
Aachen
Department of Computer Science

Technical Report

Symbolic Evaluation Graphs and Term

Rewriting —

A General Methodology for Analyzing

Logic Programs

Jürgen Giesl, Thomas Ströder, Peter Schneider-Kamp, Fabian

Emmes, and Carsten Fuhs

ISSN 0935–3232 · Aachener Informatik-Berichte · AIB-2012-12

RWTH Aachen · Department of Computer Science · September 2012 (revised)

The publications of the Department of Computer Science of RWTH Aachen

University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Symbolic Evaluation Graphs and Term Rewriting —
A General Methodology for Analyzing Logic Programs

∗

Jürgen Giesl
LuFG Informatik 2, RWTH

Aachen University, Germany

Thomas Ströder
LuFG Informatik 2, RWTH

Aachen University, Germany

Peter Schneider-Kamp
Dept. of Mathematics and

Computer Science, University
of Southern Denmark

Fabian Emmes
LuFG Informatik 2, RWTH

Aachen University, Germany

Carsten Fuhs
Dept. of Computer Science,

University College London, UK

ABSTRACT

There exist many powerful techniques to analyze termina-
tion and complexity of term rewrite systems (TRSs). Our
goal is to use these techniques for the analysis of other pro-
gramming languages as well. For instance, approaches to
prove termination of definite logic programs by a transfor-
mation to TRSs have been studied for decades. However, a
challenge is to handle languages with more complex evalua-
tion strategies (such as Prolog, where predicates like the cut
influence the control flow). In this paper, we present a gen-
eral methodology for the analysis of such programs. Here,
the logic program is first transformed into a symbolic eval-
uation graph which represents all possible evaluations in a
finite way. Afterwards, different analyses can be performed
on these graphs. In particular, one can generate TRSs from
such graphs and apply existing tools for termination or com-
plexity analysis of TRSs to infer information on the termi-
nation or complexity of the original logic program.

Categories and Subject Descriptors

D.1.6 [Programming Techniques]: Logic Programming;
F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs—Mechani-
cal Verification; I.2.2 [Artificial Intelligence]: Automatic
Programming—Automatic Analysis of Algorithms

General Terms

Languages, Theory, Verification

Keywords

logic programs, rewriting, termination, complexity, determinacy

1. INTRODUCTION
We are concerned with analyzing “semantical” properties of
logic programs, like termination, complexity, and determi-
nacy (i.e., the question whether all queries in a specific class
succeed at most once). While there are techniques and tools
that analyze logic programs directly, we present a general
transformational methodology for such analyses. In this

∗Supported by the DFG under grant GI 274/5-3, the DFG
Research Training Group 1298 (AlgoSyn), and the Danish
Council for Independent Research, Natural Sciences.

way, one can re-use existing powerful techniques and tools
that have been developed for term rewriting.
For well-moded definite logic programs, there are several

transformations to TRSs such that termination of the TRS
implies termination of the original logic program [32]. We
extended these transformations to arbitrary definite pro-
grams in [34].
However, Prolog programs typically use the cut predicate.

To handle the non-trivial control flow induced by cuts, in
[36] we introduced a pre-processing method where a Pro-
log program is first transformed into a symbolic evaluation
graph. (These graphs were inspired by related approaches
to program optimization [37] and were called “termination
graphs” in [36].) Symbolic evaluation graphs also represent
those aspects of the program that cannot easily be expressed
in term rewriting. We also developed similar approaches for
other programming languages like Java and Haskell [7, 8, 9,
17]. For Prolog, the transformation from the program to
the symbolic evaluation graph relies on a new “linear” op-
erational semantics which we presented in [40]. From the
symbolic evaluation graph, one can then generate a simpler
program (without cuts) whose termination implies termina-
tion of the original Prolog program. In [36] we generated
definite logic programs from the graph (whose termination
could then be analyzed by transforming them further to
TRSs, for example). In [39], we presented a more powerful
approach which generates so-called dependency triples [30,
35] from the graph. These dependency triples are an adap-
tion of the dependency pair technique [16], which is one of
the most powerful methods for automated termination anal-
ysis of TRSs.
In the current paper, we show that the symbolic evalu-

ation graph cannot only be used for termination analysis,
but it is also very suitable as the basis for several other
analyses, such as complexity or determinacy analysis. So
symbolic evaluation graphs and term rewriting can be seen
as a general methodology for the analysis of programming
languages like Prolog.1

After recapitulating the underlying operational semantics
in Sect. 2, we introduce the symbolic evaluation graph in
Sect. 3. To use this graph for different forms of program

1This methodology can also be used to analyze programs in
other languages. For example, in [8] we used similar graphs
not just for termination proofs, but also for disproving ter-
mination and for detecting NullPointerExceptions in Java
programs.

1

analysis, we present several new theorems which express the
connection between the“abstract evaluations”represented in
the graph and the “concrete evaluations” of actual queries.

In Sect. 4, we present a new improved approach for ter-
mination analysis of logic programs, where one directly gen-
erates term rewrite systems from the symbolic evaluation
graph. This results in a substantially more powerful ap-
proach than [36]. Compared to [39], our new approach is
considerably simpler and it allows us to apply any tool for
termination of TRSs when analyzing the termination of logic
programs. So one does not need tools that handle the (non-
standard) notion of “dependency triples” anymore.

In Sect. 5 we show that symbolic evaluation graphs and
the TRSs generated from the graphs can also be used in or-
der to analyze the complexity of logic programs. Here, we
rely on recent results which show how to adapt techniques
for termination analysis of TRSs in order to prove asymp-
totic upper bounds for the runtime complexity of TRSs au-
tomatically.

Finally, Sect. 6 demonstrates that the symbolic evaluation
graph can also be used to analyze whether a class of queries
is deterministic. Besides being interesting on its own, such
a determinacy analysis is also needed in our new approach
for complexity analysis of logic programs in Sect. 5.

We implemented all our contributions in our automated
termination tool AProVE [15] and performed extensive ex-
periments to compare our approaches with existing analy-
sis techniques which work directly on logic programs. It
turned out that our approaches for termination and com-
plexity clearly outperform related existing techniques. For
determinacy analysis, our approach can handle many exam-
ples where existing methods fail, but there are also many
examples where the existing techniques are superior. Thus,
here it would be promising to couple our approach with ex-
isting ones. All proofs can be found in the appendix.

2. PRELIMINARIES AND OPERATIONAL

SEMANTICS OF PROLOG
See, e.g., [2] for the basics of logic programming. We label
individual cuts to make their scope explicit. Thus, we use
a signature Σ containing {!m/0 | m ∈ N} and all predicate
and function symbols. As in the ISO standard for Prolog
[22], we do not distinguish between predicate and function
symbols and just consider terms T (Σ,V) and no atoms. A
query is a sequence of terms. Let Query(Σ,V) denote the
set of all queries, where ✷ is the empty query. A clause is
a pair h :-B where the head h is a term and the body B
is a query. If B is empty, then we write just “h” instead of
“h :-✷”. A logic program P is a finite sequence of clauses.

We now briefly recapitulate our operational semantics from
[40], which is equivalent to the ISO semantics in [22]. As
shown in [40], both semantics yield the same answer substi-
tutions, the same termination behavior, and the same com-
plexity. The advantage of our semantics is that it is partic-
ularly suitable for an extension to classes of queries, i.e., for
the symbolic evaluation of abstract states, cf. Sect. 3. This
makes our semantics particularly well suited for analyzing
logic programs.

Our semantics is given by a set of inference rules that
operate on states. A state has the form (G1 | . . . | Gn)
where each Gi is a goal. Here, G1 represents the current
query and (G2 | . . . | Gn) represents the queries that have to

be considered next. This backtrack information is contained
in the state in order to describe the effect of cuts. Since each
state contains all backtracking goals, our semantics is linear
(i.e., an evaluation with these rules is just a sequence of
states and not a search tree as in the ISO semantics).
Essentially, a goal is just a query, i.e., a sequence of terms.

But to compute answer substitutions, a goal is labeled by a
substitution which collects the unifiers used up to now. So if
(t1, . . . , tk) is a query, then a goal has the form (t1, . . . , tk)θ
for a substitution θ. In addition, a goal can also be labeled
by a clause c, where (t1, . . . , tk)

c
θ means that the next resolu-

tion has to be performed with clause c. Moreover, a goal can
also be a scope marker ?m for m ∈ N. This marker denotes
the end of the scope of cuts !m labeled with m. Whenever
a cut !m is reached, all goals preceding ?m are discarded.
Def. 1 shows the inference rules for the part of Prolog

defining definite logic programming and the cut. See [40]
for the inference rules for full Prolog. Here, S and S′ are
states and the query Q may also be ✷ (then “(t, Q)” is t).

Definition 1 (Operational Semantics).

✷θ | S

S
(Suc)

(t, Q)h :-B
θ | S

(Bσ,Qσ)θσ | S
(Eval) if mgu(t, h)=σ

?m | S

S
(Fail)

(t, Q)h :-B
θ | S

S
(Backtrack) if t 6∼ h

(t, Q)θ | S

(t, Q)
c1[!/!m]
θ | . . . | (t, Q)

ca[!/!m]
θ | ?m | S

(Case)

where t is no cut or variable, m is fresh, and
SliceP(t) = (c1, . . . , ca)

(!m, Q)θ | S | ?m | S
′

Qθ | ?m | S
′ (Cut)

where
S
con-
tains
no ?m

(!m, Q)θ | S

Qθ
(Cut)

where
S
con-
tains
no ?m

The Suc rule is applicable if the first goal of our sequence
could be proved. Then we backtrack to the next goal in the
sequence. Fail means that for the current m-th case analy-
sis, there are no further backtracking possibilities. But the
whole evaluation does not have to fail, since the state S
may still contain further alternative goals which have to be
examined.
To make the backtracking possibilities explicit, the resolu-

tion of a program clause with the first atom t of the current
goal is split into two operations. The Case rule determines
which clauses could be applied to t by slicing the program
according to t’s root symbol. Here, SliceP(p(t1, . . . , tn)) is
the sequence of all program clauses “h :-B” from P where
root(h) = p/n. The variables in program clauses are re-
named when this is necessary to ensure variable-disjointness
with the states. Thus, Case replaces the current goal (t, Q)θ
by a goal labeled with the first such clause and adds copies
of (t, Q)θ labeled by the other potentially applicable clauses
as backtracking possibilities. Here, the top-down clause se-
lection rule is taken into account. The cuts in these clauses
are labeled by a fresh mark m ∈ N (i.e., c[!/!m] is the clause
c where all cuts ! are replaced by !m), and ?m is added at
the end of the new backtracking goals to denote their scope.

2

Example 2. Consider the following logic program.

star(XS , []) :- !. (1)

star([],ZS) :- !, eq(ZS , []). (2)

star(XS ,ZS) :- app(XS ,YS ,ZS), star(XS ,YS). (3)

app([],YS ,YS). (4)

app([X |XS],YS , [X |ZS]) :- app(XS ,YS ,ZS). (5)

eq(X,X). (6)

Here, star(t1, t2) holds iff t2 results from repeated concate-
nation of t1. So we have star([1, 2], []), star([1, 2], [1, 2]),
star([1, 2], [1, 2, 1, 2]), etc. The cut in rule (2) is needed for
termination of queries of the form star([], t). For the query
star([1, 2], []), we obtain the following evaluation, where we
omitted the labeling by substitutions for readability.

star([1, 2], []) ⊢Case

star([1, 2], [])(1
′) | star([1, 2], [])(2

′) | star([1, 2], [])(3) | ?1 ⊢Eval

!1 | star([1, 2], [])
(2′) | star([1, 2], [])(3) | ?1 ⊢Cut

✷ | ?1 ⊢Suc

?1 ⊢Fail ε

So the Case rule results in a state which represents a case
analysis where we first try to apply the star-clause (1). The
state also contains the next backtracking goals, since when
backtracking later on, we would use clauses (2) and (3).
Here, (1′) denotes (1)[!/!1] and (2′) denotes (2)[!/!1].

For a goal (t,Q)h :-B
θ , if t unifies2 with the head h of the pro-

gram clause, we apply Eval, which replaces t by the body B
of the clause and applies the mgu σ to the result. Moreover,
σ contributes to the answer substitution, i.e., we replace the
label θ by θσ.
If t does not unify with h (denoted “t 6∼ h”), we apply

the Backtrack rule. Then, h :-B cannot be used and we
backtrack to the next goal in our backtracking sequence.
Finally, there are two Cut rules. The first rule removes

all backtracking information on the level m where the cut
was introduced. Since its scope is explicitly represented by
!m and ?m, we have turned the cut into a local operation
depending only on the current state. Note that ?m must not
be deleted as the current goal Qθ could still lead to another
cut !m. The second Cut rule is used if ?m is missing (e.g.,
if a cut !m is already in the initial query). We treat such
states as if ?m were added at the end of the state.
For each queryQ, its corresponding initial state consists of

just (Q[!/!1])id (i.e., all cuts in Q are labeled by a fresh num-
ber like 1 and the goal is labeled by the identity substitution
id). The query Q is terminating if all evaluations starting in
its corresponding initial state are finite. Our inference rules
can also be used to define answer substitutions.

Definition 3 (Answer Substitution). Let S be a
state with a single goal Qσ (which may additionally be labeled
by a clause c). We say that θ is an answer substitution for S
if there is an evaluation from S to a state (✷σθ | Ssuffix) for a
(possibly empty) state Ssuffix (i.e., (✷σθ | Ssuffix) is obtained
by repeatedly applying rules from Def. 1 to S). Similarly,
θ is an answer substitution for a query if it is an answer
substitution for the query’s initial state.

2In this paper, we consider unification with occurs check.
Our method could be extended to unification without occurs
check, but we left this as future work since most programs
do not rely on the absence or presence of the occurs check.

3. FROM PROLOG TO SYMBOLIC EVAL-

UATION GRAPHS
We now explain the construction of symbolic evaluation
graphs which represent all evaluations of a logic program
for a certain class of queries. While we already presented
such graphs in [36], here we introduce a new formulation of
the corresponding abstract inference rules which is suitable
for generating TRSs afterwards. Moreover, we present new
theorems (Thm. 5, 8, and 10) which express the exact con-
nection between abstract and concrete evaluations. These
theorems will be used to prove the soundness of our analy-
ses later on.
We consider classes of atomic queries described by a p/n ∈

Σ and a moding function m : Σ×N→ {in, out}. So m deter-
mines which arguments of a symbol are “inputs”. The corre-
sponding class of queries is Qp

m = {p(t1, . . . , tn) | V(ti) = ∅

for all i with m(p, i) = in }. Here, “V(ti)” denotes the set
of all variables occurring in ti. So for the program of Ex. 2,
we might regard the class of queries Qstar

m where m(star, 1) =
m(star, 2)= in. Thus, Qstar

m ={star(t1, t2) | t1, t2 are ground}.
To represent classes of queries, we regard abstract states

that stand for sets of concrete states. Instead of “ordinary”
variables N , abstract states use abstract variables A = {T1,
T2, . . .} representing fixed, but arbitrary terms (i.e., V =
N ⊎A).
To obtain concrete states from an abstract one, we use

concretizations. A concretization is a substitution γ which
replaces all abstract variables by concrete terms, i.e.,
Dom(γ) = A and V(Range(γ)) ⊆ N . To determine by
which terms an abstract variable may be instantiated, we
add a knowledge base KB = (G,U) to each state, where G ⊆
A and U ⊆ T (Σ,V)×T (Σ,V). The variables in G may only
be instantiated by ground terms, i.e., V(Range(γ|G)) = ∅.
Here, “γ|G” denotes the restriction of γ to G, i.e., γ|G(X) =
γ(X) for X ∈ G and γ|G(X) = X for X ∈ V \ G. A pair
(t, t′) ∈ U means that we are restricted to concretizations γ
where tγ 6∼ t′γ, i.e., t and t′ must not be unifiable after γ is
applied. Then we say that γ is a concretization w.r.t. KB .
Thus, an abstract state has the form (S;KB). Here, S

has the form (G1 | . . . | Gn) where the Gi are goals over
the signature Σ and the abstract variables A (i.e., they do
not contain variables from N). In contrast to [36], we again
label all goals (except scope markers) by substitutions θ :
V → T (Σ,A) in order to store which substitutions were
applied during an evaluation. These substitution labels will
be necessary for the synthesis of TRSs in Sect. 4.
The notion of concretization can also be used for states.

A (concrete) state S′ is a concretization of (S;KB) if there
exists a concretization γ w.r.t. KB such that S′ results from
Sγ by replacing the substitution labels of its goals by ar-
bitrary (possibly different) substitutions θ : N → T (Σ,N).
To ease readability, we often write “Sγ” to denote an arbi-
trary concretization of (S;KB). Let CON (S;KB) denote
the set of all concretizations of an abstract state (S;KB).
For a class Qp

m with p/n, now the initial state is (p(T1,
. . . , Tn)id , (G,∅)), where G contains all Ti with m(p, i) = in.
We now adapt the inference rules of Def. 1 to abstract

states. The rules Suc, Fail, Cut, and Case do not change
the knowledge base and are straightforward to adapt. In
Def. 1, we determined which of the rules Eval and Back-
track to apply by trying to unify the first term t with the
head h of the corresponding clause. But in the abstract

3

case we might need to apply Eval for some concretizations
and Backtrack for others. The abstract Backtrack rule
in Def. 4 can be used if tγ does not unify with h for any
concretization γ. Otherwise, tγ unifies with h for some con-
cretizations γ, but possibly not for others. Thus, the ab-
stract Eval rule has two successor states to combine both
the concrete Eval and the concrete Backtrack rule. Con-
sequently, we now obtain symbolic evaluation trees instead
of sequences.

Definition 4 (Abstract Inference Rules).

(✷θ |S);KB

S;KB
(Suc)

((!m, Q)θ |S | ?m |S
′);KB

(Qθ | ?m | S
′);KB

(Cut)
where
S con-
tains
no ?m

(?m | S);KB

S;KB
(Fail)

((!m, Q)θ | S);KB

Qθ;KB
(Cut)

where S
contains
no ?m

((t, Q)θ | S);KB

((t, Q)
c1[!/!m]
θ | . . . | (t, Q)

ca[!/!m]
θ | ?m | S);KB

(Case)

where t is no cut or variable, m is fresh,
SliceP(t) = (c1, . . . , ca)

((t, Q)h :-B
θ | S);KB

S;KB
(Backtrack)

if there is no con-
cretization γ w.r.t.
KB such that tγ ∼ h.

((t, Q)h :-B
θ | S); (G,U)

((Bσ,Qσ)θσ | S
′); (G′,Uσ|G) S; (G,U ∪ {(t, h)})

(Eval)

fooif mgu(t, h) = σ. W.l.o.g., V(Range(σ)) only contains fresh
abstract variables and Dom(σ) contains all previously oc-
curring variables. Moreover, G′ = A(Range(σ|G)) and S′

results from S by applying the substitution σ|G to its goals
and by composing σ|G with the substitution labels of its goals.

To handle “sharing” effects correctly [36], w.l.o.g. we as-
sume that mgu(t, h) = σ renames all occurring variables
to fresh abstract variables in Eval. The knowledge base is
updated differently for the successors corresponding to the
concrete Eval and Backtrack rule. For all concretiza-
tions corresponding to the second successor of Eval, the
concretization of t does not unify with h. Hence, here we
add (t, h) to U .

Now consider concretizations γ where tγ and h unify, i.e.,
these concretizations γ correspond to the first successor of
the Eval rule. Then for any T ∈ G, Tγ is a ground instance
of Tσ. Hence, we replace all T ∈ G by Tσ, i.e., we apply σ|G
to S. The new set G′ of variables that may only be instanti-
ated by ground terms are the abstract variables occurring in
Range(σ|G) (denoted “A(Range(σ|G))”). As before, t is re-
placed by the instantiated clause body B and the previous
substitution label θ is composed with the mgu σ (yielding
θσ).

Thm. 5 states that any concrete evaluation with Def. 1
can also be simulated with the abstract rules of Def. 4.

Theorem 5 (Soundness of Abstract Rules). Let
(S;KB) be an abstract state with a concretization Sγ ∈
CON (S;KB), and let Snext be the successor of Sγ according
to the operational semantics in Def. 1. Then the abstract
state (S;KB) has a successor (S′;KB ′) according to an in-
ference rule from Def. 4 such that Snext ∈ CON (S′;KB ′).

As an example, consider the program from Ex. 2 and the
class of queries Qstar

m . The corresponding initial state is

star(T1, T2)ida

star(T1, T2)
(1′)
id

| star(T1, T2)
(2′)
id

| star(T1, T2)
(3)
id

b

Case

(!1)σ1
| star(T3, [])

(2′)
σ2

| star(T3, [])
(3)
σ2

c

Eval

star(T1, T2)
(2′)
id

| star(T1, T2)
(3)
id

d

Eval
star(T1, T2) ≁ star(XS, [])

✷σ1e

Cut

(!1, eq(T4, []))σ3 | star([], T4)
(3)
σ4

Eval

star(T1, T2)
(3)
id

Eval
star(T1, T2) ≁

star([], ZS)

ε

Suc

eq(T4, [])σ3

Cut

(app(T5, T7, T6), star(T5, T7))σ5f

Eval

ε

Eval

. . .

Case

app(T5, T7, T6)idg

Split

star(T5, T8)δh

Split

Inst

T1/T5, T2/T8

app(T5, T7, T6)
(4)
id

| app(T5, T7, T6)
(5)
id

Case

app(T5, T7, T6)
(5)
id

Backtrack

app(T10, T11, T12)σ6i

Eval

ε

Eval

app(T5, T7, T6) ≁

app([X | XS],YS, [X | ZS])

app(T10, T11, T12)
(4)
σ6

| app(T10, T11, T12)
(5)
σ6

Case

✷σ6σ7 | app([], T11, T13)
(5)
σ6σ8

j

Eval

app(T10, T11, T12)
(5)
σ6

Eval
app(T10, T11, T12)
≁ app([],XS,XS)

app([], T11, T13)
(5)
σ6σ8

Suc

app(T15, T16, T17)σ6σ9k

Eval

Inst

T10/T15,
T11/T16,

T12/T17

ε

Eval

app(T10, T11, T12) ≁

app([X | XS],YS, [X | ZS])

ε

Backtrack

Figure 6: Symbolic Evaluation Graph for Ex. 2

(star(T1, T2)id ; ({T1, T2},∅)). A symbolic evaluation start-
ing with this state a is depicted in Fig. 6. The nodes of
such a symbolic evaluation graph are states and each step
from a node to its children is done by an inference rule. To
save space, we omitted the knowledge base from the states
(S; (G,U)). Instead, we overlined all variables contained in
G and labeled those edges where new information is added
to U .
The child of a is b with (star(T1, T2)

(1′)
id | star(T1, T2)

(2′)
id |

star(T1, T2)
(3)
id | ?1). In Fig. 6 we simplified the states by

removing markers ?m that occur at the end of a state. This
is possible, since applying the first Cut rule to a state end-
ing in ?m corresponds to applying the second Cut rule to
the same state without ?m. Moreover, (1′) and (2′) again
abbreviate (1)[!/!1] and (2)[!/!1].
In b, (1′) is used for the next evaluation. Eval yields two

successors: In c, σ1 = mgu(star(T1, T2), star(XS , [])) = {T1/

T3,XS/T3, T2/[]} leads to ((!1)σ1 | star(T3, [])
(2′)
σ2 | star(T3,

[])
(3)
σ2). Here, σ2 = σ1|{T1,T2}

. In the second successor d

of b, we add the information star(T1, T2) 6∼ star(XS , []) to
U (thus, we labeled the edge from b to d accordingly).
Unfortunately, even for terminating queries, in general the

rules of Def. 4 yield an infinite tree. The reason is that there
is no bound on the size of terms represented by the abstract

4

variables and hence, the abstract Eval rule can be applied
infinitely often. To represent all possible evaluations in a
finite way, we need additional inference rules to obtain finite
symbolic evaluation graphs instead of infinite trees.

