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Abstract. Secure Multi-Party Computation (SMC) offers a theoretically well-
founded way to enable applications that preserve their users’ privacy. However,
the practical use of SMC has often been questioned in the past. This is partly
due to the fact that the system assumptions made in theory are hard to meet
in practice and partly due to the potentially very high overhead general pur-
pose SMC frameworks induce on clients. In this report, we aim at bringing SMC
closer to regular Internet users. We introduce SMC-MuSe, a framework for Secure
Multi-Party Computation on MultiSets. SMC-MuSe is targeted at the efficient
implementation of specific interesting functions rather then on computing arbi-
trary ones. It is generic in the sense that it allows to compute any composition
of privacy-preserving set intersections, unions, and reductions on multisets. The
system model used in SMC-MuSe is kept close to the one assumed in theory and
supports asynchronous communications, resilient SMC computations, and fully
automated key management.

1 Introduction

Today’s Internet is full of applications via which users share potentially private
information with their friends and business partners (e.g. Doodle, Google Cal-
endar, or Flickr). As a side effect this information is shared with an (implicitly)
trusted service provider. The majority of users may still be willing to trade the
free service use for making their information available to the server. Recently,
however, privacy concerns of users are rising [EY,SUN]. Users gradually become
more suspicious with respect to the use of their (personal) information by service
providers.

Secure Multi-Party Computation (SMC) offers a theoretically well-founded
way to resolve this issue. In general it allows multiple parties to compute a
function on their individual private inputs in a distributed fashion without re-
vealing anything but the output of the function to each other or any server.
SMC protocols have been widely studied in theory in the past. These theoretical
studies typically assume that (1) all participating parties can directly communi-
cate with each other, (2) secure channels between each pair of parties exist and
(3) any other keying material required for the SMC protocol in question is pre-
distributed. These assumptions are hard to achieve in practice. In addition, the
practical use of SMC has often been questioned due to the large communication
and computation overhead it puts on the clients. As a result, there exist two
main directions in SMC. The first direction aims at the computation of arbitrary
functions even if this may lead to some functions not being computable within
a reasonable time frame. The second direction aims at developing protocols to
more efficiently compute some specific interesting functions. Examples for such
functions are (multi-)set operations.



Recently, several frameworks have been proposed that aim to bring SMC
closer to practical applications [BDNP08,BLW08,BSMD10,DGKN09]. All of
these frameworks aim at the computation of arbitrary functions, some with the
restriction on Zp or Z2n . The frameworks [BDNP08,BLW08,BSMD10] introduce
multiple trusted servers that carry out all SMC-related computations on en-
crypted inputs on behalf of the users. These servers are assumed to be able to
synchronously communicate with each other. The problem of establishing secure
channels (2) and distributing additional keying material (3) is deferred from the
clients to the trusted servers. The computing servers need to be trusted by the
users to correctly follow the protocol and do nothing but the required computa-
tions. To our knowledge only two of the existing frameworks have been evaluated
in the context of a realistic application [BSMD10,DGKN09] and none of them in
the context of an end-user application for regular Internet users.

In this report we propose SMC-MuSe1, a new framework for secure multi-
party computation in which all SMC-related computations are carried out on
the clients themselves instead of on a server. The framework is targeted at the
efficient computation of arbitrary compositions of intersections, unions, and el-
ement reductions of private multiset inputs. As such it particularly enables the
implementation of e-Voting schemes, auctions, distributed network monitoring,
and other interesting applications [KS05,MNMW11]. SMC-MuSe offers a com-
prehensive support infrastructure to address the three assumptions made in the-
oretical SMC. In particular, SMC-MuSe introduces two (non-colluding) server
components: one that is solely responsible for relaying messages between clients
and thus addresses (1) and one that automatically generates and distributes key-
ing material to the involved clients (3) and thus additionally automates the setup
of the required secure channels (2).

We show the potential of SMC-MuSe by implementing the four Multi-Party
Reconciliation on Ordered Sets (MPROS) protocols proposed in [NMW10]. These
protocols allow multiple parties to find common inputs in their individually or-
dered input sets that maximize a common order on the intersection of their
inputs. Each of the MPROS protocols is based on a composition of multiset
operations and thus a canonical candidate for implementation in SMC-MuSe.
Finally, we build a privacy-preserving scheduling application for regular Inter-
net users on top of the MPROS protocols. We provide an extensive performance
evaluation of our MPROS implementation and show that they are, e.g., well
suited to support a scheduling application for a realistic number of parties and
inputs. Like Doodle [DOO], this new scheduling application allows several par-
ties to agree upon a common meeting time. However, unlike in Doodle, in our
application each party can assign preferences to each one of its free time slots
which are taken into account when the unbiasedly best meeting time is deter-
mined. Furthermore all parties keep their inputs private from each other and do
not even reveal them to any server.

Outline: In Section 2 we briefly review the core components of SMC-MuSe,
namely the privacy-preserving operations on multisets and the MPROS proto-
cols. We present the design, implementation, and evaluation of our framework
in Section 3 and 4. Section 5 discusses related work on privacy-preserving set

1 SMC-MuSe in action: https://www.youtube.com/user/misterxyz42
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operations, system model discussions, SMC frameworks, and privacy-preserving
scheduling applications.

2 SMC on Multisets

In this section, we briefly describe the privacy-preserving set operations on mul-
tisets used as basic building blocks in SMC-MuSe. In addition, we sketch the four
MPROS protocols as examples for more complex protocols that can be built on
top of the multiset operations.

Assume there are n parties P1, ..., Pn, each holding a private input multiset
Si (1 ≤ i ≤ n) chosen from a common domain D, where each set element may
occur more than once. The intersection (∩) of two multisets contains elements
in the multitude of the minimum of the multitudes of the two input sets. The
union (∪) of two multisets contains elements in the multitude of the sum of the
multitudes of the two input sets. The element reduction by t (Rdt) of a multiset
contains elements with a multitude reduced by t.

