situ decrease?

Note that in [TG05], the base order is always given and the only way to search for a base

order automatically would be a hopeless generate-and-test approach.

6.2 Tuple-Typed DP Problems

Before we can proceed with an integration of size-change termination into the DP frame-

work in the form of novel reduction pairs, in this section we still need to resolve a technical

issue, which is however not problematic in practical instances.

As we have seen, size-change termination clearly distinguishes between program points

in the control flow (an infinite sequence of which indicates non-termination) and arguments

of such program points (where only the size changes matter, not possible non-termination).

65Strictly speaking, this is not a reduction pair, since it is only stable under substitutions which do not
introduce defined symbols.

66When rewriting w.r.t. an innermost rewriting strategy, one may only replace redexes that do not have
another redex as a strict subterm.

108 Chapter 6. Lazy Abstraction for Size-Change Termination

The very same idea is also underlying the dependency pair approach [AG01], where fresh

tuple symbols are introduced to denote where a (potentially non-terminating) sequence

of rewriting steps takes place. Tuple symbols are intended to occur only at the root of

the terms of such an evaluation sequence, and they are exactly the symbols that occur as

root(s) and root(t) in some dependency pair s→ t. Below the root, in contrast, we only

have symbols from the original TRS, which is used for the evaluations of the arguments,

and we call these original symbols base symbols.

However, the dependency pair framework [GTS05a, GTSF06, Thi07] is more general.

Following [GTSF06], the TRSs P and R of a DP problem (P ,R) can be completely arbi-

trary. On the one hand, this can be convenient to relax requirements on the outputs of DP

processors. But on the other hand, this also means that DP processors in general cannot

make many assumptions on the shape of their inputs if they are supposed to be applicable

on as wide a variety of DP problems as possible. Moreover, also the substitutions that

are used for a (P ,R)-chain may instantiate variables with tuple symbols.

One instance of such very generally applicable techniques is the reduction pair processor

(cf. Theorem 2.13). Here the underlying term orders in the form of a reduction pair are

required to be sufficiently general (cf. Definition 2.10) that they can handle DP problems

with arbitrary TRSs. However, for instance certain classes of term orders actually need

the property that tuple symbols never occur within a non-empty context. As we shall

show, a significant subset of size-change termination, namely size-change termination in

NP (SCNP) [BC08] can be represented by such orders. Here program points correspond

to tuple symbols, and a nesting of program points only makes little sense.

In order to be able to model SCNP as a reduction pair, it is therefore necessary to

restrict the set of terms that need to be considered. More concretely, we shall consider

(monomorphically) typed terms where the typing enforces that tuple symbols can only

occur at the root of a term. This way, we capture both the intuition for program points

in size-change termination and the intuition for tuple symbols in dependency pairs in a

unified setting.

To achieve this, we use the two types tuple and base. Here we use tuple only as the

result type for tuple symbols, and we use base in all other cases. The goal is then to be

able to switch back and forth between the usual untyped DP problems and DP problems

which are typed in this way. This way, termination proving techniques that require this

typed setting also become available for the untyped setting.

We say that a DP problem has the tuple property [FGP+11] if the root symbols of terms

in P occur only at the root of terms in P and nowhere else in P or R. In particular,

for s → t ∈ P , the terms s and t then have root symbols and are not variables, so no

rule of P is collapsing. Sternagel and Thiemann [ST11a] refer to such a DP problem as a

standard DP problem.

The initial DP problem of the DP framework has the tuple property, and most DP

6.2. Tuple-Typed DP Problems 109

processors from the literature preserve it. Also the DP problems that stem from automatic

translations from programming languages such as Haskell [GRS+11], Prolog [SGST09], or

Java Bytecode [OBEG10, BOG11] satisfy the tuple property. Thus, restricting a DP

processor to inputs that have the tuple property is not a hard restriction in practice. So

in the DP framework, for a DP problem (P ,R) with the tuple property we call the root

symbols of terms in P tuple symbols.

Thus, the goal of this section is to lift DP problems with the tuple property to a typed

setting where tuple symbols have a new output type tuple, and otherwise we only use the

type base. That means that in a DP chain, we need not consider any term containing

tuple symbols in a substitution, and nested tuple symbols cannot occur in a well-typed

term either. We show that for DP problems that fulfill the tuple property, we can switch

between the completely untyped setting and the typed setting.

Recall that up to now we have regarded ordinary TRSs and DP problems over un-

typed signatures F . The following definition shows how to extend such signatures by

(monomorphic) types, cf., e.g., [Zan94].

Definition 6.5 (Typing). Let F be an (untyped) signature. A many-sorted signature F ′
is a typed variant of F if it contains the same function symbols as F , with the same

arities. So f is a symbol of F with arity n iff f is a symbol of F ′ with a type of the form

τ1× . . .× τn → τ . Similarly, a typed variant V ′ of the set of variables V contains the same

variables as V, but now every variable has a type τ . We always assume that for every type

τ , V ′ contains infinitely many variables of type τ . A term over F and V is well typed

w.r.t. F ′ and V ′ iff

• t is a variable (of some type τ in V ′) or

• t = f(t1, . . . , tn) with n ≥ 0, where all ti are well typed and have some type τi, and

where f has type τ1 × . . .× τn → τ in F ′. Then t has type τ .

We only permit typed variants F ′ where there exist well-typed ground terms of types

τ1, . . . , τn over F ′, whenever some f ∈ F ′ has type τ1 × . . .× τn → τ .67

A TRS R over68 F and V is well typed w.r.t. F ′ and V ′ iff for all `→ r ∈ R, we have

that ` and r are well typed and that they have the same type.69 Similarly, a DP problem

(P ,R) over F and V is well typed w.r.t. F ′ and V ′ iff P ∪R is well typed.

In the setting of this chapter, we only consider the typed variants where tuple symbols

have the output type tuple and where otherwise only the type base is used. When using

such a typed variant as the underlying (many-sorted) signature, we call a DP problem

(P ,R) also a tuple-typed DP problem and write (P ,R)tt .

67This is not a restriction, as one can simply add new constants to F and F ′.
68Note that F may well contain function symbols that do not occur in R.
69W.l.o.g., here one may rename the variables in every rule. Then it is not a problem if the variable x is

used with type τ1 in one rule and with type τ2 in another rule.

110 Chapter 6. Lazy Abstraction for Size-Change Termination

Definition 6.6 (Tuple Typing, Base Terms, Tuple Terms). Let (P ,R) be a DP problem

with the tuple property where Ftup are the underlying tuple symbols. Then we call the typed

variant F ′ the tuple typing (for (P ,R)) with F : basen → tuple ∈ F ′ where ar(F) = n and

F ∈ Ftup and with g : basen → base ∈ F ′ where ar(g) = n, otherwise. Correspondingly,

we call (P ,R) tuple typed (by F ′), and we also write (P ,R)tt to indicate that we only

need to consider chains with terms which are well typed with respect to the tuple typing

F ′.70
If we work on a tuple typing, we call a term t a base term if t has the type base, and

we call t a tuple term if t has the type tuple.

Corollary 6.7 (Tuple-Typed DP Problems are Well Typed). Let (P ,R)tt be a tuple-typed

DP problem with the tuple property. Then (P ,R)tt is well typed with respect to its tuple

typing.

It is worth noting that in related work [LM08], Lucas and Meseguer propose a depen-

dency pair approach for order-sorted rewriting where they also use a dedicated fresh type

for all arising tuple symbols. Here, in contrast to our setting, also the original TRS is

already typed. Despite the typed setting, the reduction pairs used in [LM08, Theorem 5]

are defined for the classic untyped setting, i.e., they need to deal with the untyped variants

of the TRS rules and the DPs. It would be interesting to investigate for the order-sorted

setting how one could further benefit from the explicit types to improve the termination

techniques based on reduction pairs.

Now let us consider an example for a tuple typing.

Example 6.8 (Tuple Typing for Example 6.3). Consider again Example 6.3. The DP

problem (P ,R) has the tuple property. The corresponding tuple-typed DP problem is

(P ,R)tt where we have the tuple typing F ′, which includes:

F : base× base→ tuple (6.5)

f : base× base→ base (6.6)

s : base→ base (6.7)

The following theorem now states that in the DP framework we can indeed switch back

and forth between untyped DP problems and corresponding tuple-typed DP problems.71

Theorem 6.9 (Tuple Typing Does Not Alter Finiteness). Let (P ,R) be a DP problem

which has both the tuple property and the tuple typing F ′ (which gives rise to the tuple-

typed DP problem (P ,R)tt). There is an infinite minimal (P ,R)-chain in the untyped

70Existing DP processors Proc can easily be lifted to this extended DP framework which may also contain
tuple-typed DP problems (P,R)tt simply by defining Proc((P,R)tt) = { (P,R)tt }.

71By analogous reasoning, the theorem also holds if one does not consider minimal, but arbitrary chains.
Likewise, the theorem also holds if one considers an innermost rewriting strategy instead of a full
rewriting strategy.

6.2. Tuple-Typed DP Problems 111

setting iff there is an infinite minimal (P ,R)-chain over terms which are well typed with

respect to its tuple typing F ′.

Proof. Consider the right-to-left direction of the statement. Let s1 → t1, s2 → t2, . . . be

an infinite minimal (P ,R)-chain over terms which are well typed with respect to F ′, with

the substitution σ. Using σ, the same infinite minimal (P ,R)-chain carries over also to

the untyped setting.

Now consider the left-to-right direction of the statement. Let s1 → t1, s2 → t2, . . .

be an infinite minimal (P ,R)-chain with the substitution σ where σ may map to terms

which contain tuple symbols. For each F : basen → tuple ∈ F ′ introduce a corresponding

fresh symbol Fbase : basen → base. (The idea is to replace tuple symbols F occurring

in a chain below the root position, which are the only possible way well-typedness could

be affected here, by corresponding fresh symbols Fbase in any infinite minimal chain.)

Let toBase map terms to terms by toBase(x) = x for x ∈ V , toBase(f(t1, . . . , tn)) =

f(toBase(t1), . . . , toBase(tn)) if f is not a tuple symbol, and toBase(F (t1, . . . , tn)) =

Fbase(toBase(t1), . . . , toBase(tn)) if F is a tuple symbol. Now let the substitution δ be

defined via δ(x) = toBase(t) if σ(x) = t. As witnessed by δ, then also s1 → t1, s2 → t2, . . .

is an infinite minimal (P ,R)-chain using only terms from T (F ′,V). The reason that

the minimality behavior is not changed is that by the tuple property of the DP problem

(P ,R) and by construction of toBase, the same reduction steps are possible on a term

toBase(s) and on a term s. Moreover, for two terms s, t we have toBase(s)→R toBase(t)

iff s →R t. Thus, a term toBase(t) is terminating with respect to R iff t is terminating

with respect to R.

This theorem now allows us to switch between the untyped setting and the setting

where a tuple typing is used for a DP problem.

Corollary 6.10 (Tuple Typing Introduction). Let Proc be a DP processor defined as

follows:

Proc((P ,R)) =

{ (P ,R)tt }, if (P ,R) has the tuple property

{ (P ,R) }, otherwise

Proc((P ,R)tt) = { (P ,R)tt }

Then Proc is sound.

Corollary 6.11 (Tuple Typing Elimination). Let Proc be a DP processor defined as

112 Chapter 6. Lazy Abstraction for Size-Change Termination

follows:

Proc((P ,R)tt) =

{ (P ,R) }, if (P ,R) has the tuple property

{ (P ,R)tt }, otherwise

Proc((P ,R)) = { (P ,R) }

Then Proc is sound.

So for DP problems with the tuple property, we can choose if we want to use the tuple-

typed or the usual untyped setting. Thus, we can benefit from the fact that termination

techniques do not need to consider terms which are not well typed with respect to the

tuple typing. One instance of such techniques are reduction pairs (cf. Definition 2.10).

In the tuple-typed setting, it suffices to ensure the required properties of a reduction

pair (%,�) on well-typed terms instead of all terms. In particular, this means that one

does not require monotonicity for tuple terms. The reason is that in the tuple-typed

setting, there are no non-empty contexts for the type tuple. We call a reduction pair on

tuple-typed terms with the tuple typing F ′ also a tuple-typed reduction pair (for F ′). In

the remainder of this chapter, we develop such a class of tuple-typed reduction pairs in

the form of SCNP reduction pairs.

A review of the reduction pair processor (cf. Theorem 2.13) with its main extensions

(usable rules for innermost [AG00] and full termination [GTSF06], usable rules with re-

spect to an argument filtering [GTSF06]) shows that this central processor of the DP

framework is also sound for tuple-typed DP problems with tuple-typed reduction pairs.

The corresponding soundness proofs from the untyped setting directly carry over to the

tuple-typed setting.

Thus, we can now also use orders for reduction pairs in the DP framework that require

that tuple symbols only occur at the root of a term. This contribution is a stepping stone

for the SCNP reduction pairs, but may well have implications beyond the present thesis.

Without loss of generality, we can now use the untyped or the tuple-typed setting when

developing a new DP processor for DP problems which satisfy the tuple property.

6.3 Approximating SCT in NP

In [BC08] the authors identify a subset of SCT, called SCNP, that is powerful enough for

practical use and is in NP. For SCNP just as for SCT, programs are abstracted to sets of

size-change graphs. But instead of checking SCT by the closure under composition, one

identifies a suitable ranking function to certify the termination of programs described by

the set of graphs. Ranking functions map “program states” to elements of a well-founded

domain and one has to show that they (strictly) decrease on all program transitions

6.3. Approximating SCT in NP 113

described by the size-change graphs.

In the rewriting context, program states are terms. Here, instead of a ranking func-

tion one can use an arbitrary stable well-founded order =. Let (Vs, Vt, E) be a size-

change graph which has source vertices Vs = {F1, . . . , Fn} and target vertices Vt =

{G1, . . . , Gm}, and let (%,�) be the reduction pair on base terms which was used for

the construction of the graph. Now the goal is to extend the order � to a well-founded

order = which can also compare tuple terms and which satisfies the size-change graph

(i.e., F (s1, . . . , sn) = G(t1, . . . , tm)). Similarly, we say that = satisfies a set of size-change

graphs iff it satisfies all the graphs in the set.

If the size-change graphs describe the transitions of a program, then the existence of

a corresponding ranking function obviously implies termination of the program. As in

[TG05], to ensure that the size-change graphs really describe the transitions of the TRS

correctly, one has to impose suitable restrictions on the reduction pair (e.g., by demanding

that all rules of the TRS are weakly decreasing w.r.t. %). Then one can indeed conclude

termination of the TRS.

In [Lee09], a class of ranking functions is identified which can simulate SCT. So if a

set of size-change graphs has the SCT property, then there is a ranking function of that

class satisfying these size-change graphs. However, expressions for these ranking functions

can be exponential in size [Lee09]. To obtain a subset of SCT in NP, [BC08] considers a

restricted class of ranking functions. A set of size-change graphs has the SCNP property

iff it is satisfied by a ranking function from this restricted class.

Our goal is to adapt this class of ranking functions to term rewriting. The main

motivation is to facilitate the simultaneous search for a ranking function on the size-

change graphs and for the base order which is used to derive the size-change graphs from

a TRS. It means that we are searching both for a program abstraction to size-change

graphs, and also for the ranking function which proves that these graphs have the SCNP

(and hence also the SCT) property.

This is different from [BC08], where the concrete structure of the program has already

been abstracted away to size-change graphs that must be given as inputs. It is also

different from the earlier adaption of SCT to term rewriting in [TG05], where the base

order was fixed. As shown by the experiments with [TG05] in Section 6.6, fixing the base

order for the size-change graphs leads to severe limitations in power.

The following example illustrates the SCNP property and presents a ranking function

(inducing a well-founded order =) satisfying a set of size-change graphs.

Example 6.12. Consider the DP problem from Example 6.3 and its size-change graphs

in Figure 6.2(a). Here, the base order is the reduction pair (%,�) resulting from the

embedding order. We now extend� to an order = which can also compare tuple terms and

which satisfies the size-change graphs in this example. To compare tuple terms F(s1, s2)

and F(t1, t2), we first map them to the multisets { 〈s1, 1〉, 〈s2, 0〉 } and { 〈t1, 1〉, 〈t2, 0〉 } of

114 Chapter 6. Lazy Abstraction for Size-Change Termination

tagged terms (where a tagged term is a pair of a term and a number). Now a multiset S

of tagged terms is greater than a multiset T of tagged terms iff for every 〈t,m〉 ∈ T there

is an 〈s, n〉 ∈ S where s � t or both s % t and n > m.

For the first graph, we have s1 � t1 and s1 % t2 and hence the multiset { 〈s1, 1〉, 〈s2, 0〉 }
is greater than { 〈t1, 1〉, 〈t2, 0〉 }. For the second graph, s1 % t2 and s2 � t1 also implies

that the multiset { 〈s1, 1〉, 〈s2, 0〉 } is greater than { 〈t1, 1〉, 〈t2, 0〉 }. Thus, if we define our

well-founded order = in this way, then it indeed satisfies both size-change graphs of the

example. Since this order = belongs to the class of ranking functions defined in [BC08],

this shows that the size-change graphs in Figure 6.2(a) have the SCNP property.

Integrating SCNP into the DP Framework

In term rewriting, size-change graphs correspond to DPs and the arcs of the size-change

graphs are built by only comparing the arguments of the DPs (which are base terms).

The ranking function then corresponds to a well-founded order on tuple terms. We now

reformulate the class of ranking functions of [BC08] in the term rewriting context by

defining SCNP reduction pairs. The advantage of this reformulation is that it allows us

to integrate the SCNP approach directly into the DP framework and that it allows a SAT

encoding of both the search for suitable base orders and of the test for the SCNP property.

This way, we can use the reduction pair processor to ask the following question:

For a given DP problem (P ,R), is there a(n SCNP) reduction pair that orients

all rules of R and P weakly and at least one of the rules of P strictly?

In [BC08], the class of ranking functions for SCNP is defined incrementally. We follow

this, but adapt the definitions of [BC08] to the (tuple-typed) term rewriting setting and

prove that the resulting orders always constitute reduction pairs. More precisely, we

proceed as follows:

step one: (%,�) is an arbitrary reduction pair on base terms that we start with (e.g.,

based on RPO and argument filters or on polynomial orders). The main observation that

can be drawn from the SCNP approach is that it is helpful to compare base terms and

tuple terms in a different way. Thus, our goal is to extend (%,�) appropriately to a

tuple-typed reduction pair (w,=). By defining (w,=) in the same way as the ranking

functions of [BC08], it can simulate the SCNP approach.

step two: (%N,�N) is a reduction pair on tagged base terms, i.e., on pairs 〈t, n〉, where

t is a base term and n ∈ N. Essentially, (%N,�N) is a lexicographic combination of the

reduction pair (%,�) with the usual order on N.

6.3. Approximating SCT in NP 115

step three: (%N,µ,�N,µ) extends (%N,�N) to compare multisets of tagged base terms.

The status µ determines how (%N,�N) is extended to multisets.

step four: (%µ,L,�µ,L) is a full tuple-typed reduction pair (i.e., it is the reduction pair

(w,=) we were looking for). The level mapping L determines which arguments of a tuple

term are selected and tagged, resulting in a multiset of tagged base terms. On tuple

terms, (%µ,L,�µ,L) behaves according to (%N,µ,�N,µ) on the multisets as determined by

L, and on base terms, it behaves like (%,�).

Thus, we start with extending a reduction pair (%,�) on base terms to a reduction pair

(%N,�N) on tagged base terms. We compare tagged terms lexicographically by (%,�)

and by the standard orders ≥ and > on numbers.

Definition 6.13 (Comparing Tagged Terms). Let (%,�) be a reduction pair on terms.

We define the corresponding reduction pair (%N,�N) on tagged terms:

• 〈t1, n1〉 %N 〈t2, n2〉 ⇔ t1 � t2 ∨ (t1 % t2 ∧ n1 ≥ n2).

• 〈t1, n1〉 �N 〈t2, n2〉 ⇔ t1 � t2 ∨ (t1 % t2 ∧ n1 > n2).

The motivation for tagged terms is that we will use different tags (i.e., numbers) for

the different argument positions of a function symbol. For instance, when comparing

the terms s = F(s(x), y) and t = F(x, s(x)) as in Example 6.12, one can assign the tags

1 and 0 to the first and second argument position of F, respectively. Then, if (%,�)

is the reduction pair based on the embedding order, we have 〈s(x), 1〉 �N 〈x, 1〉 and

〈s(x), 1〉 �N 〈s(x), 0〉. In other words, the first argument of s is greater than both the first

and the second argument of t.

The following lemma states that if (%,�) is a reduction pair on terms, then (%N,�N)

is a reduction pair on tagged terms (where we do not require monotonicity, since mono-

tonicity is not defined for tagged terms). This lemma will be needed for our main theorem

(Theorem 6.20), which proves that the reduction pair defined to simulate SCNP is really

a reduction pair.

Lemma 6.14 (Reduction Pairs on Tagged Terms). Let (%,�) be a reduction pair. Then

(%N,�N) is a non-monotonic reduction pair on tagged terms.

Proof. Reflexivity of %N follows directly from reflexivity of % and of ≥. Transitivity of

%N and �N as well as compatibility follow from a simple case analysis on whether we have

strict or weak decrease in the term components. Well-foundedness of �N follows from the

well-foundedness of lexicographic combinations of well-founded orders.

We now prove stability of %N by contradiction. Assume that %N were not stable, i.e.,

there exist two tagged terms 〈s, c〉, 〈t, d〉 and a substitution σ with 〈s, c〉 %N 〈t, d〉 and

〈sσ, c〉 6%N 〈tσ, d〉. By definition, this implies ¬(sσ � tσ ∨ (sσ % tσ ∧ c ≥ d)). But by

116 Chapter 6. Lazy Abstraction for Size-Change Termination

〈s, c〉 %N 〈t, d〉, we have s � t∨ (s % t∧ c ≥ d) which is a contradiction to the stability of

� and %. Stability of �N is completely analogous.

The next step is to introduce a “reduction pair” (%N,µ,�N,µ) on multisets of tagged base

terms, where µ is a status which determines how (%N,�N) is extended to multisets. Of

course, there are many possibilities for such an extension. In Definition 6.15, we present

the four extensions which correspond to the ranking functions defining SCNP in [BC08].

The main difference to the definitions in [BC08] is that we do not restrict ourselves to

total base orders. Hence, the notions of maximum and minimum of a multiset of terms

are not defined in the same way as in [BC08].