To this end, we use an additional Inst rule which allows
us to connect the current state (S;KB) with a previous state
(S′;KB ′), provided that the current state is an instance of
the previous state. In other words, every concretization of
(S;KB) must be a concretization of (S′;KB ′). More pre-
cisely, there must be a matching substitution µ such that
S′µ = S up to the substitutions used for labeling goals in
S′ and S. These substitution labels do not have to be taken
into account here, since we will not generate rewrite rules
from paths that traverse Inst edges in Sect. 4. Moreover,
for KB ′ = (G′,U ′) and KB = (G,U), G′ and G must be the
same (modulo µ) and all constraints from U ′ must occur in
U (modulo µ). Then we say that µ is associated to (S;KB)
and label the resulting Inst edge with µ. For example, in
Fig. 6, µ = {T1/T5, T2/T8} is associated to h and the edge
from h to a is labeled with µ. We only define the Inst
rule for states containing a single goal. As indicated by our
experiments, this is no severe restriction in practice.3

Definition 7 (Abstract Rules: Inst).

S; (G,U)

S′; (G′,U ′)
(Inst)

if S = Qθ and S′ = Q′θ′ or S = Qc
θ and S′ = Q′cθ′ for

some non-empty queries Q and Q′, such that there is a µ
with Dom(µ) ⊆ A, V(Range(µ)) ⊆ A, Q = Q′µ, G =
⋃

T∈G′ V(Tµ), and U
′µ ⊆ U .

Thm. 8 states that every concrete state represented by an
Inst node is also represented by its successor.

Theorem 8 (Soundness of Inst). Let (S;KB) be an
abstract state, let (S′;KB ′) be its successor according to the
Inst rule, and let µ be associated to (S;KB). If Sγ ∈
CON (S;KB), then for γ′=µγ we have S′γ′∈CON (S′;KB ′).

Moreover, we also need a Split inference rule to split a
state ((t, Q)θ;KB) into (tid ;KB) and ((Qδ)δ;KB ′), where δ
approximates the answer substitutions for t. Such a Split is
often needed to make the Inst rule applicable. We say that
δ is associated to ((t, Q)θ;KB). The previous substitution
label θ does not have to be taken into account here, since
we will not generate rewrite rules from paths that traverse
Split nodes in Sect. 4. Thus, we can reset the substitution
label θ to id in the first successor of the Split node and
store the associated substitution δ in the substitution label
of the second successor. Similar to the Inst rule, we only
define the Split rule for states containing a single goal.

3In [36] and in our implementation, we use an additional in-
ference rule to split up sequences of goals, but we omitted it
here for readability. Adding this rule allows us to construct
a symbolic evaluation graph for each program and query.

Definition 9 (Abstract Rules: Split).

(t, Q)θ; (G,U)

tid ; (G,U) (Qδ)δ; (G
′,Uδ)

(Split)

where δ replaces all pre-
viously occurring vari-
ables from A\G by fresh
abstract variables and
G′ = G ∪NextG(t,G)δ.

Here, NextG is defined as follows. We assume that we have
a groundness analysis function GroundP : Σ×2N → 2N, see,
e.g., [21]. If p/n ∈ Σ and {i1, . . . , im} ⊆ {1, . . . , n}, then
GroundP(p, {i1, . . . , im})={j1, . . . , jk} means that any que-
ry p(t1, . . . , tn) ∈ T (Σ,N) where ti1 , . . . , tim are ground on-
ly has answer substitutions θ where tj1θ, . . . , tjkθ are ground.
So GroundP approximates which positions of p will become
ground if the “input” positions i1, . . . , im are ground. Now
if t = p(t1, . . . , tn) ∈ T (Σ,A) is an abstract term where
ti1 , . . . , tim become ground in every concretization (i.e., all
their variables are from G), then NextG(t,G) returns all vari-
ables in t that will be made ground by every answer substitu-
tion for any concretization of t. Thus, NextG(t,G) contains
the variables of tj1 , . . . , tjk . So formally

NextG(p(t1, . . . , tn),G) =
⋃

j∈GroundP (p, {i|V(ti)⊆G})
V(tj).

Hence, in the second successor of the Split rule, the vari-
ables in NextG(t,G) can be added to the groundness set G.
Since these variables were renamed by δ, we extend G by
NextG(t,G)δ.
For instance, in Fig. 6, we split the query app(T5, T7, T6),

star(T5, T7) in state f. Thus, the first successor of f is
app(T5, T7, T6) in state g. By groundness analysis, we in-
fer that every successful evaluation of app(T5, T7, T6) in-
stantiates T7 by ground terms, i.e., GroundP(app, {1, 3}) =
{1, 2, 3}. Thus, for G = {T5, T6}, we have NextG(app(T5,
T7, T6),G) = V(T5)∪V(T7)∪V(T6) = {T5, T7, T6}. So in the
second successor h of f, we use the substitution δ(T7) = T8

and extend the groundness set G of f by NextG(app(T5, T7,
T6),G)δ = {T5, T8, T6}. Thus, T8 is also overlined in Fig. 6.
Thm. 10 shows the soundness of Split. Suppose that we

apply the Split rule to ((t, Q)θ;KB), which yields (tid ;KB)
and ((Qδ)δ;KB ′). Any evaluation of a concrete state (tγ,Qγ)
∈ CON ((t, Q)θ;KB) consists of parts where one evaluates
tγ (yielding some answer substitution θ′) and of parts where
one evaluates Qγθ′. Clearly, those parts which correspond
to evaluations of tγ can be simulated by the left successor of
the Split node (since tγ ∈ CON (tid ;KB)). Thm. 10 states
that the parts of the overall evaluation which correspond to
evaluations of Qγθ′ can be simulated by the right successor
of the Split node (i.e., Qγθ′∈CON ((Qδ)δ;KB ′)).

Theorem 10 (Soundness of Split). Let ((t,Q)θ;KB)
be an abstract state and let (tid ;KB) and ((Qδ)δ;KB ′) be
its successors according to the Split rule. Let (tγ,Qγ) ∈
CON ((t, Q)θ;KB) and let θ′ be an answer substitution of
(tγ)id . Then we have Qγθ′ ∈ CON ((Qδ)δ;KB ′).

We define symbolic evaluation graphs as a subclass of the
graphs obtained by the rules of Def. 4, 7, and 9. They
must not have any cycles consisting only of Inst edges, as
this would lead to trivially non-terminating TRSs. More-
over, their only leaves may be nodes where no inference rule
is applicable anymore (i.e., the graphs must be “fully ex-
panded”). The graph in Fig. 6 is indeed a symbolic evalua-
tion graph.

5

Definition 11 (Symbolic Evaluation Graph). A
finite graph built from an initial state using Def. 4, 7, and
9 is a symbolic evaluation graph (or “evaluation graph” for
short) iff there is no cycle consisting only of Inst edges and
all leaves are of the form (ε;KB).4

4. FROM EVALUATION GRAPHS TO TRSS

– TERMINATION ANALYSIS
Now our goal is to show termination of all concrete states
represented by the graph’s initial state. To this end, we
synthesize a TRS from the symbolic evaluation graph. This
TRS has the following property: if there is an evaluation
from a concretization of one state to a concretization of an-
other state which may be crucial for termination, then there
is a corresponding rewrite sequence w.r.t. the TRS. Then
automated tools for termination analysis of TRSs can be
used to show termination of the synthesized TRS and this
implies termination of the original logic program. See, e.g.,
[13, 16, 42] for an overview of techniques for automatically
proving termination of TRSs.

For the basics of term rewriting, we refer to [6]. A term
rewrite system R is a finite set of rules ℓ → r where ℓ /∈ V
and V(r) ⊆ V(ℓ). The rewrite relation t→R t′ for two terms
t and t′ holds iff there is an ℓ→ r ∈ R, a position pos, and a
substitution σ such that ℓσ = t|pos and t′ = t[rσ]pos . Here,
t|pos is the subterm of t at position pos and t[rσ]pos results
from replacing the subterm t|pos at position pos in t by the
term rσ. The rewrite step is innermost (denoted t i→R t′)
iff no proper subterm of ℓσ can be rewritten.

To obtain a TRS from an evaluation graph Gr , we encode
the states as terms. For each state s = (S; (G,U)), we use
two fresh function symbols f in

s and fout
s . The arguments of

f in
s are the variables in G (which represent ground terms).
The arguments of fout

s are those remaining abstract variables
which will be made ground by every answer substitution
for any concretization of s. They are again determined by
groundness analysis [21]. Formally, the encoding of states is
done by two functions encin and encout .

For instance, for the state f in Fig. 6, we obtain encin(f) =
f in
f (T5, T6) (as G = {T5, T6} in f) and encout(f) = fout

f (T7).
The reason is that if γ instantiates T5 and T6 by ground
terms, then every answer substitution of (app(T5, T7, T6)γ,
star(T5, T7)γ) instantiates T7γ to a ground term as well.

For an Inst node like h with associated substitution µ we
do not introduce fresh function symbols, but use the function
symbol of its (more general) successor instead. So we take
the terms resulting from its successor a and apply µ to them.
In other words, encin(h) = encin(a)µ = f in

a (T1, T2)µ =
f in
a (T5, T8) and encout(h) = encout(a)µ = fout

a µ = fout
a .

In the following, for an evaluation graph Gr and an infer-
ence rule Rule, Rule(Gr) denotes all nodes of Gr to which
Rule was applied. LetSucci(s) denote the i-th child of node
s and Succi(Rule(Gr)) denotes the set of i-th children of all
nodes from Rule(Gr).

Definition 12 (Encoding States as Terms). Let s
be an abstract state with a single goal (i.e., s = ((t1, . . . ,
tk)θ; (G,U))), and let V(s) = V(t1) ∪ . . . ∪ V(tk). We define

4The application of inference rules to abstract states is not
deterministic. In our prover AProVE, we implemented a
heuristic [38] to generate symbolic evaluation graphs auto-
matically which turned out to be very suitable for subse-
quent analyses in our empirical evaluations.

encin(s) =







encin(Succ1(s))µ, if s ∈ Inst(Gr) where µ is as-
sociated to s

f in
s (Gin(s)), otherwise, where Gin (s) = G ∩ V(s)

encout(s)=











encout(Succ1(s))µ, if s ∈ Inst(Gr) where µ is
associated to s

fout
s (Gout(s)), otherwise, where Gout (s) =

NextG((t1, ..., tk),G) \ G

Here, we extended NextG to work also on queries:

NextG((t1, . . . , tk),G) = NextG(t1,G) ∪
NextG((t2, . . . , tk), NextG(t1,G)).

So to compute NextG((t1, . . . , tk),G) for a query (t1, . . . , tk),
in the beginning we only know that the variables in G repre-
sent ground terms. Then we compute the variables
NextG(t1,G) which are made ground by all answer substitu-
tions for concretizations of t1. Next, we compute
NextG(t2, NextG(t1,G)) which are made ground by all an-
swer substitutions for concretizations of t2, etc.
Now we encode the paths of Gr as rewrite rules. However,

we only consider connection paths of Gr , which suffice to
analyze termination. Connection paths are non-empty paths
that start in the root node of the graph or in a successor of
an Inst or Split node, provided that these states are not
Inst or Split nodes themselves. So the start states in our
example are a, g, and i. Moreover, connection paths end in
an Inst, Split, or Suc node or in the successor of an Inst
node, while not traversing Inst or Split nodes or successors
of Inst nodes in between. So in our example, the end states
are a, e, f, h, i, j, k, but apart from e and j, connection
paths may not traverse any of these end nodes in between.
Thus, we have connection paths from a to e, a to f, g

to i, i to j, and i to k. These paths cover all ways through
the graph except for Inst edges (which are covered by the
encoding of states to terms), for Split edges (which we con-
sider later in Def. 15), and for graph parts without cycles or
Suc nodes (which cannot cause non-termination).

Definition 13 (Connection Path).A path π=s1...sk
is a connection path of an evaluation graph Gr iff k > 1 and

• s1 ∈ {root(Gr)} ∪ Succ1(Inst(Gr) ∪ Split(Gr)) ∪
Succ2(Split(Gr))

• sk ∈ Inst(Gr) ∪ Split(Gr) ∪ Suc(Gr) ∪ Succ1(Inst(Gr))
• for all 1 ≤ j < k, sj /∈ Inst(Gr) ∪ Split(Gr)
• for all 1 < j < k, sj /∈ Succ1(Inst(Gr))

For a connection path π, let σπ represent the unifiers that
were applied along the path. These unifiers can be deter-
mined by“comparing” the substitution labels of the first and
the last state of the path (i.e., the goal in π’s first state has
a substitution label θ and the first goal of π’s last state is
labeled by θσπ). So for the connection path π from a to
f we have σπ = σ5, where σ5(T1) = T5 and σ5(T2) = T6.
For this path, we generate rewrite rules which evaluate the
instantiated input term encin(a)σπ for the start node a to
its output term encout(a)σπ if the input term encin(f) for
the end node can be evaluated to its output term encout(f).
So we get encin(a)σπ → ua,f(enc

in(f),V(encin(a)σπ)) and
ua,f(enc

out(f), V(encin(a)σπ)) → encout(a)σπ for a fresh
function symbol ua,f. In our example, this yields

f in
a (T5, T6)→ ua,f(f

in
f (T5, T6), T5, T6) (7)

ua,f(f
out
f (T7), T5, T6)→ fout

a (8)

6

However, for connection paths π′ like the one from a to e
which end in a Suc node, the resulting rewrite rule directly
evaluates the instantiated input term encin(a)σπ′ for the
start node a to its output term encout(a)σπ′ . So we obtain

f in
a (T3, [])→ fout

a (9)

Definition 14 (Rules for Connection Paths).Let
π be a connection path s1 . . . sk in a symbolic evaluation
graph. Let the (only) goal in s1 be labeled by the substitu-
tion θ and let the first goal in sk be labeled by the substitution
θ σπ. If sk ∈ Suc(Gr), then we define ConnectionRules(π)=

{encin(s1)σπ → encout(s1)σπ}.

Otherwise, ConnectionRules(π) =

{ encin(s1)σπ → us1,sk (enc
in(sk), V(enc

in(s1)σπ)),
us1,sk (enc

out(sk), V(enc
in(s1)σπ)) → encout(s1)σπ },

where us1,sk is a fresh function symbol.

In addition to the rules for connection paths, we also need
rewrite rules to simulate the evaluation of Split nodes like
f. Let δ be the substitution associated to f (i.e., δ rep-
resents the answer substitution of f’s first successor g).
Then the Split node f succeeds (i.e., encin(f) δ can be
evaluated to encout(f) δ) if both successors g and h suc-
ceed (i.e., encin(g) δ can be evaluated to encout(g) δ and
encin(h) can be evaluated to encout(h)). Note that encin(f)
and encin(g) only contain “input” arguments (i.e., abstract
variables from G) and thus, δ does not modify them. Hence,
encin(f) δ = encin(f) and encin(g) δ = encin(g). So we
obtain

f in
f (T5, T6)→ uf,g(f

in
g (T5, T6), T5, T6) (10)

uf,g(f
out
g (T8), T5, T6)→ ug,h(f

in
a (T5, T8), T5, T6, T8) (11)

ug,h(f
out
a , T5, T6, T8)→ fout

f (T8) (12)

Definition 15 (Rules for Split, R(Gr)). Let s ∈
Split(Gr), s1 = Succ1(s), and s2 = Succ2(s). Moreover, let
δ be the substitution associated to s. Then SplitRules(s) =

{ encin (s) → us,s1 (enc
in (s1), V(encin (s))),

us,s1 (enc
out (s1) δ, V(encin (s))) →

us1,s2 (enc
in (s2), V(encin (s)) ∪ V(encout (s1)δ)),

us1,s2 (enc
out (s2),V(encin (s))∪V(encout (s1) δ)) → encout (s)δ}

R(Gr) consists of ConnectionRules(π) for all connection
paths π and of SplitRules(s) for all Split nodes s of Gr.

For the graph Gr of Fig. 6, the resulting TRS R(Gr)
consists of (7) – (12) and the connection rules (13), (14)

for the path from g to i (where σ6(T5) = [T9 |T10], σ6(T7) =

T11, σ6(T6) = [T9 |T12]), the rules (15), (16) for i to k (where

σ9(T10) = [T14 | T15], σ9(T11) = T16, σ9(T12) = [T14 | T17]),

and (17) for i to j (where σ8 = σ7|{T10,T12}
with σ8(T10) =

[], σ8(T12) = T13).

f
in
g ([T9 | T10], [T9 | T12]) → ug,i(f

in
i (T10, T12), T9, T10, T12) (13)

ug,i(f
out
i (T11), T9, T10, T12) → f

out
g (T11) (14)

f
in
i ([T14 | T15], [T14 | T17]) → ui,k(f

in
i (T15, T17), T14, T15, T17) (15)

ui,k(f
out
i (T16), T14, T15, T17) → f

out
i (T16) (16)

f
in
i ([], T13) → f

out
i (T13) (17)

Thm. 16 states that the resulting TRS can simulate all
successful evaluations represented in the graph, i.e., it sim-
ulates all computations of the logic program.

Theorem 16 (TRS Simulates Semantics). Let s =
(S;KB) be a start node of a connection path or a Split
node in a graph Gr, Sγ ∈ CON (s), and let θ be an answer
substitution for Sγ. Then encin(s)γ i→+

R(Gr) enc
out(s)γθ.

Virtually all modern TRS termination tools can prove that
R(Gr) is terminating in our example. Thm. 17 shows that
this implies termination of all queries corresponding to the
root of Gr . Hence, by our approach, one can prove termina-
tion of non-definite logic programs like Ex. 2 automatically.

Theorem 17 (Soundness of Termination Analysis).
Let P be a logic program, p ∈ Σ, m a moding function, and
let Gr be a symbolic evaluation graph for P whose root is
the initial state corresponding to Qp

m. If the TRS R(Gr) is
innermost terminating, then there is no infinite evaluation
starting with any query from Qp

m. Thus, all these queries
are terminating w.r.t. the program P.

We implemented our approach for termination analysis
in the tool AProVE [15]. In addition to the cut, our im-
plementation handles many further features of Prolog. For
our experiments, AProVE ran on all 477 Prolog programs of
the Termination Problem Database (TPDB, version 8.0.6),
which is the collection of examples used in the annual Inter-
national Termination Competition.5 300 of them are definite
logic programs, whereas the remaining 177 programs con-
tain advanced features like cuts. 37 of the 477 examples are
known to be non-terminating. The experiments were run on
2.2 GHz Quad-Opteron 848 Linux machines with a timeout

Yes RT

AProVE-[34] 265 7.1
AProVE-[36] 287 7.6
AProVE-[39] 340 5.7
AProVE-New 342 6.5

of 60 seconds per program.
In the table, “Yes” indi-
cates the number of ex-
amples where termination
could be proved and “RT”
is the average runtime (in
seconds) per example.
All termination tools for logic programs except AProVE

ignore cuts, i.e., they try to prove termination of the pro-
gram that results from removing the cuts. This is sensible,
since cuts are not always needed for termination. Indeed,
the variant AProVE-[34] implements our technique from [34]
which ignores cuts and directly translates logic programs to
TRSs. Still, it proves termination of 31 of the 177 non-
definite programs. Other existing termination tools would
not yield better results, as AProVE-[34] is already the most
powerful tool for definite logic programs (as shown by the ex-
periments in [34]) and as most of the remaining non-definite
examples do not terminate anymore if one removes cuts.
AProVE-[36] implements our approach from [36] which in-
troduced evaluation graphs, but transforms them to definite
logic programs instead of TRSs. This approach is much
more powerful than [34] on examples with cut, but it fails
on many definite logic programs where [34] was successful.
The approach of the current paper (implemented in AProVE-
New)6 considers other paths in the graph than [36]. Thus, it
5In these competitions, AProVE was the most pow-
erful tool for termination of logic programs, see
http://termination-portal.org/wiki/Termination_
Competition/.
6To benefit from the full power of rewriting-based termi-
nation analysis, in our implementation we generate TRSs
together with an argument filtering, as in [34]. In this way,
one can also handle examples where ground information on
the arguments of predicates is not sufficient.

7

simulates the evaluations of the original logic program more
concisely and results in a more powerful approach (both for
definite and non-definite programs).

[39] improved upon [36] by generating“dependency triples”
from evaluation graphs. Indeed, AProVE-New and AProVE-
[39] have almost the same power. But while the back-end
of [39] required a tool that can handle the (non-standard)
notion of dependency triples, our new approach works with
any tool for termination of TRSs. Moreover, the approach
of the current paper has the advantage that the TRSs gener-
ated for termination analysis can also be used for analyzing
other properties like complexity, as shown in Sect. 5.

