
Aachen
Department of Computer Science

Technical Report

Automatic Abstraction for Bit-Vectors
using Decision Procedures

Jörg Brauer

ISSN 0935–3232 · Aachener Informatik-Berichte · AIB-2013-14

RWTH Aachen · Department of Computer Science · November 2013

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Automatic Abstraction for Bit-Vectors
using Decision Procedures

Von der Fakultät für Mathematik, Informatik und
Naturwissenschaften der RWTH Aachen University

zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Diplom-Informatiker
Jörg Brauer

aus
Rendsburg

Berichter: Professor Dr.-Ing. Stefan Kowalewski
Professor Dr. Dr. h.c. Reinhard Wilhelm

Tag der mündlichen Prüfung: 25. September 2013

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek verfügbar.

Jörg Brauer
Verified Systems International GmbH
brauer@verified.de

Aachener Informatik Bericht AIB-2013-14

Herausgeber: Fachgruppe Informatik
RWTH Aachen University
Ahornstr. 55
52074 Aachen
GERMANY

ISSN 0935-3232

Abstract

This dissertation is concerned with abstract interpretation of programs whose
semantics is defined over finite machine words. Most notably, the considered class of
programs contains executable binary code, the analysis of which turns out demanding
due to the complexity and the sheer number of involved operations. Challenging
for correct yet precise abstract interpretation of binary code are transfer functions,
which simulate the execution of any concrete operation in a program in an abstract
domain. Crucially for correctness, over- and underflows need to be supported
faithfully.

This dissertation argues that transfer functions and abstractions for sequences of
operations over finite machine words can precisely and efficiently be generated, which
contrasts with classical methods that depend on handcrafted transfer functions. To
support this statement, we present an approach that eliminates the time-consuming
process of manually deriving transfer functions altogether. The core of our methods
are specifications of the concrete semantics of sequences of operations, which are
given in propositional Boolean logic. By utilizing SAT and SMT solvers, which
can determine satisfiability of Boolean formulae, we show how to automatically
synthesize optimal abstractions from such semantic specifications. The practicality
of our method is highlighted using abstractions generated for a variety of numerical
domains that are frequently used in abstract interpretation. The abstract domains
considered in this dissertation are, most notably, intervals, value sets, octagons,
convex polyhedra, arithmetical congruences, affine equalities, and polynomials
of bounded degree. Importantly, all presented techniques automatically handle
finiteness of machine words, which manifests itself in over- and underflows.

Once the analysis of a program has terminated, an abstract interpreter often emits
a warning that highlights a potential error in the analyzed program. Since abstract
interpretation computes an over-approximation of the states reachable in a concrete
execution, such a warning may be spurious. For this setting, we present variations of
our methods, which compute complete abstractions. Then, it is possible to provide
guarantees about actually reachable states, which allows us to do both, identify a
warning as spurious or generate a legitimate counterexample trace.

Zusammenfassung

Diese Dissertation ist im Fachgebiet der abstrakten Interpretation angesiedelt und
beschäftigt sich mit der Analyse von Programmen, deren Semantik über endli-
chen Registern definiert ist. Insbesondere beinhaltet diese Klasse von Programmen
ausführbaren Maschinencode, dessen Analyse sich wegen der Komplexität und An-
zahl der Operationen anspruchsvoll gestaltet. Eine Herausforderung für korrekte und
zugleich präzise abstrakte Interpretation von Maschinencode stellen Transferfunk-
tionen dar, welche die Ausführung aller konkreten Operationen eines Programmes
in einer abstrakten Domäne simulieren. Insbesondere müssen Über- und Unterläufe
von Registern modelliert werden, um die Korrektheit der Analyse zu gewährleisten.

Die in dieser Dissertation vertretene Kernthese ist, dass Transferfunktionen für
Sequenzen von Operationen über endlichen Registern präzise und effizient generiert
werden können. Diese These steht im Gegensatz zu klassischen Verfahren, welche den
Entwurf von Transferfunktionen vornehmlich als manuellen Prozess vorsehen. Um
diese These zu untermauern, präsentieren wir einen Ansatz in dem der zeitaufwendi-
ge Entwurf von Transferfunktionen entfällt. Im Mittelpunkt unseres Lösungsansatzes
steht eine Spezifikation der Semantik einer Sequenz von Operationen in Form von
Boolescher Logik. Mit Hilfe von Werkzeugen, welche die Erfüllbarkeit aussagen-
logischer Formeln überprüfen, synthetisieren wir aus einer Spezifikation in einem
automatischen Prozess Abstraktionen mit maximaler Aussagekraft. Die Praktika-
bilität dieses Ansatzes zeigen wir für eine Vielzahl numerischer Domänen, welche
häufig in der abstrakten Interpretation eingesetzt werden, insbesondere Interval-
le, Wertemengen, Oktagone, konvexe Polyeder, arithmetische Kongruenzen, affine
Gleichungen und Polynome beschränkten Grades. Hierbei wird die Endlichkeit der
Register, welche sich in Über- und Unterläufen manifestiert, automatisch modelliert.

Ist die Analyse eines Programms abgeschlossen, so wird von einem Analyse-
werkzeug unter Umständen eine Warnung ausgegeben, welche einen potentiellen
Fehler im analysierten Programm anzeigt. Da abstrakte Interpretation auf Basis von
Überapproximation eine Obermenge der erreichbaren Zustände eines Programms be-
rechnet, kann solch eine Warnung unberechtigt sein. Für dieses Szenario präsentieren
wir Varianten der vorgestellten Algorithmen, welche vollständige Abstraktionen
generieren, so dass sich Garantien über tatsächlich erreichbare Zustände ableiten
lassen. Auf dieser Basis können sowohl unberechtigte Warnungen identifiziert als
auch Gegenbeispiele generiert werden, welche einen fehlerhaften Pfad anzeigen und
somit die zugrundeliegende Warnung validieren.

Acknowledgements

First and foremost, I would like to thank my advisor Prof. Dr.-Ing. Stefan Kowalewski
for offering me the opportunity to join his group and to write my dissertation thesis.
He provided me a great degree of freedom to find my own dissertation topic, assisted
me whenever I needed his advice, and supported my scientific progress in any
possible way. I really appreciate the trust and responsibility I was offered despite
the fact that I have only taken my first steps in academia. I also want to thank
Prof. Dr. Dr. h.c. Reinhard Wilhelm for agreeing to serve on my examination
committee, and also for inviting me to visit his group in Saarbrücken to both,
present my work and exchange ideas.

In the past three years, the person who had the most impact on my life as a scientist
has been Dr. Andy King from the University of Kent in Canterbury. Our contact
started through a short email containing a few questions of mine about one of his
papers, and he directly invited me over to visit him in Canterbury. His overwhelming
enthusiasm, his attitude towards research, and his drive for improvement have been
extremely inspiring. He is a great host and a fantastic teacher, too, and has the
ability of vividly explain some of the most obscure theoretical concepts I have ever
seen. It is needless to say that over the past years he has become much more than a
co-author to me, and I have really enjoyed the research visits to Canterbury.

I sincerely thank all members of the Embedded Software Laboratory for a very
friendly working atmosphere, which has contributed a lot to this thesis. Most
importantly, I have to thank Sebastian Biallas for many interesting discussions,
related or unrelated to my research. Furthermore, I thank Dr. Bastian Schlich for
convincing me to join the [mc]square project in the first place. Even though he
decided to leave academia several years ago, working with him for the first 1,5 years
of my doctoral studies has been both, interesting and helpful.

I also want to thank Thomas Reinbacher, FH-Prof. Dr. Ing. Martin Horauer
and Prof. Dr. Andreas Steininger from Vienna. Working with them on so many
different topics was a great pleasure. The same holds for Prof. Kim G. Larsen
whom I want to thank for giving me the opportunity to visit his group in Aalborg,
Denmark for a total of three months. This stay helped me a lot broadening my
understanding of verification beyond abstract interpretation. Dr. Ralf Huuck from
NICTA introduced me to the world of static program analysis and was always
willing to give me some advice, which was particularly helpful in the first year of
my dissertation work. Similarly, Dr. Thomas Noll from the Lehrstuhl Informatik 2

in Aachen was of great help and a very pleasant and productive co-author. We had
many interesting discussions on verification and he was always willing to share his
experiences. I also enjoyed the interesting discussions with Dr. Axel Simon from the
Technical University of Munich on the implementation of abstract interpreters and
our joint work on backward reasoning. Finally, Prof. Dr. Dr. h.c. Wolfgang Thomas
has put a lot of effort into the research training group AlgoSyn, which (together
with his inspiring talks) I really appreciate.

My dissertation work was supported financially by a number of sources, including
the Deutsche Forschungsgemeinschaft through the DFG research training group
1298 Algorithmic Synthesis of Reactive and Discrete-Continuous Systems and the
DFG Cluster of Excellence on Ultra-high Speed Information and Communication,
German Research Foundation grant DFG EXC 89. My work has been supported
financially through a Royal Society Travel Grant, reference TG092357, and a Royal
Society Project Grant, reference JP101405. I am very grateful for this support.

Furthermore, I want to thank my family, most notably my parents Karl-Ernst
and Roswitha. They have always been extremely supportive, not limited to my time
in Aachen. Last but certainly not least, I want to thank my beloved wife Sarah,
who has been both very supporting and understanding in the last couple of years,
no matter how little time I had. I suppose that living with someone whose mind
circles around his dissertation topic all day and night is not always easy. Of course,
my cute little dogs Pebbles and Leela shall not be forgotten either.

Jörg Brauer
Achim, November 2013

Contents

1 Introduction 1
1.1 Abstract Interpretation of Machine Arithmetic 2

1.2 The Drive for Automatic Abstraction 2

1.3 Automatic Abstraction and Quantification 3

1.4 Automatic Abstraction using Boolean Formulae 4

1.5 Abstraction using Varieties of Domains 6

1.6 Contributions . 6

1.7 Outline . 7

1.8 Bibliographic Notes . 8

2 Existential Quantification as Incremental SAT 9
2.1 Prime Implicant Generation . 11

2.1.1 Dual-Rail Encoding for Implicant Generation 12

2.1.2 Computing Implicants of Fixed Length 13

2.1.3 Formal Correctness . 15

2.2 Anytime Quantifier Elimination . 17

2.2.1 Worked Example . 18

2.2.2 Formal Correctness . 21

2.3 Two-Phase Quantifier Elimination 22

2.3.1 Worked Example . 22

2.3.2 Formal Correctness . 26

2.4 Experiments . 27

2.4.1 Benchmarks . 28

2.4.2 Anytime Quantifier Elimination 28

2.4.3 Two-Phase Quantifier Elimination 30

2.5 Related Work . 32

2.5.1 Consensus Method and Binary Resolution 32

2.5.2 Complexity of Prime Implicant Generation 34

2.5.3 Hybrid Methods and McMillan’s Method 34

2.5.4 Methods based on Prime Implicants and Cubes 35

2.5.5 Methods for Quantified Boolean Formulae 36

2.6 Discussion . 36

I

Contents

3 Control Flow Reconstruction using Boolean Logic 37
3.1 Block-Level Abstraction . 40

3.1.1 Bit-Blasting Blocks . 40
3.1.2 Value Set Abstraction using Incremental SAT Solving 41
3.1.3 Deriving Pre- and Postconditions 45

3.2 Program-Level Abstraction . 48
3.2.1 Overview . 49
3.2.2 Forward Analysis with Invariant Refinement 51

3.3 Experiments . 55
3.3.1 Benchmarks . 55
3.3.2 Results . 57
3.3.3 Comparison . 58

3.4 Related Work . 58
3.4.1 Platform-Specific Decompilation 58
3.4.2 Control Flow Reconstruction by Abstract Interpretation . . . 60
3.4.3 Control Flow Reconstruction in Model Checking and Testing 61
3.4.4 Path-Sensitive Abstract Interpretation 61

3.5 Discussion . 62

4 Automatic Abstraction of Bit-Vector Formulae 63
4.1 Separation of Modes . 67

4.1.1 Detecting Feasible Modes . 68
4.1.2 Incremental Feasibility Checks 69

4.2 Symbolic Abstractions for Bit-Vectors 71
4.2.1 Octagons . 71
4.2.2 Convex Polyhedra . 78
4.2.3 Non-Optimal Polyhedral Abstraction 81
4.2.4 Arithmetical Congruences . 83
4.2.5 Affine Equalities . 85
4.2.6 Bounded Polynomials . 91

4.3 Flexible Bit-Widths by Extrapolation 94
4.3.1 Templates for Extrapolation 95
4.3.2 Extrapolation for Octagons 96
4.3.3 Extrapolation for Affine Equalities 97

4.4 Experiments . 97
4.4.1 Benchmarks . 98
4.4.2 Intervals (αV

int) . 99
4.4.3 Octagons (αV

oct) . 99
4.4.4 Convex Polyhedra (αV

conv) . 99
4.4.5 Arithmetical Congruences (αV

a-cong) 102

4.4.6 Affine Equalities (αV
aff) . 102

II

Contents

4.4.7 Polynomial Equalities (αV
poly) 106

4.4.8 Extrapolation . 106

4.5 Discussion . 106

5 Transformers for Template Constraints 111
5.1 Lifting Equalities to Template Domains 113

5.1.1 Lifting Affine Equalities to Intervals 113

5.1.2 Lifting Affine Equalities to Octagons 116

5.1.3 Lifting Polynomial Equalities to Intervals 117

5.1.4 Lifting Polynomial Equalities to Octagons 120

5.2 Characterizing Linear Templates using Quantification 122

5.2.1 Specifying Optimal Intervals using Quantifiers 123

5.2.2 Generalization . 124

5.3 Interleaved Abstraction and Refinement 126

5.3.1 Optimal Affine Updates on Octagons 126

5.3.2 Inferring Polynomial Equalities for Octagons 129

5.3.3 Optimal Affine Updates on Arithmetical Congruences 130

5.4 Affine Transformers for Non-Affine Relations 132

5.4.1 From Convex Polyhedra to Intervals 133

5.4.2 From Convex Polyhedra to Octagons 134

5.4.3 Interleaving Polyhedral Abstraction and Maximization 134

5.5 Experiments . 135

5.5.1 Lifting and Transformation 135

5.5.2 Quantification . 136

5.5.3 Interleaved Abstraction . 136

5.6 Related Work . 137

5.6.1 Generation of Symbolic Best Transformers 138

5.6.2 Modular Arithmetic . 139

5.6.3 Polynomial Relations . 141

5.6.4 Summary-based Program Analysis 142

5.7 Discussion . 142

6 Complete Transformers 145
6.1 Backward Analysis for Counterexamples 147

6.2 Worked Example . 148

6.2.1 Deriving Complete Abstractions 148

6.2.2 Extending Complete Abstractions 148

6.2.3 Disjunctive Extensions . 149

6.3 Formalization . 150

6.3.1 Algorithm . 150

6.3.2 Soundness and Completeness 153

III

Contents

6.4 Experiments . 154
6.4.1 Effects of Domain Combinations 154
6.4.2 Complete Extrapolation . 155

6.5 Related Work . 155
6.5.1 Counterexamples in Model Checking 156
6.5.2 Counterexamples in Abstract Interpretation 156
6.5.3 Completeness in Abstract Interpretation 157

6.6 Discussion . 158

7 Conclusion 159
7.1 Discussion . 159
7.2 Summary . 161
7.3 Future Work . 161

IV

1 Introduction

In model checking [8, 64], the behavior of a system or program is formally specified
as a model that describes how state changes as the system progresses. All paths
through the model are then exhaustively checked against its requirements, which
are typically expressed in some temporal logic [97, 181]. The detailed nature of the
requirements entails that the program is simulated in a fine-grained way, sometimes
down to the level of individual bits [69, 208, 231]. This approach, however, may
lead to state explosion since the number of states in a system is exponential in the
number of system variables, the sizes of their domains, and the number of concurrent
components [67]. Verification efforts based on such a fine-grained representation of
the system may therefore be prohibitively expensive. Because of the complexity of
this reasoning, there has been much interest in representing states and transitions of a
program symbolically [51, 52], e.g., as Boolean functions [47]. This approach enables
states that share some commonality to be represented without duplicating their
commonality. Such methods have thus promoted the dispersal of model checking [67]
and have found applications in both, hardware and software verification.

By way of comparison, the key idea in abstract interpretation [77] is to abstract
away from the detailed nature of states. Then, a program analyzer operates
over classes of states which are related in some sense, rather than individual
states. If the number of classes is small, then all paths through the program
can be examined without incurring the problems of state explosion. For example,
abstract interpretation for asserting safety properties typically summarizes traces
into collections of states, thereby trading the ability to distinguish traces — which
is a necessity for verifying temporal logic formulae — for computational tractability.
The classes of states themselves are drawn from a so-called abstract domain, which
typically exhibits the structure of a (semi-) lattice. When constructed carefully,
the classes of states can preserve sufficient information to prove correctness of the
system. Yet, often so many details are lost when working with classes that the
technique cannot infer any useful information. In these situations, the program
analyzer generates a spurious warning. These so-called false positives are a major
hindrance for the practical applicability of program analyzers [24], except those
crafted for a specific application domain [83–85].

1

1 Introduction

1.1 Abstract Interpretation of Machine Arithmetic

The precision of abstract interpretation frameworks [80], although sound by con-
struction, critically depends on the expressiveness of the classes as well as the
class transformers chosen to model the operations that arise in the program. Class
transformers are also known as transfer functions [134]: they express how a program
statement transforms a class on input into a class on output. If an input is described
by a class, then the transfer function is required to simulate the execution of the
instruction by computing a class which faithfully describes the output. Traditionally,
transfer functions have been designed manually for each operation and each abstract
domain, prior to the analysis, albeit following some well-established design principles
(cp. [77, Sect. 9.2.3]). Handcrafting transfer functions, however, is difficult [115], es-
pecially when the instructions are low-level, diverse, and operate over finite machine
words [186, Sect. 3]. This is because classes are themselves expressed as high-level
geometric concepts such as affine [136] or polyhedral [82, 166, 224] spaces, thereby
presenting a semantic gap that needs to be bridged.

1.2 The Drive for Automatic Abstraction

Recently, there has been increasing interest in computing transfer functions in a
fully automatic way as part of the analysis itself [31, 32, 39, 144, 145, 197, 228–
230], which is usually implemented on top of a decision procedure that computes
the desired abstractions. The most descriptive transfer functions are also called
symbolic best transformers [197], and the process of deriving them (and also non-
optimal ones) is referred to as automatic abstraction. The high degree of automation
clearly provides a way to tame the aforementioned gap between the concrete and
the abstract semantics of low-level programs. Another motivation for automatic
abstraction stems from the desire to reason about basic blocks, i.e., sequences of
program statements, as a whole, rather than single operations. This approach was
advocated by King and Søndergaard [144, 145] for linear congruences [115] in the
context of verifying bit-twiddling code. Most notably, they have shown that this
technique can greatly improve precision of the abstraction when there is a tight
coupling between the different instructions that constitute a basic block.

To illustrate the value of block-wise abstraction compared to classical abstraction
of single operations, consider a concrete operation g : C → C in a program, which is
simulated using an abstract analogue f : D → D. Here, C and D denote domains
of concrete values and abstract descriptions, respectively. Then, f is designed to
faithfully model its concrete counterpart g in the following sense: if d ∈ D abstracts
a concrete value c ∈ C, then the result of applying g to c is abstracted by applying
f to d. Now suppose that a basic block is formed of n operations g1, . . . , gn, and

2

1.3 Automatic Abstraction and Quantification

each concrete operation gi has its own abstract counterpart fi. Suppose too that
the concrete input to the sequence c ∈ C is described by an input abstraction d ∈ D.
Then, the result of applying the n concrete operations to the concrete input c is
described by applying the composition of the n abstract transfer functions f1, . . . , fn
to d, i.e., (gn ◦ . . . ◦ g1)(c) is abstracted by (fn ◦ . . . ◦ f1)(d).

However, it is important to appreciate that a more descriptive result can be
obtained by deriving a single transfer function f for the basic block as a whole,
designed so that f abstracts the entire sequence gn ◦ . . .◦g1. To illustrate the gain in
precision, consider a program fragment XOR R0 R1; XOR R1 R0; XOR R0 R1 which
swaps the contents of two registers R0 and R1 without involving a third. If the
involved operations are abstracted on their own using the domain of equalities, then
the outcome of the block is unknown because an exclusive-or instruction considered
in isolation does not preserve equality. By way of contrast, block-wise abstraction
reveals that R0 on output equals R1 on input, and vice versa. Of course, basic blocks
are program-dependent, whereas instructions are not. Such an approach thus relies
on automation rather than human intervention [31, 32, 144, 145, 167].

1.3 Automatic Abstraction and Quantification

The process of block-wise abstraction, however, critically depends on some form of
quantification, and thus, on quantifier elimination algorithms [31, 167, 168]. Consid-
ering again XOR R0 R1; XOR R1 R0; XOR R0 R1, block-wise automatic abstraction
deals with the problem of finding a relation between registers R0 and R1 on input and
the values of the same registers on output. If the semantics of the above program
fragment is expressed as a logical formula, intermediate variables within the block
are required to express the relationship between the inputs and the outputs. In
the above block, the value of R0 after the first XOR instruction is an exemplar of
such an intermediate variable. To obtain a direct relationship between the inputs
and outputs, it is necessary to eliminate these variables, which are existentially
quantified. The relationship is then direct in the sense that intermediate variables,
which occur in the semantic specification, are removed, giving a formulation that
describes the outputs of the block as a transformation of the inputs.

Monniaux [167, 169] has addressed the vexing question of automatic abstraction
by focussing on linear template domains [206]. He showed that, if the concrete
operations are expressed as piecewise linear functions, then it is possible to derive
transformers for blocks and loops by quantifier elimination. To illustrate the role
of quantification in his approach, suppose a block mutates a variable x, depending
on the values of inputs y and z. To derive a transfer function for intervals, it is
necessary to ascertain how the maximal value of x on exit from the block, denoted
xu, relates to the extremal values of y and z, respectively, likewise denoted y`, yu,

3

1 Introduction

z`, and zu. The value of xu can be specified in logic, asserting that:

1. for all values of y and z such that y` ≤ y ≤ yu and z` ≤ z ≤ zu, the value of x
is smaller than or equal to xu, and

2. for some value of y and z such that y` ≤ y ≤ yu and z` ≤ z ≤ zu, the variable
x takes the value of xu.

Since the “for all” can be expressed with universal quantification and the “for
some” is expressed with existential quantification, these requirements are naturally
formalized as a specification with alternating quantifiers. Quantifier elimination is
then applied to find a direct linear relationship between the maximal value xu of x on
exit of the block and the extremal values of y and z on entry. A direct relationship
between the minimal value x` of x and the extremal values of y and z can be found
analogously. This construction is ingenious but no polynomial elimination algorithm
is known for piecewise linear systems, or is ever likely to exist [57], and indeed,
quantifier elimination remains a computational bottleneck.

1.4 Automatic Abstraction using Boolean Formulae

By way of comparison, this dissertation focusses on the problem of computing
symbolic best transformers for programs whose semantics is specified over finite
bit-vectors, which is akin to reasoning about assembly or binary code, rather than
piecewise linear systems. We suggest to express the semantics of programs in the
computational domain of propositional Boolean formulae — an idea that is familiar
in model checking [69] where it is colloquially referred to as bit-blasting — and
directly benefit from impressive progress on automatic decision procedures such as
SAT or SMT solvers. Since bit-vector formulae are more expressive than piecewise
linear formulae, one would expect automatic abstraction to be at least as difficult;
or even harder, since these formulae are discrete. From a theoretical point of view,
this is a reasonable expectation. Yet, careful engineering and elegant ideas have
advanced SAT and SMT solvers to the point they can rapidly decide satisfiability of
structured problems involving thousands of variables and clauses [50].

In essence, it is our thesis that SAT and SMT solving, as an elementary mechanism
for reasoning about correctness of programs whose semantics is expressed over finite
machine words, has become a practical and scalable proposition to implement
and compute abstract interpretations. One advantage of this approach is that
it is amenable to instructions whose semantics is presented as Boolean formulae.
This advantage dovetails with the rise in popularity of SAT-based (bounded or
unbounded) model checking since propositional encodings are readily available
for instructions [39, 69, 111, 186]. Encodings for other, non-standard operations,
can easily be derived from commonly known templates [19, 39, 43, 214]. When

4

1.4 Automatic Abstraction using Boolean Formulae

representing the semantics of real-world programs using piecewise linear systems,
it is often unclear how to express some instructions (such as bitwise exclusive-or),
whereas a specification in Boolean logic can be derived straightforwardly.

By reformulating the approach described by Monniaux [167, 169] in Boolean logic,
we obtain a collection of different methods that avoid the computational problems
associated with eliminating universally quantified variables from linear systems.
Whereas automatic abstraction for linear systems relies on complicated elimination
algorithms, this is different for Boolean formulae in conjunctive normal form (CNF).
To illustrate, consider computing ∀x : ϕ, where ϕ = (x ∨ ¬y) ∧ (¬x ∨ y ∨ ¬z). By
expanding the formula to eliminate x, we obtain:

∀x : ϕ = ϕ[x 7→ 0] ∧ ϕ[x 7→ 1] = (¬y) ∧ (y ∨ ¬z)

Observe that ∀x : ϕ can likewise be obtained directly from ϕ by removing all
literals that involve x from ϕ. This is no coincidence, and indeed the approach
can be applied to any formula in CNF not containing a vacuous clause [148]. The
simplicity of universal quantifier elimination, however, contrasts with the difficulty
of existential elimination. Yet, as one contribution of this dissertation, we will see
that it is possible to efficiently implement this operation using algorithms [33, 42]
which are based on incremental SAT solving [242].

Crucially for performance, we also provide methods that avoid quantifier elim-
ination altogether. Then, a solver is repeatedly invoked to find models of a
Boolean formula. This approach contrasts with that of deriving a formula that
specifies abstract relations directly on the bit-level. As an example, consider an
octagonal inequality x + y ≤ d [166]. The constant d ∈ Z is characterized as
d = min{c ∈ Z | ∀x : ∀y : P (x, y) ⇒ (x + y ≤ c)} where P (x, y) is a predicate
constraining x and y. Further, given a machine with word-length w, the maximal
value of a register in an unsigned interpretation is 2w − 1. We can thus derive a
constraint 0 ≤ d ≤ 2 · (2w − 1) for d, which can be expressed disjunctively as:

(0 ≤ d ≤ 2w − 1) ∨ (2w ≤ d ≤ 2 · (2w − 1))

To determine which disjunct characterizes d, it is sufficient to test the formula
∃x : ∃y : P (x, y)∧(x+y ≥ 2w) for satisfiability. If satisfiable, then 2w ≤ d ≤ 2·(2w−1)
is entailed by d, and 0 ≤ d ≤ 2w− 1 otherwise. We proceed by decomposing the new
characterization into a disjunction and repeating this step w times to give d exactly.
Hence, reformulating the problem as a sequence of queries to a SAT solver finesses
the problem of quantifier elimination. An attractive property of this approach is
that the method will profit directly from any future progress made on off-the-shelf
SAT and SMT solvers [94, 159], which are readily (and freely) available.

5

1 Introduction

1.5 Abstraction using Varieties of Domains

A further compelling attribute of our approach is that the interdependence between
the low-level description of the concrete semantics of a program and its high-level
geometric abstraction is dissolved. Given a logical formulation of the concrete
semantics of program statements, we present a framework which supports the
generation of transformers for virtually any abstract domain, solely limited to those
of finite height, and derive dedicated procedures that efficiently compute abstractions
of bit-vector relations for a set of different abstract domains. The aforementioned
limitation to finite domains indeed is an insignificant one for reasoning about bit-
vector programs since state can always be represented finitely (the termination
problem, e.g., is decidable and countable [75, App. B]). Using this method, a
large number of abstract interpretations can be derived directly from the concrete
semantics of the program without human intervention; in this dissertation, we
present methods for intervals, value sets, arithmetical congruences, octagons, convex
polyhedra, affine equalities, and polynomial equalities of bounded degree.

Support for a set of abstract domains is indeed a key feature of our approach,
as state-of-the-art abstract interpreters such as Astrée rely on combinations of
abstract domains to keep the number of spurious alarms at a minimum [83–85].
This is because the domains can capture different behaviors, and the framework of
abstract interpretation provides a way to combine the information discovered by
each abstract domain using a construction known as the reduced product [77, 86],
or variations thereof. Automatic abstraction on top of Boolean logic thus provides a
suitable technology not only to tame the difficulty of handcrafting transfer functions,
but also reduces the workload for supporting different abstract domains.

1.6 Contributions

The key contributions of this thesis are:

• We present two algorithms for existential quantification on propositional
Boolean formulae in CNF using incremental SAT solving. The first algorithm
is designed to be anytime — it can be interrupted prematurely — whereas
the second one dismisses this property in favor of efficiency.

• We show that quantifier elimination can form part of SAT-based value set anal-
ysis, which we apply to automatically compute invariants from unstructured
binary code to recover a sound, yet precise, control flow graph.

• We adapt the formulation of automatic abstraction based on Monniaux [167,
169] to the setting of quantified Boolean formulae, thereby benefiting from a
tractable form of universal quantification for CNF [148, Chap. 9.2.3].

6

1.7 Outline

• We further provide algorithms which compute the least sound abstraction of a
propositional Boolean formula in different abstract domains using incremental
SAT solving. Specifically, we support value sets, intervals, octagons, convex
polyhedra, arithmetical congruences, affine equalities, and bounded polyno-
mials. For efficiency, these algorithms exploit the structure of the underlying
abstract domains, and thus outperform general-purpose ones [197].

• We study different techniques to derive transformers from the aforementioned
abstractions. These transfer functions then express, e.g., how an octagon on
input into is transformed into an octagon on output using a polynomial map.

• We provide a technique for extrapolation, based on the observation that
programs defined using the same instructions but over differing bit-widths
frequently exhibit a high degree of similarity. Yet, deriving abstractions for
bit-vectors of width, say, 64 is challenging performance-wise. We therefore
show how to extract small-scale abstractions from small bit-vectors — e.g., of
width 8 — and then lift these relations to wider bit-vectors.

• We propose a technique to find legitimate traces that reveal actual defects using
backward analysis. To do so, we present an algorithm that converges onto a
complete abstraction from below. Resting backward analysis on completeness
then allows us to compute weakest preconditions, which is required to classify
a counterexample trace as either spurious or legitimate.

In summary, this thesis presents techniques that automatically generate abstractions
of programs defined over finite machine words. Given a logical characterization of
the basic blocks that constitute the program, abstractions and transformers are
computed, rather than designed manually. This entails that a program analyzer
based on our methods needs to provide (1) logical characterizations of the program
statements, (2) an algorithm that provides fixed-point iteration, and (3) implemen-
tations of standard lattice operations such as join in the abstract domains used.
The cumbersome and difficult part of implementing and evaluating the concrete
operations of a program in an abstract setting is avoided altogether.

1.7 Outline

Expositionally, our contributions are laid out as follows. First, Chap. 2 presents
two algorithms for SAT-based existential quantifier elimination. Then, Chap. 3
presents a method that uses our quantification technique to compute interval and
value set abstractions from executable code. These abstractions are then used to
reconstruct jump targets from the binary, thereby providing a sound approximation
of the control flow graph. The following Chap. 4 focusses on abstractions for the

7

1 Introduction

domains of octagons, convex polyhedra, arithmetical congruences, affine equalities,
and polynomial equalities of bounded degree. For each abstract domain, a dedi-
cated abstraction procedure is provided. From the abstractions, we derive transfer
functions that express how an abstract state on input to a block is mapped to an
abstract state on output, which is detailed in Chap. 5. Whereas Chap. 4 and Chap. 5
focus on sound abstractions, Chap. 6 targets the problem of computing complete
abstractions so as to infer definitive counterexample traces. The aforementioned
chapters each contain experimental results and comparisons to related work. Finally,
this dissertation concludes with a discussion in Chap. 7.

1.8 Bibliographic Notes

This dissertation is, at least to some extent, based on work that we have described
in refereed publications. Lines of argumentation similar to those used in this chapter
have been used to motivate our work in [31–35]. Prime implicant generation, which is
described in Chap. 2.1, is part of algorithms presented in two conference papers [33,
42]. Following, Chap. 2.2 and Chap. 2.3 are based on these two publications.
Likewise, Chap. 3, which presents a SAT-based value set analysis for control flow
reconstruction, is based on two papers [41, 187]. The abstraction procedure for
octagons in Chap. 4.2.1 was first presented in [32], whereas affine abstraction in
Chap. 4.2.5 was introduced in [31]. The characterization of transformers as quantified
Boolean formulae in Chap. 5.2 has first been described in [31]. However, the
technique presented in [31] used resolution-based quantifier elimination, rather than
the SAT-based techniques employed in this thesis. An extended article [34], which
generalizes the paper [32], is currently under review. Chapter 6, which describes the
generation of complete abstractions, is inspired by a conference publication, too [35].
However, [35] relies on state representations and transformers in Boolean logic,
whereas Chap. 6 presents novel, complete abstractions for domains such as affine
equalities. All techniques for reasoning about relations between program variables
are based on relational encodings for bit-vector programs, which are heavily inspired
by the AVR and Intel MCS-51 microcontroller instruction sets. We have described
similar encodings in previous works [31, 32, 34, 35, 39, 43, 187].

During the course of our doctoral studies, we have worked in different areas
which are not directly related to this dissertation. Most notably, we have worked
on state-space reductions for explicit-state model checking based on static analy-
sis [25, 118, 119, 188, 189, 191, 210, 211], on verification techniques for programmable
logic controllers [26–28, 209], on control-structure refinement using abstract inter-
pretation [38], on pointer analysis and low-level memory models [22, 36], on stack
analysis [37], and on runtime verification of microcontroller code [190, 192–194].

8

2 Existential Quantification as
Incremental SAT

The problem of eliminating variables from Boolean formulae using existential quan-
tification is ubiquitous in formal verification [2, 29, 75, 103, 104, 152, 164]. The
benefit of novel, improved algorithms which solve this problem is thus not limited
to our indicated applications in automatic abstraction of bit-vector programs. As
a concrete scenario, consider predicate abstraction [107], from which we take an
example that we develop in what follows. In predicate abstraction, a finite set of
predicates is used to express properties of — and relationships between — program
variables at different points in the program. An abstract state of the program in
this domain can then be described by a cube — a conjunction of literals — over
the set of predicate symbols, and likewise a set of states as a disjunction of cubes.
As in symbolic model checking [51, Sect. 2], existential quantifier elimination then
arises during the computation of successor states. Adapting an example from [152],
suppose predicates X = {x1, . . . , x6} and Y = {y1, . . . , y6} express state at two
consecutive program points. Further, suppose the transition relation between the
states at these two program points is expressed as a Boolean function over X ∪ Y :

µ =

{
¬(x2 ∧ y2) ∧ ¬(y1 ∧ y2) ∧ ((x4 ∧ x6)⇒ y1) ∧
(x3 ⇔ y4) ∧ (x4 ⇔ y3) ∧ (x5 ⇔ y6) ∧ (x6 ⇔ y5)

If the set of states at one program point is described by the formula

ξ =

{
(x1 ∧ ¬x2 ∧ x3 ∧ ¬x4 ∧ x5 ∧ ¬x6) ∨
(x1 ∧ ¬x2 ∧ ¬x3 ∧ x4 ∧ ¬x5 ∧ x6)

then the state at the next program point is given as ∃X : ξ∧µ. Existential quantifier
elimination, which is in this context also referred to as image computation, then
amounts to removing from ξ ∧ µ all information pertaining to the variables in X.
The operation thus yields a formula that ranges only over the predicates Y .

Quantifier Elimination using Model Enumeration This chapter is concerned with
techniques for computing a quantifier-free formula ∃X : ϕ in CNF using incremental
SAT solving, where X and Y are sets of propositional variables and ϕ is itself
presented in CNF. The quadratic nature of each transformation step renders the

9

2 Existential Quantification as Incremental SAT

application of traditional techniques such as binary resolution impractical when X is
large compared to vars(ϕ) [148, Chap. 9.2.3]. Sometimes, binary decision diagrams
(BDDs) are used to compute ∃X : ϕ [47, 51, 102]. Yet, SAT-based techniques
are favored when the set of of variables Y = vars(ϕ) \ X is small compared to
vars(ϕ) [50, 152]. Such techniques invoke a SAT solver to find a model of ϕ, and
then extract a cube

c1 = (
∧
y1∈Y1 y1) ∧ (

∧
y2∈Y2 ¬y2)

for which ϕ ∧ c1 is satisfiable and Y1 and Y2 partition Y , i.e., Y1 ∩ Y2 = ∅ and
Y1 ∪ Y2 = Y . Then, c1 entails ∃X : ϕ, formally c1 |= ∃X : ϕ. The blocking clause
¬c1 is then added to ϕ to give ϕ ∧ ¬c1 and the process is repeated to enumerate
all such cubes c1, . . . , cn. During enumeration, the cubes c1, . . . , cn are typically
stored in a BDD which converges onto ∃X : ϕ from below. Each intermediate BDD
clearly under-approximates ∃X : ϕ. A CNF representation of

∨n
i=1 ci can then

be extracted from the BDD, e.g., by following all (conjunctive) paths d1, . . . dm in
the BDD which lead to the false leaf and negating the disjunction

∨m
i=1 di to give∧m

i=1 ¬di in CNF. In his seminal work on SAT-based unbounded symbolic model
checking, McMillan [164, Sect. 1] critiqued this approach by pointing out that:

“CNF and SAT-based quantifier elimination can be exponentially more
efficient than [..] BDDs in cases where the resulting fixed points have
compact representations in CNF, but not as BDDs.”

BDDs have been used to store the cubes as it is believed that they offer a time- and
space-efficient data structure for storing the image, i.e., the quantifier-free formula.
Further, contemporary BDD packages such as Cudd [226] or Buddy [72] provide
built-in support to convert a BDD into CNF. BDDs can thus straightforwardly be
combined with SAT-based approaches to quantifier elimination. However, this does
not preclude computing CNF directly, especially if the size of the CNF is smaller
than that of the BDD [164, Sect. 6].

Contributions Our contribution can be considered a response to the agenda set by
McMillan. It consists of two novel methods for computing the image as a compact
CNF formula. The novelty of our algorithms, compared to those of McMillan and
others, is that they do neither require modifications to a solver nor integration with
BDDs. They can thus compactly be implemented on top of existing SAT engines
using a few hundred lines of program code only. In both approaches, the quantifier
elimination problem is reduced to that of finding cubes of minimal size, each of
which entails ∃X : ϕ. We show how this problem can be encoded as a SAT instance
if properly combined with sorting networks so as to obtain cardinality constraints
(see Chap. 2.1). This encoding is the key ingredient of both algorithms. Yet, the
algorithms presented herein differ in the following sense:

10

2.1 Prime Implicant Generation

• The first algorithm (see Chap. 2.2) is designed to incrementally produce a
sequence of formulae that converges onto ∃X : ϕ from above. Hence, the
algorithm possesses the attractive anytime property, i.e., it “[..] can be
terminated at any time and will return some answer [..] in some well-behaved
manner as a function of time” [92, Sect. 3]. Such algorithms can thus be
preempted prematurely without compromising soundness [23].

• The second algorithm (see Chap. 2.3) decomposes the elimination problem
into two phases. First, prime implicant enumeration is applied to compute a
DNF representation of ∃X : ϕ, followed by CNF conversion using the same
technique. The former phase is non-interruptible (the latter phase still is), but
the algorithm is more efficient.

We show that our formulation finesses the need for a complicated quantifier elimina-
tion procedure such as the DPLL-style algorithm by McMillan [164, Sect. 2] or model
enumeration using heuristics by Lahiri et al. [152, Sect. 3.2]. Furthermore, with a
BDD-based approach, the sizes of the BDD itself and of the resulting CNF formula
(and thus the runtime needed to compute it) are very sensitive to the variable
ordering (cp. [49, 70]). This holds true even when dynamic reordering is applied.
By way of comparison, the algorithms described herein actually produce a compact
CNF representation without the application of heuristics, thereby challenging the
belief that BDDs are necessary for existential quantifier elimination.

Structure of the Presentation Each of the key ingredients of this chapter, namely,
prime implicant generation as well as the two different quantifier elimination algo-
rithms, is presented in its own section. In each section, the algorithm is presented by
means of a worked example, followed by a discussion of formal correctness arguments.
Experimental results are then presented in Chap. 2.4. Finally, the chapter concludes
with a presentation of related work in Chap. 2.5 and a discussion in Chap. 2.6.

2.1 Prime Implicant Generation

An implicant of a propositional Boolean formula ϕ is a cube c such that c |= ϕ and
vars(c) ⊆ vars(ϕ), i.e., every model of c is also a model of ϕ. A prime implicant of ϕ,
in turn, is an irreducible cube that entails ϕ. Therefore, shortest prime implicants
deliver the most descriptive under-approximations of ϕ among all implicants. The
key idea behind both techniques for quantifier elimination is thus to compute shortest
prime implicants of a propositional Boolean formula ∃X : ϕ so as to rapidly converge
onto the set of solutions of ∃X : ϕ. To do so, it is necessary to draw the literals
in each implicant c only from variables in Y . This chapter presents a dual-rail
transformation [48] of the problem which serves this task. Then, the transformed

11

2 Existential Quantification as Incremental SAT

formula is passed to a SAT solver and the resulting model is turned into a prime
implicant of ∃X : ϕ. The encoding is further paired with sorting networks [146]
to enforce cardinality constraints [95] on the sizes of the implicants. The force of
this construction is that it allows us to derive shortest prime implicants of ∃X : ϕ
automatically using SAT solving; it is thus fundamental for the algorithms presented
in Chap. 2.2 and Chap. 2.3. We build towards this technique using ϕ = (ξ ∧ ν) from
the introduction and demonstrate how to compute prime implicants of ∃X : ϕ.

2.1.1 Dual-Rail Encoding for Implicant Generation

To compute an implicant of ∃X : ϕ using SAT solving, it is first necessary to convert
ϕ into CNF, for which we introduce a set of fresh Tseitin variables T [178, 234]. The
fresh variables are themselves existentially quantified. The according transformation
yields a formula ψ which is equisatisfiable to ϕ. Then, vars(ψ) = X ∪ Y ∪ T and
suppose that Y = {y1, . . . , yk}. We introduce two disjoints sets

Y + = {y+
1 , . . . , y

+
k } Y −1 = {y−1 , . . . , y−k }

of fresh variables and replace each occurrence of the positive literal yi in ψ with y+
i .

Likewise, we replace each occurrence of ¬yi in ψ with y−i . To ensure that y+
i and

y−i cannot hold simultaneously, the transformed formula is further augmented with:∧k
i=1(¬y+

i ∨ ¬y−i)

Let τ(ψ) denote this syntactic transformation, which yields a formula in CNF that
is defined over propositional variables V = X ∪ Y + ∪ Y − ∪ T . The intuitive idea
behind this transformation is to construct a formula that has the same models as
ψ but does not force each variable yi ∈ Y to be assigned either 0 or 1. Instead, a
model of τ(ψ) may contain assignments of 0 for y+

i as well as for y−i . Such a case
entails that the model holds for either value of yi, i.e., its validity does not depend
on yi. Passing τ(ψ) to a SAT solver yields a model m1 : V → B, such as:

m1 =

x1 7→ 1, x2 7→ 0, x3 7→ 1, x4 7→ 0, x5 7→ 1, x6 7→ 0
y+

1 7→ 0, y+
2 7→ 0, y+

3 7→ 0, y+
4 7→ 1, y+

5 7→ 0, y+
6 7→ 1

y−1 7→ 1, y−2 7→ 1, y−3 7→ 1, y−4 7→ 0, y−5 7→ 1, y−6 7→ 0

Note that the Tseitin variables T have been omitted for the purpose of presentation.
The same model m1 can be represented as a subset of V , namely:

{v ∈ V |m1(v) = 1}
Henceforth, we shall use both representations interchangeably. Then, the variables
in m1 ∩ (Y + ∪ Y −) define a conjunction of literals ρY (m1) over the variables Y as:

ρY (m1) =
(∧{yi | y+

i ∈m1 ∩ Y +}
)
∧
(∧{¬yi | y−i ∈m1 ∩ Y −}

)
= (¬y1 ∧ ¬y2 ∧ ¬y3 ∧ y4 ∧ ¬y5 ∧ y6)

12

2.1 Prime Implicant Generation

The cube ρY (m1) entails ∃X : ϕ as well as ∃X : ∃T : ψ. However, please observe
that ρY (m1) is not a prime implicant of ∃X : ϕ because the SAT solver could also
have produced a model m2 defined as:

m2 =

x1 7→ 1, x2 7→ 0, x3 7→ 1, x4 7→ 0, x5 7→ 1, x6 7→ 0
y+

1 7→ 0, y+
2 7→ 1, y+

3 7→ 0, y+
4 7→ 1, y+

5 7→ 0, y+
6 7→ 1

y−1 7→ 1, y−2 7→ 0, y−3 7→ 1, y−4 7→ 0, y−5 7→ 1, y−6 7→ 0

Then, ρY (m2) = (¬y1 ∧ y2 ∧ ¬y3 ∧ y4 ∧ ¬y5 ∧ y6) and ρY (m2) |= ∃X : ϕ. From this
we can also deduce ρY (m1) ∨ ρY (m2) |= ∃X : ϕ, and simplification gives:

ρY (m1) ∨ ρY (m2) = (¬y1 ∧ ¬y3 ∧ y4 ∧ ¬y5 ∧ y6)

We clearly have (¬y1 ∧¬y3 ∧ y4 ∧¬y5 ∧ y6) |= ∃X : ϕ. This entails that ρY (m1) and
ρY (m2) are both reducible implicants of ∃X : ϕ, since (¬y1 ∧ ¬y3 ∧ y4 ∧ ¬y5 ∧ y6)
provides a more descriptive under-approximation of ∃X : ϕ than ρY (m1) or ρY (m2)
in separation. In the following section, we will therefore refine this encoding and
demonstrate how to systematically infer shortest prime implicants.

2.1.2 Computing Implicants of Fixed Length

To derive shortest prime implicants, we turn to sorting networks [146]. Examples
of sorting networks for 3 and 4 bits are given in Fig. 2.1. The 3-bit sorter on the
left-hand side of Fig. 2.1 has 3 input bits on the left and 3 output bits on the
right. It also contains 3 comparison operations, indicated with vertical bars, which
compare and if necessary swap bits. A comparator assigns its outgoing upper bit to
the maximum of its two incoming bits and its outgoing lower bit to the minimum.
Since maximum and minimum in this context correspond to the logical symbols ∨
and ∧, a comparator with incoming bits i1 and i2 as well as outgoing bits o1 and o2

can be encoded propositionally as the formula:

(o1 ↔ i1 ∨ i2) ∧ (o2 ↔ i1 ∧ i2)

The value of a sorting network is that it can be applied to express the sum of k
propositional variables in no more than 12k(dlog2(k)e+ 1) ternary clauses where
the sum is represented in a unary fashion [95]. The 3-bit sorter in Fig. 2.1, for
instance, over inputs I = {i1, i2, i3}, outputs O = {o1, o2, o3} and internal auxiliary
bits A = {a1, a2, a3}, can be encoded propositionally as:

σ3 =

(a1 ↔ i1 ∨ i2) ∧ (a2 ↔ i1 ∧ i2) ∧
(a3 ↔ a2 ∨ i3) ∧ (o3 ↔ a3 ∧ i3) ∧
(o1 ↔ a1 ∨ a3) ∧ (o2 ↔ a1 ∧ a3)

13

2 Existential Quantification as Incremental SAT

Moreover, by instantiating the output bits to fixed unary value, a cardinality
constraint can be obtained. For example, by constraining the output bits of the
4-bit sorter to 1100, a cardinality constraint is derived which ensures that exactly
2 of the 4 input bits to the sorter are set. Constraining the output bits to 1110
would ensure that exactly 3 input bits are set. Such cardinality constraints can
be imposed in conjunction with the formula τ(ψ) in order to enforce the discovery
of the shortest implicants first, and thereby prevent redundant implicants to be
found. Returning to the example discussed in the previous section, we observe that
the aforementioned redundancy by implicants ρY (m1) and ρY (m2) would not have
occurred, had the SAT solver first found the following model:

m3 =

x1 7→ 1, x2 7→ 0, x3 7→ 1, x4 7→ 0, x5 7→ 1, x6 7→ 0
y+

1 7→ 0, y+
2 7→ 0, y+

3 7→ 0, y+
4 7→ 1, y+

5 7→ 0, y+
6 7→ 1

y−1 7→ 1, y−2 7→ 0, y−3 7→ 1, y−4 7→ 0, y−5 7→ 1, y−6 7→ 0

To guarantee that shortest prime implicants are found first, we introduce a set
Y ± = {y±1 , . . . , y±k } of fresh variables. These variables serve as inputs to a k-bit
sorting network. Each variable y±i ∈ Y ± indicates whether y+

i or y−i appears in the
implicant; if so, y± evaluates to 1, and to 0 otherwise. To connect the y+

i and y−i
variables to the respective y±i , a conjunction

∧k
i=1 θi is introduced, where:

θi = y±i ⇔ (y+
i ∨ y−i)

= (¬y±i ∨ y+
i ∨ y−i) ∧ (y±i ∨ ¬y+

i) ∧ (y±i ∨ ¬y−i)

Given a k-bit sorter σk with output variables {o1, . . . , ok}, a formula whose models
describe implicants of ∃X : ϕ of length ` with 1 ≤ ` ≤ k is obtained by augmenting
τ(ψ) with a constrained sorting network as follows:

τ`(ψ) = τ(ψ) ∧ σk ∧
(∧k

i=1 θi

)
∧
(∧`

i=1 oi

)
∧
(∧k

i=`+1 ¬oi
)

Since τ`(ψ) is unsatisfiable for l ∈ {1, . . . , 4}, we deduce that ∃X : ϕ does not possess
implicants shorter than 5. Testing τ5(ψ) for satisfiability yields the model m3 as
above, which defines:

ρY (m3) = (¬y1 ∧ ¬y3 ∧ y4 ∧ ¬y5 ∧ y6)

Adding a blocking clause ¬ρY (m3) to ϕ suppresses both, m1 and m2. Note that
although the clauses (

∧`
i=1 oi) ∧ (

∧k
i=`+1 ¬oi) must be rescinded once all the impli-

cants of length ` have been found, this sub-formula is itself a cube. The force of this
is that SAT solvers support assumptions which are cubes. The assumption is added
to the instance, thereby binding some variables, but these bindings are discarded
once a model is found, in readiness for the next call to the solver. Conveniently,

14

2.1 Prime Implicant Generation

Figure 2.1: Sorting networks for 3 and 4 bits; vertical bars indicate comparators

this lightweight version of incremental SAT is sufficient to support the above algo-
rithm. To summarize, we have thus far introduced a transformation map τ for a
dual-rail encoding which, if paired with sorting networks and respective cardinality
constraints, can be used to derive shortest prime implicants of ∃X : ϕ.

2.1.3 Formal Correctness

To prove the formula transformations introduced so far correct, let BoolV denote the
class of propositional formulae over the set of variables V . Suppose that two disjoint
sets X and Y partition V , i.e., X ∩ Y = ∅ and X ∪ Y = V . We shall now consider
the problem of computing an implicant of ∃X : ϕ where the formula ϕ ∈ BoolV
is presented in CNF. The transformation is formalized as a map τ on the set of
literals LitV = {v,¬v | v ∈ V }. This map is, in turn, defined in terms of sets of
propositional variables Y + = {y+ | y ∈ Y } and Y − = {y− | y ∈ Y } for which we
assume that Y + ∩ Y − = ∅ and (Y + ∪ Y −) ∩ V = ∅.
Definition 2.1. The literal transformation map τ : LitV → LitY +∪Y −∪X and its
inverse τ−1 : LitY +∪Y −∪X → LitV are defined as follows:

τ(l) =

y+ : l = y and y ∈ Y
y− : l = ¬y and y ∈ Y
l : otherwise

τ−1(l) =

y : l = y+ and y ∈ Y
¬y : l = y− and y ∈ Y
l : otherwise

A clause is considered to be a set of literals to simplify the lifting of the literal
transformation map to clauses. Thus, if a clause is merely a set C ⊆ LitV then
τ(C) = {τ(l) | l ∈ C}. Likewise, τ can be lifted to a formula ϕ ⊆ ℘(LitV). Given
a set W ⊆ LitV of literals, we sometimes use

∧
W as a shortcut for the formula∧

w∈W w. Likewise, we sometimes use
∨
W for

∨
w∈W w.

Definition 2.2. Let F ⊆ ℘(LitV) and let ϕ =
∧{∨C | C ∈ F}. The formula

transformation map τ : ℘(LitV)→ ℘(LitX,Y) is defined:

τ(ϕ) =
∧{∨ τ(C) | C ∈ F} ∧∧{¬y+ ∨ ¬y− | y ∈ Y }

15

2 Existential Quantification as Incremental SAT

An implicant of ϕ is a cube c such that c |= ϕ. Our interest is in cubes which are
non-trivial, that is, cubes that do not contain opposing literals. The classes of cubes
over literals from V and X ∪ Y + ∪ Y − are given through the following definition.

Definition 2.3. The classes of non-trivial cubes are defined below:

CubeV =
{
C ⊆ LitV

∣∣ ∀v ∈ V : {v,¬v} 6⊆ C
}

CubeX,Y =

{
C ∪ C ′

∣∣∣∣ C ∈ CubeX ∧ C ′ ⊆ Y + ∪ Y − ∧
∀y ∈ Y : {y+, y−} ∩ C ′ 6= ∅ ∧ {y+, y−} 6⊆ C ′

}
The literal transformation map τ is lifted to cubes by likewise considering these to be
sets of (implicitly conjoined) literals. The transformation relates cubes with literals
drawn from LitV to cubes with literals drawn from Y + ∪ Y − ∪ LitX . The above
definitions allow us to state equivalence between cubes over the original formula ϕ
and those obtained by applying the formula translation τ(ϕ).

Proposition 2.1 (Equivalence). Let F ⊆ ℘(LitV) and let ϕ =
∧{∨C | C ∈ F}

denote a formula in CNF. Further, put ϕ′ =
∧{∨ τ(C) | C ∈ F}. Then:

1. If D ∈ CubeV and (
∧
D) |= ϕ then (

∧
τ(D)) |= ϕ′.

2. If D′ ∈ CubeX,Y and (
∧
D′) ∧ ϕ′ is satisfiable then (

∧
τ−1(D′) |= ϕ.

Proof of Proposition 2.1. We prove correctness of the two statements separately.

1. Let C ∈ F . Since we have (
∧
D) |= ϕ, it follows that (

∧
D) |= (

∨
C). We

then have to consider the following four different cases:

• Suppose x ∈ D ∩ C and x ∈ Y . Then x+ ∈ τ(C) ∩ τ(D).

• Suppose ¬x ∈ D ∩ C and x ∈ Y . Then x− ∈ τ(C) ∩ τ(D).

• Suppose x ∈ D ∩ C and x ∈ X. Then x ∈ τ(C) ∩ τ(D).

• Suppose ¬x ∈ D ∩ C and x ∈ X. Then ¬x ∈ τ(C) ∩ τ(D).

Hence (
∧
τ(D)) |= (

∨
τ(C)) whence (

∧
τ(D)) |= ϕ′ as required.

2. Let C ∈ F . Since (
∧
D′) |= ϕ′ it follows that (

∧
D′) |= (

∨
τ(C)).

• Suppose x+ ∈ D′ ∩ τ(C) and x ∈ Y . Then x ∈ C ∩ τ−1(D′).

• Suppose x− ∈ D′ ∩ τ(C) and x ∈ Y . Then ¬x ∈ C ∩ τ−1(D′).

• Suppose x ∈ D′ ∩ τ(C) and x ∈ X. Then x ∈ C ∩ τ−1(D′).