Privacy-preserving protocols for the computation of these basic operations on
multisets were first proposed by Kissner et al. [KS05]. In addition, they proofed
that one can compute any function over multisets in a privacy-preserving way
that can be expressed in the grammar

Υ ::= Si | Rdt(Υ ) | Υ ∩ Υ |Si ∪ Υ |Υ ∪ Si . (1)

In SMC-MuSe we implemented these privacy-preserving multiset operations
such that any function that can be expressed in Equation 1 can be computed
with n parties and arbitrary input multisets Si in SMC-MuSe.

Protocols for multi-party reconciliation on ordered sets (MPROS) were first
described in [NMW10,NMW11]. The MPROS protocols involve n parties, where
each party holds k distinct private inputs. Each party associates a preference

(or rank) with each of its inputs such that his most preferred input is si1 and
is associated with a preference of k, his second most preferred input is si2 and
is associated with a preference of k − 1, and so on until his k-th input element
sik which is associated with a preference of 1. An example for three parties with
three private inputs and preferences is illustrated in Part (1) of Figure 1.

In all MPROS protocols, input multisets are represented as the roots of
polynomials. I.e. the multisets Si are represented as polynomials fi(X) =
∏k

j=1(X − sij)
j. All computations in the MPROS protocols are then performed

on polynomials encrypted with a semantically secure homomorphic threshold
cryptosystem, e. g., the Paillier cryptosystem [FP01,Pai99].

An additively homomorphic cryptosystem allows the encryption of the sum
of two plaintexts E(m1 + m2) with an operation +h in the ciphertext domain
knowing only the ciphertexts c1 and c2. In addition, with a ciphertext c = E(m)
and a scalar value s, the encryption of the product s · m can be determined
by applying the operation +h s times in the ciphertext domain using only the
ciphertext c:

E(s ·m) = c×h s = c+h . . .+h c
︸ ︷︷ ︸

s times

.
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round 1

round 2-4

(1) (2)

(4)

(3)

round 2-8

round 1

Fig. 1. (1) Example inputs and preferences (2) Output for SR-rb/SR-sb (3) Out-
put for MR-rb/MR-sb (4) First rounds for MR-rb and SR-rb.

The output of a protocol run is determined by checking for the roots of the jointly
decrypted output polynomial.

The two MPROS protocols SR-rb and SR-sb allow the n parties to determine
(one or more) input(s) s that they all have in common and that maximizes the
sum of the preferences each party assigned to its inputs. If no solution exists,
the output is the empty set. The protocols are privacy-preserving with up to
c < n colluding parties in the semi-honest model. That is, apart from what can
be deduced from the output of the protocols, the semi-honest parties do not
learn anything about each others private inputs. A party is called semi-honest if
it follows the protocol and performs all required computations yet it might store
intermediate results and do additional computations.

Part (2) of Figure 1 illustrates the output of the SR protocols SR-rb and
SR-sb. Note that in both protocols in addition to the common element with the
highest sum of ranks A, the output contains the sum of ranks value for A which
is seven. In the round-based protocol SR-rb the output additionally contains the
exact rank assigned to A by each party. This is due to the fixed comparison
order discussed below. The same holds for the set-based protocols in the special
case of two parties P1, P2. I. e., each party knows the sum of ranks and the rank
they assigned to a solution S. This uniquely determines the rank assigned by the
other party as rankP2

= ranksum(S)− rankP1
(S). A similar observation can be

made for the minimum of ranks protocols.

The protocols MR-rb and MR-sb enable the n parties to determine an unbi-
ased solution that they all have in common and that maximizes the minimum of
the preferences each party assigned to its inputs. If no solution exists, the output
is the empty set. For up to c < n colluding parties, the protocols are privacy-
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Fig. 2. Example MR-sb and SR-sb

preserving in the semi-honest model. Part (3) of Figure 1 illustrates the output
of MR-rb and MR-sb for three parties with three private inputs and preferences
each. Similar to the sum of ranks protocols, the minimum of ranks of the optimal
solution is part of the output of MR-rb and MR-sb. In addition, in MR-rb the
individual ranks assigned by each party are revealed.

The protocols MR-rb and SR-rb are multi-round protocols, where each round
consists of one or more private set intersection operations on sets of size 1. I. e.,
the input polynomials are all of degree 1. In the first round, party Pi’s input
set contains its most preferred element si1. In each of the following rounds, the
parties participate in several private set intersections. The order in which the
parties select their inputs in each round is fixed and determined such that in
the first round in which the set intersections yield one or more non-empty set(s),
these sets contain the common inputs that maximize the sum of ranks of all
parties (in case of SR-rb) respectively the minimum of ranks assigned by all
parties (in case of MR-rb).

The schedule exactly determines the input combination used in each round
(compare Part (4), Figure 1) and therefore the individual ranks of the optimal
solution are leaked. In the worst case, kn rounds are required until the proto-
cols SR-rb and MR-rb terminate. Part (4) of Figure 1 illustrates the operation
of MR-rb and SR-rb for three parties with three inputs for the first eight respec-
tively four rounds.

In the protocols MR-sb and SR-sb the preferences of each party are encoded
as the multitude of the corresponding input in the party’s input set. I.e. each
party Pi (i = 1, ..., n) holds a private input set Si which contains its k distinct
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inputs s1i, ..., sik with multitude k, ..., 1. The MR-sb protocol computes

Rdt(S1 ∩ ... ∩ Sn) (2)

for t = k − 1, k − 2, ..., 0 until the resulting set is non-empty for the first time.
All elements in this non-empty set then maximize the minimum of ranks. Due to
the iterative reduction step, the minimum of ranks value of the optimal solution
is revealed. As opposed to the round-based protocol MR-rb, the individual ranks
of the other parties remain private.

Similarly, the protocol SR-sb computes

Rdt((S1 ∪ ... ∪ Sn) ∩ S′

1 ∩ ... ∩ S′

n) (3)

with S′

i = {(si1)
n·k, (si2)

n·k, ..., (sik)
n·k} for t = kn− 1, kn− 2, ..., n − 1 until the

resulting set is non-empty for the first time. All elements in this non-empty set
then maximize the sum of ranks. The auxiliary sets S′

i ensure that only inputs
that are common to all parties are in the resulting set. The input polynomials
with the highest degree occurring in the set-based approaches are k(k+1)

2 for
MR-sb respectively n · k2 for SR-sb. Figure 2 illustrates the operation of the set-
based protocols for three parties where the three inputs and preferences are as
in Figure 1.