5. FROM EVALUATION GRAPHS TO TRSS

– COMPLEXITY ANALYSIS
We briefly recapitulate the required notions for complex-
ity of TRSs. The defined symbols of a TRS R are Σd =
{root(ℓ) | ℓ → r ∈ R}, i.e., these are the function symbols
that can be “evaluated”. So for R(Gr) from Sect. 4, we
have Σd = {f in

a , ua,f, f
in
f , uf,g, ug,h, f

in
g , ug,i, f

in
i , ui,k}. Differ-

ent notions of complexity have been proposed for TRSs.In
this paper, we focus on innermost runtime complexity [20],
which corresponds to the notion of complexity used for pro-
gramming languages. Here, one only considers rewrite se-
quences starting with basic terms f(t1, . . . , tn), where f ∈ Σd

and t1, . . . , tn do not contain symbols from Σd. The inner-
most runtime complexity function ircR maps any n ∈ N

to the length of the longest sequence of i→R-steps starting
with a basic term t where |t| ≤ n. Here, |t| is the number of
variables and function symbols occurring in t. To measure
the complexity of a TRS R, we determine the asymptotic
growth of ircR, i.e., we say that R has linear complexity iff
ircR(n) ∈ O(n), quadratic complexity iff ircR(n) ∈ O(n2),
etc. Tools for automated complexity analysis of TRSs can
automatically determine ircR(Gr)(n) ∈ O(n) for R(Gr) =

{(7)− (17)} from Sect. 4.7

Moreover, we also have to define the notion of “complex-
ity” for a logic programs. For a logic program P and a query
Q, we consider the length of the longest evaluation starting
in the initial state for Q. As shown in [40], this length is
equal to the number of unification attempts when travers-
ing the whole SLD tree according to the ISO semantics [22],
up to a constant factor.8 For a moding function m, and any
term p(t1, . . . , tn), its moded size is |p(t1, . . . , tn)|m = 1 +
Σi∈{i | 1≤i≤n,m(p,i)=in} |ti|. Thus, for a class of queries Qp

m,
the Prolog runtime complexity function prcP,Qp

m
maps any

n ∈ N to the length of the longest evaluation starting with
the initial state for some query Q ∈ Qp

m with |Q|m ≤ n.
To analyze prcP,Qp

m
(n), we generate an evaluation graph

Gr for Qp
m as in Sect. 3 and obtain the TRS R(Gr) as in

Sect. 4. At first sight, one might expect that asymptotically,
ircR(Gr)(n) is indeed an upper bound of prcP,Qp

m
(n). This

7For example, this can be determined by the tool TCT [3].
While AProVE was the most powerful tool for innermost
runtime complexity analysis in the recent termination com-
petitions, here it only obtains ircR(Gr)(n) ∈ O(n2).
8In contrast, other approaches like [10, 11, 12, 29] use the
number of resolution steps to measure complexity. As long
as one does not consider dynamic built-in predicates like
assert/1, these measures are asymptotically equivalent, as
the number of unification attempts at each resolution step
is bounded by a constant (i.e., by the number of program
clauses).

sublist(T1, T2)ida

sublist(T1, T2)
(18)
id

Case

(app(T5, T6, T4), app(T7, T3, T5))σ1b

Eval

ε

Eval

app(T11, T8, T9)δd

Split

app(T5, T6, T4)id c

Split

Inst

T11/T5, T8/T6, T9/T4

app(T11, T8, T9)
(4)
δ

| app(T11, T8, T9)
(5)
δ

Case

✷δσ2
| app(T11, T8, T12)

(5)
δσ3

e

Eval

app(T11, T8, T12)
(5)
δσ3

g

Suc

app(T11, T8, T9)
(5)
δ

f

Eval

Inst

T12/T9

app(T16, T13, T15)δσ3σ4h

Eval

Inst

T11/T16,
T8/T13,

T9/T15
ε

Eval

Figure 19: Symbolic Evaluation Graph for Ex. 18

would allow us to use existing methods for complexity anal-
ysis of TRSs in order to derive upper bounds on the runtime
of logic programs.
In fact for Ex. 2, both ircR(Gr)(n) and prcP,Qstar

m
(n) are in

O(n), i.e., the complexity of the logic program for Qstar
m is

also linear. But in general, ircR(Gr)(n) is not necessarily an
upper bound of prcP,Qp

m
(n). This can happen if Gr contains

a Split node whose first successor is not deterministic. A
query Q is deterministic iff it generates at most one answer
substitution at most once [24]. Similarly, we call an abstract
state s deterministic iff each of its concretizations has at
most one evaluation to a state of the form (✷θ | S).

Example 18.To see the problems with Split nodes whose
first successor is not deterministic, consider the following
program from the TPDB which consists of the clauses (4)
and (5) for app and the following rule:

sublist(X,Y) :- app(P,U, Y), app(V,X, P). (18)

We regard the class of queries Qsublist
m , where m(sublist, 1) =

out and m(sublist, 2) = in. The program computes (by back-
tracking) all sublists of a given list. Its complexity is quadra-
tic since the first app-call results in a linear evaluation with a
linear number of solutions. The second app-call again needs
linear time, but due to backtracking, it is called linearly of-
ten.
We obtain the evaluation graph Gr in Fig. 19. For read-

ability, we omitted labels t ≁ t′ on Eval-edges. We have
σ1(T1) = T3, σ1(T2) = T4; σ2(T8) = T12, σ2(T9) = T12,
σ2(T11) = []; σ3(T9) = T12; σ4(T8) = T13, σ4(T12) = [T14 |
T15], σ4(T11) = [T14 | T16]; and δ(T3) = T8, δ(T5) = T9,
δ(T6) = T10, δ(T7) = T11.
This symbolic evaluation graph has connection paths from

a to b, d to e, d to g, d to f, and g to h. It gives rise to
the following TRS R(Gr).

8

f in
a (T4) → ua,b(f

in
b (T4), T4) (19)

ua,b(f
out
b (T5, T6, T7, T3), T4) → fout

a (T3) (20)

f in
b (T4) → ub,c(f

in
d (T4), T4) (21)

ub,c(f
out
d (T9, T10), T4) → uc,d(f

in
d (T9), T4, T9, T10) (22)

uc,d(f
out
d (T11, T8), T4, T9, T10) → fout

b (T9, T10, T11, T8) (23)

f in
d (T12) → fout

d ([], T12) (24)

f in
d (T12) → ud,g(f

in
g (T12), T12) (25)

ud,g(f
out
g (T11, T8), T12) → fout

d (T11, T8) (26)

f in
d (T9) → ud,f(f

in
g (T9), T9) (27)

ud,f(f
out
g (T11, T8), T9) → fout

d (T11, T8) (28)

f in
g ([T14 |T15]) → ug,h(f

in
d (T15), T14, T15) (29)

ug,h(f
out
d (T16, T13), T14, T15) → fout

g ([T14 |T16], T13) (30)

Its termination is easy to prove by tools like AProVE,
which implies termination of the logic program by Thm. 17.
However, this TRS cannot be used for complexity analysis,
as ircR(Gr) is linear whereas the runtime complexity of the
original logic program is quadratic. For an analogous reason,
complexity analysis of such examples is also not possible by
transformations from logic programs to TRSs like [32, 34].
For complexity analysis, we need a more sophisticated treat-

ment of Split nodes than for termination analysis. For
termination, we only have to approximate the form of the
answer substitutions that are computed for the first succes-
sor of a Split node. This suffices to analyze termination of
the evaluations starting in the second successor. However for
complexity analysis, we also need to know how many answer
substitutions are computed for the first successor of a Split
node, since the evaluation of the second successor is repeated
for each such answer substitution. If the first successor of
a Split node (i.e., a node like c) has k answer substitu-
tions, then the evaluation of the second successor (i.e., of
d) is repeated k times. This is not simulated by the TRS,
which replaces backtracking by non-deterministic choice. So
after applying rule (21), one has to perform a “first f in

d -
reduction” to evaluate the f in

d -term in the right-hand side to
a fout

d -term. There exist several possibilities for this reduc-
tion (e.g., by using (24), (25), or (27)). So one chooses
one such reduction non-deterministically. Afterwards, the
remaining rewrite sequence continues with rule (22). How-
ever, the TRS does not reflect that in the logic program,
one would backtrack afterwards and repeat this remaining
rewrite sequence with rule (22), for every possible “first f in

d -
reduction” from f in

d (. . .) to fout
d (. . .).

However, for the star-example of Ex. 2, the first successor
g of the only Split node f in the graph of Fig. 6 is deter-
ministic. The reason is that there is at most one answer
substitution for any query app(t5, t7, t6), where t5 and t6 are
ground terms. In Sect. 6, we will show how to use evaluation
graphs in order to analyze determinacy automatically.
Nevertheless, even if all first successors of Split nodes are

deterministic, ircR(Gr) is not necessarily an upper bound of
prcP,Qp

m
. This can happen if (i) a Split node s can reach

itself via a non-empty path, (ii) its first successor s′ reaches
a Suc node s′′, and (iii) s′′ reaches a cycle in the graph.

a(T1)ida

(b(T2), q(T2))σ1b

b(T2)idc

Split

q(T2)idd

Split

✷ | (b(T3))
b(X) :- p(X)
σ2

e a(T6)σ5h

Inst

T1/T6

p(T4)σ2σ3 f

p(T5)σ2σ3σ4 g

Inst
T4/T5

Figure 20: Symbolic Evaluation Graph for Ex. 21

Example 21. Consider the following program P and the
set of queries Qa

m where m(a, 1) = in.

a(X) :- b(X), q(X).
b(X).
b(X) :- p(X).

p(s(X)) :- p(X).
q(s(X)) :- a(X).

In the corresponding symbolic evaluation graph in Fig. 20,
dotted arrows abbreviate paths of several edges. We have
σ1(T1) = T2, σ2(T2) = T3, σ3(T3) = T4, σ4(T4) = s(T5),
and σ5(T2) = s(T6). Here, (i) the Split node b reaches
itself via a non-empty path, (ii) its first successor c reaches
a Suc node e, and (iii) e reaches another cycle (from f to
g). The graph has connection paths from a to b, c to e, c
to f, f to g, and d to h. It results in the following TRS.

f in
a (T2) → ua,b(f

in
b (T2), T2) (31)

ua,b(f
out
b , T2) → fout

a (32)

f in
b (T2) → ub,c(f

in
c (T2), T2) (33)

ub,c(f
out
c , T2) → uc,d(f

in
d (T2), T2) (34)

uc,d(f
out
d , T2) → fout

b (35)

f in
c (T3) → fout

c (36)

f in
c (T4) → uc,f(f

in
f (T4), T4) (37)

uc,f(f
out
f , T4) → fout

c (38)

f in
f (s(T5)) → uf,g(f

in
f (T5), T5) (39)

uf,g(f
out
f , T5) → fout

f (40)

f in
d (s(T6)) → ud,h(f

in
a (T6), T6) (41)

ud,h(f
out
a , T6) → fout

d (42)

For the complexity prcP,Qa
m

of this program, each call to

b yields both a success (from c to e in constant time) and a
failing further computation (by the cycle from f to g which
takes linear time). Since b is called linearly often (by the
cycle from a to h), we obtain a quadratic runtime in total.
However, the resulting TRS only has linear complexity.

Here, the backtracking after the Suc node e is modeled by
non-deterministic choice. So to evaluate an f in

c -term, one
either uses rule (36) which corresponds to the path from c to
e or the rules (37), (38) which correspond to the path from

9

c to f, but not both. The traversal of the cycle from a to
h can only continue if one evaluates f in

c by rule (36), which
works in constant time. Only then can the right-hand side
of (33) evaluate to the left-hand side of (34).

Def. 22 captures when ircR(Gr) is no upper bound of prcP,Qp
m
.

Definition 22 (Multiplicative Split Nodes).
A Split node s in a symbolic evaluation graph Gr is called
multiplicative iff its first successor is not deterministic or if
s satisfies the three conditions (i) – (iii) above. Let mults(Gr)
be the set of all multiplicative Split nodes of Gr.

The only Split node f in the graph of Fig. 6 is indeed
non-multiplicative. Its first successor g is deterministic and
while f can reach itself via a non-empty path, the only Suc
node reachable from its first successor g is j, but j cannot
reach a cycle in Gr (i.e., (iii) does not hold).

Thm. 23 shows that if the symbolic evaluation graph only
contains non-multiplicative Split nodes, our approach can
also be used for complexity analysis of logic programs. So
the linear complexity of R(Gr) in our example indeed im-
plies linear complexity of the original program from Ex. 2.

Theorem 23 (Soundness of Complexity Analysis I).
Let P be a logic program, p ∈ Σ, m a moding function, and
let Gr be a symbolic evaluation graph for P whose root is
the initial state corresponding to Qp

m. If Gr has no multi-
plicative Split nodes, then prcP,Qp

m
(n) ∈ O(ircR(Gr)(n)).

We now extend our approach to also handle examples like
Ex. 18 where the evaluation graph Gr contains multiplica-
tive Split nodes (i.e., here we have mults(Gr) = {b}).

To this end, we generate two separate TRSs R(Grc) and
R(Grd) for the subgraphs starting in the two successors
c and d of a multiplicative Split node like b in Ex. 18,
and multiply their complexity functions ircR(Grc),R(Gr) and
ircR(Grd),R(Gr). Here, ircR(Grc),R(Gr) differs from the ordi-
nary complexity function ircR(Gr) by only counting those re-
write steps that are done with the sub-TRSR(Grc) ⊆ R(Gr).

In general, for any R′ ⊆ R, the function ircR′,R maps any
n∈N to the maximal number of i→R′ -steps that occur in any
sequence of i→R-steps starting with a basic term t where |t|
≤ n. Related notions of “relative” complexity for TRSs were
used in, e.g., [4, 20, 31, 41]. Most existing automated com-
plexity provers can also approximate ircR′,R asymptotically.

The function ircR(Grc),R(Gr) indeed also yields an upper
bound on the number of answer substitutions for c, because
the number of answer substitutions cannot be larger than
the number of evaluation steps. In our example, both the
runtime and the number of answer substitutions for the call
app(T5, T6, T4) in node c is linear in the size of T4’s con-
cretization. Thus, the call app(T11, T8, T9) in node d, which
has linear runtime itself, needs to be repeated a linear num-
ber of times. Hence, by multiplying the linear runtime com-
plexities of ircR(Grc),R(Gr) and ircR(Grd),R(Gr), we obtain
the correct result that the runtime of the original logic pro-
gram is (at most) quadratic.

So we use the multiplicative Split nodes of a symbolic
evaluation graph Gr to decompose Gr into subgraphs, such
that multiplicative Split nodes only occur as the leaves of
subgraphs.

Gra

MULTIPLICATIVE SPLIT

Grb Grc

MULTIPLICATIVE SPLIT

Grd Gre

As an example, the
symbolic evaluation graph
on the side is decom-
posed into the subgraphs
Gra, . . . ,Gre (the sub-
graphs Gra and Grc in-
clude the respective mul-
tiplicative Split node as
a leaf). We now deter-
mine the runtime com-
plexities ircR(Gra),R(Gr),
. . . , ircR(Gre),R(Gr) sepa-
rately and combine them
to obtain an upper bound
for the runtime of the
whole logic program. As discussed above, the runtime com-
plexity functions resulting from subgraphs of a multiplica-
tive Split node have to be multiplied. In contrast, the
runtimes for subgraphs above a multiplicative Split node
have to be added. So for the graph on the side, we obtain
ircR(Gra),R(Gr)(n)+ircR(Grb),R(Gr)(n)·(ircR(Grc),R(Gr)(n)+
ircR(Grd),R(Gr)(n) · ircR(Gre),R(Gr)(n)) as an approximation
for the complexity of the logic program.

To ensure that the symbolic evaluation graph can indeed
be decomposed into subgraphs as desired, we have to require
that no multiplicative Split node can reach itself again.

Definition 24 (Decomposable Graphs). A symbol-
ic evaluation graph Gr is called decomposable iff there is no
non-empty path from a node s ∈ mults(Gr) to itself.

The graph in Ex. 18 is decomposable. However, decompo-
sability is a restriction and there are programs in the TPDB
whose complexity we cannot analyze, because our graph
construction yields a non-decomposable evaluation graph.9

For instance, the graph in Ex. 21 is not decomposable.
For any node s, the subgraph at node s starts in s and

stops when reaching multiplicative Split nodes.

Definition 25 (Subgraphs). Let Gr be a decompos-
able evaluation graph with nodes V and edges E (i.e., Gr =
(V,E)) and let s ∈ V . We define the subgraph of Gr at node
s as the minimal graph Grs = (Vs, Es) with s ∈ Vs that sat-
isfies the following property: whenever s1 ∈ Vs \mults(Gr)
and (s1, s2) ∈ E, then s2 ∈ Vs and (s1, s2) ∈ Es.

Now we decompose the symbolic evaluation graph into
the subgraph at the root node and into the subgraphs at all
successors of multiplicative Split nodes. So the graph in
Ex. 18 is decomposed into Gra, Grc, and Grd, where Gra
contains the 4 nodes from a to b and to ε, Grc contains all
other nodes, and Grd contains all nodes of Grc except c.
R(Gra) = {(19) − (23)} consists of ConnectionRules(π)

for the connection path π from a to b and of SplitRules(b).
For both Grc and Grd, we get the same TRS, because c is
an instance of d, i.e., R(Grc) = R(Grd) = {(24)− (30)}.

9An extension of our method to examples with non-
decomposable evaluation graphs would be an interesting
topic for further work. However, even with the restriction
to decomposable graphs, our approach is substantially more
powerful than all previous techniques for automated com-
plexity analysis of logic programs, cf. the end of this section.
In our experiments, there were only 3 examples where other
tools could prove an (exponential) upper bound while we
failed because of non-decomposability.

10

For the complexity of the original logic program, we com-
bine the complexities of the sub-TRSs as discussed before.
So we multiply the complexities resulting from subgraphs of
multiplicative Split nodes, and add all other complexities.
The function cplx s(n) approximates the runtime of the logic
program represented by the subgraph of Gr at node s.

Definition 26 (Complexity for Subgraphs). Let
Gr = (V,E) be decomposable. For any s ∈ V and n ∈ N, let

cplxs(n) =











cplxSucc1(s)
(n) · cplxSucc2(s)

(n), if s ∈ mults(Gr)

ircR(Grs),R(Gr)(n) +

Σs′ ∈mults(Gr)∩Grs
cplxs′ (n), otherwise

So in Ex. 18, we obtain cplxa(n) =

ircR(Gra),R(Gr)(n) + cplx b(n) =
ircR(Gra),R(Gr)(n) + cplx c(n) · cplxd(n) =
ircR(Gra),R(Gr)(n) + ircR(Grc),R(Gr)(n) · ircR(Grd),R(Gr)(n)

Thm. 27 states that combining the complexities of the
TRSs as in Def. 26 indeed yields an upper bound for the
complexity of the original logic program.

Theorem 27 (Soundness of Complexity Analysis II).
Let P be a logic program, p ∈ Σ, m a moding function, and
let Gr be a symbolic evaluation graph for P whose root is
the initial state corresponding to Qp

m. If Gr is decompos-
able, then we have prcP,Qp

m
(n) ∈ O(cplx root(Gr)(n)).

For Ex. 18, tools for complexity analysis of TRSs like TCT
and AProVE automatically prove ircR(Gra),R(Gr)(n)∈O(n),10

ircR(Grc),R(Gr)(n) ∈ O(n), ircR(Grd),R(Gr)(n) ∈ O(n). This
implies cplxa(n) = ircR(Gra),R(Gr)(n) + ircR(Grc),R(Gr)(n) ·

ircR(Grd),R(Gr)(n)∈O(n2). Thus, also prcP,Qsublist
m

(n)∈O(n2).

Note that Thm. 27 subsumes Thm. 23. Every evaluation
graph Gr without multiplicative Split nodes is decompos-
able and here we have cplx root(Gr)(n) = ircR(Gr)(n).

We also implemented our approach for complexity analy-
sis in our tool AProVE [15]. Existing approaches for direct
complexity analysis of logic programs (e.g., [10, 11, 12, 23,
29])11 are restricted to well-moded logic programs. In con-
trast, our approach is applicable to a much wider class of
logic programs (including non-well-moded and non-definite
programs).12 To compare their power, we evaluated AProVE
against the Complexity Analysis System for LOGic (CASLOG)
[11] and the Ciao Preprocessor (CiaoPP) [18, 19], which im-
plements the approach of [29]. We ran the three tools on all
477 Prolog programs from the TPDB, again using 2.2 GHz
Quad-Opteron 848 Linux machines with a timeout of 60 sec-
onds per program. For CiaoPP we used both the original cost
analysis (CiaoPP-o) and CiaoPP’s new resource framework
which allows to measure different forms of costs (CiaoPP-r).
Here, we chose the cost measure “res_steps”which approx-
imates the number of resolution steps needed in evaluations.

10We even have ircR(Gra),R(Gr)(n) ∈ O(1), i.e., as in Foot-
note 7, the bounds found by the tools are not always tight.

11Some approaches also deduce lower complexity bounds for
logic programs [12, 23], while we only infer upper bounds.

12However, our implementation currently does not treat
built-in integer arithmetic, while [10, 11, 12, 29] handle lin-
ear arithmetic constraints. But our approach could be exten-
ded by generating TRSs with built-in integers [14] from the
evaluation graphs. This was also done in our approaches for
termination analysis of Java via term rewriting [7, 9].

Moreover, we also used CiaoPP to infer the mode and mea-
sure information required by CASLOG.

O(1) O(n) O(n2) O(n · 2n) bounds RT

CASLOG 1 21 4 3 29 14.8
CiaoPP-o 3 19 4 3 29 11.7
CiaoPP-r 3 18 4 3 28 12.5
AProVE 54 117 37 0 208 10.6

In the above table, we used one row for each tool. The
first four columns give the number of programs that could be
shown to have a constant bound (O(1)), a linear or quadratic
polynomial bound (O(n) orO(n2)), or an exponential bound
(O(n · 2n)).13 In column 5 and 6 we give the total number
of upper bounds that could be found by the tool and its
average runtime on each example. We highlight the best
tool for each column using bold font.
The table shows that AProVE can find upper bounds for a

much larger subset (42.8%) of the programs than any of
the other tools (6.1%). Nevertheless, there are 6 exam-
ples where CASLOG or CiaoPP can prove constant (1), lin-
ear (1), quadratic (1), or exponential bounds (3), whereas
AProVE fails. In summary, the experiments clearly demon-
strate that our transformational approach for determining
upper bounds advances the state of the art in automated
complexity analysis of logic programs significantly.

6. EVALUATION GRAPHS FOR DETERMI-

NACY ANALYSIS
Finally, after having shown how symbolic evaluation graphs
can be used for termination and complexity analysis, we
consider a third kind of analysis, viz. determinacy analysis
(cf. the definition of “determinacy” before Ex. 18). Several
approaches for determinacy analysis have been developed
(e.g., [24, 25, 26, 27, 28, 33]). Moreover, determinacy anal-
ysis is also needed for complexity analysis to detect non-
deterministic Split nodes in Thm. 23 and 27.
Every successful evaluation corresponds to a path to a Suc

node in the evaluation graph. Therefore, this graph is very
well suited as a basis for determinacy analysis. A sufficient
criterion for determinacy of a state s in the graph is if there
is no path starting in s which traverses more than one Suc
node. In other words, if s reaches a Suc node s′, then there
may be no further non-empty path from s′ to a Suc node.

Theorem 28 (Soundness of Determinacy Criterion).
Let P be a logic program and let Gr be a symbolic evaluation
graph for P. Let s be a node in Gr such that for all Suc
nodes s′ reachable from s, there is no non-empty path from
s′ to a Suc node. Then s is deterministic. Thus, if s is the
initial state corresponding to Qp

m for a p ∈ Σ and a moding
function m, then all queries in Qp

m are also deterministic.

For example, all nodes in the evaluation graph of Fig. 6
satisfy the above determinacy criterion, since there are no
non-empty paths from the two Suc nodes e or j to a Suc
node again. So the first successor g of the Split node f is
deterministic and thus, f is not multiplicative.
In contrast, the node c of the graph in Ex. 18 does not

satisfy the determinacy criterion, since it reaches e which has

13The back-end of AProVE for complexity analysis of TRSs
currently only implements techniques for detecting polyno-
mial bounds. When extending the TRS back-end by other
techniques like [5], we could also infer exponential bounds.

11

a non-empty cycle to itself. Indeed, c is not deterministic
and the corresponding Split node b is multiplicative.

Finally, the nodes in the evaluation graph of Ex. 21 are
again deterministic, since the only Suc node e has no non-
empty path to itself. But since the Split node b satisfies
the conditions (i) – (iii), it is nevertheless multiplicative.

Our experiments in Sect. 5 indicate that the criterion of
Thm. 28 is strong enough to detect non-multiplicative Split
nodes for complexity analysis. But in general, this criterion
only represents a first step towards determinacy analysis
based on symbolic evaluation graphs and several additional
sufficient criteria for determinacy would be possible.

This is also indicated by our experiments when comparing
the implementation of our determinacy analysis in AProVE
with the determinacy analysis implemented in CiaoPP [27].14

We again tested both tools on all 477 logic programs from
the TPDB. On definite programs, CiaoPP was clearly more
powerful (it proved determinacy for 132 out of 300 pro-
grams, whereas AProVE only succeeded for 19 programs).
But on non-definite programs, AProVE’s determinacy anal-
ysis is stronger (here, AProVE showed determinacy of 75 out
of 177 examples, whereas CiaoPP only succeeded for 61 pro-
grams). Altogether, our new determinacy criterion based
on evaluation graphs is a substantial addition to existing
determinacy analyses, since AProVE succeeded on 58 exam-
ples where CiaoPP failed. In other words, by coupling our
new technique with existing ones, the power of determinacy
analysis can be increased significantly.