• Suppose ¬x ∈ D′ ∩ τ(C) and x ∈ X. Then ¬x ∈ C ∩ τ−1(D′).

Hence (
∧
τ−1(D′)) |= (

∨
C) whence (

∧
τ−1(D′)) |= ϕ as required.

16

2.2 Anytime Quantifier Elimination

The following corollary of the above relates implicants with literals drawn from
LitY to the satisfiability of the transformed clause set. It ultimately provides a
correctness argument for the transformation map τ as used in the example.

Corollary 2.1 (Correctness). Let F ⊆ ℘(LitV) and let ϕ =
∧{∨C | C ∈ F} denote

a formula in CNF. Further, put ϕ′ =
∧{∨ τ(C) | C ∈ F}. Then:

• If D ∈ CubeY and (
∧
D) |= ∃X : ϕ then (

∧
τ(D)) ∧ ϕ′ is satisfiable.

• If D′ ∈ Cube∅,Y and (
∧
D′) ∧ ϕ′ is satisfiable then (

∧
τ−1(D′)) |= ∃X : ϕ.

Let sat(ϕ) ⊆ ℘(V) denote the set of models of ϕ. The following result can the
straightforwardly be adapted to the encoding τ`(ϕ), which is identical to τ(ϕ)
equipped with sorting networks. Observe that τ(ϕ) does not include any cardinality
constraint on the size of the implicants, hence the need to define shortest implicants
in terms of an implicant no longer than any other.

Corollary 2.2 (Shortest Implicants). Let ϕ =
∧{∨C | C ∈ F} where F ⊆ ℘(LitV }.

Then D ∈ CubeY is a shortest implicant of ∃X : ϕ iff D = ρ(M? ∩ (Y + ∪ Y −))
where

1. M? ∈ sat(τ(ϕ))

2. |M? ∩ (Y + ∪ Y −)| ≤ |M ∩ (Y + ∪ Y −)| for all M ∈ sat(τ(ϕ))

2.2 Anytime Quantifier Elimination

This chapter shows how over-approximation using shortest prime implicants can
be applied to eliminate X = {x1, . . . , xn} from ∃X : ϕ. In particular, we show how
a SAT solver can be repeatedly called to compute a sequence of CNF formulae
h0, h1, . . . that converge onto ∃X : ϕ from above in the sense that ∃X : ϕ entails
each intermediate formula hi. Furthermore, each hi+1 strictly entails hi, so that
the sequence is ultimately stationary. However, each hi is free from all variables in
X, hence this approach has the attractive property that generation of the sequence
h0, h1, . . . , ht can be stopped prematurely, at any time t, without sacrificing sound-
ness. This leads to a so-called anytime (or interruptible [23, Sect. 2.6]) formulation
of projection that compares, in some sense, favorably against resolution and model
enumeration, which lead to all-or-nothing, monolithic approaches. Specifically, if
g0 = ϕ and gi+1 is obtained from gi by applying resolution to remove another variable
xi ∈ X of from ϕ, then it is only the final formula gn that is free from X. Moreover,
the number of clauses in gi does not necessarily decrease as i increases, and the
size of intermediate gi can be significantly larger than both ϕ and its projection
gn. By way of contrast, the size of the hi increases monotonically as the sequence
converges. We thus show how to systematically construct a sequence h0, h1, . . . , ht
which converges onto ∃X : ϕ from above using shortest prime implicants.

17

2 Existential Quantification as Incremental SAT

2.2.1 Worked Example

The algorithm converges onto ∃X : ϕ from above by incrementally conjoining clauses
¬ν1, . . . ,¬νn formed from shortest prime implicants ν1, . . . , νn of ¬∃X : ϕ. Short
clauses are likely to remove more models from the approximation than long ones,
thereby encouraging rapid convergence. In this example, consider ϕ defined as:

ϕ = (¬x ∨ z) ∧ (y ∨ z) ∧ (¬x ∨ ¬w ∨ ¬z) ∧ (w ∨ ¬z)

Put X = {z} and Y = {w, x, y}. To derive an over-approximation of ∃X : ϕ, our
algorithm operates on ¬ϕ rather than ϕ directly. First, ¬ϕ is turned into CNF
using additional, fresh variables T = {t1, . . . , t4}. Tseitin’s method is used for this
conversion, which yields a formula ψ. By construction, ψ is equisatisfiable to ¬ϕ:

ψ =

(x ∨ t1) ∧ (¬z ∨ t1) ∧
(¬y ∨ t2) ∧ (¬z ∨ t2) ∧
(x ∨ t3) ∧ (w ∨ t3) ∧ (z ∨ t3) ∧
(¬w ∨ t4) ∧ (z ∨ t4) ∧ (¬t1 ∨ ¬t2 ∨ ¬t3 ∨ ¬t4)

The Tseitin variable ti indicates whether a truth assignment violates the ith cube of
¬ϕ. Applying the transformation τ given in Def. 2.1 then yields:

τ(ψ) =

(x+ ∨ t1) ∧ (¬z ∨ t1) ∧
(y− ∨ t2) ∧ (¬z ∨ t2) ∧
(x+ ∨ t3) ∧ (w+ ∨ t3) ∧ (z ∨ t3) ∧
(w− ∨ t4) ∧ (z ∨ t4) ∧ (¬t1 ∨ ¬t2 ∨ ¬t3 ∨ ¬t4) ∧
(¬w+ ∨ ¬w−) ∧ (¬x+ ∨ ¬x−) ∧ (¬y+ ∨ ¬y−)

Existential Quantification by Filtering

To see how τ(ψ) can be applied to find an over-approximation of ∃X : ϕ, observe:

ν |= ∀X : ∃T : ψ ⇔ ¬∀X : ∃T : ψ |= ¬ν
⇔ ∃X : ¬∃T : ψ |= ¬ν
⇔ ∃X : ϕ |= ¬ν

Hence, to find an over-approximation of ∃X : ϕ, it suffices to find an implicant of
∀X : ∃T : ψ. To find such an implicant, observe that ∀X : ∃T : ψ |= ∃X : ∃T : ψ.
Every implicant ν of ∀X : ∃T : ψ is thus also an implicant of ∃X : ∃T : ψ. Since
the τ map allows us to derive implicants of ∃X : ∃T : ψ, this suggests a strategy in
which the implicants of ∃X : ∃T : ψ are filtered to find the implicants of ∀X : ∃T : ψ.
The check ∃X : ϕ |= ¬ν amounts to deciding whether the conjoined formula ϕ∧ ν is

18

2.2 Anytime Quantifier Elimination

unsatisfiable. Thus, a test for unsatisfiability can be used for filtering. To illustrate,
suppose that a SAT solver produces the following solution to the formula τ(ψ):

m1 =

w+ 7→ 0, w− 7→ 1, x+ 7→ 0, x− 7→ 0,
y+ 7→ 0, y− 7→ 0, z 7→ 1,
t1 7→ 1, t2 7→ 1, t3 7→ 1, t4 7→ 0

The cube ρY (m1) = (¬w) entails ∃X : ∃T : ψ, and therefore, it remains to check
whether ∃X : ϕ |= ¬ρY (m1). Since ϕ∧ρY (m1) is satisfiable, the cube is discarded; it
does not entail ∀X : ∃T : ψ. However, before discarding the cube, the formula τ(ψ) is
augmented with (¬w−∨x+∨x−∨y−∨y+) to prevent ρY (m1) from being found again.
This blocking clause can be interpreted as an implication w− → (x+∨x−∨y−∨y+),
which ensures that any cube subsequently found that entails ρY (m1) also has more
literals than ρY (m1). Applying a SAT solver then yields a model

m2 =

w+ 7→ 0, w− 7→ 0, x+ 7→ 1, x− 7→ 0,
y+ 7→ 0, y− 7→ 0, z 7→ 0,
t1 7→ 0, t2 7→ 1, t3 7→ 1, t4 7→ 0

and hence ρY (m2) = (x). Since ϕ ∧ ρY (m2) is unsatisfiable, we conclude that
∃X : ϕ |= ¬ρY (m2), hence ¬ρY (m2) constitutes an over-approximation of ∃X : ϕ.
The blocking clause ¬x+ is then added to τ(ψ) to prevent any cube that entails
ρY (m2) being found. Note that this blocking clause differs in structure from the one
imposed previously. Indeed, the number of literals in the clause is merely n where n
is the number of literals in the cube. In the previous case, the number of literals in
the blocking clause is 2 · |Y | − n. Reapplying a SAT solver yields a further model

m3 =

w+ 7→ 0, w− 7→ 1, x+ 7→ 0, x− 7→ 0,
y+ 7→ 0, y− 7→ 1, z 7→ 1,
t1 7→ 1, t2 7→ 1, t3 7→ 1, t4 7→ 0

which defines the cube ρY (m3) = (¬w ∧ ¬y). Since ϕ ∧ ρY (m3) is unsatisfiable,
it again follows that ∃X : ϕ |= ¬ρY (m3), which refines the over-approximation of
∃X : ϕ to the conjunction (¬ρY (m2))∧(¬ρY (m3)). The blocking clause (¬w−∨¬y−)
is then added to the augmented formula at which point one final application of the
solver indicates that the conjoined formula is unsatisfiable. Hence, convergence onto
∃X : ϕ has been obtained from above where:

∃X : ϕ = ¬ρY (m2) ∧ ¬ρY (m3)
= (¬x) ∧ (w ∨ y)

Terminating the procedure early, before ρY (m3) is computed, would yield the
over-approximation ¬ρY (m2) = (¬x) which, though safe, has strictly more models

19

2 Existential Quantification as Incremental SAT

than (¬x) ∧ (w ∨ y). Thus, the method is diametrically opposed to resolution: In
the resolution-based scheme, the projection is found in the last step only after all
variables have been eliminated one after the other. In the above SAT-based scheme,
a clause in the projection space is obtained in the first step, as in a parallel form of
elimination, which is subsequently refined by adding further clauses.

Search-Space Reduction using Instantiation

In the example discussed so far, a SAT solver generates a spurious candidate ρY (m1)
for an implicant, which is then refuted by checking ϕ |= ¬ρY (m1). This scheme is
based on the observation that every implicant of ∀X : ∃T : ψ is also an implicant of
∃X : ∃T : ψ, where in the case of the example X = {z}. However, observe that

∀X : ∃T : ψ |= ∃T : ψ[z 7→ 0]

where ψ[z 7→ 0] denotes the formula obtained by replacing each occurrence of z in
ψ with the truth value 0. We refer to this operation as instantiation. Therefore,
every implicant of ∀X : ∃T : ψ is also an implicant of ∃T : ψ[z 7→ 0]. The formula
∃T : ψ[z 7→ 0] is not only a simplification of ∃T : ψ, but ∃T : ψ[z 7→ 0] will possess
fewer models, and hence fewer implicants, than ∃X : ∃T : ψ provided ψ 6|= ¬z.
Consider again the formula τ(ψ) with the instance τ(ψ[z 7→ 0]) = τ(ψ)[z 7→ 0].
Recall that originally the candidate implicant ρY (m1) = (¬w) was derived, which
was then refuted because ∃X : ϕ 6|= ¬ρY (m1). This candidate is suppressed by
the instantiation and is not a model of τ(ψ)[z 7→ 0]. It turns out that 13 SAT
instances are required to converge onto ∃X : ϕ, whereas operating on τ(ψ)[z 7→ 0]
and τ(ψ)[z 7→ 1] only requires 9 and 10 SAT instances, respectively. Interestingly,
the formulae derived for these cases are equivalent but different. For τ(ψ)[z 7→ 0],
we obtain the limit (¬x) ∧ (w ∨ y) as expected, but operating on τ(ψ)[z 7→ 1] yields
(w ∨ y) ∧ (w ∨ ¬x) ∧ (¬w ∨ ¬x). This result is equivalent to (¬x) ∧ (w ∨ y) as
(w ∨ ¬x) ∧ (¬w ∨ ¬x) can be simplified to (¬x).

Search-Space Reduction using Multiple Instantiations

Instantiating the variables of X with truth values can decrease the number of
spurious implicants that are generated. This suggests instantiating ψ in different
ways, then combining the instantiations to limit the search space. Thus, the basic
idea is to derive multiple instantiations, say, τ(ψ)[z 7→ 0] and τ(ψ)[z 7→ 1] and solve:

µ = τ(ψ)[z 7→ 0] ∧ τ(ψ)[z 7→ 1]

In case of |X| = 1, µ is equivalent to ∀X : τ(ψ). Care is needed to avoid accidental
coupling between the Tseitin variables in different instantiations. This can be

20

2.2 Anytime Quantifier Elimination

avoided by introducing fresh, disjoint sets of variables T1 = {ti,1 | ti ∈ T} and
T2 = {ti,2 | ti ∈ T} and by applying substitutions to τ(ψ)[z 7→ 0] and τ(ψ)[z 7→ 1],
respectively. By applying simplification, we obtain:

µ =

(x+ ∨ t1,1) ∧ (y− ∨ t1,2) ∧ (¬t1,1 ∨ ¬t1,2) ∧
(x+ ∨ t2,3) ∧ (w+ ∨ t2,3) ∧ (w− ∨ t2,4) ∧
(¬t2,3 ∨ ¬t2,4) ∧
(¬w+ ∨ ¬w−) ∧ (¬x+ ∨ ¬x−) ∧ (¬y+ ∨ ¬y−)

When solving for µ, the sequence of over-approximations converges onto the limit
(w∨y)∧(w∨¬x)∧(¬w∨¬x) without encountering any spurious implicants. Of course,
since |X| = 1, this is because ∀X : ∃T : ψ ≡ (∃T : ψ[z 7→ 0]) ∧ (∃T : ψ[z 7→ 1]).
Interestingly, µ consists of 10 clauses whereas τ(ψ) has 13 clauses. This is because
instantiating X confers significant opportunities for simplification, offering scope for
applying multiple instantiation without generating a formula that is unwieldy.

2.2.2 Formal Correctness

The technique presented in the example rests on finding implicants of ¬∃X : ϕ
by operating over ∃X : ∃T : ψ and keeping those that imply ∀X : ∃T : ψ. The
transformation τ reduces this problem to SAT. Although some correctness arguments
have been weaved into the example, this section studies correctness with more rigor.
First of all, we show that the strategy of generating implicants of ∃X : ¬ϕ and
eliminating those which are not implied by ∀X : ¬ϕ is indeed correct.

Proposition 2.2 (Correctness). Let ϕ =
∧{∨C | C ∈ F} where F ⊆ ℘(LitV), and

let D ∈ CubeY . Then ∃X : ϕ |= ¬D iff the following two conditions hold:

1. D |= ∃X : ¬ϕ

2. ϕ and D are inconsistent.

Proof. We prove the equivalence as two implications.

1. Suppose ∃X : ϕ |= ¬D, hence D |= ¬∃X : ϕ, which is equivalent to D |= ∀X :
¬ϕ. Since sat(∀X : ¬ϕ) ⊆ sat(∃X : ϕ), we have D |= ∃X : ¬ϕ. It remains
to show that ϕ and D are inconsistent, which is equivalent to ϕ ∧D being
unsatisfiable. This follows from sat(∃X : ϕ) ⊆ sat(¬D) = ℘(LitV) \ sat(D).

2. Suppose D |= ∃X : ¬ϕ and ϕ∧D is unsatisfiable, hence sat(ϕ)∩sat(D) = ∅ and
thus sat(∃X : ϕ) ∩ sat(D) = ∅. Then ¬∃X : ¬ϕ |= ¬D, hence ∀X : ¬ϕ |= ¬D.
Assume ∃X : ϕ 6|= ¬D, then sat(∃X : ϕ) 6⊆ ℘(LitV) \ sat(D), which implies
sat(∃X : ϕ) ∩ sat(D) 6= ∅, a contradiction.

21

2 Existential Quantification as Incremental SAT

Correctness of the construction follows directly from Prop. 2.2 and Cor. 2.2. We
further show that instantiation does not affect correctness.

Proposition 2.3 (Instantiation). Let ϕ =
∧{∨C | C ∈ F} where F ⊆ ℘(LitV).

Let D ∈ CubeY such that ∃X : ϕ |= ¬D, x ∈ X, and c ∈ {0, 1}. Then ∀X : ϕ |=
∃X : (ϕ[x 7→ c]) |= ∃X : ϕ.

Proof. Since sat(ϕ[x 7→ c]) = sat(ϕ) ∩ ℘(LitV | x = c), we have sat(ϕ[x 7→ c]) ⊆
sat(ϕ), which is equivalent to ϕ[x 7→ c] |= ϕ. It follows that ∃X : ϕ[x 7→ c] |= ∃X : ϕ
from monotonicity of projection. It holds true that ∀X : ϕ = ∀X \ {x} : ∀x : ϕ
is equivalent to (∀X \ {x} : ϕ[x 7→ 0]) ∧ (∀X \ {x} : ϕ[x 7→ 1]), hence sat(∀X :
ϕ) = sat(∀X \ {x} : ϕ[x 7→ 0]) ∩ sat(∀X \ {x} : ϕ[x 7→ 1]). It follows that
sat(∀X : ϕ) ⊆ sat(∀X \ {x} : ϕ[x 7→ c]) for c ∈ {0, 1}.

An immediate consequence of Prop. 2.3 is that multiple instantiation does not affect
correctness either.

2.3 Two-Phase Quantifier Elimination

The algorithm for quantifier elimination discussed in Chap. 2.2 features the inter-
esting property that it is interruptible. This suggests that it could be applied in
case computing the quantifier-free formula is intractable. Approximations may still
deliver useful results. However, this property comes at a price. Candidate implicants
are computed — in theory, there can be exponentially many of which — and a
satisfiability check is then required to filter spurious candidates. The two-phase
algorithm presented in this chapter contrasts with the anytime algorithm in that it
possesses the “everyone a winner” [183] enumeration property. This means that,
rather than enumerating and filtering potential clauses of ∃X : ϕ, a new clause of
∃X : ϕ is found on (virtually) each application of a SAT solver. This property is
highly desirable, because it couples the computational effort required to compute
the quantifier-free version of ϕ with its size.

2.3.1 Worked Example

As before, let ϕ denote a quantifier-free Boolean formula that ranges over sets X and
Y of propositional variables. The key idea behind the two-phase method is to first
converge onto the set of solutions of the formula ∃X : ϕ from below using implicants.
The first phase gives a DNF formula

∨n
i=1 ci equivalent to ∃X : ϕ, followed by a

second phase that converges onto a CNF representation of ∃X : ϕ from above, based
on
∨n
i=1 ci. We build towards this technique using ϕ = ξ ∧ µ from the introduction.

22

2.3 Two-Phase Quantifier Elimination

Enumerating Implicants

The first step of our method is to enumerate the implicants of ϕ in the projection
space. To do so, we first convert ϕ into CNF, for which we introduce a set of Tseitin
variables T as before. The T variables are existentially quantified, and the resulting
formula ψ in CNF is equisatisfiable to ϕ. Introducing fresh variables ensures that
the size of ψ is only a linear multiple of the size of ϕ. As before τ(ψ) refers to the
syntactic transformation defined over the variables V = X ∪ Y + ∪ Y − ∪ T . Passing
τ(ψ) to a SAT solver yields a model m1 : V → B, such as:

m1 =

x1 7→ 1, x2 7→ 0, x3 7→ 1, x4 7→ 0, x5 7→ 1, x6 7→ 0
y+

1 7→ 0, y+
2 7→ 0, y+

3 7→ 0, y+
4 7→ 1, y+

5 7→ 0, y+
6 7→ 1

y−1 7→ 1, y−2 7→ 1, y−3 7→ 1, y−4 7→ 0, y−5 7→ 1, y−6 7→ 0

The variables in m1 ∩ (Y + ∪Y −) then define a conjunction of literals, a cube, ρ(m1)
over the variables in Y , which is given as:

ρ(m1) =
(∧{yi | y+

i ∈ (m1 ∩ Y +)}
)
∧
(∧{¬yi | y−i ∈ (m1 ∩ Y −)}

)
= (¬y1 ∧ ¬y2 ∧ ¬y3 ∧ y4 ∧ ¬y5 ∧ y6)

The cube ρ(m1) is an implicant of ∃X : ϕ since ρ(m1) |= ∃X : ϕ. It constitutes an
under-approximation of ∃X : ϕ since the set of all models of ρ(m1) is a subset of the
set of all models of ∃X : ϕ. To find another under-approximation, and specifically
one that is not itself entailed by ρ(m1), we augment τ(ψ) with the blocking clause:

β(m1) =
(∨{y−i | y+

i ∈ (m1 ∩ Y +)}
)
∨
(∨{y+

i | y−i ∈ (m1 ∩ Y −)}
)

= (y+
1 ∨ y+

2 ∨ y+
3 ∨ y−4 ∨ y+

5 ∨ y−6)

Of course, enumerating implicants in this way dovetails with the advances in
incremental SAT. Applying a solver to the augmented formula τ(ψ)′ = τ(ψ)∧β(m1)
gives another model m2 as follows:

m2 =

x1 7→ 1, x2 7→ 0, x3 7→ 1, x4 7→ 0, x5 7→ 1, x6 7→ 0
y+

1 7→ 0, y+
2 7→ 1, y+

3 7→ 0, y+
4 7→ 1, y+

5 7→ 0, y+
6 7→ 1

y−1 7→ 1, y−2 7→ 0, y−3 7→ 1, y−4 7→ 0, y−5 7→ 1, y−6 7→ 0

The model m2 defines another implicant ρ(m2) = (¬y1 ∧ y2 ∧¬y3 ∧ y4 ∧¬y5 ∧ y6) of
∃X : ϕ, hence ρ(m1)∨ρ(m2) |= ∃X : ϕ. Repeating this strategy to derive implicants
yields an unsatisfiable formula after the fourth step, and thus

∨4
i=1 ρ(mi) =

(¬y1 ∧ ¬y2 ∧ ¬y3 ∧ y4 ∧ ¬y5 ∧ y6) ∨
(¬y1 ∧ y2 ∧ ¬y3 ∧ y4 ∧ ¬y5 ∧ y6) ∨

(y1 ∧ ¬y2 ∧ ¬y3 ∧ y4 ∧ ¬y5 ∧ y6) ∨
(y1 ∧ ¬y2 ∧ y3 ∧ ¬y4 ∧ y5 ∧ ¬y6)

23

2 Existential Quantification as Incremental SAT

satisfies
∨4
i=1 ρ(mi) = ∃X : ϕ. However, observe that

∨4
i=1 ρ(mi) is in DNF and

also contains redundancies, such as:

ρ(m1) ∨ ρ(m2) = (¬y1 ∧ ¬y3 ∧ y4 ∧ ¬y5 ∧ y6)

Cardinality constraints using sorting networks can — as we have already demon-
strated in Chap. 2.1.2 — be used to eliminate such redundancies. Computing
implicants using τ`(ψ) rather than τ(ψ) yields a smaller DNF formula, based on
three models m′1, m′2, and m′3:

∨3
i=1 ρ(m′i) =

(¬y1 ∧ ¬y3 ∧ y4 ∧ ¬y5 ∧ y6) ∨

(y1 ∧ ¬y2 ∧ ¬y3 ∧ y4 ∧ ¬y5 ∧ y6) ∨
(y1 ∧ ¬y2 ∧ y3 ∧ ¬y4 ∧ y5 ∧ ¬y6)

Over-Approximation by Dualization

Recall that we are interested in obtaining CNF, whereas the construction we have
presented so far yields formulae in DNF. Direct conversion of a formula in DNF
to an equivalent one in CNF may increase the size of the formula exponentially.
However, observe that since ∃X : ϕ =

∨3
i=1 ρ(m′i), we have:

¬∃X : ϕ = ¬∨3
i=1 ρ(m′i) =

∧3
i=1 ¬ρ(m′i)

Latter formula can be converted into CNF straightforwardly by pushing negations
inward. We can thus reapply the above construction to infer implicants of ¬∃X : ϕ.
Given a cube ν such that ν |= ¬∃X : ϕ, the contrapositive holds, giving ∃X : ϕ |= ¬ν.
Therefore ¬ν over-approximates ∃X : ϕ. In order to apply the above method on
the dual of

∨3
i=1 ρ(m′i), we start by negating the formula to give:

¬∃X : ϕ =

(y1 ∨ y3 ∨ ¬y4 ∨ y5 ∨ ¬y6) ∧
(¬y1 ∨ y2 ∨ y3 ∨ ¬y4 ∨ y5 ∨ ¬y6) ∧
(¬y1 ∨ y2 ∨ ¬y3 ∨ y4 ∨ ¬y5 ∨ y6)

Denote this formula by ω and apply τ to ω to give:

τ(ω) =

(y−1 ∨ y−3 ∨ y+

4 ∨ y+
5 ∨ y+

6) ∧
(y+

1 ∨ y−2 ∨ y−3 ∨ y+
4 ∨ y−5 ∨ y+

6) ∧
(y+

1 ∨ y−2 ∨ y+
3 ∨ y−4 ∨ y+

5 ∨ y−6) ∧ (
∧6
i=1 ¬(y+

i ∧ y−i))

We then solve τ1(ω), which is unsatisfiable: ¬∨3
i=1 ρ(m′i) does not posses implicants

of length 1. Passing τ2(ω) to a SAT solver yields a model m′′1 as follows:

m′′1 =

{
y+

1 7→ 0, y+
2 7→ 1, y+

3 7→ 0, y+
4 7→ 0, y+

5 7→ 0, y+
6 7→ 0

y−1 7→ 0, y−2 7→ 0, y−3 7→ 0, y−4 7→ 0, y−5 7→ 0, y−6 7→ 1

}

24

2.3 Two-Phase Quantifier Elimination

We then extract a cube ρ(m′′1) = (y2 ∧ ¬y6) from m′′1. From ρ(m′′1) |= ¬∃X : ϕ, we
deduce ∃X : ϕ |= ¬ρ(m′′1). Since ρ(m′′1) is a cube, ¬ρ(m′′1) clearly is a clause. Thus,
¬ρ(m′′1) can directly be added to the SAT instance as a blocking clause, denoted
β(m′′1). We add this blocking clause to suppress the cube as before and retrieve a
model m′′2 for τ2(ω) ∧ β(m′′1) from the SAT solver:

m′′2 =

{
y+

1 7→ 0, y+
2 7→ 0, y+

3 7→ 1, y+
4 7→ 0, y+

5 7→ 0, y+
6 7→ 1

y−1 7→ 0, y−2 7→ 0, y−3 7→ 0, y−4 7→ 0, y−5 7→ 0, y−6 7→ 0

}
This model induces a cube ρ(m′′2) = (y3 ∧ y6). Then, ∃X : ϕ |= ¬ρ(m′′1) ∧ ¬ρ(m′′2)
and τ2(ω) ∧ β(m′′1) ∧ β(m′′2) is unsatisfiable. We proceed with cubes of length 3 and
solve τ3(ω)∧ β(m′′1)∧ β(m′′2), which gives rise to a cube ρ(m′′3) = (¬y2 ∧¬y5 ∧¬y6).
By adding blocking clauses and enumerating all cubes ρ(m′′i) for i ∈ {1, . . . ,m}, we
could derive a CNF formula

∧m
i=1 ¬ρ(m′′i) equivalent to ∃X : ϕ.

Relaxed Cubes

However, we can improve on this näıve strategy and produce a denser CNF repre-
sentation by searching for a shorter sub-cube c′ of ρ(m′′3) which is itself an implicant
of ω. The cube c′ that we aim to compute is weaker in the sense that it satisfies:

• vars(c′) ⊂ vars(ρ(m′′3))

• sat(ρ(m′′3)) ⊂ sat(c′)

Yet, c′ obeys the requirement c′ |= ω. We refer to the computation of such a cube c′

as relaxation or weakening. To do this, let:

N = (Y + ∪ Y −) \m′′3
= {y+

1 , y
−
1 , y

+
2 , y

+
3 , y

−
3 , y

−
4 , y

+
5 , y

+
6 }

We then solve τ2(ω) in conjunction with the cube∧
{¬y+

i | y+
i ∈ N ∩ Y +} ∧

∧
{¬y−i | y−i ∈ N ∩ Y −}

which we pass the solver as an assumption. The solver produces a model

m′′4 =

{
y+

1 7→ 0, y+
2 7→ 0, y+

3 7→ 0, y+
4 7→ 0, y+

5 7→ 0, y+
6 7→ 0

y−1 7→ 0, y−2 7→ 0, y−3 7→ 0, y−4 7→ 0, y−5 7→ 1, y−6 7→ 1

}
which defines ρ(m′′4) = (¬y5 ∧ ¬y6); thus ¬ρ(m′′4) = (y5 ∨ y6) |= ∃X : ϕ. Since

m′′4 ∩ (Y + ∪ Y −) ⊂ m′′3 ∩ (Y + ∪ Y −)

25

2 Existential Quantification as Incremental SAT

we have m′′3 |= m′′4 and ρ(m′′3) |= ρ(m′′4). We thus discard ρ(m′′3) and proceed with:

τ3(ω) ∧ β(m′′1) ∧ β(m′′2) ∧ β(m′′4)

Whenever a fresh cube is discovered, we apply the same strategy to relax it to the
most general one that still entails ω. It is interesting to note that an implicant of
length ` can be generalized using at most dlog2(`)e calls to a solver by applying
dichotomic search, although we do not apply this optimization since ` is typically
small. Repeatedly applying this generalization scheme, we derive the following
minimal (though not unique) CNF representation of ∃X : ϕ in five more iterations:

∃X : ϕ =

{
(¬y2 ∨ y6) ∧ (¬y3 ∨ ¬y6) ∧ (y5 ∨ y6) ∧ (y3 ∨ ¬y5) ∧
(y4 ∨ ¬y6) ∧ (y1 ∨ y6) ∧ (¬y1 ∨ ¬y2) ∧ (¬y4 ∨ y6)

Since the search is exhaustive, this is no longer an over-approximation of the
projection, but equivalent to it. Our implementation using MiniSat takes 0.0012s
and 0.0009s for the first and second stages of the algorithm, taking 0.0021s overall.

2.3.2 Formal Correctness

To state how to compute an image by enumerating implicants, we formalize the
unusual notion of a blocking clause.

Definition 2.4 (Blocking Clause). The map β : CubeX,Y → Cube∅,Y is defined as:

β(D′) = {y−i | y−i ∈ D′} ∪ {y+
i | y+

i ∈ D′}

Theorem 2.1 (Correctness). Let ϕ =
∧{∨C | C ∈ F} where F ⊆ ℘(LitV) and put

ϕ′ =
∧{∨ τ(C) | C ∈ F}. Let D′1, . . . , D

′
n ∈ Cube∅,Y be a sequence such that

• (
∧
D′k) ∧ ϕ′ ∧

∧k−1
i=1 (

∨
β(D′i)) is satisfiable for all 1 ≤ k ≤ n, and

• ϕ′ ∧∧n
i=1(

∨
β(D′i)) is unsatisfiable.

Then,
∨n
i=1 τ

−1(D′i) = ∃X : ϕ.

Proof. We prove both statements separately.

• Let k ∈ {1, . . . , l}. Since
∧
D′k ∧ ϕ′ ∧ (

∧k−1
i=1 β(D′i)) is satisfiable and

∧
D′k ∧

ϕ′ ∧ (
∧k−1
i=1 β(D′i)) |=

∧
D′k ∧ ϕ′, it follows that

∧
D′k ∧ ϕ′ is satisfiable. Hence,

by Cor. 2.1,
∧
τ−1(D′k) |= ∃X : ϕ whence

∨l
i=1

∧
τ−1(D′i) |= ∃X : ϕ.

26

2.4 Experiments

• Suppose there exists D ∈ CubeY such that D |= ∃X : ϕ ∧ ¬(
∨l
i=1

∧
τ−1(D′i)).

Then:
D |= ¬(

∨l
i=1

∧
τ−1(D′i))

=
∧l
i=1 ¬

∧
τ−1(D′i)

=
∧l
i=1

∨
τ−1(β(D′i))

Thus, we have τ(D) |= ∧l
i=1(

∨
β(D′i)) and τ(D) ∧ ϕ′ is satisfiable. Therefore,

τ(D) ∧ ϕ′ ∧∧l
i=1(

∨
β(D′i)) is satisfiable, a contradiction, and thus ∃X : ϕ |=∨l

i=1(
∧
τ−1(D′i)).

The following proposition squares with the correctness result to show how a CNF
representation of the projection can be derived in a two-phase process.

Proposition 2.4 (Dualization). Let ψ =
∨n
i=1 (

∧
Di) where D1, . . . , Dn ∈ CubeY .

Further, let ∃X : ϕ =
∨m
i=1 (

∧
Ei) where E1, . . . , Em ∈ CubeY and define ϕ =∧n

i=1

(∨
l∈Di
¬l
)
. Then, ψ =

∧m
i=1

(∨
l∈Ei
¬l
)
.

The corollary that follows is an immediate consequence and states that the second
phase can be aborted prematurely without sacrificing correctness.

Corollary 2.3 (Anytime). Let ψ =
∨n
i=1 (

∧
Di) where D1, . . . , Dn ∈ CubeY . Let∧m

i=1Ei |= ∃X : ϕ where E1, . . . , Em ∈ CubeY and ϕ =
∧n
i=1

(∨
l∈Di
¬l
)
. Then,

ψ |= ∧m
i=1

(∨
l∈Ei
¬l
)
.

The above results are presented in terms of any implicants, rather than prime ones
only. This is because the latter govern the rate of convergence, but irreducibility
does not affect correctness. To conclude the elaborations, we observe that the greedy
generation of prime implicants does not necessarily yield minimal formulae.

2.4 Experiments

We have implemented the techniques described in this chapter with the express
aim of answering the following questions: (1) What is the overhead of using prime
implicants compared to standard model enumeration? (2) What is the overhead of
anytime quantifier elimination compared to the two-phase algorithm? (3) How are
the implicants distributed in terms of size within the two phases of the algorithm? (4)
How does the method compare against BDD-based projection, both in terms of the
size of the resulting CNF formulae and the time required to produce them? To answer
these questions, we compared our technique against a hybrid SAT/BDD approach.
We implemented our methods on top of Sat4J and MiniSat v2.2. Cudd v2.4.2
was used for the BDD operations because it offers support for enumerating the

27

2 Existential Quantification as Incremental SAT

Table 2.1: Information regarding the benchmark set; column ϕ contains the name
of the formula as referred to later on; the benchmarks at the bottom are
generated from blocks of ATmega16 binary code; for these benchmarks,
column info contains the number of instructions and whether they were
generated for set abstraction (set) or transfer function synthesis (tf)

ϕ info |V |/|ϕ|
74181 74x series 1001/2368
74182 74x series 227/526
74283 74x series 267/646
74L85 74x series 413/1084

add 3 (set) 74/119
increment 3 (set) 66/119
parity mit 15 (set) 2066/6725

parity swap 21 (set) 275/745
randerson 13 (set) 18658/61696

triple swap 9 (set) 89/192

ϕ info |V |/|ϕ|
s298 ISCAS-89 1327/3164
s344 ISCAS-89 1665/3880
s349 ISCAS-89 1678/3914

s1196 ISCAS-89 5422/12870

adc 4 (tf) 19/290
admdswp 11 (tf) 66/154

adsb2shad 8 (tf) 114/322
ilsh 5 (tf) 66/170
irsh 5 (tf) 66/170

iswp 8 (tf) 130/386

prime implicants of a BDD. We chose bitonic sorting for the sorting network, though
smaller — albeit less regular — networks exist [146]. All experiments were performed
on a 2.6 GHz MacBook Pro equipped with 4 GB of RAM.

2.4.1 Benchmarks

As benchmarks, we selected several circuits from the 74X and ISCAS-89 hardware
benchmarks as well as projection problems arising from binary analysis (see Chap. 3
for details). The 74X circuits include an ALU (74181), a carry-look-ahead generator
(74182), an adder (74283) and a magnitude comparator (74L85). The ALU is the
hardest to analyze since it implements 16 different functions, depending on 4 input
control bits. The ISCAS-89 benchmarks consist of a traffic light controller (s298),
two 4× 4 add-shift multipliers (s344 and s349), and a combinatorial circuit with
randomly inserted flip-flops (s1196). All circuits were projected onto their inputs
and outputs to express their semantics without reference to intermediate variables.
The microcontroller code was exported from [mc]square [208] for the purpose of
synthesizing transfer functions and for propagating ranges across blocks of ATMEL
ATmega16 code. Table 2.1 presents the key statistics for each of these problems.

2.4.2 Anytime Quantifier Elimination

The results for some of the hardware benchmarks using Sat4J are given in Tab. 2.2.
Here, it is important to appreciate that the projection of the 74185b formula does not

28

2.4 Experiments

Table 2.2: Experimental results for projection using anytime quantifier elimination;
here, column #prime refers to the maximum size of the computed impli-
cants; column #SAT specifies the number of SAT instances to be solved,
providing a hint on the number of spurious candidates

ϕ |Y | #prime CNF #SAT time

74182 5
2 4 52 0.81
5 4 170 1.80

74283 8
4 13 1590 5.63
6 20 4053 14.49
8 20 4881 16.71

74L85 10

4 6 4496 18.91
5 14 12349 57.22
6 30 24960 125.99
8 30 47536 292.59
10 30 51522 352.95

contain any implicants with size between 7 and 10. Likewise, 74283b does not have
implicants of size 7 and 8. A similar distribution has been observed when widening
is applied to Boolean formulae. Though the result of Kettle et al. [138] has not been
obtained in the context of projection, it suggests that enumerating implicants up to
a size threshold can achieve a good approximation of the projection. The ratio of
the number of calls to the solver to the number of primes is largely due to spurious
candidates (it roughly doubled by increasing the prime length by one or two),
which motivates investigating the impact of instantiating variables. Clauses can be
simplified after instantiation, which involves removing false literals from clauses and
removing all clauses that were already satisfied. The effects of instantiation based
on a model of the original formula are given in Tab. 2.3. The results in column
speedup suggest that instantiation can significantly improve performance.

Finally, we study applying multiple instantiation, accompanied with simplification
using straightforward constant propagation, for different instances of the 74L85b
circuit. Note that simplification reduces the size of the SAT instance, which
compensates somewhat for multiple instantiation. The instantiations themselves
were generated from various models of the formula that were themselves found by
applying blocking clauses. By choosing 6 instantiations that constrain the solution
space in the 6/10 case a priori, the number of SAT instances reduced from 24960 to
16954, and the runtime decreased to 61.59s. This is a reduction of 32% in terms
of the number of calls to a SAT solver and an overall speedup of 51%. Using 10
instantiations reduced the number of calls to the solver further to 14273 and took
the runtime down to 52.45s, yielding a speedup of 58%. The key point is that

29

2 Existential Quantification as Incremental SAT

Table 2.3: Experimental results with a single instantiation

Formula length time speedup

74182b
2/5 0.50s 38%
5/5 0.85s 52%

74283b
4/8 4.26s 24%
6/8 10.54s 27%
8/8 12.34s 26%

Formula length time speedup

74L85b

4/10 12.61s 23%
5/10 38.85s 32%
6/10 84.68s 33%
8/10 203.45s 30%
10/10 84.68s 33%

a reduction occurs in the ratio of the number of calls to the SAT solver and the
number of primes. This is a measure of the effectiveness of the technique, i.e., how
much effort is needed, on average, to find another implicant and thereby refine
the approximation. However, we conjecture that it is not prudent to apply too
many instantiations simultaneously, because at some point the size of the combined
SAT instance will become unmanageable (this would correspond to a flattening of
quantified bit-vector logic, which will eventually be prohibitively expensive).

2.4.3 Two-Phase Quantifier Elimination

Table 2.4 presents the results for DNF generation (respectively CNF conversion)
using prime implicants, giving the number of implicants (respectively clauses) in the
resulting formulae and the time required to compute them. Analogous figures are
given for the hybrid approach. It is interesting to see that for the circuits s344 and
s349, only 512 implicants in DNF are generated, but exhaustive model enumeration
yields 65792 disjuncts. This is because 256 out of 512 implicants are of length 12,
and thus already cover a large number of models in the projection space. This
suggests that our method can make model enumeration tractable where the classical
approach fails. For other cases, as exemplified by the 74181 and s1196 circuits,
our approach offers no clear advantage. However, it is important to see that, for
neither of the benchmarks, transformation seriously degrades performance; this is
noteworthy because one cannot know the distribution of the primes a priori.

The percental distribution of the lengths of clauses that arise in CNF conversion
and the evolution of the runtimes are depicted in Fig. 2.2. Graphs are given only
for the 74X series, although these distributions appear to be typical. For DNF
generation the distributions are less interesting, often consisting of a single spike,
but sometimes consisting of two spikes, as for s344 and s349 at lengths 12 and 20.
It is in these latter cases that primes improve over classical model enumeration.

30

2.4 Experiments

Table 2.4: Experimental results for two-phase prime implicant enumeration with
comparison to a hybrid method

ϕ |Y |
Primes Hybrid

DNF CNF total
size

total
size time size time time time

74181 22 16384 1.477 686 7.096 8.574 476 2.798
74182 13 320 0.025 26 0.009 0.035 23 0.039
74283 14 512 0.022 98 0.147 0.169 270 0.099
74L85 14 2048 0.108 144 0.107 0.215 145 0.162

s298 9 4 0.001 7 0.003 0.004 7 0.007
s344 20 512 0.068 16 0.018 0.087 16 0.098
s349 20 512 0.070 16 0.017 0.088 16 0.099

s1196 28 16384 11.182 570 5.465 16.653 822 16.993

adder
16 256 0.007 16 0.012 0.020 16 0.031
24 1024 0.030 31 0.054 0.086 29 0.120

increment
8 4 0.001 10 0.001 0.003 10 0.007

16 256 0.004 14 0.007 0.012 14 0.014
24 256 0.008 32 0.024 0.033 34 0.035

parity mit
8 100 0.033 4 0.001 0.036 4 0.039

16 12800 2.363 16 1.361 3.727 10 2.647
24 40960 8.543 40 6.316 14.875 41 9.698

parity swap
8 16 0.002 4 0.001 0.004 4 0.009

16 256 0.008 12 0.008 0.017 12 0.019
24 256 0.013 37 0.038 0.051 40 0.114

randerson
8 64 0.102 2 0.001 0.104 2 0.108

16 256 0.136 14 0.010 0.147 14 0.149
24 256 0.140 27 0.023 0.164 30 0.198

triple swap
8 16 0.002 12 0.001 0.004 12 0.009

16 512 0.013 20 0.029 0.042 22 0.028

adc
8 128 0.004 7 0.002 0.006 7 0.010

16 128 0.005 47 0.018 0.023 52 0.041
24 128 0.006 80 0.047 0.054 92 0.122

admdswp
8 191 0.003 7 0.003 0.006 7 0.011

16 191 0.007 54 0.021 0.029 60 0.057
24 191 0.009 56 0.025 0.035 66 0.080

adsb2shad
16 154 0.008 67 0.026 0.034 71 0.097
24 310 0.013 124 0.045 0.058 129 0.108

31

2 Existential Quantification as Incremental SAT

ilsh
8 32 0.002 3 0.001 0.003 3 0.010

16 256 0.008 13 0.009 0.017 13 0.019
24 256 0.009 44 0.023 0.032 46 0.046

irsh
8 16 0.001 4 0.001 0.001 4 0.008

16 16 0.002 22 0.004 0.006 21 0.011
24 16 0.003 45 0.012 0.016 45 0.020

iswp
16 4096 0.103 16 0.235 0.339 16 0.179
24 4096 0.126 27 0.251 0.379 27 0.266

Winner 15 32 4 8

2.5 Related Work

Over the past decades, quantifier elimination for Boolean logic (and other theories)
has been a field of active research. We survey the most significant contributions to
the field and reflect on the key differences compared to our techniques.

2.5.1 Consensus Method and Binary Resolution

A traditional technique to eliminate existential quantifiers from arbitrary Boolean
formulae is Shannon expansion. To eliminate a variable x from ϕ, the original
formula is instantiated twice and combined to give ∃x : ϕ = ϕ[x 7→ 0] ∨ ϕ[x 7→ 1].
However, if ϕ is in CNF, then expansion does not preserve its structure. For a
formula in CNF, it is well-known that existential quantifiers can be eliminated by
repeatedly applying binary resolution. The advantage of this technique is that it
takes as input a formula in CNF and results in a formula in CNF, too. To illustrate
resolution, let

ϕ = (
∧n1
i=1(x ∨ Ci)) ∧ (

∧n2
j=1(¬x ∨Dj)) ∧ (

∧n3
k=1Ek)

where Ci, Dj and Ek are clauses that involve neither x nor ¬x. Then, ∃x : ϕ can
be obtained by resolving each clause x ∨ Ci with each ¬x ∨Dj to give:

∃x : ϕ = (
∧n1
i=1

∧n2
j=1(Ci ∨Dj) ∧ (

∧n3
k=1Ek)

This transformation increases the size of the representation by as many as n1 ·
n2 − n1 − n2 clauses. Hence, the worst-case complexity is exponential [148]. For
a propositional formula in DNF, the consensus method has independently been
proposed by a number of researchers [30, 182, 205] as a way of enumerating all
its prime implicants. If ϕ is in CNF, then it is straightforward to derive a DNF
representation of ¬ϕ by pushing negations inward. The consensus procedure can
then be applied to ¬ϕ to find its prime implicants. One might think that this

32

2.5 Related Work

74181
0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	
0	

2	

4	

6	

8	

10	

12	

14	

16	

0	 1000	 2000	 3000	 4000	 5000	 6000	 7000	 8000	

74182
0	

2	

4	

6	

8	

10	

12	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	
0	

0,005	

0,01	

0,015	

0,02	

0,025	

0,03	

0,035	

0,04	

0,045	

0	 20	 40	 60	 80	 100	 120	 140	

74283
0	

10	

20	

30	

40	

50	

60	

70	

80	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	
0	

0,05	

0,1	

0,15	

0,2	

0,25	

0	 100	 200	 300	 400	 500	 600	 700	 800	 900	 1000	

74L85
0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	
0	

0,05	

0,1	

0,15	

0,2	

0,25	

0,3	

0	 50	 100	 150	 200	 250	 300	 350	

Figure 2.2: Distribution of implicants by length for the 74X benchmarks on the left;
evolution of the runtimes for the overall number of computed implicants
on the right (the x-axis contains the number of computed implicants,
whereas the y-axis represents the runtime in seconds)

provides a way to compute projection, but the key step of the consensus method
combines two elementary conjunctions of ¬ϕ, say, (x) ∧ C and (¬x) ∧D, to form
C ∧D. This step is isomorphic to resolution. Hence, the consensus method shares
the inefficiency problems associated with applying resolution to a formula in CNF.

33

2 Existential Quantification as Incremental SAT

2.5.2 Complexity of Prime Implicant Generation

The complexity of the shortest implicant problem for DNF formulae has been studied
by Umans [236] who showed that it is GC (log2(n), coNP)-complete. Even though
this result is not directly transferable to CNF, it suggests that the analogue problem
in CNF may be similarly difficult, and thereby supports the application of SAT
solvers to the derivation of shortest implicants. Integer linear programming has
been used to find shortest implicants [177, 218], as have SAT engines which have
been modified to support inequalities [163]. In [163], a transformation is described
which is similar to τ(ψ), but the work is not concerned with quantifier elimination.
Hence, binary variables are introduced for each variable in the formula rather than
merely those in the projection space. Techniques akin to the τ transformation are
known as dual-rail encodings in the community, referring to the duality of encoding
positive and negative results in a single formula [48].

2.5.3 Hybrid Methods and McMillan’s Method

SAT solving has been used before to compute projections [152, 164] as have BDDs [52,
152, 240]. Apart from these techniques which focus on one way of representing a
Boolean formula, hybrid approaches exist which combine SAT solving and BDDs.
Such hybrid approaches typically represent state sets as BDDs and express the
transition relation in CNF, as done by Gupta et al. [126] and later by Sheng and
Hsiao [217]. Yet, some approaches combine BDDs and SAT solving in different
ways. For example, Damiano and Kukula [88] replace clauses with BDDs in their
SAT solver Grasp. In particular, they allow a clause to be substituted by any
Boolean formula represented as a BDD, so that the problem to be solved consists
of a conjunction of BDDs. Jin and Somenzi [131] combine BDDs and SAT solving
using CNF to avoid explosion in the sizes of the resulting BDDs. In their tool
CirCUs, they determine clusters of clauses, which are then grouped into BDDs and
converted back into clauses (under certain conditions). In a different context, Aloul
et al. [1] have studied the connection between CNF formulae and BDDs for efficient
variable orderings. The approach of Cavada et al. [56] provides a technique for
recursive quantification. They apply this technique to subtrees, which are then
combined. SMT solving is used to ensure consistency of the transformations applied.

McMillan [164] has shown how to perform universal projection for CTL modalities
such as AXϕ using DPLL-like enumeration and also explained how to represent an
arbitrary Boolean encoding of ϕ in CNF without existentially quantified variables.
The key idea of his toCNF(ϕ) procedure [164, Sect. 3] is to deduce a clause from
a satisfying assignment of ϕ whose complement rules out some cases that violate
ϕ. His approach requires a modified DPLL-engine and resolution coupled with
several heuristics — which literals to analyze, which variables to resolve on and

34

2.5 Related Work

suchlike — which strongly affect the performance of the approach [164, Sect. 2].
Our approach, in comparison, builds on top of an existing SAT library and is
therefore both straightforward to implement and will immediately benefit from
any improvement to the library itself. Nevertheless, we consider the SAT-based
algorithm of McMillan to be an important work that has indeed found a wide
range of applications beyond SAT-based model checking. To consider only some
applications, Clarke et al. [68] integrated the technique into predicate abstraction of
hardware circuits, whereas Chauhan et al. [59] used it for post-image computation.
A variation on the McMillan algorithm is given by Sheng and Hsiao [217] who
apply a success-driven rather than a conflict-driven search for models (recall that
DPLL-style algorithms use a conflict-driven search). However, Sheng and Hsiao
store their results in a BDD rather than generating a CNF formula.

2.5.4 Methods based on Prime Implicants and Cubes

Prime implicants have been directly applied to widening Boolean functions repre-
sented as ROBDDs [138]. By applying a recursive meta-product construction [76],
collections of short prime implicants can be used to derive an ROBDD that is an
over-approximation of the input. Our work on applying SAT to projection was
motivated by the empirical finding that collections of short primes often yield good
approximations of Boolean formulae [138, Sect. 5.1].

Lahiri et al. [152] have described how to enumerate cubes in the projection space
using SAT solving so as to perform image computation for predicate abstraction.
Blocking clauses are chosen heuristically — though details of the heuristics are not
given — and the approach does not guarantee to infer cubes of minimal size. In
their experimental evaluation, the authors compare a SAT- against a BDD-based
elimination scheme and observe that the efficiency of either method is sensitive to the
number of variables projected onto (which has later been noted by Bryant [50], too).
This work was further developed by Lahiri et al. [153] who used DPLL(T)-based
SMT solving to enumerate models. Each model is then stored in a BDD from
which the results are extracted as a disjunction of prime implicants. They search
for cubes c1,k, . . . , cn,k of increasing length k such that ϕ |= ∨n

i=1 ci,k, which chimes
with our approach. By way of contrast, however, we apply prime implicants in
two different ways, namely, for enumerating cubes as well as clauses, so that our
final quantifier-free formula is presented in CNF. We shall discuss the conceptual
difference between the algorithm of Lahiri et al. and our method by means of an
example. Suppose that model enumeration using our technique yields 256 cubes of
lengths 12 and 20. The method of Lahiri et al. enumerates all intermediate cubes of
lengths 13, . . . , 19 to converge onto ∃X : ϕ, whereas our approach leapfrogs these
intermediate cubes by specifying the requirement of a cube of size k within the SAT
instance itself. Earlier approaches [89, 99, 204] to predicate abstraction invoke a

35

2 Existential Quantification as Incremental SAT

SAT solver for each cube c to discover if ϕ∧ c is satisfiable. To reduce the number of
calls to the decision procedure, these techniques start with small cubes and — only
if ϕ∧ c is satisfiable — proceed with cubes of the form ϕ∧ c∧d and ϕ∧ c∧¬d. This
approach is based on a large number of SAT/SMT calls, typically requires many
unsatisfiability proofs (which are often more difficult for SAT solvers to provide than
to find a model), and does not fit as well with incremental SAT [153, Sect. 3.2].

More recently, Monniaux [168] described a method for quantifier elimination
called lazy model enumeration. The key idea of his algorithm is to derive a cube c
that implies a given formula ∃X : ϕ, which is then generalized towards a weaker
(more general) implicant c′ such that c |= c′ |= ∃X : ϕ. By way of comparison,
our algorithm starts with implicants as short as possible. The relaxation step in
our method is required by the design of the blocking clauses, which suppress more
implicants than those derived last. Although similar in spirit, his algorithm proceeds
diametrically opposed to ours, and moreover generates DNF. The MathSat SMT
solver [46] uses an algorithm that also relies on a formula transformation similar to
τ . However, rather than adding cardinality constraints to the SAT instance, they
modified the solver so that it prefers 0-decisions during SAT solving.

2.5.5 Methods for Quantified Boolean Formulae

Our techniques are, of course, related to quantified Boolean formula (QBF) solv-
ing [55, 179], too. Most contributions to the field of QBF solving, however, deal
with alternating quantifiers, whereas our approach handles existential quantification
only. A recent contribution to QBF solving for bit-vector theories was described
by Wintersteiger et al. [243]. Most notably, they integrate heuristics based on word-
level simplifications and templates so as to ease the structure of the problem. We
believe that a combination of word-level heuristics with our elimination algorithm
(when applied to bit-vectors) appears promising, too.

2.6 Discussion

This chapter has discussed two different strategies for eliminating variables from
propositional Boolean formulae using existential projection. Both techniques rely
entirely on off-the-shelf SAT engines and a dual-rail encoding that specifies shortest
prime implicants within the SAT instance itself. We have identified two distinct
properties of these algorithms, the first being interruptible, whereas the second one
exhibits the everyone a winner property. Although the algorithm from Chap. 2.3
is drastically more efficient than the one presented in Chap. 2.2, there are certain
situations where the latter shows to be useful: even if computing the overall
projection is intractable, over-approximate results may valuable [137, 138].

36

3 Control Flow Reconstruction using
Boolean Logic

From existential quantifier elimination, we now turn to an application in binary
code analysis. When analyzing binaries, one particular challenge is posed by
indirect control instructions [20, 61, 91, 100, 129, 140–142, 187]. Such instructions
pass control to another instruction that is determined by a concrete value held
in some register. Control flow is thus computed at runtime, and may change in
any execution of the program. This situation poses a so-called chicken-and-egg
problem [142, Sect. 1]: In order to reconstruct a precise over-approximation of the
control flow graph (CFG) from unstructured binary code, it is necessary to compute
precise invariants that describe those registers which affect the target of an indirect
jump. A CFG is, in turn, required to compute these invariants. CFG reconstruction
is thus a key problem in binary code analysis: If the reconstruction is unsafe, then
any subsequent analysis is unsafe; if it is overly conservative, the analysis results
are overly conservative, too.

Motivating Example In presence of indirect control, the lack of an accurate CFG
often implies a drastic loss in terms of precision for any subsequent verification
effort, caused by spurious edges in the CFG. To illustrate, we discuss the loss in
precision incurred by spurious jump targets by means of an example:

#define SWP(a,b) (a^=b, b^=a, a^=b, a&=0x0F , b&=0x0F)

The macro SWP(a,b) swaps the contents of two variables a and b without involving

MOV A, 0x05;

XRL A, 0x25;

XRL 0x25 , A;

XRL A, 0x25;

MOV 0x05 , A;

ANL 0x25 , #0x0F;

ANL 0x05 , #0x0F;

a third, based on three exclusive-or operations. The last
two operations clear the upper nibbles of the results.
Indeed, the above macro implements a well-known id-
iom [239, Chap. 2.19]. For the accumulator-based Intel
MCS-51 microcontroller, the macro is compiled into
seven instructions as depicted on the left. Now assume
the SWP(a,b) macro is used within a switch-case state-
ment as given in Fig. 3.1. For the Intel MCS-51, the
switch-case statement is compiled into a jump table,
which is stored in program memory. Upon reaching the

switch-case statement, the application looks up a comparison value and a jump

37

3 Control Flow Reconstruction using Boolean Logic

1 switch (p) {

2 case 10: SWP(x,y); break;

3 case 20: foo(x,y); break;

4 default: bar(x,y)

5 }

Figure 3.1: Program fragment which is compiled into a jump table

target pc from program memory; these two values constitute an entry in the jump
table. Address pc indicates the first instruction of the respective case block. If
the comparison matches, control is redirected to pc, i.e., the program counter is
assigned pc. In the example, the jump table consists of three comparison values
10, 20 and #default. The jump targets are given by addresses 0x100 for the SWP

macro and two addresses 0x110 and 0x118 for the calls of foo and bar.