Definition 6.15 (Multiset Extensions of Reduction Pairs). Let (%,�) be a reduction pair

on (tagged) terms. We define an extended reduction pair (%µ,�µ) on multisets of (tagged)

terms, for µ ∈ {max,min,ms, dms}. Let S and T be multisets of (tagged) terms.

(i) (max order) S %max T holds iff ∀t∈T. ∃s∈S. s % t.

S �max T holds iff S 6= ∅ and ∀t∈T. ∃s∈S. s � t.

(ii) (min order) S %min T holds iff ∀s∈S. ∃t∈T. s % t.

S �min T holds iff T 6= ∅ and ∀s∈S. ∃t∈T. s � t.

(iii) (multiset order [DM79]) S �ms T holds iff S = Sstrict] { s1, . . . , sk }, T = Tstrict]
{ t1, . . . , tk }, Sstrict �max Tstrict, and si % ti for 1 ≤ i ≤ k.

S %ms T holds iff S = Sstrict] { s1, . . . , sk }, T = Tstrict] { t1, . . . , tk }, either

Sstrict �max Tstrict or Sstrict = Tstrict = ∅, and si % ti for 1 ≤ i ≤ k.

(iv) (dual multiset order [BL07]) S �dms T holds iff S = Sstrict] { s1, . . . , sk }, T =

Tstrict] { t1, . . . , tk }, Sstrict �min Tstrict, and si % ti for 1 ≤ i ≤ k.

S %dms T holds iff S = Sstrict] { s1, . . . , sk }, T = Tstrict] { t1, . . . , tk }, either

Sstrict �min Tstrict or Sstrict = Tstrict = ∅, and si % ti for 1 ≤ i ≤ k.

Here �ms is the standard multiset extension of an order � as used, e.g., for the classical

definition of RPO. However, our use of tagged terms as elements of the multiset introduces

a lexicographic aspect that is missing in RPO.

Example 6.16. Consider again the TRS from Example 6.3 with the reduction pair based

on the embedding order. We have {s(x), y} %max {x, s(x)}, since for both terms in

{x, s(x)} there is an element in {s(x), y} which is weakly greater (w.r.t. %). Similarly,

{x, s(y)} %max {y, x}. However, {x, s(y)} 6�max {y, x}, since not every element from

{y, x} has a strictly greater one in {x, s(y)}. We also have {x, s(y)} %min {y, x}, but

{s(x), y} 6%min {x, s(x)}, since for y in {s(x), y}, there is no term in {x, s(x)} which is

weakly smaller.

6.3. Approximating SCT in NP 117

We have {s(x), y} 6�ms {x, s(x)}, since even if we take {s(x)} �max {x}, we still do

not have y % s(x). Moreover, also {s(x), y} 6%ms {x, s(x)}. Otherwise, for every element

of {x, s(x)} there would have to be a different weakly greater element in {s(x), y}. In

contrast, we have {x, s(y)} �ms {y, x}. The element s(y) is replaced by the strictly

smaller element y and for the remaining element x on the right-hand side there is a

weakly greater one on the left-hand side. Similarly, we also have {s(x), y} 6%dms {x, s(x)}
and {x, s(y)} �dms {y, x}.

So there is no µ such that the multiset of arguments strictly decreases in some DP and

weakly decreases in the other DP. We can only achieve a weak decrease for all DPs. To

obtain a strict decrease in such cases, one can add tags.

We want to define a reduction pair (%µ,L,�µ,L) which is like (%N,µ,�N,µ) on tuple

terms and like (%,�) on base terms. Here, we use a level mapping L to map tuple terms

F (s1, . . . , sn) to multisets of tagged base terms.

Definition 6.17 (Level Mapping). For each tuple symbol F of arity n, let π(F) ⊆
{ 1, . . . , n } × N such that for each 1 ≤ j ≤ n there is at most one m ∈ N with 〈j,m〉 ∈
π(F). Then L(F (s1, . . . , sn)) = { 〈si, ni〉 | 〈i, ni〉 ∈ π(F) }.72

Example 6.18. Consider again the TRS from Example 6.3 with the reduction pair based

on the embedding order. Let π be a status function with π(F) = { 〈1, 1〉, 〈2, 0〉 }. So π

selects both arguments of terms rooted with F for comparison and associates the tag 1

with the first argument and the tag 0 with the second argument. This means that it puts

“more weight” on the first than on the second argument. The level mapping L defined

by π transforms the tuple terms from the DPs of our TRS into the following multisets of

tagged terms:

L(F(s(x), y)) = { 〈s(x), 1〉, 〈y, 0〉 } L(F(x, s(x))) = { 〈x, 1〉, 〈s(x), 0〉 }
L(F(x, s(y))) = { 〈x, 1〉, 〈s(y), 0〉 } L(F(y, x)) = { 〈y, 1〉, 〈x, 0〉 }

Now we observe that for the multisets of the tagged terms above, we have

L(F(s(x), y)) �N,max L(F(x, s(x))) L(F(x, s(y))) �N,max L(F(y, x))

So due to the tagging, now we can find an order such that both DPs are strictly decreasing.

This order corresponds to the ranking function given in Example 6.12.

Finally we define the class of reduction pairs which corresponds to the class of ranking

functions considered for SCNP in [BC08].

72One could also allow multiple tags ni1 , ni2 , . . . with ni1 , ni2 , . . . ∈ π(F) for the same F as in [BC08,
Definition 9]. For simplicity, here we follow the SAT encoding of [BC08, Section 5], where only one
tag ni is used for fixed F and i such that 〈i, ni〉 ∈ π(F).

118 Chapter 6. Lazy Abstraction for Size-Change Termination

Definition 6.19 (SCNP Reduction Pair). Let (%,�) be a reduction pair on base terms

and let L be a level mapping. For µ ∈ {max,min,ms, dms}, we define the SCNP reduc-

tion pair (%µ,L,�µ,L) as follows. For base terms l and r we define l
(
%

)

µ,L r ⇔ l
(
%

)
r,

and for tuple terms s and t we define s �µ,L t ⇔ L(s) �N,µ L(t) and s %µ,L t ⇔ s =

t ∨ L(s) %N,µ L(t).73

So we have s �max,L t for the DPs s → t in Example 6.3 and the level mapping L in

Example 6.18. Theorem 6.20 states that SCNP reduction pairs actually are (tuple-typed)

reduction pairs.

Theorem 6.20. For µ ∈ {max,min,ms, dms}, (%µ,L,�µ,L) is a tuple-typed reduction

pair.

In the proof of Theorem 6.20, we make use of multiset covers [STA+07, Sch08, CGST12]

as an equivalent representation for the multiset extension %ms and �ms. This is not only

convenient for the proof, but multiset covers can also be used to express the multiset

extension in a way which is natural to encode as a propositional formula.

Definition 6.21 (Multiset Cover). Let S and T be multisets with |S| = n and |T | = m.

A multiset cover 〈γ, ε〉 (for S and T) is a pair of mappings γ : { 1, . . . ,m } → { 1, . . . , n }
and ε : { 1, . . . , n } → { false, true } such that for each 1 ≤ i ≤ n, if ε(i) = true, then

{ j | γ(j) = i } is a singleton set.

For any tj ∈ T , γ(j) = i intuitively means that tj is covered by si (i.e., si � tj or

si % tj). Moreover, ε(i) indicates whether si covers elements from T strictly or weakly.

Hence, we can now express the ms-extension via multiset covers:

• S %ms T holds iff S = { s1, . . . , sn }, T = { t1, . . . , tm }, and there exists a multiset

cover 〈γ, ε〉 such that for all i, j:

γ(j) = i⇒ (if ε(i) then si % tj else si � tj)

• S �ms T holds iff S %ms T and ε(i) = false for some i (i.e., some si is replaced by

zero or more strictly smaller elements).

Proof of Theorem 6.20. We first illustrate the proof for µ = max (the proof for µ = min

is analogous).

For base terms, (%max,L,�max,L) is like (%,�) and thus, here it is clearly a reduction

pair. Thus, it suffices to consider comparisons between tuple terms.

73The explicit requirement for tuple terms s, t that s = t implies s %µ,L t is needed since we need %µ,L

to be reflexive also on variables to obtain a proper tuple-typed reduction pair, and L(x) is not defined
for variables x. Note that for a variable x of type tuple, x %N,µ t or t %N,µ x implies x = t, and
x �N,µ t or t �N,µ x does not hold for any term t.

6.3. Approximating SCT in NP 119

(i) %max,L and �max,L are compatible

We only show �max,L ◦ %max,L ⊆ �max,L. The proof for %max,L ◦ �max,L ⊆ �max,L
is analogous. Concretely we show that for tuple terms s, t, u, we have that s �max,L
t ∧ t %max,L u implies s �max,L u. W.l.o.g., we can assume that s, t, and u are not

variables (s or t being a variable would imply that the premise does not hold, and

u being a variable would imply t = u). So we get s = F (s), t = G(t), and u = H(u)

where s �max,L t ∧ t %max,L u. Clearly, s �max,L t means

L(F (s)) 6= ∅ ∧ ∀〈tj, dj〉 ∈ L(G(t)). ∃〈si, ci〉 ∈ L(F (s)). 〈si, ci〉 �N 〈tj, dj〉

Furthermore, t %max,L u means

∀〈uj, ej〉 ∈ L(H(u)). ∃〈ti, di〉 ∈ L(G(t)). 〈ti, di〉 %N 〈uj, ej〉

Since %N and �N are compatible by Lemma 6.14, we obtain

L(F (s)) 6= ∅ ∧ ∀〈uj, ej〉 ∈ L(H(u)). ∃〈si, ci〉 ∈ L(F (s)). 〈si, ci〉 �N 〈uj, ej〉

and thus s �max,L t.

(ii) %max,L is reflexive

Reflexivity of %max,L follows directly from the definition.

(iii) %max,L and �max,L are stable and transitive

For x %max,L x, xσ %max,L xσ follows by stability of syntactic equality. So let

F (s) %max,L G(t), which is equivalent to L(F (s)) %N,max L(G(s)) and thus

∀〈tj, dj〉 ∈ L(G(t)). ∃〈si, ci〉 ∈ L(F (s)). 〈si, ci〉 %N 〈tj, dj〉 (6.8)

The claim F (s)σ %max,L G(t)σ now is equivalent to L(F (s)σ) %N,max L(G(s)σ),

which means

∀〈tjσ, dj〉 ∈ L(G(t)σ). ∃〈siσ, ci〉 ∈ L(F (s)σ). 〈siσ, ci〉 %N 〈tjσ, dj〉

This holds by stability of %N (Lemma 6.14) and by (6.8).

Stability of �max,L and transitivity of %max,L and �max,L follow in an analogous way

from the corresponding properties of %N and �N.

(iv) %max,L is monotonic

120 Chapter 6. Lazy Abstraction for Size-Change Termination

Since %max,L is obviously monotonic on base terms, we only consider the case where

s, t are base terms with s %max,L t (i.e., s % t) and F is a tuple symbol. One

has to show s′ %max,L t′ for the tuple terms s′ = F (u1, . . . , ui−1, s, ui+1, . . . , un) and

t′ = F (u1, . . . , ui−1, t, ui+1, . . . , un).

Clearly, s′ %max,L t′ holds iff

∀〈vj, dj〉 ∈ L(t′). ∃〈vl, dl〉 ∈ L(s′). 〈vl, dl〉 %N 〈vj, dj〉

For 〈vj, dj〉 = 〈up, ep〉 with p ∈ {1, . . . , i − 1, i + 1, n}, we choose 〈vl, dl〉 = 〈vj, dj〉
(since %N is reflexive by Lemma 6.14). For 〈vj, dj〉 = 〈t, c〉, we choose 〈vl, dl〉 = 〈s, c〉.
By s % t and c ≥ c, we also have 〈s, c〉 %N 〈t, c〉.

(v) �max,L is well founded

Analogous to the proof that the standard multiset extension of an order � is well

founded iff � itself is well founded.

We now illustrate the proof for µ = ms (the proof for µ = dms is analogous).

(i) %ms,L and �ms,L are compatible, and both %ms,L and �ms,L are transitive

We only show �ms,L ◦ %ms,L ⊆ �ms,L. The proofs for %ms,L ◦ �ms,L ⊆ �ms,L,

�ms,L ◦ �ms,L ⊆ �ms,L, and %ms,L ◦ %ms,L ⊆ %ms,L are analogous. For variables,

the same reasoning as for µ = max applies. So let s = F (s), t = G(t), and u = H(u)

where s �ms,L t ∧ t %ms,L u.

Clearly, s �ms,L t means that there exists a multiset cover 〈γ1, ε1〉 such that

∀〈i, c〉 ∈ π(F). ∀〈j, d〉 ∈ π(G).

γ1(j) = i⇒ (if ε1(i) then 〈si, c〉 %N 〈tj, d〉 else 〈si, c〉 �N 〈tj, d〉)
and ∃〈i, c〉 ∈ π(F).¬ε(i)

Moreover, t %ms,L u means that there exists a multiset cover 〈γ2, ε2〉 such that:

∀〈j, d〉 ∈ π(G). ∀〈k, e〉 ∈ π(H).

γ2(k) = j ⇒ (if ε2(j) then 〈tj, d〉 %N 〈uk, e〉 else 〈tj, d〉 �N 〈uk, e〉)

We now construct a multiset cover 〈γ3, ε3〉 to show that s �ms,L u holds as well. Let

γ3(k) = γ1(γ2(k)) and let

ε3(i) =

true, if ε1(i) ∧ i = γ1(j) for some j with ε2(j)

false, otherwise

6.3. Approximating SCT in NP 121

To see that 〈γ3, ε3〉 actually is a multiset cover showing s �ms,L u, we need to prove:

(a) For each 1 ≤ i ≤ n, if ε3(i) then { k | γ3(k) = i } is a singleton set.

This holds by construction.

(b) ∀〈i, c〉 ∈ π(F). ∀〈k, e〉 ∈ π(H).

γ3(k) = i⇒ (if ε3(i) then 〈si, c〉 %N 〈uk, e〉 else 〈si, c〉 �N 〈uk, e〉)

Let γ3(k) = i. Then ∃j. j = γ2(k) ∧ i = γ1(j). Hence, we have:

〈si, c〉 (
%

)

N〈tj, d〉 (
%

)

N〈uk, e〉

where x
(
%

)

Ny iff x �N y or x %N y.

By transitivity of %N, then ε1(i) ∧ ε2(j) implies 〈si, c〉 %N 〈uk, e〉. Likewise,

by transitivity of �N and compatibility of %N and �N, ¬(ε1(i)∧ ε2(j)) implies

〈si, c〉 �N 〈uk, e〉.
Since 〈γ1, ε1〉 and 〈γ2, ε2〉 are multiset covers, ε1(i)∧ ε2(j) holds iff ε3(i) holds,

which shows the proposition.

(c) ∃i.¬ε3(i).

This holds due to ∃i.¬ε1(i) and ¬ε1(i)⇒ ¬ε3(i).

(ii) %ms,L and �ms,L are stable, and %ms,L is reflexive.

This follows from the corresponding properties of %N, of �N, and of syntactic equal-

ity on terms.

(iii) %ms,L is monotonic

Since %ms,L is obviously monotonic on base terms, we only consider the case where

s, t are base terms with s %ms,L t (i.e., s % t), where F is a tuple symbol, and one has

to show s′ %ms,L t′ for the tuple terms s′ = F (u1, . . . , ui−1, s, ui+1, . . . , un) and t′ =

F (u1, . . . , ui−1, t, ui+1, . . . , un). Here the multiset cover 〈γ, ε〉 with ∀i′.ε(i′)∧γ(i′) = i′

implies s′ %ms,L t′.

(iv) �ms,L is well founded

This can be shown via an adaption of the proof that the standard multiset extension

of an order � is well founded iff � itself is well founded. We additionally need to

use transitivity and compatibility of (%N,�N).

122 Chapter 6. Lazy Abstraction for Size-Change Termination

We now automate the SCNP criterion of [BC08]. For a DP problem (P ,R)tt satisfying

the tuple property, we have to find a suitable base order (%,�) to construct the size-

change graphs G corresponding to the DPs in P . So every graph (Vs, Vt, E) from G with

source vertices Vs = {F1, . . . , Fn} and target vertices Vt = {G1, . . . , Gm} corresponds to a

DP F (s1, . . . , sn) → G(t1, . . . , tm). Moreover, we have an edge (Fi, Gj,�) ∈ E iff si � tj

and (Fi, Gj,%) ∈ E iff si % tj.

In our example, if we use the reduction pair (%,�) based on the embedding order, then

G are the size-change graphs from Figure 6.2(a). For instance, the first size-change graph

results from the DP (6.3).

For SCNP, we have to extend � to a well-founded order = which can also compare

tuple terms and which satisfies all size-change graphs in G. For =, we could take any

order �µ,L from an SCNP reduction pair (%µ,L,�µ,L). To show that = satisfies the size-

change graphs from G, one then has to prove F (s1, . . . , sn) �µ,L G(t1, . . . , tm) for every DP

F (s1, . . . , sn)→ G(t1, . . . , tm). Moreover, to ensure that the size-change graphs correctly

describe the transitions of the TRS-programR, one also has to require that all rules of the

TRS R are weakly decreasing w.r.t. % (cf. the remarks at the beginning of Section 6.3).

Of course, as in [TG05], this requirement can be weakened (e.g., by only regarding usable

rules) when proving innermost termination.

As in [BC08], we define = via a lexicographic combination of several orders having the

form �µ,L. We define the lexicographic combination of two reduction pairs as follows:

(%1,�1)× (%2,�2) = (%1×2,�1×2) (6.9)

Here, s %1×2 t holds iff both s %1 t and s %2 t. Moreover, s �1×2 t holds iff s �1 t or

both s %1 t and s �2 t. It is clear that (%1×2,�1×2) is again a reduction pair.

A suitable well-founded order = is now constructed automatically as follows. The pair

of orders (w,=) is initialized by defining w to be the relation where only t w t holds

for two tuple or base terms t and where = is the empty relation. As long as the set of

size-change graphs G is not empty, a status µ and a level mapping L are synthesized such

that (%µ,L,�µ,L) orients all DPs weakly and at least one DP strictly. In other words, the

corresponding ranking function satisfies one size-change graph and “weakly satisfies” the

others. Then the strictly oriented DPs (corresponding to the strictly satisfied size-change

graphs) are removed, and (w,=) := (w,=) × (%µ,L,�µ,L) is updated. In this way, the

SCNP approach can be simulated by a repeated application of the reduction pair processor

in the DP framework, using the special class of SCNP reduction pairs.

So in our example, we could first look for a µ1 and L1 where the first DP (6.3) decreases

strictly (w.r.t. �µ1,L1) and the second decreases weakly (w.r.t. %µ1,L1). Then we would

remove the first DP and could now search for a µ2 and L2 such that the remaining second

DP (6.4) decreases strictly (w.r.t. �µ2,L2). The resulting reduction pair would then be

6.3. Approximating SCT in NP 123

(w,=) = (%µ1,L1 ,�µ1,L1)× (%µ2,L2 ,�µ2,L2).

While in [BC08], the set of size-change graphs remains fixed throughout the whole ter-

mination proof, the DP framework allows to use a lexicographic combination of SCNP

reduction pairs which are constructed from different reduction pairs (%,�) on base terms.

In other words, after a base order and a ranking function satisfying one size-change graph

and weakly satisfying all others have been found, the satisfied size-change graph (i.e., the

corresponding DP in the DP problem at hand) is removed, and one can synthesize a pos-

sibly different ranking function and also a possibly different base order for the remaining

DPs (i.e., different abstractions to different size-change graphs can be used in one and the

same termination proof).

Example 6.22. We add a third rule to the TRS from Example 6.3: f(c(x), y)→ f(x, s(x)).

Now no SCNP reduction pair based only on the embedding order can orient all DPs strictly

at the same time anymore, even if one permits combinations with arbitrary argument fil-

ters. However, we can first apply an SCNP reduction pair that sets all tags to 0 and

uses the embedding order together with an argument filter to collapse the symbol s to its

argument. Then the DP for the newly added rule is oriented strictly and all other DPs are

oriented weakly. After removing the new DP, the SCNP reduction pair that we already

used for the DPs of Example 6.3 again orients all DPs strictly. Note that the base order

for this second SCNP reduction pair is the embedding order without argument filters, i.e.,

it differs from the base order used in the first SCNP reduction pair.

By representing the SCNP method via SCNP reduction pairs, we can now benefit from

the flexibility of the DP framework. Thus, we can use other termination methods in

addition to SCNP. More precisely, as usual in the DP framework, we can apply arbitrary

processors one after another in a modular way. This allows us to interleave arbitrary other

termination techniques with termination proof steps based on size-change termination,

whereas in [TG05], size-change proofs can only be used as a final step in a termination

proof.

The Need for Tuple Typing

So far, we have substantiated the claim that reduction pairs in an untyped setting are not

a suitable modeling for SCNP by intuition, but not yet by a proper counterexample. For

this purpose, consider the following example which shows that an SCNP reduction pair

is not monotonic in general:

Example 6.23 (SCNP Reduction Pairs Are Not Monotonic in an Untyped Setting).

Consider a TRS R = { f(x) → g(x), g(x) → a }. We get DP (R) = {F(x) → G(x) }.
Moreover consider a base reduction pair (%A,�A) induced by a polynomial interpretation

[·]A with [F](x1) = x1 and [G](x1) = x1 + 1. We use a level mapping L induced by

124 Chapter 6. Lazy Abstraction for Size-Change Termination

π(F) = { 〈1, 0〉 } and π(G) = ∅ to lift this base reduction pair (%A,�A) to the SCNP

“reduction pair” (%max,L,�max,L).

We then indeed get F(x) %max,L G(x) (because L(G(x)) = ∅). However, F(F(x)) %max,L

F(G(x)) does not hold (because x 6≥ x+ 1).

One may also wonder if the literature does not already provide more suitable means than

reduction pairs (which require monotonicity for the weak order used for the comparison of

DPs) to capture the orders induced by SCNP. Indeed, in related work [HM07], Hirokawa

and Middeldorp introduce the notion of reduction triples (%,>, >). For a DP problem

(P ,R), here one may use potentially different weak orders % and > for comparison of

rules from R and from P , respectively. Here > does not need to be monotonic. This

makes reduction triples look like a more suitable candidate for formalization of SCNP in

the DP framework.

However, [HM07] still requires a form of compatibility also for % and >, i.e., that one

of % ◦ > ⊆ > or > ◦ % ⊆ > must hold. As René Thiemann [Thi11] points out, this

property does not hold in general.