3 Framework Design

SMC-MuSe is a carefully designed framework for secure multi-party computa-
tion on multisets and as such supports application developers in implementing
privacy-preserving applications. SMC-MuSe supports the developer in generating
code for the distributed computation of any function expressible by a composi-
tion of set operations. We demonstrate the use of SMC-MuSe by an efficient
implementation of the four MPROS protocols sketched in the previous section.

In addition, we show how SMC-MuSe allows an application developer to easily
turn a protocol implementation into a user-friendly SMC application. The latter
is demonstrated by the implementation of a scheduling application on top of the
MPROS protocols. This scheduling application allows n parties to schedule a
meeting in a privacy-preserving and fair manner, as illustrated in Figure 3. As
such, SMC-MuSe provides for a proof-of-concept that general MPC applications
can efficiently be implemented on top of privacy-preserving multiset operations.
The SMC-MuSe framework was designed to exhibit a number of core properties.

– Security and Privacy: Building on privacy-preserving multiset operations, the
framework is implemented in a way that provides for suitable security and
privacy guarantees.

– Usability: SMC-MuSe is implemented in a way that makes SMC easily ac-
cessible to application developers and thus ultimately helps in bringing SMC
applications to end-users.

– Platform Support: On the client side, our framework supports all major op-
erating systems including Windows, Linux, MAC OS, and Android.

– Scalability: Our implementation supports large numbers of users simultane-
ously.
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May 1st  1 pm

May 8th  5 pm 

May 7th  8 am 

Fig. 3. Scheduling application example for SR

– Reliability: Our framework is resilient against a range of possible errors during
SMC computations.

– Modularity and Simplicity: The framework is built in a way such that it can
easily be extended to support additional modules such as other cryptosystems
or different implementations of set operations. In addition, an application
developer can integrate any function that can be expressed in the grammar
in Equation 1 in a straightforward manner.

In the rest of this section, we describe the design and implementation of our
framework. We start by a description of the system model we use to implement
SMC-MuSe, continue with a description of the core features of SMC-MuSe and
finally show how SMC-MuSe supports in protocol and application development.

3.1 System Model

The general goal of privacy-preserving multi-party protocols is to support n

parties in jointly computing a function of their private inputs without revealing
their inputs to each other. In the following we discuss four different choices for
a system model supporting this goal and thereby motivate our own choice.

Model (1) of Figure 4 illustrates the centralized approach, which allows for an
easy solution. It assumes that there is a third party that is trusted by all parties.
Specifically, each party sends its inputs to the trusted third party (over a secure
channel), the third party computes the output from the received plaintext inputs
and sends back the result and only the result to each one of the participating
parties. Unfortunately, in practice the existence of such a trusted third party is
a very strong and quite unrealistic assumption.

A second approach is the distributed approach which is widely adopted in
theoretical SMC. In theory, secure multi-party computation protocols solve the
problem of a trusted third party and allow n parties to jointly compute a function
of their private inputs without revealing anything but what can be deduced from
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2. Distributed approach

Fig. 4. System models (1) - (4)

the intended outcome to each other or to anyone else, not even to a trusted third
party. To reach these privacy goals, SMC protocols typically assume that (1) all
participating parties can directly communicate with each other, (2) there is a
secure channel between any two of the participating parties, (3) any additional
keying material that is required by the parties to jointly compute the function
in a privacy-preserving manner is already available at the parties. In particular,
these assumptions also hold for privacy-preserving multiset operations, where
assumption (3) implies that each party holds a key share for an asymmetric
semantically secure homomorphic threshold cryptosystem. Model (2) of Figure
4 illustrates the system model and assumptions of theoretical SMC in general.

Unfortunately, all three of the above assumptions on which SMC protocols
are built are hard to establish in practice. Direct communication between In-
ternet users is often prohibited due to policy restrictions, the presence of NATs
or firewall configurations. Establishing a secure channel between any two users
either requires an out of band channel to check the authenticity of credentials
or the involvement of a third party like a certification authority or some form
of a key server. Finally - in case of privacy-preserving multiset operations - as-
sumption (3) requires the existence and implementation of a distributed key
generation protocol that allows the n parties to jointly generate the key shares
for the threshold cryptosystem.

Model (3) in Figure 4 illustrates a system model which is widely used in
existing frameworks for SMC. Here, the parties are divided according to their
role within the SMC computation. There are input parties, computing nodes, and
result parties. The input parties provide the encrypted input to the computing
nodes. The computing nodes perform the computation of the chosen function and
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forward their results to the result parties. A party/node can have any subset of
those roles. Typically, the clients are input and result parties. The computation
nodes are trusted servers within the network. The clients trust that the nodes
correctly carry out the computations and forward the messages. All parties/nodes
agree on keying material beforehand. Further details on this system model are
discussed in Section 5.

Model (4) of Figure 4 illustrates our system model. We solved the challenges
of theoretical SMC by introducing two independent non-colluding third parties
called the Server component and the Keyserver in the following. The client com-
ponents are responsible for all SMC computations, the initiation of protocol runs,
and the exchange of messages with each other via the Server component.

The Server component is responsible for correctly forwarding messages with
encrypted content between the clients. It is important to note that in contrast
to the trusted third party in Model (1), the Server component in Model (4) does
not learn anything about the plaintext inputs of the participating parties.

The Keyserver is responsible for generating SSL-certificates and generating
key shares for the public/private key for the homomorphic threshold cryptosys-
tem. Note that the Keyserver—although in possession of the private key pairs for
the homomorphic threshold cryptosystem—does not have access to the messages
exchanged between the clients via the Server. Unlike the trusted third party in
Model (1), the Keyserver in Model (4) does not learn anything about the inputs
or the output of the SMC computations. Note that SMC implementations oper-
ating in Model (3) typically assume pre-established keying material such that as
opposed to Model (4) the key management problem of the theoretical Model (2)
is not addressed in Model (3).