Junk Instructions in Control Flow Recovery Now assume that an abstract inter-
preter computes a range I = [0x100, 0x110] for the jump target pc using interval
analysis [40, 186]. On architectures with instructions of variable length — typically
CISC — edges need to be added to the CFG at the granularity of the shortest
possible instruction length, i.e., byte-level granularity for the Intel MCS-51. The
need to soundly approximate the CFG entails that edges from the indirect jump to
all concretizations of I, i.e., 0x100, . . . , 0x110 are added to the CFG. The first value
0x100 points to the first instruction MOV A, 0x05 of the SWP macro, represented
by a two-byte opcode 0xE5:0x05. The address 0x102 indicates the instruction
XLR A, 0x25, which corresponds to the opcode 0x65:0x25. However, we also have
0x101 ∈ I, and the second byte of MOV A, 0x05 paired with the first byte of XLR A,

0x25 forms a new instruction INC 0x65, which increments memory location 0x65

by one. Likewise, all addresses in I indicate valid sequences of instructions:

0x100 = 0xE5:0x05 7→ MOV A, 0x05 legitimate
0x101 = 0x05:0x65 7→ INC 0x65 spurious
0x102 = 0x65:0x25 7→ XRL A, 0x25 legitimate
0x103 = 0x25:0x62 7→ ADD A, 0x62 spurious
0x104 = 0x62:0x25 7→ XRL, 0x25, A legitimate
0x105 = 0x25:0xF5 7→ ADD A, 0x65 spurious
0x106 = ... 7→ ... legitimate

The jump target 0x100 thus induces a basic block

0x100: MOV A, 0x05; 0x102: XRL A, 0x25; ...

38

whereas the jump target 0x101 indicates a different block:

0x101: INC 0x65; 0x103: ADD A, 0x62; ...

We refer to fragments in the executable such as the block induced by address 0x101
as junk code: it consists of opcodes that are never executed, but only form part of
the program due to over-approximation of the analysis. Subsequent analyses, which
are based on the disassembled binary, will therefore calculate invariants using junk
instructions, too. This leads to a significant loss in precision — also referred to as
unbearable noise propagation in the literature [20, Sect. 1] — which inevitably leads
to large numbers of spurious warnings. The situation is even worsened if the junk
code coincides with indirect or (un-)conditional jump instructions, thereby adding
further control flow, though this is not the case in the above example. Albeit the
derived interval appears to be tight at a first glance since its boundaries coincide with
actual jump targets, the choice of abstract domain inevitably induces an imprecise
reconstruction of the CFG. Further, there is no reason why jump targets should
be distributed along a regular pattern, which suggests that value sets rather than
(strided) intervals form an appropriate abstract domain for control flow analysis.

Yet, indirect control is ubiquitous in compiler-generated as well as in handcrafted
assembly code. Apart from switch statements, compilers generate indirect jumps or
calls for function pointers or virtual method calls. A more subtle case in point is given
for return statements, which alter the program counter according to a value that
has been stored on the runtime stack. In certain situations, compilers intentionally
alter the runtime stack, e.g., when evaluating jump tables. The generated code then
exhibits much similarity with code that exploits possibilities for buffer overruns. It
is thus hardly possible to overestimate the value of precise invariants in order to
verify safety properties of binaries.

Contributions and Outline To summarize our work, this chapter contributes a
fully automatic algorithm for control flow reconstruction using Boolean logic. The
technique itself only requires a symbolic relational encoding of the instruction-set
semantics of the target hardware. The encodings are then combined towards a
formula that represents the semantics of a basic block (a sequence of instructions)
as a whole. Based on these encodings, forward and backward value set analyses
are straightforwardly implemented using existential quantification combined with
a dedicated abstraction procedure [21]. As shown in Chap. 2.3, quantification can
efficiently be implemented as incremental SAT, and so can value set abstraction.
By resting the analysis on a relational encoding of the instruction set, forward and
backward analyses can then be executed uniformly. The algorithm itself exhibits
several interesting properties:

1. It is sound in the sense that it does not miss any edges in the CFG.

39

3 Control Flow Reconstruction using Boolean Logic

2. It turns out to be exact for many examples of typical microcontroller programs.

3. It is generic, although we demonstrate and evaluate it for the Intel MCS-51.

The remainder of this chapter builds towards these contributions as follows. First,
Chap. 3.1 presents an algorithm that performs block-wise value set abstraction.
Given a basic block, the algorithm relies on a propositional encoding of the entire
block to compute value sets of registers that are accessed within the block. Then,
Chap. 3.2 lifts the approach to entire programs, which merely amounts to a forward
fixed-point computation in the abstract interpretation framework, which is inter-
leaved with depth-bounded refinements in backward direction. Experimental results
are presented in Chap. 3.3, before we conclude with a survey of related work in
Chap. 3.4 and a discussion in Chap. 3.5.

3.1 Block-Level Abstraction

Our technique for control flow recovery is based on the idea of deriving invariants
in terms of pre- and postconditions for all blocks in a program. Pre- and post-
conditions are themselves expressed as conjunctions of value sets, which appears
a natural choice since there is no reason why jump targets should be distributed
along a predictable pattern (cp. [20, Sect. 1]). The algorithm to compute value
sets on input and output of a basic block is, in turn, based on an application of
the projection scheme introduced in Chap. 2.3. The relation between these key
components is discussed in the following.

3.1.1 Bit-Blasting Blocks

To illustrate the representation of programs as bit-vector relations, consider the
exclusive-or operations used within the SWP macro, i.e., XLR a, b where a and
b are registers. This instruction computes the bitwise exclusive-or of a and b

and stores the result in a. To express its semantics, we introduce two bit-vectors
a = (a[0], . . . ,a[7]) and b = (b[0], . . . , b[7]) to represent the values of a and b on
entry of the instruction. Likewise, we introduce a bit-vector a′ to represent the value
of a on exit (b remains unchanged). With ⊕ denoting the Boolean exclusive-or, the
semantics of XLR a, b is then expressed using a Boolean formula as follows:

JXLR a, bK =
∧7
i=0 (a′[i]↔ (a[i]⊕ b[i]))

The force of such encodings is that they can be used to reason about executions of
the encoded instruction (or block) in both, forward and backward direction. Thus,
given some predicate ξ(a′) that constrains a′ on exit, the conjoined formula

JXLR a, bK ∧ ξ(a′)

40

3.1 Block-Level Abstraction

implicitly describes combinations of a and b on entry that satisfy the predicate ξ(a′)
on a′. Similarly, given a predicate ξ(a) on a on entry, it is also possible to invoke a
SAT solver to infer combinations of values of b and a′ that respect ξ(a). As another
example, consider the instruction INC a found in the junk code mentioned in the
introduction. This instruction is encoded over bit-vectors a and a′:

JINC aK =
∧7
i=0

(
a′[i]↔ a[i]⊕∧i−1

j=0 a[j]
)

In the same spirit, encodings for the entire instruction set can be derived [39].
Given a set V = {v1, . . . ,vn} of bit-vectors vi = (vi[0], . . . ,vi[w − 1]), we interpret
ϕ ∈ ℘(℘(Bn×w)) as a formula in CNF. Thus, with V = {v}, a formula such as
(v[0] ∨ v[1]) ∧ (v[2]) is represented as {{v[0],v[1]}, {v[2]}} ∈ ℘(℘(V)).

Definition 3.1. Denote the encoding of an instruction op over bit-vectors V in
propositional Boolean logic by JopK ∈ ℘(℘(V)).

Given a block b = (op1, . . . , opm) of m instructions, the map J·K can straightforwardly
be lifted from instructions to blocks: (1) apply static single assignment (SSA)
conversion [87] to avoid accidental coupling if registers are accessed in b more than
once, and (2) compute JbK by conjoining the constituent instructions.

Example 3.1. We illustrate this concept for a block b that corresponds to the SWP

macro from the introduction. We represent memory locations 0x05 and 0x25 using
bit-vectors x and y, whereas the accumulator A is represented by a. Then, SSA
conversion leads to fresh bit-vectors a′,a′′,x′,x′′,y′, and y′′, the relations among
which a formula JbK ∈ ℘(℘({a,a′,a′′,x,x′,x′′,y,y′,y′′})) equivalently describes:

JbK =

(
∧7
i=0 a[i]↔ x[i]) ∧ (

∧7
i=0 a

′[i]↔ (a[i]⊕ y[i]) ∧
(
∧7
i=0 y

′[i]↔ y[i]⊕ a′[i]) ∧ (
∧7
i=0 a

′′[i]↔ a′[i]⊕ y′[i]) ∧
(
∧7
i=0 x

′[i]↔ a′′[i]) ∧ (
∧7
i=4 y

′′[i]↔ ¬y′[i]) ∧
(
∧7
i=4 x

′′[i]↔ ¬x′[i])

x′′ and y′′ represent the values of 0x05 and 0x25 on output.

Passing a formula to a solver necessitates CNF conversion, which can be achieved
using flattening. In our implementation, we apply Tseitin’s algorithm [178, 234] to
avoid exponential growth of JbK [165], introducing existentially quantified variables T .
We should thus denote the resulting CNF formula for a block b by JbK ∈ ℘(℘(V ∪T)).
However, we omit this detail for the purpose of presentation.

3.1.2 Value Set Abstraction using Incremental SAT Solving

To compute value sets of registers described by a formula ϕ, we apply an iterative
algorithm [21, Sect. 3] that derives value set abstractions for bit-vectors. We define:

41

3 Control Flow Reconstruction using Boolean Logic

Definition 3.2. Let 〈·〉 : V → N defined as 〈v〉 =
∑w−1

i=0 2i ·v[i] denote the unsigned
value of a bit-vector v = (v[0], . . . ,v[w − 1]). Likewise, let 〈〈·〉〉 : V → Z defined as
〈〈v〉〉 = −2w−1 · v[i] +

∑w−2
i=0 2i · v[i] denote the signed interpretation of v.

Corollary 3.1. Let v = (v[0], . . . ,v[w − 1]). Then:

• 〈v〉 ∈ {0, . . . , 2w − 1}

• 〈〈v〉〉 ∈ {−2w−1, . . . 2w−1 − 1}

To converge onto the value sets of v, the key idea of the algorithm is to alternately
compute interval abstractions of ϕ and ¬ϕ. In what follows, we describe a well-
known algorithm to derive intervals (cp. [21, Sect. 2], [39, Sect. 6] and [71, Sect. 3])
and then discuss how interval abstraction is applied during value set analysis.

Interval Abstraction

Before discussing how to compute interval abstractions of bit-vectors, we define the
underlying abstract domain of intervals formally:

Definition 3.3. We define the interval abstract domain as the complete lattice
(Int,vint) with

Int = {[`, u] | 0 ≤ ` ≤ u ≤ 2w − 1} ∪ {⊥int}

where ⊥int denotes the empty interval. Naturally, we have >int = [0, 2w−1]. The
partial order vint is induced by the subset relation.

A procedure maximum : (℘(℘(V)) × V) → N to compute the value of a concrete
bit-vector k that represents the least upper bound of v in the interval domain Int
is given in Alg. 1. The key idea of this algorithm is to instantiate single bits of v
with true, starting with the most significant bit, and to repeatedly test satisfiability.
Then, for instance, satisfiability of a formula ϕ ∧ v[7] corresponds to the existence
of a model of ϕ such that 〈v〉 ≥ 128. If satisfiable, the least upper bound 〈k〉 of 〈v〉
is found in the interval [128, 255], and in [0, 127] otherwise. By instantiating the
remaining bits of v one after another, the interval that contains 〈k〉 is incrementally
refined using binary search. Given a bit-vector v = (v[0], . . . ,v[w − 1]) of length w,
this strategy requires w calls to a SAT solver to compute 〈k〉 exactly since Boolean
formulae are discrete.

Proposition 3.1. Alg. 1 computes the least upper bound of 〈v〉 subject to ϕ, formally
maximum(ϕ,v) = max{u | u ∈ [0, 2w−1] and ϕ ∧ (〈v〉 = u) is satisfiable}.

42

3.1 Block-Level Abstraction

Algorithm 1 maximum : (℘(℘(V))× V)→ N
Input: formula ϕ ∈ ℘(℘(V))
Input: bit-vector v = (v[0], . . . ,v[w − 1]) ∈ V
Output: least upper bound 〈k〉 ∈ N of v subject to ϕ

1: k← 〈〉
2: while |k| < w do
3: if ϕ ∧ v[w − 1− |k|] is satisfiable then
4: ϕ← ϕ ∧ v[w − 1− |k|]
5: k← 〈1〉 : k
6: else
7: ϕ← ϕ ∧ ¬v[w − 1− |k|]
8: k← 〈0〉 : k
9: end if

10: end while
11: return 〈k〉

The algorithm is adapted to greatest lower bounds of 〈v〉 as follows. Swap the
occurrences of v[w−1−|k|] and ¬v[w−1−|k|], and likewise swap (1) and (0) in lines
5 and 8 of Alg. 1. We denote this modified procedure minimum : (℘(℘(V))×V)→ N.
Both procedures can be adapted to compute extremal values of signed bit-vectors,
too; in that case, the most significant bit, which represents the sign, needs to be
handled properly (cp. [21, Sect. 3]).

Definition 3.4. Let ϕ ∈ ℘(℘(V)) denote a formula over V = {v1, . . . ,vn}. We
define the interval abstraction αint : (℘(℘(V))× V)→ Int of v ∈ V subject to ϕ as:

αint(ϕ,v) = [minimum(ϕ,v), maximum(ϕ,v)]

We present an example to highlight the internal steps of αint.

Example 3.2. Consider ϕ over y = (y[0], . . . ,y[5]) defined as:

ϕ =

{
(¬y[1] ∨ y[5]) ∧ (¬y[2] ∨ ¬y[5]) ∧ (y[4] ∨ y[5]) ∧ (y[2] ∨ ¬y[4])∧
(y[3] ∨ ¬y[5]) ∧ (y[0] ∨ y[5]) ∧ (¬y[0] ∨ ¬y[1]) ∧ (¬y[3] ∨ y[5])

Clearly 〈y〉 ∈ [0, 63], and hence 〈k〉 ∈ [0, 63]. To find a least upper bound 〈k〉 of 〈y〉
subject to ϕ, we apply Alg. 1. In the first iteration, we test ϕ∧ y[5] for satisfiability,
which corresponds to searching for a model of ϕ such that 〈y〉 ≥ 32; since satisfiable,
we deduce 〈k〉 ∈ [32, 63]. In the second iteration, we test ϕ ∧ y[5] ∧ y[4] for
satisfiability. From unsatisfiability, we infer a range [32, 47] for 〈k〉. After four more
iterations, we find the concrete value 〈k〉 = 25 +23 +21 = 42. The overall progress of
the algorithm applied to ϕ is highlighted in Fig. 3.2. Applying the converse algorithm
to compute the minimum of 〈y〉 yields 22, which entails αint(ϕ,y) = [22, 42].

43

3 Control Flow Reconstruction using Boolean Logic 3.1 Block-Level Abstraction

0 63

0 32 63

0 32 47 63

0 40 47 63

0 40 43 63

0 6342 43

0 42 63

Figure 3.2: Progress of least upper computation in Ex. 3.1

�l� and �u� for �v� are computed using minimization and maximization as given in
Alg. 1, and we set S = {�l�, . . . , �u�}. In a second iteration, an over-approximate
range of �v� described by ¬ψ is computed; this range is removed from the value-set
S. The third iteration again extends S, etc. until the result stabilizes.

Proposition 3.2. Alg. 2 computes the least abstraction of �v� subject to ϕ:

αval(ϕ, v) = {v | v ∈ [0, 2w − 1] and ϕ ∧ (�v� = v) is satisfiable}

The most significant difference of Alg. 2 compared to Barrett and King [18, Sect. 3]
is found in line 3. Here, the input formula ϕ is projected onto v to given ψ using
the projection scheme introduced in the previous chapter. Projection sidesteps the
requirement of the original algorithm that ϕ ranges over v only.

Example 3.2. To illustrate, consider again ϕ defined as in Ex. 3.1. In the first
iteration of Alg. 2, we obtain �l� = 22 and �u� = 42, which gives S = {22, . . . , 42}.
Then, in the second iteration, the formula ¬ϕ restricted to �l� ≤ �y� ≤ �u� is
analyzed to give new bounds 23 and 39, which updates S as S \ {23, . . . , 39} =
{22, 40, 41, 42}. Further restricting ϕ yields an unsatisfiable formula, and thus, the
output is αval(ϕ, y) = {22, 40, 41, 42}.

43

Figure 3.2: Progress of least upper computation in Ex. 3.2

Value Set Abstraction

The (unsigned) value set domain consists of (possibly non-contiguous) subsets of
{0, . . . , 2w − 1} for each bit-vector v, with a partial order induced by the ⊆-relation.

Definition 3.5. Let Zw = {0, . . . , 2w − 1}. Then, (Val,vval) with Val = ℘(Zw) and
a vval b⇔ a ⊆ b is called the value set abstract domain.

The join tval : (Val× Val)→ Val of two value sets can straightforwardly be defined
as the union of sets, likewise for the meet uval : (Val × Val) → Val. A procedure
to compute value sets of v rather than intervals is given in Alg. 2. The procedure
takes as input a formula ϕ ∈ ℘(℘(V)) and a bit-vector v ∈ V . As a preprocessing
step, ϕ is projected on v using existential quantifier elimination (line 3 in Alg. 2).
Projection thus yields a formula ψ ∈ ℘(℘({v})). Then, to compute the value sets
of v, the algorithm alternates between over- and under-approximations. First,
lower and upper bounds ` and u for 〈v〉 are computed using minimization and
maximization as given in Alg. 1, and we set S = {`, . . . , u}. In a second iteration, an
over-approximate range of 〈v〉 described by ¬ψ is computed; this range is removed
from S. The third iteration again extends S, etc. until the result stabilizes.

Proposition 3.2. Alg. 2 computes the least value set abstraction of 〈v〉 subject to
ϕ, i.e., αval(ϕ,v) = {v | v ∈ [0, 2w − 1] and ϕ ∧ (〈v〉 = v) is satisfiable}.

44

3.1 Block-Level Abstraction

Algorithm 2 αval : (℘(℘(V))× V)→ Val

1: S ← ∅
2: p← true
3: ψ ← project(ϕ,v)
4: `← 0
5: u← 2w − 1
6: while 〈l〉 < 〈u〉 do
7: `← minimum(ψ ∧ (` ≤ 〈v〉),v)
8: u← maximum(ψ ∧ (〈v〉 ≤ u),v)
9: if p then

10: S ← S ∪ {`, . . . u}
11: else
12: S ← S \ {`, . . . u}
13: end if
14: ψ ← ¬ψ
15: p← ¬p
16: end while
17: return S

The difference of Alg. 2 compared to [21, Sect. 3] is found in line 3. Here, ϕ is
projected onto v to give ψ. To illustrate the difference, let V̂ = V \ {v}. In general,
c such that c |= (∃V̂ : ϕ∧ ∃V̂ : ¬ϕ) may exist, hence the need to operate on ∃V̂ : ϕ
and ¬(∃V̂ : ϕ) since c |= ∃V̂ : ϕ iff c 6|= ¬∃V̂ : ϕ. Projection ensures progress of
Alg. 2 in each iteration, and thus sidesteps the requirement V = {v} of the original
algorithm.

Example 3.3. Consider ϕ defined as in Ex. 3.2. In the first iteration of Alg. 2,
we obtain ` = 22 and u = 42, which gives S = {22, . . . , 42}. Then, the formula
¬ψ restricted to ` ≤ 〈y〉 ≤ u is analyzed to give bounds 23 and 39, and we update
S to give S \ {23, . . . , 39} = {22, 40, 41, 42}. A further restriction of ϕ yields an
unsatisfiable formula, and thus, the output is αval(ϕ,y) = {22, 40, 41, 42}.

3.1.3 Deriving Pre- and Postconditions

From now on, given an encoding JbK of a block b, we denote by V in ⊆ V the
inputs and by V out ⊆ V the outputs of b after SSA conversion and bit-blasting.
SSA conversion ensures V in ∩ V out = ∅, which avoids accidental coupling. Given
a precondition (an input state) preb that describes values of V in, the formula

45

3 Control Flow Reconstruction using Boolean Logic

JbK ∧ preb describes all outputs reachable from preb.
1 The key idea is to compute

an over-approximation of values taken by bit-vectors V out using Alg. 2. We define:

Definition 3.6. Let V = {v1, . . . ,vn} and V in,V out ⊆ V such that V in∩V out = ∅.
Let B denote a finite set of basic blocks. With b ∈ B, we define maps preb : V in →
Val and postb : V out → Val.

It is easy to verify that the maps preb and postb form a complete lattice with an
appropriate (point-wise) lifting of the partial order vval⊆ Val× Val.

Proposition 3.3. Let F = {f : V → Val | f is monotone }, and let f1, f2 ∈ F .
We define vF⊆ F × F as f1 vF f2 ⇔ ∀v ∈ V : f1(v) vval f2(v). Then, (F,vF)
forms a complete lattice.

The partial order vF introduced in Prop. 3.3 canonically induces maps to combine
two functions f1, f2 ∈ F in a lattice-theoretic setting.

Corollary 3.2. Let (F,vF) be defined as in Prop. 3.3. Then, vF induces operators
tF : F × F → F for join and uF : F × F → F for meet as follows:

f1 tF f2 = f : V → Val such that ∀v ∈ V : f(v) = f1(v) tval f2(v)
f1 uF f2 = f : V → Val such that ∀v ∈ V : f(v) = f1(v) uval f2(v)

Forward Interpretation

The implementation of forward interpretation is sketched in Alg. 3, taking as input
a basic block b and a map preb that describes the precondition of b. First, the
postcondition postb is initialized with ⊥ by mapping each v′ ∈ V out to ⊥val ∈ Val.
To describe the reachable output states (the postcondition), we conjoin JbK and preb
to give ξ = JbK∧ preb. Then, for each v′ ∈ V out, the algorithm computes a value set
abstraction using Alg. 2, which is stored in the postcondition postb. The output
of the procedure is a map that provides value sets for each v′ ∈ V out. Intuitively,
given a block b = (b1, . . . , bm), Alg. 3 computes the function

(αval ◦ (bm ◦ . . . ◦ b1)︸ ︷︷ ︸
JbK

◦γval) : (B × (V in → Val)︸ ︷︷ ︸
preb

)→ (V out → Val)︸ ︷︷ ︸
postb

where γval : (V in → Val) → Z|V in| denotes the concretization of a precondition of
type V in → Val (which is encoded symbolically in line 2). Indeed, this formulation

1The alert reader will observe an inaccuracy in the formalization of Boolean formulae since we
define an encoding for a block as a formula ϕ ∈ ℘(℘(V)), yet often assume V = V in ∪ V out.
However, this inaccuracy is inconsequential. All techniques discussed in this and the following
chapters, except for Alg. 2, which explicitly performs projection, provide identical results for
formulae that are expressed using intermediate variables. Indeed, they are independent of
intermediate variables for the same reason why projection using model enumeration is correct.

46

3.1 Block-Level Abstraction

Algorithm 3 forward : (B × (V in → Val))→ (V out → Val)

1: postb ← λv′ ∈ V out.⊥val

2: ξ ← JbK ∧
(∧

v∈V in

(∨
s∈preb(v)〈v〉 = s

))
3: for all v′ ∈ V out do

4: postb ← f : V out → Val such that f(v) =

{
postb(v) : if v 6= v′

αval(ξ,v
′) : otherwise

5: end for
6: return postb

of an abstract transformer for b dovetails with the classical design proposed by
Cousot and Cousot [77, 78] and directly provides an argument for correctness.

Example 3.4. Consider JbK defined in Ex. 3.1. Suppose the precondition preb of b
is defined as:

preb =
(
〈x〉 ∈ {8, . . . , 12, 15, . . . , 18} ∧ 〈y〉 ∈ {0, . . . , 22})

)
The algorithm then computes:

postb =
(
〈x′′〉 ∈ {0, . . . , 16}) ∧ 〈y′′〉 ∈ {8, . . . , 12, 15, 16})

)
Backward Interpretation

Likewise, we define a backward interpreter, which computes a precondition preb
from a postcondition postb and a formula JbK that encodes a block b ∈ B. The
backward analysis is derived directly from Alg. 3 using the following adaptations:
(1) iterate over v ∈ V in rather than v′ ∈ V out, and (2) swap all occurrences of
preb and postb, respectively. In the following, we refer to the forward analysis as
forward : (B × (V in → Val)) → (V out → Val), and to the backward analysis as
backward : (B × (V out → Val))→ (V in → Val).

Example 3.5. Consider JbK defined as in Ex. 3.1. Put:

preb =
(
〈x〉 ∈ {10, 20, 30} ∧ 〈y〉 ∈ {50, 60, 70}

)
Applying Alg. 3 in forward direction yields a postcondition:

postb = forward(b, preb)
=

(
〈x′′〉 ∈ {2, 6, 12} ∧ 〈y′′〉 ∈ {4, 10, 14}

)
By re-applying Alg. 3 in backward direction, we compute:

pre′b = backward(b, postb)
=

(
〈x〉 ∈ {4, 10, 14, 20, 26, . . . , 244, 250, 254} ∧ 〈y〉 ∈ {50, 60, 70}

)
Observe that preb v backward(b, forward(b, preb)).

47

3 Control Flow Reconstruction using Boolean Logic

Reprise Backward interpretation leads, in certain situations, to a coarse over-
approximation of the original inputs. This is the case in the above example, and has
also been observed in the literature [198, 199]. The loss in precision follows from:

1. Some instructions (such as ANL 0x05, #0x0F) are non-invertible.

2. A more intriguing argument follows from the domain structure itself. Backward
reasoning amounts to solving the following abduction problem: Given b and
c, compute a non-empty a such that (a u b) |= c. This problem can also
be seen as that of computing weakest preconditions. When a, b, and c are
elements of an abstract domain, then the largest unique a with a 6= ⊥ and
(a u b) |= c is called the pseudo-complement of b relative to c. A domain in
which each element has a pseudo-complement is called a Heyting domain [107,
Def. 4]. Unfortunately, the value set domain is not Heyting, and neither is
the combination of two Heyting domains necessarily a Heyting domain [161,
Prop. 4]. To illustrate, consider b = {0} and c = {−5, . . . , 5}, for which two
incomparable a can be found, namely a = {−5, . . . ,−1} and a = {1, . . . , 5}.
One way out of this dilemma is to lift a non-Heyting domain to its power-set
domain, which yields a Boolean domain. A Boolean domain is always Heyting,
since for each abstract element b, there exists a full complement a such that
atb = > and aub = ⊥. However, tractability then becomes an issue (cp. [200,
Sect. 1]).

We thus follow the approach proposed by Rival [198] and augment ϕ with encodings
of pre- and postconditions, respectively, to limit the loss in precision.

3.2 Program-Level Abstraction

The previous section has discussed the technical steps in computing abstractions of
a single basic block in both, forward and backward direction. Most notably, these
steps are bit-blasting, existential quantifier elimination, and value set abstraction.
This section, in turn, extends these techniques towards a whole-program analysis
using alternating forward and backward analyses. It is well-known that backward
abstract interpretations can refine forward abstractions [78], an observation that is
implemented in our framework. The analysis, in essence, can be seen as a classical
forward fixed-point iteration for invariant generation. However, on conditional
branches, backward analysis is executed on unrolled paths to refine the invariants.
This strategy can be seen as a response to efficiency problems incurred by path-
sensitivity. Rather than performing a path-sensitive forward analysis, we interleave
the forward analysis with k-bounded, path-sensitive backward refinements.

48

3.2 Program-Level Abstraction

1 #define N_HANDL 6

2 const UINT8 (*const code pf[])(void) = { h1, .., h6 };

3

4 UINT8 keyPress(UINT8 keyCode) {

5 if (keyCode >= N_HANDL) return C_FAIL;

6 return (*pf[keyCode]);

7 }

Figure 3.3: Program discussed in Ex. 3.6

3.2.1 Overview

First, the binary is disassembled using recursive traversal disassembly until an
indirect jump is discovered. Recursive traversal disassemblers only map those
bytes to instructions that can actually be reached from the control flow. Upon
encountering an indirect jump, the disassembler stops, and a CFG is extracted from
the fragment available thus far. This CFG is incomplete in the sense that it neither
contains all instructions nor all edges. From the CFG, we compute a basic block
representation, so that each straight-line sequence of instructions is represented by
a single vertex.

Definition 3.7. Let G = (B, b0, E, σ) denote a block-wise CFG, where B =
{b0, . . . , bn} is the set of basic blocks, b0 ∈ B is the initial block, E ⊆ B × B
is a transition relation, and σ : E → ℘(℘(V)) labels edges with guards.

Suppose a block b ∈ B ends in a conditional branching instruction whose target
depends on the zero flag. For both successors b1 and b2 of b, we have (b, b1) ∈ E and
(b, b2) ∈ E. Further, σ restricts (b, b1) and (b, b2) so that either the zero flag holds or
does not hold. The analysis then outputs value sets for all input and output registers
on entry and exit of each block. For the Intel MCS-51, these value sets include, most
notably, the two 8-bit data pointer registers DPL and DPH, which are combined to
form a 16-bit register DP. Together with an additive offset stored in the accumulator
A, register DP indicates the target of an indirect jump. The value sets of DPL, DPH,
and A prior to the indirect jump are thus used to guide the disassembler in the next
iteration. Iterative disassembly and fixed-point computation is stopped once the
jump targets stabilize. This formulation of the problem leads to a simultaneous
computation of fixed points for data and control flow (cp. [142, Sect. 2.3]).

Example 3.6 (Running example). To illustrate, consider the assembly code listing
in Fig. 3.4, which has been obtained from compiling the C program in Fig. 3.3.
Table 3.1 presents the corresponding jump table after compilation. This program

49

3 Control Flow Reconstruction using Boolean Logic

0x003: MOV 0x08 , R7

0x005: MOV A, 0x08

0x007: CLR A

0x008: SUBB A, #N_HANDL

0x00A: JC C:0x00F

0x00C: MOV R7 , #C_FAIL

0x00E: RET

0x00F: MOV R7 , 0x08

0x011: MOV A, R7

0x012: MOV B, #0x03

0x014: MUL AB

0x015: ADD A, #0x26

0x017: MOV DPL , A

0x018: CLR A

0x019: ADDC A, #0x00

0x01B: MOV DPH , A

0x01C: AJMP C:0x038

...

0x038: CLR A

0x039: MOVC A, @(A+DP)

0x03A: MOV R3 , A

0x03B: MOV A, #0x01

0x03D: MOVC A, @(A+DP)

0x03E: MOV R2 , A

0x03F: MOV A, #0x02

0x040: MOVC A, @(A+DP)

0x041: MOV R1 , A

0x042: AJMP C:0x100

...

0x100: MOV DPH , R2

0x102: MOV DPL , R1

0x104: CLR A

0x105: IJMP @(A+DP)

Figure 3.4: Assembly listing of program introduced in Ex. 3.6

illustrates a typical use of indirect control flow in embedded software. An array of
function pointers h1, . . . , h6 is stored in a table in program memory. These functions
are indexed using an integer keyCode, which is passed to a function keyPress().

Block b0x003 implements the comparison keyCode >= N HANDL using a subtraction
SUBB A #N HANDL. The comparison holds true if SUBB does not underflow, which
is indicated by the carry flag. For the success-branch, SUBB clears the carry and
control is redirected to b0x00C. The constant #C FAIL is then stored in register R7 as
the return value of keyPress(). Otherwise, control is passed to block b0x00F. This
block first calculates an offset for indexing the jump table that represents pf. The
subsequent blocks read the respective entry from the table, assign them to the data
pointer DP, prepare the accumulator A, and invoke the indirect jump IJMP @(A+DP).

Example 3.7 (Forward analysis without refinement). Consider again the program
introduced in Ex. 3.6 and assume the abstract interpreter enters block b0x003 with
the following precondition (where bit-vector r7 represents register R7 on entry):

preb0x003 =
(
〈r7〉 ∈ {1, 2, 3, 101, 102, 103}

)

50

3.2 Program-Level Abstraction

Table 3.1: Jump table compiled for program in Fig. 3.3

Memory Address Mark High Low Function

0x26 0xFF 0x00 0x64 h1

0x29 0xFF 0x00 0x69 h2

0x2C 0xFF 0x00 0x6E h3

0x2F 0xFF 0x00 0x73 h4

0x32 0xFF 0x00 0x78 h5

0x35 0xFF 0x00 0x7D h6

Applying the forward abstraction procedure yields a postcondition as follows:

forward(Jb0x003K, preb0x003) =

 〈r′A〉 ∈ {95, 96, 97, 251, 252, 253}
〈r′0x08〉 ∈ {1, 2, 3, 101, 102, 103}
〈c′〉 ∈ {0, 1}

Here, c′ denotes the carry flag on output of the block. Observe that the value
set domain has lost the relation between values that yield 〈c′〉 = 0 and those for
which we obtain 〈c′〉 = 1. Hence, all values are propagated into the successors
b0x00C and b0x00F. Proceeding with the iteration, we eventually compute a value set
{41, 44, 47, 85, 88, 91} for the data pointer DPL, which is used to index the jump table.
This value set leads to the entries of functions h2, h3, and h4 (cp. Tab. 3.1), but
also three spurious jump targets that stem from values 85, 88, and 91 of DPL.

The overall execution of the analysis is highlighted in Fig. 3.5. The spurious values
computed for register R8 on entry of block 0x00F lead to spurious values 85, 88,
and 91 of DPL on exit from block 0x00F, which are computed using multiplication
and addition with constants. Then, DPL and DPH are used to index the jump table.
Locations 85, 88, and 91 in program memory, which do not belong to the table, hold
unpredictable values, which is indicated by ? symbols in the value sets of R1, R2,
and R3 on exit from block 0x038. The analysis thus infers three legitimate jump
targets that indicate functions h2, h3, and h4, but also spurious ones.

It is easy to verify that the lack of precision is induced by the inability of the
forward analyzer to properly capture the constraint on register R8 that is imposed
by the conditional branching instruction JC C:0x00F. To sidestep this problem, we
now introduce an analysis strategy which, upon branching conditions, performs a
depth-bounded path-sensitive backward analysis to refine the forward invariants.

3.2.2 Forward Analysis with Invariant Refinement

Refinement-based analysis performs fixed-point iteration using a worklist in forward
direction (see Alg. 4). Starting with the initial block b0 ∈ B, blocks are analyzed

51

3 Control Flow Reconstruction using Boolean Logic

r7 7→ {1, 2, 3, 101, 102, 103}
c 7→ {0}

MOV 0x08, R7

MOV A, 0x08

CLR A
SUBB A, #N HANDL

JC C:0x00F

r′8 7→ {1, 2, 3, 101, 102, 103}
r′A 7→ {95, 96, 97, 251, 252, 253}

c′ 7→ {0, 1}

[
0
x
0
0
3
]

rA 7→ {95, 96, 97, 251, 252, 253}
c 7→ {0}

MOV R7, #C FAIL

RET

r′7 7→ {#C FAIL}

[
0
x
0
0
C
]

r8 7→ {1, 2, 3, 101, 102, 103}
c 7→ {1}

MOV R7, 0x08

MOV A, R7

MOV B, #0x03

MUL AB
ADD A, #0x26

MOV DPL, A

CLR A
ADDC A, #0x00

MOV DPH, A

AJMP C:0x038

r′dph 7→ {0}
r′dpl 7→ {41, 44, 47, 85, 88, 91}

[
0
x
0
0
F
]

rdph 7→ {0}
rdpl 7→ {41, 44, 47, 85, 88, 91}

CLR A
MOVC A, @(A+DP)

MOV R3, A

MOV A, #0x01

MOVC A, @(A+DP)
MOV R2, A

MOV A, #0x02

MOVC A, @(A+DP)
MOV R1, A

AJMP C:0x100

r′3 7→ {255, ?, ?, ?}
r′2 7→ {0, ?, ?, ?}

r′1 7→ {105, 110, 115, ?, ?, ?}

[
0
x
0
3
8
]

r2 7→ {0, ?, ?, ?}
r1 7→ {105, 110, 115, ?, ?, ?}

MOV DPH, R2

MOV DPL, R1

CLR A

r′dph 7→ {0, ?, ?, ?}
r′dpl 7→ {105, 110, 115, ?, ?, ?}

r′A 7→ {0}

[
0
x
1
0
0
]

rdph 7→ {0, ?, ?, ?}
rdpl 7→ {105, 110, 115, ?, ?, ?}

rA 7→ {0}
IJMP @(A+DP)[

0
x
1
0
6
]

c = 0

c = 1

Figure 3.5: Forward value set analysis for control flow recovery; the indirect read in
block 0x038 leads to three spurious values for R1, R2, and R3, respectively,
which entail that spurious jump targets are computed in block 0x106

52

3.2 Program-Level Abstraction

Algorithm 4 analyze

Input: block-wise CFG (B, b0, E, σ)
Output: pre- and postconditions preb and postb for all b ∈ B

1: W ← {b0}
2: while W 6= ∅ do
3: b←W.pop()
4: ξ ← forward(b)
5: if ξ 6v postb then
6: postb ← postb t ξ
7: for all s ∈ succ(b) do
8: if σ(b, s) = true then
9: µ← rename(postb)

10: else
11: µ← rename(refine(s, b, k))
12: end if
13: if µ 6v pres then
14: pres ← pres t µ
15: W.add(s)
16: end if
17: end for
18: end if
19: end while

one after another, and the outputs of each analyzed block are propagated into its
successors. If the precondition preb of a block b ∈ B changes, b is added to a
worklist, which indicates that b needs to be analyzed again. The key difference of
the algorithm compared to standard approaches is implemented in lines 8–12. If the
guard map σ does not constrain the edge (b, s) ∈ E, then the postcondition of b is
propagated into the precondition of s. Here, an auxiliary procedure rename takes
care of renaming, which is necessary to match variable names (to distinguish inputs
from outputs). However, if σ imposes a constraint on (b, s), backward refinement is
performed (see line 11), the result of which is propagated into pres. The refinement
procedure is given in Alg. 5, and is discussed in what follows.

k-bounded Backward Refinement Procedure refine(s, b, k) unrolls the block-
wise CFG (B,E, b0, σ) by k steps in backward direction, yielding a tree U in line 1.
To avoid interference of refine with the forward analysis, we introduce auxiliary
data structures pre′u and post′u to store the intermediate pre- and postconditions
for each block in u ∈ U . These auxiliary data structures are used only within
refine(s, b, k). Then, the algorithm first iterates over U in pre-order and performs

53

3 Control Flow Reconstruction using Boolean Logic

Algorithm 5 refine(s, b, k)

Input: start node s ∈ B
Input: predecessor b ∈ B of s
Input: bound k ∈ N
Output: refined precondition of s

1: U ← unroll(s, b, k)
2: pre′s ← pres
3: for all (ts, te) ∈ U in pre-order do
4: χ← rename(σ(ts, te))
5: ξ ← JtsK ∧ χ
6: post′ts ← pre′te
7: pre′ts ← backward(ts, post

′
ts) u prets

8: end for
9: for all (ts, te) ∈ U in post-order do

10: ξ ← JtsK ∧ σ(ts, te)
11: post′ts ← forward(ts, pre

′
ts) u postts

12: pre′te ← rename(post′ts)
13: end for
14: return pre′s

a backward analysis, starting with b subject to the guard σ(b, s) (see lines 3–8).
Upon termination of the first loop, the tree is traversed in post-order by applying
the forward interpreter until the starting block s is reached. Then, pre′s represents
a more descriptive precondition of s than pres, i.e., pre′s v pres. This refined
precondition is the output of the procedure.

Observe that the refinement procedure is parameterized by k ∈ N, which provides
potential for demand-driven adjustment of the refinement depth. The refinement
depth too gives a way to control the trade-off between precision and tractability:
Increasing k improves precision of the analysis, though at the cost of higher runtimes.

Example 3.8 (Forward analysis with refinement). For this example, let k = 1. The
conditional branch JC C:0x00F passes control to either 0x00C or 0x00F, depending
on the carry flag. Assume the precondition preb0x003 as in Ex. 3.7. Of course,
forward analysis yields the same postcondition postb0x003 , too. Proceeding with block
b0x00C, we observe that the guard predicate σ((b0x003, b0x00C)) constrains the carry
flag, thereby triggering refinement by calling refine(b0x00C, b0x003, 1) in line 11 of
Alg. 4. Then, U consists of one edge (b0x003, b0x00C), and backward analysis in line
7 of Alg. 5 yields:

pre′b0x003 =
(
r7 ∈ {1, 2, 3}

)

54

3.3 Experiments

In lines 9–13, the forward interpreter computes a refined postcondition of b0x003 as:

post′b0x003 = (〈r′A〉 ∈ {251, 252, 253}, 〈r′8〉 ∈ {1, 2, 3}, 〈c′〉 ∈ {0})

This postcondition is returned as the output of refine(b0x00C, b0x003, 1).

The overall results of the analysis are depicted in Fig. 3.6. After refinement starting
from block 0x00F has finished, the analysis proceeds as before and only performs
forward propagation. Since R8 now represents values 1, 2, and 3, indices 41 (0x29),
44 (0x2C), and 47 (0x2F) into the jump table are computed as desired (cp. Tab. 3.1).
Hence, the analyzer eventually computes the entry addresses of h2, h3, and h4.

3.3 Experiments

We have implemented the analysis discussed in this chapter in [mc]square [207, 208]
using MiniSat [94]. All experiments were performed on a desktop computer
equipped with an Intel Core i5 CPU and 4 GB of RAM. To evaluate the precision
of our approach, we have applied it to two sets of benchmarks for the Intel MCS-51.
These benchmarks were chosen with the following questions in mind: (1) Are the
runtime requirements acceptable on non-trivial examples? (2) How precisely are
jump targets recovered? (3) To what extent do compiler-specific implementation
details in the binary code affect the precision and performance of our framework?
To evaluate the independence of our framework from a specific compiler version, we
compiled all programs with both, the Keil µvision 3 and the Sdcc 3.0 compilers.

3.3.1 Benchmarks

The first benchmark set consists of programs that explicitly use function pointers to
implement typical functionalities of embedded software programs (e.g., handling of
inputs from a keypad). By way of contrast, the second set implements a form of
state machine which is compiled into programs that use indirect control. The sizes
of the binary programs range from 52 to 180 instructions overall.

Function Pointers in Embedded C Programs

The following embedded C programs implement samples from the tutorial Array of
Pointers to Functions in [132]. These programs use function pointers, jump tables,
and pointer arithmetic.

Single Row Input The application reads input data from a bi-directional port that
is connected to several buttons. Each button is associated with a handler
function. The entry addresses of handler functions are stored in an array of
function pointers that is indexed using an identifier of the respective button.

55

3 Control Flow Reconstruction using Boolean Logic

r7 7→ {1, 2, 3, 101, 102, 103}
c 7→ {0}

MOV 0x08, R7

MOV A, 0x08

CLR A
SUBB A, #N HANDL

JC C:0x00F

r′8 7→ {1, 2, 3, 101, 102, 103}
r′A 7→ {95, 96, 97, 251, 252, 253}

c′ 7→ {0, 1}

[
0
x
0
0
3
]

rA 7→ {95, 96, 97, 251, 252, 253}
c 7→ {0}

MOV R7, #C FAIL

RET

r′7 7→ {#C FAIL}

[
0
x
0
0
C
]

r8 7→ {1, 2, 3}
c 7→ {1}

MOV R7, 0x08

MOV A, R7

MOV B, #0x03

MUL AB
ADD A, #0x26

MOV DPL, A

CLR A
ADDC A, #0x00

MOV DPH, A

AJMP C:0x038

r′dph 7→ {0}
r′dpl 7→ {41, 44, 47}

[
0
x
0
0
F
]

rdph 7→ {0}
rdpl 7→ {41, 44, 47}

CLR A
MOVC A, @(A+DP)

MOV R3, A

MOV A, #0x01

MOVC A, @(A+DP)
MOV R2, A

MOV A, #0x02

MOVC A, @(A+DP)
MOV R1, A

AJMP C:0x100

r′3 7→ {255}
r′2 7→ {0}

r′1 7→ {105, 110, 115}

[
0
x
0
3
8
]

r2 7→ {0}
r1 7→ {105, 110, 115}

MOV DPH, R2

MOV DPL, R1

CLR A

r′dph 7→ {0}
r′dpl 7→ {105, 110, 115}

r′A 7→ {0}

[
0
x
1
0
0
]

rdph 7→ {0}
rdpl 7→ {105, 110, 115}

rA 7→ {0}
IJMP @(A+DP)[

0
x
1
0
6
]

c = 0

c = 1

Figure 3.6: Forward value set analysis with backward refinement, which takes place
in block 0x038; with refinement, the indirect read in block 0x038 leads
to exactly three jump targets in block 0x106 as desired

56

3.3 Experiments

Keypad The application interfaces a 3 × 3 keypad. Whenever a key is pressed,
the column and row numbers of the respective key are used to access a
two-dimensional array of function pointers.

Communication Link This application handles requests that are transmitted over
a serial link. It does so by indexing a table that contains callback functions to
handle each command. A table-lookup paired with pointer arithmetic then
determines the address of the callback function to handle the request.

Task Scheduling The application implements a low-level task scheduler. It operates
on a data structure that consists of an activation interval and a function pointer
to the respective task. An array holds one such entry for each task, 5 in our
application. Upon each time tick, the application iterates over the array and
checks whether the activation interval matches the elapsed time. The program
then uses the indexed function pointer to call the respective task indirectly.

State Machines

The second set of benchmarks implements different variants of state machines using
switch-case statements with the following functionality:

Single Switch-Case This program is controlled by a switch-case statement with 18
distinct cases and a default branch. A compact range of values to be tested
causes the compiler to implement the switch-case statement using a jump
table. The structure of this benchmark is similar to the example in Fig. 3.1,
even though it is harder to analyze due to the more complex jump table.

Emergency Stop This application implements emergency stop functionality [180,
pp. 40-45], which has been specified by the PLCopen consortium. The stan-
dard defines safety-related functions within the IEC 61131-3 development
environment to support developers of programmable logic controllers (PLCs).
The program, in essence, monitors an emergency stop button.

3.3.2 Results

Table 3.2 shows the experimental results for these benchmarks. The table clearly
shows that pure forward value set analysis is insufficient for recovering jump targets
precisely. Most data pointer values in forward analysis point to locations in program
memory that are out of bounds, or that do not represent meaningful instructions,
i.e., junk code. Yet, integrating backward refinement with a small bound (k is set
to 2 on all benchmarks) eliminates the redundant jump targets for all except one
benchmark (Switch Case compiled using Sdcc). For Switch Case, the imprecision
stems from the translation applied by Sdcc, which computes the target in a loop

57

3 Control Flow Reconstruction using Boolean Logic

in which the carry flag changes so that it contains {0, 1}. The carry flag, in turn,
is used to compute the jump target. Since value set analysis is non-relational, it
fails to capture the relation between a concrete integer and the carry flag.2 Jump
targets are thus computed for both possible values of the carry flag, thereby leading
to twice the number of jump targets. It is also interesting that in some situations
combined forward and backward analysis is significantly cheaper than pure forward
analysis. This is because the value sets tend to be much smaller; fewer iterations
are thus required to converge onto a fixed point (since we do not use widening).

3.3.3 Comparison

Our benchmarks have also been used in a different project [20]. Bardin [16] has
reported on experiments for the PPC platform using k-set analysis, the results of
which are given in Tab. 3.3.3 Here, columns Time (PaR) and Time (NPaR) denote
the runtimes obtained for two different configurations of their analyzer. Their
approach fails to analyze Task Scheduler and is significantly slower for Emergency
Stop (135s), but is able to recover jump targets for the other benchmarks more
quickly than our technique. However, the technique used by Bardin et al. [20] is
driven by indirect control: it is only precise for data-flow facts relevant to control
flow reconstruction, whereas our method computes precise value sets for all registers;
it then uses the particular results for the DPL, DPH, and A registers to reconstruct a
CFG, which may justify the slightly weaker performance on the other benchmarks.

3.4 Related Work

Even though the problem of control flow reconstruction has recently received
increasing attention from the abstract interpretation community, it has long been
studied in the context of decompilation and binary-to-source translation [58, 237].
This section surveys related approaches to decompilation, control flow reconstruction,
and path-sensitive abstract interpretation, which have emerged over the past two
decades.

3.4.1 Platform-Specific Decompilation

The early work of Cifuentes and Van Emmerik [61] tackles the problem of recovering
jump tables from binaries. There, the authors perform slicing of the binary [60],

2A workaround to this problem is to augment bit-vectors that represent registers with certain bits
of the status register. Value set analysis then targets bit-vectors v = (v[0], . . . , v[w − 1], c) to
capture the relation between v and the carry flag c. For further details, see [41].

3We have not been provided with results for the program Communication Link. Further, observe
that the numbers of instructions and jump targets vary due to different compilers.

58

3.4 Related Work

B
in

a
ry

P
ro

g
ra

m
F
o
rw

a
rd

a
n

a
ly

si
s

F
o
rw

a
rd

+
re

fi
n

e
m

e
n
t

N
a
m

e
C

om
p

il
er

lo
c C

in
st

r B
J
T

R
T

S
T

ti
m

e
R

S
k

R
T

S
T

ti
m

e

S
in

gl
e

R
ow

In
p

u
t

K
e
il

80
67

6
24

01
23

95
2.

6
2

2
6

–
3
.3

2
S
d
c
c

52
46

0
45

4
2.

4
2

2
6

–
2.

0

K
ey

p
ad

K
e
il

11
3

11
3

9
38

44
38

35
3.

4
9

4
2

9
–

4
.3

3
S
d
c
c

80
15

08
14

99
3.

0
8

4
2

9
–

2
.5

7

C
om

m
u

n
ic

at
io

n
L

in
k

K
e
il

11
1

16
4

8
68

89
68

81
4.

5
6

2
2

8
–

4
.3

7
S
d
c
c

11
8

84
76

3.
3
8

2
2

8
–

4
.2

9

T
as

k
S

ch
ed

u
le

r
K

e
il

81
10

5
5

¿1
00

0
¿9

95
¿5

m
1
7

2
5

–
14

.0
3

S
d
c
c

97
2
3

2
5

–
10

.2
3

S
w

it
ch

C
as

e
K

e
il

82
16

6
19

¿5
00

0
¿4

98
1

¿5
m

9
4

2
1
9

–
17

.4
9

S
d
c
c

18
0

33
04

32
85

2.
3
1

6
2

3
8

1
9

2.
6

E
m

er
ge

n
cy

S
to

p
K

e
il

13
8

15
0

9
76

8
75

9
2.

8
2

2
9

–
2.

6
S
d
c
c

14
1

25
6

24
7

2.
9

2
2

9
–

3.
1

T
a
b

le
3.

2:
E

x
p

er
im

en
ta

l
re

su
lt

s
fo

r
p
u
re

fo
rw

ar
d

an
al

y
si

s
as

w
el

l
as

co
m

b
in

ed
fo

rw
ar

d
an

d
b
ac

k
w

ar
d

an
al

y
si

s.
T

h
e

1st

ca
te

g
o
ry

B
in

a
ry

p
ro

gr
a
m

p
re

se
n
ts

st
a
ti

st
ic

s
a
b

o
u
t

th
e

a
n

a
ly

ze
d

p
ro

g
ra

m
:

co
lu

m
n

lo
c C

g
iv

es
th

e
li

n
es

o
f

co
d
e

in
C

,
w

h
er

ea
s

In
st

r B
in

d
ic

at
es

th
e

n
u
m

b
er

of
in

st
ru

ct
io

n
s

in
th

e
b
in

ar
y

p
ro

gr
am

;
co

lu
m

n
J

T
co

n
ta

in
s

th
e

ov
er

a
ll

n
u

m
b

er
o
f

d
y
n

a
m

ic
ju

m
p

ta
rg

et
s.

T
h

e
2

n
d

ca
te

g
o
ry

co
n
ta

in
s

re
su

lt
s

fo
r

p
u

re
fo

rw
a
rd

a
n

a
ly

si
s,

w
h
er

e
R

T
d
is

p
la

y
s

th
e

n
u
m

b
er

of
re

co
ve

re
d

ta
rg

et
s,

fo
ll
ow

ed
b
y

th
e

n
u
m

b
er

of
sp

u
ri

ou
s

ta
rg

et
s

S
T

;
co

lu
m

n
T

im
e

g
iv

es
th

e
ov

er
a
ll

ru
n
ti

m
e,

w
it

h
a

ti
m

eo
u

t
o
f

5
m

in
u

te
s.

T
h

e
3

rd
ca

te
g
o
ry

F
o
rw

a
rd

+
re

fi
n

em
en

t
a
d

d
it

io
n

al
ly

co
n
ta

in
s

th
e

n
u

m
b

er
of

re
fi

n
em

en
t

st
ep

s
R

S
an

d
th

e
d

ep
th

-b
o
u

n
d
k
.

59

3 Control Flow Reconstruction using Boolean Logic

Table 3.3: Experiments reported by Bardin [16]

Name instrB JT RT ST Time (PaR) Time (NPaR)

Single Row Input 158 6 6 6 < 1s < 1s
Keypad 224 8 8 8 < 1s < 1s
Task Scheduler 127 3 0 ∞ 2s < 1s
Switch Case 204 19 19 19 < 1s < 1s
Emergency Stop 475 10 10 10 135s 17s

where the slicing criterion is determined by the indirect jump instruction. The
remaining program slice is then transformed into a normal form using rewriting
techniques, thereby explicitly tackling switch-case statements, which often exhibit a
similar structure in the binary. Srivastava and Wall [227] introduced the concept of
hell nodes to control flow analysis. If the target of an indirect jump is unknown,
then control is redirected to an auxiliary hell node, which is always reachable and
for which all abstract program properties are initialized to >. This concept was
resumed by De Sutter et al. [91], whose analysis starts with a conservative CFG
in which every indirect control instruction targets the hell node. The conservative
approximation of the CFG is then incrementally refined using static analyses such as
constant propagation, the information of which is used to replace some control flow
edges to hell nodes by regular edges. This approach was implemented in the Alto
link-time optimizer for Alpha processors [174]. By way of contrast, Theiling [232]
uses a bottom-up analysis, starting with a collection of entry points, based on which
a CFG is incrementally extended. His approach, however, requires the compiler
to be known [232, Sect. 5.2] to find switch tables, which is not required for our
algorithm as we compute the addresses that represent jump tables. Holsti [129]
uses partial evaluation to analyze switch tables, but also relies on compiler-specific
information to find the respective handlers [129, Sect. 7]. The de-facto industrial
standard for binary analysis is IDA Pro [128]. This tool is based on unsound
heuristics, such as assuming that every call returns to its original call-site, which can
lead to erroneous edges in the CFG. Furthermore, the generated CFG is incomplete
in general, based on limited property propagation mechanisms (constants, e.g., are
only propagated within basic blocks).