Example 6.24 (SCNP Does Not Induce Untyped Reduction Triples [Thi11]). Consider

terms s = F(x, y) and t = F(x, s(y)), a polynomial interpretation [·]A with [F](x1, x2) = x1

and [s](x1) = x1 + 1 giving rise to a base reduction pair (%A,�A), and a level mapping

L induced by π(F) = { 〈2, 1〉 }. Then one might assume that (%A,%max,L,�max,L) was a

reduction triple.

However, then we have s %A t (because [s]A = x ≥ x = [t]A) and t �max,L s (because

〈s(y), 1〉 �N 〈y, 1〉). But neither s �max,L s nor t �max,L t hold, which refutes the required

compatibility property.

As these examples indicate, a novel processor is required to integrate SCNP into the

DP framework. Via the switches from untyped to tuple-typed DP problems and back, we

can restrict the set of well-typed terms in such a way that for these terms, SCNP indeed

induces a reduction pair.

So in practice, the user of a termination technique is not even required to become aware

of the switches between untyped and tuple-typed setting. To use SCNP reduction pairs as

a component of the usual reduction pair processor of [GTSF06] along with its extensions,

it suffices to require that the input DP problem has the tuple property, which in practice

holds in most cases. The switches between untyped and tuple-typed settings can then be

performed implicitly. This way, the integration of SCNP is quite seamless, and we do not

need to modify any existing processors.

6.4. A Challenge Example 125

6.4 A Challenge Example

In this section, as an extended example we present a TRS where all existing termination

tools fail, but where termination can easily be proved automatically by an SCNP reduction

pair with a matrix order [EWZ08] as a base order.

Example 6.25. Consider the following rewrite system R1, which is taken from the ter-

mination problem data base (TRS/Zantema 06/03.xml).

a(a(b(b(x))))→ b(b(b(a(a(a(x)))))) (6.10)

a(c(x))→ c(a(x)) (6.11)

c(b(x))→ b(c(x)) (6.12)

When attempting to prove termination by the standard techniques of the DP framework

(such as the dependency graph processor or the reduction pair processor with matrix

orders over the naturals), the initial DP problem is eventually transformed into the DP

problem (P1,R1) with P1 = {A(a(b(b(x))))→ A(a(x))}.
We can conclude the termination proof of R1 by deleting the DP of P1 using the

reduction pair processor. To this end, we can use the following (standard) matrix order

[EWZ08] based on an interpretation [·]M to the carrier N4 and matrix entries from {0, 1}.

[A]M(x1) =

0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 · x1

[a]M(x1) =

0 1 0 0

1 0 0 0

0 1 0 1

1 0 0 0

 · x1

[b]M(x1) =

0 0 1 1

0 0 0 0

1 1 0 0

0 1 0 0

 · x1 +

0

0

1

0

[c]M(x1) =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 · x1

This example can easily be modified into an example where an SCNP reduction pair is

126 Chapter 6. Lazy Abstraction for Size-Change Termination

required. The idea is to exploit that SCNP allows us to perform a “max comparison” on

the level of the tuple symbols of the dependency pairs. This is a feature that many base

orders like matrix orders over the naturals cannot provide.

To this end, we introduce a unary function symbol dup and a binary function symbol

collapse. Then we add a rule where dup applied to the left-hand side of the DP in P1

rewrites to two copies of the corresponding right-hand side of the DP, wrapped inside the

symbol collapse.

dup(A(a(b(b(x)))))→ collapse(A(a(x)),A(a(x))) (6.13)

We also have to make sure that we can still continue the rewrite sequence as before. So

we add rules to eliminate any of the copies again.

collapse(x, y)→ dup(x) (6.14)

collapse(x, y)→ dup(y) (6.15)

We now unite the rules from R1 with these three new rules and obtain a TRS R2 that

turns out to be very challenging for current automated termination tools.

a(a(b(b(x))))→ b(b(b(a(a(a(x)))))) (6.10)

a(c(x))→ c(a(x)) (6.11)

c(b(x))→ b(c(x)) (6.12)

dup(A(a(b(b(x)))))→ collapse(A(a(x)),A(a(x))) (6.13)

collapse(x, y)→ dup(x) (6.14)

collapse(x, y)→ dup(y) (6.15)

When attempting the termination proof in the DP framework, after a few proof steps, we

get the DP problem (P2,R2) where P2 consists of the following dependency pairs.

DUP(A(a(b(b(x)))))→ COLLAPSE(A(a(x)),A(a(x))) (6.16)

COLLAPSE(x, y)→ DUP(x) (6.17)

COLLAPSE(x, y)→ DUP(y) (6.18)

Now we can delete the first dependency pair using an SCNP reduction pair with the

status µ = max. This reduction pair uses the previous matrix order M when comparing

base terms. For comparing tuple terms, it uses a level mapping L induced by with

π(DUP) = {〈1, 0〉} and π(COLLAPSE) = {〈1, 0〉, 〈2, 0〉} (i.e., here we do not really need

the tags in the level mapping). Thus, the first DP is strictly decreasing because for

every term in the multiset {A(a(x)),A(a(x))} of arguments on the right-hand side, there

6.5. SAT-Based Automation 127

is a strictly larger term in the multiset {A(a(b(b(x))))} of arguments on the left-hand

side. After this proof step, applying the dependency graph processor on the resulting DP

problem concludes the termination proof for R2.

Note that without SCNP reduction pairs, termination of this example is not easy to

prove. When disabling SCNP reduction pairs, AProVE can no longer accomplish the

termination proof and we aborted the proof attempt after 15 minutes. Here, we used the

reduction pair processor with reduction pairs from the regarded class of base orders (i.e.,

matrix orders over the naturals with matrices of dimension 4 and entries from {0, 1}).
Indeed, none of the tools that participated in the Termination Competition 2009 for

standard term rewriting succeeded in finding a termination proof for R2. This shows

that even for very powerful classes of orders like matrix orders, it is not difficult to come

up with examples where SCNP reduction pairs enable an automated termination proof

whereas none could be found otherwise. While this example is arguably rather a hand-

crafted challenge example than a real-life application problem, it does provide an intuition

for settings where the contributions of this chapter may be particularly helpful. SCNP

reduction pairs allow to search for sophisticated abstractions for base terms as arguments

for function calls and at the same time for suitable multiset comparisons of these—a priori

arbitrary—abstractions on top.

This SCNP-based termination proof has been formally verified using the Isabelle-based

certification tool CeTA [TS09] as a termination proof via the earlier adaption of size-change

termination by Thiemann and Giesl [TG05]. Here we use that also the combination of an

SCNP proof step with a (tagged) level mapping and a final step using simple dependency

graph approximations (denoted numeric level mappings in [BC08]) are still subsumed by

size-change termination. This is necessary since a classic size-change termination proof

can only be used as a final step in the certification setting, i.e., all DPs must be deleted

from the DP problem.

In very recent work, Thiemann et al. provide a formalization of SCNP reduction pairs

as part of the IsaFoR project [TS09], from which the certification tool CeTA is generated

by code extraction. To avoid the introduction (and formalization) of types for rewriting

in IsaFoR, this formalization does not make use of tuple-typed DP problems, but instead,

a generalization of the reduction pair processor is used.74 Also using this alternative

formalization of SCNP reduction pairs, CeTA certifies correctness of our termination proof.

6.5 SAT-Based Automation

Recently, the search problem for many common base orders has been reduced successfully

to SAT problems (cf. Chapter 1). In this section, we build on this earlier work and use

74For details see also the IsaFoR developer repository at:
http://cl2-informatik.uibk.ac.at/rewriting/mercurial.cgi/IsaFoR

http://cl2-informatik.uibk.ac.at/rewriting/mercurial.cgi/IsaFoR

128 Chapter 6. Lazy Abstraction for Size-Change Termination

these encodings as components for a SAT encoding of SCNP reduction pairs. This way,

we benefit from compositionality of SAT encodings. The corresponding decision problem

is stated as follows:

For a DP problem (P ,R)tt and a given class of base orders, is there a status

µ, a level mapping L, and a concrete base reduction pair (%,�) such that the

SCNP reduction pair (%µ,L,�µ,L) orients all rules of R and P weakly and at

least one of P strictly?

We assume a given base SAT encoding ||.||base which maps base term constraints of

the form s
(
%

)
t to propositional formulas. Every satisfying assignment for the formula

||s
(
%

)
t||base corresponds to a particular order where s

(
%

)
t holds.

We also assume a given encoding for partial orders (on tags), cf. [CLS08]. The function

||.||po maps partial order constraints of the form n1 ≥ n2 or n1 > n2 where n1 and n2

represent natural numbers (in some fixed number of bits) to corresponding propositional

formulas on the bit representations for the numbers.

For brevity, we only show the encoding for SCNP reduction pairs (%µ,L,�µ,L) where

µ = max. The encodings for the other cases are similar: The encoding for the min

comparison is completely analogous. To encode (dual) multiset comparison one can adapt

previous approaches to encode multiset orders [STA+07, Sch08, CGST12].

First, for each tuple symbol F of arity n, we introduce natural number variables denoted

tagFi for 1 ≤ i ≤ n. These encode the tags associated with the argument positions of F

by representing them in a fixed number of bits. In our case, it suffices to consider tag

values which are less than the sum of the arities of the tuple symbols. In this way, every

argument position of every tuple symbol could get a different tag, i.e., this suffices to

represent all possible level mappings.

Now consider a size-change graph corresponding to a DP δ = s → t with s =

F (s1, . . . , sn) and t = G(t1, . . . , tm). The edges of the size-change graph are determined

by the base order, which is not fixed. For any 1 ≤ i ≤ n and 1 ≤ j ≤ m, we define a

propositional formula weak δi,j which is true iff 〈s, tagFi 〉 %N 〈t, tagGj 〉. Similarly, strict δi,j is

true iff 〈s, tagFi 〉 �N 〈t, tagGj 〉. The definition of weak δi,j and strict δi,j corresponds directly

to Definition 6.13. It is based on the encodings ||.||base and ||.||po for the base order and

for the tags, respectively.

weak δi,j = ||si � tj||base ∨ (||si % tj||base ∧ ||tagFi ≥ tagGj ||po)
strict δi,j = ||si � tj||base ∨ (||si % tj||base ∧ ||tagFi > tagGj ||po)

To facilitate the search for level mappings, for each tuple symbol F of arity n we introduce

propositional variables regFi for 1 ≤ i ≤ n. Here, regFi is true iff the i-th argument position

of F is regarded for comparison. The formulas ||s %max,L t|| and ||s �max,L t|| then encode

6.6. Experiments 129

that the DP s→ t can be oriented weakly or strictly, respectively. By this encoding, one

can simultaneously search for a base order that gives rise to the edges in the size-change

graph and for a level mapping that satisfies this size-change graph.

||s %max,L t|| =
∧

1≤j≤m

(regGj →
∨

1≤i≤n

(regFi ∧ weak δi,j))

||s �max,L t|| =
∧

1≤j≤m

(regGj →
∨

1≤i≤n

(regFi ∧ strict δi,j)) ∧
∨

1≤i≤n

regFi

For any DP problem (P ,R)tt we can now generate a propositional formula which ensures

that the corresponding SCNP reduction pair orients all rules from R and P weakly and

at least one rule from P strictly:∧
l→r∈R

||l % r||base ∧
∧

s→t∈P

||s %max,L t|| ∧
∨

s→t∈P

||s �max,L t||

Similar to [CGST12, ZHM09], our approach is easily extended to refinements of the DP

method where one only regards the usable rules of R and where these usable rules can

also depend on the (explicit or implicit) argument filter of the order.

6.6 Experiments

We implemented our contributions in the automated termination prover AProVE [GST06].

To assess their impact, we compared three configurations of AProVE. In the first configu-

ration, we use SCNP reduction pairs in the reduction pair processor of the DP framework.

This configuration is parameterized by the choice whether we allow just max comparisons

of multisets or all four multiset extensions from Definition 6.15. Moreover, the configu-

ration is also parameterized by the choice whether we use classical size-change graphs or

extended size-change graphs as in [TG05]. In an extended size-change graph, to compare

s = F (s1, . . . , sn) with t = G(t1, . . . , tm), the source and target vertices {s1, . . . , sn} and

{t1, . . . , tm} are extended by additional vertices s and t, respectively. Now an edge from

s to tj indicates that the whole term s is greater (or equal) to tj, etc. So these additional

vertices also allow us to compare the whole terms s and t. By adding these vertices,

size-change termination incorporates the standard comparison of terms as well.

In the second configuration, we use the base orders directly in the reduction pair pro-

cessor (i.e., here we disregard SCNP reduction pairs). In the third configuration, we use

the implementation of the SCT method as described in [TG05]. For a fair comparison, we

updated this old implementation from the DP approach to the modular DP framework

and used SAT encodings for the base orders. (While this approach only uses the em-

bedding order and argument filters as the base order for the construction of size-change

graphs, it uses more complex orders (containing the base order) to weakly orient the rules

130 Chapter 6. Lazy Abstraction for Size-Change Termination

order SCNP fast SCNP max SCNP all reduction pairs SCT [TG05]
EMB proved 346 346 347 325 341

runtime 2882.6 3306.4 3628.5 2891.3 10065.4
LPO proved 500 530 527 505 385

runtime 3093.7 5985.5 7739.2 3698.4 10015.5
RPO proved 501 531 531 527 385

runtime 3222.2 6384.1 8118.0 4027.5 10053.4
POLO proved 477 514 514 511 378

runtime 3153.6 5273.6 7124.4 2941.7 9974.0

Figure 6.26: Comparison of SCNP reduction pairs to SCT and direct reduction pairs.

from the TRS.)

We considered all 1381 examples from the standard TRS category of the TPDB, version

7.0.2, as used in the International Termination Competition 2009. The experiments were

run on a 2.66 GHz Intel Core 2 Quad and we used a time limit of 60 seconds per example.

We applied SAT4J [LP10] to transform propositional formulas to conjunctive normal form

and the SAT solver MiniSAT2 [ES04] to check the satisfiability of the resulting formulas.

Figure 6.26 compares the power and runtimes of the three configurations depending

on the base order. The column “order” indicates the base order: embedding order with

argument filters (EMB), lexicographic path order with arbitrary permutations and argu-

ment filters (LPO), recursive path order with argument filters (RPO), and linear polyno-

mial interpretations with coefficients from {0, 1} (POLO). For the first configuration, we

used three different settings: full SCNP reduction pairs with extended size-change graphs

(“SCNP all”), SCNP reduction pairs restricted to max-comparisons with extended size-

change graphs (“SCNP max”), and SCNP reduction pairs restricted to max comparisons

and non-extended size-change graphs (“SCNP fast”). The second and third configuration

are called “reduction pairs” and “SCT [TG05]”, respectively. For each experiment, we

give the number of TRSs which could be proved terminating (“proved”) and the analysis

time in seconds for running AProVE on all 1381 TRSs (“runtime”). The “best” num-

bers are always printed in bold. For further details on the experiments, we refer to

http://aprove.informatik.rwth-aachen.de/eval/SCNP. The table allows the follow-

ing observations:

(1) Our SCNP reduction pairs are much more powerful and significantly faster than the

implementation of [TG05]. By integrating the search for the base order with SCNP, our

new implementation can use a much larger class of base orders and thus, SCNP reduction

pairs can prove significantly more examples. The reason for the relatively low speed of

[TG05] is that this approach iterates through argument filters and then generates and

analyzes size-change graphs for each of these argument filters. (So the low speed is not

due to the repeated composition of size-change graphs in the SCT criterion.)

(2) Our new implementation of SCNP reduction pairs is more powerful than using the re-

http://aprove.informatik.rwth-aachen.de/eval/SCNP

6.7. Summary and Outlook 131

duction pairs directly. Note that when using extended size-change graphs, every reduction

pair can be simulated by an SCNP reduction pair.

(3) SCNP reduction pairs add significant power when used for simple orders like EMB

and LPO. The difference is less dramatic for RPO and POLO. Intuitively, the reason is

that SCNP allows for multiset comparisons which are lacking in EMB and LPO, while

RPO contains multiset comparisons and POLO can often simulate them. Nevertheless,

SCNP also adds some power to RPO and POLO, e.g., by extending them by a concept like

“maximum”. This even holds for more powerful base orders like matrix orders [EWZ08]

(cf. Example 6.25).

6.7 Summary and Outlook

We show that the practically relevant part of size-change termination (SCNP) can be

formulated as a reduction pair. Thus, SCNP can be applied in the DP framework, which

is used in virtually all termination tools for term rewriting. The requirement that the DP

problem satisfies the tuple property is only a very small restriction in practice.

Moreover, by combining the search for the base order and for the SCNP level mapping

into one search problem, we can automatically find the right base order for constructing

size-change graphs. Thus, we now generate program abstractions automatically such that

termination of the abstracted programs can be shown.

The implementation in AProVE confirms the usefulness of our contribution. Our ex-

periments indicate that the automation of our technique is more powerful than both the

direct use of reduction pairs and the SCT adaptation from [TG05].

As part of the integration of SCNP into the DP framework, we develop the notion

of a tuple-typed DP problem and show that for most DP problems arising in practice

(i.e., those which satisfy the tuple property), a switch between untyped and tuple-typed

DP problems is transparently possible. The advantage is that termination techniques

can assume that certain undesired terms need not be considered for termination analysis.

This facilitates the adaption of termination techniques—such as SCNP—designed for

other formalisms into the DP framework.

One obvious direction of future research is to lift Theorem 6.20 from SCNP reduction

pairs to reduction pairs for full size-change termination. Here Lee’s result [Lee09] that also

full size-change termination can be expressed equivalently via a class of ranking functions

would be a good starting point. This line of research is probably interesting primarily from

a theoretical perspective, to get a deeper understanding of the relation between size-change

termination and the dependency pair framework. The reason is that following [BC08],

SCNP almost always suffices in practice instead of full size-change termination. Moreover,

the expressions for ranking functions corresponding to full size-change termination can be

exponentially large, which could render this approach prohibitive in practice.

132 Chapter 6. Lazy Abstraction for Size-Change Termination

Another possible line of research could have more direct applications. Codish, Lagoon,

and Stuckey [CLS05] present an extension of size-change termination from the classic

well-founded setting to the non-well-founded setting of the integers, called monotonicity

constraints. As with size-change termination, also here the decision problem if the ab-

straction of a program terminates according to the method is PSPACE-complete. In very

recent work [CGB+11], we identify a subset of this termination method called Monotonic-

ity Constraints in NP (MCNP) which is NP-complete. We present an automation by a

SAT encoding and show how to use MCNP for termination analysis of Java Bytecode

programs. However, for the MCNP setting the abstraction process is more involved, and

we perform termination analysis using the two-stage approach (i.e., in [CGB+11] we lift

[BC08] to the integer setting). We first compute a fixed abstraction and only afterwards

analyze if we can show termination with MCNP for this given abstraction. Here, it is not

as clear as for SCNP how to encode the search for an abstraction and the search for a

ranking function which implies termination into a single SAT instance.

7 SAT Encodings for Optimal XOR

Circuits

In the previous chapters, we have seen that SAT encodings can render even NP-complete

problems algorithmically feasible for many practical instances arising in automated termi-

nation analysis. One may wonder, though, if this effect is confined to termination analysis.

Moreover, the question is to what extent one can transfer methodology surrounding SAT-

based problem solving from termination analysis to other application domains. Building

on this line of thought, we have reached the hypothesis that there are indeed significant

synergies to be gained also for applications outside the area of termination analysis. In

this chapter, we put this hypothesis to the test and transfer methodology from automated

termination analysis to synthesis of optimal programs for a given specification. To get a

workable approach even with respect to the size of the resulting formula, such an approach

obviously requires severe restrictions on the class of programs in question to be feasible.

Here, we have opted for the class of linear straight-line programs over the Galois field

of two elements. Such programs are an equivalent representation of Boolean circuits that

consist only of XOR gates. Finding the shortest linear straight-line program for a given

set of linear forms is known to be MaxSNP-complete, i.e., there is no ε-approximation

scheme for the problem unless P = NP.

This chapter presents a non-approximative approach for finding the shortest linear

straight-line program. In other words, we show how to search for a circuit of XOR

gates with the minimal number of such gates. The approach is based on a reduction of

the associated decision problem (“Is there a program of length k?”) to satisfiability of

propositional logic. Using modern SAT solvers, optimal solutions to interesting problem

instances can be obtained.

Straight-line programs over the Galois field of two elements, often denoted GF(2), have

many practically relevant applications. The most prominent ones are probably in high

performance computing (inversion of sparse binary matrices), networking and storage

(error detection by checksumming), and encryption (hashing, symmetric ciphers).

In this chapter, we focus on linear straight-line programs over GF(2) with applications

in cryptography. The motivation behind this choice is that modern symmetric ciphers like

AES can be implemented by lookup tables and addition in GF(2). Multiplication and

addition in GF(2) correspond to the Boolean AND and XOR operations, respectively.

134 Chapter 7. SAT Encodings for Optimal XOR Circuits

In other words, we are looking at straight-line programs composed of array lookups and

sequences of XOR operations.

The goal of this chapter is, given a specification of a linear function from a number

of inputs to a number of outputs, to find the shortest linear straight-line program over

GF(2) that satisfies the specification. In other words, we show how to find a XOR circuit

with the minimal number of gates that connects inputs to outputs. Finding such shortest

programs is obviously interesting both for software and for hardware implementations of,

for example, the symmetric cipher Advanced Encryption Standard (AES) [Fed01].

While there are heuristic methods for finding short straight-line linear programs [BP10]

(see also [BP09] for the corresponding patent application), to the best of our knowledge,

there has not been any feasible method for finding an optimal solution prior to this work.

In this chapter, we present an approach based on reducing the associated decision problem

(“Is there a program of length k?”) to satisfiability of propositional logic. The reduction

is performed in a way that every model found by the SAT solver represents a solution.

Recent work [KKY09] has shown that reductions to satisfiability problems are a promising

approach for circuit synthesis. By restricting our attention to linear functions, we now

obtain a polynomial-size encoding.

The structure of this chapter is as follows. In Section 7.1, we formally introduce our

optimization problem and show how linear straight-line programs can be used to compute

a given set of linear forms. Section 7.2 presents a novel encoding for the associated decision

problem to SAT. Then, we discuss in Section 7.3 how to tackle our optimization problem

by reducing it to the associated decision problem using a customized search for k.

In Section 7.4 we present an empirical case study where we optimize an important

component of AES. To prove optimality of the solution found, the case study prompts us

to improve the performance of our encoding for the decision problem in the unsatisfiable

case, which ultimately allows us to achieve this optimality proof. We discuss different

approaches to achieve the needed improvements in Section 7.5. We conclude with a

summary of our contributions and an outlook to possible future work in Section 7.6.