7. CONCLUSION
We presented the symbolic evaluation graph and the use of
term rewriting as a general methodology for the analysis of
logic programs. These graphs represent all evaluations of a
(possibly non-definite) logic program in a finite way. There-
fore, they can be used as the basis for many different kinds of
analyses. In particular, one can translate their paths to re-
write rules and use existing techniques from term rewriting
to analyze the termination and complexity of the original lo-
gic program. Moreover, one can also perform analyses direct-
ly on the evaluation graph (e.g., to examine determinacy).
The current paper does not only give an overview on our

previous work on this topic, but it introduces numerous new
results. In Sect. 3, we presented a new formulation of the
abstract inference rules which is suitable for the subsequent
generation of TRSs. Moreover, the theorems of this section
(on the connection between concrete and abstract evaluation
rules) are new contributions. The approach for termination
analysis in Sect. 4 is also substantially different from our
earlier approaches, because it directly generates TRSs from
evaluation graphs. In particular, this allows us to use the
same approach for both termination and complexity analy-
sis. The contributions in Sect. 5 and Sect. 6 (on complexity
and determinacy analysis) are completely new.
We implemented all our results in the tool AProVE. Our

experiments show that our approaches to termination and
complexity analysis are more powerful than previous ones
and that our approach to determinacy analysis is a substan-
tial addition to existing ones. See [1] for further details on
the experiments and to run AProVE via a web interface.

14We did not compare with the determinacy analyzer spdet
implemented in SICStus Prolog 4.2.1, since it reports both
false positives and false negatives.

Acknowledgements. We thank M. Hermenegildo and P. López-

Garćıa for their support. Without it, the experimental compar-

isons with CASLOG and CiaoPP would not have been possible. We

also thank N.-W. Lin for agreeing to make the updated version

of CASLOG (running under SICStus 4 or Ciao) available on [1].

8. REFERENCES

[1] http://aprove.informatik.rwth-aachen.de/eval/

LPGraphs/.

[2] K. R. Apt. From Logic Programming to Prolog.
Prentice Hall, 1997.

[3] M. Avanzini, G. Moser, and A. Schnabl. Automated
implicit computational complexity analysis. In Proc.
IJCAR ’08, LNAI 5195, pages 132–138, 2008.

[4] M. Avanzini and G. Moser. Dependency pairs and
polynomial path orders. In Proc. RTA ’09, LNCS
5595, pages 48–62, 2009.

[5] M. Avanzini, N. Eguchi, and G. Moser. A path order
for rewrite systems that compute exponential time
functions. In Proc. RTA ’11, LIPIcs 10, pages
123–138, 2011.

[6] F. Baader and T. Nipkow. Term Rewriting and All
That. Cambridge University Press, 1998.

[7] M. Brockschmidt, C. Otto, and J. Giesl. Modular
termination proofs of recursive Java Bytecode
programs by term rewriting. In Proc. RTA ’11,
LIPIcs 10, pages 155–170, 2011.

[8] M. Brockschmidt, T. Ströder, C. Otto, and J. Giesl.
Automated detection of non-termination and
NullPointerExceptions for Java Bytecode. In Proc.
FoVeOOS ’11, LNCS 7421, pages 123–141, 2012.

[9] M. Brockschmidt, R. Musiol, C. Otto, and J. Giesl.
Automated termination proofs for Java programs with
cyclic data. In Proc. CAV ’12, LNCS 7358, pages
105–122, 2012.

[10] S. K. Debray, N.-W. Lin, and M. V. Hermenegildo.
Task granularity analysis in logic programs. In Proc.
PLDI ’90, pages 174–188. ACM Press, 1990.

[11] S. K. Debray and N.-W. Lin. Cost analysis of logic
programs. ACM Transactions on Programming
Languages and Systems, 15:826–875, 1993.

[12] S. K. Debray, P. López-Garćıa, M. V. Hermenegildo,
and N.-W. Lin. Lower bound cost estimation for logic
programs. In Proc. ILPS ’97, pages 291–305. MIT
Press, 1997.

[13] N. Dershowitz. Termination of rewriting. Journal of
Symbolic Computation, 3(1-2):69–116, 1987.

[14] C. Fuhs, J. Giesl, M. Plücker, P. Schneider-Kamp, and
S. Falke. Proving termination of integer term rewri-
ting. In Proc. RTA ’09, LNCS 5595, pages 32–47, 2009.

[15] J. Giesl, P. Schneider-Kamp, and R. Thiemann.
AProVE 1.2: Automatic termination proofs in the
dependency pair framework. In Proc. IJCAR ’06,
LNAI 4130, pages 281–286, 2006.

[16] J. Giesl, R. Thiemann, P. Schneider-Kamp, and
S. Falke. Mechanizing and improving dependency
pairs. Journal of Automated Reasoning, 37(3):155–203,
2006.

[17] J. Giesl, M. Raffelsieper, P. Schneider-Kamp,
S. Swiderski, and R. Thiemann. Automated
termination proofs for Haskell by term rewriting. ACM

12

Transactions on Programming Languages and
Systems, 33(2), 2011.

[18] M. V. Hermenegildo, G. Puebla, F. Bueno, and
P. López-Garćıa. Integrated program debugging,
verification, and optimization using abstract
interpretation (and the Ciao system preprocessor). Sc.
Comp. Prog., 58(1-2):115–140, 2005.

[19] M. V. Hermenegildo, F. Bueno, M. Carro,
P. López-Garćıa, E. Mera, J. F. Morales, and
G. Puebla. An overview of Ciao and its design
philosophy. Theory and Practice of Logic
Programming, 12(1-2):219–252, 2012.

[20] N. Hirokawa and G. Moser. Automated complexity
analysis based on the dependency pair method. In
Proc. IJCAR ’08, LNAI 5195, pages 364–379, 2008.

[21] J. M. Howe and A. King. Efficient groundness analysis
in Prolog. Th. Pract. Log. Prog., 3(1):95–124, 2003.

[22] ISO/IEC 13211-1. Information technology -
Programming languages - Prolog. 1995.

[23] A. King, K. Shen, and F. Benoy. Lower-bound
time-complexity analysis of logic programs. In Proc.
ILPS ’97, pages 261–285. MIT Press, 1997.

[24] A. King, L. Lu, and S. Genaim. Detecting
determinacy in Prolog programs. In Proc. ICLP ’06,
LNCS 4079, pages 132–147, 2006.

[25] J. Kriener and A. King. RedAlert: Determinacy
inference for Prolog. In Proc. ICLP ’11, Theory and
Practice of Logic Programming, 11(4-5):537–553, 2011.

[26] J. Kriener and A. King. Mutual exclusion by
interpolation. In Proc. FLOPS ’12, LNCS 7294, pages
182–196, 2012.

[27] P. López-Garćıa, F. Bueno, and M. V. Hermenegildo.
Automatic inference of determinacy and mutual
exclusion for logic programs using mode and type
analyses. New Generation Comp., 28(2):177–206, 2010.

[28] T. Mogensen. A semantics-based determinacy analysis
for Prolog with cut. In Proc. Ershov Memorial
Conference ’96, LNCS 1181, pages 374–385, 1996.

[29] J. A. Navas, E. Mera, P. López-Garćıa, and M. V.
Hermenegildo. User-definable resource bounds analysis
for logic programs. In Proc. ICLP ’07, LNCS 4670,
pages 348–363, 2007.

[30] M. T. Nguyen, J. Giesl, and P. Schneider-Kamp.
Termination analysis of logic programs based on
dependency graphs. In Proc. LOPSTR ’07, LNCS
4915, pages 8–22, 2008.

[31] L. Noschinski, F. Emmes, and J. Giesl. The
dependency pair framework for automated complexity
analysis of term rewrite systems. In Proc. CADE ’11,
LNAI 6803, pages 422–438, 2011.

[32] E. Ohlebusch. Termination of logic programs:
Transformational methods revisited. Applicable
Algebra in Engineering, Communication and
Computing, 12(1-2):73–116, 2001.

[33] D. Sahlin. Determinacy analysis for full Prolog. In
Proc. PEPM ’91, pages 23–30. ACM Press, 1991.

[34] P. Schneider-Kamp, J. Giesl, A. Serebrenik, and
R. Thiemann. Automated termination proofs for logic
programs by term rewriting. ACM Transactions on
Computational Logic, 11(1), 2009.

[35] P. Schneider-Kamp, J. Giesl, and M. T. Nguyen. The

dependency triple framework for termination of logic
programs. In Proc. LOPSTR ’09, LNCS 6037, pages
37–51, 2010.

[36] P. Schneider-Kamp, J. Giesl, T. Ströder,
A. Serebrenik, and R. Thiemann. Automated
termination analysis for logic programs with cut. In
Proc. ICLP ’10, Theory and Practice of Logic
Programming, 10(4-6):365–381, 2010.

[37] M. H. Sørensen and R. Glück. An algorithm of
generalization in positive supercompilation. In Proc.
ILPS ’95, pages 465–479. MIT Press, 1995.

[38] T. Ströder. Towards termination analysis of real
Prolog programs. Diploma Thesis, RWTH Aachen,
2010. Available from [1].

[39] T. Ströder, P. Schneider-Kamp, and J. Giesl.
Dependency triples for improving termination analysis
of logic programs with cut. In Proc. LOPSTR ’10,
LNCS 6564, pages 184–199, 2011.

[40] T. Ströder, F. Emmes, P. Schneider-Kamp, J. Giesl,
and C. Fuhs. A linear operational semantics for termi-
nation and complexity analysis of ISO Prolog. In Proc.
LOPSTR ’11, 2012. To appear. Available from [1].

[41] H. Zankl and M. Korp. Modular complexity analysis
via relative complexity. In Proc. RTA ’10, LIPIcs 6,
pages 385–400, 2010.

[42] H. Zantema. Termination. In Terese, editor, Term
Rewriting Systems, pages 181–259. Cambridge
University Press, 2003.

13

APPENDIX

A. PROOFS
Before proving Thm. 5, we introduce a notation for evalu-
ations of length k where we make the applied unifiers ex-
plicit. This generalizes the notion of answer substitutions
from Def. 3 to evaluations ending in arbitrary states (i.e., in
states where the first goal may also be different from ✷σθ)

Definition 29 (⊢k
θ). Let S be a state with only one

single goal. We say that there is an evaluation of length
k from S to another state S′ using the unifier θ (denoted
S ⊢k

θ S′) if

• S′ results from S by applying rules from Def. 1 k-times,

• S is of the form Qσ for some query Q (which may ad-
ditionally be labeled by a clause c), and

• S′ is of the form (Q′σθ | Ssuffix) for some query Q′

(which may additionally be labeled by a clause c′) and
a (possibly empty) state Ssuffix .

Now we prove Thm. 5. For all rules from Def. 4 except
Eval, the proof is straightforward. This is also true for the
backtracking case of the Eval rule (i.e., for the second suc-
cessor in the Eval rule). The intuitive reason why the Eval
rule is also sound in the case where the unification succeeds
by an mgu σ is that σ only has fresh variables in its range.
Thus, if mgu(tγ, h) also exists for some concretization γ,
then the composition of γ and mgu(tγ, h) is an instance of
σ. Moreover, we can also apply σ|G to all remaining goals in
the state, as the terms represented by variables from G do
not contain variables. Hence, σ|G does not correspond to an
instantiation of concrete variables, but only to a case analy-
sis on the shape of the ground terms represented by abstract
variables in G. For example, replacing a variable T ∈ G by
the term s(T ′) using the unifier σ corresponds to the situ-
ation that the unification only succeeds if T represented a
term of the form s(t′) where t′ is some ground term.

Theorem 5 (Soundness of Abstract Rules). Let
(S;KB) be an abstract state with a concretization Sγ ∈
CON (S;KB), and let Snext be the successor of Sγ according
to the operational semantics in Def. 1. Then the abstract
state (S;KB) has a successor (S′;KB ′) according to an in-
ference rule from Def. 4 such that Snext ∈ CON (S′;KB ′).

Proof. For the Suc rule, we have S = (✷θ′ | Ssuffix),
Sγ = (✷θ | Ssuffixγ), and Snext = Ssuffixγ for some substitu-
tions θ and θ′. The successor of (S;KB) is (Ssuffix ;KB). So
obviously we have Snext ∈ CON (Ssuffix ;KB).
For the first Cut rule, we have S = ((!m, Q)θ′ | S1 |

?m | S2), Sγ = ((!m, Qγ)θ | S1γ | ?m | S2γ), and Snext =
((Qγ)θ | ?m | S2γ) for some substitutions θ and θ′, where
S1 does not contain ?m. The successor of (S;KB) is (Qθ′ |
?m | S2;KB). So obviously we have Snext ∈ CON (Qθ′ | ?m |
S2;KB). For the second Cut rule, we have S = ((!m, Q)θ′ |
Ssuffix), Sγ = ((!m, Qγ)θ | Ssuffixγ), and Snext = (Qγ)θ for
some substitutions θ and θ′, where Ssuffix does not contain
?m. The successor of (S;KB) is (Qθ′ ;KB). So obviously we
have Snext ∈ CON (Qθ′ ;KB).
For the Case rule, we have S = ((t, Q)θ′ | Ssuffix), Sγ =

((tγ,Qγ)θ | Ssuffixγ), and Snext = ((tγ,Qγ)
c1[!/!m]
θ | · · · |

(tγ,Qγ)
ca[!/!m]
θ | Ssuffixγ) for some substitutions θ and θ′,

where t is neither a cut nor a variable, m is fresh, and

Slice(P, t) = (c1, . . . , ca). The successor of (S;KB) is

((t, Q)
c1[!/!m]

θ′ | · · · | (t, Q)
ca[!/!m]

θ′ | Ssuffix ;KB). So obviously

we have Snext ∈ CON ((t, Q)
c1[!/!m]

θ′ | · · · | (t, Q)
ca[!/!m]

θ′ |
Ssuffix ;KB).
For the Fail rule, we have S = (?m | Ssuffix), Sγ = (?m |

Ssuffixγ), and Snext = Ssuffixγ. The successor of (S;KB) is
(Ssuffix ;KB). So obviously Snext ∈ CON (Ssuffix ;KB).
For the Backtrack rule, we have S = ((t, Q)h :-B

θ′ |
Ssuffix), Sγ = ((tγ,Qγ)h :-B

θ | Ssuffixγ) for some substitutions
θ and θ′, and Snext = Ssuffixγ, because we know that tγ ≁ h.
The successor of (S;KB) is (Ssuffix ;KB). So obviously we
have Snext ∈ CON (Ssuffix ;KB).
For the Eval rule, we have S = ((t, Q)h :-B

θ′ | Ssuffix),
KB = (G,U), and Sγ = ((tγ,Qγ)h :-B

θ | Ssuffixγ). There are
two cases depending on whether tγ and h unify.
First, if tγ does not unify with h, then Sγ has to be eval-

uated using the Backtrack rule and we obtain Snext =
Ssuffixγ. As γ is a concretization and h does not contain ab-
stract variables, we have hγ = h and, thus, tγ ≁ hγ. Hence,
γ is also a concretization w.r.t. the knowledge base (G,U ∪
{(t, h)}). So we have Snext ∈ CON (Ssuffix ; (G,U ∪ {(t, h)}))
for the second successor (Ssuffix ; (G,U ∪{(t, h)})) of (S;KB).
Second, let mgu(tγ, h) = θ′′. W.l.o.g., we assume

V(Range(θ′′)) ⊆ N . Thus, Sγ has to be evaluated using the
Eval rule and we have Snext = ((Bθ′′, Qγθ′′)θθ′′ | Ssuffixγ).
From hγ = h we know that mgu(tγ, hγ) = θ′′, too. Thus,
there is a substitution σ with mgu(t, h) = σ, where V(σ(X))
only contains fresh abstract variables for all X ∈ V. More-
over, γθ′′ is a unifier of t and h and, thus, there is a sub-
stitution ξ with σξ = γθ′′. The first successor of (S;KB) is
((Bσ,Qσ)θ′σ | S

′
suffix ; (G

′,Uσ|G)) with G′ = A(Range(σ|G))
and S′suffix results from Ssuffix by applying the substitution
σ|G to all its goals and composing σ|G with the substitution
labels of its goals. We are, thus, left to show that Snext ∈
CON ((Bσ,Qσ)θ′σ | S

′
suffix ; (G

′,Uσ|G)), i.e., that there is a
concretization γ′ w.r.t. (G′,Uσ|G) such that Bθ′′ = Bσγ′,
Qγθ′′ = Qσγ′, and Ssuffixγ = S′suffixγ

′.
We define γ′(T) = ξ(T) for T ∈ A(Range(σ)) and γ′(T) =

γ(T) for T ∈ A \ A(Range(σ)). Obviously, we have
Dom(γ′) = A.
We continue by showing that γ′ is a concretization w.r.t.

(G′,Uσ|G), i.e., that V(Range(γ
′)) ⊆ N , V(Range(γ′|G′)) =

∅, and
∧

(s′,t′)∈Uσ|G
s′γ′ ≁ t′γ′.

We first show that V(Range(γ′)) ⊆ N . In other words,
for all T ∈ A, we show that V(Tγ′) ⊆ N . To this end,
we perform a case analysis w.r.t. A = A(Range(σ)) ⊎ (A \
A(Range(σ))). For T ∈ A(Range(σ)) we have V(Tγ′) =
V(Tξ), by the definition of γ′. Assume there is a T ′ ∈ A ∩
V(Tξ). As T ∈ A(Range(σ)), there is an X ∈ Dom(σ) with
T ∈ V(Xσ) and, thus, T ′ ∈ V(Xσξ) = V(Xγθ′′). However,
we have V(Xγ) ⊆ N and V(Range(θ′′)) ⊆ N , which leads to
a contradiction. Thus, we must have V(Tγ′) = V(Tξ) ⊆ N .
For T ∈ A \ A(Range(σ)) we have V(Tγ′) = V(Tγ) by the
definition of γ′ and V(Tγ) ⊆ N , since γ is a concretization.
To show that V(Range(γ′|G′)) = ∅, let T ∈ G′ =

A(Range(σ|G)). Our goal is to show that V(Tγ′) = ∅. Re-
call that V(Tγ′) = V(Tξ) for such T . Moreover, there must
be a T ′ ∈ Dom(σ|G) with T ∈ V(T ′σ). Hence, it suffices to
show that V(Tγ′) = V(Tξ) ⊆ V(T ′σξ) = ∅. By the defini-
tion of ξ, we have V(T ′σξ) = V(T ′γθ′′) and V(T ′γθ′′) = ∅

holds since T ′ ∈ G and γ is a concretization w.r.t. (G,U).
Finally, we show that

∧

(s′,t′)∈Uσ|G
s′γ′ ≁ t′γ′. Note that

14

∧

(s′,t′)∈Uσ|G
s′γ′ ≁ t′γ′ holds iff

∧

(s′,t′)∈U s′σ|Gγ
′
≁ t′σ|Gγ

′

holds, which in turn holds iff
∧

(s′,t′)∈U s′γ ≁ t′γ holds. (The
truth of the last statement follows from the fact that γ is a
concretization w.r.t. (G,U).) The reason for the last equiv-
alence above is that Tσ|Gγ

′ = Tγ for all T ∈ V(U). For
non-abstract variables T ∈ N , this is clear since they are
not contained in G, and thus they are not modified by σ|G ,
γ′, or γ. To see why Tσ|Gγ

′ = Tγ holds for all T ∈ A(U),
note that T /∈ V(Range(σ)) as V(σ(X)) only contains fresh
abstract variables for all previously occurring X ∈ V. Now
consider the partition A(U) = (A(U) \ G) ⊎ (A(U) ∩ G). If
T ∈ A(U) \ G, we have Tγ = Tγ′ by the definition of γ′ as
T /∈ V(Range(σ)), and Tγ′ = Tσ|Gγ

′ since T /∈ Dom(σ|G).
If T ∈ A(U) ∩ G, we have Tγ = Tγθ′′, since T ∈ G. More-
over, Tγθ′′ = Tσξ by the definition of ξ, and Tσξ = Tσ|Gξ
since T ∈ G. As V(Range(σ|G)) ⊆ A, by the definition of γ′

we obtain Tσ|Gξ = Tσ|Gγ
′.

Now it remains to show that Bθ′′ = Bσγ′, Qγθ′′ = Qσγ′,
and Ssuffixγ = S′suffixγ

′.
Obviously, we choose the same substitution labels in the

concretizations Ssuffixγ and S′suffixγ
′. So for the remaining

proof, we disregard substitution labels and have S′suffix =
Ssuffixσ|G . Thus, we have to prove Ssuffixγ = Ssuffixσ|Gγ

′.
This follows from the fact that Tγ = Tσ|Gγ

′ holds for all
T ∈ A(S), which can be proved analogously to the analysis
for A(U) above.
For B, we obtain Bθ′′ = Bγθ′′ as V(B) ∩ A = ∅. By

the definition of ξ, we have Bγθ′′ = Bσξ. Since σ renames
all occurring variables to fresh abstract variables, we have
V(Bσ) ⊆ A(Range(σ)) and thus, Bσξ = Bσγ′ by the defi-
nition of γ′.
Analogously, Qγθ′′ = Qσξ by the definition of ξ. Since

V(Qσ) ⊆ A(Range(σ)), too, we have Qσξ = Qσγ′ by the
definition of γ′.

Next we prove the soundness of the Inst rule. The reason
for its soundness is that the matcher µ corresponds to a
restriction of the shapes of the represented terms. Thus, the
first state in the Inst rule represents a subset of the concrete
states represented by the second state in the rule.

Theorem 8 (Soundness of Inst). Let (S;KB) be an
abstract state, let (S′;KB ′) be its successor according to the
Inst rule, and let µ be the substitution associated to (S;KB).
If Sγ ∈ CON (S;KB), then for γ′ = µγ we have S′γ′ =
Sγ ∈ CON (S′;KB ′).

Proof. Let Sγ ∈ CON (S;KB) and KB = (G,U). We
first show that γ′ = µγ is a concretization w.r.t. KB ′ =
(G′,U ′), i.e., that Dom(γ′) = A, V(Range(γ′)) ⊆ N ,
V(Range(γ′|G′)) = ∅, and

∧

(s,t)∈U′ sγ
′
≁ tγ′.

As Dom(µ) ⊆ A and Dom(γ) = A, we obviously have
Dom(γ′) = A.
From Dom(γ) = A and V(Range(γ)) ⊆ N , we also obtain

V(Range(γ′)) ⊆ N .
Let T ′ ∈ G′. We have to show that V(T ′γ′) = V(T ′µγ) =

∅. By the definition of G′, we have V(T ′µ) ⊆ G and thus,
V(T ′µγ) = ∅ as γ is a concretization w.r.t. (G,U).
Finally, from

∧

(s,t)∈U sγ ≁ tγ and U ′µ ⊆ U , we know

that
∧

(s,t)∈U′µ sγ ≁ tγ. This implies
∧

(s,t)∈U′ sµγ ≁ tµγ

and thus,
∧

(s,t)∈U′ sγ
′
≁ tγ′.