3.4.2 Control Flow Reconstruction by Abstract Interpretation

The most prominent tool for control flow reconstruction by abstract interpretation is
probably Jakstab [141], which interleaves disassembly with abstract interpretation
as we do. The abstract domain used in Jakstab consists of a form of symbolic
constant lattice [142, Sect. 4]. Later, Flexeder et al. [100] extended their algorithm

60

3.4 Related Work

towards interprocedural analysis. Recently, Kinder and Kravchenko [140] proposed
to alternate between over-approximation using abstract interpretation and under-
approximation using simulation. Under-approximation yields stricter preconditions
on indirect control instructions, from which abstract interpretation benefits. By way
of contrast, Bardin et al. [20] use the k-set abstract domain paired with refinement.
The authors refer to this approach as value analysis with precision requirements.
The key idea of their work is to refine the precision of the abstract domain once
the chosen k-set becomes imprecise (in that it yields >). CodeSurfer/x86 [9, 10]
uses IDA Pro to get access to executable files and then employs heuristic analyses
using abstract domains such as affine equalities and strided intervals. As in IDA
Pro, the resulting CFG may be incomplete [9, Sect. 3.8].

3.4.3 Control Flow Reconstruction in Model Checking and Testing

McVeto [231] performs reachability analysis of binaries using directed proof gener-
ation [121]. In McVeto, the binary is decompiled instruction by instruction and
the state space is explored using on-the-fly predicate refinement, starting with an
initial abstraction of the binary that consists of two propositions about the program
counter. This abstraction is motivated by the fact that, in contrast to source code
model checking, the CFG of the program is not initially available, and thus has to
be extended gradually. Our own tool [mc]square [207, 208, 211] uses explicit-state
model checking based on simulation of the hardware, and can thus directly extract
jump targets from the state space. Control flow analysis also appears in automated
(concolic) testing of executables. The tool Osmose [17, 18] derives test-cases based
on an incomplete CFG, which is then incrementally extended using jump targets
that occur in executions of a test. The CFG may thus still be incomplete, but
converges onto a sound one from below while test-cases are explored. Our own work
on systematic test-case generation for binaries [190] uses the same approach.

3.4.4 Path-Sensitive Abstract Interpretation

In many practical cases, non-relational and convex abstract domains are not ex-
pressive enough to capture required invariants. There has thus been much interest
in refining abstract domains to improve the accuracy of abstract interpretations.
Cousot and Cousot [78] have introduced disjunctive completion, which can be seen
as a form of lifting an abstract domain to its power-set representation. The drawback
of this construction, however, is its computational cost as the size of the domain
increases exponentially. Rival and Mauborgne [200] introduced trace partitioning
to augment the abstract analysis domain with a finite partitioning of the possibly
infinite set of paths. The partitioning is determined heuristically or delegated to
the end-user. Different variations of this approach, such as control flow splitting

61

3 Control Flow Reconstruction using Boolean Logic

using Boolean flags [220], have been proposed. A different direction was followed
by Balakrishnan et al. [11], who combined forward and backward analysis so as
to eliminate infeasible paths, thereby obtaining a refined control structure of the
program. Similar in spirit is the work of Rival [198, 199] on error localization using
abstract interpretation by applying backward transformers. To limit the imprecision
that stems from applying transformers in reverse, Rival intersects backward states
with those obtained using forward analysis, which is not dissimilar to our approach
of encoding pre- and postconditions within the SAT instance.

Later work by Balakrishnan et al. [12] uses classical abstract interpretation for
control structure refinement, where paths through a loop are represented by regular
expressions. Our own contribution to this field [38] extends the work of Balakrishnan
et al. [12] in two ways: (a) symbolic best transformers [197] for each path through
the loop are generated, which (b) explicitly model bit-vector arithmetic. The method
described in this chapter differs from the above works — which apply some form of
domain or control flow refinement — by using bounded path-sensitive backwards
analysis to refine certain abstract elements.

3.5 Discussion

In this chapter, we have explored the possibility of using SAT solvers for value
set analysis of binary code with applications in control flow reconstruction. The
framework allows us to treat forward and backward analyses uniformly, based on
a relational description of the program semantics. The algorithms that compute
forward and backward value set abstractions, which are based on a mixture of
existential quantification and incremental SAT solving, then exhibit a symmetric
structure.

The key to precision lies in the combination of these analyses, which can be
seen as a response to the tractability issues associated with path-sensitivity. Using
k-bounded backward refinement entails that recovery of precision is performed
locally, independently of the size of the entire program. This approach mitigates the
computational problems incurred by bit-precise path-sensitive techniques. It is well-
known since the early works of Cousot and Cousot [77, 78] that backward abstract
interpretations can refine forward analyses. However, the difficulty of designing
precise backward transformers together with limitations of domains frequently used
in abstract interpretation — recall the discussion on structural properties of Heyting
domains — has thus far often thwarted the practical application of backward
refinement. We believe that automatic abstraction using uniform forward and
backward analyses may provide a technique to bridge this gap between theoretical
results and practical applications.

62

4 Automatic Abstraction of Bit-Vector
Formulae

The technique for control flow reconstruction based on value set analysis presented
in the previous chapter invokes a SAT solver on each application of a transfer
function. Although different in its technical details, the approach can thus be seen
as similar in spirit to the algorithm of Reps et al. [197, Sect. 2] to implement symbolic
best transformers; Alg. 6 presents a variation of their technique.1 The procedure
sbt(ϕ,G) takes as input a formula ϕ and a Galois connection G = (C, γ, α,D), which
relates a concrete domain C and an abstract domain D through a concretization
map γ : D → C and an abstraction map α : C → D (cp. [77, Sect. 6]). The output
of sbt(ϕ,G) is the most precise abstract element d ∈ D that over-approximates all
concrete states c ∈ C described by ϕ.2 The key idea of Reps et al. is to invoke a
decision procedure — in their method a theorem prover — on each application of a
transfer function so as to compute the most descriptive abstract output directly from
the concrete semantics of a program statement. In the worst case, this approach
requires h calls to a decision procedure to evaluate a transfer function, where h is
the chain-length of the respective abstract domain D [197, Thm. 1]. In the previous
chapter, we have shown that — owing to efficient SAT solvers — this dynamic
approach is tractable if only few calls to the solver are required to compute the
output: the 8-bit value set domain paired with a dedicated abstraction procedure
exhibits this desirable property. However, this is not always the case.

Drawbacks of Online Transformers Indeed, many abstract domains exhibit chains
whose length is polynomial or exponential in the number and domains of involved
variables (variable domains are discrete in our setting, and thus finite), which
may render the online computation of transformers during fixed-point iteration
intractable. We support this observation by means of an example.

1Reps et al. [197] additionally use a map β(m) to transform a concrete model m, which is defined
as map m : Var→ C, into an abstract store Var→ D. However, this is only a minor technical
difference that we omit for the purpose of presentation.

2Requiring a Galois connection G = (C, γ, α,D) to relate the concrete domain C and the abstract
domain D guarantees the computation of a best abstraction. Intuitively, a Galois connection
entails that there is an optimal abstract analogue d ∈ D for each c ∈ C. If this requirement is
dropped, the algorithm produces a sound abstraction which may be suboptimal.

63

4 Automatic Abstraction of Bit-Vector Formulae

Algorithm 6 sbt(ϕ,G)

Input: formula ϕ
Input: Galois connection G = (C, γ, α,D)
Output: symbolic best abstraction d of ϕ in D

1: d← ⊥
2: ψ ← ϕ
3: while ψ is satisfiable do
4: m← model of ψ
5: d← d t α(m)
6: ψ ← ψ ∧ ¬γ(d)
7: end while
8: return d

Example 4.1. Consider octagons [166], which consist of conjunctions of inequalities
of the form ±v1± v2 ≤ c where v1 and v2 are bit-vectors and c ∈ Z. For simplicity,
assume that a formula ϕ ∈ ℘(℘({v1,v2})) describes the following set of models:

{(0, 0), (0, 1), (1, 1), (1, 2), . . . , (254, 255), (255, 255)} ∈ ℘(Z2)

The formula could thus be abstracted by 0 ≤ 〈v1〉 + 〈v2〉 ≤ 500. Alg. 6 queries a
solver to obtain a model m1 of ϕ, e.g., m1 = {〈v1〉 = 0, 〈v2〉 = 0}, which induces
0 ≤ 〈v1〉 + 〈v2〉 ≤ 0. In a second iteration, ϕ ∧ ¬(0 ≤ 〈v1〉 + 〈v2〉 ≤ 0) is passed
to the solver, possibly yielding a model m2 = {〈v0〉 = 0, 〈v2〉 = 1} that defines a
relaxed constraint 0 ≤ 〈v1〉+ 〈v2〉 ≤ 1. Proceeding like before, the algorithm requires
499 more calls to the decision procedure to converge onto 0 ≤ 〈v1〉+ 〈v2〉 ≤ 500.

Observe, however, that the algorithm could have produced the abstraction 0 ≤ 〈v1〉+
〈v2〉 ≤ 500 in three iterations, had it produced models m1 = {〈v1〉 = 0, 〈v2〉 = 0}
and m2 = {〈v1〉 = 255, 〈v2〉 = 255} that define 0 = 〈v1〉+〈v2〉 and 〈v1〉+〈v2〉 = 500,
respectively. Afterwards, the solver is invoked once more to prove that the abstraction
is sound by testing ϕ ∧ ¬(0 ≤ 〈v1〉 + 〈v2〉 ≤ 500) for unsatisfiability. Computing
optimal abstract outputs with a dependency on the solving strategy as strong as
in Alg. 6 leads to unpredictable runtimes which even may vary strongly from one
execution of the analysis to another; of course, this is highly undesirable.

Offline Computation of Abstractions As an alternative to computing symbolic
best transformers online, we propose to generate transfer functions offline, prior to
the analysis itself. Then, a decision procedure is repeatedly invoked to compute
a structure that describes how abstract inputs are mapped to abstract outputs.
Performing program analysis then merely amounts to applying the computed map,
rather than invoking the solver during the analysis. However, it is important

64

to observe that a propositional formula ϕ, which can be derived to represent the
concrete semantics of a program statement or a basic block, does not prescribe how to
compute a transfer function. Therefore, we show how to augment ϕ with additional
constraints so that an abstraction can be extracted from ϕ; this is important to
efficiently abstract ϕ using linear constraint domains such as octagons or convex
polyhedra. Most notably, the abstract domains studied in this chapter include affine
equalities [136], arithmetical congruences [114], polynomials of bounded degree [73],
octagons [166], and convex polyhedra [82].

Roadmap Overall, this chapter provides a collection of techniques for inferring
abstractions for basic blocks that are defined as bit-vector relations. If programs are
defined over finite integers, then over- and underflows manifest themselves somewhere:
if not in the abstract domain [115, 144, 171, 172] then in the transformer [31, 32]
or elsewhere [223]. In general, abstract domains that model unbounded integer
arithmetic are attractive because of their structural simplicity, compared to those
that support wrap-around arithmetic.3 When describing bit-vector programs using
abstract domains defined over unbounded integers (such as affine equalities or
octagons), one problem is thus to provide a systematic way to model wrapping
arithmetic within the transfer functions.4

To illustrate the problem, consider the domain of affine relations and the operation
ADD R0 R1, which computes the sum of two inputs R0 and R1 and stores the result
in R0. Driven by intuition, one might be tempted to model this instruction using
an equality 〈〈r0′〉〉 = 〈〈r0〉〉+ 〈〈r1〉〉. Yet, such modeling is unsound as it does not
address the effects of modular arithmetic. Indeed, no affine equality can model ADD
R0 R1 for all feasible inputs, its abstraction is thus >aff. With respect to wrap-
around arithmetic, each instruction can have three modes of operation, depending
on whether it overflows, underflows, or does neither (called regular). An instruction
with more than one mode of operation is called multi-modal, as opposed to uni-modal
instructions (such as MOV R0 R1). Which mode is applicable then depends on the
values of variables on entry to the instruction. Knowing that a particular mode is
applicable permits a specialized transfer function to be applied for inputs which
conform to that mode. To illustrate, consider again ADD R0 R1 on an 8-bit machine.
This operation exhibits three different affine relations, depending on its mode:

regular : 〈〈r0′〉〉 = 〈〈r0〉〉+ 〈〈r1〉〉
overflow : 〈〈r0′〉〉 = 〈〈r0〉〉+ 〈〈r1〉〉 − 256
underflow : 〈〈r0′〉〉 = 〈〈r0〉〉+ 〈〈r1〉〉+ 256

3It is, for example, unclear how to model inequalities in conjunctive modular domains [172, Sect. 7].
4An alternative approach is implemented in static analyzers such as Astrée [83–85]. There,

the program semantics is modeled over unbounded integers, followed by checks for over- and
underflow. However, this approach is not suitable for the analysis of programs for 8-bit
architectures where, e.g., 16-bit comparisons intentionally depend on over- and underflows.

65

4 Automatic Abstraction of Bit-Vector Formulae

Hence, when applying abstract domains such as affine equalities to describe finite
bit-vector semantics, it is important to separate modes of operations. These modes
can, in turn, be specified as linear (octagonal) constraints over the inputs:

regular : −128 ≤ 〈〈r0〉〉+ 〈〈r1〉〉 ≤ 127
overflow : 128 ≤ 〈〈r0〉〉+ 〈〈r1〉〉 ≤ 254
underflow : −256 ≤ 〈〈r0〉〉+ 〈〈r1〉〉 ≤ −129

This observation leads to a formulation of transfer functions as systems of guarded
updates to separate and describe the different modes of operation. Then, the guard
characterizes an over-approximation of those inputs that satisfy the respective mode,
and therefore, which type of update is applicable. By way of contrast, the update
can be seen as an input-output transformer that stipulates how inputs are mapped
to outputs in an applicable mode. However, since a block is composed of several
instructions, each of which may have different modes of operation, this necessitates
an automatic technique that identifies the feasible mode combinations, for each
of which it computes an abstraction. The latter involves two technical challenges:
given a formula ϕ that describes the semantics of a basic block subject to a fixed
mode combination, it is necessary to (1) compute a precondition of ϕ (the guard)
using some class of inequality, and (2) derive a direct relationship between the inputs
and the outputs of the block (the update).

Outline This chapter is concerned with computing abstractions of (a subset of)
the registers characterized by a block. We present techniques for abstracting the
semantics of blocks as follows:

• First, Chap. 4.1 discusses the technical details of automatically separating
different modes of operation in bit-vector formulae.

• Then, Chap. 4.2 presents techniques that abstract relations between vari-
ables described by a formula with affine equalities, arithmetical congruences,
bounded polynomials, octagons, and convex polyhedra.

• Following, Chap. 4.3 presents a technique that we refer to as extrapolation:
the key idea of this method is to derive abstractions for short bit-vectors (e.g.,
in a 5-bit representation) and then soundly extrapolate the derived relations
towards larger bit-vectors (e.g., 32 bits) to improve efficiency.

The chapter concludes with experimental results in Chap. 4.4 and a discussion in
Chap. 4.5. The content of this chapter is strongly related to the following Chap. 5,
which is concerned with deriving transformers for symbolic constraints as opposed to
computing abstract relations among variables. However, the techniques presented in
Chap. 5 are to a great extent based on the abstraction mechanisms discussed herein.
We therefore present related work for both, Chap. 4 and Chap. 5, in Chap. 5.6.

66

4.1 Separation of Modes

1 : ADD R0 R1; 2 : MOV R2 R0; 3 : EOR R2 R1; 4 : LSL R2;

5 : SBC R2 R2; 6 : ADD R0 R2; 7 : EOR R0 R2;

Figure 4.1: Example assembly listing for AVR microcontrollers

4.1 Separation of Modes

As in Chap. 3.1.1, we bit-blast a block b = (b1, . . . , bn) consisting of n instructions
by composing it from n formulae JbiK ∈ ℘(℘(V)) to give JbK =

∧n
i=1JbiK ∈ ℘(℘(V)).

Each instruction in b can operate in one out of at most three modes: it overflows,
underflows, or does neither. Of course, the operations b1, . . . , bn that constitute b
may operate in different modes, although the mode of one instruction may preclude
a mode of another from being applicable. A mode mi,ki is then chosen for each
instruction bi, and a single formula is constructed by augmenting JbK with encodings
Jmi,kiK ∈ ℘(℘(V)) of constraints imposed by each mode, which yields a formula:(

n∧
i=1

JbiK

)
︸ ︷︷ ︸
semantics of b

∧
(

n∧
i=1

Jmi,kiK

)
︸ ︷︷ ︸
mode constraints

∈ ℘(℘(V))

Observe that the modes of each instruction and the respective encodings can
directly be derived from the instruction-set specification of the target hardware. If
the composed formula is unsatisfiable, then the mode combination is inconsistent.
Otherwise, the mode combination is feasible and the formula describes one type of
wrapping (or non-wrapping) behavior that can be realized within the block.

Example 4.2. On an 8-bit architecture, instruction ADD R0 R1 from Fig. 4.1 is
encoded as JADD R0 R1K, which is given propositionally as:

(
∧7
i=0 r0′[i]↔ (r0[i]⊕ r1[i]⊕ c[i]))∧

¬c[0] ∧ (
∧6
i=0 c[i+ 1]↔ ((r0[i] ∧ r1[i]) ∨ (r0[i] ∧ c[i]) ∨ (r1[i] ∧ c[i])))

Here, the bit-vector c denotes auxiliary carry-bits to simplify the encoding. The ADD

instruction has three modes of operation: it can overflow (mO), underflow (mU), or
behave regularly (mR = ¬mO ∧ ¬mU). These modes are encoded as follows:

JmOK = ¬r0[7] ∧ ¬r1[7] ∧ r0′[7]
JmU K = r0[7] ∧ r1[7] ∧ ¬r0′[7]
JmRK = (r0[7] ∨ r1[7] ∨ ¬r0′[7]) ∧ (¬r0[7] ∨ ¬r1[7] ∨ r0′[7])

For example, JADD R0 R1K ∧ JmOK describes the semantics of ADD R0 R1 for those
inputs which lead to an overflow. The set of models of JADD R0 R1K∧ JmOK contains

67

4 Automatic Abstraction of Bit-Vector Formulae

Table 4.1: Feasible and infeasible modes for the basic block in Fig. 4.1; only 5 out of
18 different mode combinations are feasible, which is checked by testing
the respective encoding for satisfiability

ADD R0 R1 LSL R2 ADD R0 R2 feasible?

R R R yes
R R O no
R R U no
R O R yes
R O O no
R O U no
O R R no
O R O no
O R U no
O O R yes
O O O no
O O U yes
U R R no
U R O no
U R U no
U O R yes
U O O no
U O U no

exactly those valuations for which the arithmetic sum of R0 and R1 yields a value
greater than or equal to 128 (if R0 and R1 are interpreted as signed bit-vectors).
Likewise, JADD R0 R1K ∧ JmU K and JADD R0 R1K ∧ JmRK describe the semantics of
ADD R0 R1 for underflow and regular operation, respectively.

4.1.1 Detecting Feasible Modes

Consider again the assembly code listing in Fig. 4.1. The instruction LSL R2 shifts
register R2 to the left by one bit; the most significant bit of R2 is moved into the
carry flag. If the carry flag is set on output of the instruction, an overflow occurs.
However, there is no underflow specified for LSL, the instruction thus has two modes
of operation. The instruction SBC (subtract with carry) is multi-modal as it can
over- or underflow. Yet, in the case of two equal operands, the instruction SBC R2

R2 can only result in R2 = 0 or R2 = −1, depending on the carry flag on input.
In essence, SBC R2 R2 stores the carry flag on input in every single bit of R2. We
thus ignore the wrapping of SBC R2 R2 and consider it to be uni-modal. EOR and

68

4.1 Separation of Modes

MOV are both uni-modal, too. Table 4.1 shows the feasible modes for the listing in
Fig. 4.1. The second row, e.g., refers to the formula which encodes the block paired
constraints for regular behavior of ADD R0 R1 and LSL R2 and overflow of ADD R0

R2. Unsatisfiability entails that this combination is infeasible. Since ADD R0 R1

and ADD R0 R2 both have three modes, whereas LSL R2 has two, the above block
constitutes 3 · 2 · 3 = 18 mode combinations. Yet, only five of these combinations are
feasible. It is thus necessary to derive abstractions only for these feasible modes.

4.1.2 Incremental Feasibility Checks

The number of mode combinations in a single block is, in the worst case, exponential
in the number of instructions. The number of calls to a decision procedure required
to determine feasible modes is thus exponential, too. Further, incrementality, which
greatly affects the efficiency of contemporary solvers, cannot be exploited when
feasibility of mode combinations is checked one by one. We therefore present an
alternative strategy for checking feasibility of mode combinations incrementally.

Example 4.3. Let ϕ encode the block in Fig. 4.1 as before and consider the case
where ADD R0 R1 underflows and LSL R2 behaves regularly. The formula

ϕ′ = ϕ ∧ JmADD R0 R1,U K ∧ JmLSL R2,RK

describes this compound mode, independently of the second ADD. Observe that ϕ′ ∧
JmADD R0 R2,OK |= ϕ′, ϕ′ ∧ JmADD R0 R2,U K |= ϕ′, and ϕ′ ∧ JmADD R0 R2,RK |= ϕ′. From
unsatisfiability of ϕ′, we thus deduce that ϕ′ equipped with a constraint on the mode
of ADD R0 R2 is infeasible, too.

The above example suggests extending the formula ϕ with mode constraints, such
as JmADD R0 R2,OK, instruction by instruction. This strategy can also be seen as
analyzing modes in a tree-like fashion. A sub-tree, which represents different modes
of one instruction, is then explored iff the formula representing its root is satisfiable,
as illustrated in Fig. 4.2. This technique may increase the overall number of SAT
instances to be solved (21 instead of 18 for the running example), because all leaves
are reachable in the worst case. However, the tree-like strategy integrates smoothly
with incremental solving techniques since the additional mode constraints can be
passed as assumptions, thereby permitting the solver to reuse information learnt.

Discussion Which solving strategy for feasible modes outperforms the other de-
pends on the distribution of feasible mode combinations; this distribution, in turn,
depends on the intrinsics of the analyzed block. There is thus no clear winner.
Of course, one could execute both strategies in parallel with the possibility of
communicating infeasible modes.

69

4 Automatic Abstraction of Bit-Vector Formulae

ϕ

SAT

SAT

UNSAT

U
UNSAT

O

SAT
E

O

SAT

UNSAT

U
UNSAT

O

SAT
E

E

E

SAT

SAT

SAT

U
UNSAT

O

SAT
E

O

UNSAT

E

O

SAT

SAT

UNSAT

U
UNSAT

O

SAT
E

O

UNSAT

E

U

1

Figure 4.2: Incremental detection of feasible mode combinations; each level in the
tree corresponds to one column in Tab. 4.1 (from left to right)

70

4.2 Symbolic Abstractions for Bit-Vectors

4.2 Symbolic Abstractions for Bit-Vectors

For a formula that encodes a feasible mode combination, we need to compute an
abstraction that mimics the concrete semantics of the chosen mode combination. As
argued before, we model transformers for bit-vector relations as guarded updates.
This section discusses different classes of abstractions required for this representation:
(1) octagons and polyhedra, which are used to describe linear inequalities among
registers in the respective mode combination, and (2) affine and polynomial abstrac-
tions that represent equality relations between variables. Additionally, we discuss a
technique that infers arithmetical congruences that hold for single registers, yielding
information about strides of values. The techniques to compute such abstractions
are discussed from Chap. 4.2.1 to Chap. 4.2.6.

4.2.1 Octagons

Octagons are formed from conjunctions of constraints λ1 ·〈〈v1〉〉+λ2 ·〈〈v2〉〉 ≤ d where
λ1, λ2 ∈ {−1, 1}, d ∈ Z, and v1 and v2 are variables. In the following, we sometimes
abbreviate this form of inequality as ±〈〈v1〉〉 ± 〈〈v2〉〉 ≤ d. Octagons can thus be
seen as a sub-class of convex polyhedra with the inequalities drawn from a finite
set of fixed templates. We denote the domain of such conjunctions of inequalities
by Oct. Additionally, toct : Oct× Oct→ Oct denotes the join of two octagons, and
the respective partial order voct⊆ Oct×Oct is induced by entailment. Interestingly,
octagons are often sufficiently expressive to verify interesting properties of programs
(cp. [166, Sect. 1.1]). Further, if octagons are represented using difference bounds
matrices (DBMs) to encode potential constraints [166, Sect. 2.2], then all relevant
domain operations can be expressed in O(n3) where n is the number of variables, as
opposed to the exponential complexity incurred by convex polyhedra [166, Sect. 4.8].5

Using this representation, the join toct of two octagons, for instance, can then be
expressed as the point-wise maximum of the elements of their DBMs [166, Sect. 2.3].
Expressiveness of the domain and efficiency of the domain operations may thus
explain the popularity of the octagon abstract domain.

Abstraction by Dichotomic Search

Suppose a formula ϕ ∈ ℘(℘(V)) over bit-vectors V = {v1, . . . ,vn} has k satisfying
assignments, which are given by maps mi : V → Z for 1 ≤ i ≤ k. Then, each mi

can equivalently be represented as an element mi = (mi(v1), . . . ,mi(vn)) ∈ Zn.
Intuitively, abstraction αoct is then defined as the operation that yields the least

5In his seminal work, Miné [166, Sect. 3.5] presents a so-called tight closure operation for integral
octagons which has complexity O(n4). The key idea of this algorithm is to first close a real-valued
octagonal system, which has cubic complexity, followed by a pass that admits only integral
results. Later, Bagnara et al. [6] improved this algorithm and presented one that requires O(n3).

71

4 Automatic Abstraction of Bit-Vector Formulae

octagon — i.e., the smallest conjunction of linear inequalities of the above form —
that contains {m1, . . . ,mk} ⊆ Zn [166, Sect. 2.3]. With a domain operation toct

that joins two octagons, a näıve algorithm (such as Alg. 6) would then enumerate the
mi one after another, represent them as DBMs, and join the DBM representing mi

with the current octagonal abstraction. However, this strategy heavily depends on
the number k of models m1, . . . ,mk, and also the order in which they are examined
(cp. Ex. 4.1). We thus present a different strategy. Given a formula ϕ, our tactic
to compute an optimal octagonal abstraction presented herein is to (1) draw a
constraint ±〈〈v1〉〉 ± 〈〈v2〉〉 ≤ d from a fixed set of templates, and (2) find the least
value of d subject to ϕ using dichotomic search. The force of this approach is a
predictable (and often smaller) number of calls to a decision procedure. Clearly,
if vi = (vi[0], . . . ,vi[w − 1]), then 〈〈vi〉〉 ∈ [−2w−1, 2w−1 − 1] (cp. Cor. 3.1). It
follows that ±〈〈v1〉〉 ± 〈〈v2〉〉 ∈ [−2w, 2w], which entails that d can be represented
as a bit-vector d = (d[0], . . . ,d[w + 1]). Determining the exact value of 〈〈d〉〉 thus
amounts to finding the least upper bound of the constraint ±〈〈v1〉〉 ± 〈〈v2〉〉. We can
thus compute 〈〈d〉〉 by applying an interval subdivision scheme similar to Chap. 3.1.2.

Abstracting Linear Template Inequalities

Algorithm 7 presents an implementation for the generalized problem of maximizing
a linear expression

∑n
i=1 λi · 〈〈vi〉〉 of n variables v1, . . . ,vn where λ1, . . . , λn ∈ Z

are constants. The algorithm takes as input a formula ϕ and a linear expression∑n
i=1 λi · 〈〈vi〉〉, which is encoded in κ. We assume that this formula is appropriately

sign-extended to a bit-width w′ ≥ w that prevents wraps in κ.

Proposition 4.1. Rewrite
∑n

i=1 λi · 〈〈vi〉〉 ≤ d into the form
∑n

i=1 λ
+
i · 〈〈vi〉〉 ≤

d+
∑n

i=1 λ
−
i · 〈〈vi〉〉 where (λ+

1 , . . . , λ
+
n), (λ−1 , . . . , λ

−
n) ∈ Nn. A propositional encoding

of
∑n

i=1 λi · 〈〈vi〉〉 ≤ d without wraps is possible with a signed representation in

1 + dlog2(1 + max(2w · (
n∑
i=1

λ+
i), b+ 2w · (

n∑
i=1

λ−)))e

bits.

Proof. To see that such an encoding is possible, assume, without loss of generality,
that the disequality is integral and d is non-negative. Rewrite the inequality as∑n

i=1 λ
+
i ·〈〈vi〉〉 ≤ d+

∑n
i=1 λ

−
i ·〈〈vi〉〉 where (λ+

1 , . . . , λ
+
n), (λ−1 , . . . , λ

−
n) ∈ Nn. Further,

let λ+ =
∑n

i=1 λ
+
i and λ− =

∑n
i=1 λ

−
i . Since 〈〈vj〉〉 ∈ [−2w−1, 2w−1 − 1] for each

vi ∈ V , it follows that computing the sums
∑n

i=1 λ
+
i · 〈〈vi〉〉 and d+

∑n
i=1 λ

−
i · 〈〈vi〉〉

with a signed 1+dlog2(1+max(2w ·λ+, d+2w ·λ−))e-bit representation is sufficient to
avoid wraps, allowing the disequality to be modeled exactly (cp. [75, Sect. 3.3]).

72

4.2 Symbolic Abstractions for Bit-Vectors

Hence,
∑n

i=1 λi · 〈〈vi〉〉 is expressed over an extended set of bit-vectors W defined as

W = { (v[0], . . . ,v[w − 1],v[w], . . . ,v[w′ − 1]) | v ∈ V }

where w′ respects Prop. 4.1. The supported form of linear expressions includes,
most notably, octagonal constraints. The algorithm also supports more expressive
classes of linear templates such as octahedra [62], but also less expressive ones such
as pentagons [157]. Also note that the algorithm can be seen as a generalization of
Alg. 1 to compute interval abstractions, i.e.:

maximum(ϕ,v) = αV
lin−exp(ϕ, 〈〈v〉〉) minimum(ϕ,v) = αV

lin−exp(ϕ,−〈〈v〉〉)

The output of the procedure αV
lin−exp(ϕ,

∑n
i=1 λi · 〈〈vi〉〉) is the least upper bound

d ∈ Z of
∑n

i=1 λi · 〈〈vi〉〉 subject to ϕ. Lines 3–9 provide special treatment for
the sign (since ¬d[w′ − 1] indicates a positive value of 〈〈d〉〉). Then, lines 10–18
represent the core of the algorithm. Since the goal is to maximize

∑n
i=1 λi · 〈〈vi〉〉,

the algorithm instantiates each remaining bit d[0], . . .d[w′ − 2] with true, starting
with d[w′ − 2], and checks satisfiability of the respective formula. If satisfiable, bit
d[j] is fixed to true and the output d is incremented by 2j . Then, the next highest
bit is examined. If unsatisfiable, bit d[j] can only take the value false, and 〈〈d〉〉 is
thus not modified. The algorithm then moves on to maximize the next highest bit.
Observe that constraints that express lower bounds, such as d ≤ ∑n

i=1 λi · 〈〈vi〉〉,
can be represented as

∑n
i=1−λi · 〈〈vi〉〉 ≤ −d. This permits maximization as used in

αV
lin−exp(ϕ,

∑n
i=1 λi · 〈〈vi〉〉) to be applied to compute lower bounds, too.

Proposition 4.2. Let ϕ ∈ ℘(℘(V)) encode the semantics of a block.Then:

αV
lin−exp(ϕ,

∑n
i=1 λi · 〈〈vi〉〉) = max

{
x ∈ Z

∣∣∣∣ m : V → Z |= ϕ ∧
x =

∑n
i=1 λi ·m(vi)

}
Proof. Let ϕ′ = ϕ ∧ κ. Then, ϕ′ encodes the relational semantics ϕ of the analyzed
block augmented with an additional assignment (

∑n
i=1 λi · 〈〈vi〉〉 = 〈〈d〉〉). Put

V̂ = vars(ϕ′) \ V . Since the additional variables that constitute ϕ′ appear freely,
ϕ ≡ ∃V̂ : ϕ′. Intuitively, ϕ′ describes the same relations among v1, . . . ,vn as ϕ.
Correctness of Alg. 7 thus follows directly from correctness of Alg. 1.

We present two immediate consequences:

Corollary 4.1. Let ϕ ∈ ℘(℘(V)) and d = αV
lin−exp(ϕ,

∑n
i=1 λi · 〈〈vi〉〉). Then,

ϕ ∧ (
∑n

i=1 λi · 〈〈vi〉〉 = d) is satisfiable.

Corollary 4.2. αV
lin−exp(ϕ,

∑n
i=1 λi · 〈〈vi〉〉) requires w′ calls to a solver.

73

4 Automatic Abstraction of Bit-Vector Formulae

Algorithm 7 αV
lin−exp : (℘(℘(V))× ℘(℘(W)))→ Z

Input: ϕ ∈ ℘(℘(V))
Input: linear expression

∑n
i=1 λi · 〈〈vi〉〉 ∈ ℘(℘(W))

Output: least upper bound d ∈ Z of
∑n

i=1 λi · 〈〈vi〉〉 subject to ϕ
1: κ←∑n

i=1 λi · 〈〈vi〉〉 = 〈〈d〉〉
2: ψ ← ϕ ∧ κ
{check the sign}

3: if ψ ∧ ¬d[w′ − 1] is satisfiable then
4: d← 0
5: ψ ← ψ ∧ ¬d[w′ − 1]
6: else
7: d← −2w

′−1

8: ψ ← ψ ∧ d[w′ − 1]
9: end if
{iterate over bits w′ − 2, . . . , 0}

10: for i = 1 to k − 1 do
11: j ← w′ − i− 1

{increment d by 2j if the augmented formula is satisfiable}
12: if ψ ∧ d[j] is satisfiable then
13: d← d+ 2j

14: ψ ← ψ ∧ d[j]
15: else
16: ψ ← ψ ∧ ¬d[j]
17: end if
18: end for
19: return d

Abstracting Octagons

The iterative application of αV
lin−exp to derive an octagonal abstraction αV

oct(ϕ) is
given in Alg. 8. The procedure iterates over all pairs (vi,vj) of bit-vectors and all
possible combinations (λi, λj) of coefficients drawn from {−1, 1}, and then invokes
αV

lin−exp for the constraint λi · 〈〈vi〉〉+λj · 〈〈vj〉〉 ≤ d. Each constraint is thus analyzed
separately, one after another. Observe that this formulation does not require vi 6= vj ,
and thus represents inequalities 〈〈vi〉〉 ≤ d by 〈〈vi〉〉+〈〈vi〉〉 ≤ 2·d. This representation
of range constraints using octagons thus squares with the one proposed by Miné [166,
Sect. 2.2]. However, we represent inequalities explicitly rather than using DBMs to
support a straightforward formulation of the algorithm.

Example 4.4. Consider the formula ϕ = JADD R0 R1K∧ JmADD R0 R1,U K over inputs
r0 and r1. Then, ϕ implicitly describes those values of 〈〈r0〉〉 and 〈〈r1〉〉 for which

74

4.2 Symbolic Abstractions for Bit-Vectors

Algorithm 8 αV
oct : ℘(℘(V))→ Oct

Input: ϕ ∈ ℘(℘(V))
Output: least octagon o ∈ Oct describing V subject to ϕ

1: o← >oct

2: for each pair (vi,vj) in V do
3: for each (λi, λj) ∈ {−1, 1} × {−1, 1} do
4: d← αV

lin−exp(ϕ, λi · 〈〈vi〉〉+ λj · 〈〈vj〉〉)
5: o← o ∧ (λi · 〈〈vi〉〉+ λj · 〈〈vj〉〉 ≤ d)
6: end for
7: end for
8: return o

an underflow of ADD R0 R1 occurs. Applying αV
lin−exp to the octagonal constraint

〈〈r0〉〉+ 〈〈r1〉〉 ≤ 〈〈d〉〉 implicitly extends the constraint to a 10-bit representation so
as to prevent wraps, hence d = (d[0], . . . ,d[9]). First, ϕ ∧ ¬d[9] is examined, which
turns out unsatisfiable, hence −512 ≤ 〈〈r0〉〉 + 〈〈r1〉〉 ≤ −1 and d = −512. In the
second iteration, a constraint on d[8] is added to give the formula ϕ ∧ d[9] ∧ d[8].
From satisfiability, we deduce −256 ≤ 〈〈r0〉〉+ 〈〈r1〉〉 ≤ −1 and d is incremented by
28 to give d = −256. Then, ϕ∧d[9]∧d[8]∧d[7] is unsatisfiable. Since the remaining
instances are all satisfiable, we obtain the output 〈〈r0〉〉+ 〈〈r1〉〉 ≤ −129. Performing
the analysis in its entirety leads to:

α
{r0,r1}
oct (ϕ) =

−128 ≤ 〈〈r0〉〉 ≤ −1
−128 ≤ 〈〈r1〉〉 ≤ −1
−256 ≤ 〈〈r0〉〉+ 〈〈r1〉〉 ≤ −129
−127 ≤ 〈〈r0〉〉 − 〈〈r1〉〉 ≤ 127

It can easily be seen that α
{r0,r1}
oct (ϕ) exactly describes those inputs that indicate an

underflow of ADD R0 R1. The results for all three modes are given in Fig. 4.3.

Observe that Alg. 8 can be seen as diametrically opposed to Alg. 6. The procedure
sbt(ϕ, (2Z

n
, γoct, αoct,Oct)) enumerates solutions and iteratively computes the merge

otoct αoct(m) of an existing octagonal abstraction o ∈ Oct with the abstraction of a
model m : V → Z so as to converge onto a sound abstraction from below. By way of
contrast, the procedure αV

oct(ϕ) starts from >oct rather than ⊥oct, and incrementally
refines intermediate abstractions so as to converge onto the result from above. The
following complexity result is an immediate consequence from the solving strategy.

Proposition 4.3. Let V = {v1, . . . ,vn} with vi = (vi[0], . . . ,vi[w − 1]) and ϕ ∈
℘(℘(V)). Computing αV

oct(ϕ) requires(
n · (n− 1)

2

)
· (w + 2) · 8

75

4 Automatic Abstraction of Bit-Vector Formulae

-128 127
0

-128

127

Figure 4.3: Three shaded areas indicate values of 〈〈x〉〉 and 〈〈y〉〉 that lead to overflow,
underflow, and regular behavior of 〈〈x〉〉+ 〈〈y〉〉; redundant constraints,
which touch the enclosed volume in a single point, are omitted

calls to a solver.

Proof. From
∑n

i=1 i = n·(n+1)
2 , we deduce that the overall number of two-variable

relations described by an n-dimensional octagon is
∑n−1

i=1 i = n·(n−1)
2 . Further, each

two-variable relation consists of 8 inequalities. As Alg. 8 iterates over each bit
w + 1, . . . , 0 in each constraint, we obtain the above result.

Of course, if range constraints are expressed as 〈〈v〉〉 ≤ d rather than 2 · 〈〈v〉〉 ≤ 2 · d
and caching is applied to avoid repeated analysis of the same interval constraints,
then the overall number of calls can be reduced to:(

n · (n− 1)

2

)
· (w + 2) · 4 + 2 · n · w

Please note that there is no reason why packing of octagons [166, Sect. 6.2] could not
be combined with static dependency analysis [175] to reduce the overall number of
constraints that are analyzed.6 An interesting aspect of the abstraction mechanism
αV

oct(ϕ) is that the algorithm yields an octagon that is tightly closed. Intuitively,
this means that all hyperplanes defined by αV

oct(ϕ) indeed touch the enclosed volume
(see Fig. 4.4).

Definition 4.1. Let • : Oct→ Oct denote the tight closure operation [166, Def. 4].

6The key idea of Oh et al. [175] is to statically determine semantic dependencies between different
variables, which are then used to partition the variables into different, independent packs. Their
technique thus reduces both, memory requirements and computational cost, of octagons and
the corresponding domain operations.

76

4.2 Symbolic Abstractions for Bit-Vectors4.2 Symbolic Abstractions for Bit-Vectors

Figure 4.4: Two octagons describe the same space; the octagon on the right-hand
side is tightly closed, whereas the octagon on the left is not

An interesting aspect of the abstraction mechanism αV
oct(ϕ) is that the algorithm

yields an octagon that is tightly closed. Intuitively, this means that all hyperplanes
defined by αV

oct(ϕ) indeed touch the enclosed volume (see Fig. ??).

Definition 4.1. Let • : Oct→ Oct denote the tight closure operation [? , Def. 4].

Tightly closed octagons can be seen as a normal form representation [? , Sect. 3.5].
The following proposition is a modification of [? , Thm. 3] and [? , Thm. 4] so that
it takes integrality of the variables into account.8

Proposition 4.3. Let o ∈ Oct over V = {v1, . . . , vn}. Then, o = o• iff for all
(±��vi��± ��vj�� ≤ d) ∈ o there exists (x1, . . . , xn) ∈ γoct(o) such that ±xi ± xj = d.

The following proposition can be seen as an immediate consequence of Cor. ??,
Prop. ??, and Prop. ??.

Proposition 4.4. Let ϕ ∈ ℘(℘(V)) denote a formula over V = {v1, . . . , vn}. Then
αV

oct(ϕ) ∈ Oct is tightly closed, i.e., αV
oct(ϕ) = (αV

oct(ϕ))•.

Proof. Let o = αV
oct(ϕ) and assume o �= o•. Without loss of generality, assume a

redundant constraint λ1 · ��v1��+ λ2 · ��v2�� ≤ d, which entails that (v1, v2, . . . , vn) ∈
γV

oct(o) such that λ1 · v1 + λ2 · v2 = d does not exist, following from Prop. ??. Then,
ϕ ∧ (λ1 · ��v1��+ λ2 · ��v2�� = d) is unsatisfiable, which contradicts Cor. ??.

However, tightly closed octagons can negatively affect the performance of abstract in-
terpretations since closed systems will typically contain many redundant constraints.
To improve the efficiency of octagonal abstract interpretations (or guard evaluation
in our case), these octagonal systems should be transformed into a so-called reduced
form, a representation that was proposed by Bagnara et al. [?].

8Observe that Miné [?] assumes non-emptiness of octagons for his algorithms. We omit this detail
because only satisfiable formulae ϕ are abstracted, which entails that αV

oct(ϕ) is non-empty.

77

Figure 4.4: Two octagons describe the same space; the octagon on the right-hand
side is tightly closed, whereas the octagon on the left is not

Tightly closed octagons can be seen as a normal form representation [166, Sect. 3.5].
The following proposition is a modification of [166, Thm. 3] and [166, Thm. 4] so
that it takes integrality of the variables into account.7

Proposition 4.4. Let o ∈ Oct over V = {v1, . . . ,vn}. Then, o = o• iff for all
(±〈〈vi〉〉 ± 〈〈vj〉〉 ≤ d) ∈ o there exists (x1, . . . , xn) ∈ γoct(o) such that ±xi ± xj = d.

The following proposition can be seen as an immediate consequence of Cor. 4.1,
Prop. 4.2, and Prop. 4.4.

Proposition 4.5. Let ϕ ∈ ℘(℘(V)) denote a formula over V = {v1, . . . ,vn}. Then
αV

oct(ϕ) ∈ Oct is tightly closed, i.e., αV
oct(ϕ) = (αV

oct(ϕ))•.

Proof. Let o = αV
oct(ϕ) and assume o 6= o•. Without loss of generality, assume a

redundant constraint λ1 · 〈〈v1〉〉+ λ2 · 〈〈v2〉〉 ≤ d, which entails that (v1, v2, . . . , vn) ∈
γVoct(o) such that λ1 · v1 + λ2 · v2 = d does not exist, following from Prop. 4.4. Then,
ϕ ∧ (λ1 · 〈〈v1〉〉+ λ2 · 〈〈v2〉〉 = d) is unsatisfiable, which contradicts Cor. 4.1.

However, tightly closed octagons can negatively affect the performance of abstract in-
terpretations since closed systems will typically contain many redundant constraints.
To improve the efficiency of octagonal abstract interpretations (or guard evaluation
in our case), these octagonal systems should be transformed into a so-called reduced
form, a representation that was proposed by Bagnara et al. [7]. Correctness and
optimality of Alg. 8 follows directly from Prop. 4.2, Prop. 4.5, and the structure of
the octagon abstract domain.

Corollary 4.3. Let ϕ denote a formula and V = {v1, . . . ,vn}. Further, let G =
(℘(Zn), γoct, αoct,Oct) denote a Galois connection between concrete states and the
domain of octagons as defined in [166, Sect. 2.3]. Then αV

oct(ϕ) = sbt(ϕ,G).

7Observe that Miné [166] assumes non-emptiness of octagons for his algorithms. We omit this
detail because only satisfiable formulae ϕ are abstracted, which entails that αV

oct(ϕ) is non-empty.

77

4 Automatic Abstraction of Bit-Vector Formulae

-4 -3 -2 -1 1 2 3 4

-2

-1

0

1

2

Figure 4.5: Polyhedral abstraction of y = x div 2 subject to −4 ≤ x ≤ 4

4.2.2 Convex Polyhedra

In our special setting, the abstract domain of convex polyhedra consists of conjunc-
tions of arbitrary linear inequalities over bit-vectors V = {v1, . . . ,vn}. Although
its structure appears — at least to some extent — similar to that of the octagon
domain, an abstraction procedure αV

conv(ϕ) for polyhedra differs fundamentally from
αV

oct(ϕ). Recall that a key issue in the design of αV
oct(ϕ) is to avoid the join toct

of two octagons altogether, which is achieved by analyzing template constraints
±〈〈vi〉〉 ± 〈〈vj〉〉 ≤ d one after another. Such a strategy is not possible for convex
polyhedra because neither is the number of inequalities known before the analysis,
nor are the coefficients in each inequality.

Worked Example

Consider a formula ϕ ∈ ℘(℘(V)) that encodes the solutions from Fig. 4.5 over
V = {x,y}. From now on, we refer to the domain of convex polyhedra over bit-
vectors with a signed interpretation as Conv. Further, let tconv : Conv×Conv→ Conv
denote the join of two polyhedra, and αZn

conv : ℘(Zn) → Conv the convex hull of a
set of points. We invoke a solver on ϕ by applying the minimization/maximization
scheme from Alg. 1 to ϕ in each axis (〈〈x〉〉 and 〈〈y〉〉 in this case). However, rather
than using the extremal values of 〈〈x〉〉 and 〈〈y〉〉 separately (which is akin to a box or
interval abstraction), we extract entire models m : V → Z that satisfy the respective
extremal value. The key idea behind using minimization/maximization is to obtain
extremal values which span an extended polyhedron, rather than computing the
polyhedral abstraction of a model m : V → Z directly. Intuitively, we aim to find
models that represent vertices of the enclosing convex shape, which is advantageous
over strategies that enumerate interior points. We further observe that intermediate

78

4.2 Symbolic Abstractions for Bit-Vectors

(a) c1 (b) c2

(c) c3

Figure 4.6: c1, c2, and c3 after the first three iterations of polyhedral abstraction

results for extremal values provide potential to guide the search for other variables;
for instance, if a model m1 indicates an extremal solution for 〈〈x〉〉, then a model
m2 for a maximal value of 〈〈y〉〉 clearly satisfies m2(y) ≥ m1(y). Interleaving
polyhedral abstraction with minimization/maximization thus dovetails with the
desire to converge onto the polyhedral abstraction within few iterations. We obtain
two models m1 : V → Z and m2 : V → Z defined as m1 = {〈〈x〉〉 = 4, 〈〈y〉〉 = 2}
and m2 = {〈〈x〉〉 = −4, 〈〈y〉〉 = −2}. The polyhedral abstraction of m1 and m2,
denoted c1, is defined (see Fig. 4.6(a)):

c1 = αZn

conv

({
(m1(x),m1(y)),
(m2(x),m2(y))

})
=

〈〈y〉〉 ≥ −2 ∧
〈〈y〉〉 ≤ 2 ∧
〈〈y〉〉 = 1

2 · 〈〈x〉〉

In the next iteration, we pass ϕ∧¬c1 to a solver to give m3 = {〈〈x〉〉 = −3, 〈〈y〉〉 = −1}
and m4 = {〈〈x〉〉 = 3, 〈〈y〉〉 = 1}. These models are represented as a polyhedron
(cp. Fig. 4.6(b)) which is joined with c1 to give:

c2 =

{
〈〈y〉〉 ≤ 〈〈x〉〉+ 2 ∧ 〈〈y〉〉 ≥ 〈〈x〉〉 − 2 ∧
〈〈y〉〉 ≤ 3

7 · 〈〈x〉〉+ 2
7 ∧ 〈〈y〉〉 ≥ 3

7 · 〈〈x〉〉 − 2
7

}

In a third iteration, we pass ϕ ∧ ¬c2 to a solver, giving models m5 = {〈〈x〉〉 =
−1, 〈〈y〉〉 = 0} and m6 = {〈〈x〉〉 = 1, 〈〈y〉〉 = 0}. Again, representing m5 and m6 as a

79

4 Automatic Abstraction of Bit-Vector Formulae

Algorithm 9 αV
conv : ℘(℘(V))→ Conv

Input: ϕ ∈ ℘(℘(V))
Output: c ∈ Conv such that ϕ |= c

1: c← ⊥conv

2: while ϕ ∧ ¬c is satisfiable do
3: p← ∅
4: for v ∈ V do
5: `← minimum(ϕ ∧ ¬c,v)
6: u← maximum(ϕ ∧ ¬c,v)
7: m` ← model of ϕ ∧ (〈〈v〉〉 = `)
8: mu ← model of ϕ ∧ (〈〈v〉〉 = u)
9: p← p ∪ {(m`(v1), . . . ,m`(vn)), (mu(v1), . . . ,mu(vn))}

10: end for
11: c← c tconv α

Zn

conv(p)
12: end while
13: return c

convex polyhedron and joining the abstraction with c2 yields a new result:

c3 =

〈〈y〉〉 ≤ 〈〈x〉〉+ 2 ∧ 〈〈y〉〉 ≥ 〈〈x〉〉 − 2 ∧
〈〈y〉〉 ≤ 1

2 · 〈〈x〉〉+ 1
2 ∧ 〈〈y〉〉 ≥ 2

5 · 〈〈x〉〉 − 2
5 ∧

〈〈y〉〉 ≤ 4
3 · 〈〈x〉〉+ 4

3 ∧ 〈〈y〉〉 ≥ 1
2 · 〈〈x〉〉 − 1

2

Finally, ϕ augmented with ¬c3 is unsatisfiable, which proves ϕ |= c3. The polyhedron
c3 thus over-approximates ϕ and the procedure terminates (cp. Fig. 4.6(c)). It is
noteworthy that the algorithm enumerates exactly the vertices of c3.

Algorithm

A formalization of the algorithm is given in Alg. 9. The procedure takes as input ϕ ∈
℘(℘(V)) and initializes a polyhedron c ∈ Conv, which represents the intermediate
results, to ⊥conv. An outer loop is then executed as long as ϕ is not entailed by c,
which is tested by checking ϕ ∧ ¬c for satisfiability. Within this loop, minimization
and maximization of each v ∈ V is performed subject to ϕ ∧ ¬c. All extremal
points are collected in p ⊆ Zn with |p| ≤ 2 · |V |, which is eventually joined with c.
Computing the join has exponential complexity in the worst case, we thus do not
directly join c and p whenever a solution is found, but rather defer the join until all
v ∈ V have been treated.

80

4.2 Symbolic Abstractions for Bit-Vectors

4.2.3 Non-Optimal Polyhedral Abstraction

Despite the optimized solving strategy based on extremal values, obtaining an
optimal polyhedral abstraction may still be prohibitively expensive. As an example,
suppose ϕ ∈ ℘(℘(V)) characterizes models that imply a circular or parabolic
shape, thereby inducing hundreds of inequalities. The algorithm enumerates these
inequalities one after another, which is very costly in terms of runtime.

Mixing Polyhedra and Octagons

To approach this problem of high computational cost, one could apply the following
(sub-optimal) strategy: (1) stop polyhedral abstraction once some threshold (e.g.,
a timeout) is reached (with intermediate result c such that ϕ 6|= c), (2) compute
an octagonal abstraction o = αV

oct(ϕ ∧ ¬c), and (3) join c and o. Compared to
polyhedral abstraction αV

conv(ϕ), the computation of an octagonal abstraction αV
oct(ϕ)

has predictable cost (cp. Prop. 4.3), as the maximum number of SAT calls is bounded
through the bit-width and the number of constraints. Then, c tconv o constitutes a
polyhedral over-approximation of ϕ with the following ordering in precision:

αV
poly(ϕ) vconv (c tpoly o) vconv αV

oct(ϕ)

Example 4.5. Assume we stop αV
conv(ϕ) of ϕ as in the worked example after the

first iteration, giving c1 as defined in Fig. 4.6(a). Then,

αV
oct(ϕ ∧ ¬c1) =

−3 ≤ 〈〈x〉〉 ≤ 3 ∧
−1 ≤ 〈〈y〉〉 ≤ 1 ∧
−2 ≤ 〈〈x〉〉 − 〈〈y〉〉 ≤ 2

as depicted in Fig. 4.7(a). Then, c1tconv(αV

oct(ϕ∧¬c1)), which is given in Fig. 4.7(b),
is more precise than αV

oct(ϕ), but less precise than αV
conv(ϕ) (cp. Fig. 4.6(c)).

Relaxing Inequalities in Template Polyhedra

Combining convex polyhedra with octagons provides one degree of freedom when
scaling the computational cost of polyhedral abstraction αV

conv(ϕ). Another direction
is to stop polyhedral abstraction prematurely, use an intermediate result of αV

conv(ϕ)
to form a template polyhedron [74], and then relax the template inequalities towards
a sound abstraction. We illustrate this approach using an example.

Example 4.6. Consider again the unsound intermediate result c1 given in Fig. 4.6(a):

c1 =

{
〈〈y〉〉 ≥ −2 ∧ 〈〈y〉〉 − 1

2 · 〈〈x〉〉 ≤ 0 ∧
〈〈y〉〉 ≤ 2 ∧ −〈〈y〉〉+ 1

2 · 〈〈x〉〉 ≤ 0

}

81

4 Automatic Abstraction of Bit-Vector Formulae

(a) αV
oct(ϕ ∧ ¬c1) (b) c1 tconv (αV

oct(ϕ ∧ ¬c1))

Figure 4.7: Non-optimal polyhedral abstraction of y = x div 2 subject to −4 ≤
x ≤ 4; after the first iteration, polyhedral abstraction is stopped, giving
an under-approximation c1, which is then relaxed using αV

oct(ϕ ∧ ¬c1)

Figure 4.8: Relaxing αV
conv(ϕ) using template constraints

As an alternative to computing αV
oct(ϕ∧¬c1), we take the left-hand sides of inequalities

in c1 as templates, which are parameterized by constants d1, . . . , d4. Transforming
the coefficients into integral ones, the template polyhedron has the form:

t =

{
−〈〈y〉〉 ≤ d1 ∧ 2 · 〈〈y〉〉 − 〈〈x〉〉 ≤ d3 ∧
〈〈y〉〉 ≤ d2 ∧ −2 · 〈〈y〉〉+ 〈〈x〉〉 ≤ d4

}
To converge onto a sound polyhedral abstraction of ϕ starting from c1, we maximize
di in each constraint of t separately using αlin−exp from Alg. 7. This operation gives:

t =

〈〈y〉〉 ≥ −2 ∧
〈〈y〉〉 ≤ 2 ∧
2 · 〈〈y〉〉 − 〈〈x〉〉 ≤ 1 ∧
2 · 〈〈y〉〉 − 〈〈x〉〉 ≥ −1

 =

−〈〈y〉〉 ≤ 2 ∧
〈〈y〉〉 ≤ 2 ∧
2 · 〈〈y〉〉 − 〈〈x〉〉 ≤ 1 ∧
−2 · 〈〈y〉〉+ 〈〈x〉〉 ≤ 1

The result, which features four more integral solutions (−3,−2), (−1,−1), (1, 1),
and (3, 2), is given in Fig. 4.8.