7.1 Linear Straight-Line Programs

In this chapter, we assume that we have n inputs x1, . . . , xn and m outputs y1, . . . , ym.

Then the linear function to be computed can be specified by m equations of the following

7.1. Linear Straight-Line Programs 135

form:

y1 = a1,1 · x1 ⊕ a1,2 · x2 ⊕ . . .⊕ a1,n · xn
y2 = a2,1 · x1 ⊕ a2,2 · x2 ⊕ . . .⊕ a2,n · xn
. . .

ym = am,1 · x1 ⊕ am,2 · x2 ⊕ . . .⊕ am,n · xn

We call each equation a linear form. Note that each a`,j is a constant from GF(2) = {0, 1},
each xj is a variable over GF(2), and for the setting of this chapter “⊕” and “·” denote

standard addition and multiplication on GF(2), respectively. In this chapter, we always

assume that the linear forms are pairwise different.

Our goal is to come up with an algorithm that computes these linear forms given

x1, . . . , xn as inputs. More specifically, we would like to express this algorithm via a linear

straight-line program (or, for brevity, just program). Here, every line of the program has

the shape u := e · v ⊕ f · w with e, f ∈ GF(2) and v, w variables. Some lines of the

program will contain the output, i.e., assign the value of one of the desired linear forms to

a variable. The length of a program is the number of lines the program contains. Without

loss of generality, we perform write operations only to fresh variables, so no input is

overwritten and no intermediate variable is written to twice. A program is optimal if

there is no shorter program that computes the same linear forms.

Example 7.1. Consider the following linear forms:

y1 = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5

y2 = x1 ⊕ x2 ⊕ x3 ⊕ x4

y3 = x1 ⊕ x2 ⊕ x3 ⊕ x5

y4 = x3 ⊕ x4 ⊕ x5

y5 = x1 ⊕ x5

A shortest linear program for computing these linear forms has length 6. The following

linear program is an optimal solution for this example.

v1 = x1 ⊕ x5 [y5]

v2 = x2 ⊕ v1

v3 = x3 ⊕ v2 [y3]

v4 = x4 ⊕ v3 [y1]

v5 = x5 ⊕ v4 [y2]

v6 = v2 ⊕ v5 [y4]

It is easy to check that for each output y` there is a variable vi that contains the linear

form for y`. In the above program, this mapping from intermediate variables to outputs

136 Chapter 7. SAT Encodings for Optimal XOR Circuits

is given by annotating the program lines with the associated output in square brackets.

Note that finding the shortest program over GF(2) is not an instance of the common

subexpression elimination problem known from program optimization. The above shortest

program makes extensive use of cancellation, i.e., of the fact that for all x in GF(2), we

have x ⊕ x = 0. For example, the output y4 is computed by adding v2 and v5. These

two variables are described by the linear forms x1 ⊕ x2 ⊕ x3 ⊕ x4 and x1 ⊕ x2 ⊕ x5,

respectively. By adding these two linear forms, we obtain the desired x3 ⊕ x4 ⊕ x5 since

x1 ⊕ x1 ⊕ x2 ⊕ x2 = 0 for all values of x1 and x2. Without cancellations, a shortest linear

straight-line program has length 8, i.e., it uses 25% more XOR gates.

The goal that we are now pursuing in this chapter is to synthesize an optimal linear

straight-line program for a given set of linear forms both automatically and efficiently.

Formally, this problem can be described as follows:

Given n variables x1, . . . , xn over GF(2) and m linear forms y` = a`,1 · x1 ⊕
. . .⊕ a`,n · xn, find the shortest linear program that computes all y`.

Note that here we are aiming at a (provably) optimal solution. This is opposed to allowing

approximations with more lines than actually necessary, which is the previous state of the

art [BMP08].

As a step towards solving this optimization problem, first let us consider the corre-

sponding decision problem:

Given n variables x1, . . . , xn over GF(2), m linear forms y` = a`,1 · x1 ⊕ . . .⊕
a`,n · xn and a natural number k, decide if there exists a linear program of

length k that computes all y`.

In [BMP08], Boyar, Matthews, and Peralta show that this problem is NP-complete. Of

course, if the answer to this question is “Yes”, we do not only wish to get this answer,

but we would also like to obtain a corresponding program of length (at most) k. In line

i, the variable vi is defined as the sum of two other variables. Here, one may read from

the variables x1, . . . , xn and also from the intermediate variables v1, . . . , vj with j < i, i.e.,

from those intermediate variables that have been defined before.

The general idea for our approach to obtaining an answer to this question makes use of

a concept that surfaces several times in the present thesis (cf., e.g., Definition 2.20): We

give a parametric program (i.e., in the program we do not have the concrete coefficients

0 or 1, but we have parametric coefficients over GF(2) in the form of Boolean variables)

and formulate constraints over these parametric coefficients to ensure that only valid

solutions are found, i.e., that the resulting instantiation of the parameters yields a concrete

program that actually implements the given specification. So the ith line of a parametric

program has the shape vi = bi,1 · x1 ⊕ . . . ⊕ bi,n · xn ⊕ ci,1 · v1 ⊕ . . . ⊕ ci,i−1 · vi−1 where

bi,1, . . . , bi,n, ci,1, . . . , ci,i−1 are Boolean variables.

7.1. Linear Straight-Line Programs 137

Thus, although at first glance automated termination analysis and program synthesis

might not appear to be closely related topics, it turns out that these areas quite conve-

niently allow for a transfer of methodology.

To facilitate the description of our encoding in the following section, we reformulate the

problem via matrices over GF(2). Here, given a natural number k, we represent the given

coefficients of the m linear forms over n inputs with y` = a`,1 ·x1⊕ a`,2 ·x2⊕ . . .⊕ a`,n ·xn
(1 ≤ ` ≤ m) as rows of an m× n-matrix A. The `-th row thus consists of the entries

a`,1a`,2 . . . a`,n from GF(2).

Likewise, we can also express the resulting program via two matrices:

• A matrix B = (bi,j)k×n over GF(2), where bi,j = 1 iff in line i of the program the

input variable xj is read.

• A matrix C = (ck,k)k×k over GF(2) where ci,j = 1 iff in line i of the program the

intermediate variable vj is read.

To represent for example the program line v3 = x3 ⊕ v2 from Example 7.1, all b3,j

except for b3,3 and all c3,j except for c3,2 have to be 0. Thus, the third row in B is(
0 0 1 0 0

)
while in C it is

(
0 1 0 0 0 0

)
.

Now, for the matrices B and C to actually represent a legal linear straight-line program,

for any row i there must be exactly two non-zero entries in the combined i-th row of B

and C. That is, the vector
(
bi,1 . . . bi,n ci,1 . . . ci,k

)
must contain exactly two 1s.

Furthermore, for the represented program to actually compute our linear forms, we

have to demand that for each desired output y`, there is a line i in the program (and

the matrices) such that vi = y` where y` = a`,1 · x1 ⊕ . . . ⊕ a`,n · xn and vi = bi,1 ·
x1 ⊕ . . . ⊕ bi,n · xn ⊕ ci,1 · v1 ⊕ . . . ⊕ ci,i−1 · vi−1. Note that for C we only use the lower

triangular matrix, as a program may only read intermediate values that have already been

written. To represent the mapping of intermediate variables to outputs, we use a function

f : {1, . . . ,m} 7→ {1, . . . , k}.

Example 7.2. Consider again the linear forms from Example 7.1. They are represented

by the following matrix A.

A =

1 1 1 1 1

1 1 1 1 0

1 1 1 0 1

0 0 1 1 1

1 0 0 0 1

138 Chapter 7. SAT Encodings for Optimal XOR Circuits

Likewise, the program is represented by the matrices B and C and the function f .

B =

1 0 0 0 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

C =

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 1 0 0 1 0

f =

1 7→ 4

2 7→ 5

3 7→ 3

4 7→ 6

5 7→ 1

Obviously, all combined rows of B and C contain exactly two non-zero elements. Further-

more, by computing the vi and the y`, we can see that each of the linear forms described

by A is computed by the program represented by B and C.

As a side note, we remark that the specification need not be given by explicit lin-

ear forms, but it can also be given directly via an existing program together with the

information which of its program variables contain the desired linear forms.

In [Sch11], Peter Schneider-Kamp reports on a discussion following a guest talk he gave

at the University of Volgograd, Russia. One result of this discussion was the observation

that the following decision problem for program optimality is in Co-NP:

Given a program P of length k with the intermediate variables v1, . . . , vk

and with the n variables x1, . . . , xn over GF(2) as inputs and given also a

set F ⊆ {v1, . . . , vk}, decide if there do not exist a program P ′ of length

k′ < k with the variables v′1, . . . , v
′
k′ and a set F ′ with |F ′| = |F | such that the

variables v′j ∈ F ′ contain the linear forms given by the variables vi ∈ F in P .

So in this optimality problem, we are asking the question: Is a given program P com-

puting certain linear forms (given by the intermediate program variables in F) an optimal

program for these linear forms (w.r.t. program length)?

The proof idea is straightforward: The program P ′ and the set F ′ themselves are the

certificate for a “NO”-answer of this decision problem on an instance given by P and

F . The reason is that one can indeed check in polynomial time that k′ < k and that

the linear forms computed by P in F are equivalent to those computed by P ′ in F ′ (i.e.,

program equivalence is in the complexity class P for the class of programs considered in

this chapter). Thus, the problem is in Co-NP.

So one could also rephrase our decision problem

Given n variables x1, . . . , xn over GF(2), m linear forms y` = a`,1 · x1 ⊕ . . .⊕
a`,n · xn and a natural number k, decide if there exists a linear program of

length k that computes all y`.

as follows:

7.2. Encoding to Propositional Logic 139

Given a linear program P of length k + 1 with the intermediate variables

v1, . . . , vk+1 over the n variables x1, . . . , xn over GF(2) as inputs and a set

F ⊆ {v1, . . . , vk}, decide if there exists a linear program P ′ of length k with

the variables v′1, . . . , v
′
k and a set F ′ with |F ′| = |F | such that the variables

v′j ∈ F ′ contain the linear forms given by the variables vi ∈ F in P .

For the remainder of this chapter, however, we consider the specification to be given via

a set of linear forms y` = a`,1 · x1⊕ . . .⊕ a`,n · xn and a natural number k. Nonetheless, it

is interesting to note that one could also take a given program as an input and synthesize

an equivalent optimal program based on the input program.

7.2 Encoding to Propositional Logic

Now that the scenario has been set up and the matrix formulation has been introduced,

we start by giving a high-level encoding of the decision problem as a logical formula in

second order logic. Then we perform a stepwise refinement of that encoding where in

each step we eliminate some elements that cannot directly be expressed by satisfiability

of propositional logic.

For our first encoding, the carrier is the set of natural numbers, and we use predicates

over indices to represent the matrices A, B, and C as well as the vectors x, y, and v. We

also use a function f to map indices of outputs from y to indices of intermediate variables

from v. Finally, we make use of cardinality constraints by predicates exactlyk that take a

list of variables and check that the number of variables that are assigned 1 is exactly k.

First, we need to ensure that B and C represent a legal linear straight-line program.

This is encoded by the following formula α1:

α1 =
∧

1≤i≤k

exactly2(B(i, 1), . . . , B(i, n), C(i, 1), . . . , C(i, i− 1))

Second, we demand that the values for the intermediate variables from v are computed

by using the values from B and C:

α2 =
∧

1≤i≤k

(
v(i) ↔

⊕
1≤j≤n

B(i, j) ∧ x(j) ⊕
⊕

1≤p<i

C(i, p) ∧ v(p)

)

Third, we ensure that the value of the intermediate variable determined by f for the `-th

output actually takes the same value as the `-th linear form:

α3(`) = v(f(`))↔
⊕

1≤j≤n

A(`, j) ∧ x(j)

Here, v(f(`)) denotes the intermediate variable which stores the result of the linear form

140 Chapter 7. SAT Encodings for Optimal XOR Circuits

y(`). In other words, the (existentially quantified) function f maps the index ` of the

linear form y` to the index i = f(`) of the variable vi in the vector v that contains the

result of y`.

Now we can give our first encoding by the following formula α:

α = ∃B.∃C.∃f.∀x.∃v. α1 ∧ α2 ∧
∧

1≤`≤m

α3(`)

Note that we indeed use the expressivity of second order logic as all our quantifications

are over predicates and functions. Fortunately, all these only need to be defined on finite

domains. In order not to have to deal with quantification over predicates representing

matrices and vectors, we can just introduce a finite number of Boolean variables to rep-

resent the elements of the matrices and vectors and work on these directly. For example,

for the k × n matrix B we introduce the k · n Boolean variables b1,1 . . . , bk,n.

Similarly, for the function f we introduce m · k Boolean variables f`,i that denote that

the `-th linear form is computed by the i-th intermediate variable. This encoding is a

variation of the encoding for permutations introduced by [STA+07, CGST12] for encoding

the search for a recursive path order in termination analysis.75 To make sure that these

variables actually represent a function, we need to encode well-definedness: for each `

there must be exactly one i with f`,i.

We obtain the refined overall constraint β, which is a formula from QBF:

β1 =
∧

1≤i≤k

exactly2(bi,1, . . . , bi,n, ci,1, . . . , ci,i−1)

β2 =
∧

1≤i≤k

(
vi ↔

⊕
1≤j≤n

bi,j ∧ xj ⊕
⊕

1≤p<i

ci,p ∧ vp
)

β3(`) =
∧

1≤i≤k

(
f`,i →

(
vi ↔

⊕
1≤j≤n

a`,j ∧ xj
))

∧ exactly1(f`,1, . . . , f`,k)

β = ∃b1,1. . . .∃bk,n.∃c1,1. . . .∃ck,k.∃f1,1. . . .∃fm,k.∀x1. . . .∀xn.∃v1. . . .∃vk.
β1 ∧ β2 ∧

∧
1≤`≤m β3(`)

The above formula β is in prenex normal form and has a quantifier prefix of the shape

“∃+∀+∃+”. This precludes us from using a SAT solver on β directly. For this, we would

need to have a quantifier prefix of the shape “∃+” alone. Thus, unless we want to use a

QBF solver, we need to get rid of the “∀+∃+” suffix of the quantifier prefix of β. In other

words, we need to get rid of the quantifications over x1, . . . , xn and v1, . . . , vk.

We observe that β explicitly contains the computed values vi of the intermediate vari-

75This indicates that SAT encoding patterns transcend the concrete application domain of the problem
that is encoded. Here expertise obtained in the setting of termination analysis for term rewriting is
used for program synthesis.

7.2. Encoding to Propositional Logic 141

ables. We can eliminate them by unrolling the defining equations of an intermediate

variable vi to be expressed directly via x1, . . . , xn. In other words, we do not regard the

intermediate variables for “computing” the result of the linear forms y`, but we directly

use a closed expression that depends on the bi,j and the ci,p. Here, we introduce the

auxiliary formulas ϕ(i) for 1 ≤ i ≤ k whose truth value should correspond to the value

taken by the corresponding vi:

ϕ(i) = (
⊕

1≤j≤n

bi,j ∧ xj)⊕ (
⊕

1≤p<i

ci,p ∧ ϕ(p))

We now reformulate β to obtain a refined encoding γ. Note that we do not need to

redefine β1 and we do not need an equivalent of β2 as we unroll the definition of the vi

into γ3 using ϕ(i).

γ3(`) =
∧

1≤i≤k

(
f`,i →

(
ϕ(i)↔

⊕
1≤j≤n

a`,j ∧ xj
))

∧ exactly1(f`,1, . . . , f`,k)

γ = ∃b1,1. . . .∃bk,n.∃c1,1. . . .∃ck,k.∃f1,1. . . .∃fm,k.∀x1. . . .∀xn.β1∧
∧

1≤`≤m γ3(`)

Note that it looks as though for each i we had obtained many redundant copies of the

subformulas ϕ(i), which would entail a blow-up in formula size. However, in practical

implementations it is beneficial to represent propositional formulas not as trees, but as

directed acyclic graphs with sharing of common subformulas. This technique is also known

as structural hashing [ES06]. As discussed in Chapter 5, we perform standard Boolean

simplifications (e.g., ϕ ∧ 1 = ϕ), we share applications of Boolean connectives modulo

commutativity and idempotence (where applicable), and we use varyadic “∧” and “∨”.

In contrast, the connectives “↔” and “⊕” are binary and associate to the left.

Nevertheless, we still have universal quantification over the inputs as part of our encod-

ing. This states that regardless of the input values for x1, . . . , xn, our program should yield

the correct result. Fortunately, we can now benefit from linearity of the operation “⊕” on

GF(2), which means that the absolute positiveness criterion for polynomials [HJ98] (cf.

Theorem 2.18), which is commonly used in automated termination provers using poly-

nomial interpretations ([Lan79, CMTU05], cf. Section 2.3), is not only sound, but also

complete (cf. Corollary 2.19). Essentially, the idea is that two linear forms compute the

same function iff their coefficients are identical. In this way, we can now drop the inputs

x1, . . . , xn.

For 1 ≤ j ≤ n and 1 ≤ i ≤ k, we introduce the auxiliary formulas ψ(j, i), which should

denote the dependence of the value for vi with respect to xj (i.e., whether the value of vi

142 Chapter 7. SAT Encodings for Optimal XOR Circuits

toggles if xj changes or not):

ψ(j, i) = bi,j ⊕
⊕

1≤p<i

ci,p ∧ ψ(j, p)

We finally get an encoding δ in prenex normal form that can be used as input for a SAT

solver (by dropping explicit existential quantification, encoding cardinality constraints

using [CLS08, ANOR09], and performing Tseitin’s transformation [Tse68]).

δ3(`) =
∧

1≤i≤k

(
f`,i →

∧
1≤j≤n

(ψ(j, i)↔ a`,j)

)
∧ exactly1(f`,1, . . . , f`,k)

δ = ∃b1,1. . . .∃bk,n.∃c1,1.∃ck,k.∃f1,1. . . .∃fm,k. β1 ∧
∧

1≤`≤m

δ3(`)

For the implementation of δ we used the same setting as in the previous chapters of

this thesis, i.e., we employed the SAT framework in the verification environment AProVE

[GST06] and the Tseitin implementation from SAT4J [LP10].

Size of the Encoding

Given a decision problem with an m× n matrix and a natural number k (where w.l.o.g.

m ≤ k holds since for m > k, we could just set δ = 0), our encoding δ has size O(n · k2)

if the cardinality constraints are encoded in space linear in the number of arguments

[CLS08]. To see this, consider the following size estimation for δ where due to the use of

structural hashing we can look at δ3 and ψ separately.

|δ| = O(k · n+ k · k +m · k + |β1|+m · |δ3|+ n · k · |ψ|)

For β1 and δ3 we obtain the following estimations where g is a function describing the

size of the cardinality constraint:

|β1| = O(k · g(n+ k)) |δ3| = O(k · n+ g(k))

For ψ we immediately obtain the size estimation |ψ| = O(k). Now, we can simplify the

estimation for δ by using m ≤ k:

|δ| = O(k · n+ k · k +m · k + k · g(n+ k) +m · (k · n+ g(k)) + n · k · k)

= O(n · k2 + k · g(n+ k) +m · g(k))

7.2. Encoding to Propositional Logic 143

Tuning the Encoding

The models of the encoding δ from this section are all linear straight-line programs of

length k that compute the m linear forms y1, . . . , ym. The programs can be decoded from

a satisfying assignment of the propositional formula by simply reconstructing the matrices

B and C.

In this chapter, we are interested in finding short programs. Thus, we can exclude many

programs that perform redundant computations. We do so by adding further conjuncts

that exclude those undesired programs. While we change the set of models, note that we

do not change the satisfiability of the decision problem. That is, if there is a program

that computes the given linear forms in k steps, we will find one which does not perform

these kinds of redundant computation.

The first kind of redundant programs are programs that compute the same linear form

twice, i.e., there are two different intermediate variables that contain the same linear

form. We exclude such programs by demanding that for all distinct pairs of intermediate

variables vi and vp, there is also some xj that influences exactly one of the two variables:

∧
1≤i≤k

∧
1≤p<i

∨
1≤j≤n

(ψ(j, p)⊕ ψ(j, i))

The second kind of redundant programs are programs that compute the constant 0 or a

linear form just depending on the value of one input variable. To exclude such programs,

we add cardinality constraints stating that each compute linear form must depend on at

least two input variables.

∧
1≤i≤k

atLeast2(ψ(1, i), . . . , ψ(n, i))

In fact, statements that compute linear forms that only depend on two input variables

can be restricted not to use any other intermediate variables (as they could be computed

in one step from the inputs).

∨
1≤j<i

ci,j →
∧

1≤i≤k

atLeast3(ψ(1, i), . . . , ψ(n, i))

Apart from disallowing redundant programs, we additionally include implied conjuncts

to further constrain the search space. In this way, the SAT solver becomes more efficient

as unit propagation can be employed in more situations.

As stated in Section 7.1, we require that the input does not contain duplicate linear

forms. Consequently, we may require f to be injective, i.e., any intermediate variable

covers at most one linear form.

144 Chapter 7. SAT Encodings for Optimal XOR Circuits

∧
1≤i≤k

atMost1(f1,i, . . . , fm,i)

Often, CDCL-based SAT solvers are not very good at solving the pigeonhole problem.

Additional constraints facilitate better unit propagation in these cases. Since f maps

from {1, . . . ,m} to {1, . . . , k}, only at most k of the f`,i may become true.

atMostk(f1,1, . . . , fm,k)

Similarly, we can even state that at least m of the f`,i need to become true as we have to

compute all given (distinct) m linear forms.

atLeastm(f1,1, . . . , fm,k)

7.3 From Decision Problem to Optimization

A simple approach for solving an optimization problem given a decision procedure for the

associated decision problem is to search for the parameter to be optimized by repeatedly

calling the decision procedure.

In our case, for minimizing the length k of the synthesized linear straight-line program,

we start by observing that this minimal length must be at least the number of linear

forms. At the same time, if we compute each linear form separately, we obtain an upper

bound for the minimal length. More precisely, we know that the minimal length kmin is

in the closed interval from m to |A|1−m where | · |1 denotes the number of 1s in a matrix.

Without further heuristic knowledge about the typical length of shortest programs,

the obvious thing to do is to use a bisecting approach for refining the interval. That

is, one selects the middle element of the current interval and calls a decision procedure

based on our encoding from Section 7.2 for this parameter. If there is a model, the

interval is restricted to the lower half of the previous interval and we continue bisecting.