On the one hand, this system model allows for an easy automated setup phase
and solves the theoretical assumptions for secure channels and key generation in
a convenient way. On the other hand, one relies on two independent partially
trusted components. We argue that without any trust as suggested in theoretical
SMC (Model (2) in Figure 4), it is hardly possible to implement SMC in a way
that it is easily accessible for non-technical users. This claim is further supported
if one reviews existing related work (see Section 5).

3.2 Design Features

Based on the system model, we now continue the description of the design fea-
tures of the SMC-MuSe framework. In the following we categorize design and im-
plementation decisions based on the properties they enable—indicated in paren-
thesis.

Asynchronous Communication: Our choice of a system model implies
that the Server component is involved in all communication. Thus, for a huge
user base the expected traffic on the server side is assumed to be very high.
Therefore, we have adapted the JBoss Netty project [Net] which provides an effi-
cient asynchronous event-driven network application framework such that it can
handle encrypted traffic, certificate verification, and serialization (Scalability).

Message Processing: We chose the MessagePack project (MP) [MPa] to
serialize messages. MP provides small and fast serialization for many program-
ming languages. Fast message processing on Keyserver/Server component- and

11



Worker Name Computation Purpose / Task

ENCRYPT Encrypt an input polynomial.

KEYGEN Generate key pairs for an MPROS run.

ADD Add two encrypted polynomials.

MULT Multiply an encrypted polynomial and an unencrypted polynomial.

INTERSECT Combination of ADD/MULT operations on encrypted polynomials.

UNION Combination of MULT operations on encrypted polynomials.

REDUCTION Combination of ADD/MULT operations on encrypted polynomials.

PARTIALDECRYPT Partial decrypt an encrypted polynomial.

RECOVERY Decryption of an encrypted polynomial.

by combining an array of partially decrypted polynomials.

RESULTCHECK Compute the roots of the decrypted polynomial.

Table 1. List of implemented workers

client-side is possible since messages are handled in an asynchronous event-loop.
We use message queues to report results, new messages and state changes.

SMC Computation: SMC-MuSe provides interfaces to compute the in-
tersection, union and reduction operation on multisets. These SMC operations
provide the core security and privacy functionality of the framework. These ex-
pensive computations are outsourced to so-called worker components such that
computation and message handling are separated (Modularity). A list of available
workers is given in Table 1.

The multiset operations currently implemented in SMC-MuSe operate on in-
put multisets encrypted by a semantically secure additively homomorphic thresh-
old cryptosystem. The output of any combination of operations on multisets is
jointly decrypted by the participating parties. This is why apart from the workers
for the set operations there are workers for the encryption of inputs, the partial
threshold decryption of an output and the combination of partial descriptions of
an output. Note that all workers (except KEYGEN which is obviously computed
on the key server) are executed on the clients. On each client the same set of
workers is implemented and used for computations.

State-based SMC-Protocol Implementation: Any SMC-protocol that
can be implemented in SMC-MuSe is a composition of multiset operations
expressible in Equation 1. SMC-MuSe enables the implementation of SMC-
protocols in a modular state-based fashion which yields three main advantages.
First, it allows the Server component to store the state of the computation and
encrypted intermediate results. In case of an error during computation or when a
client disconnects, the Server component can use the stored information to later
on resume an SMC-protocol run. In addition, storage failures (e. g., database er-
rors) can be handled by means of frequent backups. Overall, this results in highly
resilient SMC-protocol runs (Reliability). Second, the state-based implementa-
tion allows for easy adaptation of protocol runs (Modularity). This enables the
modification of the computed function in an easy fashion. Third, the modular
design yields source code that can be comprehended easily (Simplicity).

Secure and Efficient Storage of SMC-protocols: We chose MongoDB
[MON] to store serialized SMC-protocol runs on the Server component and a file-
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based storage mechanism to keep intermediate results on the clients. Note that
all stored intermediate results are encrypted. MongoDB is a high-performance
NOSQL database available for different platforms (Scalability). The database is
locally accessible by the Server component after authentication with separate
login credentials.

Automated Secure Channel Establishment: SMC-MuSe provides inter-
faces to automatically generate an SSL keystore containing a private/public key
pair for a client. The public key is submitted to the Keyserver for signing. The
Keyserver generates a public key certificate and returns this to the client over
a keyserver-side authenticated SSL connection. The client can then use the SSL
certificate to establish mutually authenticated SSL connections with the Server
as well as the Keyserver.

Automated Key Generation and Distribution: SMC-MuSe provides in-
terfaces to two semantically secure homomorphic threshold cryptosystems. Cur-
rently, SMC-MuSe supports threshold versions of the ElGamal and Paillier cryp-
tosystem [Elg85,Pai99]. The Keyserver component automatically generates key
shares for any keysize/clients combination. Keying material is distributed to
connected clients via secure channels. In addition, the Keyserver keeps a pool of
freshly generated keying material for different combinations of keysize/clients to
avoid delays while starting an SMC-protocol run. Note that fresh key shares are
distributed to the clients whenever a new SMC-protocol run is initiated.

Summary: SMC-MuSe provides well-documented interfaces to all of the
frameworks features such that application developers can make use of them when
implementing a privacy-preserving application based on private multiset opera-
tions. In particular, they do not need to worry about implementing a threshold
cryptosystem, implementing private multiset operations, setting up secure chan-
nels, or generating and distributing keys to the clients.

3.3 MPROS Protocols

In this section, we describe the design and implementation of the MPROS proto-
cols on the example of MR-sb focusing on the communication and computation
models.

Figure 5 illustrates our state-based implementation of the MR-sb protocol as
an SMC-protocol. All computations are done by the clients utilizing the workers
for SMC computation, compare Table 1. All communication is asynchronous. The
Server component forwards messages between parties during an MPROS run. A
message contains an opcode, information about the receiver, and encrypted data.
The Keyserver component securely provides the keying material to all parties
using mutually authenticated SSL connections.

First, the MPROS protocol starts with an initialization. Each client chooses
his inputs and orders them according to his preferences (1.). Second, the Key-
server generates key shares for all clients and distributes them (2.). Third, all
clients compute the encryption of the polynomial representing their input (3.).
Next, all clients jointly compute the intersection operation on the encrypted
polynomials (4.). c + 1 clients compute the reduction operation on the encryp-
tion of the intersection polynomial (5.). All clients jointly decrypt the encryption
of the reduction polynomial (6.). Finally, each client calculates the result of the
computation by calculating the roots of the polynomial (7.).