We are left to show that S′γ′ = Sγ (where we choose
the same substitution labels in S′γ′ and Sγ). By Def. 7 we

know that S = Qθ and S′ = Q′θ′ or S = Qc
θ and S′ = Q′cθ′

for some non-empty queries Q and Q′, some substitutions θ
and θ′, and some clause c. Thus, to show that S′γ′ = Sγ,
we can disregard substitution and clause labels and are left
to show that Qγ = Q′γ′ = Q′µγ. This follows immediately
from Def. 7 as we have Q = Q′µ.

The key to the soundness of the Split rule is the substi-
tution δ which over-approximates all possible answer substi-
tutions for the first successor of a Split node. This over-
approximation is realized by replacing every variable by a
fresh one. In this way, any possible instantiation by an an-
swer substitution is represented. The only remaining restric-
tion is that the fresh variables are still constrained by the
updated knowledge base.

Theorem 10 (Soundness of Split). Let ((t,Q)θ;KB)
be an abstract state and let (tid ;KB) and ((Qδ)δ;KB ′) be
its successors according to the Split rule. Let (t, Q)γ ∈
CON ((t, Q)θ;KB) and let θ′ be an answer substitution of
(tγ)id . Then there is a concretization γ′ w.r.t. KB ′ such
that Qγθ′ = Qδγ′ and tγθ′ = tδγ′. In particular, we have
Qγθ′ ∈ CON ((Qδ)δ;KB ′).

Proof. W.l.o.g., we demand V(Range(θ′)) ⊆ N . Let
KB = (G,U), and V contain all abstract variables occur-
ring in ((t, Q)θ;KB). Then δ|V \G must be injective as the
variables in its range are fresh. So there exists a substitu-
tion δ−1 with δ−1(T ′) = T if there is a T ∈ V \ G with
δ(T) = T ′ and δ−1(T ′) = T ′ for all other variables T ′.
We define Tγ′ = Tγθ′ for T ∈ A \ A(Range(δ|V \G)) and

Tγ′ = Tδ−1γθ′ for T ∈ A(Range(δ|V \G)). We have KB ′ =

(G′,U ′) = (G ∪ NextG(t,G)δ,Uδ). We are left to show that
γ′ is a concretization w.r.t. KB ′, that Qγθ′ = Qδγ′, and
that tγθ′ = tδγ′.

We first show that γ′ is a concretization w.r.t. KB ′, i.e.,
that Dom(γ′) = A, V(Range(γ′)) ⊆ N , V(Range(γ′|G′)) =
∅, and

∧

(s,t)∈U′ sγ
′
≁ tγ′.

Obviously, we have defined γ′ such that Dom(γ′) = A.
To show V(Range(γ′)) ⊆ N , we first note that we have

Dom(γ) = A, V(Range(γ)) ⊆ N , and V(Range(θ′)) ⊆ N .
Thus, we directly obtain V(Range(γ′)) ⊆ N .
To prove V(Range(γ′|G′)) = ∅, we perform a case analy-

sis w.r.t. the partition G′ = ((G ∪ NextG(t,G)δ) \
A(Range(δ|V \G)))⊎((G∪NextG(t,G)δ)∩A(Range(δ|V \G))).
Let T ∈ (G ∪ NextG(t,G)δ) \ A(Range(δ|V \G)). We have

to show that V(Tγ′) = ∅. Note that by the definition of γ′,
we have Tγ′ = Tγθ′, i.e., we have to show V(Tγθ′) = ∅. If
T ∈ G, then this is obvious as γ is a concretization w.r.t.
(G,U). Note that if T /∈ G, then we also cannot have
T ∈ NextG(t,G)δ. The reason is that then there would
have to be a T ′ ∈ NextG(t,G) with T = T ′δ. But as
T /∈ A(Range(δ|V \G)), this means that T ′ /∈ V \ G. Since

A(NextG(t,G)) ⊆ A(t) ⊆ V , this means T ′ ∈ G. But then
we have T = T ′δ = T ′ (i.e., T ∈ G).
Now let T ∈ (G∪NextG(t,G)δ)∩A(Range(δ|V \G)). Again,

we have to show that V(Tγ′) = ∅. By the definition of γ′,
we have Tγ′ = Tδ−1γθ′, i.e., we have to show V(Tδ−1γθ′) =
∅. By the definition of δ−1, we know that there is a T ′ ∈
V \ G with T ′δ = T and Tδ−1 = T ′. Thus, we now have
to show V(T ′γθ′) = ∅. Note that since δ replaces T ′ by a
fresh variable T , we have T /∈ G. Thus, T ∈ NextG(t,G)δ,
i.e., T ′ ∈ NextG(t,G). Let t = p(t1, . . . , tk). As γ is a
concretization w.r.t. (G,U), we have V(tiγ) = ∅ for all i

15

where V(ti) ⊆ G. As θ′ is an answer substitution of tγ,
V(tjγθ

′) = ∅ for all j ∈ GroundP(p, {i | V(ti) ⊆ G}).
Now T ′ ∈ NextG(t,G) means that T ′ ∈ V(tj) for some j ∈
GroundP(p, {i | V(ti) ⊆ G}). Hence, V(T ′γθ′) = ∅.

Finally, recall that U ′ = Uδ. Thus,
∧

(s,t)∈U′ sγ
′
≁ tγ′

iff
∧

(s,t)∈Uδ sγ
′
≁ tγ′ iff

∧

(s,t)∈U sδγ′ ≁ tδγ′. We now show

that we have sδγ′ = s(γθ′)|A and tδγ′ = t(γθ′)|A. Note that
(γθ′)|A = γθ′|Range(γ). Thus,

∧

(s,t)∈U sδγ′ ≁ tδγ′ follows

from
∧

(s,t)∈U sγ ≁ tγ (which holds, since γ is a concretiza-

tion w.r.t. (G,U)).
To see why sδγ′ = s(γθ′)|A and tδγ′ = t(γθ′)|A holds,

note that the abstract variables in s and t are in V . So it
suffices to show that for all T ∈ V , we have Tδγ′ = Tγθ′.
Consider the partition V = (V \Dom(δ))⊎(V ∩Dom(δ)). For
T ∈ V \Dom(δ), we know that T ∈ G, because δ replaces all
variables in V \ G by fresh abstract variables. In particular,
T is not fresh and, thus, cannot occur in the range of δ. So
we have Tδγ′ = Tγ′ = Tγθ′ by the definition of γ′. For
T ∈ V ∩Dom(δ), we know that Tδ ∈ A(Range(δ|V \G)) and

T /∈ G. Hence, we obtain Tδγ′ = Tδδ−1γθ′ by the definition
of γ′. Thus, Tδδ−1γθ′ = Tγθ′ by the definition of δ−1.

We are left to show that Qγθ′ = Qδγ′ and tγθ′ = tδγ′

holds. Since V(Q) ∪ V(t) ⊆ V , we obtain Qγθ′ = Qδγ′ and
tγθ′ = tδγ′ by an analogous reasoning as above.

To prove Thm. 16, we need a lemma on the connection
between the substitution labels in the abstract and in the
concrete case.

The substitution σπ which describes the difference be-
tween the substitution label of the first and the last node of
a connection path π indeed approximates the substitutions
applied during a concrete evaluation following such a path.
In other words, σπ in the abstract case plays the same role
as the unifiers θ in concrete evaluations of the form S ⊢k

θ S′

in Def. 3.
More precisely, the situation for a connection path π is

that we have a concretization γ for the start node s =
(S;KB) of π yielding a concrete state Sγ, a concretization γ′

for the end node s′ = (S′;KB ′) of π yielding a concrete state
S′γ′, a substitution σπ which matches the substitution label
of the goal of s to the substitution label of the first goal of s′,
and a substitution θ obtained during the concrete evaluation
from Sγ to S′γ′. Then we must have (σπγ

′)|V(s) = (γθ)|V(s)

as illustrated in the following figure. Here, for any abstract
state s = (S;KB), we define V(s) to be the set containing
all variables in Q, for all goals Qθ or Qc

θ occurring in S.

SγS;KB
γ

S′γ′

θ

S′;KB ′

σπ

γ′

Consider for example a path π as follows:

(app(T5, T7, T6), star(T5, T7))id

(app(T5, T7, T6), star(T5, T7))
(4)
id

| (app(T5, T7, T6), star(T5, T7))
(5)
id

Case

star([], T13){T5/[],T7/T13,T6/T13}
|

(app([], T7, T13), star([], T7))
(5)

{T5/[],T6/T13,YS/T13}

Eval

In this graph, we only depicted those parts of the substitu-
tions in the labels which concern the variables occurring in
states.
Thus, we have σπ = {T5/[], T7/T13, T6/T13,YS/T13}. Now

consider the concretization S1 = (app([], X, [1]), star([], X))id
of π’s start node with γ = {T5/[], T7/X, T6/[1]} and the con-
cretization S2 = (star([], [1]){X/[1]} | (app([], X, [1]), star([],

X))
(5)
id) of π’s end node with γ′ = {T7/X, T13/[1]}. Then

we have S1 ⊢
2
{X/[1]} S2 (i.e., θ = {X/[1]}). Now we see that

(σπγ
′)|V(s) = {T5/[], T7/[1], T6/[1]} = (γθ)|V(s).

The following lemma shows that this connection always
holds.

Lemma 30 (Concrete/Abstract Substitutions).
Let π = s1 . . . sk be a path with sj /∈ Inst(Gr)∪Split(Gr) for
all j ∈ {1, . . . , k − 1}. Let s1 = (S1;KB1), sk = (Sk;KBk)
and let S1γ1 ∈ CON (s1) and Skγk ∈ CON (sk) be con-
cretizations such that S1γ1 ⊢

∗ Skγk.
15 Moreover, let S1 be of

the form Qσ or Qc
σ for some query Q, some substitution σ,

and some clause c. So S1γ1 is of the form (Qγ1)θ or (Qγ1)
c
θ

for some substitution θ. Let n be the number of goals in Sk

which are no scope markers and let σ σi be the substitution
label of the i-th such goal, for all 1 ≤ i ≤ n. Furthermore,
let θ θi be the substitution label of the i-th goal in Skγk which
is no scope marker. Then there is a concretization γ′k w.r.t.
KBk such that Skγk = Skγ

′
k and for all 1 ≤ i ≤ n we

have (σiγ′k)|V(Q) = (γ1θ
i)|V(Q). In particular, if π is a con-

nection path, then we have (σπγ
′
k)|V(Q) = (γ1θπ)|V(Q) for

S1γ1 ⊢
k−1
θπ

Skγ
′
k.

16

Proof. We perform the proof by induction on the length
k of the path π. For k = 1 we have s1 = sk, n = 1, σ1 =
id = θ1, and γ1 = γk. So we choose γ′k = γk. Then the
lemma trivially holds. For k > 1 we can assume the lemma
holds for paths of length at most k − 1.
By Thm. 5, every concrete evaluation S1γ1 ⊢

∗ Skγk cor-
responds to the traversal of a path in the symbolic evalua-
tion graph. So sk = Succ(sk−1) for sk−1 = (Sk−1,KBk−1)
with KBk−1 = (Gk−1,Uk−1). Let m be the number of
goals in the sequence Sk−1 which are no scope markers.

Let their substitution labels be σ σi′ for 1 ≤ i ≤ m. Let
Sk−1γk−1 ∈ CON (sk−1) be the predecessor of Skγk in the
evaluation S1γ1 ⊢

∗ Skγk. Then the goals in Sk−1γk−1 which

are no scope markers have the substitution labels θ θi
′

for
1 ≤ i ≤ m.
By the induction hypothesis, there exists a concretization

γ′k−1 w.r.t. KBk−1 such that Sk−1γk−1 = Sk−1γ
′
k−1 and for

all 1 ≤ i ≤ m we have (σi′γ′k−1)|V(Q) = (γ1θ
i′)|V(Q).

If sk−1 is an Eval node and sk = Succ1(sk−1), then the se-
quence Sk−1 also contains n goals which are no scope mark-
ers (i.e., we have m = n). Here, the first goal of Sk−1 has
the form (t, Q′)h :-B

σσ1′ and the first goal of Sk has the form

(Bσ′, Q′σ′)σσ1 where σ′ = mgu(t, h). Thus, σ1 = σ1′σ′

and for the remaining goals where 2 ≤ i ≤ n, we have

σi = σi′(σ′|Gk−1
). Moreover, the first goal of Sk−1γk−1

has the form (t, Q′)h :-B
θθ1

′ γk−1. Thus, θ1 = θ1
′

θ′ for θ′ =
mgu(tγk−1, h). For the remaining goals where 2 ≤ i ≤ n, we

15Here, ⊢∗ denotes ⊢k
θ for an arbitrary k ≥ 0 and an arbitrary

substitution θ.
16This follows from (σiγ′k)|V(Q) = (γ1θ

i)|V(Q). The reason is

that σπ = σ1 and θπ = θ1.

16

have θi = θi
′

.
Since h does not contain abstract variables and γ′k−1 is a

concretization, we have h = hγ′k−1 and, thus, θ′ =
mgu(tγ′k−1, hγ

′
k−1) and γ′k−1θ

′ is a unifier of t and h. More-
over, we have σ′ = mgu(t, h). Hence, there must be a sub-
stitution ξ with σ′ξ = γ′k−1θ

′.
We define Tγ′k = Tγ′k−1 for all T ∈ A\V(Range(σ′)) and

Tγ′k = Tξ for all T ∈ V(Range(σ′)).
We now show that for all i ∈ {1, . . . , n} we have (σiγ′k)|V(Q)

= (γ1θ
i)|V(Q).

For i = 1 we have

(σ1γ′k)|V(Q) = (σ1′σ′γ′k)|V(Q)

(∗)
= (σ1′γ′k−1θ

′)|V(Q)

= (σ1′γ′k−1)|V(Q) θ
′
|V(V(Q)σ1′γ′

k−1
)

(Ind. Hyp.)
= (γ1θ

1′)|V(Q) θ
′
|V(V(Q)γ1θ1

′
)

= (γ1θ
1′θ′)|V(Q)

= (γθ1)|V(Q).

To see the step (∗), consider a variable X ∈ V(Q). We

know that X ∈ A. Since V(Range(σ1′)) ⊆ A, we obtain

V(Xσ1′) ⊆ A. Moreover, we know that V(Xσ1′) ⊆ Dom(σ′)
as σ′ replaces all previously occurring variables and has only
fresh abstract variables in its range. So for (∗), it suffices
to show X ′σ′γ′k = X ′γ′k−1θ

′ for all X ′ ∈ Dom(σ′). Since
then all variables in X ′σ′ are from V(Range(σ′)), by the
definition of γ′k, we have X ′σ′γ′k = X ′σ′ξ = X ′γ′k−1θ

′.
For i ∈ {2, . . . , n} we have

(σiγ′k)|V(Q) = (σi′(σ′|Gk−1
)γ′k)|V(Q)

(∗∗)
= (σi′γ′k−1)|V(Q)

(Ind. Hyp.)
= (γ1θ

i′)|V(Q)

= (γ1θ
i)|V(Q).

To see the step (∗∗), consider a variable X ∈ V(Q). We

know that X ∈ A. Since V(Range(σi′)) ⊆ A, we obtain

V(Xσi′) ⊆ A. Moreover, we know that V(Xσi′) ⊆ Dom(σ′)
as σ′ replaces all previously occurring variables and has
only fresh abstract variables in its range. We perform a

case analysis w.r.t. the partition A(Xσi′) = (A(Xσi′) ∩

Gk−1) ⊎ (A(Xσi′) \ Gk−1). If X ′ ∈ A(Xσi′) ∩ Gk−1, we
have X ′σ′|Gk−1

γ′k = X ′σ′γ′k. As X ′ ∈ Dom(σ′), all vari-

ables in X ′σ′ are from V(Range(σ′)). So by the definition
of γ′k, we have X ′σ′γ′k = X ′σ′ξ = X ′γ′k−1θ

′. As X ′ ∈ Gk−1,
X ′γk−1 is a ground term and we have X ′γ′k−1θ

′ = X ′γ′k−1.

If X ′ ∈ A(Xσi′)\Gk−1, we have X ′σ′|Gk−1
γ′k = X ′γ′k. Note

thatX ′ ∈ Dom(σ′) implies thatX ′ /∈ A(Range(σ′)). Hence,
by the definition of γ′k we obtain X ′γ′k = X ′γ′k−1.
It remains to show that γ′k is a concretization w.r.t. KBk

and that Skγk = Skγ
′
k. Obviously, we choose the same sub-

stitution labels in Skγk and Skγ
′
k. So we disregard substitu-

tion labels for the remaining proof. Let Ssuffixk
be Sk with-

out its first goal. Then we have Skγk = ((Bσ′γk, Q
′σ′γk) |

Ssuffixk
γk) and Skγ

′
k = ((Bσ′γ′k, Q

′σ′γ′k) | Ssuffixk
γ′k). Recall

that Sk−1γk−1 was the predecessor of Skγk in the evaluation
S1γ1 ⊢

∗ Skγk and its first goal was (t, Q′)h :-Bγk−1. More-
over, θ′ = mgu(tγk−1, h). Let Ssuffixk−1

be Sk−1 without

its first goal. Then we have Ssuffixk
= Ssuffixk−1

(σ′|Gk−1
).

Hence, we obtain Bσ′γk = Bθ′, Q′σ′γk = Q′γk−1θ
′, and

Ssuffixk−1
(σ′|Gk−1

)γk = Ssuffixk−1
γk−1. To prove Skγk =

Skγ
′
k, we therefore have to show Bσ′γ′k = Bθ′, Q′σ′γ′k =

Q′γk−1θ
′, and Ssuffixk−1

(σ′|Gk−1
)γ′k = Ssuffixk−1

γk−1.

For B we have Bθ′ = Bγ′k−1θ
′, as B does not contain

any abstract variables and hence, it is not modified by γ′k−1.
Moreover, Bγ′k−1θ

′ = Bσ′ξ = Bσ′γ′k, as V(B) ⊆ Dom(σ′).
Since V(Q′) ⊆ Dom(σ′), in an analogous way we obtain

Q′γk−1θ
′ = Q′σ′ξ = Q′σ′γ′k.

For any goalQ (possibly labeled by a clause c) in Ssuffixk−1
,

we have to show Q(σ′|Gk−1
)γ′k = Qγk−1. Note that since

Sk−1γk−1 = Sk−1γ
′
k−1 by the induction hypothesis, it suf-

fices to show Q(σ′|Gk−1
)γ′k = Qγ′k−1. We perform a case

analysis w.r.t. the partition A(Q) = (A(Q)∩Gk−1)⊎(A(Q)\
Gk−1). If X ∈ A(Q) ∩ Gk−1, we have X(σ′|Gk−1

)γ′k =

Xσ′γ′k. As σ′ renames all previously occurring variables,
we have X ′ ∈ Dom(σ′) and thus, all variables occurring
in Xσ′ are from Range(σ′). So by the definition of γ′k,
we have Xσ′γ′k = Xσ′ξ = Xγ′k−1θ

′. As X ∈ Gk−1, γ
′
k−1

maps X to a ground term and thus, Xγ′k−1θ
′ = Xγ′k−1. If

X ∈ A(Q) \ Gk−1, then we have X(σ′|Gk−1
)γ′k = Xγ′k, as

X /∈ Gk−1. Since the range of σ′ only contains fresh vari-
ables we have X /∈ A(Range(σ′)). So by the definition of
γ′k, we have Xγ′k = Xγ′k−1.
Finally, we need to show that γ′k is a concretization w.r.t.

KBk = (Gk,Uk), i.e., that Dom(γ′k) = A, V(Range(γ′k)) ⊆
N , V(Range(γ′k|Gk)) = ∅, and

∧

(s,t)∈U′ sγ
′
k ≁ tγ′k.

Obviously, we defined γ′k in such a way thatDom(γ′k) = A.
We now show that V(Range(γ′k)) ⊆ N . In other words,

for all T ∈ A, we show that V(Tγ′k) ⊆ N . To this end,
we perform a case analysis w.r.t. A = A(Range(σ′)) ⊎ (A \
A(Range(σ′))). For T ∈ A(Range(σ′)) we have V(Tγ′k) =
V(Tξ) by the definition of γ′k. Assume there is a T ′ ∈
A∩V(Tξ). As T ∈ A(Range(σ′)), there is an X ∈ Dom(σ′)
with T ∈ V(Xσ′) and, thus, T ′ ∈ V(Xσ′ξ) = V(Xγ′k−1θ

′).
However, we have V(Xγ′k−1) ⊆ N and V(Range(θ′)) ⊆
N , which leads to a contradiction. Thus, we must have
V(Tγ′k) = V(Tξ) ⊆ N . For T ∈ A \ A(Range(σ′)) we have
V(Tγ′k) = V(Tγ

′
k−1) by the definition of γ′k and V(Tγ′k−1) ⊆

N , since γ′k−1 is a concretization.
To show that V(Range(γ′k|Gk)) = ∅, let T ∈ Gk =

A(Range(σ′|Gk−1
)). Our goal is to show that V(Tγ′k) = ∅.

Recall that V(Tγ′k) = V(Tξ) for such T . Moreover, there
must be a T ′ ∈ Dom(σ′|Gk−1

) with T ∈ V(T ′σ′). Hence,

it suffices to show that V(Tγ′k) = V(Tξ) ⊆ V(T ′σ′ξ) = ∅.
By the definition of ξ, we have V(T ′σ′ξ) = V(T ′γ′k−1θ

′) and
V(T ′γ′k−1θ

′) = ∅ holds since T ′ ∈ Dom(σ′|Gk−1
) ⊆ Gk−1

and γ′k−1 is a concretization w.r.t. (Gk−1,Uk−1).
Finally, we show that

∧

(s,t)∈Uk
sγ′k ≁ tγ′k, where Uk =

Uk−1σ
′
|Gk−1

. Note that
∧

(s,t)∈Uk−1σ
′|Gk−1

sγ′k ≁ tγ′k holds

iff
∧

(s,t)∈Uk−1
sσ′|Gk−1

γ′k ≁ tσ′|Gk−1
γ′k holds, which in turn

holds iff
∧

(s,t)∈Uk−1
sγ′k−1 ≁ tγ′k−1 holds. (The truth of the

last statement follows from the fact that γ′k−1 is a concretiza-
tion w.r.t. (Gk−1,Uk−1).) The reason for the last equivalence
above is that Tσ′|Gk−1

γ′k = Tγ′k−1 for all T ∈ V(Uk−1).

For non-abstract variables T ∈ N , this is clear since they
are not contained in Gk−1, and thus they are not modified
by σ′|Gk−1

, γ′k, or γ′k−1. To see why Tσ′|Gγ
′
k = Tγ′k−1

17

holds for all T ∈ A(Uk−1), note that T /∈ V(Range(σ′))
as V(σ′(X)) only contains fresh abstract variables for all
previously occurring X ∈ V. Now consider the partition
A(Uk−1) = (A(Uk−1) \ Gk−1) ⊎ (A(Uk−1) ∩ Gk−1). If T ∈
A(Uk−1) \ Gk−1, we have Tγ′k−1 = Tγ′k by the definition
of γ′k as T /∈ V(Range(σ′)), and Tγ′k = Tσ′|Gk−1

γ′k since

T /∈ Dom(σ′|Gk−1
). If T ∈ A(Uk−1)∩Gk−1, we have Tγ

′
k−1 =

Tγ′k−1θ
′, since T ∈ Gk−1. Moreover, Tγ′k−1θ

′ = Tσ′ξ by the
definition of ξ, and Tσ′ξ = Tσ′|Gk−1

ξ since T ∈ Gk−1. As

V(Range(σ′|Gk−1
)) ⊆ A, by the definition of γ′k we obtain

Tσ′|Gk−1
ξ = Tσ′|Gk−1

γ′k.