If there is no model and δ is unsatisfiable, the interval is restricted to the upper half of

the previous interval. When the interval becomes empty, the lower limit indicates the

minimal parameter kmin .

The above approach requires a logarithmic number of calls to the decision procedure,

approximately half of which will return the result “unsatisfiable”. This approach is very

efficient if we can assume that our decision procedure takes approximately the same time

for a positive answer as for a negative answer. As we will see in the case study of the

following section, though, for realistic problem instances the negative answers may require

orders of magnitude more time.

Thus, to minimize the number of calls to the decision procedure resulting in a negative

7.4. Case Study: Advanced Encryption Standard 145

answer, we propose the following algorithm for refining the length k.

(i) Start with k := |A|1 −m− 1.

(ii) Call the decision procedure with k.

(iii) If UNSAT, return k + 1 and exit.

(iv) If SAT, compute used length kused from B and C.

(v) Set k := kused − 1 and go to Step ii.

Here, the used length of a program is the number of variables that are needed directly or

indirectly to compute the m linear forms. For given matrices B and C and a function f ,

the set of used variables used is the least set such that:

• if f(`) = i, then vi ∈ used and

• if vi ∈ used and ci,j = 1, then vj ∈ used .

The used length can then be obtained as the cardinality of the set used .

This algorithm obviously only results in exactly one call to UNSAT—directly before

finding the minimal solution. The price we pay for this is that in the worst case we

have to call the decision procedure a linear number of times. In practice, though, for

k > kmin , there are many solutions and the solution returned by the SAT solver typically

has kused < k. Consequently, at the beginning the algorithm typically approaches kmin in

rather large steps.

While it seems natural to use MaxSAT for our optimization problem instead of calling

the SAT solver repeatedly, the decision problems close to the optimum are already so

hard that solving these as part of a larger instance seems infeasible.

7.4 Case Study: Advanced Encryption Standard

As mentioned in the introduction, a major motivation for our work is the minimization

of circuits for implementing cryptographic algorithms. In this section, we study how

our contributions can be applied to optimize an important component of the Advanced

Encryption Standard (AES) [Fed01].

The AES algorithm consists of the (repeated) application of four steps. The main step

for introducing non-linearity is the SubBytes step that is based on a so-called S-box. This

S-box is a transformation based on multiplicative inverses in GF(28) combined with an

invertible affine transformation. This step can be decomposed into two linear parts and

a minimal non-linear part.

146 Chapter 7. SAT Encodings for Optimal XOR Circuits

For our case study, we consider the first of the linear parts (called the “top matrix” in

[BP10]) which is represented by the following 21× 8 matrix A:

A =

0BBB@

0 1 1 0 0 0 0 1

1 1 1 0 0 0 0 1

1 1 1 0 0 1 1 1

0 1 1 1 0 0 0 1

0 1 1 0 0 0 1 1

1 0 0 1 1 0 1 1

0 1 0 0 1 1 1 1

1 0 0 0 0 1 0 0

1 0 0 1 0 0 0 0

1 1 1 1 1 0 1 0

0 1 0 0 1 1 1 0

1 0 0 1 0 1 1 0

1 0 0 0 0 0 1 0

0 0 0 1 0 1 0 0

1 0 0 1 1 0 1 0

0 0 1 0 1 1 1 0

1 0 1 1 0 1 0 0

1 0 1 0 1 1 1 0

0 1 1 1 1 1 1 0

1 1 0 1 1 1 1 0

1 0 1 0 1 1 0 0

1CCCA

The following matrices B and C represent a solution with length k = 23. This solution

was found in less than one minute using our decision procedure from Section 7.2 with

MiniSAT v2.1 as back-end on a 2.67 GHz Intel Core i7.

B =

0BB@

0 0 1 0 0 0 0 1

1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 1 0

1 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1CCA

7.4. Case Study: Advanced Encryption Standard 147

C =

0BB@

0 0

0 0

0 1 0

0 0 1 0

1 0

0 0

0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

1CCA

This is also the length of the previously shortest known linear straight-line program

for the linear forms described by the matrix A, which has length k = 23 as well [BP10].

This shows that our SAT-based optimization method is able to find very good solutions

in reasonable time. The UNSAT case is harder, though. For k = 20 (which is trivially

unsatisfiable due to the pigeonhole problem), without the tunings from Section 7.2 we

cannot show unsatisfiability within 4 days. But with the tunings enabled we can show

unsatisfiability in less than one second.

Unfortunately, showing the conjecture kmin = 23 via the unsatisfiability for k = 22

proves to be much more challenging. Indeed, we have run many different SAT solvers

(including but not limited to glucose, ManySat, MiniSAT, MiraXT with 8 threads, OKsolver,

PicoSAT, PrecoSAT, RSat, SAT4J) on the CNF file for this instance of our decision problem.

Some of the more promising solvers for this instance were run for more than 40 days

without returning either SAT or UNSAT.

In this effort to prove unsatisfiability of this hard SAT instance, we have also asked

for and received a lot of support and good advice from the SAT community (see the

Acknowledgments at the end of this chapter). Still, the unsatisfiability of this instance

remained a conjecture for several months, even though pre-processing techniques can

reduce the number of variables of this instance from more than 45000 to less than 5000

in a matter of minutes.76

Thanks to a pointer at the SAT ’10 conference, we invoked version 2.5.1 of the SAT

solver cryptominisat [SNC09] on this challenging instance. Using cryptominisat, we finally

76The reader is cordially invited to try his favorite SAT solver on one of the instances available from:
http://aprove.informatik.rwth-aachen.de/eval/slp.zip

http://aprove.informatik.rwth-aachen.de/eval/slp.zip

148 Chapter 7. SAT Encodings for Optimal XOR Circuits

succeeded in showing unsatisfiability of this instance within less than 106 hours on an

Opteron 848 at 2.2 GHz. It is interesting to note that this SAT solver has been designed

specifically to extract encoded XOR operations and to treat them specially during the

k result time

8 UNSAT 0.4

9 UNSAT 0.5

10 UNSAT 1.2

11 UNSAT 5.0

12 UNSAT 76.8

13 SAT 1.0

14 SAT 3.4

15 SAT 2.8

16 SAT 1.5

17 SAT 4.3

18 SAT 2.7

19 SAT 2.5

20 SAT 3.0

21 SAT 3.0

22 SAT 3.5

23 SAT 3.6

24 SAT 5.5

25 SAT 5.9

solving process. The motivation for doing so is that XOR opera-

tions are often used within cryptographic ciphers.

In [HJN11], Hyvärinen, Junttila and Niemelä report on the

fastest wall-time proof known for this instance to date, found

using a grid-based parallel approach in approx. 45 hours.77

To analyze how difficult these problems really are, we consider

a small subset of the linear forms to be computed for the top

matrix. The table to the right shows how the runtimes in seconds

of the SAT solver are affected by the choice of k for the case that

we consider only the first 8 out of 21 linear forms from A. In

order to keep runtimes manageable we already incorporated the

symmetry breaking improvement described in Section 7.5. Note

that unsatisfiability for k = 12 is still much harder to show than

satisfiability for kmin = 13.

To conclude this case study, we see that while finding (poten-

tially) minimal solutions is obviously feasible, proving their opti-

mality (i.e., unsatisfiability of the associated decision problem for

k = kmin − 1) is challenging. This observation confirms observa-

tions made in [KKY09]. In the following section we present some

of our attempts to improve the efficiency of our encoding for the

UNSAT case.

7.5 Handling the UNSAT Case

Satisfiability of propositional logic is an NP-complete problem and, thus, we can expect

that at least some instances are computationally expensive. While SAT solvers have

proven to be a Swiss army knife for solving practically relevant instances of many different

NP-complete problems, our kind of program synthesis problems seems to be a major

challenge for today’s SAT solvers even on instances with “just” 1500 variables.

In this section we discuss three different approaches based on unary SAT encodings, on

77Since this case study provides for SAT instances which are at the same time relatively small, surprisingly
hard to solve, and at the same time stem from a practically highly relevant application, we submitted
several instances for different program lengths for the AES top matrix as benchmarks to the SAT
competition 2011, cf. http://www.satcompetition.org/. Moreover, [BP10] presents a counterpart
to the top matrix, viz. the “bottom matrix”, which gives the linear forms of the second linear part
used by [BP10] for the implementation of the AES S-box. This matrix contains 8 linear forms over 18
variables, and the resulting SAT instances turn out to be even harder for modern SAT solvers than
those from the top matrix.

http://www.satcompetition.org/

7.5. Handling the UNSAT Case 149

Pseudo-Boolean satisfiability, and on symmetry breaking.

Unary encodings

As remarked by [GLP06], encoding arithmetic in unary representation instead of the more

common binary (CPU-like) representation can be very beneficial for the performance of

modern CDCL-based [MLM09] SAT solvers on the resulting instances. This observation

is confirmed by our work presented in Chapter 5. One possible approach could be to

encode the computations not via XOR on GF(2), but rather in unary representation on N
with a deferred parity check (i.e., first compute the value of the variables in the program

using addition on N instead of GF(2), and perform the check whether the number is even

or odd only when needed). Unfortunately, this approach turned out to be prohibitively

expensive as the (integer) values for the i-th line are bounded only by O(fib(i)) where fib

is the Fibonacci function.

Encoding to Pseudo-Boolean Constraints

In addition to optimizing and tuning our encoding to SAT, we also implemented a straight-

forward encoding to Pseudo-Boolean constraints. The hope was that, e.g., cutting plane

approaches could be useful for showing unsatisfiability.

We experimented with MiniSAT+, Pueblo, SAT4J, and SCIP but were not able to obtain

any improvements for, e.g., the first 8 linear forms of the top matrix.

Symmetry Breaking

In general, having many solutions is considered good for SAT instances as the SAT solver

is more likely to “stumble” upon one of them. For UNSAT instances, though, having

many potential solutions usually means that the search space to exhaust is very large.

One of the main reasons for having many solutions is symmetry. For example, it does

not matter if we first compute v1 = x1 ⊕ x2 and then v2 = x3 ⊕ x4 or the other way

around. Limiting these kinds of symmetries can be expected to significantly reduce the

runtimes for UNSAT instances.

In our concrete setting, being able to reorder independent program lines is one of the

major sources of symmetry. Two outputs in a straight-line programs are said to be

independent if neither of them depends on the other (directly through the matrix C or

indirectly).

Now, the idea for breaking symmetry is to impose an order on these lines: the line

which computes the “smaller” linear form (w.r.t. a total order on linear forms, which can,

e.g., be obtained by lexicographic comparison of the coefficient vectors) must occur before

the line which computes the greater linear form.

150 Chapter 7. SAT Encodings for Optimal XOR Circuits

We can encode the direct dependence of vi on vp:∧
1≤i≤k

∧
1≤p<i

c(i, p)→ dep(i, p)

Likewise, the indirect dependence of vi on vp can be encoded by transitivity:∧
1≤i≤k

∧
1≤p<i

∧
p<q<i

c(i, q) ∧ dep(q, p)→ dep(i, p)

We also need to encode the reverse direction, i.e.:

∧
1≤i≤k

∧
1≤p<i

(
dep(i, p)→

(
c(i, p) ∨

∨
p<q<i

(c(i, q) ∧ dep(q, p))
))

Now we can enforce that for i > p, the output vi depends on the output vp or vi encodes

a greater linear form than vp:∧
1≤i≤k

∧
1≤p<i

(dep(i, p) ∨ [ψ(1, i), . . . , ψ(n, i)] >lex [ψ(1, p), . . . , ψ(n, p)])

Here lexicographic comparison of formula tuples is encoded in the usual way (see for

example the encodings given in the papers [FGM+07, CLS08], which deal with SAT

encodings for automated termination analysis).

While this approach eliminates some otherwise valid solutions of length k and thus

reduces the set of admissible solutions, obviously there is at least one solution of length

k which satisfies our constraints whenever solutions of length k exist at all. This way,

we greatly reduce the search space by breaking symmetries that are not relevant for the

result, but may slow down the search considerably.

Consider again the restriction of our S-box top matrix to the first 8 linear forms. With

symmetry breaking, we can show unsatisfiability for the “hard” case k = 12 in 76.8

seconds. In contrast, without symmetry breaking, we cannot show unsatisfiability within

4 days.

7.6 Summary and Outlook

In this chapter we have shown how shortest linear straight-line programs for given linear

forms (or equivalently, XOR-circuits with a minimal number of gates) can be synthesized

using SAT solvers. We have given a formalization of this problem in Section 7.1. To this

end, in Section 7.2 we have presented a novel polynomial-size encoding of the associated

decision problem to SAT and a customized white-box method for again turning this

decision procedure into an optimization algorithm. Our approach is based on methodology

7.6. Summary and Outlook 151

from constraint-based automated termination analysis such as the parametric approach

from [CMTU05] to modeling the problem and on SAT encoding patterns for subproblems

that arise in diverse applications.

In Section 7.4, we have evaluated the feasibility of this approach by a case study where

we minimize an important part of the S-box for the Advanced Encryption Standard. This

study shows that our SAT-based approach is indeed able to synthesize shortest-known

programs for realistic problem settings within reasonable time.

Proving the optimality of the programs found by showing unsatisfiability of the asso-

ciated decision problem leads to very challenging SAT problems. To improve the perfor-

mance for the UNSAT case, in Section 7.5 we have discussed three approaches based on

unary encodings, on a port to Pseudo-Boolean satisfiability, and on symmetry breaking.

We have shown that symmetry breaking significantly reduces runtimes in the UNSAT

case. This way, we have managed to obtained an optimality proof for our case study via

the SAT solver cryptominisat, which has in the mean time been confirmed independently

by [HJN11].

As direct future work, one could of course apply our method to other problems from

cryptography. Apart from that, also further enhancements and variations of the encoding

seem possible. In 2010, Michael Codish and Olaf Owe independently suggested an encod-

ing where the lines of the parametric program do not reflect the order of the instructions,

but rather the order of the desired linear forms. This way, one would not need the explicit

mapping from linear forms to variables holding their values anymore. Also a different rep-

resentation of this mapping, e.g., using order encoding [CB94, TTKB09] would be worth

investigating. Moreover, Harald Zankl suggested encoding the problem to SMT-LIA. In-

deed, via our description of the problem on a high level of abstraction in Section 7.2, one

can easily port the concrete formulation of the problem from propositional logic to other

formalisms. For instance, in [Ban10], Mutsunori Banbara reports on his implementation

of the encoding in the input language of the CSP solver Sugar [TTKB09] based on our

description of the encoding in [FS10].

One could also extend the encoding to optimize with respect to further properties. For

instance, for digital circuits, not only their size, but also their depth is an important

measure of optimality. The reason is that in physical systems, circuit depth directly

affects the total runtime of a signal from the circuit input to its output. This in turn

determines the possible clock rate for the circuit as part of a greater system. Therefore, it

is not only desirable to obtain circuits with few gates, but the resulting circuits should at

the same time also have a small depth. Thus, it is not surprising that (using incomplete

methods) [BP11] addresses the challenge of searching for XOR circuits with a minimal

gate count for a given maximal depth. Lifting the complete SAT-based approach of this

chapter to this refined setting would thus provide an interesting extension of the present

work.

152 Chapter 7. SAT Encodings for Optimal XOR Circuits

Finally, another direction of work could be to specialize existing SAT solvers to further

improve performance in the UNSAT case.

Acknowledgments

Regarding this chapter, our sincere thanks go to Erika Ábrahám, Daniel Le Berre, Armin

Biere, Youssef Hamadi, Oliver Kullmann, Matthew Lewis, Lakhdar Säıs, and Laurent

Simon for input on and help with the experiments. Furthermore, we thank Joan Boyar

and René Peralta for providing us with information on their work and Michael Codish for

pointing out similarities to common subexpression elimination.

8 Conclusion

This thesis presents several contributions to the state of the art of automated termination

analysis and circuit synthesis by means of SAT and SMT encodings. In Chapter 3, we

present a novel automation for polynomial interpretations with negative constants [HM07]

based on an encoding to SMT-NIA. This then allows us to select an arbitrary SMT solver

for quantifier-free NIA formulas, e.g., the one arising from our SAT encoding for SMT-

NIA in [FGM+07, Fuh07]. Moreover, we prove that given a set of term constraints, it

suffices to consider negative constants for only a subset of the function symbols. Using

these contributions, we obtain speedups by orders of magnitude for synthesis of this useful

class of orders.

In Chapter 4, we present max-polynomial interpretations, which allow to combine poly-

nomial interpretations by the max- and min-operations. This way, we obtain a very flex-

ible class of weakly monotone algebras. Moreover, we provide transformation rules that

lead to an SMT-NIA encoding for the search for suitable max-polynomial interpretations.

We point out a class of terms where an exponential blowup in constraint size occurs for a

structurally simple max-polynomial interpretation. Since additionally, it is not clear a pri-

ori which shape one should use for a parametric interpretation, for successful automation

we provide syntactic heuristics indicating for each function symbol which shape of max-

polynomial interpretations should be used. Moreover, we provide novel transformation

rules to alleviate the exponential blowup for certain cases. As our experiments indicate,

the integration of max-polynomial interpretations using the contributions of Chapter 4

increases the power of the termination tools AProVE and TTT2 notably. Finally, we also

provide experimental evidence that the approach presented in Chapter 3 is significantly

more suitable for polynomial interpretations with a negative constant than an approach

based on the setting of Chapter 4.

In Chapter 5, we give a novel SAT encoding for arctic interpretations, which are partic-

ularly useful, e.g., for string rewrite systems. This SAT encoding is based on a unary rep-

resentation of numbers via order encoding, which is beneficial for propagation in CDCL-

based SAT solvers. Our experiments with the implementation in AProVE indicate notable

improvements in practice over the encoding from [KW08, KW09], which is based on a bi-

nary representation of numbers. These improvements lead to a notable increase in power

for AProVE, which, according to our experiments, was most probably crucial in winning

the category SRS Standard of the Termination Competition in the years 2009 – 2011.

154 Chapter 8. Conclusion

Chapter 6 presents an adaption of SCNP [BC08], a sufficient and in practice “almost

complete” criterion for size-change termination [LJB01] to term rewriting. This adaption

via SCNP reduction pairs works very smoothly and requires only a very natural extension

of the DP framework [GTSF06] to support tuple typing for our correctness proof. This

extension is likely to be useful also for adaption of further termination techniques from

other formal settings. For automation, we contribute an extension of the SAT encoding

of [BC08] to allow for the automatic search for both the underlying base reduction pair

used to abstract to size-change graphs and for the size-change termination argument for

these size-change graphs. This way, for the first time we apply size-change termination

analysis in a setting where the abstraction is not fixed beforehand, but instead we search

for a suitable abstraction only when needed. We also provide and solve a challenge exam-

ple which highlights that SCNP can add, e.g., max-comparison on top of a class of base

reduction pairs that does not support such comparisons. Our experiments reveal signifi-

cant performance improvements over the previous integration of size-change termination

[TG05].

In Chapter 7 we show that the methods applied for termination proving in this the-

sis also carry over to the—at first glance rather distinct—application domain of circuit

synthesis. Given a specification, we automatically implement a Boolean function between

tuples of inputs and outputs which is solely composed of XOR operations (or equivalently,

a linear straight-line program over GF(2)). This class of circuits/programs frequently oc-

curs, e.g., as part of symmetric ciphers in cryptography. The goal is to minimize the

number of XOR gates used by the implementation. To attain these goals, we adapt the

parametric approach [CMTU05] from termination analysis used throughout this thesis.

To represent the needed constraints on the parameters, we propose a suitable SAT encod-

ing, which includes several optimizations to make the approach scale to practical instances

for the current generation of SAT solvers. To achieve this SAT encoding, we reuse ideas

and encoding patterns introduced for termination analysis. We conduct a case study

to implement an important part of the Advanced Encryption Standard following [BP10],

which shows that we can indeed obtain optimal implementations quickly and prove their

optimality within reasonable time also for highly practical examples.

Future Work

While this thesis already provides several advances for the state of the art of termination

proving and circuit synthesis, of course there are still further possibilities for future re-

search. In addition to the possible directions for future work that we provide at the end

of the individual chapters, also improvements seem possible concerning the bigger overall

picture of SAT and SMT encodings and termination analysis.

One topic that still seems under-explored is the question which redundant constraints

155

one should add to a “minimal” problem encoding to facilitate the satisfiability check for

CDCL SAT solvers. For instance, in Chapter 7 we observe that adding redundant con-

straints (and thus increasing the size of the SAT instance) renders otherwise very hard SAT

instances from applications like AES feasible. The reason is that adding clauses before-

hand which otherwise would have to be learned by the SAT solver in a time-consuming

process can drastically reduce the time needed for the overall search. Obviously, the

question arises which additional redundant constraints can actually be helpful and which

constraints merely inflate the SAT instance without aiding in the search process. In gen-

eral, it takes a lot of expertise on SAT encodings and on the inner workings of the class

of SAT solvers used (such as CDCL solvers) to anticipate which additional redundant

constraints are going to speed up the search. Hence, automation is desirable in order

to make efficient SAT-based constraint solving also available to the non-expert user who

only wishes to describe the problem at hand without worrying about details of the search

process.

One possible approach to achieve this could be to analyze the clauses that are learned

in the solving process for related instances. Here one could, e.g., keep track of occur-

rences of those variables in learned clauses that arise directly from actual parameters

of the underlying higher-level constraint model, such as variables encoding parametric

coefficients as in Chapters 3 – 5, or variables encoding a mapping between finite sets

as in Chapter 7. Then one could for instance apply data mining algorithms to propose

candidates for (preferably small) clauses that are already entailed by the original SAT

problem. By correlation between different SAT instances where one marks the role of

variables, one could try to detect common patterns in the inferred clauses and lift them

from the concrete arising instances in a “minimal” encoding to the abstract setting of the

parameterized encoding.

Another point is that devising a SAT encoding entirely by hand as done in this thesis

can be a cumbersome and error-prone task because of all the details one has to pay

attention to on this low level of abstraction. Instead, it would be preferable to give a

specification of the desired constraints on a suitably high level of abstraction. Then one

could invoke a dedicated SAT compiler that generates an (optimized) SAT encoding for

these particular constraints. Steps in this direction have been done already. For instance,

in the paper [MJ10], Marić and Janičić present the tool URBiVA, which takes a checker

program for a solution candidate as an input and synthesizes a SAT or SMT encoding

based on this program. In [TTKB09], Tamura et al. present the dedicated SAT encoder

Sugar for linear finite constraint satisfaction problems which is based on order encoding

(cf. Chapter 5). Moreover, in [MCLS11], Metodi et al. present a tool that encodes a

constraint problem from a declarative description of the constraints in a generic language

to a SAT instance. Here, additionally information from the high-level description is used

to improve the quality of the resulting SAT encoding.