13



Fig. 5. States of the MR-sb protocol

During an MPROS protocol run, the Server component forwards incoming
encrypted messages and stores encrypted intermediate results of the states ENC,
∩, and Rdt to resume MPROS runs in case of client or Keyserver/Server compo-
nent errors (A.). Due to the state-based implementation, clients can conveniently
disconnect and reconnect within an SMC-protocol run.

3.4 GUI Components

To illustrate the potential of SMC-MuSe and in particular the MPROS im-
plementation in SMC-MuSe, we created a proof-of-concept privacy-preserving
Doodle-like application. Like Doodle, this new scheduling application allows sev-
eral parties to agree upon a common meeting time. However, unlike in Doodle,
in our application each party can assign preferences to each one of its free time
slots which are taken into account when the best meeting time according to the
sum of ranks or the minimum of ranks is determined. Figure 3 illustrates how the
scheduling application works for four parties scheduling a meeting with SR-sb
or SR-rb. Note that all parties keep their inputs private from each other and do
not even reveal them to any server.

The graphical user interface (GUI) of the application is designed to target
even non-tech-savvy user. A short video illustrating the components of SMC-
MuSe and example executions of the scheduling application can be found here2.
Appendix A includes screenshots of the GUI for desktop clients and provides
further links to videos illustrating the implemented features.

The GUI components allow users to register an account with the Server
component, maintain a friends list, add and delete friends from this list, securely
chat with his friends, and —most importantly— execute MPROS protocol runs
for scheduling a meeting with any subset of his friends.

Specifically, when a user first registers for SMC-MuSe, the client application
automatically generates an SSL keystore. After the Keyserver signing process,

2 http://www.youtu.be/ArsD5bQjxOk (short version)
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Asynchronous Communication

JBoss Netty MessagePack

Fig. 6. Overview of SMC-MuSe

the client establishes mutually authenticated SSL connections with the Server
as well as the Keyserver. User information associated with each friend added by
the user includes an email address, a full name, and a public key for the Paillier
cryptosystem. The latter is used for end-to-end encryption of chat messages
exchanged between a user and a friend. The reconciliation part of the client
application enables a user to create, initiate, and execute scheduling instances
based on MPROS runs with any subset of friends. Note that further applications
e. g. Sealed-Bid Auctions or Borda Count Voting [MNMW11], could easily be
integrated reusing most of the existing GUI components.

3.5 Implementation

SMC-MuSe is written in Java. The overall library consists of two homomor-
phic cryptosystems, privacy-preserving multiset operations, multi-party reconcil-
iation protocols, different components for communication and computation (see
Framework Features above), and also a first GUI-supported application (Privacy-
preserving Doodle). We use the gmp library for C++ to efficiently compute ex-
pensive mathematical operations such as modular exponentiation with JNI [JNI].

We have implemented threshold versions of the ElGamal and Paillier cryp-
tosystem [Elg85,FP01,Pai99] as the additively homomorphic cryptosystems. Ta-
ble 2 provides an overview of used libraries. The Worker components were imple-
mented as a Worker Thread Pool which can handle up to 10 jobs in parallel. The
GUI elements were also written in Java using the Java Swing framework [SWI].
We have created a Java Web Start application [WEB] which supports Ubuntu
10+, Debian Squeeze, Windows 7, and Max OS X 10.6.8+ in 32-bit and 64-bit
modes. We have also developed an Android Client application which supports
Android 2.2+ devices. Overall, the newly-developed framework SMC-MuSe con-
sists of approximated 16,000 source lines of code (SLOC). An overview of all
implemented components is given in Figure 6.
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Library Name Version

Java Platform JDK 1.7, version 1.7.0 07

Java Runtime Java HotSpot(TM) VM, version 1.7.0 07

JBoss Netty Version 3.2.4.Final

MessagePack Msgpack version 0.5.1-devel

MongoDB mongoDB version 2.0.2

Table 2. Overview of used libraries

4 Evaluation

We evaluate our SMC-MuSe framework by analyzing the performance of the
four MPROS protocols with respect to computation and communication over-
head as there are already theoretical results regarding the protocol complexities
[NMW11]. We measure the worst case complexity which means that the unbi-
ased solution is the least preferred common input among all parties. We provide
a description of our test setup in Section 4.1 and present a selection of test results
in Section 4.2.

4.1 Test Environment and Parameters

We chose a test environment of desktop computers rather than a cluster-based
test setup as the applications currently implemented in SMC-MuSe typically run
on a user’s desktop. The setup consists of 12 identical systems each with a 2.93
GHz i7 CPU 870 and 16 GB RAM running a 64-bit Linux with kernel version
2.6.32. One machine is dedicated as the Keyserver and another one as the Server
component. The remaining ten machines are set up clients.

As a cross-platform effort we also successfully tested our framework with a
Windows client as well as a Mac OS X client. The Chat Client application de-
tects which OS is running and automatically loads the respective native libraries
included within the jar-file.

Each MPROS protocol run is identified by a unique session id. The adjustable
parameters for each run are the number of parties n, the number of colluding
attackers c, the number of inputs k, the keysize l, and the protocol type t. In
general, we tested our newly-developed and implemented framework SMC-MuSe
with up to 10 parties and a maximum number of 10 inputs. We varied the keysize
between 512 and 2048 bit. The input domain is equal the possible key space, i. e.
D = {0, 1}l. The inputs of each party were randomly generated integers chosen
from the input domain D with one common input among all parties. In order
to enforce the worst case behavior, the common rule was fixed as the rule with
least preference for each party.

4.2 Test Results

For all MPROS protocols, the computation effort is dominated by the number of
homomorphic operations (NOH) as shown by the theoretical performance results
[NMW11]. We therefore start the presentation of our test results counting the
NOH per party. We then present our results measuring the overall runtime of
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Fig. 7. Number of basic homomorphic (A), homomorphic scalar (S) operations
or both in sum (AS) for one party with c = n − 1 in the worst case. (1-3)
show results for MR-sb, (4-6) for MR-rb, SR-rb, and (7-9) for SR-sb in cases
n = 2, n = 5, k = 5.

the four MPROS protocols for a reasonable keysize of l = 1024 bit varying
the number of parties or the number of inputs. Finally, we include performance
measurements for key sizes of l = 1024, 2048 bit varying the number of parties
and the number of inputs at the same time.