A procedure relax-conv : (℘(℘(V))×Conv)→ Conv that implements this strategy
is given in Alg. 10, again based on the assumption that inequalities

∑n
i=1 λi ·〈〈vi〉〉 ≤ d

82

4.2 Symbolic Abstractions for Bit-Vectors

Algorithm 10 relax-conv : (℘(℘(V))× Conv)→ Conv

Output: t ∈ Conv such that ϕ |= γconv(o)
1: c′ ← make integral coefficients(c)
2: t← >conv

3: for each inequality
∑n

i=1 λi · 〈〈vi〉〉 ≤ d do
4: d← αV

lin−exp(ϕ,
∑n

i=1 λi · 〈〈vi〉〉)
5: t← t uconv (

∑n
i=1 λi · 〈〈vi〉〉 ≤ d)

6: end for
7: return t

are appropriately sign-extended to prevent wraps in the expression
∑n

i=1 λi · 〈〈vi〉〉.
With k template inequalities on input and a length w′ ≥ w of the sign-extended
bit-vectors, the algorithm requires k calls of αlin−exp which, in turn, requires w′ calls
to a solver. Procedure relax-conv thus calls a solver k · w′ times, and the output
polyhedron confers the same number of inequalities as the input.

Comparison To conclude the discussion, we observe that relaxation using templates
and polyhedral abstraction paired with octagons yield incomparable yet sound
results. Hence, if c1 and c2 are convex polyhedra obtained using both non-optimal
techniques, then neither c1 vconv c2 nor c2 vconv c1. However, with αV

conv(ϕ) vconv c1

and αV
conv(ϕ) vconv c2, we deduce αV

conv(ϕ) vconv (c1 uconv c2). There is thus no
formal argument that precludes combining c1 and c2 to obtain a tighter abstraction.

4.2.4 Arithmetical Congruences

Octagons have the ability to describe a limited class of convex shapes, which also
can be seen as a form of contiguous ranges of variables. A similar observation
holds for convex polyhedra, even though they can express a more general class of
geometric shapes. A different class of domain, which determines non-convex strides,
is that of arithmetical congruences [114]. Given a bit-vector v ∈ V with a value
set {v1, . . . , vk} ∈ Val, an arithmetical congruence of 〈〈v〉〉 is defined by a constant
c ∈ Z and a modulus m ∈ N such that {v1, . . . , vn} ⊆ {c + k ·m | k ∈ Z}. In this
case, we shortly write 〈〈v〉〉 ≡m c. Arithmetical congruences have been highlighted
as valuable for binary analysis, e.g., for memory access analysis [9, Sect. 3.1].8

8Note that Balakrishnan and Reps [9, 195] define the abstract domain of strided intervals m[`, u],
which has the concretization {x | ` ≤ x ≤ u ∧ x = ` + k · m}, rather than considering
congruences directly. For example, a strided interval 4[1020, 1028] then defines the concrete
values {1020, 1024, 1028}. However, their definition is isomorphic to the reduced product domain
of intervals and arithmetical congruences, and can thus also be derived using the techniques
presented in this thesis.

83

4 Automatic Abstraction of Bit-Vector Formulae

Algorithm 11 αV
a-cong : ℘(℘(V))→ A-Cong

Input: ϕ ∈ ℘(℘(V))
Output: 〈〈v〉〉 ≡m c ∈ A-Cong

1: (m, c)← (0,⊥)
2: while ϕ is satisfiable do
3: m← model of ϕ
4: if c = ⊥ then
5: c←m(v)
6: else
7: v ∈ γ(〈〈x〉〉 ≡m c)
8: d← abs(m(v)− v)
9: m← gcd(m, d)

10: end if
11: ϕ← ϕ ∧ ¬(〈〈x〉〉 ≡m c)
12: end while
13: c← c mod m
14: return 〈〈v〉〉 ≡m c

Example 4.7. To illustrate the benefit of congruences in low-level code analysis,
consider ASR R0, which shifts register R0 to the right by one position. Assume
unsigned registers of width 8. The instruction has two modes of operation: overflow
occurs if the least significant bit of R0 is set on input; otherwise, ASR R0 behaves
regularly. Then, abstracting the input r0 using intervals gives:

regular : 〈r0〉 ∈ [0, 254] overflow : 〈r0〉 ∈ [1, 255]

By way of comparison, the following arithmetical congruences represent feasible
input values of R0 in each mode exactly:

regular : 〈r0〉 ≡2 0 overflow : 〈r0〉 ≡2 1

The value sets described by 〈r0〉 ≡2 0 and 〈r0〉 ≡2 1, respectively, are disjoint,
whereas the intervals contain almost as many spurious as legitimate values.

Algorithm

A dedicated procedure that computes an arithmetical congruence of a bit-vector
v ∈ V subject to ϕ ∈ ℘(℘(V)) is given in Alg. 11. Its output is the least arithmetical
congruence which describes those values of 〈〈v〉〉 that satisfy ϕ. Observe that the
algorithm is independent of whether v is interpreted as signed or unsigned; for an

84

4.2 Symbolic Abstractions for Bit-Vectors

unsigned interpretation, all occurrences of 〈〈·〉〉 are replaced by 〈·〉. First, line 2
initializes the congruence 〈〈v〉〉 ≡m c, which is represented by a pair (m, c), to (0,⊥),
representing the infeasible system with γ(〈〈v〉〉 ≡m c) = ∅. Then, the algorithm
iterates over models of ϕ. In the first iteration (lines 4 and 5), the algorithm
assigns a model m(v) obtained using SAT solving to c, which is interpreted as the
displacement of the congruence. Since m = 0, 〈〈v〉〉 ≡m c describes a single value {c}.
Then, ϕ is restricted to values of 〈〈v〉〉 that do not equal c. In the second iteration,
the difference d between c and a new model m(v) is computed and |d| is used as
the modulus since gcd(0, d) = |d|. Again, a disequality is added to prevent the
solutions of γ(〈〈v〉〉 ≡m c) being found. In the remaining iterations, the statement
m← gcd(m, d) refines the modulus (since gcd(m, d) < m) and the loop terminates
once an unsatisfiable formula is encountered. Before outputting the result, the
representation is simplified using the identity 〈〈v〉〉 ≡m c = 〈〈v〉〉 ≡m (c mod m).

Example 4.8. Consider ϕR from Ex. 4.7, which describes regular operation of ASR
R0. Suppose R0 is interpreted as unsigned. In the first iteration of Alg. 11, a solver
provides 〈r0〉 = 4, hence (m, c) = (0, 4). Then, ϕ ∧ ¬(〈r0〉 ≡0 4) is passed to the
solver, being equivalent to ϕ ∧ (〈r0〉 6= 4). The solver responds with a model that
defines 〈r0〉 = 8, which entails d = 4 and thus (m, c) = (4, 4). Next, ϕ∧¬(〈r0〉 ≡4 4)
gives 〈r0〉 = 10, from which we compute (m, c) = (2, 4). This result is equivalent to
〈r0〉 ≡2 4, which is simplified to 〈r0〉 ≡2 0 in line 13 of Alg. 11.

4.2.5 Affine Equalities

Affine equations [136, 170] are related to linear congruence equations [116, 171, 172],
which have the form

∑n
i=1 ci · 〈〈vi〉〉 ≡m d, not to be confused with arithmetical

congruences. Here, m denotes the modulus of the linear congruence equation. Indeed,
the former domain is a special case of the latter where the modulus m is 0. This
suggests adapting an abstraction technique for bit-vector formulae that discovers
congruence relationships between the propositional variables of a given formula [145,
Fig. 2]. In our setting, however, the problem is different. It is that of computing
an affine word-level abstraction of ϕ defined over bit-vectors V = {v1, . . . ,vn}. As
before, we do not aspire to derive relationships that involve intermediate variables,
and we assume that each vi is signed. The algorithm shall eventually compute the
affine hull of a set of solutions of V subject to ϕ [170, Sect. 3].

Definition 4.2. Without loss of generality, let G ⊆ Qn. The affine hull of G is
defined:

aff(G) = {∑m
i=1 λi · gi | m ≥ 1, gi ∈ G,λi ∈ Q,

∑m
i=1 λi = 1}

Intuitively, aff(G) corresponds to the affine sub-space generated by a set of points
G. Further, Müller-Olm and Seidl [170, Lem. 1] have shown that:

85

4 Automatic Abstraction of Bit-Vector Formulae

Lemma 4.1. Let {g1, . . . , gm} ∈ ℘(Qn). Then, aff({g1, . . . , gm}) =
⊔n
i=1{aff({gi})}.

Suppose that {g1, . . . , gm} ∈ ℘(Qn) denotes all models of ϕ. The remaining challenge
is then to efficiently compute k affine-independent models h1, . . . , hk ∈ Qn with
k ≤ m such that aff({h1, . . . , hk}) = aff({g1, . . . , gm}). Such a set {h1, . . . , hk} is
called an affine basis.

Proposition 4.6. Let {g1, . . . , gm} ∈ ℘(Qn) be defined as above. Then, there exists
{h1, . . . , hk} ⊆ {g1, . . . , gm} with k ≤ n+ 1 such that:

aff({h1, . . . , hk}) = aff({g1, . . . , gm})

Proof. Observe that aff(G) defines an affine sub-space of Qn. Correctness of the
proposition follows from the fact that the height of the domain is n+ 1, where n
is the number of variables, corresponding to the dimension of the induced affine
sub-space. Since (k − 1)-dimensional affine spaces can be represented using k affine-
independent points, there exists a smallest (yet not unique) subset {h1, . . . , hk}
of {g1, . . . , gm} that induces the same affine hull as {g1, . . . , gm}, and therefore,
aff({h1, . . . , hk}) = aff({g1, . . . , gm}) as desired.

Recall that there exist different approaches to representing affine relations, and even
some controversy [170, Sect. 8]. In his seminal work, Karr [136, Sect. 2.1] represented
affine spaces as the kernel of an affine transformation, whereas Müller-Olm and
Seidl [170, Sect. 1] represent affine spaces using basis vectors. However, our work is
concerned with computing transformers over V = {v1, . . . ,vn}, which we interpret
as the vector of signed interpretations of the vi, i.e., V = (〈〈v1〉〉, . . . , 〈〈vn〉〉). Such
a transformation can straightforwardly be represented as A · V = b for A ∈ Qm×n

and b ∈ Qn or, equivalently, as a matrix [A | b] ∈ Qm×(n+1) (cp. [170, Sect. 2]).

Example 4.9. Suppose G = {(0, 1), (1, 2), . . . , (254, 255)} ⊆ Q2 over bit-vectors
V = (v,v′). The affine hull of G can be represented as an 1× 3 matrix as follows:

aff(G) =
[

1 −1 −1
]

An equivalent representation is 〈〈v〉〉′ = 〈〈v〉〉 + 1. Observe that we also have
{(0, 1), (1, 2)} ⊆ G and aff({(0, 1), (1, 2)}) = aff(G).

To keep this chapter self-contained, we formally define the join of two matrices,
based on [170, Sect. 3.2] and [144, Sect. 3].

Definition 4.3. Without loss of generality, let [A1|b1] ∈ Qm1×(n+1) and [A2|b2] ∈
Qm2×(n+1) represent two affine systems over n variables. With I ∈ Qm×n denoting

86

4.2 Symbolic Abstractions for Bit-Vectors

the identity matrix, define [A|b] ∈ Q(m1+m2+n+1)×(3·n+3) as:

[A | b] =

1 1 0 0 0 1
−b1 0 A1 0 0

0 −b2 0 A2 0 0
0 0 −I −I I 0

The join [A1|b1] taff [A2|b2] is then found from [A | b] by (1) triangularizing [A | b]
to give [A′ | b′], and (2) eliminating from [A′ | b′] those rows for which the first
non-zero coefficient is found in the first 2 · n+ 2 columns. Triangularization itself
amounts to computing Gaussian elimination.

Example 4.10. Consider two affine systems [A1|b1] and [A2|b2] defined as:

[A1 | b1] =

 1 0 0 0
0 1 0 0
0 0 1 2

 [A2 | b2] =

 1 0 0 −1
0 1 0 0
0 0 1 0

With Def. 4.3, we put:

[A | b] =

1 1 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
−2 0 0 0 1 0 0 0 0 0 0 0

0 −1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0

0 0 −1 0 0 −1 0 0 1 0 0 0
0 0 0 −1 0 0 −1 0 0 1 0 0
0 0 0 0 −1 0 0 −1 0 0 1 0

Putting A into triangular form to give A′ and eliminating from A′ all except the last
two rows (the leading 7 rows have non-zero coefficients in the first 8 columns) yields:

[A1|b1] taff [A2|b2] =

[
2 0 −1 −2
0 1 0 0

]
Algorithm

Algorithm 12 gives a technique for computing a word-level abstraction αV
aff(ϕ) of

V = {v1, . . . ,vn} subject to ϕ. This formulation is equivalent to computing the
affine hull aff(G) =

⊔
g∈G aff(g) of the set G = {g ∈ Qn | g |= ϕ} of models of ϕ

(cp. [145, Sect. 2]). In what follows, interpret V as the n-ary vector defined as

87

4 Automatic Abstraction of Bit-Vector Formulae

Algorithm 12 αV
aff(ϕ) : ℘(℘(ϕ))→ Aff

1: [A | b]← [0, . . . , 0 | 1]
2: i← 0
3: r ← 1
4: while i < r do
5: (a1, . . . , an, br−i)← row([A | b], r − i)
6: ψ ←∑n

i=1 ai · 〈〈vi〉〉 6= br−i
7: if ϕ ∧ ψ is satisfiable then
8: m← model of ϕ ∧ ψ
9: [A′ | b′]← [A | b] taff [Id | (m(v1), . . . ,m(vn))T]

10: [A | b]← triangular([A′ | b])
11: r ← number of rows([A | b])
12: else
13: i← i+ 1
14: end if
15: end while
16: return [A | b]

V = (〈〈v1〉〉, . . . , 〈〈vn〉〉). Affine equations over V are represented with a matrix
[A | b] ∈ Qm×(n+1) where A ∈ Qm×n and b = (b1, . . . , bm) ∈ Qm, which we interpret
as defining the set:

{(〈〈v1〉〉, . . . , 〈〈vn〉〉) ∈ [−2w−1, 2w−1 − 1]n | A · V = b}
The algorithm relies on a propositional encoding for an affine disequality constraint∑n

i=1 ai · 〈〈vi〉〉 6= br−i where a1, . . . , an, br−i ∈ Q (cp. Prop. 4.1). In the algorithm,
the formula that encodes

∑n
i=1 ai · 〈〈vi〉〉 6= br−i is denoted ψ (see line 6). Apart from

ψ, the abstraction algorithm is essentially the same as that proposed for bit-wise
linear congruences [145, Fig. 2]. The algorithm starts with an unsatisfiable constraint∑n

i=1 0 · 〈〈vi〉〉 = 1, which corresponds to ⊥aff, the bottom element in the lattice of
affine equalities. This constraint is successively relaxed by merging it with a series
of affine systems that are derived by SAT (or SMT) solving. The truth assignment
m delivered by the solver is considered to be a map m : V → Z. The model m
defines a Boolean value to each propositional variable used in ϕ. If applied to a
w-bit vector of variables such as v = (v[0], . . . ,v[w − 1]), m yields a binary vector.
Following from Def. 3.2, such a binary vector can then be interpreted as a signed
number to give a value in the range [−2w−1, 2w−1 − 1]. This construction is applied
in lines 5-8 to find a vector (m(v1), . . . ,m(vn)) ∈ [−2w−1, 2w−1− 1]n which satisfies
both, the disequality

∑n
i=1 ai · 〈〈vi〉〉 6= br−i and the formula ϕ.

The algorithm is formulated in terms of some auxiliary functions: row([A|b], i)
extracts row i from the matrix [A|b] where the first row is taken to be row 1;

88

4.2 Symbolic Abstractions for Bit-Vectors

triangular([A|b]) puts [A | b] into an upper triangular form using Gaussian
elimination [170]; number of rows([A|b]) returns the number of rows in [A|b]. The
rows of [A|b] are considered in reverse order. Each iteration of the loop tests whether
there exists a truth assignment of ϕ that also satisfies the formula ψ constructed
from row r − i of [A|b]. If ψ is unsatisfiable, then every model of ϕ satisfies the
affine equality

∑n
i=1 ai · 〈〈vi〉〉 = br−i represented by row r − i of [A|b]. Hence the

equality constitutes a description of the formula. The counter i is then incremented
to examine a row which, thus far, has not been considered. Conversely, if the
instance is satisfiable, then the solution is represented as a matrix

[Id|(〈〈m(v1)〉〉, . . . , 〈〈m(vn)〉〉)T] =

1 0 0 . . . 0 m(v1)
0 1 0 . . . 0 m(v2)
.
0 0 0 . . . 1 m(vn)

which is merged with [A|b]. Merge is an O(n3) operation [136], which yields a new
summary [A′|b′] that enlarges [A|b] with the fresh solution. The next iteration
of the loop will either relax [A|b] by finding another solution, or verify that the
current row describes ϕ. Triangular form ensures that all rows beneath the one
under consideration are not affected by the merge. At most n + 1 iterations are
required since the affine systems constitute an ascending chain over n variables [136].

Example 4.11. Consider ϕ, which encodes 〈〈z〉〉 = 2 · (〈〈v〉〉+ 1) + 〈〈y〉〉 subject to
additional constraints −32 ≤ 〈〈v〉〉 ≤ 31 and −32 ≤ 〈〈y〉〉 ≤ 31, defined as:

ϕ =

(¬w[0]) ∧

(
∧6
i=0w[i+ 1]↔ (v[i]⊕ ∧i−1

j=0v[j])
)

∧
(¬x[0]) ∧(
∧6
i=0x[i+ 1]↔ (w[i] ∧ x[i]) ∨ (w[i] ∧ y[i]) ∨ (x[i] ∧ y[i])

)
∧(

∧7
i=0z[i]↔ w[i]⊕ x[i]⊕ y[i]

)
∧

((v[7]↔ v[6]) ∧ (v[6]↔ v[5])) ∧ ((y[7]↔ y[6]) ∧ (y[6]↔ y[5]))

Suppose v1 = v, v2 = y and v3 = z and take ϕ as input to Alg. 12. Initially,
we have [A | m] = [0 0 0 | 1] = ⊥aff and r − i = 1. Then, in the first
iteration, ψ corresponds to true. Passing ϕ ∧ ψ to a solver gives a model m1, which
can be seen as a map from bit-vectors {v,y, z} to Z (cp. line 8 in Alg. 12), e.g.,
m1 = {〈〈v〉〉 = 0, 〈〈y〉〉 = 0, 〈〈z〉〉 = 2}. This model is then represented as an affine
system [Id | (m1(v),m1(y),m1(z))T]. Joining this system with ⊥aff does not change
the result, and triangularization leaves it unchanged, too. We thus have

[A | b] =

 1 0 0 0
0 1 0 0
0 0 1 2

89

4 Automatic Abstraction of Bit-Vector Formulae

and r = 3. In the second iteration, ψ thus encodes 〈〈z〉〉 6= 2 and we pass ϕ ∧ ψ
to a solver. Suppose the solver provides a model m2 for ϕ ∧ ψ defined as m2 =
〈〈v〉〉 = −1, 〈〈y〉〉 = 0, 〈〈z〉〉 = 0}. As before, this model induces an affine system
[Id|(m2(v),m2(y),m2(z))T], which is joined with [A|b] to give: 1 0 0 0

0 1 0 0
0 0 1 2

 taff

 1 0 0 −1
0 1 0 0
0 0 1 0

 =

[
2 0 −1 −2
0 1 0 0

]
Then, in the third iteration, ψ encodes 〈〈y〉〉 6= 0, and the solver produces:

m3 =
{

v 7→ 0 , y 7→ 1 , z 7→ 3
}

Joining [Id | (m3(v),m3(y),m3(z))T] with [A|b] yields [2 1 − 1 | −2]. Further,
ϕ ∧ (2 · 〈〈v〉〉+ 2 · 〈〈y〉〉 − 〈〈z〉〉 6= −2) is unsatisfiable, and the algorithm thus recovers
2 · 〈〈v〉〉+ 〈〈y〉〉 − 〈〈z〉〉 = −2 from ϕ. Observe that in this example the unsatisfiable
case is first encountered in the final iteration, though this is not always so (in case
of affine abstractions that consist of multiple independent equalities).

We conclude this chapter by stating and proving correctness of Alg. 12, showing
that the method indeed yields an affine matrix that describes the affine hull of ϕ.

Lemma 4.2. Let V = {v1, . . . ,vn} and ϕ ∈ ℘(℘(V)). Further, let G = {q ∈ Zn |
q |= ϕ} denote the models of ϕ. Then, aff(G) = αV

aff(ϕ).

Proof. Let r = number of rows([A|b). Let ej denote the equation
∑n

i=1 ai · 〈〈vi〉〉 =
br−i denote the equation in row r − i of [A|b]. On entry and exit of the while loop
in Alg. 12, [A|b] is in triangular form. Further, the following invariant holds:

aff(G) = (aff(G) taff {ej | 1 ≤ j ≤ r − i}) ∪ {ej | r − i < j ≤ r}
This invariant is clearly satisfied immediately before the while loop. Assume some
model m = (x1, . . . , xn) of ϕ violates ej . The strongest set of affine equations that
satisfies (x1, . . . , xn) as well as every solution to [A|b] is (A · V = v) taff ej . Let
[C|c] be the matrix corresponding to e1, . . . , er−i. Likewise, let [E|e] denote the
matrix corresponding to er−i+1, . . . , er. Then, (a1, . . . , an, br−i) is the last row of
[C|c]. The model m = (x1, . . . , xn) satisfies E ·m = e, but not er−i. Note that
[C|c], [E|e] and [

C c
E e

]
are all in triangular form. The effect of the join taff is to leave [E | e] unchanged
and to remove the last row of [C|c]; for each remaining row of [C|c] the index of
the leading entry remains unchanged. Hence, the upper triangular form of[

C c
E e

]
taff [Id|m]

90

4.2 Symbolic Abstractions for Bit-Vectors

is of the form: [
D d
E e

]
The invariant is thus preserved. Otherwise, each model m of ϕ satisfies er−i and i is
incremented, which clearly preserves the invariant. On exit from the while loop, the
invariant holds together with i ≥ r, which entails aff(G) = αV

aff(ϕ) as desired.

Corollary 4.4. Let V = {v1, . . . ,vn} and ϕ ∈ ℘(℘(V)). Then, αV
aff(ϕ) requires at

most n+ 1 calls to a solver.

4.2.6 Bounded Polynomials

Relaxing linear equalities to non-linear ones provides one degree of freedom for
generalizing updates. Polynomial extensions [170, Sect. 6] have been proposed for
generalizing linear equality analysis, and there is no reason why this technique
cannot be adapted to the problem of abstracting Boolean formulae. A rational
polynomial over variables V = {v1, . . . ,vn} is an equation∑|I|

i=1

(
ci ·Πn

j=1〈〈vi〉〉ei,j
)

= 0

where ei,j ≤ d ∈ N are exponents and I is a set of indices. Such a polynomial can be
represented by its coefficients c = (cI)I∈I ∈ (Qn)I . However, bounded polynomials
over Q still form a linear vector space, which suggests to adapt Alg. 12 to capture
such equalities. The idea is to augment the block with fresh variables specifically
introduced to denote non-linear terms. The terms are drawn from a finite language
of templates that includes monomials up to a fixed degree, e.g., 〈〈r0〉〉2 · 〈〈r1〉〉. Using
linear combinations of the registers and the templates, bounded polynomials can be
represented. It is likewise possible to support exponentials, e.g., involving 2〈r0〉.

Example 4.12. Consider the following basic block which computes the location with
an offset relative to the start location of a two-dimensional array. Here the registers
R0 and R1 represent the row and column coordinates, which are indexed from 0.
Register R2 represents row size, and all registers have a signed interpretation:

MUL R0 R2; ADD R0 R1;

We introduce a single non-linear term 〈〈r0〉〉 · 〈〈r1〉〉. The analysis thus computes
affine relations between 〈〈r0〉〉, 〈〈r1〉〉, 〈〈r2〉〉, 〈〈r0′〉〉, and 〈〈r0〉〉 · 〈〈r2〉〉.

The polynomial hull of ϕ with template monomials S = {s1, . . . , sk} is computed
using Alg. 13. The algorithm is essentially that presented to compute the affine hull
αV

aff(ϕ). However, the key difference is that [A|b] now ranges over n+ k variables
(v1, . . . ,vn, s1, . . . , sk) to represent bit-vectors as well as monomials. After a solver is

91

4 Automatic Abstraction of Bit-Vector Formulae

Algorithm 13 αV
poly(ϕ,S)

1: [A | b]← [0, . . . , 0 | 1]
2: i← 0
3: r ← 1
4: while i < r do
5: (a1, . . . , an, an+1, . . . , an+k, br−i)← row([A | b], r − i)
6: ξ ← (a1, . . . , an, an+1, . . . , an+k) · V 6= br−i
7: if ϕ ∧ ξ is satisfiable then
8: m← model of ϕ ∧ ξ
9: (p1, . . . , pm)← (eval(s1,m), . . . , eval(sk,m))

10: [A′ | b′]← [A | b] tpoly [Id | (m(v1), . . . ,m(vn), p1, . . . , pm)T]
11: [A | b]← triangular([A′ | b])
12: r ← number of rows([A | b])
13: else
14: i← i+ 1
15: end if
16: end while
17: return [A | b]

invoked to find a model (see line 8), concrete values of the monomials are extracted
from m in line 9, which is implemented using an auxiliary function eval that
evaluates a monomial si ∈ S based on m. These valuations are then represented
within the affine matrix in line 10. Observe that monomials are also encoded in the
disequality constraint ξ in line 6. The algorithm thus enumerates models that do not
only violate the linear terms in [A | b], but also the non-linear ones. Further, this
representation allows us to implement the merge tpoly of two polynomial systems as
the merge taff of affine systems, the intrinsics of which have already been discussed.

Example 4.13. Let ϕ = JMUL R0 R2; ADD R0 R1K and S = {〈〈r0〉〉 · 〈〈r2〉〉}. In the
first iteration, Alg. 13 presents ϕ to the solver, which gives a model m1 = {〈〈r0〉〉 =
2, 〈〈r1〉〉 = 4, 〈〈r2〉〉 = 3, 〈〈r0′〉〉 = 10}. Instead of directly representing m1 as an
affine system, an auxiliary variable is introduced whose sole purpose is to represent
s ∈ S. In this case, we have a single monomial 〈〈r0〉〉 · 〈〈r2〉〉. We thus introduce
a variable p = m1(r0) ·m1(r2) = 6. With the variable ordering (r0′, r0, r1, r2, p)
on columns, we obtain the affine system M1 = [A1|b1] ∈ Z6×5 defined as:

M1 =

1 0 0 0 0 10
0 1 0 0 0 2
0 0 1 0 0 4
0 0 0 1 0 3
0 0 0 0 1 6

92

4.2 Symbolic Abstractions for Bit-Vectors

Now the procedure proceeds much like before. The formula ϕ is augmented with the
constraint 〈〈r0〉〉 · 〈〈r2〉〉 6= 6.9 Passing the augmented formula to a SAT solver yields
a new model m2 = {〈〈r0〉〉 = 3, 〈〈r1〉〉 = 4, 〈〈r2〉〉 = 8, 〈〈r0′〉〉 = 28}, which implies
p = 24. We thus represent m2 as an 6× 5 matrix M2 and compute the merge:

M1 taff M2 =

1 0 0 0 0 10
0 1 0 0 0 2
0 0 1 0 0 4
0 0 0 1 0 3
0 0 0 0 1 6

 t

1 0 0 0 0 28
0 1 0 0 0 3
0 0 1 0 0 4
0 0 0 1 0 8
0 0 0 0 1 24

=

1 −18 0 0 0 −26
0 5 0 −1 0 7
0 0 1 0 0 4
0 0 0 18 −5 24

In the following iteration, the formula is thus augmented with 18 · 〈〈r2〉〉 − 5 · 〈〈r0〉〉 ·
〈〈r2〉〉 6= −24, which then gives another model m3 = {〈〈r0〉〉 = 2, 〈〈r1〉〉 = 2, 〈〈r2〉〉 =
2, 〈〈r0′〉〉 = 6} that entails p = 4. Hence, we obtain:

(M1 taff M2) taff M3 =

1 −18 0 0 0 −26
0 5 0 −1 0 7
0 0 1 0 0 4
0 0 0 18 −5 24

 t

1 0 0 0 0 6
0 1 0 0 0 2
0 0 1 0 0 2
0 0 0 1 0 2
0 0 0 0 1 4

=

 1 −18 −2 0 0 −34
0 10 1 −2 0 18
0 0 4 −18 5 −8

By augmenting ϕ with 4 · 〈〈r1〉〉 − 18 · 〈〈r2〉〉+ 5 · 〈〈r0〉〉 · 〈〈r2〉〉 6= −8, we generate yet
another model m4 = {〈〈r0〉〉 = 4, 〈〈r1〉〉 = 5, 〈〈r2〉〉 = 2, 〈〈r0′〉〉 = 13}. Joining M4

with (M1 taff M2) taff M3 then gives:

((M1 taff M2) taff M3) taff M4 =

[
12 −64 0 −70 10 −152
0 64 −12 70 −23 152

]
Proceeding with one more iteration, we obtain:

(((M1 taff M2) taff M3) taff M4) taff M5 =
[

1 0 −1 0 −1 0
]

Since adding another disequality yields an unsatisfiable system, the equation

〈〈r0′〉〉 = 〈〈r1〉〉+ s = 〈〈r1〉〉+ 〈〈r0〉〉 · 〈〈r2〉〉
characterizes the polynomial input-output relation described by this block.

9Encodings for such monomials and polynomials in propositional Boolean logic have been reported
by Fuhs et al. [101] in the context of termination analysis. Such constraints are also directly
supported by SMT solvers such as Z3 which accept specifications in bit-vector arithmetic [90].

93

4 Automatic Abstraction of Bit-Vector Formulae

4.3 Flexible Bit-Widths by Extrapolation

If abstractions are inferred for finite bit-vectors, then the bit-width w of the machine
architecture manifests itself within the abstractions. As an example, consider the
instruction INC R0. With registers of width 8, 16, and 32, our technique computes
three guarded updates using interval abstraction αV

int and affine abstraction αV
aff:

8-bit :

{
(−27 ≤ 〈〈r0〉〉 ≤ 27 − 2) ⇒ (〈〈r0′〉〉 = 〈〈r0〉〉+ 1)
(27 − 1 ≤ 〈〈r0〉〉 ≤ 27 − 1) ⇒ (〈〈r0′〉〉 = −27)

16-bit :

{
(−215 ≤ 〈〈r0〉〉 ≤ 215 − 2) ⇒ (〈〈r0′〉〉 = 〈〈r0〉〉+ 1)
(215 − 1 ≤ 〈〈r0〉〉 ≤ 215 − 1) ⇒ (〈〈r0′〉〉 = −215)

32-bit :

{
(−231 ≤ 〈〈r0〉〉 ≤ 231 − 2) ⇒ (〈〈r0′〉〉 = 〈〈r0〉〉+ 1)
(231 − 1 ≤ 〈〈r0〉〉 ≤ 231 − 1) ⇒ (〈〈r0′〉〉 = −231)

These formulae exhibit a high degree in similarity, and can indeed be seen as
parametric in the bit-width w:

w-bit :

{
(−2w−1 ≤ 〈〈r0〉〉 ≤ 2w−1 − 2) ⇒ (〈〈r0′〉〉 = 〈〈r0〉〉+ 1)
(2w−1 − 1 ≤ 〈〈r0〉〉 ≤ 2w−1 − 1) ⇒ (〈〈r0′〉〉 = −2w−1)

This similarity is no coincidence as over- and underflowing behavior often manifests
itself in some relation to −2w−1 and 2w−1 − 1, respectively. If a bit-vector is then
interpreted as a (signed or unsigned) integer, this relation is preserved. The force
of this observation is that formulae for, e.g., 5-bit registers are strictly easier to
solve than those expressed over 64 bits, which suggests to search for a method that
computes guarded updates for small bit-vectors and soundly extrapolates the results
to extended bit-vectors. We conjecture that such a technique may be valuable if (1)
statements that are inherently difficult to handle by SAT and SMT solvers — such
as integer multiplication or division — are part of the analyzed basic block (cp. [148,
Chap. 6.3.1]), or (2) many SAT calls are required to converge onto an abstraction.
Then, solving for formulae that range over, e.g., 5-bit registers is significantly more
efficient than analyzing formulae over 32-bit registers.

Outline To summarize, this chapter presents a technique which identifies constants
within the guarded updates, where octagons and affine equalities are handled sepa-
rately. These constants are then related to the bit-width w using parametric linear
templates. The templates themselves are used to compute a symbolic representa-
tion of the constants d ∈ Z in inequalities such as ±〈〈v1〉〉 ± 〈〈v2〉〉 ≤ d, which is
parametrized by the bit-width w. Template relations for both, octagons and affine
equalities, are drawn from a set of three template constraints which are presented in
Chap. 4.3.1. Afterwards, we discuss how to verify soundness of the induced template
for octagons in Chap. 4.3.2 and for affine equalities in Chap. 4.3.3.

94

4.3 Flexible Bit-Widths by Extrapolation

4.3.1 Templates for Extrapolation

Octagonal constraints and affine updates are of the form ±〈〈vi〉〉 ± 〈〈vj〉〉 ≤ d and
v′ =

∑n
i=1 ci · 〈〈vi〉〉 + d, respectively. We conjecture that d in these equations is

somehow related to the bit-width w using an equality that can be expressed as a
template. Of course, the template has to mimic modular arithmetic and the effects
of the bit-width on signed and unsigned interpretations of bit-vectors.

Definition 4.4. We define template equalities to draw possible symbolic representa-
tions of d from:

T1 = 2w+k + l
T2 = −2w+k + l
T3 = l

We additionally assume −w ≤ k ≤ w.

It is important to note that the template T3 also subsumes the cases where c = 2k+ l
or c = −2k + l, respectively, as both right-hand sides form a constant value. Further,
observe that neither of the above templates defines k and l uniquely.

Example 4.14. Consider the equality 〈〈r0′〉〉 = 〈〈r0〉〉 + 〈〈r1〉〉 + 28 on an 8-bit
machine, which has an analogue 〈〈r0′〉〉 = 〈〈r0〉〉+ 〈〈r1〉〉+ 216 on a 16-bit machine.
Our motivation is to symbolically represent 28 using w = 8, k, and l so as to
extrapolate the 16-bit analogue from the 8-bit equality. Using the template T1, we
could express 28 using different constants:

(w = 8 ∧ k = 0 ∧ l = 0)
(
w = 8 ∧ k = −1 ∧ l = 27

)
Of course, the first one provides the correct template to extrapolate the 16-bit equality.

Our technique thus proceeds by comparing two relations obtained for small bit-
widths, such as 4 and 5 so as to compute unique candidates for each template.

Example 4.15. Suppose affine equalities 〈〈r0′〉〉 = 〈〈r0〉〉+ 〈〈r1〉〉+ 8 and 〈〈r0′〉〉 =
〈〈r0〉〉+ 〈〈r1〉〉+ 16 have been obtained for bit-vectors of width 4 and 5, respectively.
For the template T1, we then obtain:

4-bit : 〈〈r0′〉〉 = 〈〈r0〉〉+ 〈〈r1〉〉+ (24+k + l)
5-bit : 〈〈r0′〉〉 = 〈〈r0〉〉+ 〈〈r1〉〉+ (25+k + l)

We thus obtain the equalities 24+k + l = 8 and 25+k + l = 16. We put

8− 24+k = 16− 25+k

⇔ −24+k = 8− 25+k

⇔ 25+k − 24+k = 8

95

4 Automatic Abstraction of Bit-Vector Formulae

and then compute k = −1, which entails l1 = l2 = 0. The candidate for a 32-bit
equality based on template T1 then has the form:

32-bit : 〈〈r0′〉〉 = 〈〈r0〉〉+ 〈〈r1〉〉+ 232+k + l = 〈〈r0〉〉+ 〈〈r1〉〉+ 231

Proposition 4.7. Without loss of generality, we assume that affine equalities

dw =
∑n

i=1 ci · 〈〈vwi 〉〉 dw+1 =
∑n

i=1 ci · 〈〈vw+1
i 〉〉

for bit-vectors of length w and w + 1, respectively, have been computed. For each
template T1, . . . , T3, we can reformulate the imposed constraints as follows:

T1 : 2w+k+1 − 2w+k = dw+1 − dw
T2 : 2w+k − 2w+k+1 = dw − dw+1

T3 : l = dw

Since dw, dw+1 ∈ Z and −w ≤ k ≤ w ∈ Z, all three forms of constraints can easily
be solved, e.g., by applying logarithmic laws or using a table look-up.

4.3.2 Extrapolation for Octagons

To extrapolate an octagon o ∈ Oct derived from two formulae with small bit-
width, we introduce an oracle Ω : {1, . . . , 3} to (randomly or heuristically) choose a
template. Further, we assume two octagonal constraints λ1 · 〈〈vw1 〉〉+λ2 · 〈〈vw2 〉〉 ≤ dw
and λ1 · 〈〈vw+1

1 〉〉 + λ2 · 〈〈vw+1
2 〉〉 ≤ dw+1 with λ1, λ2 ∈ {−1, 1}. Applying the

transformation discussed in Prop. 4.7 then gives a value for the upper bound in the
32-bit case, denoted d32. The remaining question is that of soundness, namely: Is
λ1 · 〈〈v32

1 〉〉+ λ2 · 〈〈v32
2 〉〉 ≤ d32 an abstraction of bit-vectors v32

1 and v32
2 of length 32?

Proposition 4.8. Let o = λ1 · 〈〈v32
1 〉〉 + λ2 · 〈〈v32

2 〉〉 ≤ d32 denote an octagonal
constraint derived by applying Prop. 4.7 to TΩ. Assume the semantics of the 32-bit
block is described by a formula ϕ. Then ϕ |= o iff ϕ ∧ ¬o is unsatisfiable.

We present a concrete example that highlights the key steps of this construction.

Example 4.16. Consider the instruction ADD R0 R1 in overflow mode, encoded
for different bit-widths by formulae ϕw. For bit-widths 4 and 5, we compute

α
{r0w,r1w}
oct (ϕw) as in Alg. 8 to obtain the following guards:

4-bit: 8 ≤ 〈〈r04〉〉+ 〈〈r14〉〉 ≤ 14
5-bit: 16 ≤ 〈〈r05〉〉+ 〈〈r15〉〉 ≤ 30

Suppose Ω gives a candidate template T1, which we instantiate as:

4-bit: 23 ≤ 〈〈r04〉〉+ 〈〈r14〉〉 ≤ 24 − 2
5-bit: 24 ≤ 〈〈r05〉〉+ 〈〈r15〉〉 ≤ 25 − 2

96

4.4 Experiments

By applying Prop. 4.7 we and octagonal candidate constraint for the 32-bit case:

32-bit: 231 ≤ 〈〈r032〉〉+ 〈〈r132〉〉 ≤ 232 − 2

Passing

ϕ32 ∧ ¬(231 ≤ 〈〈r032〉〉+ 〈〈r132〉〉 ≤ 232 − 2)
= ϕ32 ∧ ((〈〈r032〉〉+ 〈〈r132〉〉 < 231) ∨ (〈〈r032〉〉+ 〈〈r132〉〉 > 232 − 2))

to a solver reveals unsatisfiability, which entails that the induced candidate constraint
indeed abstracts ϕ32.

4.3.3 Extrapolation for Affine Equalities

Applying extrapolation to an affine equality 〈〈v′〉〉 =
∑n

i=1 ci · 〈〈vi〉〉+ d is a straight-
forward adaptation of the algorithm presented for extrapolating octagons. Indeed,
the strategy of applying Prop. 4.7 remains, yet in this case to specify the constant d
in the equality 〈〈v′〉〉 =

∑n
i=1 ci · 〈〈vi〉〉+ d.

Proposition 4.9. Let 〈〈v′〉〉 =
∑n

i=1 ci · 〈〈vi〉〉+ d denote an affine equality derived
by applying Prop. 4.7 to a template TΩ. Assume the semantics of the block over
extended bit-vectors is described by a formula ϕ. Then:

ϕ |= (〈〈v′〉〉 =
∑n

i=1 ci · 〈〈vi〉〉+ d

iff
ϕ ∧ (〈〈v′〉〉 6= ∑n

i=1 ci · 〈〈vi〉〉+ d)

is unsatisfiable.

Indeed, this soundness criterion coincides with the termination criterion implemented
in Alg. 12. Extrapolating an affine equality with a constant d thus amounts to
describing d using a template which is parametric in the bit-width, and then
checking soundness of the transformation a posteriori; this approach is applicable to
polynomial equalities, too. Experimental evidence in Chap. 4.4.8 reveals that it is
often possible to find a parametric representation, and that the approach indeed
decreases runtimes. The overhead induced by choosing templates and identifying
suitable parameters is imperceivable in practice.

4.4 Experiments

We have implemented the abstractions discussed in this section in C++ on top of
the Z3 SMT solver [90]. All experiments were performed on a desktop computer
equipped with a 3.4 GHz dual-core processor and 4 GB of RAM. The operating
system running was Windows 7, and only a single core was used in our experiments.

97

4 Automatic Abstraction of Bit-Vector Formulae

Table 4.2: Details of benchmarks

block #instr.
variables modes

|V in| interm. |V out| overall feasible

ABS 5 1 4 1 18 3
ADD 1 2 0 1 3 3
ADD&ASR 2 2 1 1 6 6
ASR 1 1 0 1 2 2
ASR&ADD 2 1 1 1 4 2
ASR&INC 2 1 1 1 4 2
INC 1 1 0 1 2 2
INC&ABS 6 1 5 1 36 3
INC&ASR 2 1 1 1 4 3
INC&ASR&INC 3 1 2 1 8 5
INC&LSL 2 1 1 1 4 3
ISIGN 7 2 6 1 54 6
LSL 1 1 0 1 2 2
SWAP 3 2 1 2 1 1

4.4.1 Benchmarks

The benchmark set consists of instructions and blocks that implement standard
arithmetic operations (such as increment, addition or shift-left) and ones that
implement more sophisticated bit-twiddling (such as absolute value computation
or the ISIGN function known from the Fortran programming language). The key
statistics for the different blocks are given in Tab. 4.2. First, the table lists the
name of the respective block, followed by the numbers of instructions and variables.
Here, column interm. provides the number of intermediate bit-vectors that were
introduced during static single assignment conversion. Each abstraction mechanism
discussed in the following computes abstractions for all input and output registers;
the intermediate variables are ignored. The last two columns list the number of
overall modes, followed by those that are feasible. We have also executed our
implementation of different blocks from the benchmarks of Schlich [207, Sect. 8],
but have not come across a sequence of instructions that was semantically more
difficult to analyze than ISIGN, which is based on the assembly listing given in
Fig. 4.1 (see [32, Sect. 2.2] for further details on this block). Given a basic block,
we have computed abstractions of the respective block using either abstraction
mechanism presented so far. However, we refrain from giving further results for
value set abstraction as this technique was thoroughly evaluated in Chap. 3.3.

98

4.4 Experiments

4.4.2 Intervals (αV
int)

We first report on αV
int(ϕ), the figures of which are given in Tab. 4.3. The table

gives results on interval abstraction of the input and output bit-vectors handled
separately, as there is no relational dependency to extract. To assess the influence
of the bit-width w on the overall runtime, we have expressed each block using
bit-vectors of length 8, 16, 32, and 64, respectively. The table shows that our
approach generates abstractions in the order of seconds even for 64-bit architectures.
Interestingly, the runtime for each SAT instance increases moderately with the
bit-width; the number of SAT instances itself depends on the bit-width, too. Since
the number of overall instances to be solved is 2 ·w · (|V in|+ |V out|) · f + o, where o
and f denote the numbers of overall modes and feasible modes, respectively, the
moderate increase can be explained solely by the efficiency of the Z3 SMT solver.

4.4.3 Octagons (αV
oct)

To compute relational characterizations of the input and output bit-vectors, we
applied to the more expensive procedure αV

oct(ϕ). Here, we computed octagonal
abstractions for all combinations of input and output bit-vectors. For the example
SWAP, e.g., which has 2 input registers and 2 output registers, this entails that we
have computed abstractions for all 6 combinations of variables. The experimental
results are given in Tab. 4.4. Again, we observe that the cost of increasing the
bit-width for each SAT instance is moderate, whereas the sheer number of instances
has a significant impact on the runtime. For instance, computing an octagon that
describes the relation between the two inputs of ASR&ADD in all six feasible modes
necessitates 9378 SAT instances to be solved for the 64-bit case, requiring 8.48
seconds overall. By way of comparison, an abstraction for 8 bits is derived in 0.25
seconds using 1314 calls to the solver. However, these figures suggest Z3 is able to
solve approximately 1000 SAT instances per second in the 64-bit case, depending
on the complexity of the block itself.

4.4.4 Convex Polyhedra (αV
conv)

Compared to octagonal abstraction αV
oct(ϕ), runtimes for polyhedral abstraction

αV
conv(ϕ) vary strongly. Whereas αV

oct(ϕ) evaluates a fixed number of SAT instances
that is determined through the numbers of (feasible) mode combinations and registers
(as well as their bit-widths), the situation is different for convex polyhedra. Then,
the number of iterations depends on the number of hyperplanes described by ϕ.
For some benchmarks, polyhedral abstraction is significantly faster than octagonal
abstraction. For example, polyhedral abstraction of an ADD instruction stabilizes
in less than 0.5 seconds even in the 64-bit case, compared to 3.51 seconds for
octagons. However, if ϕ describes a non-linear shape (such as the multiplication of

99

4 Automatic Abstraction of Bit-Vector Formulae

Table 4.3: Experimental results for αV
int(ϕ)

block #bits #SAT time block #bits #SAT time

ABS

8 114 0.05
INC &
ABS

8 132 0.05
16 210 0.06 16 228 0.08
32 402 0.11 32 420 0.48
64 786 0.39 64 804 4.24

ADD

8 147 0.04
INC &
ASR

8 52 0.03
16 291 0.07 16 100 0.04
32 579 0.16 32 196 0.08
64 1155 0.70 64 388 0.20

ADD &
ASR

8 294 0.05
INC &
ASR &
INC

8 248 0.04
16 582 0.13 16 488 0.07
32 1058 0.30 32 968 0.11
64 2310 1.34 64 1928 0.38

ASR

8 66 0.02
INC &
LSL

8 100 0.03
16 130 0.03 16 196 0.07
32 258 0.06 32 388 0.17
64 514 0.23 64 772 0.47

ASR &
ADD

8 294 0.09

ISIGN

8 342 0.09
16 582 0.13 16 630 0.12
32 1058 0.14 32 1206 0.32
64 2310 0.39 64 2358 1.25

ASR &
INC

8 68 0.04

LSL

8 66 0.02
16 132 0.06 16 130 0.06
32 260 0.07 32 258 0.08
64 516 0.37 64 514 0.25

INC

8 66 0.05

SWAP

8 65 0.05
16 130 0.05 16 129 0.09
32 258 0.08 32 257 0.13
64 514 0.20 64 513 0.37

100

4.4 Experiments

Table 4.4: Experimental results for αV
oct(ϕ)

block #bits #SAT time block #bits #SAT time

ABS

8 234 0.05
INC &
ABS

8 252 0.05
16 426 0.17 16 444 0.11
32 810 0.76 32 796 0.44
64 1578 4.43 64 1564 1.06

ADD

8 657 0.14
INC &
ASR

8 220 0.04
16 1233 0.52 16 412 0.11
32 2385 2.26 32 796 0.44
64 4689 3.51 64 1564 1.06

ADD &
ASR

8 1168 0.20
INC &
ASR &
INC

8 368 0.06
16 2192 0.61 16 688 0.30
32 4240 2.35 32 1328 0.44
64 8336 7.46 64 2608 1.78

ASR

8 146 0.03
INC &
LSL

8 220 0.04
16 274 0.11 16 412 0.06
32 530 0.14 32 796 0.39
64 1042 0.73 64 1564 0.96

ASR &
ADD

8 1314 0.25

ISIGN

8 486 0.13
16 2466 0.94 16 870 0.45
32 4770 3.81 32 1638 1.41
64 9378 8.48 64 3174 3.13

ASR &
INC

8 148 0.04

LSL

8 146 0.03
16 276 0.09 16 274 0.10
32 532 0.20 32 530 0.25
64 1044 0.88 64 1042 0.72

INC

8 146 0.06

SWAP

8 438 0.16
16 274 0.08 16 822 0.39
32 530 0.48 32 1590 1.74
64 1042 4.24 64 3126 10.69

101

4 Automatic Abstraction of Bit-Vector Formulae

two 32-bit integers), αV
conv(ϕ) typically requires significantly more calls to the solver

than αV
oct(ϕ), frequently leading to timeouts (after 5 minutes). We thus applied two

different heuristics to accelerate polyhedral abstraction:

Mixing Polyhedra and Octagons When polyhedral abstraction is mixed with oc-
tagons, we preempted αV

conv(ϕ) after 1 second and then combined the inter-
mediate polyhedron with an octagonal abstraction. With this strategy, a
polyhedral abstraction was obtained within less than 10 seconds for either
benchmark.

Relaxing Inequalities Here, we set the threshold to 16 inequalities within αV
conv(ϕ),

upon which polyhedral abstraction stopped. The inequalities were then taken
as templates and relaxed using dichotomic search, giving runtimes of less than
8 seconds for each benchmark.

Both heuristics delivered more precise approximations than αV
oct(ϕ), which we

measured by enumerating all models of the resulting abstraction.

4.4.5 Arithmetical Congruences (αV
a-cong)

Analysis of arithmetical congruences as presented in Chap. 4.2.4 does, in contrast
to the other abstraction procedures, not apply an optimized search strategy. This is
because the algorithm relies on a reduction of the modulus in each iteration based
on the greatest common divisor of (1) solutions that are already described by an
intermediate arithmetical congruence and (2) a newly found solution, which ensures
rapid convergence as shown in Tab 4.5. Interestingly, the number of solutions required
to compute an abstraction varies with differing bit-widths, although unpredictably.
To illustrate, consider a formula over a bit-vector x with models 〈x〉 = 0, 〈x〉 =
2, . . . , 〈x〉 = 254. In the 8-bit case, the solver may first produce 〈x〉 = 0 and 〈x〉 = 8
before 〈x〉 = 2 is found, which then induces the abstraction 〈x〉 ≡2 0. By way of
contrast, in the 16-bit case, the solver may provide 〈x〉 = 0 and 〈x〉 = 2, and these
two models directly entail the desired abstraction. In practice, however, the effect
on the runtime is negligible, which may be explained by the fact that strengthening
constraints smoothly integrates with incremental SAT solving.

4.4.6 Affine Equalities (αV
aff)

The results of our implementation for affine abstraction αV
aff of input-output relations

for the benchmarks are given in Tab. 4.6. The impact of the join taff of two affine
systems is imperceivable due to the low number of variables and the independence
from the bit-width. Observe that the same number of calls to the solver are
required for either bit-width, which leads to almost equal runtimes for 8- and

102

4.4 Experiments

Table 4.5: Experimental results for αV
a-cong(ϕ)

block #bits #SAT time block #bits #SAT time

ABS

8 37 0.03
INC &
ABS

8 55 0.04
16 37 0.03 16 59 0.03
32 36 0.06 32 73 0.11
64 37 0.07 64 60 0.11

ADD

8 33 0.02
INC &
ASR

8 22 0.06
16 29 0.05 16 31 0.07
32 45 0.14 32 43 0.09
64 43 0.15 64 45 0.11

ADD &
ASR

8 70 0.06
INC &
ASR &
INC

8 39 0.06
16 54 0.09 16 39 0.07
32 85 0.13 32 39 0.10
64 74 0.13 64 39 0.11

ASR

8 15 0.02
INC &
LSL

8 19 0.04
16 17 0.03 16 25 0.05
32 16 0.06 32 24 0.14
64 16 0.06 64 24 0.17

ASR &
ADD

8 69 0.04

ISIGN

8 93 0.04
16 89 0.08 16 104 0.05
32 74 0.12 32 114 0.09
64 78 0.18 64 106 0.12

ASR &
INC

8 13 0.02

LSL

8 16 0.02
16 14 0.02 16 17 0.02
32 14 0.06 32 16 0.03
64 14 0.07 64 16 0.05

INC

8 10 0.01

SWAP

8 17 0.03
16 11 0.02 16 11 0.04
32 10 0.02 32 15 0.10
64 11 0.03 64 17 0.12

103

4 Automatic Abstraction of Bit-Vector Formulae

64-bit architectures. We have also applied the technique to several AVR 8-bit
microcontroller programs, which have been in the past been used to evaluate the
effectiveness of the [mc]square model checker [207, 208]. The sizes of these programs
range from 148 to 289 instructions. Computing affine equalities for all basic blocks
amounts to less than 3 seconds for each of these programs.

On Large Coefficients

The affine join taff may lead to excessively large coefficients that can significantly
degrade performance. Indeed, this is a well-known problem for linear relations
analysis [221], and often necessitates the use of libraries that support multiple
precision integers. In our analysis, it is interesting to observe that the size of the
coefficients strongly depends on the order in which models are found. To illustrate,
consider an instruction ADD R0 R1 applied to 32-bit registers (in regular mode).
Suppose a solver produces two affine systems defined as follows:

[A1|b1] =

 1 0 0 −100023
0 1 0 100024
0 0 1 1

 [A2|b2] =

 1 0 0 −100024
0 1 0 1
0 0 1 −100023

Joining [A1|b1] and [A2|b2] gives:[

100023 −1 0 −10004700553
26091 26496076796883 6072291101674310584 8722534784596035683

]
It is important to appreciate, though, that a joined system would be much simpler,
had the solver first found [A3|b3] rather than [A2|b2]:

[A3|b3] =

 1 0 0 −100024
0 1 0 100023
0 0 1 −1

Then, [A1|b1] taff [A3|b3] is given as:[

1 −1 0 −200047
0 2 −1 200047

]
Based on this observation, we have implemented an algorithm that enumerates
models in the proximity of solutions found before, which can be encoded straightfor-
wardly using range constraints. Sign-extensions using randomly enumerated models
are often in excess of 512 bits, which significantly degrades performance of SAT
solving. Proximity-based models, which are likely to induce small coefficients, and
thus require only slightly extended bit-vectors, significantly improve performance.

104

4.4 Experiments

Table 4.6: Experimental results for αV
aff(ϕ)

block #bits #SAT time block #bits #SAT time

ABS

8

27

0.02
INC &
ABS

8

45

0.05
16 0.04 16 0.08
32 0.05 32 0.10
64 0.06 64 0.11

ADD

8

15

0.02
INC &
ASR

8

13

0.01
16 0.05 16 0.04
32 0.06 32 0.04
64 0.6 64 0.05

ADD &
ASR

8

30

0.01
INC &
ASR &
INC

8

23

0.01
16 0.06 16 0.05
32 0.10 32 0.05
64 0.14 64 0.09

ASR

8

16

0.01
INC &
LSL

8

13

0.01
16 0.02 16 0.02
32 0.02 32 0.02
64 0.04 64 0.04

ASR &
ADD

8

30

0.02

ISIGN

8

72

0.03
16 0.07 16 0.04
32 0.08 32 0.04
64 0.10 64 0.6

ASR &
INC

8

10

0.01

LSL

8

8

0.01
16 0.02 16 0.02
32 0.04 32 0.02
64 0.04 64 0.03

INC

8

8

0.03

SWAP

8

6

0.03
16 0.03 16 0.04
32 0.04 32 0.05
64 0.04 64 0.05

105

4 Automatic Abstraction of Bit-Vector Formulae

Our implementation restricts models to a cube in the neighborhood of the model
found before; in our experiments, we found that a distance of 16 per bit-vector was
sufficient. To illustrate the impact of this choice, a näıve implementation of αV

aff for
ABS expressed over 64 bits requires more than 2 seconds, whereas our implementation
terminates within 0.17 seconds. The results for other benchmarks are similar.