156 Chapter 8. Conclusion

Via such translators as part of the tool chain, the role of SAT encodings as a low-

level “assembly language” for constraint programming becomes even more pronounced.

While decades ago, it was customary for programmers to write hand-optimized assembly

programs, nowadays it has become commonplace to write programs in a higher-level

programming language. These are not executable as such, but they are processed further

by a compiler which applies optimizations and then generates the actual assembly code.

Likewise, also for constraint programming it is thus desirable to abstract from the low-

level implementation details via SAT compilers, This way, the constraint programmer can

focus purely on the problem statement, not on means of speeding up the solution process.

Finally, thanks to the modularity of encoding-based techniques, further improvements

can of course also be achieved via speedups in SAT and SMT solvers. Apart from improve-

ments to the solvers that are beneficial in general (e.g., more efficient data structures),

one can also try to perform optimizations for the class of SAT or SMT instances that

arises during termination analysis. For instance, for the SMT-NIA instances arising from

the search for polynomial orders, empirical evidence [FGM+07] shows that in practice, it

suffices to search for rather small coefficients. Thus, this class of instances would benefit

particularly if SMT-NIA solvers were optimized specifically to find satisfiability proofs for

small search spaces quickly.

On a broader scope for termination, it is interesting to remark that successful work on

termination analysis has been conducted by several scientific communities with distinct

background. Concretely, for instance the present thesis is set up with term rewriting as the

underlying model of computation, and a lot of work both on the theoretical foundations

and on automation has given rise to a number of strong termination tools for rewriting.

Likewise, also approaches based on software model checking and transition invariants have

been applied in significant research on automated termination analysis in recent years,

which has also led to several termination tools operating on imperative input languages,

e.g., Terminator [CPR06, CPR09] or Loopfrog [KST+09, TSWK11].

However, so far there has only been little cross-fertilization between these lines of re-

search which pursue the common goal of automated termination analysis, but are based

on different backgrounds. Thus, a possible direction for future research is to look for syn-

ergies between these distinct settings. For instance, it would be interesting to investigate

if there exist proof techniques which are successfully used in one of the settings, but are

unknown in the other. By adapting such techniques (in both directions), one may be able

to combine the strengths of both approaches and thus obtain a “best of both worlds”

setting. Another option could be a modular coupling of termination tools on the level of

subproblems. Here some parts of a termination problem would be solved by termination

analysis based on rewriting, and other parts would be dealt with by termination analysis

based on software model checking.

Bibliography

[AAC+08] Elvira Albert, Puri Arenas, Michael Codish, Samir Genaim, Germán Puebla,

and Damiano Zanardini. Termination analysis of Java Bytecode. In Proc. 10th

IFIP WG 6.1 International Conference on Formal Methods for Open Object-

Based Distributed Systems (FMOODS ’08), volume 5051 of LNAI, pages 2–18.

Springer, 2008.

[AAG+07] Elvira Albert, Puri Arenas, Samir Genaim, Germán Puebla, and Damiano

Zanardini. Cost analysis of Java Bytecode. In Proc. 16th European Symposium

on Programming (ESOP ’07), volume 4421 of LNCS, pages 157–172. Springer,

2007.

[Abe04] Andreas Abel. Termination checking with types. RAIRO - Theoretical Infor-

matics and Applications, 38(4):277–319, 2004.

[ACG+06] Elena Annov, Michael Codish, Jürgen Giesl, Peter Schneider-Kamp, and René

Thiemann. A SAT-based implementation for RPO termination. In Short

Papers of LPAR 2006, 2006.

[AEF+08] Beatriz Alarcón, Fabian Emmes, Carsten Fuhs, Jürgen Giesl, Raúl Gutiérrez,

Salvador Lucas, Peter Schneider-Kamp, and René Thiemann. Improving

context-sensitive dependency pairs. In Proc. 15th International Conference

on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR ’08),

volume 5330 of LNAI, pages 636–651. Springer, 2008.

[AEM11a] Martin Avanzini, Naohi Eguchi, and Georg Moser. A path order for rewrite

systems that compute exponential time functions. In Proc. 22nd International

Conference on Rewriting Techniques and Applications (RTA ’11), volume 10

of LIPIcs, pages 123–138. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,

2011.

[AEM11b] Martin Avanzini, Naohi Eguchi, and Georg Moser. A path order for rewrite

systems that compute exponential time functions (technical report). Comput-

ing Research Repository, abs/1010.1128, 2011.

[AG00] Thomas Arts and Jürgen Giesl. Termination of term rewriting using depen-

dency pairs. Theoretical Computer Science, 236(1-2):133–178, 2000.

158 Bibliography

[AG01] Thomas Arts and Jürgen Giesl. A collection of examples for termination

of term rewriting using dependency pairs. Technical Report AIB-2001-09,

RWTH Aachen, Germany, September 2001.

[ALN09] Beatriz Alarcón, Salvador Lucas, and Rafael Navarro-Marset. Proving termi-

nation with matrix interpretations over the reals. In Proc. 10th International

Workshop on Termination (WST ’09), pages 12–15, 2009.

[AM08] Martin Avanzini and Georg Moser. Complexity analysis by rewriting. In

Proc. 9th International Symposium on Functional and Logic Programming

(FLOPS ’08), volume 4989 of LNCS, pages 130–146. Springer, 2008.

[AM09] Martin Avanzini and Georg Moser. Dependency pairs and polynomial path

orders. In Proc. 20th International Conference on Rewriting Techniques and

Applications (RTA ’09), volume 5595 of LNCS, pages 48–62. Springer, 2009.

[Ama05] Roberto M. Amadio. Synthesis of max-plus quasi-interpretations. Funda-

menta Informaticae, 65(1–2):29–60, 2005.

[ANOR09] Roberto Aśın, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodŕıguez-

Carbonell. Cardinality networks and their applications. In Proc. 12th In-

ternational Conference on Theory and Applications of Satisfiability Testing

(SAT ’09), volume 5584 of LNCS, pages 167–180. Springer, 2009.

[Ava10] Martin Avanzini. POP∗ and semantic labeling using SAT. In Selected Papers

of Interfaces: Explorations in Logic, Language and Computation, ESSLLI

2008 and ESSLLI 2009 Student Sessions (ESSLLI ’08/09), volume 6211 of

LNAI, pages 155–166. Springer, 2010.

[Ave06] James Avery. Size-change termination and bound analysis. In Proc. 8th In-

ternational Symposium on Functional and Logic Programming (FLOPS ’06),

volume 3945 of LNCS, pages 192–207. Springer, 2006.

[AY09] Takahito Aoto and Toshiyuki Yamada. Argument filterings and usable rules

for simply typed dependency pairs. In Proc. 7th International Symposium on

Frontiers of Combining Systems (FroCoS ’09), volume 5749 of LNAI, pages

117–132. Springer, 2009.

[Ban10] Mutsunori Banbara. Personal communication, 2010.

[BC08] Amir M. Ben-Amram and Michael Codish. A SAT-based approach to size

change termination with global ranking functions. In Proc. 14th International

Conference on Tools and Algorithms for the Construction and Analysis of

Systems (TACAS ’08), volume 4963 of LNCS, pages 218–232. Springer, 2008.

Bibliography 159

[BCDO06] Josh Berdine, Byron Cook, Dino Distefano, and Peter W. O’Hearn. Automatic

termination proofs for programs with shape-shifting heaps. In Proc. 18th

International Conference on Computer Aided Verification (CAV ’06), volume

4144 of LNCS, pages 386–400. Springer, 2006.

[BCG+07] Maurice Bruynooghe, Michael Codish, John P. Gallagher, Samir Genaim, and

Wim Vanhoof. Termination analysis of logic programs through combination

of type-based norms. ACM Transactions on Programming Languages and

Systems, 29(2), 2007.

[BK11] Frédéric Blanqui and Adam Koprowski. CoLoR: a Coq library on well-founded

rewrite relations and its application to the automated verification of termi-

nation certificates. Mathematical Structures in Computer Science, 21(4):827–

859, 2011.

[BL87] Ahlem Ben Cherifa and Pierre Lescanne. Termination of rewriting systems

by polynomial interpretations and its implementation. Science of Computer

Programming, 9(2):137–159, 1987.

[BL07] Amir M. Ben-Amram and Chin Soon Lee. Program termination analysis in

polynomial time. ACM Transactions on Programming Languages and Sys-

tems, 29(1):1–37, 2007.

[BLN+09] Cristina Borralleras, Salvador Lucas, Rafael Navarro-Marset, Enric

Rodŕıguez-Carbonell, and Albert Rubio. Solving non-linear polynomial arith-

metic via SAT modulo linear arithmetic. In Proc. 22nd International Con-

ference on Automated Deduction (CADE ’09), volume 5663 of LNAI, pages

294–305. Springer, 2009.

[BLO+12] Cristina Borralleras, Salvador Lucas, Albert Oliveras, Enric Rodŕıguez-

Carbonell, and Albert Rubio. SAT modulo linear arithmetic for solving poly-

nomial constraints. Journal of Automated Reasoning, 48(1):107–131, 2012.

[BMP08] Joan Boyar, Philip Matthews, and René Peralta. On the shortest linear

straight-line program for computing linear forms. In Proc. 33rd International

Symposium on Mathematical Foundations of Computer Science (MFCS ’08),

volume 5162 of LNCS, pages 168–179. Springer, 2008.

[BMS05] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Termination of polyno-

mial programs. In Proc. 6th International Conference on Verification, Model

Checking, and Abstract Interpretation (VMCAI ’05), volume 3385 of LNCS,

pages 113–129. Springer, 2005.

160 Bibliography

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge

University Press, 1998.

[BOEG10] Marc Brockschmidt, Carsten Otto, Christian von Essen, and Jürgen Giesl.

Termination graphs for Java Bytecode. In Verification, Induction, Termination

Analysis, volume 6463 of LNAI, pages 17–37. Springer, 2010.

[BOG11] Marc Brockschmidt, Carsten Otto, and Jürgen Giesl. Modular termination

proofs of recursive Java Bytecode programs by term rewriting. In Proc.

22nd International Conference on Rewriting Techniques and Applications

(RTA ’11), volume 10 of LIPIcs, pages 155–170. Schloss Dagstuhl - Leibniz-

Zentrum fuer Informatik, 2011.

[BP09] Joan Boyar and René Peralta. A new technique for combinational circuit

optimization and a new circuit for the S-Box for AES. Patent Application

Number 61089998 filed with the U.S. Patent and Trademark Office, 2009.

[BP10] Joan Boyar and René Peralta. A new combinational logic minimization tech-

nique with applications to cryptology. In Proc. 9th International Symposium

on Experimental Algorithms (SEA ’10), volume 6049 of LNCS, pages 178–189.

Springer, 2010.

[BP11] Joan Boyar and René Peralta. A depth-16 circuit for the AES S-box. Technical

Report 2011/332, Cryptology ePrint Archive, 2011.

[BSOG12] Marc Brockschmidt, Thomas Ströder, Carsten Otto, and Jürgen Giesl. Au-

tomated detection of non-termination and NullPointerExceptions for Java

Bytecode. In Proc. 2nd International Conference on Formal Verification of

Object-Oriented Software (FoVeOOS ’11), volume 7421 of LNCS, pages 123–

141. Springer, 2012.

[CB94] James M. Crawford and Andrew B. Baker. Experimental results on the ap-

plication of satisfiability algorithms to scheduling problems. In Proc. 12th

National Conference on Artificial Intelligence (AAAI ’94), volume 2, pages

1092–1097. AAAI Press, 1994.

[CCF+07] Evelyne Contejean, Pierre Courtieu, Julien Forest, Olivier Pons, and Xavier

Urbain. Certification of automated termination proofs. In Proc. 6th Interna-

tional Symposium on Frontiers of Combining Systems (FroCoS ’07), volume

4720 of LNAI, pages 148–162. Springer, 2007.

[CCF+11] Evelyne Contejean, Pierre Courtieu, Julien Forest, Olivier Pons, and Xavier

Urbain. Automated certified proofs with CiME3. In Proc. 22nd International

Bibliography 161

Conference on Rewriting Techniques and Applications (RTA ’11), volume 10

of LIPIcs, pages 21–30. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,

2011.

[CD96] Philippe Codognet and Daniel Diaz. Compiling constraints in clp(FD). Jour-

nal of Logic Programming, 27(3):185–226, 1996.

[CFFS11] Michael Codish, Yoav Fekete, Carsten Fuhs, and Peter Schneider-Kamp. Op-

timal base encodings for pseudo-Boolean constraints. In Proc. 17th Interna-

tional Conference on Tools and Algorithms for the Construction and Analysis

of Systems (TACAS ’11), volume 6605 of LNCS, pages 189–204. Springer,

2011.

[CFGS10] Michael Codish, Carsten Fuhs, Jürgen Giesl, and Peter Schneider-Kamp. Lazy

abstraction for size-change termination. In Proc. 17th International Confer-

ence on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR

(Yogyakarta) ’10), volume 6397 of LNCS (ARCoSS), pages 217–232. Springer,

2010.

[CGB+11] Michael Codish, Igor Gonopolskiy, Amir Ben-Amram, Carsten Fuhs, and

Jürgen Giesl. SAT-based termination analysis using monotonicity constraints

over the integers. Theory and Practice of Logic Programming, Proc. 27th In-

ternational Conference on Logic Programming (ICLP ’11), 11(4–5):503–520,

2011.

[CGST12] Michael Codish, Jürgen Giesl, Peter Schneider-Kamp, and René Thiemann.

SAT solving for termination proofs with recursive path orders and dependency

pairs. Journal of Automated Reasoning, 49(1):53–93, 2012.

[CLS05] Michael Codish, Vitaly Lagoon, and Peter J. Stuckey. Testing for termina-

tion with monotonicity constraints. In Proc. 21st International Conference

on Logic Programming (ICLP ’05), volume 3668 of LNCS, pages 326–340.

Springer, 2005.

[CLS06] Michael Codish, Vitaly Lagoon, and Peter J. Stuckey. Solving partial order

constraints for LPO termination. In Proc. 17th International Conference on

Rewriting Techniques and Applications (RTA ’06), volume 4098 of LNCS,

pages 4–18. Springer, 2006.

[CLS08] Michael Codish, Vitaly Lagoon, and Peter J. Stuckey. Solving partial order

constraints for LPO termination. Journal on Satisfiability, Boolean Modelling

and Computation, 5:193–215, 2008.

162 Bibliography

[CLSS06] Michael Codish, Vitaly Lagoon, Peter Schachte, and Peter J. Stuckey. Size-

change termination analysis in k-bits. In Proc. 15th European Symposium on

Programming (ESOP ’06), volume 3924 of LNCS, pages 230–245. Springer,

2006.

[CMTU05] Evelyne Contejean, Claude Marché, Ana Paula Tomás, and Xavier Urbain.

Mechanically proving termination using polynomial interpretations. Journal

of Automated Reasoning, 34(4):325–363, 2005.

[Cod08] Michael Codish. Proving termination with (Boolean) satisfaction. In Proc.

17th International Symposium on Logic-Based Program Synthesis and Trans-

formation (LOPSTR ’07), volume 4915 of LNCS, pages 1–7. Springer, 2008.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In Proc.

3rd Annual ACM Symposium on Theory of Computing (STOC ’71), pages

151–158. ACM Press, 1971.

[Coq10] The Coq Development Team. The Coq proof assistant, reference manual,

version 8.3, 2010.

[CPR05] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Abstraction re-

finement for termination. In Proc. 12th International Symposium on Static

Analysis (SAS ’05), volume 3672 of LNCS, pages 87–101. Springer, 2005.

[CPR06] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Terminator: Be-

yond safety. In Proc. 18th International Conference on Computer Aided Ver-

ification (CAV ’06), volume 4144 of LNCS, pages 415–418. Springer, 2006.

[CPR09] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Summarization for

termination: no return! Formal Methods in System Design, 35(3):369–387,

2009.

[CPU+10] Evelyne Contejean, Andrey Paskevich, Xavier Urbain, Pierre Courtieu,

Olivier Pons, and Julien Forest. A3PAT, an approach for certified automated

termination proofs. In Proc. 17th ACM SIGPLAN Workshop on Partial Eval-

uation and Program Manipulation (PEPM ’10), pages 63–72. ACM Press,

2010.

[CS02] Michael Colón and Henny Sipma. Practical methods for proving program

termination. In Proc. 14th International Conference on Computer Aided Ver-

ification (CAV ’02), volume 2404 of LNCS, pages 442–454. Springer, 2002.

[CSL+06] Michael Codish, Peter Schneider-Kamp, Vitaly Lagoon, René Thiemann, and

Jürgen Giesl. SAT solving for argument filterings. In Proc. 13th International

Bibliography 163

Conference on Logic for Programming, Artificial Intelligence, and Reasoning

(LPAR ’06), volume 4246 of LNAI, pages 30–44. Springer, 2006.

[CT99] Michael Codish and Cohavit Taboch. A semantic basis for termination anal-

ysis of logic programs. Journal of Logic Programming, 41(1):103–123, 1999.

[DD94] Danny De Schreye and Stefaan Decorte. Termination of logic programs: The

never-ending story. Journal of Logic Programming, 19/20:199–260, 1994.

[Der79] Nachum Dershowitz. A note on simplification orderings. Information Pro-

cessing Letters, 9(5):212–215, 1979.

[Der82] Nachum Dershowitz. Orderings for term-rewriting systems. Theoretical Com-

puter Science, 17(3):279–301, 1982.

[Der87] Nachum Dershowitz. Termination of rewriting. Journal of Symbolic Compu-

tation, 3(1–2):69–115, 1987.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program

for theorem-proving. Communications of the ACM, 5(7):394–397, 1962.

[DM79] Nachum Dershowitz and Zohar Manna. Proving termination with multiset

orderings. Communications of the ACM, 22(8):465–476, 1979.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification

theory. Journal of the ACM, 7(3):201–215, 1960.

[ES04] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Proc. 6th

International Conference on Theory and Applications of Satisfiability Testing

(SAT ’03), volume 2919 of LNCS, pages 502–518. Springer, 2004. See also

http://minisat.se/.

[ES06] Niklas Eén and Niklas Sörensson. Translating pseudo-Boolean constraints into

SAT. Journal on Satisfiability, Boolean Modelling and Computation, 2:1–26,

2006.

[EWZ06] Jörg Endrullis, Johannes Waldmann, and Hans Zantema. Matrix interpre-

tations for proving termination of term rewriting. In Proc. 3rd Interna-

tional Joint Conference on Automated Reasoning (IJCAR ’06), volume 4130

of LNAI, pages 574–588. Springer, 2006.

[EWZ08] Jörg Endrullis, Johannes Waldmann, and Hans Zantema. Matrix interpreta-

tions for proving termination of term rewriting. Journal of Automated Rea-

soning, 40(2–3):195–220, 2008.

http://minisat.se/

164 Bibliography

[Fal09] Stephan Falke. Term Rewriting with Built-In Numbers and Collection Data

Structures. PhD thesis, University of New Mexico, Albuquerque, NM, USA,

2009.

[Fed01] Federal Information Processing Standard 197. The advanced encryption stan-

dard. Technical report, National Institute of Standards and Technology, 2001.

[FGM+07] Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp, René

Thiemann, and Harald Zankl. SAT solving for termination analysis with

polynomial interpretations. In Proc. 10th International Conference on Theory

and Applications of Satisfiability Testing (SAT ’07), volume 4501 of LNCS,

pages 340–354. Springer, 2007.

[FGM+08] Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp, René

Thiemann, and Harald Zankl. Maximal termination. In Proc. 19th Inter-

national Conference on Rewriting Techniques and Applications (RTA ’08),

volume 5117 of LNCS, pages 110–125. Springer, 2008.

[FGP+09] Carsten Fuhs, Jürgen Giesl, Martin Plücker, Peter Schneider-Kamp, and

Stephan Falke. Proving termination of integer term rewriting. In Proc.

20th International Conference on Rewriting Techniques and Applications

(RTA ’09), volume 5595 of LNCS, pages 32–47. Springer, 2009.

[FGP+11] Carsten Fuhs, Jürgen Giesl, Michael Parting, Peter Schneider-Kamp, and

Stephan Swiderski. Proving termination by dependency pairs and inductive

theorem proving. Journal of Automated Reasoning, 47(2):133–160, 2011.

[FK08] Stephan Falke and Deepak Kapur. Dependency pairs for rewriting with built-

in numbers and semantic data structures. In Proc. 19th International Con-

ference on Rewriting Techniques and Applications (RTA ’08), volume 5117 of

LNCS, pages 94–109. Springer, 2008.

[FK09] Stephan Falke and Deepak Kapur. A term rewriting approach to the au-

tomated termination analysis of imperative programs. In Proc. 22nd Inter-

national Conference on Automated Deduction (CADE ’09), volume 5663 of

LNAI, pages 277–293. Springer, 2009.

[FK10] Stephan Falke and Deepak Kapur. Termination of context-sensitive rewrit-

ing with built-in numbers and collection data structures. In Proc. 18th

International Workshop on Functional and Constraint Logic Programming

(WFLP ’09), volume 5979 of LNCS, pages 44–61. Springer, 2010.

Bibliography 165

[FK11] Carsten Fuhs and Cynthia Kop. Harnessing first order termination provers

using higher order dependency pairs. In Proc. 8th International Symposium

Frontiers of Combining Systems (FroCoS ’11), volume 6989 of LNAI, pages

147–162. Springer, 2011.

[FKS11a] Stephan Falke, Deepak Kapur, and Carsten Sinz. Termination analysis of C

programs using compiler intermediate languages. In Proc. 22nd International

Conference on Rewriting Techniques and Applications (RTA ’11), volume 10

of LIPIcs, pages 41–50. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,

2011.

[FKS11b] Stephan Falke, Deepak Kapur, and Carsten Sinz. Termination analysis of C

programs using compiler intermediate languages. Technical Report Karlsruhe

Report in Informatics 2011-6, Karlsruhe Institute of Technology, 2011.

[FNO+08] Carsten Fuhs, Rafael Navarro-Marset, Carsten Otto, Jürgen Giesl, Salvador

Lucas, and Peter Schneider-Kamp. Search techniques for rational polynomial

orders. In Proc. 9th International Conference on Artificial Intelligence and

Symbolic Computation (AISC ’08), volume 5144 of LNAI, pages 109–124.

Springer, 2008.