Now we regard all other cases (where sk = Succ(sk−1),
but sk is not the first successor of an Eval node).
We know that the substitution labels are neither changed

in the last step of the abstract evaluation (from sk−1 to
sk) nor in the last step of the concrete evaluation (from
Sk−1γk−1 to Skγk). Likewise, the variables are not instan-
tiated by any substitution. Thus, we can use the same con-
cretization for sk as for sk−1 and define γ′k = γ′k−1 = γk.
Moreover, the substitution labels of the goals are also not
changed when going from sk−1 to sk. Thus, we have σi =

σi′ . The same holds for the concrete evaluation when going

from Sk−1γk−1 to Skγk. Thus, we have θi = θi
′

. The only
exception is that the first goal of sk−1 resp. Sk−1 may have
been removed in this evaluation step. In that case, while
sk−1 resp. Sk−1 had m goals that were no scope markers,
then sk resp. Sk only have n = m − 1 such goals. In that

case, we have σi = σi+1′ and θi = θi+1′ . Hence, in that case
we obtain

(σiγ′k)|V(Q) = (σi+1′γ′k)|V(Q)

= (σi+1′γ′k−1)|V(Q)

(Ind. Hyp.)
= (γ1θ

i+1′)|V(Q)

= (γ1θi)|V(Q)

for all i ∈ {1, . . . , n}. Otherwise we have n = m and

(σiγ′k)|V(Q) = (σi′γ′k)|V(Q)

= (σi′γ′k−1)|V(Q)

(Ind. Hyp.)
= (γ1θ

i′)|V(Q)

= (γ1θ
i)|V(Q)

for all i ∈ {1, . . . , n}.

The proof of Thm. 16 uses induction on the length of the
successful evaluation of Sγ to a state starting with ✷. If
this evaluation corresponds to a connection path, Thm. 16
follows by Thm. 5 and the induction hypothesis. If s is a
Split node, both the evaluation of the first and the second
successor of s to states starting with ✷ are shorter than the
complete evaluation. Thus we can use the induction hypoth-
esis for both successors and Thm. 16 follows by Thm. 10. If
s is an Inst node, we know by Thm. 8 that we can simulate
the same evaluation from its successor. Note that there may
not be cycles in an evaluation graph which consist of Inst
edges only. So there is a path of finitely many Inst edges
from s to the next state s′ that is not an Inst node. Since
the theorem holds for s′, it also holds for s.

Theorem 16 (TRS Simulates Semantics). Let s =
(S;KB) be a start node of a connection path or a Split

node in a graph Gr, Sγ ∈ CON (s), and let θ be an answer
substitution for Sγ. Then encin(s)γ i→+

R(Gr) enc
out(s)γθ.

Proof. We show the theorem by induction on k. We
must have k > 0 since a state starting with ✷ cannot be a
start node of a connection path or a Split node.
If k = 1, then we have S = (!m)σ′ for some m ∈ N

or S = (t)cσ′ for some term t and some clause c. In the
first case, we applied the Cut rule to s and reach the state
s′ = (✷σ′ ;KB). So we have a connection path π from s to
s′. Moreover, the answer substitution θ is empty. Thus, we
trivially have that encin(s)γ i→R(Gr) enc

out(s)γ as σπ is the
identity. This is an innermost rewrite step, as the function
symbols introduced in the TRSs are fresh and do not occur
in the range of γ. In the second case, c must be a fact since
we reach a success in the next step. Moreover, by Thm. 5 the
Eval rule must have been applied to s. If we had applied the
Inst rule, s would not be a start node of a connection path.
The Split rule cannot be applied since (t)c is no sequence
of terms and for all other rules except Eval, the successor of
((t)cσ′)γ would not be represented by at least one of the suc-
cessors of s. So the first successor of s is s′ = (✷σ′σ;KB ′)
with σ = mgu(t, h) where h is the head of c. Thus, we
have the rule encin(s)σ → encout(s)σ in R(Gr). The an-
swer substitution for Sγ is θ = mgu(tγ, h). Since γ is a
concretization and h does not contain abstract variables, we
have hγ = h. Hence, we obtain mgu(tγ, hγ) = θ and thus,
γθ is a unifier of t and h. So there must be a substitution ξ
with σξ = γθ. Furthermore, V(encin(s)γ) = ∅ as encin(s)
only contains abstract variables which must be replaced by
ground terms by γ. Thus, we have encin(s)γ = encin(s)γθ =
encin(s)σξ i→R(Gr) encout(s)σξ = encout(s)γθ. Again, the
rewrite step is innermost as the function symbols introduced
in the TRSs are fresh and do not occur in the range of ξ.
Let k > 1. As long as we do not apply the Inst or Split

rule, the concrete evaluation of Sγ directly corresponds to a
path in the symbolic evaluation graph by Thm. 5.
If we do not apply the Inst or Split rule and we do not

traverse a successor of an Inst node while simulating the
concrete evaluation, this simulation must end in a Suc node
and, thus, we have a connection path π from s to a state
s′ = (✷σ′ | S

′;KB ′) which simulates all k steps of the con-
crete evaluation. In particular, for the concrete final state
we have (✷θ′θ | Ssuffix) = (✷σ′ | S

′)γ′ ∈ CON (s′). Hence,
we have the rule encin(s)σπ → encout(s)σπ in R(Gr). By
Lemma 30, (σπγ

′)|V(s) = (γθ)|V(s) and we obtain encin(s)γ

= encin(s)γθ = encin(s)σπγ
′ i→R(Gr) encout(s)σπγ

′ =
encout(s)γθ by the same reasoning as in the base case of
the induction.
If we apply the Inst or Split rule (but not to the first

node s) or if we reach a successor of an Inst node in more
than zero steps following the concrete evaluation through
the graph, then we have a connection path from s to some
node s′ which is no Suc node. Thus, we have the
rules encin(s)σπ → us,s′(enc

in(s′),V(encin(s)σπ)) and
us,s′(enc

out(s′),V(encin(s)σπ)) → encout(s)σπ in R(Gr).
As both Inst and Split only work on states with one sin-
gle goal, we know that s′ only has one goal, i.e., s′ =
(Qσ′σπ ;KB ′) (where Q may additionally be labeled by a

clause c). Hence, we have Sγ ⊢k′

θ′′ (Qγ′)θ′θ′′ ∈ CON (s′)
with k > k′ > 0. If s′ is an Inst node, there is a node
s′′ in Gr which is reachable from s′ by Inst edges only and
(Qγ′)θ′θ′′ ∈ CON (s′′). So w.l.o.g., we can assume that s′ is a

18

Split node or a successor of an Inst node which starts again
a connection path (in this latter case, we might have to take

s′′ for s′). As (Qγ′)σ′σπ ⊢
k−k′

θ′′′ (✷θ′θ′′θ′′′ | Ssuffix) for some
substitution θ′′′ with θ = θ′′θ′′′, we can use the induction
hypothesis to obtain encin(s′)γ′ i→+

R(Gr) enc
out(s′)γ′θ′′′. By

Lemma 30, we know that (σπγ
′)|V(s) = (γθ′′)|V(s), where π

is the connection path from s to s′. Thus, we obtain

encin(s)γ = encin(s)γθ′′

= encin(s)σπγ
′

i→R(Gr) us,s′(enc
in(s′)γ′,V(encin(s)σπ)γ

′)

i→+
R(Gr) us,s′(enc

out(s′)γ′θ′′′,V(encin(s)σπ)γ
′)

(∗)
= us,s′(enc

out(s′)γ′θ′′′,

V(encin(s)σπ)γ
′θ′′′)

i→R(Gr) encout(s)σπγ
′θ′′′

= encout(s)γθ′′θ′′′

= encout(s)γθ.

This is an innermost reduction, as the defined function sym-
bols in the TRS are fresh and do not occur in the ranges
of the involved substitutions. For the step (∗), note that
(σπγ

′)|V(s) = (γθ′′)|V(s) and γ is a concretization w.r.t.
KB = (G,U). In particular, it instantiates all variables in G
by ground terms and encin(s) only contains variables from G.
So V(V(encin(s)σπ)γ

′) = ∅ and, hence, V(encin(s)σπ)γ
′ =

V(encin(s)σπ)γ
′θ′′′.

We know that s cannot be an Inst node as it must be a
start node of a connection path or a Split node.
If s is a Split node, we have S = (t, Q)σ′ . Let s1 =

(tid ;KB) be its first successor and s2 = ((Qδ)δ;KB ′) its
second successor. Then we have the rules encin(s) →
us,s1(enc

in(s1),V(enc
in(s))), us,s1(enc

out(s1)δ,V(enc
in(s)))

→ us1,s2(enc
in(s2),V(enc

in(s)) ∪ V(encout(s1)δ)), and
us1,s2(enc

out(s2),V(enc
in(s)) ∪ V(encout(s1)δ)) →

encout(s)δ in R(Gr). So we directly obtain encin(s)γ
i→R(Gr) us,s1(enc

in(s1)γ,V(enc
in(s))γ). Moreover, as the

concrete evaluation of (tγ,Qγ)σ′ reaches a state (✷θ′θ |
Ssuffix), there must be substitutions θ′′ and θ′′′ such that

(tγ)id ⊢
k′

θ′′ (✷θ′′ | S
′) and (Qγθ′′)θ′′ ⊢

k′′

θ′′′ (✷θ′′θ′′′ | Ssuffix)
where 0 < k′ < k, 0 < k′′ ≤ k − k′, and θ = θ′′θ′′′.
Since s1 must be (an instance of) a start node of a con-
nection path, we can use the induction hypothesis to obtain
encin(s1)γ

i→+
R(Gr) encout(s1)γθ

′′, i.e., us,s1(enc
in(s1)γ,

V(encin(s))γ) i→+
R(Gr) us,s1(enc

out(s1)γθ
′′,V(encin(s))γ).

Furthermore, we have us,s1(enc
out(s1)γθ

′′,V(encin(s))γ) =
us,s1(enc

out(s1)γθ
′′,V(encin(s))γθ′′) as γ is a concretization

w.r.t. KB and encin(s) only contains variables from G for
KB = (G,U). By Thm. 10 there is a concretization γ′ w.r.t.
KB ′ such that Qγθ′′ = Qδγ′ and tγθ′′ = tδγ′. Moreover,
the rule us,s1(enc

out(s1)δ,V(enc
in(s)))

→
us1,s2(enc

in(s2),V(enc
in(s)) ∪ V(encout(s1)δ))

is the same as the rule

us,s1(enc
out(s1)δ,V(enc

in(s))δ)
→

us1,s2(enc
in(s2), (V(enc

in(s)) ∪ V(encout(s1)))δ)

since encin(s) only contains variables from G and G∩Dom(δ)
= ∅. Hence, we obtain us,s1(enc

out(s1)γθ
′′,V(encin(s))γθ′′)

i→R(Gr) us1,s2(enc
in(s2)γ

′, (V(encin(s))∪V(encout(s1)))δγ
′).

This is an innermost rewrite step, as the defined function
symbols in the TRS are fresh and do not occur in the ranges
of the involved substitutions. As s2 must also be (an in-
stance of) a start node of a connection path or a Split
node, we can again use the induction hypothesis to obtain
encin(s2)γ

′ i→+
R(Gr) enc

out(s2)γ
′θ′′′, i.e., we have:

us1,s2(enc
in(s2)γ

′, (V(encin(s)) ∪ V(encout(s1)))δγ
′)

i→+
R(Gr)

us1,s2(enc
out(s2)γ

′θ′′′, (V(encin(s)) ∪ V(encout(s1)))δγ
′)

We also know that the rule us1,s2(enc
out(s2),V(enc

in(s)) ∪
V(encout(s1)δ)) → encout(s)δ is the same as the rule
us1,s2(enc

out(s2), (V(enc
in(s)) ∪ V(encout(s1)))δ) →

encout(s)δ since, again, δ does not instantiate any variables
in encin(s). Moreover, we know that

(V(encin(s)) ∪ V(encout(s1)))δγ
′ =

(V(encin(s)) ∪ V(encout(s1)))δγ
′θ′′′

because we have δγ′ = γθ′′ on all variables in encin(s) and
encout(s1) and by the groundness analysis we are guaran-
teed to instantiate all these variables by ground terms us-
ing γθ′′. This yields us1,s2(enc

out(s2)γ
′θ′′′, (V(encin(s)) ∪

V(encout(s1)))δγ
′) = us1,s2(enc

out(s2)γ
′θ′′′, (V(encin(s)) ∪

V(encout(s1)))δγ
′θ′′′) i→R(Gr) encout(s)δγ′θ′′′ =

encout(s)γθ′′θ′′′ = encout(s)γθ. Altogether, we have
encin(s)γ i→+

R(Gr) encout(s)γθ which concludes the

proof.

The proof of Thm. 17 is performed by showing the fol-
lowing property. Suppose that there is an abstract state
s = (S;KB) which is a Split node or the start node of a
connection path, and that its concretization Sγ starts an
infinite evaluation. Then there is a prefix of that evaluation
which reaches a concrete state (S′γ′ | Ssuffix) such that S′γ′

again starts an infinite evaluation and it is a concretization
of an abstract state s′ = (S′;KB ′) that is a Split node or
the start node of a connection path. Moreover, this prefix
of the evaluation can be simulated by a rewrite sequence
with the TRS corresponding to the evaluation graph. The
start term of that rewrite sequence is encin(s)γ and the final
term of the rewrite sequence contains encin(s′)γ′. Thus, by
repeating this construction, one obtains an infinite rewrite
sequence. To prove the above property one uses Thm. 16 if
s is a Split node and Thm. 5 if s starts a connection path.

Theorem 17 (Soundness of Termination Analysis).
Let P be a logic program, p ∈ Σ, m a moding function, and
let Gr be a symbolic evaluation graph for P whose root is
the initial state corresponding to Qp

m. If the TRS R(Gr) is
innermost terminating, then there is no infinite evaluation
starting with any query from Qp

m. Thus, all these queries
are terminating w.r.t. the program P.

Proof. We show the following proposition (*): Let Sγ
be a concretization of an abstract state s = (S;KB) which
is a Split node or a start node of a connection path, where
Sγ has an infinite derivation. Then there is an evaluation
Sγ ⊢+ (S′γ′ | Ssuffix) such that

(a) there is an abstract state s′ = (S′;KB ′) in Gr with
S′γ′ ∈ CON (s′),

(b) S′γ′ has an infinite evaluation,

19

(c) s′ is a Split node, a start node of a connection path,
or an Inst node, and

(d) encin(s)γ i→+
R(Gr) C[encin(s′)γ′] for some context C.

The proposition (*) obviously implies the theorem. If
there were an infinite evaluation starting with a query from
Qp

m, then this query has the form Sγ where Sγ ∈ CON (s)
for the root node s of Gr . Since s is the start node of
a connection path, by (*) we have Sγ ⊢+ (S′γ′ | Ssuffix),
where S′γ′ ∈ CON (s′) for a state s′ in Gr by (a). By (c),
s′ is a Split node, a start node of a connection path, or
an Inst node. In the latter case, since symbolic evaluation
graphs are finite and may not contain cycles consisting only
of Inst edges, by following the path of Inst edges originat-
ing in s′, we reach a node s′′ = (S′′;KB ′′) which is again
a Split node or a start node of a connection path. Thus,
encin(s′) = encin(s′′)µ, where µ results from composing the
substitutions on these Inst edges (we define s′ = s′′ and
µ = id in the case where s′ itself is already a Split node or
a start node of a connection path). Let γ′′ = µγ′. Then by
(d), there is an innermost rewrite sequence from encin(s)γ to
a term containing encin(s′′)γ′′. Note that S′γ′ = S′′γ′′ has
an infinite evaluation by (b) and that it is also a concretiza-
tion of s′′ by Thm. 8. Hence, we can continue the above
construction and obtain an innermost rewrite sequence from
encin(s′′)γ′′ to a term containing encin(s′′′′)γ′′′′, etc.
Now we prove the proposition (*).
If s is a Split node, then we know that S contains a single

goal resulting from a query (t, Q). Let δ be the substitution
associated to s. Let V contain all abstract variables occur-
ring in s. Then δ|V \G must be injective as the variables in

its range are fresh. So there exists a substitution δ−1 with
δ−1(T ′) = T if there is a T ∈ V \ G with δ(T) = T ′ and
δ−1(T ′) = T ′ for all other variables T ′. There are two cases.
If tγ already has an infinite evaluation, then we let s′ =

(tid ;KB) be the first successor of s. Obviously, s′ is a start
node of a connection path or an Inst node (i.e., (c) holds).
By defining γ′ = γ, we directly have that (a) and (b) hold
as well. Moreover, R(Gr) contains the rule encin(s) →
u(encin(s′),V(encin(s))) for some fresh function symbol u.
Thus, encin(s)γ →R(Gr) C[encin(s′)γ]. Note that this is an

innermost rewrite step, since the function symbols f in
s and

u introduced in the TRSs are fresh and do not occur in the
range of γ′.
Otherwise, if tγ does not have an infinite evaluation, then

there must be some answer substitution θ of (tγ)id with
(tγ)id ⊢

+
θ ((Qγθ)θ | Ssuffix) and Qγθ has an infinite eval-

uation. Let s′ = ((Qδ)δ;KB ′) be the second successor of
s. We define Tγ′ = Tγθ for T ∈ A \ A(Range(δ|V \G))

and Tγ′ = Tδ−1γθ′ for T ∈ A(Range(δ|V \G)). We have

KB ′ = (G′,U ′) = (G ∪ NextG(t,G)δ,Uδ). We need to show
that γ′ is a concretization w.r.t. KB ′ and that Qγθ′ =
Qδγ′. This proof is completely analogous to the proof of
Thm. 10. Thus, (a) and (b) hold. Moreover, s′ is clearly a
Split node, a start node of a connection path, or an Inst
node (i.e., (c) also holds). Finally, by Thm. 16 we know
that encin(Succ1(s))γ →

+
R(Gr) encout(Succ1(s))γθ. More-

over, R(Gr) contains the rules

encin(s)→ u1(enc
in(Succ1(s)),V(enc

in(s)))

and

u1(enc
out(Succ1(s))δ,V(enc

in(s)))
→

u2(enc
in(s′),V(encin(s)) ∪ V(encout(Succ1(s))δ)).

We have

encin(s)γ →R(Gr) u1(enc
in(Succ1(s))γ,V(enc

in(s))γ)

→+
R(Gr) u1(enc

out(Succ1(s))γθ,V(enc
in(s))γ).

Note that γ instantiates all variables of encin(s) to ground
terms. Thus, the term obtained above is identical to
u1(enc

out(Succ1(s))γθ,V(enc
in(s))γθ). Hence, by instanti-

ating the rule u1(. . .) → u2(. . .) with γ′ we can rewrite this
term to C[encin(s′)γ′]. As before, all rewrite steps are in-
nermost, i.e., (c) holds as well.

If s is a start node of a connection path, the beginning
of Sγ’s infinite evaluation corresponds to the traversal of a
connection path in Gr by Thm. 5. Note that we can follow
this connection path until we reach an Inst or Split node or
the successor of an Inst node, and we let s′ = (S′;KB ′) be
the end node of this connection path π (i.e., we do not stop
at Suc nodes). By Thm. 5, there is an S′γ′ ∈ CON (s′) with
Sγ ⊢+

θ S′γ′ for some substitution θ and S′γ′ again has an
infinite evaluation (i.e., (a) and (b) hold). Moreover, R(Gr)
contains the rule encin(s)σπ → u(encin(s′),V(encin(s)σπ))
for some fresh function symbol u. By Def. 7 and 9, we know
that s only contains one single goal. Thus, by Lemma 30
we obtain (σπγ

′)|V(s) = (γθ)|V(s). Furthermore, we have

V(encin(s)γ) = ∅ and, thus, encin(s)γ = encin(s)γθ =
encin(s)σπγ

′ →R(Gr) C[encin(s′)γ′]. Again this is an in-

nermost rewrite step, since the function symbols f in
s and u

introduced in the TRSs are fresh and do not occur in the
ranges of σπ or γ′. Thus, (d) holds. Moreover, s′ is either a
Split node, the successor of an Inst node, or an Inst node
(i.e., (c) holds as well).

To prove Thm. 23, we need the following Lemmas 31 and
33. To prove Lemma 33, we need an additional Lemma 32.
Moreover, Lemma 33 will also be needed to prove Thm. 27.
Thus, it is already generalized to graphs containing multi-
plicative Split nodes.

Lemma 31 (Start Queries and Basic Terms). Let
P be a logic program, p ∈ Σ, m a moding function, and
let Gr be a symbolic evaluation graph for P whose root s =
(p(T1, . . . , Tn)id ; ({Ti | m(p, i) = in},∅)) is the initial state
corresponding to Qp

m. For each concretization γ w.r.t. ({Ti |
m(p, i) = in},∅), we have17 |p(T1, . . . , Tn)γ|m = |encin(s)γ|
and encin(s)γ is a basic term w.r.t. R(Gr).

Proof. Let p(T1, . . . , Tn)γ = p(t1, . . . , tn)θ ∈ CON (s).
Moreover, let k = |{i ∈ {1, . . . , n} | m(p, i) = in}| and let
{i1, . . . , ik} = {i ∈ {1, . . . , n} | m(p, i) = in} with ij < ij+1

for all j ∈ {1, . . . , k − 1}. Then we have |p(t1, . . . , tn)θ|m =
1 + Σi∈{i|1≤i≤n,m(p,i)=in}|ti| = 1 + Σj∈{1,...,k}|tij | =

|f in
s (ti1 , . . . , tik)| = |f in

s (Ti1 , . . . , Tik)γ| = |encin(s)γ|. Fur-
thermore, encin(s)γ = f in

s (Ti1 , . . . , Tik)γ must be a basic
term w.r.t. R(Gr) as all defined function symbols in R(Gr)
are fresh and, thus, they do not occur in the range of γ.

17Here, we simply ignore the substitution labels when com-
puting |p(T1, . . . , Tn)γ|m.

20

Lemma 32 (Complexity Approximating Answer).
Let Gr be a symbolic evaluation graph and g = |Gr | be the
number of nodes in Gr. Let Sγ be a concretization of an ab-
stract state s = (S;KB) which is a start node of a connection
path or a Split node. Moreover, let the longest evaluation
of Sγ be finite and compute exactly one answer substitution
θ, i.e., it is of the form Sγ ⊢ℓ1 (✷θ′θ | Ssuffix) ⊢

ℓ2 ε. Then
we have encin(s)γ i→r

R(Gr) enc
out(s)γθ such that g · r ≥ ℓ1.

Proof. We show this proposition by induction on ℓ1. We
must have ℓ1 > 0 since a state starting with ✷ cannot be a
start node of a connection path or a Split node.