4.4.7 Polynomial Equalities (αV
poly)

The results for polynomial analysis are given in Tab. 4.7, which also contains the
template monomials S. Hence, the overall equality ranges over #vars+ |S| variables
(the intermediate variables are omitted), thereby directly providing an upper bound
on the number of iterations. The benchmarks differ from those used before in that
they consists of blocks that multiply bit-vectors, e.g., to index a two-dimensional
array or to square an integer. We manually enforced regular behavior for all
involved operations. In the most demanding block SQUARE&MUL, which requires the
longest time, Z3 spends most time trying to prove soundness of the abstraction
〈〈r0′〉〉 = 〈〈r0〉〉2 · 〈〈r1〉〉 by testing 〈〈r0′〉〉 6= 〈〈r0〉〉2 · 〈〈r1〉〉 for unsatisfiability.

4.4.8 Extrapolation

For all benchmarks, extrapolation from small bit-vectors produced the same results
as abstracting the full semantics of, e.g., a 64-bit block. This result confirms our
intuition that a numerical abstractions of certain mode combinations often manifests
themselves in an exponential relation to the bit-width. To illustrate the impact on
runtimes, consider the benchmark ISIGN over 64 bits, for which αV

oct is required to
solve 3174 instances in 3.13 seconds (cp. Tab. 4.4). For extrapolation, we computed
αV

oct(ϕ) for registers of width 4 and 5 respectively, which induced a parametric
representation of the octagonal constants, in 0.09 and 0.11 seconds. Then, checking
for soundness amounts to solving a single SAT instance for each constraint, which
amounts to 0.28 and 0.31 seconds overall (including abstractions for small bit-widths)
for 32 and 64 bits, respectively. These figures indicate a reduction of approximately
90% in the 64-bit case. The overall results for ABS and ISIGN are given in Tab. 4.8.
For the simpler benchmarks, the differences in runtime are not as significant. A
noteworthy aspect of extrapolation-based abstraction is that the problem of dealing
with huge integer coefficients in intermediate results is eliminated altogether.

4.5 Discussion

Thus far, we have presented a variety of techniques to abstract Boolean formulae,
the structure of which is unknown, using different classes of abstract domains.
An overview of these techniques and their estimated precision and cost are given

106

4.5 Discussion

Table 4.7: Experimental results for αV
poly(ϕ,S)

block #instr. #vars S #bits #SAT time

MUL 1 3 〈〈r0〉〉 · 〈〈r1〉〉
8

5

0.02
16 0.03
32 0.05
64 0.13

MUL&ADD 2 3 〈〈r0〉〉 · 〈〈r1〉〉
8

5

0.02
16 0.03
32 0.05
64 0.12

SQUARE 1 2 〈〈r0〉〉2
8

4

0.02
16 0.03
32 0.06
64 0.11

SQUARE&ADD 2 3 〈〈r0〉〉2
8

5

0.03
16 0.06
32 0.20
64 0.33

SQUARE&MUL 2 3
〈〈r0〉〉2
〈〈r0〉〉 · 〈〈r1〉〉
〈〈r0〉〉2 · 〈〈r1〉〉

8

7

0.02
16 0.08
32 0.26
64 0.42

Table 4.8: Octagonal extrapolation for ABS and ISIGN

block #bits time

ABS

4 0.06
5 0.09
32 0.24
64 0.24

block #bits time

ISIGN

4 0.09
5 0.11
32 0.28
64 0.31

107

4 Automatic Abstraction of Bit-Vector Formulae

in Tab. 4.9. For all domains, we have presented techniques that yield optimal
approximations in the respective domain. The domain of convex polyhedra has the
highest cost in the worst case, mostly due to the sheer number of inequalities, which
is unsurprising. For this case, we have presented two non-optimal approximation
strategies. The first one mixes polyhedral abstraction with octagonal abstraction,
whereas the second one uses an intermediate (unsound) abstraction as a template.
Yet, it is noteworthy that sometimes αV

conv(ϕ) outperforms αV
oct(ϕ). This is for

the same reason for which analysis using reduced octagons outperforms analysis
using tight ones [7], i.e., αV

conv(ϕ) enumerates the vertices of the convex polyhedron,
whereas αV

oct(ϕ) systematically attempts to maximize each constraint from a fixed
set of templates, which may contain redundant ones. If the number of vertices
of a polyhedral abstraction is small compared to the number of inequalities of an
octagonal abstraction, then αV

conv(ϕ) typically outperforms αV
oct(ϕ).

Polyhedral Abstraction and Widening The goal of both non-optimal techniques
for convex polyhedra is to accelerate convergence, a problem which is typically
tackled using widenings [79] in the abstract interpretation framework. Formally, a
widening operator ∇ : (Conv× Conv)→ Conv needs to satisfy:

1. ∀x, y ∈ Conv : x vconv (x∇y)

2. ∀x, y ∈ Conv : y vconv (x∇y)

3. for all increasing chains x0 vconv x1 vconv . . ., the increasing chain y0 vconv

y1 vconv . . . defined by y0 = x0 and yi+1 = yi∇xi+1 is ultimately stationary.

A classical approach to widening of convex polyhedra is to eliminate unstable
inequalities [82], which can straightforwardly be integrated with our methods.
However, it is our belief that more sophisticated techniques such as lookahead
widening [113] or widening with landmarks [222] could likewise be combined with
our method. The combination and evaluation of automatic abstraction using SAT
and SMT solving with widening operators remains a direction for future research.

108

4.5 Discussion

Table 4.9: Overview of abstractions presented in Chap. 3 and Chap. 4

Domain Chap. Precision Cost

Int 3.1.2 optimal low
Val 3.1.2 optimal low – medium
Oct 4.2.1 optimal medium
Conv 4.2.2 optimal medium – high
Conv + Oct 4.2.3 non-optimal medium – high
Conv + relax-conv 4.2.3 non-optimal medium – high
A-Cong 4.2.4 optimal low
Aff 4.2.5 optimal low
Poly 4.2.6 optimal low – medium

109

4 Automatic Abstraction of Bit-Vector Formulae

110

5 Transformers for Template Constraints

Abstracting a formula ϕ ∈ ℘(℘(V)) using one of the abstraction procedures in-
troduced previously provides one way to summarize states or relations between
variables as described by a basic block. A vexing question beyond abstraction of
direct relations between variables, however, is how symbolic states on input to the
block are related to symbolic states on output. To illustrate, suppose a symbolic
interval [R0`, R0u] on input of an instruction ADD R0 R1. The question then is how
symbolic extremal values R0′` and R0′u on output can be characterized using R0`, R0u,
R1`, and R1u. The desired abstraction in the case of intervals (for 8-bit registers) is:

(−128 ≤ R0 + R1 ≤ 127) ⇒
(

R0′` = R0` + R1` ∧
R0′u = R0u + R1u

)
(−256 ≤ R0 + R1 ≤ −129) ⇒

(
R0′` = 256 + R0u + R1u ∧
R0′u = 256 + R0` + R1`

)
(128 ≤ R0 + R1 ≤ −254) ⇒

(
R0′` = −256 + R0` + R1` ∧
R0′u = −256 + R0u + R1u

)
Applying such a guarded update to interval analysis then amounts to intersecting the
inputs with the guard and applying the respective update. Algorithms to compute
such relations between symbolic constraints, based on blocks that do not range over
these symbolic constraints but over concrete variables, are the topic of this chapter.
To summarize, this chapter provides a collection of methods for the analysis of
symbolic constraints that could be categorized as follows:

Lifting Assuming that an input-output relation between bit-vectors is described
using an affine or polynomial equality, techniques that apply lifting exploit
the syntactic structure of the respective equality to obtain a relation between
intervals or octagons on input and output of a basic block. As an example,
assume an affine equality 〈〈v′〉〉 = −〈〈v〉〉 abstracts a block. Further, assume
symbolic boundaries v`, vu, v′`, and v′u such that 〈〈v`〉〉 ≤ 〈〈v〉〉 ≤ 〈〈vu〉〉 and
〈〈v′`〉〉 ≤ 〈〈v′〉〉 ≤ 〈〈v′u〉〉. An affine system

〈〈v′`〉〉 = −〈〈vu〉〉 〈〈v′u〉〉 = 〈〈v`〉〉
over symbolic intervals can then be derived directly from the equality, without
loss of information. Although computationally cheap and easy to implement,
techniques that simply lift affine or polynomial equalities over bit-vectors to
relational domains such as octagons incur a loss of precision.

111

5 Transformers for Template Constraints

Quantification Given an logical characterization ϕ ∈ ℘(℘(V)) of a basic block,
ϕ can be augmented with additional constraints and quantifiers to specify
the relation between symbolic constraints on the bit-level within the formula
itself. Quantifiers then need to be eliminated before abstraction, which yields
a quantifier-free formula that specifies a direct bit-level relationship between
symbolic constraints. These techniques yield optimal abstractions and are, as
we think, algorithmically elegant, but suffer from the computational cost of
quantifier elimination, even more so since quantifiers appear alternately.

Interleaved Abstraction As an alternative approach, which in terms of cost lies in
between techniques based on lifting and quantification, we propose to interleave
abstraction using different abstract domains with model enumeration. The
key idea in these techniques is to extract relational abstractions d and d′ (e.g.,
using octagons) that describe input and output variables from a concrete
model of ϕ, and then compute an affine or polynomial equality that describes
how ϕ transforms d into d′.

In the following, we sometimes denote a transformer which relates elements of a
source domain D1 to elements of a target domain D2 using a relational domain T of

the transformer by D1
T−→ D2. Since we assume complete lattices D1 and D2 as base

domains, monotone functions of type D1
T−→ D2 themselves form a complete lattice.

Outline We build towards these different techniques and their instances for different
abstract domains as follows. First, Chap. 5.1 discusses lifting techniques that are
applied to affine and polynomial equalities. Specifically, we discuss lifting to derive

the following types of transformers: Int
Aff−−→ Int, Oct

Aff−−→ Oct, Int
Poly−−→ Int, and

Oct
Poly−−→ Oct. Lifting affine equalities to intervals does not incur a loss in precision;

unfortunately, this is not so for octagons. The following Chap. 5.2 details the

quantification-based technique that characterizes symbolic relations D1
Bool−−→ D2

directly on the bit-level. There, we show how such formulae can be derived so
that the source and target domains D1 and D2 are given as parameters of the
formula. Computing a transformer using, e.g., affine equalities then amounts to
affine abstraction of the formula after quantifier elimination. Then, Chap. 5.3
shows techniques that interleave dichotomic search with abstraction. For the case

of affine updates on octagons, i.e., Oct
Aff−−→ Oct, this technique yields optimal

abstractions. Finally, Chap. 5.4 studies how polyhedral abstraction can applied
to derive approximate transformers for intervals and octagons, in case that the
underlying basic block can neither be represented using affine equalities nor using
polynomials. This chapter concludes with experimental results in Chap. 5.5, a
survey of related work in Chap. 5.6 and a discussion in Chap. 5.7.

112

5.1 Lifting Equalities to Template Domains

5.1 Lifting Equalities to Template Domains

The techniques presented thus far are all concerned with relating the values of
concrete variables used in a program. Suppose an affine equality 〈〈v′〉〉 =

∑n
i=1 ci ·

〈〈vi〉〉+ c has been derived. Such equalities can then be used, e.g., to compute the
value set of 〈〈v′〉〉 from value sets of 〈〈v1〉〉, . . . , 〈〈vn〉〉 on input, simply by computing∑n

i=1 ci · 〈〈vi〉〉 for all feasible inputs. As an alternative, affine relations analysis
would apply existential quantifier elimination to compute affine invariants. Common
to both techniques is that they relate concrete variables.

In abstract interpretation using intervals, however, it is desirable to express
how extremal values 〈〈v′`〉〉 and 〈〈v′u〉〉 of v′ are related to the extremal values
〈〈v1,`〉〉, 〈〈v1,u〉〉, . . . , 〈〈vn,`〉〉, 〈〈vn,u〉〉 of v1, . . . ,vn on entry, as opposed to extracting
values of 〈〈v′`〉〉 and 〈〈v′u〉〉 from the value sets induced by the affine relations. In this
section, we show how to systematically derive equalities of the form

〈〈v′`〉〉 =
∑n

i=1 ci,` · 〈〈vi,`〉〉+
∑n

i=1 ci,u · 〈〈vi,u〉〉+ c
〈〈v′u〉〉 =

∑n
i=1 di,` · 〈〈vi,`〉〉+

∑n
i=1 di,u · 〈〈vi,u〉〉+ c

from a given affine equality 〈〈v′〉〉 =
∑n

i=1 ci · 〈〈vi〉〉+ c. We refer to this technique as

lifting. However, we do not limit ourselves to the specific case Int
Aff−−→ Int, but also

study the more general cases of lifting affine and polynomial relations to octagonal
(or other linear template) constraints.

5.1.1 Lifting Affine Equalities to Intervals

In this section, we explore how to transform an affine system such as

[A|b] =

[
1 0 1 1 −232

0 1 0 −1 0

]
over bit-vectors V = {r0, r1, r0′, r1′} to interval updates. This transformation
consists of lifting the affine abstraction [A|b], which ranges over variables in V , to
symbolic range boundaries. To do so, let V in = {r0, r1} ⊆ V denote the bit-vectors
on entry of the block described by ϕ. Likewise, let V out = {r0′, r1′} ⊆ V denote
the bit-vectors on exit. We introduce sets of fresh variables

V `
in = {r0`, r1`} V u

in = {r0u, r1u}
V `

out = {r0′`, r1′`} V u
out = {r0′u, r1′u}

to represent symbolic boundaries of each bit-vector in V . If necessary, we transform
the equations such that the left-hand side of each equation consists of only one
variable in V out, which can be achieved by reordering the columns of the affine
system and performing triangularization. For the above system [A|b], this gives:

〈〈r0′〉〉 = −〈〈r0〉〉 − 〈〈r1〉〉 − 232 〈〈r1′〉〉 = 〈〈r1〉〉

113

5 Transformers for Template Constraints

These equations entail the following affine equalities on symbolic interval boundaries:

〈〈r0′`〉〉 = −〈〈r0u〉〉 − 〈〈r1u〉〉 − 232 〈〈r1′`〉〉 = 〈〈r1`〉〉
〈〈r0′u〉〉 = −〈〈r0`〉〉 − 〈〈r1`〉〉 − 232 〈〈r1′u〉〉 = 〈〈r1u〉〉

To derive such a system, transform each of the original equations into the form

v′ =
∑

v∈V in
λv · v + c

where v′ ∈ V out, c ∈ Q, and λv ∈ Q for all v ∈ V in (observe that, without loss of
generality, we assume the right-hand side of the equality to be rational rather than
integral); with a suitable variable ordering, this can be achieved. Correctness of this
transformation follows from the fact that (1) an affine equation system describes
an affine sub-space and (2) invariance of the elementary row operations, namely
multiply a row by a non-zero scalar, add a row to another, or permute two rows
(see, e.g., [136, Sect. 2] or [115, Sect. 2.2]). Both affine systems thus describe the
same sets of solutions.

Example 5.1. The system below on the left can be transformed into the system on
the right by applying elementary row operations:[

1 −1 0 0 1
0 1 0 −1 2

]

[
1 0 0 −1 3
0 1 0 −1 2

]
To formalize the lifting transformation, we introduce a map β that replaces a variable
v with its symbolic upper bound vu in case its sign in the affine equality is positive;
otherwise, β replaces v with its lower bound v`.

Definition 5.1. β : (Q× V in)→ (V `
in ∪ V u

in) is defined as:

β(λ,v) =

{
〈〈v`〉〉 : if λ < 0
〈〈vu〉〉 : otherwise

We then substitute each transformed equation 〈〈v′〉〉 =
∑

v∈V in
λv · 〈〈v〉〉+ c by a pair

of equations over symbolic range boundaries.

Proposition 5.1. Consider an equality 〈〈v′〉〉 =
∑

v∈V in
λv · 〈〈v〉〉+ c. Put:

〈〈v′`〉〉 =
∑

v∈V in
λv · β(λv,v) + c ∧

〈〈v′u〉〉 =
∑

v∈V in
λv · β(−λv,v) + c

The key idea when constructing the upper bound is to replace each occurrence of a
variable in the original system with its upper bound in case its coefficient is positive,
and with its lower bound otherwise. However, although the presented procedure is
sound, fast, and easy-to-implement, it is incomplete. We illustrate incompleteness
by means of an example.

114

5.1 Lifting Equalities to Template Domains

0 1 2 3 4 5 6

1

2

3

4

5

Figure 5.1: Incompleteness of affine lifting

Example 5.2. Let ϕ encode a formula with solutions depicted in Fig. 5.1. Since the

relation between x and y is non-affine, α
{x,y}
aff (ϕ) = >aff, and lifting also yields >.

However, the optimal abstraction of ϕ using intervals is 〈〈y`〉〉 = 0 ∧ 〈〈yu〉〉 = 〈〈xu〉〉.

Yet, lifting as performed in Prop. 5.1 is still complete relative to the affine equality
on input. In Lem. 4.2, we have shown optimality of affine abstraction αV

aff(ϕ). We
can thus interpret a conjunction of affine equalities as the affine hull aff(G) of the
set G ∈ ℘(Qn) of models of ϕ. We define a cube imposed by the ranges of v1, . . . vn.

Definition 5.2. Let v1,`, v1,u, . . . , vn,`, vn,u ∈ Q such that vi,` ≤ vi ≤ vi,u for all
1 ≤ i ≤ n. Define the cube C ∈ ℘(Qn) that encloses (v1, . . . , vn) as:

C = {(x1, . . . , xn) ∈ Qn | ∀1 ≤ i ≤ n : vi,` ≤ xi ≤ vi,u}

Corollary 5.1. Let C be defined as in Def. 5.2 and let G ∈ Qn be an affine basis
with g |= ϕ for all g ∈ G. Then:

C ∩ aff(G) = {(x1, . . . , xn) ∈ aff(G) : (x1, . . . , xn) ∈ C}
= {(x1, . . . , xn) ∈ aff(G) : ∀1 ≤ i ≤ n : vi,` ≤ xi ≤ vi,u}

Let (x1, . . . , xn) ∈ C ∩ aff(G) and assume, without loss of generality, that x1 is
maximal. Hence, there exist λ2, . . . , λn, c ∈ Q such that x1 = c +

∑n
i=2 λi · xi is

maximal. Clearly, maximality of x1 entails maximality of
∑n

i=2 λi · xi, which is
maximal iff the summands λi · xi are maximal. Further, we have the assumption
vi,` ≤ xi ≤ vi,u for all 2 ≤ i ≤ n. We perform a case distinction on the sign of λi:

• λi < 0 whence λi · vi,` = max{λi · x | vi,` ≤ x ≤ vi,u};

• λi ≥ 0 whence λi · vi,u = max{λi · x | vi,` ≤ x ≤ vi,u}.

115

5 Transformers for Template Constraints

With linearity of addition over Q and analogous treatment of minimization, we
obtain a correctness argument for Prop. 5.1.

5.1.2 Lifting Affine Equalities to Octagons

Consider now the more general problem of deriving transfer functions for octagons
by lifting affine equalities.1 As an example, consider a formula ϕ that encodes the
assembly code fragment ADD R0 R1; LSL R0, where ADD R0 R1 sums up the values
of R0 and R1 and stores the result in R0, whereas LSL R0 shifts R0 one bit to the
left. Suppose that neither ADD nor LSL over- or underflows. Computing the affine
abstraction of ϕ over bit-vectors r0, r0, r0′, and r1′ yields two equalities:

〈〈r0′〉〉 = 2 · 〈〈r0〉〉+ 2 · 〈〈r1〉〉 〈〈r1′〉〉 = 〈〈r1〉〉

We aim to construct an update that maps octagonal inputs (with symbolic constants)
to octagonal outputs (likewise with symbolic constants). Hence, we aim to compute
the following map from 〈〈r0′〉〉 = 2 · 〈〈r0〉〉+ 2 · 〈〈r1〉〉 ∧ 〈〈r1′〉〉 = 〈〈r1〉〉:

〈〈r0〉〉 ≤ d1

〈〈r1〉〉 ≤ d2

−〈〈r0〉〉 ≤ d3

−〈〈r1〉〉 ≤ d4

〈〈r0〉〉+ 〈〈r1〉〉 ≤ d5

−〈〈r0〉〉 − 〈〈r1〉〉 ≤ d6

−〈〈r0〉〉+ 〈〈r1〉〉 ≤ d7

〈〈r0〉〉 − 〈〈r1〉〉 ≤ d8d

〈〈r0′〉〉 ≤ 2 · d1 + 2 · d2

〈〈r1′〉〉 ≤ d2

−〈〈r0′〉〉 ≤ 2 · d3 + 2 · d4

−〈〈r1′〉〉 ≤ d4

〈〈r0′〉〉+ 〈〈r1′〉〉 ≤ 2 · d1 + 3 · d2

−〈〈r0′〉〉 − 〈〈r1′〉〉 ≤ 2 · d3 + 4 · d4

−〈〈r0′〉〉+ 〈〈r1′〉〉 ≤ 2 · (d3 + d4) + d2

〈〈r0′〉〉 − 〈〈r1′〉〉 ≤ 2 · (d1 + d2) + d4

We do so by constructing an update operation that uses the unary input constraints
only (those which appear above the bar separator on the left). We modify the lifting
procedure from the previous section so as to express output constraints in terms
of symbolic constants d1, . . . , d8 from the input constraints. Analogously to before,
we obtain the four unary output constraints on the right, simply by substituting
symbolic minimal and maximal values. For example, from −d3 ≤ 〈〈r0〉〉 ≤ d1,
−d4 ≤ 〈〈r1〉〉 ≤ d2, and 〈〈r0′〉〉 = 2 · 〈〈r0〉〉 + 〈〈r1〉〉, we deduce −2 · d3 − 2 · d4 ≤
〈〈r0′〉〉 ≤ 2 · d1 + 2 · d2 using substitution (corresponding to rows 1 and 3 in the
above output octagon). The binary output constraints are derived using linear

1One might be forgiven for thinking that the easiest way to apply an affine transformer to an
octagon is to compute an affine transformation of the constraints. Unfortunately, the output
of such an approach is in general a convex polyhedron rather than an octagon. The standard
technique for describing a convex polyhedron by an octagon is complicated and costly in itself:
(1) convert the polyhedron into a frame representation, (2) enumerate its vertices p1, . . . , pk ∈ Zn,
and (3) compute the join

⊔k
i=1 αoct(pk). More details are given in [166, Sect. 4.3]. Of course,

(integer) linear programming can also be applied to this task [3].

116

5.1 Lifting Equalities to Template Domains

combinations of the unary output constraints. For instance, the symbolic upper
bound of a constraint −〈〈r0′〉〉 + 〈〈r1′〉〉 is computed from the unary constraints
−〈〈r0′〉〉 ≤ 2 · d3 + 2 · d4 and 〈〈r1′〉〉 ≤ d2 by substituting the right-hand sides of the
inequalities:

−〈〈r0′〉〉+ 〈〈r1′〉〉 ≤ (2 · d3 + 2 · d4) + (d2)

Likewise, the other binary output constraints are obtained. It is important to note
that, since the output constraints do no use relational information from the inputs
(such as 〈〈r0〉〉+ 〈〈r1〉〉 ≤ 5), we obtain a sub-optimal update.

Example 5.3. Suppose an input octagon that describes 0 ≤ 〈〈r0〉〉 ≤ 4, 0 ≤ 〈〈r1〉〉 ≤
1, and 〈〈r0〉〉+ 〈〈r1〉〉 ≤ 4. We then derive:

0 ≤ 〈〈r0′〉〉 ≤ 10 0 ≤ 〈〈r1′〉〉 ≤ 1 0 ≤ 〈〈r0′〉〉+ 〈〈r1′〉〉 ≤ 11

An optimal transfer function, however, would derive:

0 ≤ 〈〈r0′〉〉 ≤ 8 0 ≤ 〈〈r1′〉〉 ≤ 1 0 ≤ 〈〈r0′〉〉+ 〈〈r1′〉〉 ≤ 8

Although the above method fails to propagate the effects of some inputs into the
output constraints, it retains the attractive property that a sound octagonal update
can be constructed straightforwardly by lifting the affine relations. Interestingly,
Miné [166, Fig. 27] also discusses the relative precision of transformers for octagons,
though in his discussion the base semantics is polyhedral rather than Boolean. Using
his classification, precision of the transfer functions derived using affine abstraction
followed by lifting could be described as medium.

5.1.3 Lifting Polynomial Equalities to Intervals

To illustrate the process of lifting polynomial updates to intervals, consider again the
equality 〈〈r0′〉〉 = 〈〈r1〉〉+ 〈〈r0〉〉 · 〈〈r2〉〉, the computation of which we have described
for the assembly fragment MUL R0 R2; ADD R0 R1 in Chap. 4.2.6. Of course, this
polynomial neither relates internal bounds nor symbolic constants on input or output
intervals. One could expect that non-linear equalities can be straightforwardly lifted
to range updates using the techniques from Chap. 5.1.1 or Chap. 5.1.2. However,
this is not the case.

Example 5.4. Suppose we lift the polynomial 〈〈r0′〉〉 = 〈〈r1〉〉 + 〈〈r0〉〉 · 〈〈r2〉〉 to
intervals as before. This operation gives:

〈〈r0′`〉〉 = 〈〈r1`〉〉+ 〈〈r0`〉〉 · 〈〈r2`〉〉 〈〈r0′u〉〉 = 〈〈r1u〉〉+ 〈〈r0u〉〉 · 〈〈r2u〉〉
Further, assume inputs

〈〈r0`〉〉 = −4 〈〈r1`〉〉 = 0 〈〈r2`〉〉 = 2
〈〈r0u〉〉 = 2 〈〈r1u〉〉 = 2 〈〈r2u〉〉 = 2

which define 〈〈r0′`〉〉 = 8 and 〈〈r0′u〉〉 = 6, a result that is obviously incorrect.

117

5 Transformers for Template Constraints

Lifting polynomials by applying the technique discussed for affine equalities gives
incorrect results because monotonic transformers on Q are assumed, allowing to
syntactically extract the extremal values from input ranges. However, polynomials
are non-monotonic. We circumvent this problem by augmenting the lifted terms
with minimization and maximization operators as in the following example.

Example 5.5. Consider again the polynomial 〈〈r0′〉〉 = 〈〈r1〉〉 + 〈〈r0〉〉 · 〈〈r2〉〉 as
in Ex. 5.4. Since the term 〈〈r0〉〉 · 〈〈r2〉〉 is non-monotonic, it is not possible to
determine which of the monomials 〈〈r0`〉〉 · 〈〈r2`〉〉, 〈〈r0`〉〉 · 〈〈r2u〉〉, 〈〈r0u〉〉 · 〈〈r2`〉〉,
and 〈〈r0u〉〉 · 〈〈r2u〉〉 yields the least (resp. greatest) value. Further, 0 may be an
extremal value not determined through the bounds of r0 and r2. We thus evaluate
monomials at runtime, during application of a transfer function, which gives:

〈〈r0′`〉〉 = 〈〈r1`〉〉+ min

{
〈〈r0`〉〉 · 〈〈r2`〉〉, 〈〈r0`〉〉 · 〈〈r2u〉〉,
〈〈r0u〉〉 · 〈〈r2`〉〉, 〈〈r0u〉〉 · 〈〈r2u〉〉, 0

}
〈〈r0′u〉〉 = 〈〈r1u〉〉+ max

{
〈〈r0`〉〉 · 〈〈r2`〉〉, 〈〈r0`〉〉 · 〈〈r2u〉〉,
〈〈r0u〉〉 · 〈〈r2`〉〉, 〈〈r0u〉〉 · 〈〈r2u〉〉, 0

}
Assume the same input ranges as in Ex. 5.4. Then, we obtain the correct result:

〈〈r0′`〉〉 = 0 + min{8,−8,−4, 4, 0} = −8
〈〈r0′u〉〉 = 2 + max{8,−8,−4, 4, 0} = 8

This form of lifted update for polynomials involves, respectively, minimization and
maximization operations. These operations are required because it is not until the
symbolic variables are instantiated that the relative sizes of the non-linear terms can
be compared; these comparisons are redundant for linear terms due to monotonicity.
To present this transformation formally, let V in and V out denote the input and
output variables as before. Further, denote by S a set of template monomials
over the bit-vectors V = {v1, . . . ,vn}. Thus, if s ∈ S, then s = Πn

i=1〈〈vi〉〉ei,s with
constants e1,s, . . . , en,s ∈ N. Formally, a polynomial update is thus represented as:

〈〈v′〉〉 =
∑n

i=1 λi · 〈〈vi〉〉+
∑

s∈S λs · s+ c
=

∑n
i=1 λi · 〈〈vi〉〉+

∑
s∈S λs ·Πn

i=1〈〈vi〉〉ei,s + c

Definition 5.3. We define a map µ(s) to generate the set of all permutations of
s = Πn

i=1〈〈vi〉〉ei,s with bit-vectors v1, . . . ,vn lifted to symbolic range constraints:

µ(s) = {Πn
i=1〈〈zi〉〉ei | i ∈ {1, . . . , n} ∧ zi ∈ {vi,`,vi,u}}

Definition 5.4. Let λ ∈ Z and s = Πn
i=1〈〈vi〉〉ei,s with e1,s, . . . , en,s ∈ N.We define

a map σ(λ, s) to extract either the minimum or the maximum value of s from µ(s),
depending on the sign of λ:

118

5.1 Lifting Equalities to Template Domains

σ(λ, s) =

{
min(µ(s) ∪ Z) : if λ < 0
max(µ(s) ∪ Z) : otherwise

Here, Z ∈ {∅, {0}} is defined:

Z =

{
{0} : ∃i ∈ {1, . . . , n} : 0 ∈ [〈〈vi,`〉〉, 〈〈vi,u〉〉] ∧ ei,s 6= 0
∅ : otherwise

For example, if s = 〈〈r0〉〉 · 〈〈r2〉〉, then:

µ(s) = {〈〈r0`〉〉 · 〈〈r2`〉〉, 〈〈r0`〉〉 · 〈〈r2u〉〉, 〈〈r0u〉〉 · 〈〈r2`〉〉, 〈〈r0u〉〉 · 〈〈r2u〉〉}

Observe that considering 0 as an extremal value may be necessary.

Example 5.6. Let 〈〈v′〉〉 = 〈〈v〉〉2 define an update and suppose inputs 〈〈v`〉〉 = −2
and 〈〈vu〉〉 = 2. Then, 〈〈v`〉〉2 = 4 and 〈〈vu〉〉2 = 4, yet 〈〈v′〉〉 ∈ [0, 4].

On the other hand, always adding 0 as an extremal candidate may be overly
pessimistic, which can be seen for 〈〈v′〉〉 = 〈〈v〉〉2 with inputs 〈〈v`〉〉 = 2 and 〈〈vu〉〉 = 4.
Optimal output boundaries are then defined as 〈〈v′`〉〉 = 4 and 〈〈v′u〉〉 = 16. Hence, we
consider 0 as a candidate upon evaluation of a transformer iff 〈〈vi,`〉〉 ≤ 0 ≤ 〈〈vi,u〉〉
for some vi that appears in the monomial with a non-zero exponent. This is because
a monomial s = Πn

i=1〈〈vi〉〉ei,s has roots for 〈〈vi〉〉 = 0 only. Without loss of generality,
each polynomially extended equation takes the form

〈〈v′〉〉 =
∑n

i=1 λi · 〈〈vi〉〉+
∑

s∈S λs · s+ c

where v′ ∈ V ′, λ1, . . . , λn ∈ Q, and λs ∈ Q for all s ∈ S. With β defined as in
Chap. 5.1.1, we then replace each polynomial by a pair of equations as follows:

〈〈v′`〉〉 =
∑n

i=1 λi · β(−λi,vi) +
∑

s∈S λs · σ(−λs, s) + c
〈〈v′u〉〉 =

∑n
i=1 λi · β(λi,vi) +

∑
s∈S λs · σ(λs, s) + c

Note that linear terms are transformed as before: it is only non-linear monomials
that require special treatment.

Proposition 5.2. Let s = Πn
i=1〈〈vi〉〉ei with e1, . . . , en ∈ N. Then, s constrained so

that either 〈〈vi〉〉 ≤ 0 or 0 ≤ 〈〈vi〉〉 for all 1 ≤ i ≤ n defines a monotone function.

Proof. Correctness follows directly from monotonicity of multiplication over N.

The following proposition shows that lifting a monomial s to minimal and maximal
values of symbolic ranges by applying γ(λ, s) indeed yields the extremal values.

119

5 Transformers for Template Constraints

Proposition 5.3. Put V = {v1, . . . ,vn} and let v1,`,v1,u, . . . ,vn,`,vn,u such that
〈〈vi,`〉〉 ≤ 〈〈vi〉〉 ≤ 〈〈vi,u〉〉 for all vi ∈ V . Further, let s = Πn

i=1〈〈vi〉〉ei denote a
monomial over V . If 0 6∈ [〈〈vi,`〉〉, 〈〈vi,u〉〉] for all 1 ≤ i ≤ n, then:

min(µ(s)) = min{x ∈ Z | xi ∈ Z : 〈〈vi,`〉〉 ≤ xi ≤ 〈〈vi,u〉〉 ∧ x = Πn
i=1x

ei
i }

max(µ(s)) = max{x ∈ Z | xi ∈ Z : 〈〈vi,`〉〉 ≤ xi ≤ 〈〈vi,u〉〉 ∧ x = Πn
i=1x

ei
i }

If 0 ∈ [〈〈vi,`〉〉, 〈〈vi,u〉〉], then:

min(µ(s) ∪ {0}) = min{x ∈ Z | xi ∈ Z : 〈〈vi,`〉〉 ≤ xi ≤ 〈〈vi,u〉〉 ∧ x = Πn
i=1x

ei
i }

max(µ(s) ∪ {0}) = max{x ∈ Z | xi ∈ Z : 〈〈vi,`〉〉 ≤ xi ≤ 〈〈vi,u〉〉 ∧ x = Πn
i=1x

ei
i }

Proof. We sketch a proof by induction for the latter case, which is more general
than the first one. For the base clause, we observe that s1 = 〈〈v1〉〉e1 has a single
root, namely 〈〈v1〉〉 = 0. With monotonicity of multiplication, we deduce

min{x ∈ Z | x ∈ Z : 〈〈v1,`〉〉 ≤ x1 ≤ 〈〈v1,u〉〉 ∧ x = xe11 }
= min{x ∈ Z | x ∈ Z : (x1 = 〈〈v1,`〉〉 = x1 ∨ 〈〈v1,u〉〉 = x1 ∨ x1 = 0) ∧ x = xe11 }
= min{〈〈v1,`〉〉, 〈〈v1,u〉〉, 0}
= min(µ(s1) ∪ {0})

as desired. The proof for max(µ(s1)) is similar. Assume the proposition holds for
sn = Πn

i=1〈〈vi〉〉ei and let sn+1 = sn · 〈〈vn+1〉〉en+1 . Then:

min{x ∈ Z | xi ∈ Z : 〈〈vi,`〉〉 ≤ xi ≤ 〈〈vi,u〉〉 ∧ x = Πn+1
i=1 x

ei
i }

= min{x ∈ Z | xi ∈ Z : 〈〈vi,`〉〉 ≤ xi ≤ 〈〈vi,u〉〉 ∧ x = Πn
i=1x

ei
i · x

en+1

n+1 }
= min

{
x ∈ Z

∣∣∣∣ xi ∈ Z : 〈〈vi,`〉〉 ≤ xi ≤ 〈〈vi,u〉〉∧
(x = Πn

i=1x
ei
i · xn+1,` ∨ x = Πn

i=1x
ei
i · xn+1,u ∨ x = 0)

}
= min

x · 〈〈vn+1,`〉〉en+1 ,
x · 〈〈vn+1,u〉〉en+1 ,
0

xi ∈ Z : 〈〈vi,`〉〉 ≤ xi ≤ 〈〈vi,u〉〉 ∧ x = Πn
i=1x

ei
i

= min ({m · 〈〈vn+1,`〉〉en+1 ,m · 〈〈vn+1,u〉〉en+1 | m ∈ µ(sn)} ∪ {0})
= min ({m | m ∈ µ(sn+1)} ∪ {0})
= min(µ(sn+1) ∪ {0})

Correctness of the remaining cases can be shown accordingly.

5.1.4 Lifting Polynomial Equalities to Octagons

Similar in spirit to the technique introduced to lift polynomial updates to intervals,
we derive polynomial updates for octagons. From a polynomial update

〈〈r0′〉〉 = 2 · 〈〈r0〉〉+ 2 · 〈〈r1〉〉 ∧ 〈〈r1′〉〉 = 〈〈r1〉〉
〈〈r1′〉〉 = 〈〈r1〉〉
〈〈r2′〉〉 = 〈〈r2〉〉

120

5.1 Lifting Equalities to Template Domains

that relates variables, we thus aim to construct an update for octagons.2 The
strategy applied to do so is a combination of the techniques from Chap. 5.1.2 and
Chap. 5.1.3. Again, we do so by using the unary constraints d1, . . . , d6 of an input
octagon (those constraints found above the horizontal bar)

〈〈r0〉〉 ≤ d1 〈〈r1〉〉 ≤ d2 〈〈r2〉〉 ≤ d3

−〈〈r0〉〉 ≤ d4 −〈〈r1〉〉 ≤ d5 −〈〈r2〉〉 ≤ d6

〈〈r0〉〉+ 〈〈r1〉〉 ≤ d7 〈〈r0〉〉+ 〈〈r2〉〉 ≤ d11 〈〈r1〉〉+ 〈〈r2〉〉 ≤ d15

−〈〈r0〉〉 − 〈〈r1〉〉 ≤ d8 −〈〈r0〉〉 − 〈〈r2〉〉 ≤ d12 −〈〈r1〉〉 − 〈〈r2〉〉 ≤ d16

−〈〈r0〉〉+ 〈〈r1〉〉 ≤ d9 −〈〈r0〉〉+ 〈〈r2〉〉 ≤ d13 −〈〈r1〉〉+ 〈〈r2〉〉 ≤ d17

〈〈r0〉〉 − 〈〈r1〉〉 ≤ d10 〈〈r0〉〉 − 〈〈r2〉〉 ≤ d14 〈〈r1〉〉 − 〈〈r2〉〉 ≤ d18

that characterizes r0, r1 and r2, to describe symbolic constants d′1, . . . , d

′
18 of an

output octagon over r0′, r1′, and r2′. In the output (with the respective primed
variables), we substitute the polynomial update into the left-hand side of each
constraint. For instance, the output constraint 〈〈r0′〉〉 − 〈〈r1′〉〉 is transformed into:

(〈〈r1〉〉+ 〈〈r0〉〉 · 〈〈r2〉〉)− 〈〈r1〉〉 ≤ d′10

First of all, we simplify (〈〈r1〉〉+ 〈〈r0〉〉 · 〈〈r2〉〉)−〈〈r1〉〉, which reduces the inequality
to 〈〈r0〉〉 · 〈〈r2〉〉 ≤ d′10. To compute d′10, we handle linear and non-linear terms
separately. Linear terms are treated as in Chap. 5.1.2 by substituting a variable
with a positive (resp. negative) coefficient by its upper (resp. lower) bound:

〈〈r0〉〉 d1

〈〈r1〉〉 d2

−〈〈r0〉〉 d4

−〈〈r1〉〉 d5

〈〈r2〉〉 d3

−〈〈r2〉〉 d6

For example, 〈〈r1〉〉 (resp. −〈〈r1〉〉) is thus turned into d2 (resp. d5). The non-
linear term 〈〈r0〉〉 · 〈〈r2〉〉 (resp. −〈〈r0〉〉 · 〈〈r2〉〉) is handled using maximization
(resp. minimization) of the bounds of r0 and r2 at runtime, respectively. With the
equivalence 〈〈v〉〉 ≤ d iff −d ≤ −〈〈v〉〉, these combinations of non-linear terms are:

S〈〈r0〉〉·〈〈r2〉〉 = {d1 · d3, d1 · (−d6), (−d4) · d3, (−d4) · (−d6)}

Likewise, monomials with a negative coefficient are handled using minimization.
Combining the transformed terms for linear and non-linear ones thus simply gives:

〈〈r0′〉〉 − 〈〈r1′〉〉 = 〈〈r0〉〉 · 〈〈r2〉〉
≤ max{s ∈ S〈〈r0〉〉·〈〈r2〉〉 ∪ Z}

2Observe that Miné [166] does not address multiplication. However, it is possible to resort to
convex polyhedra, where different ways of expressing multiplication were already studied by
Cousot and Halbwachs [82], and then convert the result back into an octagon [166, Sect. 4.3].

121

5 Transformers for Template Constraints

Z is defined as in Def. 5.4. Likewise, we obtain:

−〈〈r0′〉〉 − 〈〈r1′〉〉 = −2 · 〈〈r1〉〉 − 〈〈r0〉〉 · 〈〈r2〉〉
≤ 2 · d5 −min{s ∈ S〈〈r0〉〉·〈〈r2〉〉 ∪ Z}

For brevity, define s` = min{s ∈ S〈〈r0〉〉·〈〈r1〉〉∪Z} and su = max{s ∈ S〈〈r0〉〉·〈〈r2〉〉∪Z}.
Applying the transformation sketched above to the overall output octagon yields:

d′1 = d2 + su d′2 = d2 d′3 = d3

d′4 = d5 − s` d′5 = d5 d′6 = d6

d′7 = 2 · d2 + su d′11 = d2 + su + d3 d′15 = d2 + d3

d′8 = 2 · d5 − s` d′12 = d5 − s` + d6 d′16 = d5 + d6

d′9 = −s` d′13 = d5 − s` + d3 d′17 = d5 + d3

d′10 = su d′14 = d2 + su + d6 d′18 = d2 + d6

Example 5.7. Suppose the block MUL R0 R2; ADD R0 R1 is entered with:{

d1 = 10 d2 = 5 d3 = 10
d4 = −1 d5 = −5 d6 = −5

}
The remaining constraints are omitted as they are not used to specify the polynomial
update for octagons when lifting is applied. The combinations of the monomial 〈〈r0〉〉·
〈〈r2〉〉 over the symbolic bounds are then given as S〈〈r0〉〉·〈〈r2〉〉 = {100,−50,−10, 5, 0}.
Hence, s` = −50 and su = 100. Applying the octagonal transformer obtained using
lifting of polynomial updates, we compute:

d′1 = 105 d′2 = 5 d′3 = 10
d′4 = −5 d′5 = −5 d′6 = −5

d′7 = 110 d′11 = 115 d′15 = 15
d′8 = 40 d′12 = 100 d′16 = −10
d′9 = 50 d′13 = 55 d′17 = 5
d′10 = 100 d′14 = 100 d′18 = 0

5.2 Characterizing Linear Templates using Quantification

A formula ϕ ∈ ℘(℘(V)) derived from a block describes an (indirect) relation between
input bit-vectors V in ⊆ V and output bit-vectors V out ⊆ V , but not between their
ranges. The relationship between concrete variables and their respective bounds,
however, can be specified by augmenting ϕ with additional terms and quantifiers.
We first sketch the mechanisms for doing so for the simple case of intervals and then
generalize this approach to the more general class of template domains.

122

5.2 Characterizing Linear Templates using Quantification

5.2.1 Specifying Optimal Intervals using Quantifiers

We study the quantifier-based approach to automatic abstraction by means of an
example, namely the instruction INC R0 in regular mode, which increments the
value of register R0 by one and stores the result in R0. To specify the relation
between the input bit-vector r0 and the outputs r0′ using intervals, we introduce
fresh bit-vectors r0`, r0u, r0′`, and r0′u to represent greatest lower and least upper
bounds of 〈〈r0〉〉 and 〈〈r0′〉〉, respectively. Further, we define symbolic expressions

σ = 〈〈r0`〉〉 ≤ 〈〈r0〉〉 ≤ 〈〈r0u〉〉 σ′ = 〈〈r0′`〉〉 ≤ 〈〈r0′〉〉 ≤ 〈〈r0′u〉〉

to express that all input and output bit-vectors are confined to their respective
ranges. With all bit-vectors in range, specifying the greatest lower bound r0′` and
least upper bound r0′u ∈ V u

out of r0 amounts to requiring that:

1. The bit-vectors r0′` and r0′u represent respectively lower and upper bounds
on the range of r0′.

2. Any other lower and upper bounds on r0′ are respectively less or equal to and
greater or equal to r0′` and r0′u.

Let ϕ denote the symbolic encoding of INC R0. We enforce the first requirement
with the formula ω = ∀r0 : ∀r0′ : (σ∧ϕ)⇒ σ′. Then, (σ∧ϕ)⇒ σ′ is put into CNF,
which introduces existentially quantified variables. These variables are eliminated
using projection before those literals that involve variables from r0 and r0′ are
simply struck out. Let ωsimp denote the resulting formula in CNF, which ranges
over bit-vectors r0`, r0u, r0′`, and r0′u; hence ωsimp ∈ ℘(℘({r0`, r0u, r0′`, r0′u})).
The second requirement is enforced by introducing auxiliary variables to represent
other lower and upper bounds on r0′, denoted r0?` and r0?u. As before, the formula

σ? = 〈〈r0?` 〉〉 ≤ 〈〈r0′〉〉 ≤ 〈〈r0?u〉〉

encodes the requirement that 〈〈r0?` 〉〉 and 〈〈r0?u〉〉 are lower and upper bounds of
〈〈r0′〉〉, respectively. We then stipulate ν = ∀r0?` : ∀r0?u : ∀r0 : ∀r0′ : κ with:

κ = ((σ ∧ ϕ)⇒ σ?)⇒ (〈〈r0?` 〉〉 ≤ 〈〈r0′`〉〉 ∧ 〈〈r0′u〉〉 ≤ 〈〈r0?u〉〉)

The left-hand side of κ requires that 〈〈r0?` 〉〉 and 〈〈r0?u〉〉 are indeed lower and upper
bounds of 〈〈v′〉〉. The right-hand side of the implication expresses that 〈〈r0?` 〉〉 is less or
equal to 〈〈v′`〉〉, and likewise that 〈〈r0?u〉〉 is greater or equal to 〈〈v′u〉〉, thereby inducing
optimality of 〈〈r0′`〉〉 and 〈〈r0′u〉〉 a posteriori. In combination, this means that 〈〈r0′`〉〉
(resp. 〈〈r0′u〉〉) is the least upper (resp. greatest lower) bound of 〈〈r0′〉〉 subject to ϕ.
Again, we put ν into CNF and eliminate existential as well as universal quantifiers,
an operation that yields a simplified formula νsimp ∈ ℘(℘({r0`, r0u, r0′`, r0′u})).

123

5 Transformers for Template Constraints

Then, ψ = ωsimp ∧ νsimp describes a direct bit-level relationship between symbolic
interval bounds r0` and r0u on input and the corresponding bounds r0′` and r0′u
on output. The conjoined formula ψ can thus be seen as a transformer of type

Int
Bool−−→ Int. However, to avoid the application of a SAT solver to evaluate the

transformer, ψ can be abstracted, e.g., using conjunctions of affine equalities over
{r0`, r0u, r0′`, r0′u}. Then, we obtain the expected result:

α
{r0`,r0u,r0′`,r0

′
u}

aff (ψ) = (〈〈r0′`〉〉 = 〈〈r0`〉〉+ 1 ∧ 〈〈r0′u〉〉 = 〈〈r0u〉〉+ 1)

In the following, we show how to generalize this technique to accept specifications
over arbitrary but fixed classes of templates (including intervals and octagons), and
also show how this quantifier-based formulation can be instantiated to derive guards.

5.2.2 Generalization

In general, we require a transformer ϕ ∈ ℘(℘(V)) and V in,V out ⊆ V such that
V in ∩ V out = ∅. To express symbolic relations on top of ϕ, we augment ϕ with two
additional types of formulae:

1. Let σ(W ,T) encode a relation between concrete bit-vectors W ⊆ V in ∪ V out

and a symbolic encoding of constraints over bit-vectors T . For example,
σ({v}, {v`}) = 〈〈v`〉〉 ≤ 〈〈v〉〉 encodes that the signed interpretation of a
bit-vector v is greater to equal to its lower bound 〈〈v`〉〉 in the interval domain.

2. Let ν(T ,T ′) denote a formula that holds if a given valuation of T ′ entails a
given valuation of T . For instance, ν({x}, {y}) defined as ν({v′`}, {v′`,?}) =
〈〈v′`,?〉〉 ≤ 〈〈v′`〉〉 encodes that 〈〈v′`〉〉 ≤ 〈〈v′〉〉 entails 〈〈v′`,?〉〉 ≤ 〈〈v′〉〉.

To construct the overall quantified specification, we first introduce fresh bit-vectors
T in and T out that are used to express symbolic constraints over inputs V in and
outputs V out, respectively. These bit-vectors are used to encode the source domain

D1 and the target domain D2 in the resulting transformer D1
Bool−−→ D2. There

is no need to require D1 and D2 to be identical. For intervals, e.g., we have
T in = {v`,vu | v ∈ V in} and T out = {v′`,v′u | v′ ∈ V out}. We also introduce a
fresh set T out,? of bit-vectors that is identical to T out except for naming. To avoid
accidental coupling, we require all sets of bit-vectors introduced so far to be disjoint.
Then, we put:

∀V in ∪ V out : (σ(V in,T in) ∧ ϕ)⇒ σ(V out,T out) ∧
∀V in ∪ V out : ∀T out,? : (σ(V in,T in) ∧ ϕ)⇒ σ(V out,T out,?))⇒ ν(T out,T out,?)

Eliminating quantifiers from this formula gives a logical formula ψ drawn from
℘(℘(T in ∪ T out)). The resulting quantifier-free formula ψ can thus be abstracted

124

5.2 Characterizing Linear Templates using Quantification

using the appropriate abstraction procedure from Chap. 4. For example, αT in∪T out

aff (ψ)
can be used to derive a conjunction of affine equalities that describes the relation
between symbolic constraints T in ∪ T out.

Deriving Guards using Quantification

Observe that the problem of deriving guards on the inputs can be specified as an in-
stance of the above formulation by simply replacing σ(V out,T out) and σ(V out,T out,?)
by true, respectively. Overall, this yields a simpler formula:

∀V in ∪ V out : (σ(V in,T in) ∧ ϕ) ∧
∀V in ∪ V out : ∀T in,? : (σ(V in,T in,?) ∧ ϕ)⇒ ν(T in,T in,?)

Quantified variables are then eliminated from the above formula, yielding a quantifier-
free formula ψ ∈ ℘(℘(T in)), which can directly be passed to solver. From the model
provided for the solver, one can then directly read off the valuations for the template
constraints (e.g., the upper bounds di for octagonal guards).

Reprise and Reflection

Quantifier-based characterizations for automatic abstraction were proposed by
Monniaux [167, 169] in the setting of piecewise linear functions. Structurally, the
quantifier-based construction presented here follows the same lines, with correctness
arguments carrying over, too. The key difference of our technique compared to the
work of Monniaux is that his base semantics consists of piecewise linear functions;
he thus applies quantifier elimination directly on a piecewise linear specification of
the semantics of a block. By way of contrast, we perform quantifier elimination
directly on the (concrete) Boolean specification, a step which can then be followed
by abstraction. As shown in Chap. 2, universal as well as quantifier elimination
for Boolean formulae in CNF can easily be implemented, which contrasts with
complicated and highly involved procedures for integer linear arithmetic. However,
this simplicity comes at a cost:

• The complexity of quantifier elimination for linear systems typically explodes
with the number of variables and constraints in a system [148], even more so
if variables are discrete.

• Tractability of existential quantification for propositional Boolean formulae
heavily depends on the number of Boolean variables and constraints. With
increasing lengths of bit-vectors, the complexity of projection thus increases,
too. Quantification-based automatic abstraction from Boolean formulae thus
becomes intractable if architectures with large bit-widths are analyzed.

125

5 Transformers for Template Constraints

Table 5.1: Intermediate results for inferring exact affine transformers for octagons

〈〈d′1〉〉 〈〈d1〉〉 〈〈d2〉〉 〈〈d3〉〉 〈〈d4〉〉 〈〈d5〉〉 〈〈d6〉〉 〈〈d7〉〉 〈〈d8〉〉 max〈〈d′〉〉
m1 1 1 1 0 0 1 0 1 1 2
m2 8 3 3 −1 −1 5 −2 2 0 10
m3 22 8 7 0 1 13 3 4 0 26
m4 4 0 3 2 0 3 1 6 3 6

In the light of the complexity of projection for large bit-vectors, it is unsurprising
that we have not been able to compute abstractions for 32-bit architectures in a
reasonable amount of time for any except the smallest benchmarks. We will further
elaborate on scalability in Chap. 5.5.

5.3 Interleaved Abstraction and Refinement

To derive more precise affine updates, we interleave affine abstraction with constraint
inference. In this section, we discuss techniques for affine and polynomial updates
on octagons as well as affine updates on arithmetical congruences.

5.3.1 Optimal Affine Updates on Octagons

To illustrate this technique by means of an example, let ϕ denote the propositional
encoding for ADD R0 R1; LSL R0 where again ADD and LSL operate in regular modes.
Consider the inequality 〈〈r0′〉〉 ≤ d′1 in the output octagon and, in particular, the
problem of discovering an affine description of d′1 using the symbolic constants
d1, . . . , d8 of the input octagon, as detailed previously.

Worked Example

We proceed by introducing sign-extended bit vectors d1, . . . ,d8 to represent the
symbolic constants d1, . . . , d8 of the input octagon. Further, let κ denote a Boolean
formula that holds iff the eight inequalities 〈〈r0〉〉 ≤ 〈〈d1〉〉, . . . , 〈〈r0〉〉−〈〈r1〉〉 ≤ 〈〈d8〉〉
simultaneously hold. Furthermore, let η denote a formula that encodes the equality
〈〈r0′〉〉 = 〈〈d′1〉〉 where d′1 is a signed bit-vector representing d′1. Presenting the
compound formula κ ∧ ϕ ∧ η to a SAT solver produces a model

m1 =
{
〈〈d′1〉〉 = 1, 〈〈d1〉〉 = 1, . . . , 〈〈d8〉〉 = 1

}

126

5.3 Interleaved Abstraction and Refinement

that is fully detailed in Tab. 5.1. The assignment 〈〈d′1〉〉 = 1 does not necessarily repre-
sent the maximum value of 〈〈d′1〉〉 for the partial assignment 〈〈d1〉〉 = 1, . . . , 〈〈d8〉〉 = 1.
Let ζ1 thus denote a formula that holds iff 〈〈d1〉〉 = 1, . . . , 〈〈d8〉〉 = 1 all hold. Then,
dichotomic search can be applied to find the maximal value of 〈〈d′1〉〉 subject to
κ ∧ ϕ ∧ η ∧ ζ. This gives 〈〈d′1〉〉 = 2 and a model:

m′1 = {〈〈d′1〉〉 = 2, 〈〈d1〉〉 = 1, . . . , 〈〈d8〉〉 = 1}

An affine summary of all such maximal models can be found by interleaving range
refinement with affine join taff. Thus suppose the matrix M1 is constructed from
m′1 by using the variable ordering (d′1, d1, . . . , d8) on columns:

M1 =

1 0 0 0 0 0 0 0 0 2
0 1 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 1 1

The method proceeds in an analogous fashion to αV

aff by constructing a formula µ
that holds iff 〈〈d8〉〉 6= 1 holds, thereby violating the last row of M1. Solving the
formula κ ∧ ϕ ∧ η ∧ µ gives the model m2 detailed in Tab. 5.1. The model m2 itself
defines a formula ζ2 that is equivalent to the conjunction of 〈〈d1〉〉 = 3, . . . , 〈〈d8〉〉 = 0.
Maximizing 〈〈d′1〉〉 subject to κ∧ϕ∧ η∧ ζ2 gives 〈〈d′1〉〉 = 10, which defines the model

m′2 = {〈〈d′1〉〉 = 10, 〈〈d1〉〉 = 3, . . . , 〈〈d8〉〉 = 0}

and M2, which in turn yields the join M1 taff M2 as follows:

M1 tM2 =

1 0 0 0 0 −2 0 0 0 0
0 1 −1 0 0 0 0 0 0 0
0 0 0 1 −2 0 0 0 0 0
0 0 0 0 0 0 1 2 0 2
0 0 0 0 0 0 0 1 1 1

Repeating this process two more times then gives:

m′3 = {〈〈d′1〉〉 = 26, 〈〈d1〉〉 = 8, . . . , 〈〈d8〉〉 = 0}
m′4 = {〈〈d′1〉〉 = 6, 〈〈d1〉〉 = 0, . . . , 〈〈d8〉〉 = 3}

127

5 Transformers for Template Constraints

M1 taff M2 taff M3 =

[
1 0 0 0 0 −2 0 0 0 0
0 1 −1 1 −1 0 0 0 0 0

]
M1 taff M2 taff M3 taff M4 =

[
1 0 0 0 0 −2 0 0 0 0

]
Then, M1tM2tM3tM4 expresses the relationship 〈〈d′1〉〉 = 2 · 〈〈d5〉〉. In summary,
each iteration k of the algorithm involves the following steps:

1. Find a model of κ ∧ ϕ ∧ η ∧ µ where µ ensures that the model is not already
summarized by tk−1

i=1 Mi.