Number of Homomorphic Operations Figure 7 provides an analysis of
the number of homomorphic operations for all four protocols MR-sb, MR-rb,
SR-rb, and SR-sb with respect to the number of parties n and the number of
inputs k. Note that the worst case runtime and NOH are the same for the round-
based protocols MR-rb, SR-rb for any combination of k, n (compare Section 2).
We analyzed the NOH value per party during an MPROS protocol run in the
cases n = 2, n = 5, k = 5 and varied k respectively n from 2 to 10 with
c = n − 1. For the Paillier cryptosystem, the basic homomorphic operation is
a modular multiplication and the homomorphic scalar operation is a modular
exponentiation.

In the case n = 2 (see (1), (4), (7) in Figure 7), the round-based protocols
MR-rb, SR-rb have the lowest NOH as the number of rounds is small (k2) and the
degree of the input polynomials is only one. With respect to the set-based proto-
cols, MR-sb has a lower NOH than SR-sb in all three cases n = 2, n = 5, k = 5.
This is due to the simpler function to compute for MR-sb (see Section 2). In the
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Fig. 8. Worst case runtime results with c = n − 1, l = 1024 for all MPROS
protocols. (1-3) show results for MR-sb, (4-6) for MR-rb, SR-rb, and (7-9) for
SR-sb in cases n = 2, n = 5, k = 5.

case n = 5 (see (2), (5), (8) in Figure 7), the MR-sb has the lowest and SR-sb the
highest NOH. However, the round-based protocols MR-rb and SR-rb also show
a high NOH due to the larger number of rounds (k5). The exponential factor
of the number of parties n in the round-based protocols becomes more clear in
the case k = 5 (see (3), (6), (9) in Figure 7). Here, MR-rb and SR-rb have the
largest NOH of approximately one billion for n = 10.

We expect that the set-based protocols MR-sb, SR-sb have a lower runtime
than the round-based protocols MR-rb, SR-rb for a fixed value of n. As the
NOH is relatively large for MR-rb, SR-rb , and SR-sb we limit our tests to n, k

combinations up to n = 6, k = 6 for those protocols. In the special case n = 2,
we extend our tests with k up to 20 for MR-sb and up to 10 for MR-rb, SR-rb,
and SR-sb.

MPROS Performance We provide a detailed performance analysis of MPROS
protocol runs for the keysize l = 1024 and c = n − 1 in Figure 8. We compare
our runtime results with the theoretical analysis given in Table 3 [NMW11]. An
MPROS protocol run consists of input generation, input encryption, computation
of the function, threshold decryption, and computing of the final result. The
overall runtime is averaged over three independent MPROS protocol runs for
each parameter set. The plots show the overall runtime (red with points) and the
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Fig. 9. Overall worst case runtime results with c = n− 1, l = 1024, 2048 for all
MPROS protocols.

fitting curve (FC) best-fitting (green), i. e. the FC with the lowest asymptotic
standard error.

For n = 2, we see that, as expected, the round-based protocols MR-rb,
SR-rb have the lowest overall runtime. The FC matches the theoretical results
of O(k2) with two parties. The set-based protocol MR-sb is also comparatively
fast. Note that we tested MR-sb with up to k = 20. The best FC is one with
expected runtime of O(k3) (green). The slowest protocol in the case of n = 2 is
SR-sb. Here, the best-fitting FC shows a runtime of O(k4).

For n = 5, MR-sb is the fastest protocol again with cubic runtime with
respect to the number of rules. The SR-sb protocol is still the slowest one with a
best-fitting curve of O(k4). The round-based protocols MR-rb, SR-rb are much
slower than in the case n = 2. The FC of O(k5) is best-fitting and matches the
theoretical results.

In the case k = 5, MR-sb is again the fastest protocol with linear behav-
ior with respect to the number of parties n as expected from theory see Ta-
ble 3 [NMW10]. For n = 6 the round-based protocols MR-rb, SR-rb are even
slower than SR-sb. In the case of MR-sb, the advantage of the set-based ap-
proach in practice already holds for n = 3.

There are two reasons for the advantage of the set-based protocols MR-sb,
SR-sb over the round-based protocols MR-rb, SR-rb . The first one lies in the
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Protocol Communication (T) Computation (T) Practical results

MR-rb ,SR-rb O(1l · c · n · kn) O(1l · c · n · kn) O(1l · c · n · kn)

MR-sb O(1l · c · n · k3) O(1l · (c · (k6 + n · k4))) O(1l · c · n · k3)

SR-sb O(1l · c · n3 · k3) O(1l · n4 · c · k6) O(1l · c · n3 · k4)

Table 3. Summary of MPROS protocol complexities

increasing NOH for larger n, k combinations (kn rounds in worst case). The
second reason is that the communication overhead for each round is relatively
high.

Summary Figure 9 shows the overall results for all MPROS protocols for
the tested n, k combinations with l = 1024 respectively l = 1024, 2048 for
MR-sb. The MR-sb protocol shows the best results and as such seems practi-
cal for many applications—even for a larger number of parties and inputs. For
the SR-sb protocol, the results indicate that a simpler function to compute for
SR-sb would be desirable. In the current implementation, the round-based pro-
tocols MR-rb, SR-rb are rather slow for a larger number of parties and rules. As
shown in (1,2) the runtime is relatively stable with respect to the chosen keysize
with an approximated quadratic behavior.

Table 3 summarizes the theoretical and practical performance results for all
four MPROS protocols. Note that in theory (T), separate complexities are given
for communication as well as computation. The complexities for the practical re-
sults are based on the overall runtime of an MPROS protocol run which includes
communication and computation.