If ℓ1 = 1, then we have S = (!m)σ′ for some m ∈ N

or S = (t)cσ′ for some term t and some clause c. In the
first case, we applied the Cut rule to s and reach the state
s′ = (✷σ′ ;KB). So we have a connection path from s to
s′. Moreover, the answer substitution θ is empty. Thus,
we trivially have that encin(s)γ i→R(Gr) encout(s)γ (as the
defined function symbols in the TRSs are fresh and do not
occur in the range of γ), r = 1, and g ≥ 1. In the second
case, c must be a fact since we reach a success in the next
step. Moreover, by Thm. 5 we know that the Eval rule
must have been applied to s. If we would have applied the
Inst rule, s would not be a start node of a connection path.
The Split rule cannot be applied since (t)c is no sequence
of terms and for all other rules except Eval, the successor
of ((t)cσ′)γ would not be represented by at least one of the
successors of s. So the first successor of s is s′ = (✷σ′σ;KB ′)
with σ = mgu(t, h) where h is the head of c. We know
that the answer substitution is θ = mgu(tγ, h) and we have
the rule encin(s)σ → encout(s)σ in R(Gr). Since γ is a
concretization and h does not contain abstract variables, we
have hγ = h. Hence, we obtain mgu(tγ, hγ) = θ and γθ is
a unifier of t and h. So there must be a substitution ξ with
σξ = γθ. Furthermore, we know that V(encin(s)γ) = ∅

as encin(s) only contains abstract variables which must be
replaced by ground terms by γ. Thus, we have encin(s)γ =
encin(s)γθ i→R(Gr) encout(s)γθ by the matcher ξ and the
fact that all defined function symbols in the TRSs are fresh
and do not occur in the ranges of the involved substitutions,
r = 1, and g ≥ 1.
Let ℓ1 > 1. As long as we do not apply the Inst or Split

rule, we can follow the concrete evaluation of Sγ through
the graph with the corresponding abstract rules as we know
by Thm. 5.
If we do not apply the Inst or Split rule and we do

not traverse a successor of an Inst node while simulating
the concrete evaluation, this simulation must end in a Suc
node and, thus, we have a connection path π from s to a
state s′ = (✷σ′ | S

′;KB ′) with (✷θ′θ | Ssuffix) = (✷σ′ |
S′)γ′ ∈ CON (s′) simulating all ℓ1 steps of the concrete
evaluation to the success state. Hence, we have the rule
encin(s)σπ → encout(s)σπ in R(Gr). By Lemma 30, we
have (σπγ

′)|V(s) = (γθ)|V(s) and we obtain encin(s)γ =

encin(s)γθ i→R(Gr) enc
out(s)γθ with the matcher γ′ by the

same reasoning as in the base case of the induction. More-
over, we know that the connection path has ℓ1 + 1 nodes.
Thus, we have r = 1 and g ≥ ℓ1.

If we apply the Inst or Split rule (but not to the first
node) or if we reach a successor of an Inst node in more
than zero steps following the concrete evaluation through
the graph, then we have a connection path from s to some
node s′ which is no Suc node. Thus, we have the
rules encin(s)σπ → us,s′(enc

in(s′),V(encin(s)σπ)) and

us,s′(enc
out(s′),V(encin(s)σπ)) → encout(s)σπ in R(Gr).

As both Inst and Split only work on states with one sin-
gle goal, we know that s′ only has one goal, i.e., s′ =
(Qσ′σπ ;KB ′) (where Q may additionally be labeled by a

clause c). Hence, we have Sγ ⊢ℓ′

θ′′ Qθ′θ′′γ
′ ∈ CON (s′) with

ℓ1 > ℓ′ > 0. If s′ is an Inst node, there is a node s′′

in Gr which is reachable from s′ by Inst edges only and
Qσ′σπγ

′ ∈ CON (s′′). So w.l.o.g., we continue the proof
for s′ (take s′′ for s′ otherwise). Thus, s′ is a start node
of a connection path or a Split node. As we must have

Qσ′σπγ
′ ⊢ℓ1−ℓ′

θ′′′ (✷θ′θ′′θ′′′ | Ssuffix) for some substitution
θ′′′ with θ = θ′′θ′′′, we can use the induction hypothe-

sis to obtain encin(s′)γ′ i→r′

R(Gr) encout(s′)γ′θ′′′ such that

g · r′ ≥ ℓ1 − ℓ′. By Lemma 30, we know that (σπγ
′)|V(s) =

(γθ′′)|V(s). Thus, we obtain

encin(s)γ = encin(s)γθ′′

i→R(Gr) us,s′(enc
in(s′)γ′,V(encin(s)σπ)γ

′)

i→r′

R(Gr) us,s′(enc
out(s′)γ′θ′′′,V(encin(s)σπ)γ

′)

(∗)
= us,s′(enc

out(s′)γ′θ′′′,

V(encin(s)σπ)γ
′θ′′′)

i→R(Gr) encout(s)σπγ
′θ′′′

= encout(s)γθ′′θ′′′

= encout(s)γθ.

The reason for having an innermost evaluation is again the
fact that the defined function symbols in the TRSs are fresh
and do not occur in the ranges of the involved substitu-
tions. To see the step (∗), note that (σπγ

′)|V(s) = (γθ′′)|V(s)

and γ is a concretization w.r.t. KB = (G,U). In particu-
lar, it instantiates all variables in G by ground terms and
encin(s) only contains variables from G. Thus, we have
V(V(encin(s)σπ)γ

′) = ∅ and, hence, V(encin(s)σπ)γ
′ =

V(encin(s)σπ)γ
′θ′′′. Moreover, we have r = r′ + 2 and the

connection path from s to s′ contains ℓ′ + 1 ≤ g nodes.
Hence, we obtain ℓ1 = ℓ′ + ℓ1 − ℓ′ ≤ ℓ′ + g · r′ < g + g · r′ =
g · (r′ + 1) < g · (r′ + 2) = g · r.

We know that s cannot be an Inst node as it must be a
start node of a connection path or a Split node.
If s is a Split node, we have S = (t, Q)σ′ . Let s1 =

(tid ;KB) be its first successor and s2 = ((Qδ)δ;KB ′) its
second successor. Then we have the rules encin(s) →
us,s1(enc

in(s1),V(enc
in(s))), us,s1(enc

out(s1)δ,V(enc
in(s)))

→ us1,s2(enc
in(s2),V(enc

in(s)) ∪ V(encout(s1)δ)), and
us1,s2(enc

out(s2),V(enc
in(s)) ∪ V(encout(s1)δ)) →

encout(s)δ in R(Gr). So we directly obtain encin(s)γ
i→R(Gr) us,s1(enc

in(s1)γ,V(enc
in(s))γ) as the defined func-

tion symbols in the TRSs are fresh and do not occur in
the range of γ. Moreover, as the concrete evaluation of
(t, Q)σ′γ reaches a state (✷θ′θ | Ssuffix), there must be sub-

stitutions θ′′ and θ′′′ such that (tγ)id ⊢
ℓ′

θ′′ (✷θ′′ | S
′) and

(Qγθ′′)θ′′ ⊢
ℓ′′

θ′′′ (✷θ′′θ′′′ | Ssuffix) where 0 < ℓ′ < ℓ1, 0 <
ℓ′′ ≤ ℓ1 − ℓ′, and θ = θ′′θ′′′. Since s1 must be (an in-
stance of) a start node of a connection path and (tγ)id
must also have exactly one answer substitution, we can use

the induction hypothesis to obtain encin(s1)γ
i→r′

R(Gr)

encout(s1)γθ
′′ with g · r′ ≥ ℓ′. So we have

21

us,s1(enc
in(s1)γ,V(enc

in(s))γ)
i→r′

R(Gr)

us,s1(enc
out(s1)γθ

′′,V(encin(s))γ).

Furthermore, we have us,s1(enc
out(s1)γθ

′′,V(encin(s))γ) =
us,s1(enc

out(s1)γθ
′′,V(encin(s))γθ′′) as γ is a concretization

and encin(s) only contains variables from G for KB = (G,U).
By Thm. 10 there is a concretization γ′ w.r.t. KB ′ such that
Qγθ′′ = Qδγ′ and tγθ′′ = tδγ′. Moreover, we know that the
rule us,s1(enc

out(s1)δ,V(enc
in(s))) →

us1,s2(enc
in(s2),V(enc

in(s)) ∪ V(encout(s1)δ)) is the
same as the rule us,s1(enc

out(s1)δ,V(enc
in(s))δ) →

us1,s2(enc
in(s2), (V(enc

in(s)) ∪ V(encout(s1)))δ) since
encin(s) only contains variables from G and G ∩ Dom(δ) =
∅. Hence, we obtain us,s1(enc

out(s1)γθ
′′,V(encin(s))γθ′′)

i→R(Gr) us1,s2(enc
in(s2)γ

′, (V(encin(s))∪V(encout(s1)))δγ
′)

as the defined function symbols in the TRSs are fresh and
do not occur in the ranges of the involved substitutions. As
s2 must also be (an instance of) a start node of a connection
path or a Split node, we can again use the induction hy-

pothesis to obtain encin(s2)γ
′ i→r′′

R(Gr) enc
out(s2)γ

′θ′′′ with

g · r′′ ≥ ℓ′′. So we have

us1,s2(enc
in(s2)γ

′, (V(encin(s)) ∪ V(encout(s1)))δγ
′)

i→r′′

R(Gr)

us1,s2(enc
out(s2)γ

′θ′′′, (V(encin(s)) ∪ V(encout(s1)))δγ
′).

We also know that the rule us1,s2(enc
out(s2),V(enc

in(s)) ∪
V(encout(s1)δ)) → encout(s)δ is the same as the rule
us1,s2(enc

out(s2), (V(enc
in(s)) ∪ V(encout(s1)))δ) →

encout(s)δ since, again, δ does not instantiate any variables
in encin(s). Moreover,

(V(encin(s)) ∪ V(encout(s1)))δγ
′

=
(V(encin(s)) ∪ V(encout(s1)))δγ

′θ′′′,

because we have δγ′ = γθ′′ on all variables in encin(s) and
encout(s1) and by the groundness analysis we are guaran-
teed to instantiate all these variables by ground terms us-
ing γθ′′. This yields us1,s2(enc

out(s2)γ
′θ′′′, (V(encin(s)) ∪

V(encout(s1)))δγ
′) = us1,s2(enc

out(s2)γ
′θ′′′, (V(encin(s)) ∪

V(encout(s1)))δγ
′θ′′′) i→R(Gr) encout(s)δγ′θ′′′ =

encout(s)γθ′′θ′′′ = encout(s)γθ since, again, the defined func-
tion symbols in the TRSs are fresh and do not occur in the
ranges of the involved substitutions. Altogether, we have

encin(s)γ i→r′+r′′+3
R(Gr) encout(s)γθ, i.e., r = r′ + r′′ + 3. It

remains to show that g · r ≥ ℓ1.
We know that ℓ1 = ℓ′ + ℓ′′ since the evaluation of (✷θ′θ |

Ssuffix | S
′) belongs to the ℓ2 trailing evaluation steps. So

we obtain ℓ1 = ℓ′ + ℓ′′ ≤ g · r′ + g · r′′ = g · (r′ + r′′) <
g · (r′ + r′′ + 3) = g · r.

Lemma 33 (Complexity Approximation). Let Gr
be a decomposable symbolic evaluation graph and let Sγ
be a concretization of an abstract state s = (S;KB) in Gr
which is a start node of a connection path or a Split node.
Moreover, let Grs be the subgraph of Gr at s and let the first
ℓ steps of the longest evaluation of Sγ be simulated within
Grs (i.e., the end of this prefix of the concrete evaluation
is reached as soon as we reach a multiplicative Split node
during the simulation — if we do not reach such a node, the
complete concrete evaluation can be simulated within Grs).
Furthermore, let gs = |Grs| denote the number of nodes in

Grs and gSplits = |Split(Grs) \ mults(Gr)| denote the num-
ber of non-multiplicative Split nodes in Grs Then we have
ℓ < gs or there is an innermost evaluation w.r.t. R(Gr)
starting from encin(s)γ with r rewrite steps using a rule from

R(Grs) such that 2 · gs · 2
gSplits · r ≥ ℓ.

Proof. We prove the lemma by induction on ℓ. If ℓ = 0,
we trivially have ℓ < gs. If ℓ = 1, then we either have ℓ < gs
or the only node in Grs is s, i.e., it is a multiplicative Split
node. But then the prefix of the evaluation cannot have
the length ℓ = 1 as its simulation starts at a multiplicative
Split node and, thus, must stop directly.
For ℓ > 1 we can assume that the proposition holds for

all evaluations with a prefix of a length which is at most
ℓ− 1 which can be simulated within Grs. If ℓ < gs, there is
nothing to show. So let ℓ ≥ gs. We perform a case analysis
on s.
If s is a Split node, then we know that s is not multi-

plicative (since we have ℓ > 1) and S contains a single goal
resulting from a query (t, Q). Let s1 = ((t)id ;KB) be the
first successor of s and s2 = ((Qδ)δ;KB ′) be the second
successor of s. Furthermore, we have the rules encin(s) →
us,s1(enc

in(s1),V(enc
in(s))), us,s1(enc

out(s1)δ,V(enc
in(s)))

→ us1,s2(enc
in(s2),V(enc

in(s)) ∪ V(encout(s1)δ)), and
us1,s2(enc

out(s2),V(enc
in(s))∪V(encout(s1)δ))→ encout(s)δ

in R(Gr) and R(Grs).
If there is no answer substitution for tγ computed dur-

ing the prefix, then we know that the prefix which can be
simulated within Grs of the evaluation of Sγ is the same as
the prefix which can be simulated within Grs of the eval-
uation of tγ. Moreover, we know that s1 must be (an in-
stance of) a start node of a connection path. So we have
encin(s)γ i→R(Grs) C[encin(s1)γ] and we can continue the
proof in the case where s is a start node of a connection
path as s1 is such a node and the prefix of the evaluation
of tγ ∈ CON (s1) has the same length as the prefix of the
evaluation of Sγ. Note that the rewrite step is innermost as
the function symbols introduced in the TRSs are fresh and
do not occur in the range of γ.
If there are answer substitutions for tγ computed dur-

ing the prefix, then we know that exactly one answer sub-
stitution θ1 is computed for tγ since s is not multiplica-
tive. Thus, the prefix of the evaluation of Sγ has the form

(tγ,Qγ)θ ⊢
ℓ′1 ((Qγθ1)θθ1 | S1) ⊢

ℓQ S1 ⊢
ℓf Send where the

evaluation from the state ((Qγθ1)θθ1 | S1) to the state S1

corresponds to the longest evaluation of (Qγθ1)θθ1 or has

the form (tγ,Qγ)θ ⊢
ℓ′1 ((Qγθ1)θθ1 | S1) ⊢

ℓQ Send where
the evaluation from the state ((Qγθ1)θθ1 | S1) to the state
Send corresponds to the prefix of the longest evaluation of
(Qγθ1)θθ1 . We directly see that the length of the prefix of
the evaluation of tγ is ℓt = 1 + ℓf + ℓ′1 (where ℓf = 0 if it
does not exist in the prefix) as this is the sum of the lengths
of evaluation parts not belonging to the evaluation of Qγθ1
plus one application of the Suc rule to add the answer sub-
stitution instead of continuing the evaluation with Qγθ1.
We also know that 0 < ℓt < ℓ and 0 < ℓQ < ℓ. Since s is not
multiplicative, we have ℓf < gs. Furthermore, we again have
encin(s)γ i→R(Grs) us,s1(enc

in(s1)γ,V(enc
in(s))γ). By the

fact that we actually obtain the answer substitution during
the prefix of the evaluation, we know that its simulation does
not traverse a multiplicative Split node. Thus, we obtain

encin(s1)γ
i→r′

R(Grs1) encout(s1)γθ1 by Lemma 32. More-

over, by Thm. 10 there must be a concretization γ′ w.r.t.

22

KB ′ such that γθj = δγ′ on all variables in s, s1, and s2. We
also know that δ does not instantiate variables in encin(s)
and, thus, the rule

us,s1(enc
out(s1)δ,V(enc

in(s)))
→

us1,s2(enc
in(s2),V(enc

in(s)) ∪ V(encout(s1)δ))

is the same as the rule

us,s1(enc
out(s1)δ,V(enc

in(s))δ)
→

us1,s2(enc
in(s2),V(enc

in(s)) ∪ V(encout(s1)δ)).

So we have

us,s1(enc
in(s1)γ,V(enc

in(s))γ)
i→r′

R(Grs1)

us,s1(enc
out(s1)γθ1,V(enc

in(s))γ)
=

us,s1(enc
out(s1)γθ1,V(enc

in(s))γθ1)
i→R(Grs)

us1,s2(enc
in(s2)γ

′, (V(encin(s)) ∪ V(encout(s1)δ))γ
′)

as the defined function symbols in the TRSs are fresh and do
not occur in the ranges of the involved substitutions. Since
s2 must be (an instance of) a Split node or a start node of
a connection path, we can use the induction hypothesis to
obtain that ℓQ < gs2 or to obtain an innermost evaluation
with r′′ rewrite steps using rules fromR(Grs2) starting from

encin(s2)γ
′ with 2 · gs2 · 2

gSplits2 · r′′ ≥ ℓQ. We obviously
have gs1 ≤ gs, gs2 ≤ gs, gSplits1 ≤ gSplits , gSplits2 ≤ gSplits ,
R(Grs1) ⊆ R(Grs), and R(Grs2) ⊆ R(Grs) as both s1 and
s2 are reachable from s without traversing multiplicative
Split nodes. If ℓQ < gs2 , we have a derivation with r =
2 + r′ rewrite steps using rules from R(Grs) starting from

encin(s)γ. So we obtain ℓ
ℓQ<gs
< ℓt+gs

ℓf<gs
< ℓ′1+1+gs+gs ≤

gs1 ·r
′+2 ·gs+1 ≤ gs ·r

′+2 ·gs+1
gs>1,gSplits ≥1

< 2 ·gs ·2
gSplits ·

r′ + 2 · gs · 2
gSplits · 2 = 2 · gs · 2

gSplits · r. If ℓQ ≥ gs2 , then we
append the derivation with r′′ rewrite steps using rules from
R(Grs2) to the derivation from encin(s)γ to C[encin(s2)γ

′].
So we obtain an innermost derivation with r = 2 + r′ + r′′

rewrite steps using rules from R(Grs). Thus, we have ℓ =

ℓt + ℓQ
ℓf<gs
< ℓ′1 + ℓQ + gs + 1 ≤ gs1 · r

′ + 2 · gs2 · 2
gSplits2 ·

r′′ + gs + 1 ≤ gs · r
′ + 2 · gs · 2

gSplits · r′′ + gs + 1
gs>1,gSplits ≥1

<

2 · gs · 2
gSplits · r′ + 2 · gs · 2

gSplits · r′′ + 2 · gs · 2
gSplits · 2 =

2 · gs · 2
gSplits · (r′ + r′′ + 2) = 2 · gs · 2

gSplits · r.
If s is a start node of a connection path, the beginning of

Sγ’s derivation corresponds to the traversal of a connection
path in Gr by Thm. 5. Note that we can follow this con-
nection path until we reach an Inst or Split node or the
successor of an Inst node, and we let s′ = (S′;KB ′) be the
end node of this connection path π (i.e., we do not stop at
Suc nodes). By Thm. 5, there is an S′γ′ ∈ CON (s′) with

Sγ ⊢ℓ′ S′γ′ and the prefix of the derivation of S′γ′ has the
length ℓ − ℓ′. Moreover, R(Grs) (and thus, R(Gr)) con-
tains the rule encin(s)σπ → u(encin(s′),V(encin(s)σπ)) for
some fresh function symbol u. By Def. 7 and 9, we know
that s only contains one single goal. Thus, by Lemma 30
we obtain (σπγ

′)|V(s) = (γθ)|V(s). Furthermore, we have

V(encin(s)γ) = ∅ and, thus, encin(s)γ = encin(s)γθ =

encin(s)σπγ
′ i→R(Grs) C[encin(s′)γ′]. Again, this is an in-

nermost rewrite step since the function symbols f in
s and u

introduced in the TRSs are fresh and do not occur in the
ranges of σπ or γ′. Moreover, s′ is (an instance of) a Split
node or a start node of a connection path. Thus, we can
use the induction hypothesis to obtain that ℓ − ℓ′ < gs′ or
to obtain an innermost derivation with r′ rewrite steps us-
ing rules from R(Grs′) and starting from encin(s′)γ′ such

that 2 · gs′ · 2
gSplit
s′ · r′ ≥ ℓ− ℓ′. We obviously have gs′ ≤ gs,

gSplits′ ≤ gSplits , and R(Grs′) ⊆ R(Grs) as s′ is reachable
from s without traversing multiplicative Split nodes. If
ℓ − ℓ′ < gs′ , then we have an innermost derivation with
r = 1 rewrite steps using rules from R(Grs) and starting
from Sγ. Moreover, we know that ℓ′ < gs as π contains
ℓ′ + 1 ≤ gs nodes. So we have ℓ = ℓ′ + ℓ − ℓ′ < gs + gs′ ≤

2 · gs < 2 · gs · 2
gSplits · r, since gs > 1, gSplits ≥ 0, and r = 1. If

ℓ − ℓ′ ≥ gs′ , then we append the derivation with r′ rewrite
steps using rules from R(Grs′) to the derivation of length
1 from encin(s)γ to C[encin(s′)γ′] and obtain an innermost
derivation with r = r′ + 1 rewrite steps using rules from
R(Grs). We still know that ℓ′ < gs and, thus, we have

ℓ = ℓ′ + ℓ − ℓ′ < gs + ℓ − ℓ′ ≤ gs + 2 · gs′ · 2
gSplit
s′ · r′ ≤

gs + 2 · gs · 2
gSplits · r′ ≤ 2 · gs · 2

gSplits + 2 · gs · 2
gSplits · r′, since

gSplits ≥ 0. Moreover, 2 · gs · 2
gSplits + 2 · gs · 2

gSplits · r′ =

2 · gs · 2
gSplits · (r′ + 1) = 2 · gs · 2

gSplits · r.

Now we can finally prove Thm. 23. The proof only needs
to be performed for finite evaluations since Thm. 17 already
implies Thm. 23 for infinite evaluations. Thus, we can use
induction on the length of the evaluation (similar to the
proof of Thm. 16). The over-approximation of the asymp-
totic runtime is ensured by the fact that the length of each
connection path is bounded by the number of nodes in the
evaluation graph. Hence, while one rewrite step simulates
several evaluation steps, the number of simulated evaluation
steps by one rewrite step is bounded by a constant. Since
the Split nodes are not multiplicative, their first successors
only produce at most one answer substitution. Thus, the
runtimes for simulating evaluations from the successors of
such Split nodes just have to be added. This is ensured
by the construction of the SplitRules, which call the rules
corresponding to the two successors of the Split node after
each other.

Theorem 23 (Soundness of Complexity Analysis I).
Let P be a logic program, p ∈ Σ, m a moding function, and
let Gr be a symbolic evaluation graph for P whose root is
the initial state corresponding to Qp

m. If Gr has no multi-
plicative Split nodes then prcP,Qp

m
(n) ∈ O(ircR(Gr)(n)).

Proof. We already know by Thm. 17 that if prcP,Qp
m
(n)

= ∞ (i.e., the logic program does not terminate for the
specified query set), then the resulting TRS has an infinite
innermost rewrite sequence. By the proof of Thm. 17, the
sequence starts with a term of the form encin(s)γ, which is
basic. Thus, we also have ircR(Gr)(n) =∞. So we only need
to show the theorem for logic programs which are terminat-
ing w.r.t. the specified sets of queries.