2. Maximize 〈〈d′1〉〉 whilst keeping 〈〈d1〉〉, . . . , 〈〈d8〉〉 fixed.

3. Join the resulting model with tk−1
i=1 Mi to give tki=1Mi.

To verify that 〈〈d′1〉〉 = 2 · 〈〈d5〉〉 is a fixed point, unlike before, it is not sufficient
to impose the disequality 〈〈d′1〉〉 6= 2 · 〈〈d5〉〉 and check for unsatisfiability. This is
because 〈〈d′1〉〉 is defined through maximization, rather than equality. Instead, the
check amounts to testing whether κ ∧ ϕ ∧ η is unsatisfiable when combined with
a formula encoding 〈〈d′1〉〉 > 2 · 〈〈d5〉〉. Note that if 〈〈d′1〉〉 > 2 · 〈〈d5〉〉 holds, then it
follows that 〈〈d′1〉〉 6= 2 · 〈〈d5〉〉 holds. Since the combined system is unsatisfiable, we
conclude that the update includes d′1 = 2 · d5. The complete affine update consists
of:

d′1 = 2 · d5

d′2 = d2

d′3 = 2 · d6

d′4 = d4

d′5 = 2 · d5 + d2

d′6 = 2 · d6 + d4

d′7 = 2 · d6 + d2

d′8 = 2 · d5 + d4

This result is superior to that computed in Ex. 5.3. To illustrate, consider again an
input defined by 0 ≤ 〈〈r0〉〉 ≤ 4, 0 ≤ 〈〈r1〉〉 ≤ 1 and 〈〈r0〉〉+ 〈〈r1〉〉 ≤ 4, hence:

d1 = 4 d2 = 1 d3 = 0 d4 = 0 d5 = 4

Applying the computed transformer to derive d′5 on output gives d′5 = 2 · 4 + 1 = 9.
Hence, we have 〈〈r0′〉〉 + 〈〈r1′〉〉 ≤ 9, whereas the previously discussed technique
based on applying the β map from Def. 5.1 yields 〈〈r0′〉〉+ 〈〈r1′〉〉 ≤ 11.

Correctness and Optimality

Indeed, these symbolic update operations are optimal in the sense that if a symbolic
output constant d′j is equal to a linear function of the symbolic input constants
d1, . . . , d8, then that function will be derived. In the discussion of Miné [166, Fig. 27],
this technique might thus be classified as exact. The following theorem confirms this
intuition. For ease of presentation, the result states the exactitude of the update on
the constant d′1. Analogous results hold for updates on d′2, . . . , d

′
8.

128

5.3 Interleaved Abstraction and Refinement

Theorem 5.1. Suppose an octagonal update of the form M ∈ Q10×1 is derived such
that M · (d′1, d1, . . . , d8,−1)T = 0. Moreover, suppose that:

• For all values of 〈〈r0〉〉 and 〈〈r1〉〉 such that 〈〈r0〉〉 ≤ d1, . . . , 〈〈r0〉〉 − 〈〈r1〉〉 ≤ d8

and ϕ hold, it follows that 〈〈r0′〉〉 ≤ c+ c1 · d1 + . . .+ c8 · d8 holds.

• For all values of 〈〈r0〉〉, 〈〈r1〉〉, there exists a value of 〈〈r0′〉〉 such that 〈〈r0〉〉 ≤ d1,
. . . , 〈〈r0〉〉 − 〈〈r1〉〉 ≤ d8, ϕ and 〈〈r0′〉〉 = c+ c1 · d1 + . . .+ c8 · d8 hold.

Then, M · (d′1, d1, . . . , d8,−1)T = 0 entails d′1 = c+ c1 · d1 + . . .+ c8 · d8

Proof. Suppose that M is derived by M = M1 tM2 t . . . tMk. Further, suppose
M1 is constructed from the model m1 = {d′1 = v′1, d1 = v1, . . . , d8 = v8} where
the value v′1 is maximal. Yet, m1 is derived from a formula that encodes the
equality 〈〈r0′〉〉 = 〈〈d′1〉〉 where d′1 is a signed bit-vector representing d′1. Since v′1 is
maximal, it follows that the value of 〈〈r0′〉〉 is maximal, too. Hence, it follows that
(d′1 = v′1)∧∧8

i=1(di = vi) implies d′1 = c+c1 ·d1 + . . .+c8 ·d8 by the two assumptions.
Therefore, M1 · (d′1, d1, . . . , d8,−1)T = 0 entails d′1 = c+ c1 · d1 + . . .+ c8 · d8 since
M1 = [I | (v′1, v1, . . . , v8)T], where I ∈ Q9×9 denotes the identity matrix. Likewise,
Mi · (d′1, d1, . . . , d8,−1)T = 0 implies d′1 = c+ c1 · d1 + . . .+ c8 · d8 for all 1 ≤ i ≤ k.
The result follows since M is the least upper bound of M1,M2, . . . ,Mk, whereas
d′1 = c+ c1 · d1 + . . .+ c8 · d8 is an upper bound.

Suppose M describes a symbolic bound d′ of an output octagon as a linear combina-
tion of symbolic inputs d1, . . . , dk. Since affine equalities over d′, d1, . . . , dk constitute
an ascending chain over k + 1 variables, M is derived in at most k + 2 iterations
of affine abstraction (cp. Cor. 4.4). In each iteration, maximization is performed,
which requires w′ calls to a SAT solver, where w′ = w + 2 (cp. Cor. 4.2). Hence,
deriving an optimal affine description of d′ using d1, . . . , dk requires (k+ 2) ·w′ calls
to a SAT solver in the worst case.

5.3.2 Inferring Polynomial Equalities for Octagons

The minimization and maximization terms that arise during the evaluation of interval
terms suggest a tactic for lifting polynomial updates to octagons. To illustrate
with the update from Ex. 4.13, our construction proceeds by introducing a set
S = {d1 · d3, d1 · d6, d3 · d5, d5 · d6} of monomials over the symbolic bounds of an
octagon over r0, r1, and r2. We then introduce two auxiliary variables p1 and p2

specified as:

p1 = max{s ∈ S ∪ Z} p2 = min{s ∈ S ∪ Z}
Here, Z is as defined in Def. 5.4. The goal of the analysis is then to infer an equality

d′i =
∑18

i=1 λi · di + ρ1 · s1 + ρ2 · s2 + c

129

5 Transformers for Template Constraints

to specify each symbolic output d′i as an affine combination of the inputs di and the
non-linear terms s1 and s2. By interleaving the affine join over {d′i, d1, . . . , d8, s1, s2}
with maximization as before, we obtain such an update. In this case, we compute
the following transfer function:

〈〈r0〉〉 ≤ d1

〈〈r1〉〉 ≤ d2

〈〈r2〉〉 ≤ d3

−〈〈r0〉〉 ≤ d4

−〈〈r1〉〉 ≤ d5

−〈〈r2〉〉 ≤ d6

〈〈r0〉〉+ 〈〈r1〉〉 ≤ d7

−〈〈r0〉〉 − 〈〈r1〉〉 ≤ d8

−〈〈r0〉〉+ 〈〈r1〉〉 ≤ d9

〈〈r0〉〉 − 〈〈r1〉〉 ≤ d10

〈〈r0〉〉+ 〈〈r2〉〉 ≤ d11

−〈〈r0〉〉 − 〈〈r2〉〉 ≤ d12

−〈〈r0〉〉+ 〈〈r2〉〉 ≤ d13

〈〈r0〉〉 − 〈〈r2〉〉 ≤ d14

〈〈r1〉〉+ 〈〈r2〉〉 ≤ d15

−〈〈r1〉〉 − 〈〈r2〉〉 ≤ d16

−〈〈r1〉〉+ 〈〈r2〉〉 ≤ d17

〈〈r1〉〉 − 〈〈r2〉〉 ≤ d18

〈〈r0′〉〉 ≤ d2 + s1

〈〈r1′〉〉 ≤ d2

〈〈r2′〉〉 ≤ d3

−〈〈r0′〉〉 ≤ d5 + s2

−〈〈r1′〉〉 ≤ d5

−〈〈r2′〉〉 ≤ d6

〈〈r0′〉〉+ 〈〈r1′〉〉 ≤ d2 + s1 + d2

−〈〈r0′〉〉 − 〈〈r1′〉〉 ≤ d5 + s2 + d5

−〈〈r0′〉〉+ 〈〈r1′〉〉 ≤ d5 + s2 + d2

〈〈r0′〉〉 − 〈〈r1′〉〉 ≤ d2 + s1 + d5

〈〈r0′〉〉+ 〈〈r2′〉〉 ≤ d2 + s1 + d3

−〈〈r0′〉〉 − 〈〈r2′〉〉 ≤ d5 + s2 + d6

−〈〈r0′〉〉+ 〈〈r2′〉〉 ≤ d5 + s2 + d3

〈〈r0′〉〉 − 〈〈r2′〉〉 ≤ d2 + s1 + d6

〈〈r1′〉〉+ 〈〈r2′〉〉 ≤ d15

−〈〈r1′〉〉 − 〈〈r2′〉〉 ≤ d16

−〈〈r1′〉〉+ 〈〈r2′〉〉 ≤ d17

〈〈r1′〉〉 − 〈〈r2′〉〉 ≤ d18

Thus, for example, if the octagon on input describes a cube that is offset from the
origin, namely, d1 = d2 = d3 = 3 and d4 = d5 = d6 = −2, then the bound on 〈〈r0′〉〉,
denoted d′1, is calculated by:

d′1 = d2 + s1 = 3 + max{3 · 3, 3 · (−2), (−2) · 3, (−2) · −2} = 12

Compared to the lifting technique in Chap. 5.1.4, the output is in general superior.
This is because the derived transformer uses monomials over arbitrary symbolic
constants di on input, rather than merely the range constraints, though this is not
the case in the above example.

5.3.3 Optimal Affine Updates on Arithmetical Congruences

Thus far, the domain of arithmetical congruences was only touched in Chap. 4.2.4.
There, we have presented a procedure αV

a-cong(ϕ) that computes characterizations
of the form 〈v〉 ≡m c for all bit-vectors v ∈ V . A related question in the context
of transfer function synthesis is thus how affine or polynomial updates can be

130

5.3 Interleaved Abstraction and Refinement

inferred for symbolic representations of arithmetical congruences. Specifically, we
face the following question: Given symbolic representations 〈vi〉 ≡mi ci for all
inputs vi ∈ V in, how can the parameters m′ and c′ of an arithmetical congruence
〈v′〉 ≡m′ c′ of an output bit-vector v′ ∈ V out be characterized as an affine (or
polynomial) formula over m1, c1, . . . ,mn, cn?

Affine Relations over Arithmetical Congruences

To illustrate the algorithm, assume an 8-bit instruction NOT R0 in regular mode,
which computes the bit-wise negation of R0 and stores the result in R0. The semantics
of NOT R0 is represented by a formula ϕ ∈ ℘(℘(V in ∪ V out)) with V in = {r0}
and V out = {r0′}. We introduce bit-vectors mr0, cr0, mr0′ , and cr0′ . Let κ
encode the requirement that the arithmetical congruences 〈r0〉 ≡mr0 〈cr0〉 and
〈r0′〉 ≡mr0′ 〈cr0′〉 simultaneously hold. Computing an affine equality that describes
mr0′ is then straightforward, as this iteration amounts to representing the values of
mr0′ , mr0, and cr0 as a matrix and then iteratively computing the affine hull, as
before. The iteration eventually stabilizes with 〈mr0′〉 = 255−〈mr0〉. Applying the
same strategy to 〈cr0′〉 yields 〈cr0′〉 = 〈cr0〉. We thus obtain the overall transformer
〈r0′〉 ≡255−〈mr0〉 〈cr0〉, which is the optimal result.

Probabilistic Affine Equalities for Arithmetical Congruences

Unfortunately, computing descriptive results for the displacement 〈cr0〉 is not always
as easy. For example, a transformer for ADD R0 R1 in regular mode involves the
computation of the greatest common divisor of the displacements of the congruences
that describe R0 and R1. If 〈r0〉 ≡〈mr0〉 〈cr0〉 and 〈r1〉 ≡〈mr1〉 〈cr1〉 on input, then:

〈r0′〉 ≡〈mr0〉+〈mr1〉 gcd(〈cr0〉, 〈cr1〉)

The difficult part in deriving such a relation is to formalize gcd(〈cr0〉, 〈cr1〉) within
the SAT instance. Since gcd(a, b) can be computed in O(ln(b)), the term gcd(a, b)
can be encoded in SAT by unrolling the extended Euclidean algorithm. However, it
is also possible to sidestep this problem using a simple trick, although at the cost
of soundness. Since a generic transformer is parametric in the modulus, we can
define certain, concrete values of 〈mr0〉 and 〈mr1〉, e.g., 〈mr0〉 = 8 and 〈mr1〉 = 11,
which entails 0 ≤ 〈cr0〉 < 8 and 0 ≤ 〈cr1〉 < 11. To do so, we define:

µ =

(〈mr0〉 = 8) ∧ (〈mr1〉 = 11) ∧
(〈mr0〉 = 8) ∧ (〈mr1〉 = 11) ∧
(〈cr0〉 < 8) ∧ (〈cr1〉 < 11)

Based on these values encoded in µ, we introduce symbolic variables that represent
commonly occurring expressions such as gcd(〈cr0〉, 〈cr1〉) and lcm(〈cr0〉, 〈cr1〉)

131

5 Transformers for Template Constraints

-4 -3 -2 -1 0 1 2 3 4

-2

-1

1

2

Figure 5.2: Octagon describing an assignment y = x div 2 subject to −4 ≤ x ≤ 4

drawn from a set of templates. In this example, we stick to gcd(〈cr0〉, 〈cr1〉). The
solutions of gcd(〈cr0〉, 〈cr1〉) are then simply enumerated as part of the propositional
formula. Let ν denote the valuations of the symbolic expression p = gcd(〈cr0〉, 〈cr1〉)
for (〈cr0〉 < 8) ∧ (〈cr1〉 < 11). Then, computing the affine hull of

{mr0, cr0,mr1, cr1,mr0′ , cr0′ , p}

subject to ϕ∧µ∧ ν gives 〈r0′〉 ≡〈mr0〉+〈mr1〉 gcd(〈cr0〉, 〈cr1〉) as desired. Of course,
this transformer may be valid only for the case that 〈mr0〉 = 8 and 〈mr1〉 = 11.
However, we can increase the probability of (and confidence in) correctness of
the abstraction by repeatedly applying the method for different coprime values
of 〈mr0〉 and 〈mr1〉. In our implementation, the analysis is performed with 16
different valuations of the input moduli. We have never observed a faulty abstraction
using this strategy. The method thus dovetails with the key idea behind random
interpretation [123, 124], which is based on iterative simulation of programs to
guarantee affine invariants that hold with high probability.

5.4 Affine Transformers for Non-Affine Relations

Octagonal constraints exhibit restricted capabilities for extracting affine transformers
for range analysis of non-linear programs. Indeed, inequalities of the form ±〈〈vi〉〉 ±
〈〈vj〉〉 ≤ d can be turned into a transformer that over-approximates the ranges of
either 〈〈vi〉〉 or 〈〈vj〉〉. As an example, consider y = x div 2 subject to the additional
constraints −4 ≤ x ≤ 4. The optimal abstraction using octagons, which defines

(−4 ≤ x ≤ 4) (−2 ≤ y ≤ 2) (−2 ≤ x− y ≤ 2)

132

5.4 Affine Transformers for Non-Affine Relations

is given in Fig. 5.2 (the redundant constraints for x + y and −x − y have been
omitted). From the third constraint, we obtain inequalities y ≤ x+ 2 and y ≥ x− 2,
which can be used to express ranges on y. If x`, xu, y`, and yu denote the extremal
values of x and y, respectively, the octagon defines an over-approximate update for
interval analysis:

y` = x` − 2 yu = xu + 2

Observe that a conjunction of two-variables-per-inequality (TVPI) constraints [224,
225], which again forms a convex shape, would compute a better description of the
same set of solutions. The TVPI abstraction consists of the following six inequalities: y ≤ x + 2

y ≤ 1
2 · x + 1

2
y ≤ 4

3 · x + 4
3

 ∧ y ≥ 2
5 · x− 2

5
y ≥ 1

2 · x− 1
2

y ≥ x− 2

Indeed, the system of TVPI constraints does not contain any spurious integral
solutions to the assignment y = x div 2, which compares favorably against the
octagonal system. We generate the following transformers for interval analysis from
the TVPI abstraction, applying the lifting techniques introduced before:

y` = dmax
{

2
5 · x` − 2

5 ,
1
2 · x` − 1

2 , x` − 2
}
e

yu = bmin
{
xu + 2, 1

2 · xu + 1
2 ,

2
5 · xu + 2

5

}
c

For inputs x` = 0 and xu = 1, the TVPI abstraction thus induces the output:

x` = dmax
{

2
5 · 0− 2

5 ,
1
2 · 0− 1

2 , 0− 2
}
e = 0

yu = bmin
{

1 + 2, 1
2 · 1 + 1

2 ,
2
5 · 1 + 2

5

}
c = 0

By way of comparison, the octagon defines y` = −2 and yu = 2, which is, of course,
non-optimal. The remainder of this section studies how to transform abstractions
in terms of convex polyhedra into updates on intervals and octagons. Of course, the
domain of convex polyhedra subsumes the TVPI domain employed in the example.

5.4.1 From Convex Polyhedra to Intervals

We assume that ϕ ∈ ℘(℘(V)) encodes the semantics of a block. Further, let V in ⊆ V
and V out ⊆ V such that V in ∩ V out = ∅ denote the bit-vectors on entry and exit

of the respective block. Then, we compute α
V in∪{v′}
conv (ϕ) for each v′ ∈ V out, which

yields a convex polyhedron cv′ over V in ∪ {v′}. We can straightforwardly transform
each inequality so that cv′ takes the following shape:∧m1

j=1

(
〈〈v′〉〉 ≥∑v∈V in

λv,i · 〈〈v〉〉+ ci

)
∧∧m2

j=m1+1

(
〈〈v′〉〉 ≤∑v∈V in

λv,j · 〈〈v〉〉+ cj

)

133

5 Transformers for Template Constraints

Then, the first m1 inequalities characterize lower upper bounds on 〈〈v′〉〉, followed
by m2 inequalities that describe upper bounds. It is thus safe to deduce

〈〈v′`〉〉 ≤
∑

v∈V in
λv,i · 〈〈v〉〉+ ci 〈〈v′u〉〉 ≤

∑
v∈V in

λv,j · 〈〈v〉〉+ cj

for all 1 ≤ i ≤ m1 and m1 + 1 ≤ j ≤ m1 +m2. From monotonicity of
∑

v∈V in
λv,i ·

〈〈v〉〉 + ci and
∑

v∈V in
λv,j · 〈〈v〉〉 + cj , respectively, we deduce that lifting affine

characterizations in cv′ to intervals becomes applicable (cp. Chap. 5.1.1). By
applying Prop. 5.1, which we combine with floor and ceil operators to give integral
results, we obtain:

〈〈v′`〉〉 = dmax{∑v∈V in
λv,i · β(−λv,i, 〈〈v〉〉) + ci | 1 ≤ i ≤ m1}e

〈〈v′u〉〉 = bmin{∑v∈V in
λv,j · β(λv,j , 〈〈v〉〉) + cj | m1 + 1 ≤ j ≤ m1 +m2}c

It is thus possible to derive an almost affine update — one that involves minimiza-
tion and maximization during evaluation — for intervals directly from polyhedral
abstractions of ϕ, without loss in precision.

5.4.2 From Convex Polyhedra to Octagons

When we discussed lifting of affine equalities to octagons in Chap. 5.1.2, we have
transformed the unary constraints of an input octagon to characterize the output,
thereby inducing a loss in precision. It is possible to derive octagonal transformers

from polyhedral abstractions using this strategy, too. Suppose that α
V in∪{v′1}
conv (ϕ)

and α
V in∪{v′2}
conv (ϕ) for v′1,v

′
2 ∈ V out yield polyhedral descriptions of 〈〈v′1〉〉 and 〈〈v′2〉〉,

respectively. For unary constraints (such as 〈〈v′1〉〉 ≤ d′1), we apply the strategy for
intervals, which gives an update on d′1 that involves minimization and maximization.
For the more involved case of binary constraints of the form λ1 ·〈〈v′1〉〉+λ2 ·〈〈v′2〉〉 ≤ d′,
we proceed as follows: put d′ = λ1 · τ1 + λ2 · τ2 where τi is defined as:

τi =

{
lower bound of 〈〈v′i〉〉 : λi = −1
upper bound of 〈〈v′i〉〉 : λi = 1

This transformation solely uses interval updates. We thus obtain binary output
constraints using combinations of the inputs, though at the cost of precision.

5.4.3 Interleaving Polyhedral Abstraction and Maximization

Yet, it is also possible to interleave octagonal abstraction with polyhedral abstraction,
thereby extending the technique in Chap. 5.3. The express aim of this technique is
to derive a convex polyhedron that describes the constants d′i of an octagon by a con-
junction of linear inequalities that involve the constants di on input. As in Chap. 5.3,
we proceed by introducing sign-extended bit vectors d1, . . . ,d8 to represent the

134

5.5 Experiments

symbolic constants d1, . . . , d8 of the input octagon. Further, let κ denote a Boolean
formula that holds iff the eight inequalities 〈〈r0〉〉 ≤ 〈〈d1〉〉, . . . , 〈〈r0〉〉−〈〈r1〉〉 ≤ 〈〈d8〉〉
simultaneously hold; likewise, let η encode the equality 〈〈r0′〉〉 = 〈〈d′1〉〉 where d′1 is a
signed bit-vector representing d′1. In essence, the algorithm performs each of the
following steps in each iteration k:

1. Find a model mk of κ ∧ ϕ ∧ η ∧ µ where µ ensures that m is not already
summarized by αZ9

conv(c1)tconv . . .tconvα
Z9

conv(ck−1). As before, αZn

conv(c) denotes
an operation that converts a point c ∈ Z9 into a convex polyhedron.

2. Maximize 〈〈d′1〉〉 whilst keeping 〈〈d1〉〉 = m(d1), . . . , 〈〈d8〉〉 = m(d8) fixed, which
gives d′1,k ∈ Z.

3. Join (d′1,k,m(d1),m(d8)) with αZ9

conv(c1) tconv . . . tconv α
Z9

conv(ck−1).

Upon termination, the convex polyhedron αZ9

conv(c1) tconv . . . tconv α
Z9

conv(ck) over-
approximates d′1 in the sense that d′1 is characterized by a conjunction of linear
inequalities over d1, . . . , d8. As in Chap. 5.3, the technique can repeatedly be applied
to characterize d′2, . . . , d

′
8, too.

5.5 Experiments

As in Chap. 4.4, we report on experimental results that we have obtained using a
prototype implementation written in C++ on top of Z3.

5.5.1 Lifting and Transformation

The computational cost of lifting affine or polynomial constraints to intervals and

octagon, i.e., rewriting equalities V in
Aff−−→ V out and V in

Poly−−→ V out as

V in
Aff−−→ V out

{
Int

Aff−−→ V out

Oct
Aff−−→ Oct

V in
Poly−−→ V out

{
Int

Poly−−→ Int

Oct
Poly−−→ Oct

is negligible. The runtimes for each block are identical to those required for
computing αV

aff(ϕ) and αV
poly(ϕ), which we have presented in Chap. 4.4.6 and

Chap. 4.4.7. Likewise, the overhead of transforming polyhedra into updates on
intervals (cp. Chap. 5.4.1) and octagons (cp. Chap. 5.4.2) is insignificant: The
overall runtime is essentially that required for computing αV

conv(ϕ). Therefore, we
omit these numbers and refer the reader to Chap. 4.4.4.

135

5 Transformers for Template Constraints

Table 5.2: Transfer function synthesis using quantification

block #instr. D1 D2 #bits time

ABS 5 Int Int
8 0.6
32 ∞

INC 1 Int Int
8 0.2
32 15.8

INC&ASR 2 Int Int
8 0.3
32 18.3

SWAP 3 Int Int
8 0.1
32 0.2

5.5.2 Quantification

Table 5.2 presents experimental results for the application of the quantifier-based
approach discussed in Chap. 5.2 to several blocks. In the table, the symbol ∞
indicates a timeout, which is set to 30 seconds. The result that was computed is a

transformer of type Int
Bool−−→ Int for registers of width 8 and 32, respectively. Our

experiences indicate that applying the quantifier-based approach to 8-bit registers is
tractable. Yet, a slight increase in the bit-width can already entail intractability.
We have not been able to obtain results for any except the simplest arithmetic
operations (e.g., INC) for the 32-bit case in a reasonable amount of time. The block
SWAP is interesting since it consists of three consecutive exclusive-or operations, for
which there is no coupling between the different bits of the same register. This
property makes it ideal for the quantifier-based approach, as quantifier elimination
yields a very simple Boolean output formula. On average, however, approaches
based on dichotomic search clearly outperform the quantifier-based approach.

5.5.3 Interleaved Abstraction

Comparing interleaved abstraction for octagons to the quantifier-based method, the
former has predictable cost as the number of iterations required to converge onto an
abstraction is linear in the number of octagonal constraints. To characterize a single
output constraint ±〈〈v′1〉〉± 〈〈v′〉〉 ≤ d′, it is necessary to compute an ascending affine
chain over d′ and the symbolic bounds on input. Each iteration of the abstraction
then involves maximization, which has predictable cost, too. Table 5.3 presents
figures for several blocks (cp. Tab. 4.2) for all feasible mode combinations.

For the operation ADD R0 R1, e.g., an affine abstraction is computed that pre-
scribes how an octagon over R0 and R1 on input is transformed into an octagon over
the same variables on output. Thus, for 8 symbolic outputs, an affine equality is
computed, which is interleaved with dichotomic search. Clearly, dichotomic search

136

5.6 Related Work

Table 5.3: Interleaved abstraction using octagons and affine equalities

block #instr. #bits time

ABS 5
8 2.10
16 5.35
32 11.39

ADD 1
8 1.42
16 3.71
32 8.03

block #instr. #bits time

ADD&ASR 2
8 1.48
16 3.80
32 7.97

SWAP 3
8 1.20
16 2.94
32 5.88

has a strong impact on the overall runtime. Doubling the bit-width roughly doubles
the runtime, which can be explained by twice the number of iterations required for
dichotomic search. This effect suggests to apply extrapolation to this problem, too.
Then, a candidate d′i =

∑8
i=1 λi · di + c for an affine transformer for octagons over,

say, 32-bit registers is derived from abstractions over short bit-vectors. Analyzing
short bit-vectors entails a small number of iterations for dichotomic search, and thus,
shorter runtimes. Checking soundness then amounts to testing d′i >

∑8
i=1 λi · di + c

for unsatisfiability. Overall, we have derived octagonal transformers for registers of
width 32 and 64 using this approach within less than 2 seconds for each basic block
from Tab. 4.2.

5.6 Related Work

The problem of designing transfer functions for numeric or symbolic domains is as old
as the field of abstract interpretation itself [77]. Even the technique of using primed
and unprimed variables to capture and abstract the semantics of program statements
and functions dates back to the thesis work of Halbwachs [127]. Ideally, the abstract
operations should compute abstractions that are as descriptive as possible, although
there is usually interplay with accuracy and complexity (cp. [186]). However, even for
a fixed abstract domain and a concrete program statement, there are typically many
ways of designing and implementing transfer functions. Cousot and Halbwachs [82,
Sect. 4.2.1], for example, discussed several ways to realize a transfer function
for assignments such as x = y · z in the domain of convex polyhedra. Likewise,
abstracting integer division x = y/z (cp. Fig. 5.2) is an interesting study within
itself [219]. The complexity of designing transfer functions of course depends not
only on the concrete program statements, but also on the structure and complexity of
the respective abstract domain. Examples of domains that necessitate sophisticated
(and complex) abstract transformers include linear congruences, the difficulty of
which was lamented by Granger [115], but also symbolic cache abstractions [117].

137

5 Transformers for Template Constraints

5.6.1 Generation of Symbolic Best Transformers

From the lamentation of Granger [115], however, it took more than a decade until
it was observed that symbolic best transformers can always be found for abstract
domains of finite height [197], provided one is prepared to pay the cost of repeatedly
calling a decision procedure to evaluate a transformer at runtime. This strategy
differs from our work. By way of contrast, our work aspires to evaluate transfer
functions without a complicated decision procedure by computing it offline so as
to both simplify and speedup their evaluation. Contemporaneously to Reps et
al. [197], it was observed that best transformers for intervals can be computed
using BDDs [186]. The authors observed that if g : [0, 28 − 1] → [0, 28 − 1] is
a unary operation on an unsigned byte, then its best transformer f : D → D
on D = ⊥int ∪ {[`, u] | 0 ≤ l ≤ u ≤ 28 − 1} can be defined through interval
subdivision. If ` = u, then f([`, u]) = g(l); otherwise, if ` < u, then f([`, u]) =
f([`,m− 1] tint f([m,u]) where m = bu/2nc · 2n and n = blog2(u− l + 1)c. Binary
operations can likewise be decomposed. The 8-bit inputs ` and u can be represented
as 8-bit vectors, as can the 8-bit outputs, so as to represent f with a BDD. This
permits caching to be applied, which reduces the time needed to compute a best
transformer to approximately one day for each 8-bit operation. The approach does
not scale to wider words nor to basic blocks.

Automatic abstraction has only recently become a practical proposition, due to
the emergence of robust decision procedures and efficient quantifier elimination
techniques. Our own work (cp. Chap. 5.2 and [31]) shows how bit-blasting and
quantifier elimination can be applied to synthesize best transformers for bit-vectors.
This work was inspired by that of Monniaux [167, 169] on automatic abstraction of
piecewise linear programs, who showed that if the concrete operations are specified
as piecewise linear systems, then it is possible to derive transfer functions for blocks.
The key differences between our own work on quantifier-based abstraction and that
of Monniaux were recently summarized by Thakur and Reps [228, Sect. 7]:

“Whereas Monniaux’s method performs abstraction and then quantifier
elimination, Brauer and King’s method performs quantifier elimination
on the concrete specification and then abstraction.”

Further, although his technique is applicable to general linear template constraints,
and thus extends beyond octagons, it is unclear how to express some operations
(such as bit-wise logical-and) in terms of linear constraints. Universal quantification
also appears in other work on inferring linear template constraints [125]. There, the
authors apply Farkas’ lemma to transform universal quantification into existential
quantification, albeit at the cost of completeness, since Farkas’ lemma prevents
integral reasoning. Crucially, neither Monniaux [167] nor Gulwani et al. [125] provide
a way to model integer overflow and underflow.

138

5.6 Related Work

Thakur and Reps [228, 229] have recently presented an algorithm to compute
symbolic best transformers using an adoption of St̊almarck’s method [216]. The
key idea of their algorithm is to incrementally find semantic reductions [78] so as
to converge onto a best abstraction from above. To illustrate, suppose a concrete
domain C and an abstract domain D are related through a Galois connection
(C, γ, α,D) and a formula ϕ describes a concrete value c ∈ C. An abstract value
d′ ∈ D is a semantic reduction of d ∈ D with respect to ϕ iff (i) γ(d′)∩ϕ = γ(d)∩ϕ,
and (ii) d′ v d. The key idea of Thakur and Reps is now to improve the propagation
rules in St̊almarck’s method to incrementally find a semantic reduction d′ of d. This
approach is not dissimilar to our work on refining abstractions for octagons and other
classes of linear inequalities using incremental SAT/SMT solving (cp. Chap. 4.2.1).
However, our algorithms for affine and polynomial abstractions proceed diametrically
opposed, by systematically converging onto the least sound abstraction from below.

The question of how to construct a best abstract transformer has also been
considered in the context of Markov decision processes (MDPs), for which the first
abstract interpretation framework has recently been developed by Wachter and
Zhang [238]. The framework affords the calculation of both lower and upper bounds
on reachability probabilities, and focuses on predicate abstraction, which has had
some success with large MDPs. Given a fixed set of predicates, Wachter and Zhang
seek to answer the question of what is the most precise abstract program that still
is a correct abstraction. More generally, the work illustrates that the question of
how to compute abstract transformers is pertinent even in the probabilistic setting.

5.6.2 Modular Arithmetic

The classical approach to handling overflows is to follow the application of a transfer
function with overflow and underflow checks. Variables are then considered to be
unbounded for the purpose of applying the transformer, but then their sizes are
considered and, if necessary, range adjustments are applied to model wrapping. This
approach has, among other tools, been implemented in Astrée [83–85]. However,
even though this method appears attractive for the analysis of high-level languages
and assembly languages with large registers, it is infeasible for small embedded
systems devices, where wraps are used by intention. In this context, Bygde et al. [54]
have shown that for convex polyhedra it is also possible to revise the concretization
map to reflect truncation, building upon the work of Simon and King [223]. Both
techniques allow to eliminate range tests from most abstract operations.

Another strategy to modeling machine arithmetic is to deploy congruence rela-
tionships [39, 114–116, 144, 145, 171, 172, 213] where the modulo is a power of two
so as to reflect wrapping within the abstract domain itself (the domain of linear
congruences is also known as the grids domain [5]). This approach can be applied to
find both, relationships between different words [171, 172] and the bits that consti-

139

5 Transformers for Template Constraints

tute words [39, 144, 145].3 We have also combined bit-level abstractions with range
analysis [39], and so have Codish et al. [71], but neither of these works addresses
the problem of relational abstraction or transfer function synthesis. Unfortunately,
no meaningful notion of inequality has been found for congruence relations [172,
Sect. 7], unlike for linear ones, which necessitates techniques akin to case-splitting.
For example, modular arithmetic can be modeled with case-splitting by introducing
a propositional variable that acts as a witness to an overflow. To illustrate, consider
the 8-bit comparison x + 100 ≤ 10 [148, Sect. 6.4]. To model overflow, a witness
p ⇔ x + 100 ≤ 255 is defined, which is used to control case-selection. Selection
among different cases can, in turn, be realized through two constraints defined as
p⇒ (x+ 100 ≤ 10) and (¬p)⇒ (x+ 100− 256 ≤ 10). Case-based axiomatizations
can even be used to model underflows and rounding-to-zero in IEEE-754 floating
point arithmetic [167, Sect. 4.5]. These ideas are similar in spirit to decomposing a
basic block into its different modes, which are then protected by guards.

A structurally simpler domain is that of non-relational arithmetical congruences,
which has been introduced by Granger [114]. In his seminal work, Granger used
the notation k +m · Z to denote the set {k +m · z | z ∈ Z}. We prefer a slightly
different, though equivalent, notation ≡m k. Intuitively, arithmetical congruences
offer a simple representation for strided value sets. Balakrishnan and Reps [9]
have combined this representation with intervals — a domain for which they have
coined the term strided intervals — which has shown useful in memory access
analysis [195] as it can express both, ranges and offsets. To illustrate, suppose three
consecutive 4-byte integers are indexed using an indirect read. Further, assume
that these values are located at addresses 1020, 1024, and 1028 in memory. Interval
analysis would infer a range [1020, 1028]; indirect reads for all 4-byte regions starting
at 1020, . . . , 1028 thus need to be simulated. A strided interval 4[1020, 1028], in
turn, can be seen as the reduced product of intervals with arithmetical congruences.
It expresses both, the range of indexed memory locations and the fact that only
addresses which are multiples of 4 are indeed accessed. By computing αV

int(ϕ)
and αV

a-cong(ϕ), we could compute such a representation using our methods, too.
Bygde [53] has studied the application of arithmetical congruences to low-level
code analysis as well. Whereas Granger [114] provided transformers for standard
operations such as addition and multiplication over unbounded integers, Bygde [53,
Chap. 5] considered the case of bounded integers represented as bit-vectors and
defined transformers for bit-wise operations such as XOR. However, all transformers
were derived manually.

3The relative precision of these two approaches has been compared by Elder et al. [96], the result
being that both domains are incomparable.

140

5.6 Related Work

5.6.3 Polynomial Relations

The past decade has seen increasing interest in the derivation of polynomial invari-
ants, with techniques broadly falling into two classes: (i) methods that use algebraic
techniques to directly manipulate polynomials and (ii) methods that model polyno-
mial invariants in a linear setting. The work of Colón [73] is a representative of the
latter, for he shows how polynomial relations of bounded degree can be derived using
program transformations. Suppose a variable a is updated using the assignment
a = a+ 1. First, an auxiliary variable s is introduced to represent the non-linear
term a2. The program is then extended by replacing the assignment a = a+ 1 with
the parallel assignment (a, s) = (a+ 1, s+ 2 · a+ 1), which reflects the effects of the
update of a on s. Linear invariants between a and s (and possibly other variables) in
the transformed program are then interpreted as polynomial invariants. The idea of
using non-linear terms as additional independent variables also arises in the approach
of Bagnara et al. [4], who use convex polyhedra to represent polynomial cones of
bounded degree, and thereby derive polynomial inequalities. To reduce the loss
of precision incurred by linearization, they introduce additional linear inequalities
which are included in the polyhedra to express non-linear constraints. The idea
of extending a vector of variables with non-linear terms also arises in the work of
Müller-Olm and Seidl [170], who most notably consider the complexity of inferring
polynomial equalities up to a fixed degree. Müller-Olm and Seidl represent an affine
relation using a set of vectors that generate the space through linear combination.
Extending this idea to polynomial relations, they introduce variables that represent
non-linear terms, which naturally leads to the notion of polynomial hull which is
not dissimilar to our closure algorithm presented in Chap. 4.2.6.

Quantifier elimination has been proposed as a technique for inferring polynomial
inequalities by Kapur [135]. In his approach, invariants are templates of polynomial
inequalities with undetermined coefficients. Deriving coefficients for the templates
amounts to applying quantifier elimination, which can be computed using a paramet-
ric (or comprehensive) Gröbner basis construction [241]. This approach resonates
with the technique proposed by Monniaux [167, 169] for inferring loop invariants.
Gröbner bases also arise in techniques for calculating invariants that are based on
fixed point calculation [201, 202], the main advantage of this approach being that
it does not assume any a priori bound on the degree of a polynomial. Polynomial
analysis has also been applied in the field of SAT-based termination analysis by
Fuhs et al. [101] using term rewriting [110, 233]. Although not strictly related to our
field, their work provides techniques for encoding polynomial equality and inequality
constraints in propositional Boolean logic. An easier-to-implement approach is to use
SMT solvers [148] for bit-vector theories. For example, Z3 [90] or Boolector [44])
provide built-in support for polynomial expressions over bit-vectors.

141

5 Transformers for Template Constraints

5.6.4 Summary-based Program Analysis

Abstracting the effect of a procedure in a summary is a key problem in interpro-
cedural program analysis [215] since it enables the effect of a call on an abstract
state to be determined without repeatedly tracing the call. The challenge posed
by summaries is how they can be densely represented whilst supporting the func-
tion composition and function application. Gen/kill bit-vector problems [196] are
amenable to efficient representation, though for other problems, such as that of
tracking variable equalities [173], it is better not to tabular the effect of a call
directly. This is because if a transformer is distributive, then the lower adjoint of a
transformer uniquely determines the transformer and, perhaps surprisingly, the lower
adjoint can sometimes be represented more succinctly than the transformer itself.
Acceleration [112, 155, 156, 212] is attracting increasing interest as an alternative
way of computing a summary of a procedure, or more exactly the loops that it
contains. The idea is to track how program state changes on each loop iteration
so as to compute the trajectory of these changes (in a computation that is akin to
transitive closure) and hence derive, in a single step, a loop invariant that holds on
all iterations of the loop. A similar idea is found in loop leaping [15, 150, 151, 235].
The key idea in loop leaping, also colloquially referred to as loop frogging, is to
derive a loop summary, which is applied to abstract the loop.

Symbolic bounds, which are key to our transfer functions, also arise in a form of
bounds analysis [203] that aspires to infer ranges on pointer and array indices in
terms of the parameters of a procedure. Bounds on each program variable at each
program point are formulated as linear functions of the parameters of the function,
where the coefficients are themselves parametric. The analysis problem then amounts
to inferring values for these coefficients. By assuming variables to be non-negative,
inequalities between the symbolic bounds can be reduced to inequalities between
the parametric coefficients, thereby reducing the problem to linear programming.

5.7 Discussion

In summary, this chapter has discussed the problem of automatically computing
transformers, based on a multitude of algorithms to derive abstractions for intervals,
octagons, and arithmetical congruences as affine and polynomial equalities (which
sometimes involve minimization and maximization), and also as Boolean functions.
To structure the presentation, we have roughly categorized the techniques as lifting,
quantification, and interleaved abstraction, a summary of which is given in Tab. 5.4.
A commonality among all techniques discussed in this chapter is that they are
based on the abstraction mechanisms introduced in Chap. 4. It should be noted
that the estimated cost should be interpreted relative to cheap abstractions such as
αV

aff(ϕ); other methods (cp. Regehr and Reid [186]) require in excess of 24 hours per

142

5.7 Discussion

Table 5.4: Overview of techniques to compute transformers presented in Chap. 5

Type Technique Chap. Precision Cost

Int
Aff−−→ Int lifting 5.1.1 rel. optimal low

Oct
Aff−−→ Oct lifting 5.1.2 medium low

Int
Poly−−→ Int lifting 5.1.3 rel. optimal low

Oct
Poly−−→ Oct lifting 5.1.4 medium low

D1
Bool−−→ D2 quantification 5.2 optimal (very) high

Oct
Aff−−→ Oct interleaved 5.3.1 optimal high

Oct
Poly−−→ Oct interleaved 5.3.2 optimal high

A-Cong
Aff−−→ A-Cong interleaved 5.3.3 probab. low

Int
Conv−−−→ Int non-affine 5.4.1 high high

Oct
Conv−−−→ Oct non-affine 5.4.2 medium high

Oct
Conv−−−→ Oct interleaved 5.4.3 optimal (very) high

instruction, whereas our techniques generate transformers in the order of seconds.
Methods that lift a system of equalities to symbolic constraints are computationally

cheap, but suffer from imprecision for relational domains. This is because these
techniques, which have been presented in Chap. 5.1, merely exploit the syntactic
structure of the equalities on input. By way of contrast, quantification-based
transformers are very expensive since the key idea is to encode symbolic constraints
drawn from some template domain together with the concrete semantics of a block,
and then to apply quantifier elimination. The expense of quantifier elimination thus
limits the quantifier-based approach to automatic abstraction to registers with small
bit-widths. However, it is important to appreciate that this method yields a direct
bit-level description of symbolic constraints, and can thus represent any relation
imposed by a basic block. Further, there is no reason why extrapolation could not
as well be combined with quantifier-based abstraction so as to improve tractability.

The remaining techniques aim at finding a practical middle ground between exac-
titude and tractability. In particular, abstraction using octagons can be interleaved
with affine abstraction to describe the symbolic constants of an output octagon as
an affine combination of the symbolic inputs; for the affine case, we have presented
an optimality result. Polyhedral abstraction in general turns out useful if the basic
block exhibits non-linear relations. The output is then specified by a number of
linear inequalities so that minimization and maximization operators appear in the
transformer. As we have shown, polyhedra can also be applied to the derivation of
inequalities that limit symbolic constants of octagons.

143

5 Transformers for Template Constraints

144

6 Complete Transformers

Model checking has the attractive property that, once a specification cannot be
verified, a trace illustrating a counterexample is returned, which can be inspected
by the end-user of a tool. This trace can then be replayed to identify and eliminate
the defect. Counterexample traces have thus been highlighted as invaluable for
fixing defects [63]. In contrast, abstract interpretation for asserting safety properties
(i.e., assertions) typically summarizes traces into abstract states, thereby trading
the ability to distinguish traces for computational tractability. Upon encountering
a violation of the specification, it is then unclear which trace led to the violation.
Moreover, since the abstract state is an over-approximation of the set of actually
reachable states, a warning about a property violation may be spurious, which
entails that a trace leading to an erroneous concrete state may not exist at all.

Spurious Warnings in Abstract Interpretation Given a safety property that can-
not be proved correct using abstract interpretation, a trace to the beginning of
the program would be similarly instructive to the tool user as in model checking.
However, obtaining such a trace is hard as this trace needs to be constructed by
going backwards step-by-step, starting at the property violation, until the entry of
the program is reached. One approach is to apply the abstract transfer functions
that were used in the forward analysis in reverse [198, 199]. However, these transfer
functions are over-approximate, which implies that counterexample traces computed
using this approach may be spurious, too. Yet, spurious warnings are the major
hindrance for the acceptance and applicability of many static analyses, except those
crafted for a specific application domain [83]. Bessey et al. [24, Sect. 1] have even
conjectured that unsound static analyses might be preferable over sound ones:

“Circa 2000, unsoundness was controversial in the research community,
though it has since become almost a de facto tool bias for commercial
products and many research projects.”

Their key argument is that the number of false positives can be traded off against
missed bugs, thereby delivering tools that effectively find defects rather than prove
their absence, which may explain the commercial success of bug-hunting frameworks
compared to tools truly dedicated to verification.

145

6 Complete Transformers

Inferring Definite Traces using Exact Transformers Rather than giving up on
soundness, we propose a practical technique to find legitimate traces that reveal
actual defects within the abstract interpretation framework, thereby turning sound
static analyses into practical bug-finding tools. Suppose that c denotes the concrete
states of a program (in the collecting semantics) at a program location associated
with an assertion (an invariant) ψ. With an abstraction d of c, a static analyzer
then emits a warning iff the intersection of ¬ψ and the concretization γ(d) of d is
non-empty. The emitted warning, in turn, is spurious iff the intersection of ¬ψ and
c is empty. Yet, obtaining a proof that a warning is indeed a spurious one is difficult,
as this task can be seen as making abstract interpretations complete [105]. Our
approach is different. We use the results of an over-approximate forward analysis
to determine potential property violations. Then, starting from the error state, we
perform backward analysis based on complete transformers to build up a trace from
the violation of the property to the beginning of the program.

Completeness in Abstract Interpretation Completeness can be seen as the dual
of soundness. Given concrete domain (C,vC) with a transformer g : C → C,
soundness of its abstract counterpart f : D → D entails that g is described by f .
Intuitively, soundness means that a loss in precision may occur in either of two ways:

• Given c ∈ C and its optimal abstraction d ∈ D, we often have c @C γ(d).

• Given c ∈ C and its optimal abstraction d ∈ D, the application of f may incur
a loss in precision. Thus, even if c = γ(d), g(c) @C γ(f(d)) may hold.

Completeness, in turn, entails that such a loss in precision does not occur. Since
monotone functions form a complete lattice, completeness of transformers can
likewise be characterized as a property relative to two abstract domains. Giacobazzi
et al. [108, Sect. 1] colloquially describe the situation as follows:

“While soundness is the basic requirement for any abstract interpretation,
completeness is instead an ideal and uncommon situation. In this case,
roughly speaking, the abstract semantics is able to take full advantage of
the power of the underlying abstract domain.”

In our work, the semantic specification consists of relations among finite bit-vectors,
which can be represented completely by lifting a numerical domain such as octagons
to its power-set [98, 106]. The more interesting problem is the efficient yet automatic
derivation of complete transformers for such power-set liftings, i.e., given c ∈ C and
d ∈ D such that c = γ(d), derive f ′ : D → D such that g(c) = γ(f ′(d)).

146

6.1 Backward Analysis for Counterexamples

Complete Transformers Unfortunately, deriving complete transformers is not
easy, as one has to maintain completeness during abstraction. One approach for
reasoning about bit-vectors is to rest the analysis directly on the domain of Boolean
formulae as we have proposed in [35], which further squares with the fact that such
formulae form a Heyting domain, and thus support the computation of weakest
preconditions (recall Chap. 3.1.3). As an alternative, we propose to express complete
transformers as guarded updates and extend the abstractions introduced so far using
a technique akin to disjunctive completion. Although this may seem similar to the
problems and algorithms described in Chap. 4, the drive for completeness requires
techniques different from those that merely aspire to preserve soundness. The key
contribution of this chapter is an algorithm to compute such complete (or under-
approximate) transformers, which then allow us to automatically provide legitimate
counterexample traces or remove spurious warnings using abstract interpretation.

Outline In what follows, we briefly sketch the design of a backward analysis
that derives paths to the entry of a program in Chap. 6.1. Then, we provide a
worked example that explains the generation of complete abstractions in Chap. 6.2.
Afterwards, Chap. 6.3 studies the algorithm formally and provides correctness results.
This chapter then concludes with experimental results in Chap. 6.4, a survey of
related work in Chap. 6.5, and a discussion in Chap. 6.6.

6.1 Backward Analysis for Counterexamples

Deriving a counterexample merely amounts to the arduous task of unrolling a
program in reverse — starting from an erroneous state — so as to eventually
obtain a path that reaches the entry to the program. During backward analysis,
the states obtained can then be intersected with states computed using forward
abstract interpretation to guide the search [198, Sect. 2.4]. It is well-known that
finite paths form viable counterexamples for safety properties in LTL [63, p. 212],
and are thus sufficient to refute invariants. Such a path can simply be computed by
repeated application of backward transformers — a standard technique given that
such transformers are available — and computing the meet of states derived using
backward analysis with those generated using a preceding forward analysis. We
thus refrain from discussing the details here and refer the reader to [35, 198, 199].

For a backward analysis that aims to provide definitive counterexamples, complete
(or under-approximate) backward transformers are indeed the distinguished aspect
of our work: they allow static analyzers to compute weakest preconditions within
the abstract interpretation framework [108]. Weakest preconditions, in turn, can be
used to characterize spurious counterexamples (cp. [105]). The remainder of this
chapter thus focusses on the computation of complete transformers.

147

6 Complete Transformers

6.2 Worked Example

The ethos of our strategy for computing complete (or under-approximate) trans-
formers is to generate guards and updates in parallel. Guards serve to describe
ranges of variables, whereas the update prescribes how an input (resp. output) of a
block is transformed into an output (resp. input for backward analysis). Abstraction
is then applied and interleaved with a check for completeness of the intermediate
result. If complete, the intermediate result forms part of the output; otherwise, the
abstraction is extended disjunctively, which can be seen as a form of disjunctive
completion. We illustrate the steps of this approach by means of an example.

6.2.1 Deriving Complete Abstractions

Suppose ϕ encodes ADD R0 R1, hence V = V in ∪ V out with V in = {r0, r1} and
V out = {r0}. However, assume that, unlike before, ϕ is not equipped with mode
constraints, and thus αV

aff(ϕ) = >aff; likewise, αV
oct(ϕ) = >oct. For the sake of

presentation, assume that we aim to compute a complete disjunctive characterization
of ϕ using guards expressed as octagons and input-output relations expressed as
affine equalities. Let T denote the set of all disjuncts in the combined update, i.e.,
initially T = {(⊥oct,⊥aff)}. Further, put ξ = ϕ∧¬⊥oct, i.e., initially we have ξ = ϕ.
Passing ξ to a solver provides a model m1 of ξ defined as:

m1 = { 〈〈r0〉〉 = 0 ∧ 〈〈r1〉〉 = 0 ∧ 〈〈r0′〉〉 = 0 }

By representing m1 as an octagon on the inputs, m1 defines a constraint g1 =
(〈〈r0〉〉 = 0 ∧ 〈〈r1〉〉 = 0). Then, an affine equality is computed for those inputs of
ϕ that satisfy g1, which gives u1 = (〈〈r0〉〉 = 0 ∧ 〈〈r1〉〉 = 0 ∧ 〈〈r0′〉〉 = 0). Due to
abstraction, u1 is sound for inputs of ϕ that satisfy g1. Yet, u1 is not necessarily
complete. We commence by verifying completeness of u1 by testing ¬ϕ∧ g1 ∧ u1 for
unsatisfiability ; since unsatisfiable, u1 is complete for ϕ∧ g1. Further, g1 is the most
general description of values that satisfy u1: No g′1 ∈ Oct with g1 @oct g

′
1 exists so

that u1 is sound and complete for ϕ ∧ g′1. We thus put T = {(g1, u1)}.

6.2.2 Extending Complete Abstractions

Thus far, T describes a single model c = (0, 0, 0) ∈ Z3 such that c |= ϕ. Our express
aim is to extend T so that it covers a larger set {c1, . . . , cn} ∈ ℘(Z3), each of which
satisfies ci |= ϕ. The next step in deriving a complete abstraction of ϕ thus consists
of extending T . To do so, we define ξ′ = ξ ∧¬g1 and pass ξ′ to a solver, which gives:

m2 = { 〈〈r0〉〉 = 2 ∧ 〈〈r1〉〉 = 2 ∧ 〈〈r0′〉〉 = 4 }

148

6.2 Worked Example

Joining g1 with the octagon (〈〈r0〉〉 = 2 ∧ 〈〈r1〉〉 = 2) yields g2 = (0 ≤ 〈〈r0〉〉 ≤
2 ∧ 0 ≤ 〈〈r1〉〉 ≤ 2), and we compute an affine abstraction of ϕ ∧ g2, which gives:

u2 = αV
aff(ϕ) = (〈〈r0′〉〉 = 〈〈r0〉〉+ 〈〈r1〉〉)

Again, testing ¬ϕ ∧ g2 ∧ u2 reveals unsatisfiability, and thus, completeness. We
generalize g2, i.e., we relax g2 towards a more general octagon g′2 ∈ Oct with
g2 voct g

′
2 for which u2 still is a sound as well as complete abstraction. Technically,

generalization can be implemented using dichotomic search, as in αV
int(ϕ) or αV

oct(ϕ).
Of course, soundness of u2 can be tested for ϕ∧ g′2 as in Chap. 4.2.5, i.e., by testing
ϕ ∧ g′2 ∧ ¬u2 for unsatisfiability. This procedure gives

g′2 = (−128 ≤ 〈〈r0〉〉+ 〈〈r1〉〉 ≤ 127)

as expected. Indeed, g′2 is the most general description of 〈〈r0〉〉 and 〈〈r1〉〉 for which
u2 is sound and complete. Therefore, we replace (g1, u1) in T by (g′2, u2).