[FS10] Carsten Fuhs and Peter Schneider-Kamp. Synthesizing shortest straight-line

programs over GF(2) using SAT. In Proc. 13th International Conference on

Theory and Applications of Satisfiability Testing (SAT ’10), volume 6175 of

LNCS, pages 71–84. Springer, 2010.

[Fuh07] Carsten Fuhs. SAT-based methods for automated termination analysis with

polynomial orderings. Diploma thesis, April 2007. RWTH Aachen, Germany.

[Fuh09] Carsten Fuhs. SAT instances for termination analysis with AProVE. In Daniel

Le Berre, Olivier Roussel, Laurent Simon, Vasco Manquinho, Josep Argelich,

Chu Min Li, Felip Manyà, and Jordi Planes, editors, SAT 2009 competitive

events booklet: preliminary version, pages 63–67. 2009. Available at http:

//www.cril.univ-artois.fr/SAT09/solvers/booklet.pdf.

[Gat06] Andreas Gathmann. Tropical algebraic geometry. Jahresbericht der Deutschen

Mathematiker-Vereinigung, 108:3–32, 2006.

[Ges90] Alfons Geser. Relative Termination. PhD thesis, Universität Passau, Ger-

many, 1990.

[GHW04] Alfons Geser, Dieter Hofbauer, and Johannes Waldmann. Match-bounded

string rewriting systems. Applicable Algebra in Engineering, Communication

and Computing, 15(3–4):149–171, 2004.

http://www.cril.univ-artois.fr/SAT09/solvers/booklet.pdf
http://www.cril.univ-artois.fr/SAT09/solvers/booklet.pdf

166 Bibliography

[GHW07] Andreas Gebhardt, Dieter Hofbauer, and Johannes Waldmann. Matrix evolu-

tions. In Proc. 9th International Workshop on Termination (WST ’07), pages

4–8, 2007.

[Gie95] Jürgen Giesl. Termination analysis for functional programs using term order-

ings. In Proc. 2nd International Symposium on Static Analysis (SAS ’95),

volume 983 of LNCS, pages 154–171. Springer, 1995.

[GLP06] Olga Grinchtein, Martin Leucker, and Nir Piterman. Inferring network invari-

ants automatically. In Proc. 3rd International Joint Conference on Automated

Reasoning (IJCAR ’06), volume 4130 of LNAI, pages 483–497. Springer, 2006.

[Goo98] Joshua T. Goodman. Parsing inside-out. PhD thesis, Harvard University,

1998.

[GRS+11] Jürgen Giesl, Matthias Raffelsieper, Peter Schneider-Kamp, Stephan Swider-

ski, and René Thiemann. Automated termination proofs for Haskell by

term rewriting. ACM Transactions on Programming Languages and Systems,

33(2):1–39, 2011.

[GSST06] Jürgen Giesl, Stephan Swiderski, Peter Schneider-Kamp, and René Thiemann.

Automated termination analysis for Haskell: From term rewriting to program-

ming languages. In Proc. 17th International Conference on Rewriting Tech-

niques and Applications (RTA ’06), volume 4098 of LNCS, pages 297–312.

Springer, 2006.

[GST06] Jürgen Giesl, Peter Schneider-Kamp, and René Thiemann. AProVE 1.2: au-

tomatic termination proofs in the dependency pair framework. In Proc. 3rd

International Joint Conference on Automated Reasoning (IJCAR ’06), vol-

ume 4130 of LNAI, pages 281–286. Springer, 2006.

[GTS05a] Jürgen Giesl, René Thiemann, and Peter Schneider-Kamp. The dependency

pair framework: Combining techniques for automated termination proofs.

In Proc. 11th International Conference on Logic for Programming, Artificial

Intelligence, and Reasoning (LPAR ’04), volume 3452 of LNAI, pages 301–

331. Springer, 2005.

[GTS05b] Jürgen Giesl, René Thiemann, and Peter Schneider-Kamp. Proving and dis-

proving termination of higher-order functions. In Proc. 5th International

Workshop on Frontiers of Combining Systems (FroCoS ’05), volume 3717

of LNAI, pages 216–231. Springer, 2005.

Bibliography 167

[GTSF06] Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, and Stephan Falke.

Mechanizing and improving dependency pairs. Journal of Automated Reason-

ing, 37(3):155–203, 2006.

[GTSS07] Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-Kamp.

Proving termination by bounded increase. In Proc. 21st International Con-

ference on Automated Deduction (CADE ’07), volume 4603 of LNAI, pages

443–459. Springer, 2007.

[GWB98] Jürgen Giesl, Christoph Walther, and Jürgen Brauburger. Termination analy-

sis for functional programs. Automated Deduction - A Basis for Applications,

3:135–164, 1998.

[HJ98] Hoon Hong and Dalibor Jakuš. Testing positiveness of polynomials. Journal

of Automated Reasoning, 21(1):23–38, 1998.

[HJN11] Antti Eero Johannes Hyvärinen, Tommi A. Junttila, and Ilkka Niemelä. Grid-

based SAT solving with iterative partitioning and clause learning. In Proc.

17th International Conference on Principles and Practice of Constraint Pro-

gramming (CP ’11), volume 6876 of LNCS, pages 385–399. Springer, 2011.

[HKW10] Dieter Hofbauer, Adam Koprowski, and Johannes Waldmann. Tropical ter-

mination. Talk by Johannes Waldmann at the TeReSe workshop 2010/1,

Aachen, Germany, May 2010.

[HL86] Thérèse Hardin and Alain Laville. Proof of termination of the rewriting system

SUBST on CCL. Theoretical Computer Science, 46(2–3):305–312, 1986.

[HM05] Nao Hirokawa and Aart Middeldorp. Automating the dependency pair

method. Information and Computation, 199(1–2):172–199, 2005.

[HM06] Nao Hirokawa and Aart Middeldorp. Predictive labeling. In Proc. 17th In-

ternational Conference on Rewriting Techniques and Applications (RTA ’06),

volume 4098 of LNCS, pages 313–327. Springer, 2006.

[HM07] Nao Hirokawa and Aart Middeldorp. Tyrolean Termination Tool: Techniques

and features. Information and Computation, 205(4):474–511, 2007.

[HM08] Nao Hirokawa and Georg Moser. Automated complexity analysis based on

the dependency pair method. In Proc. 4th International Joint Conference on

Automated Reasoning (IJCAR ’08), volume 5195 of LNAI, pages 364–379.

Springer, 2008.

168 Bibliography

[HMZ08] Nao Hirokawa, Aart Middeldorp, and Harald Zankl. Uncurrying for termina-

tion. In Proc. 15th International Conference on Logic for Programming, Ar-

tificial Intelligence, and Reasoning (LPAR ’08), volume 5330 of LNAI, pages

667–681. Springer, 2008.

[Hof01] Dieter Hofbauer. Termination proofs by context-dependent interpretations.

In Proc. 12th International Conference on Rewriting Techniques and Appli-

cations (RTA ’01), volume 2051 of LNCS, pages 108–121. Springer, 2001.

[Hol95] Christian Holzbaur. OFAI clp(q,r) manual, edition 1.3.3. Technical Report

TR-95-09, Austrian Research Institute for Artificial Intelligence, Vienna, Aus-

tria, 1995.

[HW06] Dieter Hofbauer and Johannes Waldmann. Termination of string rewrit-

ing with matrix interpretations. In Proc. 17th International Conference on

Rewriting Techniques and Applications (RTA ’06), volume 4098 of LNCS,

pages 328–342. Springer, 2006.

[JB04] Neil D. Jones and Nina Bohr. Termination analysis of the untyped λ-calculus.

In Proc. 15th International Conference on Rewriting Techniques and Appli-

cations (RTA ’04), volume 3091 of LNCS, pages 1–23. Springer, 2004.

[JL87] Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In

Proc. 14th Annual ACM Symposium on Principles of Programming Languages

(POPL ’87), pages 111–119. ACM Press, 1987.

[JLN+10] Michael Jünger, Thomas Liebling, Denis Naddef, George Nemhauser, William

Pulleyblank, Gerhard Reinelt, Giovanni Rinaldi, and Laurence Wolsey, edi-

tors. 50 Years of Integer Programming 1958–2008. Springer, 2010.

[KB70] Donald E. Knuth and Peter B. Bendix. Simple word problems in universal

algebras. Computational Problems in Abstract Algebra, pages 263–297, 1970.

[KH11] Dominik Klein and Nao Hirokawa. Maximal completion. In Proc. 22nd In-

ternational Conference on Rewriting Techniques and Applications (RTA ’11),

volume 10 of LIPIcs, pages 71–80. Schloss Dagstuhl - Leibniz-Zentrum fuer

Informatik, 2011.

[KK99a] Hisashi Kondo and Masahito Kurihara. Design and heuristics for BDD-

based automated termination verification system for rule-based programs. In

Proc. 12th IEEE International Conference on Systems, Man, and Cybernetics

(SMC ’99), volume 5, pages 738–743. IEEE Computer Society, 1999.

Bibliography 169

[KK99b] Masahito Kurihara and Hisashi Kondo. Heuristics and experiments on BDD

representation of boolean functions for expert systems in software verification

domains. In Proc. 12th Australian Joint Conference on Artificial Intelligence

(AI ’99), volume 1747 of LNAI, pages 353–364. Springer, 1999.

[KK04] Masahito Kurihara and Hisashi Kondo. Efficient BDD encodings for partial

order constraints with application to expert systems in software verification.

In Proc. 17th International Conference on Industrial and Engineering Appli-

cations of Artificial Intelligence and Expert Systems (IEA/AIE ’04), volume

3029 of LNAI, pages 827–837. Springer, 2004.

[KKY09] Arist Kojevnikov, Alexander S. Kulikov, and Grigory Yaroslavtsev. Finding

efficient circuits using SAT-solvers. In Proc. 12th International Conference

on Theory and Applications of Satisfiability Testing (SAT ’09), volume 5584

of LNCS, pages 32–44. Springer, 2009.

[KL80] Sam Kamin and Jean-Jacques Lévy. Two generalizations of the recursive path

ordering. Unpublished Manuscript, University of Illinois, Urbana, IL, USA,

1980.

[KM07] Adam Koprowski and Aart Middeldorp. Predictive labeling with dependency

pairs using SAT. In Proc. 21st International Conference on Automated De-

duction (CADE ’07), volume 4603 of LNAI, pages 410–425. Springer, 2007.

[Kop06] Adam Koprowski. TPA: Termination proved automatically. In Proc. 17th In-

ternational Conference on Rewriting Techniques and Applications (RTA ’06),

volume 4098 of LNCS, pages 257–266. Springer, 2006. http://www.win.tue.

nl/tpa/.

[KOR93] Jan Willem Klop, Vincent van Oostrom, and Femke van Raamsdonk. Com-

binatory reduction systems: introduction and survey. Theoretical Computer

Science, 121(1–2):279–308, 1993.

[Kro98] Daniel Krob. Some automata-theoretic aspects of min-max-plus semirings. In

Jeremy Gunawardena, editor, Idempotency, pages 70–79. Cambridge Univer-

sity Press, 1998.

[KST+09] Daniel Kroening, Natasha Sharygina, Stefano Tonetta, Aliaksei Tsitovich, and

Christoph M. Wintersteiger. Loopfrog: A static analyzer for ANSI-C programs.

In Proc. 24th IEEE/ACM International Conference on Automated Software

Engineering (ASE ’09), pages 668–670. IEEE Computer Society, 2009.

http://www.win.tue.nl/tpa/
http://www.win.tue.nl/tpa/

170 Bibliography

[KST+11] Alexander Krauss, Christian Sternagel, René Thiemann, Carsten Fuhs, and

Jürgen Giesl. Termination of Isabelle functions via termination of rewrit-

ing. In Proc. 2nd International Conference on Interactive Theorem Proving

(ITP ’11), volume 6898 of LNCS, pages 152–167. Springer, 2011.

[KSZM09] Martin Korp, Christian Sternagel, Harald Zankl, and Aart Middeldorp. Ty-

rolean Termination Tool 2. In Proc. 20th International Conference on Rewriting

Techniques and Applications (RTA ’09), volume 5595 of LNCS, pages 295–

304. Springer, 2009.

[KV03] Konstantin Korovin and Andrei Voronkov. Orienting rewrite rules with the

Knuth-Bendix order. Information and Computation, 183(2):165–186, 2003.

[KW08] Adam Koprowski and Johannes Waldmann. Arctic termination ...below zero.

In Proc. 19th International Conference on Rewriting Techniques and Appli-

cations (RTA ’08), volume 5117 of LNCS, pages 202–216. Springer, 2008.

[KW09] Adam Koprowski and Johannes Waldmann. Max/plus tree automata for

termination of term rewriting. Acta Cybernetica, 19(2):357–392, 2009.

[LA04] Chris Lattner and Vikram S. Adve. LLVM: A compilation framework for life-

long program analysis & transformation. In Proc. 2nd IEEE / ACM Interna-

tional Symposium on Code Generation and Optimization (CGO ’04), pages

75–88. IEEE Computer Society, 2004.

[Lan79] Dallas Lankford. On proving term rewriting systems are Noetherian. Technical

Report MTP-3, Louisiana Technical University, Ruston, LA, USA, 1979.

[Lee09] Chin Soon Lee. Ranking functions for size-change termination. ACM Trans-

actions on Programming Languages and Systems, 31(3):1–42, 2009.

[Les83] Pierre Lescanne. Computer experiments with the REVE term rewriting system

generator. In Proc. 10th ACM Symposium on Principles of Programming

Languages (POPL ’83), pages 99–108. ACM Press, 1983.

[LJB01] Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The size-change

principle for program termination. In Proc. 28th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL ’01), volume 36

of ACM SIGPLAN Notices, pages 81–92. ACM Press, 2001.

[LM08] Salvador Lucas and José Meseguer. Order-sorted dependency pairs. In Proc.

10th International ACM SIGPLAN Conference on Principles and Practice of

Declarative Programming (PPDP ’08), pages 108–119. ACM Press, 2008.

Bibliography 171

[LMS03] Vitaly Lagoon, Frédéric Mesnard, and Peter J. Stuckey. Termination analysis

with types is more accurate. In Proc. 19th International Conference on Logic

Programming (ICLP ’03), volume 2916 of LNCS, pages 254–268. Springer,

2003.

[LP10] Daniel Le Berre and Anne Parrain. The SAT4J library, release 2.2. Journal

on Satisfiability, Boolean Modelling and Computation, 7:59–64, 2010.

[Luc98] Salvador Lucas. Context-sensitive computations in functional and functional

logic programs. Journal of Functional and Logic Programming, 1998(1):1–61,

1998.

[Luc02] Salvador Lucas. Context-sensitive rewriting strategies. Information and Com-

putation, 178(1):294–343, 2002.

[Luc05] Salvador Lucas. Polynomials over the reals in proofs of termination: from the-

ory to practice. RAIRO - Theoretical Informatics and Applications, 39(3):547–

586, 2005.

[Luc07] Salvador Lucas. Practical use of polynomials over the reals in proofs of termi-

nation. In Proc. 9th International ACM SIGPLAN Conference on Principles

and Practice of Declarative Programming (PPDP ’07), pages 39–50. ACM

Press, 2007.

[Luc10] Salvador Lucas. From matrix interpretations over the rationals to matrix

interpretations over the naturals. In Proc. 10th International Conference on

Artificial Intelligence and Symbolic Computation (AISC ’10), volume 6167 of

LNAI, pages 116–131. Springer, 2010.

[Mar08] Joao Marques-Silva. Practical applications of boolean satisfiability. In Proc.

9th International Workshop on Discrete Event Systems (WODES ’08), pages

74–80. IEEE Computer Society, 2008.

[Mat70] Yuri Matiyasevich. Enumerable sets are Diophantine. Soviet Mathematics

(Dokladi), 11(2):354–357, 1970.

[MCLS11] Amit Metodi, Michael Codish, Vitaly Lagoon, and Peter J. Stuckey. Boolean

equi-propagation for optimized SAT encoding. In Proc. 17th International

Conference on Principles and Practice of Constraint Programming (CP ’11),

volume 6876 of LNCS, pages 621–636. Springer, 2011.

[MJ10] Filip Marić and Predrag Janičić. URBiVA: Uniform reduction to bit-vector

arithmetic. In Proc. 5th International Joint Conference on Automated Rea-

soning (IJCAR ’10), volume 6173 of LNAI, pages 346–352. Springer, 2010.

172 Bibliography

[MLM09] João P. Marques Silva, Inês Lynce, and Sharad Malik. Conflict-driven clause

learning SAT solvers. In Armin Biere, Marijn Heule, Hans van Maaren, and

Toby Walsh, editors, Handbook of Satisfiability, volume 185 of Frontiers in

Artificial Intelligence and Applications, pages 131–153. IOS Press, 2009.

[MN70] Zohar Manna and Steven Ness. On the termination of Markov algorithms. In

Proc. 3rd Hawaii International Conference on System Science (HICSS ’70),

pages 789–792, 1970.

[MP09] Jean-Yves Marion and Romain Péchoux. Sup-interpretations, a semantic

method for static analysis of program resources. ACM Transactions on Com-

putational Logic, 10(4):1–31, 2009.

[MS08] Georg Moser and Andreas Schnabl. Proving quadratic derivational complexi-

ties using context dependent interpretations. In Proc. 19th International Con-

ference on Rewriting Techniques and Applications (RTA ’08), volume 5117 of

LNCS, pages 276–290. Springer, 2008.

[MSW08] Georg Moser, Andreas Schnabl, and Johannes Waldmann. Complexity analy-

sis of term rewriting based on matrix and context dependent interpretations.

In Proc. 28th IARCS Annual Conference on Foundations of Software Tech-

nology and Theoretical Computer Science (FSTTCS ’08), volume 2 of LIPIcs,

pages 304–315. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2008.

[MV06] Panagiotis Manolios and Daron Vroon. Termination analysis with calling

context graphs. In Proc. 18th International Conference on Computer-Aided

Verification (CAV ’06), volume 4144 of LNCS, pages 401–414. Springer, 2006.

[MZ07] Claude Marché and Hans Zantema. The termination competition. In Proc.

18th International Conference on Rewriting Techniques and Applications

(RTA ’07), volume 4533 of LNCS, pages 303–313. Springer, 2007. See also

http://termination-portal.org/wiki/Termination_Competition.

[NDGS11] Manh Thang Nguyen, Danny De Schreye, Jürgen Giesl, and Peter Schneider-

Kamp. Polytool: Polynomial interpretations as a basis for termination analysis

of logic programs. Theory and Practice of Logic Programming, 11(1):33–63,

2011.

[NEG11] Lars Noschinski, Fabian Emmes, and Jürgen Giesl. A dependency pair frame-

work for innermost complexity analysis of term rewrite systems. In Proc. 23rd

International Conference on Automated Deduction (CADE ’11), volume 6803

of LNAI, pages 422–438. Springer, 2011.

http://termination-portal.org/wiki/Termination_Competition

Bibliography 173

[NGSD08] Manh Thang Nguyen, Jürgen Giesl, Peter Schneider-Kamp, and Danny De

Schreye. Termination analysis of logic programs based on dependency graphs.

In Proc. 17th International Symposium on Logic-Based Program Synthesis and

Transformation (LOPSTR ’07), volume 4915 of LNCS, pages 8–22. Springer,

2008.

[NMZ10] Friedrich Neurauter, Aart Middeldorp, and Harald Zankl. Monotonicity cri-

teria for polynomial interpretations over the naturals. In Proc. 5th Interna-

tional Joint Conference on Automated Reasoning (IJCAR ’10), volume 6173

of LNAI, pages 502–517. Springer, 2010.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL -

A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer,

2002.

[OBEG10] Carsten Otto, Marc Brockschmidt, Christian von Essen, and Jürgen Giesl.

Automated termination analysis of Java Bytecode by term rewriting. In

Proc. 21st International Conference on Rewriting Techniques and Applications

(RTA ’10), volume 6 of LIPIcs, pages 259–276. Schloss Dagstuhl - Leibniz-

Zentrum fuer Informatik, 2010.

[Ohl01] Enno Ohlebusch. Termination of logic programs: Transformational methods

revisited. Applicable Algebra in Engineering, Communication and Computing,

12(1–2):73–116, 2001.

[PR04a] Andreas Podelski and Andrey Rybalchenko. A complete method for the syn-

thesis of linear ranking functions. In Proc. 5th International Conference on

Verification, Model Checking, and Abstract Interpretation (VMCAI ’04), vol-

ume 2937 of LNCS, pages 239–251. Springer, 2004.

[PR04b] Andreas Podelski and Andrey Rybalchenko. Transition invariants. In Proc.

19th IEEE Symposium on Logic in Computer Science (LICS ’04), pages 32–

41. IEEE Computer Society, 2004.

[PS97] Sven Eric Panitz and Manfred Schmidt-Schauß. TEA: Automatically proving

termination of programs in a non-strict higher-order functional language. In

Proc. 4th International Symposium on Static Analysis (SAS ’97), volume 1302

of LNCS, pages 345–360. Springer, 1997.

[Sch08] Peter Schneider-Kamp. Static termination analysis for Prolog using term

rewriting and SAT solving. PhD thesis AIB-2008-17, RWTH Aachen, Decem-

ber 2008.

174 Bibliography

[Sch11] Peter Schneider-Kamp. Personal communication, 2011.

[SES+12] Thomas Ströder, Fabian Emmes, Peter Schneider-Kamp, Jürgen Giesl, and

Carsten Fuhs. A linear operational semantics for termination and complexity

analysis of ISO Prolog. In Proc. 21st International Symposium on Logic-Based

Program Synthesis and Transformation (LOPSTR ’11), volume 7225 of LNCS,

pages 237–252. Springer, 2012.

[SGN10] Peter Schneider-Kamp, Jürgen Giesl, and Manh Thang Nguyen. The depen-

dency triple framework for termination of logic programs. In Proc. 19th Inter-

national Symposium on Logic-Based Program Synthesis and Transformation

(LOPSTR ’09), volume 6037 of LNCS, pages 37–51. Springer, 2010.

[SGS+10] Peter Schneider-Kamp, Jürgen Giesl, Thomas Ströder, Alexander Serebrenik,

and René Thiemann. Automated termination analysis for logic programs with

cut. Theory and Practice of Logic Programming, Proc. 26th International

Conference on Logic Programming (ICLP ’10), 10(4–6):365–381, 2010.

[SGST09] Peter Schneider-Kamp, Jürgen Giesl, Alexander Serebrenik, and René Thie-

mann. Automated termination proofs for logic programs by term rewriting.

ACM Transactions on Computational Logic, 11(1):1–52, 2009.