Obviously, Lemma 31 and Lemma 33 imply the theorem
for finite derivations as the root node must be (an instance
of) a start node of a connection path if there is an evaluation
whose length exceeds the number of nodes in Gr . Moreover,
if all evaluations have a length smaller than the number of

23

nodes in Gr , we have prcP,Qp
m
(n) ∈ O(1) ⊆ O(ircR(n)) for

all TRSs R. Furthermore, gs, g
Split
s , and kmax

s as defined in
Lemma 33 do not depend on n in prcP,Qp

m
(n) or ircR(Gr)(n),

as for each Split node s′ and for each Sγ ∈ Succ1(s
′), the

number of answer substitutions for Sγ is bounded by a con-
stant number. Finally, if a graph as in Lemma 33 has no
multiplicative Split nodes, then we have Gr root(Gr) = Gr
and the considered prefix of the evaluation covers the whole
evaluation.

The following definition is needed in the proof of Thm. 27.

Definition 34 (Relative Evaluation Length). Let
R be a TRS, R′ ⊆ R, and d = (t →ℓ1→r1 t1 →ℓ2→r2

. . . →ℓk→rk tk) be an evaluation w.r.t. R. Then the rela-
tive length RelLengthR′(d) is |{i | ℓi → ri ∈ R

′}|.

The proof of Thm. 27 relies on Thm. 23 which already im-
plies Thm. 27 for evaluation graphs without multiplicative
Split nodes. Evaluations within a subgraph (i.e., which do
not traverse multiplicative Split nodes) can be simulated
analogously. As soon as an evaluation reaches a multiplica-
tive Split node, the remaining evaluation is at most as long
as the length of the evaluation of the first successor of that
Split node plus the number of answer substitutions for this
first successor times the length of the evaluation of the sec-
ond successor for one (the “worst”) answer substitution of
the first successor. As the number of answer substitutions
for the first successor is bounded by the runtime of the first
successor, we obtain that the overall runtime is bounded by
the multiplication of the runtimes for the first and the second
successor (the latter covers all possible answer substitutions
and, thus, also the “worst” one).

Theorem 27 (Soundness of Complexity Analysis II).
Let P be a logic program, p ∈ Σ, m a moding function, and
let Gr be a symbolic evaluation graph for P whose root is
the initial state corresponding to Qp

m. If Gr is decompos-
able, then we have prcP,Qp

m
(n) ∈ O(cplx root(Gr)(n)).

Proof. Again, for non-terminating evaluations, this is
implied by Thm. 17. So we only need to consider finite eval-
uations.

Let root(Gr) = (S;KB). By Lemma 31, we know that
encin(root(Gr))γ is a basic term w.r.t. R(Gr) for all con-
cretizations γ w.r.t. KB .

We extend the definition of the prc function to work for
arbitrary abstract states (so not only for the root state of
a symbolic evaluation graph resp. not only for the corre-
sponding class of queries). To this end, we say that for an
abstract state s, prcP,CON (s) maps any n ∈ N to the length
of the longest evaluation starting with a concrete state Sγ ∈
CON (s) with |encin(s)γ| ≤ n. By Lemma 31, we know
that this is in fact an extension of the previous definition of
prcP,Qp

m
, since we have prcP,Qp

m
(n) = prcP,CON (root(Gr))(n)

for all n ∈ N.
We now show the following proposition (*) for finite con-

crete evaluations: Let s be a Split node or a start node
of a connection path in a decomposable symbolic evaluation
graph Gr . Then we have prcP,CON (s)(n) ∈ O(cplx s(n)).

Obviously, proposition (*) implies the theorem as root(Gr)
is (an instance of) a start node of a connection path and we
know Qp

m = CON (root(Gr)) by Lemma 31.
We show proposition (*) by induction on the number gmult

of multiplicative Split nodes in Gr . If gmult = 0, then

we have cplx s(n) = ircR(Grs),R(Gr)(n) = ircR(Gr)(n) and,

thus, the proposition holds by Thm. 23. For gmult > 0, we
can assume that the proposition holds for all decomposable
graphs with at most gmult − 1 multiplicative Split nodes.
Let Sγ ∈ CON (s) and let the longest evaluation of Sγ have
the length ℓ.

If s is a multiplicative Split node, we have Sγ = (tγ,Qγ)θ.
Let Succ1(s) = s1 and Succ2(s) = s2. Then we have cplx s(n)
= cplxSucc1(s)

(n) · cplxSucc2(s)
(n) for all n ∈ N. Let there

be k answer substitutions for tγ and the longest evaluation
of tγ have the length ℓt. Moreover, let the longest eval-
uation of Qγθ′ for any answer substitution θ′ of tγ have
the length ℓQ. Then we have ℓ ≤ ℓt + k · ℓQ. Since we
have for all s ∈ mults(Gr) that both s1 and s2 cannot
reach s in Gr , we know that both Grs1 and Grs2 have
less multiplicative Split nodes than Gr . Thus, we can use
the induction hypothesis to obtain prcP,CON (Succ1(s))

(n) ∈
O(cplxSucc1(s)

(n)) and prcP,CON (Succ2(s))
(n) ∈

O(cplxSucc2(s)
(n)) for all n ∈ N. If ℓt > k · ℓQ, then we have

ℓ < 2 · ℓt and we obtain prcP,CON (s)(n) ∈ O(cplxSucc1(s)
(n))

⊆ O(cplxSucc1(s)
(n) · cplxSucc2(s)

(n)) = O(cplx s(n)). If ℓt ≤
k · ℓQ, we have ℓ ≤ 2 ·k · ℓQ. As we cannot have more answer
substitutions than evaluation steps, we know that k ≤ ℓt.
Thus, we have ℓ ≤ 2 · ℓt · ℓQ and obtain prcP,CON (s)(n) ∈
O(cplxSucc1(s)

(n) · cplxSucc2(s)
(n)) = O(cplx s(n)).

If s is no multiplicative Split node, we have cplx s(n) =
ircR(Grs),R(Gr)(n)+Σs′∈mults(Gr)∩Grscplx s′(n). If the simu-
lation of the longest concrete evaluation of Sγ does not tra-
verse a multiplicative Split node, the proposition follows by
Lemma 33. So we consider the case that the simulation of
the longest concrete evaluation of Sγ does traverse a mul-
tiplicative Split node. Let s′ be the first such node where
the evaluation of Sγ reaches a state S′γ′ ∈ CON (s′) with ℓ′

steps. By Lemma 33, we obtain ℓ′ ≤ c · RelLengthR(Grs)
(d)

for a constant c. By an analogous reasoning as for the case
where s is a multiplicative Split node, we furthermore ob-
tain prcP,CON (s′)(n) ∈ O(cplx s′(n)). So together we ob-
tain prcP,CON (s)(n) ∈ O(ircR(Grs),R(Gr)(n) + cplx s′(n)) =
O(cplx s(n)).

The following lemma is needed for the proof of Thm. 28.

Lemma 35 (No Success without Suc Nodes). Let
Gr be a symbolic evaluation graph. Let s be a node in Gr
which does not reach any Suc node in Gr. Then for any
concretization of s, its evaluation does not produce any an-
swer substitutions, i.e., the Suc rule is never applied in the
evaluation.

Proof. Let γ be a concretization w.r.t. KB where s =
(S;KB). We perform the proof of the lemma by contra-
diction, assuming that from Sγ in ℓ steps we first reach a
node where the Suc rule is applied. We use induction over
the lexicographic combination of the length ℓ of the evalua-
tion of Sγ and of the edge relation of Gr restricted to Inst
and Split edges. Note that this induction relation is indeed
well founded as the number of terms in a state is strictly
decreased when applying the Split rule while it stays equal
when applying the Inst rule. So every infinite sequence of
rule applications with only these rules must eventually only
use the Inst rule. This is in contradiction to the require-
ment that symbolic evaluation graphs do not contain cycles
consisting of Inst edges only.
For ℓ = 0, we trivially have that the number of answer

substitutions produced for Sγ is 0.

24

For ℓ > 0, we perform a case analysis on s:

• If s ∈ Inst(Gr), then we know by Thm. 8 that Sγ ∈
CON (Succ1(s)). So we can directly use the induction
hypothesis to obtain the lemma.

• If s ∈ Split(Gr), then we have S = (t, Q)σ and we know
that the evaluation of tγ is at most as long as the one of
Sγ. Thus, we can use the induction hypothesis on the
first successor of s (there we have one less Split edge
to traverse) and obtain that no answer substitution is
produced for tγ. It follows immediately that then Sγ
can also produce no answer substitutions (since Q is
only called if tγ succeeds, which is not the case).

• Otherwise, we applied a rule to s where the next con-
crete state of the evaluation is represented by one suc-
cessor of s by Thm. 5. We obtain the lemma by the
induction hypothesis.

The proof of Thm. 28 can be performed by contradiction.
We use induction on the length of a prefix of an evaluation
reaching two Suc states.

Theorem 28 (Soundness of Determinacy Criterion).
Let P be a logic program and let Gr be a symbolic evaluation
graph for P. Let s be a node in Gr such that for all Suc
nodes s′ reachable from s, there is no non-empty path from
s′ to a Suc node. Then s is deterministic. Thus, if s is the
initial state corresponding to Qp

m for a p ∈ Σ and a moding
function m, then all queries in Qp

m are also deterministic.

Proof. Let γ be a concretization w.r.t. KB where s =
(S;KB). We perform the proof of the theorem by contradic-
tion, assuming that from Sγ in ℓ steps for the second time
we reach a node where the Suc rule is applied. We use in-
duction over the lexicographic combination of the length ℓ
of the evaluation of Sγ and of the edge relation of Gr re-
stricted to Inst and Split edges. Note that this induction
relation is indeed well founded as the number of terms in
a state is strictly decreased when applying the Split rule
while it stays equal when applying the Inst rule. So every
infinite sequence of rule applications with only these rules
must eventually only use the Inst rule. This is in contra-
diction to the requirement that symbolic evaluation graphs
do not contain cycles consisting of Inst edges only.

For ℓ = 0, we trivially have that the number of answer
substitutions produced for Sγ is 0 ≤ 1.

For ℓ > 0, we perform a case analysis on s:

• If s ∈ Inst(Gr), then we know by Thm. 8 that Sγ ∈
CON (Succ1(s)). So we can use the induction hypoth-
esis directly to obtain the theorem.

• If s ∈ Suc(Gr), then we know that the evaluation
must start with one application of the Suc rule result-
ing in a concrete state S′ and producing one answer
substitution for this step. Moreover, we know that
S′ ∈ CON (Succ1(s)). Since we know that Succ1(s)
cannot reach any Suc node, we obtain by Lemma 35
that the evaluation of S′ does not produce any addi-
tional answer substitutions and, hence, it follows that
the evaluation of Sγ produces exactly one answer sub-
stitution.

• If s ∈ Split(Gr), then we have S = (t, Q)σ and we
know that the evaluation of tγ is at most as long as the

one of Sγ. Thus, we can use the induction hypothe-
sis on the first successor of s and obtain that at most
one answer substitution δ is produced for tγ. Hence,
in case the evaluation reaches a state Qγδ, this state is
represented by Succ2(s) as we know by Thm. 10. The
induction hypothesis is therefore applicable to Succ2(s)
as well and we obtain that the evaluation of Qγδ also
produces at most one answer substitution. Together,
the evaluation of Sγ produces at most one answer sub-
stitution as the numbers of solutions for tγ and Qγδ
have to be multiplied. If already tγ does not produce
any solutions, so does Sγ and the theorem holds.

• Otherwise, we applied a rule to s where the next con-
crete state of the evaluation is represented by one suc-
cessor of s (as we know by Thm. 5) and no answer sub-
stitution is produced in that step (i.e., the Suc rule is
not applied). We obtain the theorem by the induction
hypothesis.

We can improve the determinacy criterion a little bit fur-
ther by exploiting that a Split node cannot be successful
(and hence, is deterministic) if at least one of its successors
is not successful (even if the other successor is not deter-
ministic). So suppose that on any path from s to a Suc
node, one traverses a Split node r = ((t, Q);KB). If one
of the sub-queries t or Q always fails (i.e., one of r’s succes-
sors has no path to a Suc node), then the composed query
(t, Q) fails as well. Thus, there is also no answer substitu-
tion for s and consequently, s is deterministic. However, this
improvement is only useful in rare situations (in our exper-
iments, we gained just one example by this improvement).
The improved determinacy criterion is stated below.

Definition 36 (Improved Determinacy Criterion).
For any node s in Gr let ReachGr (s) consist of all nodes of
Gr that can be reached from s. In particular, we always
have s ∈ ReachGr (s). A node s in Gr satisfies the improved
determinacy criterion if each Suc node s′ ∈ ReachGr (s) sat-
isfies condition (a) or (b):

(a) Gr has no non-empty path from s′ to a Suc node.

(b) On every path from s to s′, there is a Split node
r where ReachGr (Succ1(r)) or ReachGr (Succ2(r)) con-
tains no Suc node.

The next and final theorem shows that this improved cri-
terion also implies determinacy of all queries represented by
the root of a symbolic evaluation graph.

Theorem 37 (Soundness of Determinacy Analysis).
Let P be a logic program, let Gr be a symbolic evaluation
graph for P and let s be a node in Gr which satisfies the
improved determinacy criterion in Def. 36. Then s is deter-
ministic. Thus, if s is the initial state corresponding to Qp

m

for a p ∈ Σ and a moding function m, then all queries in
Qp

m are also deterministic.

Proof. The proof is analogous to the proof of Thm. 28.
We only need to show that as soon as a successor of a Split
node cannot reach a Suc node, the Split node must be de-
terministic. So let s = ((t, Q)σ;KB) be a Split node and
let γ be a concretization w.r.t. KB . If one of Succ1(s) or

25

Succ2(s) cannot reach any Suc node, we know by Lemma 35
that each concretization of this successor does not produce
any answer substitutions. Since (t, Q)γ produces as many
answer substitutions as the product of the number of answer
substitutions produced by tγ and Qγθ for each answer sub-
stitution θ of tγ, we obtain that (t, Q)γ produces no answer
substitutions as tγ or all Qγθ cannot produce any answer
substitutions. Thus, the theorem holds.

26

Aachener Informatik-Berichte

This list contains all technical reports published during the past three years. A complete

list of reports dating back to 1987 is available from:

http://aib.informatik.rwth-aachen.de/

To obtain copies please consult the above URL or send your request to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,

Email: biblio@informatik.rwth-aachen.de

2009-01 ∗ Fachgruppe Informatik: Jahresbericht 2009

2009-02 Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:

Quantitative Model Checking of Continuous-Time Markov Chains

Against Timed Automata Specifications

2009-03 Alexander Nyßen: Model-Based Construction of Embedded

Real-Time Software - A Methodology for Small Devices

2009-05 George B. Mertzios, Ignasi Sau, Shmuel Zaks: A New Intersection Model

and Improved Algorithms for Tolerance Graphs

2009-06 George B. Mertzios, Ignasi Sau, Shmuel Zaks: The Recognition of Tol-

erance and Bounded Tolerance Graphs is NP-complete

2009-07 Joachim Kneis, Alexander Langer, Peter Rossmanith: Derandomizing

Non-uniform Color-Coding I

2009-08 Joachim Kneis, Alexander Langer: Satellites and Mirrors for Solving

Independent Set on Sparse Graphs

2009-09 Michael Nett: Implementation of an Automated Proof for an Algorithm

Solving the Maximum Independent Set Problem

2009-10 Felix Reidl, Fernando Sánchez Villaamil: Automatic Verification of the

Correctness of the Upper Bound of a Maximum Independent Set Algo-

rithm

2009-11 Kyriaki Ioannidou, George B. Mertzios, Stavros D. Nikolopoulos: The

Longest Path Problem is Polynomial on Interval Graphs

2009-12 Martin Neuhäußer, Lijun Zhang: Time-Bounded Reachability in

Continuous-Time Markov Decision Processes

2009-13 Martin Zimmermann: Time-optimal Winning Strategies for Poset

Games

2009-14 Ralf Huuck, Gerwin Klein, Bastian Schlich (eds.): Doctoral Symposium

on Systems Software Verification (DS SSV’09)

2009-15 Joost-Pieter Katoen, Daniel Klink, Martin Neuhäußer: Compositional

Abstraction for Stochastic Systems

2009-16 George B. Mertzios, Derek G. Corneil: Vertex Splitting and the Recog-

nition of Trapezoid Graphs

2009-17 Carsten Kern: Learning Communicating and Nondeterministic Au-

tomata

2009-18 Paul Hänsch, Michaela Slaats, Wolfgang Thomas: Parametrized Regular

Infinite Games and Higher-Order Pushdown Strategies

2010-01 ∗ Fachgruppe Informatik: Jahresbericht 2010

2010-02 Daniel Neider, Christof Löding: Learning Visibly One-Counter Au-

tomata in Polynomial Time

2010-03 Holger Krahn: MontiCore: Agile Entwicklung von domänenspezifischen

Sprachen im Software-Engineering

2010-04 René Wörzberger: Management dynamischer Geschäftsprozesse auf Ba-

sis statischer Prozessmanagementsysteme

2010-05 Daniel Retkowitz: Softwareunterstützung für adaptive eHome-Systeme

2010-06 Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:

Computing maximum reachability probabilities in Markovian timed au-

tomata

2010-07 George B. Mertzios: A New Intersection Model for Multitolerance

Graphs, Hierarchy, and Efficient Algorithms

2010-08 Carsten Otto, Marc Brockschmidt, Christian von Essen, Jürgen Giesl:

Automated Termination Analysis of Java Bytecode by Term Rewriting

2010-09 George B. Mertzios, Shmuel Zaks: The Structure of the Intersection of

Tolerance and Cocomparability Graphs

2010-10 Peter Schneider-Kamp, Jürgen Giesl, Thomas Ströder, Alexander Sere-

brenik, René Thiemann: Automated Termination Analysis for Logic

Programs with Cut

2010-11 Martin Zimmermann: Parametric LTL Games

2010-12 Thomas Ströder, Peter Schneider-Kamp, Jürgen Giesl: Dependency

Triples for Improving Termination Analysis of Logic Programs with Cut

2010-13 Ashraf Armoush: Design Patterns for Safety-Critical Embedded Systems

2010-14 Michael Codish, Carsten Fuhs, Jürgen Giesl, Peter Schneider-Kamp:

Lazy Abstraction for Size-Change Termination

2010-15 Marc Brockschmidt, Carsten Otto, Christian von Essen, Jürgen Giesl:

Termination Graphs for Java Bytecode

2010-16 Christian Berger: Automating Acceptance Tests for Sensor- and

Actuator-based Systems on the Example of Autonomous Vehicles

2010-17 Hans Grönniger: Systemmodell-basierte Definition objektbasierter Mod-

ellierungssprachen mit semantischen Variationspunkten

2010-18 Ibrahim Armaç: Personalisierte eHomes: Mobilität, Privatsphäre und

Sicherheit

2010-19 Felix Reidl: Experimental Evaluation of an Independent Set Algorithm

2010-20 Wladimir Fridman, Christof Löding, Martin Zimmermann: Degrees of

Lookahead in Context-free Infinite Games

2011-01 ∗ Fachgruppe Informatik: Jahresbericht 2011

2011-02 Marc Brockschmidt, Carsten Otto, Jürgen Giesl: Modular Termination

Proofs of Recursive Java Bytecode Programs by Term Rewriting

2011-03 Lars Noschinski, Fabian Emmes, Jürgen Giesl: A Dependency Pair

Framework for Innermost Complexity Analysis of Term Rewrite Systems

2011-04 Christina Jansen, Jonathan Heinen, Joost-Pieter Katoen, Thomas Noll:

A Local Greibach Normal Form for Hyperedge Replacement Grammars

2011-06 Johannes Lotz, Klaus Leppkes, and Uwe Naumann: dco/c++ - Deriva-

tive Code by Overloading in C++

2011-07 Shahar Maoz, Jan Oliver Ringert, Bernhard Rumpe: An Operational

Semantics for Activity Diagrams using SMV

2011-08 Thomas Ströder, Fabian Emmes, Peter Schneider-Kamp, Jürgen Giesl,

Carsten Fuhs: A Linear Operational Semantics for Termination and

Complexity Analysis of ISO Prolog

2011-09 Markus Beckers, Johannes Lotz, Viktor Mosenkis, Uwe Naumann (Edi-

tors): Fifth SIAM Workshop on Combinatorial Scientific Computing

2011-10 Markus Beckers, Viktor Mosenkis, Michael Maier, Uwe Naumann: Ad-

joint Subgradient Calculation for McCormick Relaxations

2011-11 Nils Jansen, Erika Ábrahám, Jens Katelaan, Ralf Wimmer, Joost-Pieter

Katoen, Bernd Becker: Hierarchical Counterexamples for Discrete-Time

Markov Chains

2011-12 Ingo Felscher, Wolfgang Thomas: On Compositional Failure Detection

in Structured Transition Systems

2011-13 Michael Förster, Uwe Naumann, Jean Utke: Toward Adjoint OpenMP

2011-14 Daniel Neider, Roman Rabinovich, Martin Zimmermann: Solving Muller

Games via Safety Games

2011-16 Niloofar Safiran, Uwe Naumann: Toward Adjoint OpenFOAM

2011-18 Kamal Barakat: Introducing Timers to pi-Calculus

2011-19 Marc Brockschmidt, Thomas Ströder, Carsten Otto, Jürgen Giesl: Au-

tomated Detection of Non-Termination and NullPointerExceptions for

Java Bytecode

2011-24 Callum Corbett, Uwe Naumann, Alexander Mitsos: Demonstration of a

Branch-and-Bound Algorithm for Global Optimization using McCormick

Relaxations

2011-25 Callum Corbett, Michael Maier, Markus Beckers, Uwe Naumann, Amin

Ghobeity, Alexander Mitsos: Compiler-Generated Subgradient Code for

McCormick Relaxations

2011-26 Hongfei Fu: The Complexity of Deciding a Behavioural Pseudometric

on Probabilistic Automata

2012-01 ∗ Fachgruppe Informatik: Annual Report 2012

2012-02 Thomas Heer: Controlling Development Processes

2012-03 Arne Haber, Jan Oliver Ringert, Bernhard Rumpe: MontiArc - Architec-

tural Modeling of Interactive Distributed and Cyber-Physical Systems

2012-04 Marcus Gelderie: Strategy Machines and their Complexity

2012-05 Thomas Ströder, Fabian Emmes, Jürgen Giesl, Peter Schneider-Kamp,

and Carsten Fuhs: Automated Complexity Analysis for Prolog by Term

Rewriting

2012-06 Marc Brockschmidt, Richard Musiol, Carsten Otto, Jürgen Giesl: Au-

tomated Termination Proofs for Java Programs with Cyclic Data

2012-07 André Egners, Björn Marschollek, and Ulrike Meyer : Hackers in Your

Pocket: A Survey of Smartphone Security Across Platforms

2012-08 Hongfei Fu: Computing Game Metrics on Markov Decision Processes

2012-09 Dennis Guck, Tingting Han, Joost-Pieter Katoen, and Martin R.

Neuhäußer : Quantitative Timed Analysis of Interactive Markov Chains

2012-10 Uwe Naumann and Johannes Lotz: Algorithmic Differentiation of Nu-

merical Methods: Tangent-Linear and Adjoint Direct Solvers for Systems

of Linear Equations

2012-12 Jürgen Giesl, Thomas Ströder, Peter Schneider-Kamp, Fabian Emmes,

and Carsten Fuhs: Symbolic Evaluation Graphs and Term Rewriting —

A General Methodology for Analyzing Logic Programs

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