Limitations Our implementations perform well within our test range with a
runtime of a few seconds to a few minutes. In particular, these runtimes are well
suited for SMC-MuSe ’s distributed Doodle-like scheduling application as the
outcome is not expected in real-time anyway. However, it is clear that with a
large number of inputs k, e. g. k = 100, all four implemented protocols are ex-
pected to have a high runtime. Specifically, none of the protocols seems suitable
for real-time applications or applications in which the result of the reconcili-
ation is instantly needed. With respect to the number of parties n, only the
MR-sb protocol can cope with a large user base, e. g., n = 100 or n = 1000.

Further optimizations as pre-computation can be applied to our MPROS pro-
tocol implementation. Especially, the round-based protocols MR-rb, SR-rb would
benefit of such optimizations as, e. g., this would allow for the compensation of
communication delays.

5 Related Work

In the following we discuss related work in four areas: privacy-preserving set
operations and reconciliation on ordered sets, discussions of the system model,
privacy-preserving scheduling applications, and frameworks for SMC.
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5.1 Privacy-Preserving Set Operations

The basic building blocks of SMC-MuSe are privacy-preserving set operations.
The first two-party protocols for privacy-preserving set operations were intro-
duced by Freedman et al. [FNP04]. Kissner et al. [KS05] extended this work to
multisets and multiple parties. Other multi-party protocols for privacy-preserving
set intersection include [CJS10,LW07,NAA+09]. A multi-party protocol for set
union was proposed by [Fri07]. None of these protocols supports multisets though.

Recently, Blanton et al. [BA11] proposed multi-party protocols for privacy-
preserving set operations on multisets. As opposed to the work of Kissner et al.
[KS05] their work is based on secret sharing rather then oblivious polynomial
evaluation. We based our SMC-MuSe implementation on the operations intro-
duced in [KS05] as at the start of the implementation, only this work supported
the use of multisets.

Meyer et al. [MWI07,MWI10] showed that any privacy-preserving two-party
protocol for set intersection can be used to jointly solve certain optimization
problems on ordered input sets. An optimization of these protocols was imple-
mented in C++ and evaluated in [MTWM11]. Neugebauer et al. [NMW10] on
the one hand showed that these two-party protocols can be generalized to mul-
tiple parties in a straight forward fashion using any multi-party set intersection
protocol (MR-rb, SR-rb). On the other hand, they showed that with the help of
multisets, more efficient MPROS protocols can be built (MR-sb, SR-sb). To the
best of our knowledge, our implementation is the first MPROS implementation
available.

Recently, Jónsson et al. propose a multi-party weighted set intersection pro-
tocol in [JKU11]. As in the SR-sb and SR-rb protocols the inputs are associated
with weights and the protocol computes the sum of the weights. However, in
[JKU11] the output are all values with a sum of weights above a threshold t and
not only the value(s) with the highest sum of weights.

5.2 Privacy-Preserving Scheduling

A scheduling application solves the problem of finding common (best-matching)
timeslots among multiple parties with certain availabilities, potentially taking
individual preferences into account. In the context of SMC, this problem was
first used as motivating example in [MWI10] in the two-party setting and later
on implemented as a two-party iPhone app Appoint based on direct Bluetooth
connections [MTWM11]. In [BJH+11], the authors also propose a scheduling ap-
plication for mobile devices. As opposed to Appoint and our own multi-party
scheduling application, [BJH+11] uses Model (3) as system model, i.e., it in-
volves trusted servers for computations. The output in [BJH+11] is the set of all
common inputs and does not take user preferences into account. Another privacy-
preserving scheduling application for mobile devices was proposed in [DCDA11].
Here, each party assigns costs to the timeslots (similar to preferences). The out-
put contains all timeslots where the sum of the individual costs are below a
threshold (as opposed to the highest sum in Appoint, and SR-rb and SR-sb
based scheduling). Also in [DCDA11], a server assists in the computation (e. g.
for aggregation), i. e., the protocols use Model (3) as system model.
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5.3 System Model Discussions

The challenges of implementing SMC in practice were recently discussed by
Halevi et al. in [HLP11]. As we do in this report, they argue that the theo-
retical model for SMC (as illustrated in Model (2) of Figure 4) is not suitable for
today’s Internet users. In particular they question the assumption that all clients
are directly connected and interact simultaneously during the computation of the
desired output.

To address this problem, they study a new client/server model for secure
multi-party computation in which each client interacts with the server once and
the server computes the output. The server learns the output but does not learn
anything else about each client’s input. In contrast to [HLP11] we focus on es-
tablishing a practical system model in which all computations are still done by
the clients and the server does not even learn the output of the computation.
The server just enables asynchronous communication and offers a resume feature
to deal with disconnected clients and network errors.

5.4 SMC Frameworks

In the following we focus on discussing frameworks which try to make SMC
available to the general public and compare those to SMC-MuSe.

VIFF is a framework for SMC which is based on Shamir’s secret shar-
ing (SSS) and additively homomorphic encryption (AHE) [DGKN09,VIF]. The
framework is integrated into the Python language and supports arbitrary func-
tion computation specified over Zp or GF (28). VIFF provides security against
semi-honest adversaries and allows up to c < n

2 colluding attackers. VIFF is the
only framework which uses the theoretical system model (Model (2), Figure 4).
Clients need to be setup manually to install required dependencies and configure
the clients. All required keying material for the secure channels as well as the
secret sharing scheme needs to be manually setup. SSL channels between the
clients are established with the help of the pre-configured keys. VIFF supports
asynchronous communication utilizing the Twisted framework.

The most well-known practical application of VIFF is the implementation
of a double auction in Denmark where the price for sugar beets was reconciled
between merchants and farmers [BCD+09]. However, the authors chose a system
model with trusted computing nodes similar to Model (3) in Figure 4. The double
auction was executed on three servers trusted in computation after the danish
farmers and merchants submitted their encrypted bids to a database. The result
was published to the general public.

SEPIA is a framework for SMC which is based on Shamir’s secret sharing
[BD08,BSMD10]. SEPIA is written in Java and enables to compute functions
over Zp. The authors implemented and tested their framework for a 62 bit prime
p. This allows arithmetic operations on shares to be executed directly by CPU in-
structions resulting in very fast computation. However, it also limits the possible
input domain and the range of computable functions since modular reductions
of intermediate results have to be avoided [BSMD10].