[SJ05] Damien Sereni and Neil D. Jones. Termination analysis of higher-order func-

tional programs. In Proc. 3rd Asian Symposium on Programming Languages

and Systems (APLAS ’05), volume 3780 of LNCS, pages 281–297. Springer,

2005.

[SM08] Christian Sternagel and Aart Middeldorp. Root-labeling. In Proc. 19th In-

ternational Conference on Rewriting Techniques and Applications (RTA ’08),

volume 5117 of LNCS, pages 336–350. Springer, 2008.

[Sma04] Jan-Georg Smaus. Termination of logic programs using various dynamic se-

lection rules. In Proc. 20th International Conference on Logic Programming

(ICLP ’04), volume 3132 of LNCS, pages 43–57. Springer, 2004.

[SMP10] Fausto Spoto, Fred Mesnard, and Étienne Payet. A termination analyser for

Java Bytecode based on path-length. ACM Transactions on Programming

Languages and Systems, 32(3):1–70, 2010.

[SNC09] Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT solvers

to cryptographic problems. In Proc. 12th International Conference on Theory

and Applications of Satisfiability Testing (SAT ’09), volume 5584 of LNCS,

pages 244–257. Springer, 2009.

Bibliography 175

[SPG+09] Stephan Swiderski, Michael Parting, Jürgen Giesl, Carsten Fuhs, and Peter

Schneider-Kamp. Termination analysis by dependency pairs and inductive

theorem proving. In Proc. 22nd International Conference on Automated De-

duction (CADE ’09), volume 5663 of LNAI, pages 322–338. Springer, 2009.

[ST10] Christian Sternagel and René Thiemann. Certification extends termination

techniques. In Proc. 11th International Workshop on Termination (WST ’10),

2010.

[ST11a] Christian Sternagel and René Thiemann. Generalized and formalized uncur-

rying. In Proc. 8th International Symposium Frontiers of Combining Systems

(FroCoS ’11), volume 6989 of LNAI, pages 243–258. Springer, 2011.

[ST11b] Christian Sternagel and René Thiemann. Modular and certified semantic

labeling and unlabeling. In Proc. 22nd International Conference on Rewriting

Techniques and Applications (RTA ’11), volume 10 of LIPIcs, pages 329–344.

Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011.

[STA+07] Peter Schneider-Kamp, René Thiemann, Elena Annov, Michael Codish, and

Jürgen Giesl. Proving termination using recursive path orders and SAT solv-

ing. In Proc. 6th International Symposium on Frontiers of Combining Systems

(FroCoS ’07), volume 4720 of LNAI, pages 267–282. Springer, 2007.

[Ste95] Joachim Steinbach. Simplification orderings: History of results. Fundamenta

Informaticae, 24(1-2):47–87, 1995.

[TG05] René Thiemann and Jürgen Giesl. The size-change principle and dependency

pairs for termination of term rewriting. Applicable Algebra in Engineering,

Communication and Computing, 16(4):229–270, 2005.

[Thi07] René Thiemann. The DP framework for proving termination of term rewrit-

ing. PhD thesis AIB-2007-17, RWTH Aachen, October 2007.

[Thi11] René Thiemann. Personal communication, 2011.

[Tiw04] Ashish Tiwari. Termination of linear programs. In Proc. 16th International

Conference on Computer Aided Verification (CAV ’04), volume 3114 of LNCS,

pages 70–82. Springer, 2004.

[TS09] René Thiemann and Christian Sternagel. Certification of termination proofs

using CeTA. In Proc. 22nd International Conference on Theorem Proving in

Higher Order Logics (TPHOLs ’09), volume 5674 of LNCS, pages 452–468.

Springer, 2009.

176 Bibliography

[Tse68] Grigori Tseitin. On the complexity of derivation in propositional calculus.

In Studies in Constructive Mathematics and Mathematical Logic, pages 115–

125. 1968. Reprinted in Jörg Siekmann and Graham Wrightson (editors),

Automation of Reasoning, 2:466–483, 1983.

[TSWK11] Aliaksei Tsitovich, Natasha Sharygina, Christoph M. Wintersteiger, and

Daniel Kroening. Loop summarization and termination analysis. In Proc.

17th International Conference on Tools and Algorithms for the Construction

and Analysis of Systems (TACAS ’11), volume 6605 of LNCS, pages 81–95.

Springer, 2011.

[TTKB09] Naoyuki Tamura, Akiko Taga, Satoshi Kitagawa, and Mutsunori Banbara.

Compiling finite linear CSP into SAT. Constraints, 14(2):254–272, 2009.

[Tur49] Alan M. Turing. Checking a large routine. In Report of a Conference on High

Speed Automatic Calculating Machines, pages 67–69, 1949.

[Wal94] Christoph Walther. On proving the termination of algorithms by machine.

Artificial Intelligence, 71(1):101–157, 1994.

[Wal07] Johannes Waldmann. Weighted automata for proving termination of string

rewriting. Journal of Automata, Languages and Combinatorics, 12(4):545–

570, 2007.

[Xi02] Hongwei Xi. Dependent types for program termination verification. Higher-

Order and Symbolic Computation, 15(1):91–131, 2002.

[Yam01] Toshiyuki Yamada. Confluence and termination of simply typed term rewrit-

ing systems. In Proc. 12th International Conference on Rewriting Techniques

and Applications (RTA’01), volume 2051 of LNCS, pages 338–352. Springer,

2001.

[Zan94] Hans Zantema. Termination of term rewriting: Interpretation and type elim-

ination. Journal of Symbolic Computation, 17(1):23–50, 1994.

[Zan95] Hans Zantema. Termination of term rewriting by semantic labelling. Funda-

menta Informaticae, 24(1–2):89–105, 1995.

[Zan03] Hans Zantema. Termination. In Terese, editor, Term Rewriting Systems,

chapter 6, pages 181–259. Cambridge University Press, 2003.

[Zan09] Harald Zankl. Lazy Termination Analysis. PhD thesis, University of Inns-

bruck, Austria, 2009.

Bibliography 177

[ZHM07] Harald Zankl, Nao Hirokawa, and Aart Middeldorp. Constraints for argument

filterings. In Proc. 33rd Conference on Current Trends in Theory and Practice

of Computer Science (SOFSEM ’07), volume 4362 of LNCS, pages 579–590.

Springer, 2007.

[ZHM09] Harald Zankl, Nao Hirokawa, and Aart Middeldorp. KBO orientability. Jour-

nal of Automated Reasoning, 43(2):173–201, 2009.

[ZM06] Harald Zankl and Aart Middeldorp. KBO as a satisfaction problem. In Proc.

8th International Workshop on Termination (WST ’06), pages 55–59, 2006.

[ZM07] Harald Zankl and Aart Middeldorp. Satisfying KBO constraints. In Proc.

18th International Conference on Rewriting Techniques and Applications

(RTA ’07), volume 4533 of LNCS, pages 389–403. Springer, 2007.

[ZM08] Harald Zankl and Aart Middeldorp. Increasing interpretations. In Proc. 9th

International Conference on Artificial Intelligence and Symbolic Computation

(AISC ’08), volume 5144 of LNAI, pages 191–205. Springer, 2008.

[ZM09] Harald Zankl and Aart Middeldorp. Increasing interpretations. Annals of

Mathematics and Artificial Intelligence, 56(1):87–108, 2009.

[ZM10] Harald Zankl and Aart Middeldorp. Satisfiability of non-linear (ir)rational

arithmetic. In Proc. 16th International Conference on Logic for Programming,

Artificial Intelligence, and Reasoning (LPAR (Dakar) ’10), volume 6355 of

LNAI, pages 481–500. Springer, 2010.

[ZSHM10] Harald Zankl, Christian Sternagel, Dieter Hofbauer, and Aart Middeldorp.

Finding and certifying loops. In Proc. 36th International Conference on Cur-

rent Trends in Theory and Practice of Computer Science (SOFSEM ’10),

volume 5901 of LNCS, pages 755–766. Springer, 2010.

[ZW07] Hans Zantema and Johannes Waldmann. Termination by quasi-periodic inter-

pretations. In Proc. 18th International Conference on Rewriting Techniques

and Applications (RTA ’07), volume 4533 of LNCS, pages 404–418. Springer,

2007.

Index

(P ,R)-chain, 26

minimal, 26

DOM , 24

Pos(·), 23

�, 78

AN, 78

AZ, 78

�, 78

◦, 28

|| · ||bin , 86

|| · ||un , 91

⊕, 35

root(·), 24

F(·), 23

�, 24

�, 24

[·]left , 41, 43

[·]right , 41, 43

→R, 24

Var(·), 23

con, 41

ncon, 41

t[s]π, 24

algebra

max/plus, 78

weakly monotone, 30

arctic addition, 78

arctic constraint, 80

arctic multiplication, 78

arctic semi-ring, 78

arctic variable, 80

arity, 23

base term, 110

CDCL, 90

chain, 26

minimal, 26

compatible, 28

composition, 28

constant, 23

constant part, 41

constant symbol, 23

Constraint Satisfaction Problem, 19

CSP, 19

decreasing

strictly, 28

weakly, 28

defined symbol, 25

dependency graph, 29

dependency pair, 25

dependency pair framework, 27

dependency pair problem, 26

tuple-typed, 110

dependency pair processor, 27

dimension, 79

Diophantine constraint, 34

domain, 24

DP, 25

DP framework, 27

DP problem, 26

tuple-typed, 110

DP processor, 27

180 Index

finite, 79

formula

SMT-NIA, 34

function symbol, 23

global constraint, 90

ground term, 23

independent, 50

infinity bit, 86, 91

interpretation, 30

arctic matrix, 79

polynomial, 31

KBO, 5

left-hand side, 24

level mapping, 117

lhs, 24

LPO, 4

max/plus algebra, 78

max/plus semi-ring, 78

monotonic, 24

non-constant part, 41

normal form, 24

orient, 28

parametric coefficient, 33

PB constraint, 3

polynomial interpretation, 31

with negative constants, 40

position, 23

positive, 79

processor, 27

Pseudo-Boolean constraint, 3

reduce, 24

reduction pair, 28

strongly monotonic, 28

weakly monotonic, 28

reduction pair processor, 28

rewrite relation, 24

rewrite rule, 24

rewrite sequence, 24

rewrite step, 24

rhs, 24

right-hand side, 24

root position, 24

root symbol, 24

rule, 24

SAT problem, 3

SAT solver, 3

satisfiability solver, 3

satisfy, 113

SCNP property, 113

SCNP reduction pair, 118

SCT, 103

SCT property, 103

signature, 23

size-change termination, 103

SMT, 3

SMT-NIA formula, 34

SRS, 3, 83

stable, 24

standard DP problem, 108

string rewrite system, 3, 83

substitution, 24

subterm, 24

strict, 24

term, 23

term rewrite relation, 24

term rewrite step, 24

term rewrite system, 24

term size, 24

terminating, 24

Termination Competition, 2

TPDB, 2

TRS, 24

Index 181

tuple property, 108

tuple symbol, 25, 109

tuple term, 110

tuple typing, 110

tuple-typed reduction pair, 112

variable, 23

variable coefficient, 33

Curriculum Vitae

Name Carsten Fuhs

Geburtsdatum 6. November 1978

Geburtsort Düren

Bildungsgang

1989–1998 Städt. Gymnasium am Wirteltor Düren

Abschluss: Allgemeine Hochschulreife

1998–1999 Zivildienst am St.-Augustinus-Krankenhaus Düren

1999–2007 Studium der Informatik an der RWTH Aachen

Abschluss: Diplom

2007–2011 Wissenschaftlicher Angestellter am Lehr- und Forschungsgebiet

Informatik 2 (Prof. Dr. Jürgen Giesl), RWTH Aachen

2012– Post-Doctoral Research Assistant, Queen Mary, University of London

und University College London

185

Aachener Informatik-Berichte

This list contains all technical reports published during the past three years. A complete

list of reports dating back to 1987 is available from:

http://aib.informatik.rwth-aachen.de/

To obtain copies please consult the above URL or send your request to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,

Email: biblio@informatik.rwth-aachen.de

2009-01 ∗ Fachgruppe Informatik: Jahresbericht 2009

2009-02 Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:

Quantitative Model Checking of Continuous-Time Markov Chains

Against Timed Automata Specifications

2009-03 Alexander Nyßen: Model-Based Construction of Embedded

Real-Time Software - A Methodology for Small Devices

2009-05 George B. Mertzios, Ignasi Sau, Shmuel Zaks: A New Intersection Model

and Improved Algorithms for Tolerance Graphs

2009-06 George B. Mertzios, Ignasi Sau, Shmuel Zaks: The Recognition of Tol-

erance and Bounded Tolerance Graphs is NP-complete

2009-07 Joachim Kneis, Alexander Langer, Peter Rossmanith: Derandomizing

Non-uniform Color-Coding I

2009-08 Joachim Kneis, Alexander Langer: Satellites and Mirrors for Solving

Independent Set on Sparse Graphs

2009-09 Michael Nett: Implementation of an Automated Proof for an Algorithm

Solving the Maximum Independent Set Problem

2009-10 Felix Reidl, Fernando Sánchez Villaamil: Automatic Verification of the

Correctness of the Upper Bound of a Maximum Independent Set Algo-

rithm

2009-11 Kyriaki Ioannidou, George B. Mertzios, Stavros D. Nikolopoulos: The

Longest Path Problem is Polynomial on Interval Graphs

2009-12 Martin Neuhäußer, Lijun Zhang: Time-Bounded Reachability in

Continuous-Time Markov Decision Processes

2009-13 Martin Zimmermann: Time-optimal Winning Strategies for Poset

Games

2009-14 Ralf Huuck, Gerwin Klein, Bastian Schlich (eds.): Doctoral Symposium

on Systems Software Verification (DS SSV’09)

2009-15 Joost-Pieter Katoen, Daniel Klink, Martin Neuhäußer: Compositional

Abstraction for Stochastic Systems

http://aib.informatik.rwth-aachen.de/

186

2009-16 George B. Mertzios, Derek G. Corneil: Vertex Splitting and the Recog-

nition of Trapezoid Graphs

2009-17 Carsten Kern: Learning Communicating and Nondeterministic Au-

tomata

2009-18 Paul Hänsch, Michaela Slaats, Wolfgang Thomas: Parametrized Regular

Infinite Games and Higher-Order Pushdown Strategies

2010-01 ∗ Fachgruppe Informatik: Jahresbericht 2010

2010-02 Daniel Neider, Christof Löding: Learning Visibly One-Counter Au-

tomata in Polynomial Time

2010-03 Holger Krahn: MontiCore: Agile Entwicklung von domänenspezifischen

Sprachen im Software-Engineering

2010-04 René Wörzberger: Management dynamischer Geschäftsprozesse auf Ba-

sis statischer Prozessmanagementsysteme

2010-05 Daniel Retkowitz: Softwareunterstützung für adaptive eHome-Systeme

2010-06 Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:

Computing maximum reachability probabilities in Markovian timed au-

tomata

2010-07 George B. Mertzios: A New Intersection Model for Multitolerance

Graphs, Hierarchy, and Efficient Algorithms

2010-08 Carsten Otto, Marc Brockschmidt, Christian von Essen, Jürgen Giesl:

Automated Termination Analysis of Java Bytecode by Term Rewriting

2010-09 George B. Mertzios, Shmuel Zaks: The Structure of the Intersection of

Tolerance and Cocomparability Graphs

2010-10 Peter Schneider-Kamp, Jürgen Giesl, Thomas Ströder, Alexander Sere-

brenik, René Thiemann: Automated Termination Analysis for Logic

Programs with Cut

2010-11 Martin Zimmermann: Parametric LTL Games

2010-12 Thomas Ströder, Peter Schneider-Kamp, Jürgen Giesl: Dependency

Triples for Improving Termination Analysis of Logic Programs with Cut

2010-13 Ashraf Armoush: Design Patterns for Safety-Critical Embedded Systems

2010-14 Michael Codish, Carsten Fuhs, Jürgen Giesl, Peter Schneider-Kamp:

Lazy Abstraction for Size-Change Termination

2010-15 Marc Brockschmidt, Carsten Otto, Christian von Essen, Jürgen Giesl:

Termination Graphs for Java Bytecode

2010-16 Christian Berger: Automating Acceptance Tests for Sensor- and

Actuator-based Systems on the Example of Autonomous Vehicles

2010-17 Hans Grönniger: Systemmodell-basierte Definition objektbasierter Mod-

ellierungssprachen mit semantischen Variationspunkten

187

2010-18 Ibrahim Armaç: Personalisierte eHomes: Mobilität, Privatsphäre und

Sicherheit

2010-19 Felix Reidl: Experimental Evaluation of an Independent Set Algorithm

2010-20 Wladimir Fridman, Christof Löding, Martin Zimmermann: Degrees of

Lookahead in Context-free Infinite Games

2011-01 ∗ Fachgruppe Informatik: Jahresbericht 2011

2011-02 Marc Brockschmidt, Carsten Otto, Jürgen Giesl: Modular Termination

Proofs of Recursive Java Bytecode Programs by Term Rewriting

2011-03 Lars Noschinski, Fabian Emmes, Jürgen Giesl: A Dependency Pair

Framework for Innermost Complexity Analysis of Term Rewrite Systems

2011-04 Christina Jansen, Jonathan Heinen, Joost-Pieter Katoen, Thomas Noll:

A Local Greibach Normal Form for Hyperedge Replacement Grammars

2011-06 Johannes Lotz, Klaus Leppkes, and Uwe Naumann: dco/c++ - Deriva-

tive Code by Overloading in C++

2011-07 Shahar Maoz, Jan Oliver Ringert, Bernhard Rumpe: An Operational

Semantics for Activity Diagrams using SMV

2011-08 Thomas Ströder, Fabian Emmes, Peter Schneider-Kamp, Jürgen Giesl,

Carsten Fuhs: A Linear Operational Semantics for Termination and

Complexity Analysis of ISO Prolog

2011-09 Markus Beckers, Johannes Lotz, Viktor Mosenkis, Uwe Naumann (Edi-

tors): Fifth SIAM Workshop on Combinatorial Scientific Computing

2011-10 Markus Beckers, Viktor Mosenkis, Michael Maier, Uwe Naumann: Ad-

joint Subgradient Calculation for McCormick Relaxations

2011-11 Nils Jansen, Erika Ábrahám, Jens Katelaan, Ralf Wimmer, Joost-Pieter

Katoen, Bernd Becker: Hierarchical Counterexamples for Discrete-Time

Markov Chains

2011-12 Ingo Felscher, Wolfgang Thomas: On Compositional Failure Detection

in Structured Transition Systems

2011-13 Michael Förster, Uwe Naumann, Jean Utke: Toward Adjoint OpenMP

2011-14 Daniel Neider, Roman Rabinovich, Martin Zimmermann: Solving Muller

Games via Safety Games

2011-16 Niloofar Safiran, Uwe Naumann: Toward Adjoint OpenFOAM

2011-18 Kamal Barakat: Introducing Timers to pi-Calculus

2011-19 Marc Brockschmidt, Thomas Ströder, Carsten Otto, Jürgen Giesl: Au-

tomated Detection of Non-Termination and NullPointerExceptions for

Java Bytecode

2011-24 Callum Corbett, Uwe Naumann, Alexander Mitsos: Demonstration of a

Branch-and-Bound Algorithm for Global Optimization using McCormick

Relaxations

188

2011-25 Callum Corbett, Michael Maier, Markus Beckers, Uwe Naumann, Amin

Ghobeity, Alexander Mitsos: Compiler-Generated Subgradient Code for

McCormick Relaxations

2011-26 Hongfei Fu: The Complexity of Deciding a Behavioural Pseudometric

on Probabilistic Automata

2012-01 ∗ Fachgruppe Informatik: Annual Report 2012

2012-02 Thomas Heer: Controlling Development Processes

2012-03 Arne Haber, Jan Oliver Ringert, Bernhard Rumpe: MontiArc - Architec-

tural Modeling of Interactive Distributed and Cyber-Physical Systems

2012-04 Marcus Gelderie: Strategy Machines and their Complexity

2012-05 Thomas Ströder, Fabian Emmes, Jürgen Giesl, Peter Schneider-Kamp,

and Carsten Fuhs: Automated Complexity Analysis for Prolog by Term

Rewriting

2012-06 Marc Brockschmidt, Richard Musiol, Carsten Otto, Jürgen Giesl: Au-

tomated Termination Proofs for Java Programs with Cyclic Data

2012-07 André Egners, Björn Marschollek, and Ulrike Meyer: Hackers in Your

Pocket: A Survey of Smartphone Security Across Platforms

2012-08 Hongfei Fu: Computing Game Metrics on Markov Decision Processes

2012-09 Dennis Guck, Tingting Han, Joost-Pieter Katoen, and Martin R.

Neuhäußer: Quantitative Timed Analysis of Interactive Markov Chains

2012-10 Uwe Naumann and Johannes Lotz: Algorithmic Differentiation of Nu-

merical Methods: Tangent-Linear and Adjoint Direct Solvers for Systems

of Linear Equations

2012-12 Jürgen Giesl, Thomas Ströder, Peter Schneider-Kamp, Fabian Emmes,

and Carsten Fuhs: Symbolic Evaluation Graphs and Term Rewriting —

A General Methodology for Analyzing Logic Programs

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

	Introduction
	Preliminaries
	Term Rewriting
	The Dependency Pair Framework
	Weakly Monotone Algebras and Polynomial Interpretations

	Polynomials with Negative Constants
	Polynomial Interpretations with a Negative Constant
	SMT-Based Automation
	A Necessary Criterion for Negative Constants
	Experiments
	Summary and Outlook

	Maximal Termination
	Max-Polynomial Interpretations
	SMT-Based Automation
	Shape Heuristics and Optimizations
	Experiments
	Summary and Outlook

	SAT Encodings for Arctic Termination Revisited
	Arctic Interpretations
	A Binary SAT Encoding for Arctic Constraints
	A Unary SAT Encoding for Arctic Constraints
	Related Work
	Experiments
	Summary and Outlook

	Lazy Abstraction for Size-Change Termination
	Size-Change Termination and Dependency Pairs
	Tuple-Typed DP Problems
	Approximating SCT in NP
	A Challenge Example
	SAT-Based Automation
	Experiments
	Summary and Outlook

	SAT Encodings for Optimal XOR Circuits
	Linear Straight-Line Programs
	Encoding to Propositional Logic
	From Decision Problem to Optimization
	Case Study: Advanced Encryption Standard
	Handling the UNSAT Case
	Summary and Outlook

	Conclusion
	Bibliography
	Index