SEPIA uses Model (3) of Figure 4 as their system model using SSL between
the computing nodes and the input and computing nodes. Key generation and
certification is left to an existing PKI. Keying parameters required for secret
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Property VIFF SEPIA Sharemind FMP SMC-MuSe

Cryptographic Primitive SSS/AHE SSS ASS BCE AHE

Computable Functions Zp, GF (28) Zp Z232 Arbitrary Equation 1

System Model (Figure 4) Model (2) Model (3) Model (3) Model (3) Model (4)

Setup phase Manual Manual Manual Semi-automatic Automatic

Already Applied in Practice yes yes no no yes

Colluding attackers c < n

2
c < n

2
c < n

2
c < n

2
c ≤ n− 1

Communication model async. sync. sync. sync. async.

Table 4. Comparison of the SMC frameworks

sharing are manually configured. SEPIA is secure in the semi-honest model with
up to c < n

2 colluding privacy peers. Note that in SEPIA, the computing nodes
also learn the result of the computation. SEPIA uses a synchronous approach
that all computing nodes have to be online during computation. The practical
potential of SEPIA was illustrated in the context of distributed network moni-
toring [BD08].

Sharemind is a framework similar to SEPIA but it uses only three computa-
tion nodes. Sharemind is based on additive secret sharing (ASS) and is written in
C++ [BLW08]. Sharemind targets high-performance computing and is especially
suitable for functions which allow for a large amount of parallel computations.

FairplayMP is a framework for SMC which is based on boolean circuit eval-
uation (BCE) and is written in Java [BDNP08]. It allows for the evaluation of
arbitrary functions specified in the framework-specific function definition lan-
guage SFDL. Boolean circuits for functions specified in SFDL are automatically
generated in FairplayMP. The authors tested the performance of their framework
in the context of auctions with 8-bit integers as input and output.

FairplayMP uses Model (3) of Figure 4 as their system model. Secure channels
are established via SSL. Currently, only a manual setup with configuration files
seems to be supported. The same holds for the exchange of keying material.
The framework is secure against semi-honest adversaries with c < n

2 . Each input
player adds his blinded input to the input wires. The circuit is jointly evaluated by
the computation nodes, which communicate synchronously. Note that as opposed
to SEPIA the computation nodes do not learn the result of the computation due
to an initial blinding of inputs by the input parties.

Summary: Table 4 summarizes our comparison of SMC frameworks. Note
that with respect to performance, a fair comparison between the frameworks
currently seems close to impossible due to the very significant differences with
respect to the input domain, the system model, the communication model, and
the range of computable functions. In addition, the test environment used to eval-
uate the performance of the frameworks currently varies from desktop computers
to cluster-based setups.

6 Conclusion

In this report, we presented the SMC-MuSe framework, which makes secure
multi-party computation on multisets as a middleware available to application
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developers. We proposed a new practical system model, which overcomes the
discrepancies between the system assumptions made in theory and the commu-
nication model most commonly used on the Internet today.

Ultimately, SMC-MuSe3 brings privacy-preserving applications to regular In-
ternet users. Our scheduling application is a nice example for such an application
and we showed that its performance is well-suited to support interesting end-user
applications. Currently, we plan to publish the source code of SMC-MuSe under
a GPL license.

As a further part of our future work we plan to evaluate the usability of
our privacy-preserving scheduling application with the help of a comprehensive
user study. Furthermore we will investigate potential performance optimizations
including the analysis of the benefits of recently published more efficient privacy-
preserving multiset operations [BA11].
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A SMC-MuSe In Action

Figure 10, 11, and 12 show different parts of the application we implemented on
to of the SMC-MuSe framework. In Figure 10, you can see the friends list chat
(on the left), an example of a chat window of the integrated chat client (on the
right) and the Java Web Start screen (at the top).

In Figure 11, you see the scheduling interface. On the left, you can see the
creation window in which the initiator of the meeting can specify meeting name,
choose a security level (high, medium, low) and choose a forced start date, i.e. a
date on which the reconciliation starts even if not all of the desired participants
have entered their availabilities and preferences yet. On the next tab, the initiator
can select the duration of the meeting, and select the dates and times he proposes.

The scheduler view in Figure 12 shows the scheduling to which this user
has currently been invited on the left. In the middle the user can select his
availabilities from the shown proposed meeting times. On the right his current
selection is shown and can be reordered with the up/down arrows.

Fig. 10. SMC-MuSe’s GUI

Fig. 11. SMC-MuSe’s reconciliation interface

27



Fig. 12. SMC-MuSe’s scheduler interface

We also created a variety of videos illustrating the scheduling application and
other aspects of SMC-MuSe listed below. Note that all videos were created with
the debug option enabled.

1. http://www.youtube.com/watch?v=ArsD5bQjxOk: Illustration of an
MPROS run (MR-sb)

2. http://www.youtube.com/watch?v=Owo8-Hg2Lnw: MPROS run MR-rb
3. http://www.youtube.com/watch?v=pUwicE0S3E4: MPROS run SR-rb
4. http://www.youtube.com/watch?v=H6aEvN5zjNY: Client registration (end-

users) and terminal-based start-up (application developers)
5. http://www.youtube.com/watch?v=dtsDSgrNoQc: Encrypted and authenti-

cated chat, group chat, and friend management.
6. http://www.youtube.com/watch?v=5JE0VwNpo0Y: SR-sb and presentation

of the resume feature of SMC-MuSe. A client disconnects and reconnects
during an active MPROS run.

7. http://www.youtube.com/watch?v=6Z1xpcEfeFo: Second part of the re-
sume feature. The MPROS run successfully finishes although a client discon-
nects during the computation. This works due to the asynchronous communi-
cation design and the state-based implementation of the MPROS protocols,
see Section 3.
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2009-18 Paul Hänsch, Michaela Slaats, Wolfgang Thomas: Parametrized Regular

Infinite Games and Higher-Order Pushdown Strategies

2010-01 ∗ Fachgruppe Informatik: Jahresbericht 2010
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Neuhäußer: Quantitative Timed Analysis of Interactive Markov Chains

2012-10 Uwe Naumann and Johannes Lotz: Algorithmic Differentiation of Nu-

merical Methods: Tangent-Linear and Adjoint Direct Solvers for Systems

of Linear Equations
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