6.2.3 Disjunctive Extensions

In the third iteration, we put ξ′′ = ϕ ∧ ¬g′2. Passing ξ′′ to a solver yields:

m3 = { 〈〈r0〉〉 = 127 ∧ 〈〈r1〉〉 = 127 ∧ 〈〈r0′〉〉 = −2 }
Representing m3 as an octagon, which is joined with g2 to give g3, and computing
the affine abstraction of ϕ ∧ g3 then yields u3 = >aff. Clearly, u3 is sound. Yet,
it is incomplete, which is confirmed by the SAT solver through satisfiability of
¬ϕ ∧ g3 ∧ u3. We thus extend T to give T ′, representing the following transformer:

T ′ =

{
(−128 ≤ 〈〈r0〉〉+ 〈〈r1〉〉 ≤ 127) ⇒ (〈〈r0′〉〉 = 〈〈r0〉〉+ 〈〈r1〉〉)
(〈〈r0〉〉 = 127 ∧ 〈〈r1〉〉 = 127) ⇒ (〈〈r0′〉〉 = −2)

}
In the fourth iteration, we define ξ′′′ = ϕ ∧ ¬g2 ∧ ¬g3 and obtain a model:

m4 = { 〈〈r0〉〉 = −128 ∧ 〈〈r1〉〉 = −1 ∧ 〈〈r0′〉〉 = 127 }
Proceeding much like before, this model cannot be joined with an element in T ′
without sacrificing completeness. We thus obtain:

T ′′ =

(−128 ≤ 〈〈r0〉〉+ 〈〈r1〉〉 ≤ 127) ⇒ (〈〈r0′〉〉 = 〈〈r0〉〉+ 〈〈r1〉〉)
(〈〈r0〉〉 = 127 ∧ 〈〈r1〉〉 = 127) ⇒ (〈〈r0′〉〉 = −2)
(〈〈r0〉〉 = −128 ∧ 〈〈r1〉〉 = −1) ⇒ (〈〈r0′〉〉 = 127)

Using two more iterations, we obtain models that can be used to generalize (〈〈r0〉〉 =
127 ∧ 〈〈r1〉〉 = 127) and (〈〈r0〉〉 = −128 ∧ 〈〈r1〉〉 = −1). We thus compute the output

(−128 ≤ 〈〈r0〉〉+ 〈〈r1〉〉 ≤ 127) ⇒ (〈〈r0′〉〉 = 〈〈r0〉〉+ 〈〈r1〉〉)
(−256 ≤ 〈〈r0〉〉+ 〈〈r1〉〉 ≤ −129) ⇒ (〈〈r0′〉〉 = 256 + 〈〈r0〉〉+ 〈〈r1〉〉)
(128 ≤ 〈〈r0〉〉+ 〈〈r1〉〉 ≤ 254) ⇒ (〈〈r0′〉〉 = −256 + 〈〈r0〉〉+ 〈〈r1〉〉)

149

6 Complete Transformers

together with proofs that each transformer ui is a complete characterization of ϕ∧gi.
Since the guards describe all feasible inputs of ϕ, we obtain a completeness result for
ϕ as a whole. Of course, the technique is not limited exclusively to the combination
of octagons with affine equalities in forward direction, but it can also be applied in
reverse direction to a wide combination of domains.

Yet, it is important to note that the above transformer, which can directly be
translated into one that specifies 〈〈r0〉〉 in terms of 〈〈r1〉〉 and 〈〈r0′〉〉 (resp. 〈〈r1〉〉 in
terms of 〈〈r0〉〉 and 〈〈r0′〉〉), does not prescribe an exact value 〈〈r0〉〉 (resp. 〈〈r1〉〉).
Even though the transformer is complete, it is non-invertible, hence the need to
intersect the states obtained using backward analysis with those computed using
forward analysis.

6.3 Formalization

The procedure sketched in the worked example yields a disjunctive, sound, and
complete characterization of ϕ ∈ ℘(℘(V)). We state prerequisites and formalize the
algorithm before studying correctness and completeness.

6.3.1 Algorithm

Algorithm 14 presents a procedure αV
exact(ϕ) that converges onto an exact represen-

tation of ϕ ∈ ℘(℘(V)) from below.

Prerequisites The procedure is parameterized by two abstract domains: (G,vG)
for the guards and (U,vU) for the updates. For both domains, we assume Galois
connections (℘(Zn), γG, αG, G) and (℘(Zn), γU , αU , U). Further, we require that for
each c ∈ Zn, there exists g ∈ G (resp. u ∈ U) such that c = γG(g) (resp. c = γU (u)).1

Then, the disjunctive completion of either G or U is complete w.r.t. to the base
semantics expressed using Boolean formulae (cp. [106, Sect. 3.1] and [98]).

Proposition 6.1. Let c1, . . . , cm ∈ Zn and let (L,vL) be the power-set of a finite
complete lattice as defined above. Since there exist l1, . . . , lm ∈ L such that ci = γL(li)
for all i ∈ 1, . . .m, we have {c1, . . . , cm} = γL(

∨m
i=1 li) =

⋃m
i=1 γL(li).

Of course, the reduced product of G and U is complete w.r.t. Boolean formulae,
too (or equivalently, ℘(Zn)). In the algorithm, we represent guarded updates using
the set T ∈ ℘(G × U). Then, if T = {(g1, u1), . . . , (gm, um) | gi ∈ G, ui ∈ U}, the
concretization of T is interpreted as

⋃m
i=1(γG(gi) ∩ γU (ui)).

1All relational domains and also conjunctions of the non-relational ones studied in this dissertation
satisfy this requirement. This is not always so, consider, e.g., the abstract domain of signs.

150

6.3 Formalization

Iteration The key idea of αV
exact(ϕ) is to find a model m of ϕ that is not covered by

the intermediate result T (line 3), i.e., m 6∈ ⋃(g,u)∈T (γG(g)∩γU (u)). If such a model
m is found, then the procedure attempts to extend an existing guarded update
in T without losing precision. It does so by iterating over all elements (g, u) ∈ T ,
trying to find one that can be generalized towards (gnew, unew) with g @G gnew and
u @U unew without sacrificing completeness (lines 5–14), i.e., gnew ∧ unew |= ϕ.

The completeness criterion of (gnew, unew) with respect to ϕ is straightforwardly
specified as ∀V : (gnew ∧unew)⇒ ϕ as in line 8. However, putting (gnew ∧unew)⇒ ϕ
into CNF introduces fresh, existentially quantified variables T , which gives an
equisatisfiable formula ψ such that (gnew ∧unew)⇒ ϕ ≡ ∃T : ψ. Rather than testing
the formula ∀V : ∃T : ψ for satisfiability, we observe the following equivalence:

∀V : (gnew ∧ unew)⇒ ϕ
⇔ ∀V : ¬(gnew ∧ unew) ∨ ϕ
⇔ ∀V : (¬gnew ∨ ¬unew) ∨ ϕ
⇔ ¬∃V : ¬((¬gnew ∨ ¬unew) ∨ ϕ)
⇔ ¬∃V : gnew ∧ unew ∧ ¬ϕ

To determine satisfaction of ∀V : (gnew ∧ unew)⇒ ϕ, it thus suffices to put gnew ∧
unew∧¬ϕ into CNF, which gives an equisatisfiable formula ψ′, and test ∃V : ∃T ′ : ψ′
for unsatisfiability. Soundness of the input-output relation unew subject to gnew comes
for free, as it is derived using abstraction, which entails gnew∧ϕ |= unew. If such a pair
(gnew, unew) that satisfies the completeness criterion is found, the algorithm attempts
to generalize it, i.e., find a guard ggen ∈ G with gnew @G ggen such that completeness
is preserved, i.e., ¬ϕ ∧ ggen ∧ unew is unsatisfiable. Otherwise, if the current model
m cannot be combined with an element of T to give a complete approximation
of ϕ, we extend T disjunctively (lines 15–17). Observe that for domains (G,vG)
that express ranges, the procedure generalize can be implemented exactly using
dichotomic search; this means that for a guard gnew and an update unew, the most
general guard ggen such that gnew vG ggen and ggen ∧ unew |= ϕ is found.

Reprise and Reflection It is noteworthy that αV
exact(ϕ) does not require a formula

ϕ ∈ ℘(℘(V)) on input that is equipped with mode constraints. By way of contrast,
the abstractions introduced in Chap. 4 require these encodings of mode combinations.
This requirement is finessed by computing exact guards and updates in parallel,
rather than separately, introducing a fresh disjunction once precision is lost. This
strategy thus entails that an exact representation of ϕ is eventually derived, the
drawback being that αV

exact(ϕ) may be significantly more expensive to compute.
Observe too that the procedure is not limited to forward analysis, as it provides
formulae that represent direct input-output relations between bit-vectors with the
same precision as ϕ does, yet in a human-readable way that does not require the
repeated application of a SAT solver to compute the outputs.

151

6 Complete Transformers

Algorithm 14 αV
exact

1: T ← {(⊥G,⊥U)}
2: ξ ← ϕ
3: while ξ is satisfiable with model m do
4: success← false
5: for each (g, u) ∈ T do
6: gnew ← g tG αV

G (m)
7: unew ← αV

U (ϕ ∧ gnew)
{check for completeness}

8: if ¬ϕ ∧ gnew ∧ unew are unsatisfiable then
9: ggen ← generalize(ϕ, gnew, unew)

10: T ← T \ {(g, u)} ∪ {(ggen, unew)}
11: success← true
12: break
13: end if
14: end for
15: if ¬success then
16: T ← T ∪ {(αV

G (m), αV
U (m))}

17: end if
18: ξ ← ϕ ∧ ¬(

∨
(g,u)∈T g)

19: end while
20: return T

Optimization Procedure αV
exact(ϕ) computes a complete abstractions that cover

all feasible inputs. This approach may lead to a large number of disjuncts (i.e.,
pairs (g, u) ∈ T), which also depends on the abstract domains used within αV

exact(ϕ).
When the procedure is implemented within abstract interpretation frameworks to
infer definitive counterexample traces, deriving a complete transformer is necessary
only for reachable states, an over-approximation of which has already been computed
using forward fixed-point iteration. A straightforward optimization that does not
affect soundness is thus to restrict αV

exact(ϕ) to the sub-range of reachable states.
Given states s and s′ on input and output of a block b encoded by ϕ, it is then
sufficient to compute αV

exact(ϕ ∧ s ∧ s′). This approach is not dissimilar to the
technique of Rival [198, Sect. 2.4], who observed that weakest preconditions are
often not sufficiently precise. To finesse this problem, he designed a backward
transformer as a monotone transfer function of two arguments: (1) an invariant to
refine, and (2) and invariant to propagate backwards. Even though not necessary
for correctness, there is also no reason why ϕ could not be augmented with mode
constraints so as to simplify the formula and the derivation of a complete abstraction.

152

6.3 Formalization

6.3.2 Soundness and Completeness

Here, we argue about correctness of αV
exact(ϕ), showing that it is sound as well as

complete with respect to ϕ.

Theorem 6.1. Let ϕ ∈ ℘(℘(V)). Then, αV
exact(ϕ) |= ϕ.

Proof. To prove this theorem, we show that
∨

(g,u)∈T (γG(g) ∩ γU (u)) |= ϕ is an
invariant of Alg. 14. Initially, T = {(⊥G,⊥U)}, hence,

∨
(g,u)∈T (γG(g)∩γU (u)) |= ϕ.

Within the loop, ξ is satisfiable, hence there exists c ∈ Zn such that c |= ξ and
c 6∈ ⋃(g,t)∈T γG(g), corresponding to the model m in Alg. 14. For (g, u) ∈ T , let
gnew = g tG αG(c) and unew = u tU αU (c), and we consider two cases separately:

• γG(gnew) ∩ γU (unew) |= ϕ. As argued before, ¬ϕ ∧ gnew ∧ unew is unsatisfiable,
and generalize preserves this property, whence γG(ggen) ∩ γU (unew) |= ϕ.
Since

⋃
(g,u)∈T (γG(g) ∩ γU (u)) |= ϕ, we have (

⋃
(g,u)∈T (γG(g) ∩ γU (u))) ∪

(γG(ggen) ∩ γU (unew)) |= ϕ, as desired.

• γG(gnew)∩ γU (unew) 6|= ϕ. With Prop. 6.1, we have γG(c)∩ γU (c) = c and also
c |= ϕ, whence

∨
(g,u)∈T (γG(g) ∩ γU (u)) ∪ c |= ϕ, as desired.

By combining both cases, we obtain a proof of our claim.

An immediate consequence of the loop invariant as constructed in the proof of
Thm. 6.1 is that αV

exact(ϕ) can be interrupted prematurely without sacrificing va-
lidity of Thm. 6.1. This is significant as computing αV

exact(ϕ) exactly may be
expensive, while an transformer T ′ such that T ′ |= T may be sufficient to generate
a counterexample, albeit not to show spuriousness of a warning. We further observe:

Theorem 6.2. Let ϕ ∈ ℘(℘(V)). Then, ϕ |= αV
exact(ϕ).

Proof. The algorithm terminates once ϕ∧¬(
∨

(g,u)∈T g) is unsatisfiable. Let c ∈ Zn
such that c |= ϕ. Then, there exists (g, u) ∈ T such that c ∈ γG(g). Further, we have
u = αU (ϕ∧ g) by construction, whence c ∈ γU (u). It follows that c ∈ γG(g)∩ γU (u),
whence ϕ |= αV

exact(ϕ).

Corollary 6.1. Let ϕ ∈ ℘(℘(V)). Then, αV
exact(ϕ) is sound and complete w.r.t. ϕ.

To conclude, observe that αV
exact(ϕ) does not necessarily provide minimal or unique

abstractions. As an example, suppose ϕ ∈ ℘(℘({x,y})) has satisfying assignments
{(−128,−1), . . . , (−1,−1), (0, 0), (1, 1), (127, 1)}. Then, depending on the order in

153

6 Complete Transformers

which models are provided, αV
exact(ϕ) based on intervals and affine equalities could

produce different yet equivalent abstractions, e.g.:

(1)

(−128 ≤ 〈〈x〉〉 ≤ −1) ⇒ (〈〈y〉〉 = −1)
(0 ≤ 〈〈x〉〉 ≤ 0) ⇒ (〈〈y〉〉 = 0)
(1 ≤ 〈〈x〉〉 ≤ 127) ⇒ (〈〈y〉〉 = 1)

(2)

(−128 ≤ 〈〈x〉〉 ≤ −2) ⇒ (〈〈y〉〉 = −1)
(−1 ≤ 〈〈x〉〉 ≤ 1) ⇒ (〈〈y〉〉 = 〈〈x〉〉)
(2 ≤ 〈〈x〉〉 ≤ 127) ⇒ (〈〈y〉〉 = 1)

6.4 Experiments

Our implementation of αV
exact(ϕ) is written in C++ on top of Z3. The performance

of the procedure depends on (1) the abstract domains that are plugged into αV
exact(ϕ)

and (2) the relations described by ϕ. This is because the expressiveness of the
respective abstract domain of course affects the number of disjuncts in the resulting
abstraction, and thus the number of iterations required to compute it. For ADD R0

R1, the overhead for αV
exact(ϕ) based on octagons and affine equalities compared

to separate computation of αV
oct(ϕ) and αV

aff(ϕ) is imperceivable, likewise for other
arithmetic operations such as SUB R0 R1 or INC R0 and combinations thereof.

6.4.1 Effects of Domain Combinations

By way of contrast, complete abstraction for LSL R0 based on intervals and affine
equalities requires approximately 1 minute to complete for the 8-bit case, whereas the
combination of arithmetical congruences and affine equalities terminates within 0.1
seconds. From our experience, the most effective strategy on average is to combine
several domains, e.g., arithmetical congruences and octagons, to form (G,vG) with
a domain that captures equalities. In this case, the output of αV

exact(ϕ) for ASR R0

is:

((〈r0〉 ≡2 0) ∧ (0 ≤ 〈r0〉 ≤ 254)) ⇒ (〈r0′〉 = 1
2 · 〈r0〉)

((〈r0〉 ≡2 1) ∧ (1 ≤ 〈r0〉 ≤ 255)) ⇒ (〈r0′〉 = 1
2 · (〈r0〉 − 1))

Likewise, expressing guards as value sets gives the equivalent abstraction:

(〈r0〉 ∈ {0, 2, . . . , 252, 254}) ⇒ (〈r0′〉 = 1
2 · 〈r0〉)

(〈r0〉 ∈ {1, 3, . . . , 253, 255}) ⇒ (〈r0′〉 = 1
2 · (〈r0〉 − 1))

Abstraction based on intervals and affine equalities, in turn, requires 12 seconds and
eventually yields a representation that can be simplified into 128 different disjuncts.

154

6.5 Related Work

This is because the relation described by ASR R0 is affine only for adjacent inputs:

(0 ≤ 〈r0〉 ≤ 1) ⇒ (〈r0′〉 = 0)
(2 ≤ 〈r0〉 ≤ 3) ⇒ (〈r0′〉 = 1)
. . . ⇒ . . .
(254 ≤ 〈r0〉 ≤ 255) ⇒ (〈r0′〉 = 127)

This situation is close to the worst case as it prevents contiguous ranges to be
summarized in a single disjunct. By combining abstractions for value sets, ranges
(using intervals and octagons, depending on the number of variables) and arithmeti-
cal congruences, we were able to compute complete abstractions for either 8-bit
benchmark introduced in Chap. 4.4 within less than 10 seconds.

6.4.2 Complete Extrapolation

A promising combination of techniques that may not be obvious in the first place is
to pair αV

exact(ϕ) with extrapolation (recall Chap. 4.3). Then, complete abstractions
are derived for short bit-vectors of length 4 and 5, respectively, which is cheap in
terms of computational cost, and extrapolation is applied to extrude the results.
As demonstrated in Chap. 4.4 and Chap. 5.5, this technique works surprisingly
well for deriving sound abstractions. Results obtained for complete abstraction are
promising, too. Assume that a sound abstraction a is derived for ϕ by extrapolating
two complete abstractions a′ and a′′ over bit-vectors of width 4 and 5, respectively.
Then, completeness of a follows from unsatisfiability of ¬ϕ ∧ a, which can easily
be checked. For rather complex blocks such as ABS and ISIGN, we have generated
complete abstractions based on extrapolation in less than 0.5 seconds, which confirms
our intuition.

6.5 Related Work

A sound static analysis, which is usually expressed using the abstract interpretation
framework [77], is bound to calculate an over-approximate result to elude undecid-
ability.2 Due to over-approximation, a safety property may not be verifiable even
though it holds. In this case, the emitted warning is a so-called false positive [24]
(also called spurious) which cannot a priori be distinguished from an actual defect.
While an analysis with zero false positives is possible [83], it is crucial to understand
the origin of each alarm in order to either refine the analysis or to fix the defect.
Thus, analyzing warnings which are emitted poses two related questions: (1) Is
the warning legitimate? (2) If so, how can the error state be reached in terms of

2Of course, problems over finite bit-vectors with finite memory are decidable. Then, over-
approximation is applied to avoid state explosion, and thus, to serve tractability.

155

6 Complete Transformers

a concrete execution? The difficulty of answering the first has led to approaches
that rank warnings based on the likelihood of being actual defects. Statistical
classifications have been based on error correlation [147] or bayesian filtering [133].
Recent work of Lee et al. [154] clusters defects, allowing to eliminate dependent
defects if a master defect is shown to be spurious. Using their technique, defects
can be proven legitimate, too. However, the work of Lee et al. does not tackle the
problem of determining whether a master defect indeed is spurious or legitimate.

6.5.1 Counterexamples in Model Checking

An exact answer to both questions is required in counterexample-guided abstraction
refinement (CEGAR) in model checking [65]. However, deciding if a warning is
legitimate is strictly easier in the context of CEGAR than in a general static analysis
as the model checker produces an abstract counterexample, the validity of which
then can be checked. A concrete counterexample may, for example, be inferable by
replaying the trace in the concrete program [149]. If successful, the concrete trace
can be used afterwards for, e.g., error localization [13]. If constructing the trace fails
at a certain program point, a new predicate can be introduced to refine the abstract
model [14], which then suppresses the spurious trace, and possibly other spurious
traces. Finitization, as performed by our approach to counterexample generation,
also appears in bounded model checking [66]. There, the state space of the system
is explored in a breadth-first fashion in forward direction, up to a given depth k.
By way of comparison, our approach unrolls the program back-to-front.

6.5.2 Counterexamples in Abstract Interpretation

In the context of numeric analysis, Gulavani and Rajamani [120] propose to refine
a pre-analysis, which is based on a fixed-point computation with widening, by
introducing predicates using so-called hints. Later, they extended their technique to
combine widening with interpolants between verification conditions and the inferred
state [122]. Yet, neither work is concerned with computing the backward trace but
assumes that it has been inferred by a theorem prover.

For static analyses that operate on the semantics of the actual program, no model
program exists in which the trace can be inferred, and backward reasoning from
the warning to the program entry is required [198, 199]. Backward reasoning, in
turn, amounts to computing weakest preconditions (or solving abduction). Few
classes of linear constraints allow abduction [160, 161] and no single numeric domain
commonly used in forward analyses is Heyting, nor is the combination of Heyting
domains necessarily a Heyting domain [162]. One way out of this dilemma is to
lift a non-Heyting domain to its power-set domain [143], which yields a Boolean
domain. A Boolean domain is always Heyting since for each element there exists

156

6.5 Related Work

a full complement. Boolean functions naturally form a Boolean domain. Yet, the
domain suffers from tractability issues, which motivates our decision to lift standard
numerical domains to their power-sets. Rival [198] sidesteps the abduction problem
by calculating an A′ with A |= A′ using the same domains as in forward analysis.
To cap the over-approximation of the backward transformer, backward states are
intersected with the forward invariants. Over-approximation in the backward
transformer makes it unlikely that an empty state is ever observed. Then, a warning
cannot be identified as a false positive. Indeed, Rival’s analysis merely informs
tool-users about inputs in which a counterexample might lie, thereby providing
“some support in the alarm investigation process” [198, Sect. 1]. Contemporaneously
to Rival [198], Howe et al. [130] studied backward analysis for logic programs, with
pair sharing analysis as one application [158]. However, the analysis of [158] is
based on a condensing domain — intuitively, such a domain allows a goal-dependent
analysis to be implemented in a goal-independent way without incurring a loss
in precision [158, Sect. 3] — rather than a complete one as in our approach (any
complete domain is condensing, but condensing domains are complete only with
respect to unification [109]). Further afield is the work of Kim et al. [139] who, after
a fast but imprecise forward analysis, slice the program for a property violation
before running a more expensive forward analysis based on SMT solving.

6.5.3 Completeness in Abstract Interpretation

Completeness in abstract interpretation has already been considered by Cousot and
Cousot [78, Sect. 7]. However, from their work, it took more than two decades until
Giacobazzi et al. [108] provided a constructive characterization of completion for
the general case. Most notably, they require a Scott-continuous transformer, which
is a very general assumption, and then show how the problem of making abstract
interpretations complete can be reduced to minimal extensions or refinements of
the domain. In essence, their technique amounts to computing the least fixed point
of a characterization that involves repeatedly computing closures. Our method for
αV

exact(ϕ) is, of course, a significantly less general result, as we require an expressive
(disjunctive) domain D and use incremental SAT solving to converge onto a complete
transformer, which is possible due to finiteness of the base domain of Boolean
formulae. This approach can indeed be seen as minimally extending the transformer
to capture certain effects of ϕ. Later, Giacobazzi and Quintarelli [105] showed that
CEGAR indeed fits into methodology of completing abstract interpretations. As
far as we are aware, our algorithm is the first that effectively computes complete
transformers for bit-vectors.

157

6 Complete Transformers

6.6 Discussion

The focus of Chap. 3, Chap. 4, and Chap. 5 was over-approximation, with the
aim of deriving abstractions and transformers that subsume the reachable states
and transition relations of a concrete program, whilst being as precise as possible.
The topic of this chapter is different, although refinements based on backward
interpretation have been weaved into the forward analysis in Chap. 3.2 already. It
is that of computing transformers (or abstractions) that are complete (or under-
approximate) w.r.t. the base semantics, i.e., propositional Boolean formulae ϕ,
which is achieved using a parametric procedure αV

exact(ϕ). The procedure is itself
parametric in two abstract domains:

• a domain (G,vG) to specify ranges or sets of values, and

• the other domain (U,vU) to specify equalities symbolically.

Note, however, that this limitation to two domains is inconsequential for correctness.
It merely entails that transformers can often be represented compactly.

For finite domains, disjunctive completion can always be achieved, and there has
been much interest in optimality, e.g., using power-set liftings [98] or closures [106,
Sect. 3]. However, as our work is not concerned with domain constructions, but
rather the computation of complete transformers on complete domains, we have con-
centrated on power-set liftings of standard domains (e.g., octagons paired with affine
equalities). The drawback of complete abstract interpretation [108] is its obvious
high cost for both, representing the reachable states and deriving transformers. In
the worst case, this approach entails that one has to resort to a representation that
is as complex as the Boolean base semantics itself. Thus, instead of attempting to
perform complete abstract interpretation directly, we apply a method that performs
complete backward analysis only upon encountering a potential property violation,
trying to find a path to the program entry by going backward step-by-step. Ideally,
there are few such warnings.

158

7 Conclusion

Abstract interpretation provides a methodology that guarantees sound approxima-
tions of all states reachable in any concrete execution of a program. Among other
algorithmic aspects, correctness of abstract interpretation ultimately depends on
correctness of transfer functions for any program statement in any abstract domain
used. This is not without problems (cp. [184]) since designing and implementing
transfer functions is indeed a challenging task, especially if the operations are low-
level and diverse [115], as in binary analysis [9, 185, 186]. Prior to our work, the
state-of-the-art in abstraction interpretation for bit-vectors was manual design of
transformers for each operation in a program.

7.1 Discussion

This dissertation can be seen as a response to this unsatisfactory situation in the sense
that it advocates automatic abstraction as a key component of abstract interpretation
frameworks. Particularly, we have discussed a collection of techniques that eliminate
the need to handcraft transformers for the widely used numerical domains of intervals,
value sets, octagons, convex polyhedra, arithmetical congruences, affine equalities,
and bounded polynomials altogether, based on relational encodings of the concrete
semantics of instructions and basic blocks. A commonality of all techniques is that
they exploit the structure of the underlying abstract domain to guide the search
for a sound (and optimal) abstraction. The search is, in turn, implemented using
incremental SAT solving.

In a nutshell, the desire to reason about instructions that operate on finite machine
words — rather than unbounded integers — manifests itself in two notable design
decisions.

Relational Semantics We model each instruction in the domain of propositional
Boolean formulae. Encodings for entire blocks are then derived by relational
composition of the instructions that constitute the respective block. This
approach confers two significant advantages:

1. Low-level operations can straightforwardly be expressed in Boolean logic.

2. Automatic abstraction uses off-the-shelf solvers and thus directly benefits
from any progress made on these solvers.

159

7 Conclusion

Finite Machine Arithmetic Instead of targeting wrap-around arithmetic using mod-
ular domains — which are notoriously difficult to support — we identify over-
and underflow modes prior to the analysis, and then derive a transformer for
each feasible mode combination. This choice leads to a formulation of transfer
functions as guarded updates. Then, a guard describes a class of inputs that
satisfy a mode combination, whereas an update stipulates how a class on input
is transformed into a class on output.

As a first application, we have discussed the problem of value set analysis for control
flow reconstruction in Chap. 3. Indeed, the runtimes of the analysis are much smaller
than we expected initially, given that a SAT solver is invoked on any application of
a transformer. However, for relational abstract domains such as octagons or convex
polyhedra, this form of online evaluation of transformers becomes intractable, which
can be seen from the runtimes presented in Chap. 4.4 and Chap. 5.5. For relational
abstractions, we thus compute transformers prior to the analysis itself. Computing
the output of a block then amounts to evaluating a (linear or polynomial) map,
rather than invoking a decision procedure. Apart from being correct by construction
in a principled way, our approach features two more interesting properties:

1. We generate symbolic best transformers, which are optimal in the sense that
more descriptive abstractions do not exist (in the respective abstract domain).

2. We generate transformers for blocks rather than individual instructions. We
thus obtain more precise transformers than possible by computing abstractions
separately, instruction by instruction.

Computing transformers instead of designing them manually eliminates one im-
portant cause for incorrect implementations of abstract interpretation and yields
optimal abstractions, too. Yet, the correctness argument comes at a price: We have
to assume correctness of the underlying decision procedure, which is not always easy
to establish [45]. However, we have not observed unexpected results from a solver
in our experiments at all and have also cross-checked the generated abstractions
against results obtained using explicit-state model checking with [mc]square [207].

A distinguished feature of our framework is that slight variations of the discussed
algorithms are sufficient to generate complete (or under-approximate) abstractions
rather than over-approximations. This feature makes our approach amenable to the
generation of counterexample traces or the elimination of spurious warnings. Even
though under-approximation integrates with abstract interpretation as smoothly
as over-approximation does, comparably few known techniques intentionally use
such constructions; this may be explained by the difficulty of designing descriptive
under-approximate or even complete transformers. Specifically, our technique
structurally depends on some form of power-set construction as the abstract domain

160

7.2 Summary

of choice needs to be able to capture any possible relation between data present
in the concrete program (although completeness can likewise be expressed using
closures [106, 108]). The technique presented in Chap. 6 does so by incrementally
generalizing under-approximations so as to converge onto the exact semantics of a
block from below. If a certain relation cannot be represented by generalizing the
current under-approximation, a fresh guarded update, which captures the missing
relation, is introduced. Our approach can thus be seen as a form of disjunctive
completion [78, 98, 106, 107].

7.2 Summary

In summary, for programs that operate on finite machine words, we recommend
to integrate the computation of symbolic best transformers directly into abstract
interpretation frameworks, as this approach

• provides most descriptive approximations of basic blocks,

• has become tractable due to progress on automated decision procedures, and

• at the same time limits the workload of implementing abstract interpretations.

Crucially for precision, if the expressiveness of a given abstraction is not sufficient
to prove correctness of a program, then it is always possible to resort to a more
descriptive domain, for which abstractions can automatically be generated, too.

7.3 Future Work

Analysis of Loops The problem of computing transformers for blocks leads to the
more general problem of synthesizing transformers for entire loops. Computational
techniques for deriving transformers for loops are colloquially referred to as loop
leaping, capturing the central idea of jumping over the computational obstacle
presented by reaching, iterating, and stabilizing on each loop (or a nest thereof) in
a program. Existing approaches to specify least inductive loop invariants, which
can be applied to derive loop transformers, rely on specifications using alternating
quantification that are inherently difficult to solve [135, 167, 169]. Translating these
approaches into propositional Boolean logic directly is intractable for all except the
smallest bit-vectors. It may therefore be interesting to evaluate whether extrapolation
as in Chap. 4.3 can be combined with the generation of loop transformers. Then, a
candidate for a least inductive loop invariant would be derived from a specification
over, e.g., 5 bits, and soundness of the candidate could be validated a posteriori.

161

7 Conclusion

Termination Analysis Interestingly, synthesizing transformers using quantification
is not dissimilar to the problem of inferring ranking functions for bit-vectors. Given
a path π with a transition relation rπ(V in,V out) that relates inputs V in and outputs
V out, proving the existence of a ranking function amounts to solving the formula

∃c : ∀V in : ∀V out : rπ(V in,V out)→ (p(c,V out) < p(c,V in))

where p is a polynomial over bit-vectors with coefficients c [75, Thm. 2]. If interme-
diate variables are needed to express rπ(V in,V out) or p(c,V out) < p(c,V in), then
the formula actually takes the form

∃c : ∀V in : ∀V out : ∃T : ν

over fresh variables T where ν is equisatisfiable to:

rπ(V in,V out)→ (p(c,V out) < p(c,V in))

This formula is structurally similar to those solved in Chap. 5.2, which begs the
question whether the problem of generating ranking functions can — like that of
automatic abstraction — be recast to avoid quantifier elimination altogether. In the
light of contemporary research, which investigates termination in the framework of
abstract interpretation [81], and the development of decision procedures that target
termination [176], this research direction appears promising.

Floating Point Arithmetic To conclude, this dissertation has focussed on (signed
and unsigned) integer arithmetic over finite machine words, whereas floating point
numbers have not been investigated. Recent research by D’Silva et al. [93], to name
one example, provides a decision procedure to reason about floating point intervals
so as to finesse the problems incurred by analyzing floating point numbers at the
granularity of individual bits. Such an approach could smoothly integrate with our
work, and evaluating the generation of abstractions for floating point arithmetic on
top of such a decision procedure appears promising. Yet, small embedded devices
often do not provide support for floating point computations at all. The floating
point operations specified in a high-level programming language are then emulated
using arithmetic over machine integers. Emulation of floating point operations is
found not only on small embedded systems devices, but also on x86 architectures,
where similar methods are used to implement operations on floating point formats
for which there is no native support by the hardware (e.g., 128-bit floating point
numbers). A key problem is thus to extract floating point abstractions from such
program fragments that emulate IEEE-754 operations. We are not aware of the
existence of any techniques to tackle this problem.

162

Bibliography

[1] F. A. Aloul, I. L. Markov, and K. A. Sakallah. Faster SAT and Smaller BDDs
via Common Function Structure. In ICCAD, pages 443–448, 2001.

[2] T. Armstrong, K. Marriott, P. Schachte, and H. Søndergaard. Two Classes
of Boolean Functions for Dependency Analysis. Sci. Comp. Program., 31(1):
3–45, 1998.

[3] R. Bagnara. Personal communication with R. Bagnara via e-mail, May 2010.

[4] R. Bagnara, E. Rodŕıguez-Carbonell, and E. Zaffanella. Generation of Basic
Semi-algebraic Invariants Using Convex Polyhedra. In SAS, volume 3672 of
Lecture Notes in Computer Science, pages 19–34. Springer, 2005.

[5] R. Bagnara, K. Dobson, P. M. Hill, M. Mundell, and E. Zaffanella. Grids: A
Domain for Analyzing the Distribution of Numerical Values. In LOPSTR,
volume 4407 of Lecture Notes in Computer Science, pages 219–235. Springer,
2006.

[6] R. Bagnara, P. M. Hill, and E. Zaffanella. An Improved Tight Closure
Algorithm for Integer Octagonal Constraints. In VMCAI, volume 4905 of
Lecture Notes in Computer Science, pages 8–21. Springer, 2008.

[7] R. Bagnara, P. M. Hill, and E. Zaffanella. Weakly-relational Shapes for Nu-
meric Abstractions: Improved Algorithms and Proofs of Correctness. Formal
Methods in System Design, 35(3):279–323, 2009.

[8] C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT Press,
2008. ISBN 978-0-262-02649-9.

[9] G. Balakrishnan and T. W. Reps. WYSINWYX: What You See Is Not What
You eXecute. ACM Trans. Program. Lang. Syst., 32(6), 2010.

[10] G. Balakrishnan, T. Reps, N. Kidd, A. Lal, J. Lim, D. Melski, R. Gruian,
S.-H. Yong, C. H. Chen, and T. Teitelbaum. Model Checking x86 Executables
with CodeSurfer/x86 and WPDS++. In CAV, volume 3576 of Lecture Notes
in Computer Science, pages 158–163. Springer, 2005.

163

Bibliography

[11] G. Balakrishnan, S. Sankaranarayanan, F. Ivancic, O. Wei, and A. Gupta.
SLR: Path-Sensitive Analysis through Infeasible-Path Detection and Syntactic
Language Refinement. In SAS, volume 5079 of Lecture Notes in Computer
Science, pages 238–254. Springer, 2008.

[12] G. Balakrishnan, S. Sankaranarayanan, F. Ivancic, and A. Gupta. Refining
the Control Structure of Loops using Static Analysis. In EMSOFT, pages
49–58. ACM Press, 2009.

[13] T. Ball, M. Naik, and S. K. Rajamani. From Symptom to Cause: Localizing
Errors in Counterexample Traces. In POPL, pages 97–105. ACM Press, 2003.

[14] T. Ball, B. Cook, S. K. Lahiri, and L. Zhang. Zapato: Automatic Theorem
Proving for Predicate Abstraction Refinement. In CAV, volume 3114 of Lecture
Notes in Computer Science, pages 457–461. Springer, 2004.

[15] T. Ball, O. Kupferman, and M. Sagiv. Leaping Loops in the Presence of
Abstraction. In CAV, volume 4590 of Lecture Notes in Computer Science,
pages 491–503. Springer, 2007.

[16] S. Bardin. Personal communication with S. Bardin via e-mail, October 2011.

[17] S. Bardin and P. Herrmann. Structural Testing of Executables. In ICST,
pages 22–31. IEEE Computer Society Press, 2008.

[18] S. Bardin and P. Herrmann. OSMOSE: Automatic Structural Testing of
Executables. Softw. Test., Verif. & Reliab., 21(1):29–54, 2011.

[19] S. Bardin, P. Hermann, J. Leroux, O. Ly, R. Tabary, and A. Vincent. The
BINCOA Framework for Binary Code Analysis. In CAV, volume 6806 of
Lecture Notes in Computer Science, pages 165–170. Springer, 2011.

[20] S. Bardin, P. Herrmann, and F. Védrine. Refinement-Based CFG Reconstruc-
tion from Unstructured Programs. In VMCAI, volume 6538 of Lecture Notes
in Computer Science, pages 54–69. Springer, 2011.

[21] E. Barrett and A. King. Range and Set Abstraction using SAT. Electron. Notes
Theor. Comput. Sci., 267:17–27, 2010. NSAD.

[22] E. Beckschulze, J. Brauer, A. Stollenwerk, and S. Kowalewski. Analyzing
Embedded Systems Code for Mixed-Critical Systems using Hybrid Memory
Representations. In ISORCW/AMICS, pages 33–40. IEEE Computer Society
Press, 2011.

[23] E. A. Bender. Mathematical Methods in Artificial Intelligence. IEEE Computer
Society Press, 1996.

164

Bibliography

[24] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-Gros,
A. Kamsky, S. McPeak, and D. R. Engler. A Few Billion Lines of Code Later:
Using Static Analysis to Find Bugs in the Real World. Commun. ACM, 53
(2):66–75, 2010.

[25] S. Biallas, J. Brauer, D. Gückel, and S. Kowalewski. On-The-Fly Path
Reduction. Electr. Notes Theor. Comput.Sci., 274:3–16, 2010. TTSS.

[26] S. Biallas, J. Brauer, and S. Kowalewski. Counterexample-Guided Abstraction
Refinement for PLCs. In SSV, pages 1–9. USENIX Association, 2010.

[27] S. Biallas, J. Brauer, S. Kowalewski, and B. Schlich. Automatically Deriving
symbolic Invariants for PLC Programs Written in IL. In FORMS/FORMAT,
pages 237–245. Springer, 2010.

[28] S. Biallas, J. Brauer, and S. Kowalewski. SAT-Based Abstraction Refinement
for Programmable Logic Controllers. In DCDS, pages 96–101. IEEE Computer
Society Press, 2011.

[29] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic Model Checking
without BDDs. In TACAS, volume 1579 of Lecture Notes in Computer Science,
pages 193–207. Springer, 1999.

[30] A. Blake. Canonical Expressions in Boolean Algebra. University of Chicago,
1938.

[31] J. Brauer and A. King. Automatic Abstraction for Intervals using Boolean
Formulae. In SAS, volume 6337 of Lecture Notes in Computer Science, pages
167–183. Springer, 2010.

[32] J. Brauer and A. King. Transfer Function Synthesis without Quantifier
Elimination. In ESOP, volume 6602 of Lecture Notes in Computer Science,
pages 97–115. Springer, 2011.

[33] J. Brauer and A. King. Approximate Quantifier Elimination for Propositional
Boolean Formulae. In NFM, volume 6617 of Lecture Notes in Computer
Science, pages 73–88. Springer, 2011.

[34] J. Brauer and A. King. Transfer Function Synthesis without Quantifier
Elimination. Logical Methods in Computer Science, 8(3), 2012.

[35] J. Brauer and A. Simon. Inferring Definite Counterexamples Through Under-
Approximation. In NFM, volume 7226 of Lecture Notes in Computer Science,
pages 54–69. Springer, 2012.

165

Bibliography

[36] J. Brauer, R. Huuck, and B. Schlich. Interprocedural Pointer Analysis in
Goanna. Electr. Notes Theor. Comput. Sci., 254:45–63, 2009. SSV.

[37] J. Brauer, B. Schlich, T. Reinbacher, and S. Kowalewski. Stack Bounds
Analysis for Microcontroller Assembly Code. In WESS. ACM Press, 2009.

[38] J. Brauer, V. Kamin, S. Kowalewski, and T. Noll. Loop Refinement using
Octagons and Satisfiability. In SSV, pages 1–9. USENIX Association, 2010.

[39] J. Brauer, A. King, and S. Kowalewski. Range Analysis of Microcontroller
Code Using Bit-Level Congruences. In FMICS, volume 6371 of Lecture Notes
in Computer Science, pages 82–98. Springer, 2010.

[40] J. Brauer, T. Noll, and B. Schlich. Interval Analysis of Microcontroller Code
using Abstract Interpretation of Hardware and Software. In SCOPES. ACM
Press, 2010.

[41] J. Brauer, R. R. Hansen, S. Kowalewski, K. G. Larsen, and M. Chr. Olesen.
Adaptable Value-Set Analysis for Low-Level Code. In SSV, 2011. To appear.

[42] J. Brauer, A. King, and J. Kriener. Existential Quantification as Incremental
SAT. In CAV, volume 6806 of Lecture Notes in Computer Science, pages
191–207. Springer, 2011.

[43] J. Brauer, A. King, and S. Kowalewski. Abstract Interpretation of Micro-
controller Code: Intervals Meet Congruences. Sci. Comp. Program., 78(7):
862–883, 2013.

[44] R. Brummayer and A. Biere. Boolector: An Efficient SMT Solver for Bit-
Vectors and Arrays. In TACAS, volume 5505 of Lecture Notes in Computer
Science, pages 174–177. Springer, 2009.

[45] R. Brummayer, F. Lonsing, and A. Biere. Automated Testing and Debugging
of SAT and QBF Solvers. In SAT, volume 6175 of Lecture Notes in Computer
Science, pages 44–57. Springer, 2010.

[46] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani. The
MathSAT 4 SMT Solver. In CAV, volume 5123 of Lecture Notes in Computer
Science, pages 299–303. Springer, 2008.

[47] R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation.
IEEE Transactions on Computers, 35(8):677–691, 1986.

[48] R. E. Bryant. Boolean Analysis of MOS Circuits. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 6(4):634–649,
1987.

166

Bibliography

[49] R. E. Bryant. On the Complexity of VLSI Implementations and Graph Rep-
resentations of Boolean Functions with Application to Integer Multiplication.
IEEE Trans. Computers, 40(2):205–213, 1991.

[50] R. E. Bryant. A View from the Engine Room: Computational Support for
Symbolic Model Checking. In 25 Years of Model Checking, volume 5000 of
Lecture Notes in Computer Science, pages 145–149. Springer, 2008.

[51] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
Symbolic Model Checking: 10ˆ20 States and Beyond. In LICS, pages 428–439.
IEEE Computer Society Press, 1990.

[52] J. R. Burch, E. M. Clarke, and K. L. McMillan. Symbolic Model Checking:
10ˆ20 States and Beyond. Information and Computation, 98:142–170, 1992.

[53] S. Bygde. Static WCET Analysis based on Abstract Interpretation and
Counting of Elements. Licentiate thesis, Mälardalen University Press, March
2010.

[54] S. Bygde, B. Lisper, and N. Holsti. Fully Bounded Polyhedral Analysis of
Integers with Wrapping. In NSAD, 2011. To appear.

[55] M. Cadoli, A. Giovanardi, and M. Schaerf. An Algorithm to Evaluate Quanti-
fied Boolean Formulae. In AAAI/IAAI, pages 262–267. AAAI Press / The
MIT Press, 1998.

[56] R. Cavada, A. Cimatti, A. Franzén, K. Kalyanasundaram, M. Roveri, and
R. K. Shyamasundar. Computing Predicate Abstractions by Integrating BDDs
and SMT Solvers. In FMCAD, pages 69–76. IEEE Computer Society Press,
2007.

[57] V. Chandru and J.-L. Lassez. Qualitative Theorem Proving in Linear Con-
straints. In Verification: Theory and Practice, volume 2772 of Lecture Notes
in Computer Science, pages 395–406. Springer, 2003.

[58] B.-Y. E. Chang, M. Harren, and G. C. Necula. Analysis of Low-Level Code
Using Cooperating Decompilers. In SAS, volume 4134 of Lecture Notes in
Computer Science, pages 318–335. Springer, 2006.

[59] P. Chauhan, E. M. Clarke, and D. Kroening. A SAT-Based Algorithm for
Reparameterization in Symbolic Simulation. In DAC, pages 524–529. ACM
Press, 2004.

[60] C. Cifuentes and A. Fraboulet. Intraprocedural Static Slicing of Binary
Executables. In ICSM, pages 188–195. IEEE Computer Society Press, 1997.

167

Bibliography

[61] C. Cifuentes and M. van Emmerik. Recovery of Jump Table Case Statements
from Binary Code. In IWPC, pages 192–199. IEEE Computer Society Press,
1999.

[62] R. Clarisó and J. Cortadella. The Octahedron Abstract Domain. Sci. Com-
put. Program., 64(1):115–139, 2007.

[63] E. M. Clarke and H. Veith. Counterexamples Revisited: Principles, Algorithms,
Applications. In Verification: Theory and Practice, volume 2772 of Lecture
Notes in Computer Science, pages 208–224. Springer, 2003.

[64] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT
Press, 1999. ISBN 0-262-03270-8.

[65] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
Guided Abstraction Refinement. In CAV, volume 1855 of Lecture Notes in
Computer Science, pages 154–169. Springer, 2000.

[66] E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded Model Checking
Using Satisfiability Solving. Formal Methods in System Design, 19(1):7–34,
2001.

[67] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Progress on the
State Explosion Problem in Model Checking. In Informatics - 10 Years Back.
10 Years Ahead, volume 2000 of Lecture Notes in Computer Science, pages
176–194. Springer, 2001.

[68] E. M. Clarke, M. Talupur, H. Veith, and D. Wang. SAT Based Predicate
Abstraction for Hardware Verification. In SAT, volume 2919 of Lecture Notes
in Computer Science, pages 78–92. Springer, 2003.

[69] E. M. Clarke, D. Kroening, and F. Lerda. A Tool for Checking ANSI-C
Programs. In TACAS, volume 2988 of Lecture Notes in Computer Science,
pages 168–176. Springer, 2004.

[70] M. Codish. Worst-Case Groundness Analysis Using Positive Boolean Functions.
J. Log. Program., 41(1):125–128, 1999.

[71] M. Codish, V. Lagoon, and P. J. Stuckey. Logic Programming with Satisfia-
bility. TPLP, 8(1):121–128, 2008.

[72] H. Cohen. BuDDy. Available online at http://sourceforge.net/projects/
buddy, 2011. Visited: April 2012.

168

http://sourceforge.net/projects/buddy
http://sourceforge.net/projects/buddy

Bibliography

[73] M. Colón. Approximating the Algebraic Relational Semantics of Imperative
Programs. In SAS, volume 3148 of Lecture Notes in Computer Science, pages
296–311. Springer, 2004.

[74] M. Colón and S. Sankaranarayanan. Generalizing the Template Polyhedral
Domain. In ESOP, volume 6602 of Lecture Notes in Computer Science, pages
176–195. Springer, 2011.

[75] B. Cook, D. Kroening, P. Rümmer, and C. Wintersteiger. Ranking Function
Synthesis for Bit-Vector Relations. In TACAS, volume 6015 of Lecture Notes
in Computer Science, pages 236–250. Springer, 2010.

[76] O. Coudert and J. C. Madre. Implicit and Incremental Computation of Primes
and Essential Primes of Boolean Functions. In DAC, pages 36–39. IEEE
Computer Society Press, 1992.

[77] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints.
In POPL, pages 238–252. ACM Press, 1977.

[78] P. Cousot and R. Cousot. Systematic Design of Program Analysis Frameworks.
In POPL, pages 269–282. ACM Press, 1979.

[79] P. Cousot and R. Cousot. Comparing the Galois Connection and Widening/-
Narrowing Approaches to Abstract Interpretation. In PLILP, volume 631 of
Lecture Notes in Computer Science, pages 269–295. Springer, 1992.

[80] P. Cousot and R. Cousot. Abstract Interpretation Frameworks. J. Log. Com-
put., 2(4):511–547, 1992.

[81] P. Cousot and R. Cousot. An Abstract Interpretation Framework for Termi-
nation. In POPL, pages 245–258. ACM Press, 2012.

[82] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In POPL, pages 84–97. ACM, 1978.

[83] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Mine, D. Monniaux, and
X. Rival. The Astrée Analyser. In ESOP, volume 3444 of Lecture Notes in
Computer Science, pages 21–30. Springer, 2005.

[84] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and
X. Rival. Combination of Abstractions in the ASTRÉE Static Analyzer. In
ASIAN, volume 4435 of Lecture Notes in Computer Science, pages 272–300.
Springer, 2006.

169

Bibliography

[85] P. Cousot, R. Cousot, J. Feret, A. Miné, L. Mauborgne, D. Monniaux, and
X. Rival. Varieties of Static Analyzers: A Comparison with ASTREE. In
TASE, pages 3–20. IEEE Computer Society, 2007.

[86] P. Cousot, R. Cousot, and L. Mauborgne. The Reduced Product of Abstract
Domains and the Combination of Decision Procedures. In FOSSACS, volume
6604 of Lecture Notes in Computer Science, pages 456–472. Springer, 2011.

[87] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Effi-
ciently Computing Static Single Assignment Form and the Control Dependence
Graph. ACM Trans. Program. Lang. Syst., pages 451–590, 1991.

[88] R. F. Damiano and J. H. Kukula. Checking Satisfiability of a Conjunction of
BDDs. In DAC, pages 818–823. ACM, 2003.

[89] S. Das, D. L. Dill, and S. Park. Experience with Predicate Abstraction. In
CAV, volume 1633 of Lecture Notes in Computer Science, pages 160–171.
Springer, 1999.

[90] L. de Moura and N. Bjørner. Z3: An Efficient Smt Solver. In TACAS, volume
4963 of Lecture Notes in Computer Science, pages 337–340. Springer, 2008.

[91] B. De Sutter, B. De Bus, K. De Bosschere, P. Keyngnaert, and B. Demoen.
On the Static Analysis of Indirect Control Transfers in Binaries. In PDPTA,
pages 1013–1019, 2000.

[92] T. Dean and M. Boddy. An Analysis of Time-Dependent Planning. In AAAI,
pages 49–54. AAAI Press / The MIT Press, 1988.

[93] V. D’Silva, L. Haller, D. Kroening, and M. Tautschnig. Numeric Bounds
Analysis with Conflict-Driven Learning. In TACAS, volume 7214 of Lecture
Notes in Computer Science, pages 48–63. Springer, 2012.

[94] N. Eén and N. Sörensson. An Extensible SAT-Solver. In SAT, volume 2919 of
Lecture Notes in Computer Science, pages 502–518. Springer, 2003.

[95] N. Eén and N. Sörensson. Translating Pseudo-Boolean Constraints into SAT.
JSAT, 2(1-4):1–26, 2006.

[96] M. Elder, J. Lim, T. Sharma, T. Andersen, and T. W. Reps. Abstract Domains
of Affine Relations. In SAS, volume 6887 of Lecture Notes in Computer Science,
pages 198–215. Springer, 2011.

[97] E. A. Emerson and J. Y. Halpern. “Sometimes” and “Not Never” Revisited:
On Branching Versus Linear Time. In POPL, pages 127–140, 1983.

170

Bibliography

[98] G. Filé and F. Ranzato. Improving Abstract Interpretation by Systematic
Lifting to the Powerset. In SLP, pages 655–669, 1994.

[99] C. Flanagan and S. Qadeer. Predicate Abstraction for Software Verification.
In POPL, pages 191–202. ACM Press, 2002.

[100] A. Flexeder, B. Mihaila, M. Petter, and H. Seidl. Interprocedural Control
Flow Reconstruction. In APLAS, volume 6461 of Lecture Notes in Computer
Science, pages 188–203. Springer, 2010.

[101] C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and
H. Zankl. SAT Solving for Termination Analysis with Polynomial Interpre-
tations. In SAT, volume 4501 of Lecture Notes in Computer Science, pages
340–354. Springer, 2007.

[102] D. Geist and I. Beer. Efficient Model Checking by Automated Ordering of
Transition Relation Partitions. In CAV, volume 818 of Lecture Notes in
Computer Science, pages 299–310. Springer, 1994.

[103] S. Genaim and F. Spoto. Information Flow Analysis for Java Bytecode. In
VMCAI, volume 3385 of Lecture Notes in Computer Science, pages 346–362,
2005.

[104] S. Genaim, R. Giacobazzi, and I. Mastroeni. Modeling Secure Information
Flow with Boolean Functions. In IFIP WG 1.7, ACM Workshop on Issues in
the Theory of Security, pages 55–66, Barcelona, Spain, 2004.

[105] R. Giacobazzi and E. Quintarelli. Incompleteness, Counterexamples, and
Refinements in Abstract Model-Checking. In SAS, volume 2126 of Lecture
Notes in Computer Science, pages 356–373. Springer, 2001.

[106] R. Giacobazzi and F. Ranzato. Optimal Domains for Disjunctive Abstract
Interpretation. Sci. Comput. Program., 32(1–3):177–310, 1998.

[107] R. Giacobazzi and F. Scozzari. Intuitionistic Implication in Abstract Interpre-
tation. In PLILP, volume 1292 of Lecture Notes in Computer Science, pages
175–189. Springer, 1997.

[108] R. Giacobazzi, F. Ranzato, and F. Scozzari. Making Abstract Interpretations
Complete. J. ACM, 47(2):361–416, 2000.

[109] R. Giacobazzi, F. Ranzato, and F. Scozzari. Making Abstract Domains
Condensing. ACM Trans. Comput. Log., 6(1):33–60, 2005.

171

Bibliography

[110] J. Giesl, P. Schneider-Kamp, and R. Thiemann. Automatic Termination
Proofs in the Dependency Pair Framework. In IJCAR, volume 4130 of Lecture
Notes in Computer Science, pages 281–286. Springer, 2006.

[111] P. Godefroid and A. Taly. Automated Synthesis of Symbolic Instruction
Encodings from I/O Samples. In PLDI. ACM Press, 2012.

[112] L. Gonnord and N. Halbwachs. Combining Widening and Acceleration in
Linear Relation Analysis. In SAS, volume 4134 of Lecture Notes in Computer
Science, pages 144–160. Springer, 2006.

[113] D. Gopan and T. W. Reps. Lookahead Widening. In CAV, volume 4144 of
Lecture Notes in Computer Science, pages 452–466. Springer, 2006.

[114] P. Granger. Static Analysis of Arithmetical Congruences. International
Journal of Computer Mathematics, 30(13):165–190, 1989.

[115] P. Granger. Static Analysis of Linear Congruence Equalities among Variables
of a Program. In TAPSOFT 1991, volume 493 of Lecture Notes in Computer
Science, pages 169–192. Springer, 1991.

[116] P. Granger. Static Analyses of Congruence Properties on Rational Numbers.
In SAS, volume 1302 of Lecture Notes in Computer Science, pages 278–292.
Springer, 1997.

[117] D. Grund and J. Reineke. Abstract Interpretation of FIFO Replacement.
In SAS, volume 5673 of Lecture Notes in Computer Science, pages 120–136.
Springer, 2009.

[118] D. Gückel, J. Brauer, and S. Kowalewski. A System for Synthesizing
Abstraction-Enabled Simulators for Binary Code Verification. In SIES, pages
118–127. IEEE Computer Society Press, 2010.

[119] D. Gückel, B. Schlich, J. Brauer, and S. Kowalewski. Synthesizing Simulators
for Model Checking Microcontroller Binary Code. In DDECS, pages 313–316.
IEEE Computer Society Press, 2010.

[120] B. S. Gulavani and S. K. Rajamani. Counterexample Driven Refinement
for Abstract Interpretation. In TACAS, volume 3920 of Lecture Notes in
Computer Science, pages 474–488. Springer, 2006.

[121] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori, and S. K. Rajamani.
SYNERGY: A New Algorithm for Property Checking. In FSE, pages 117–127.
ACM Press, 2006.

172

Bibliography

[122] B. S. Gulavani, S. Chakraborty, A. V. Nori, and S. K. Rajamani. Automatically
Refining Abstract Interpretations. In TACAS, volume 4963 of Lecture Notes
in Computer Science, pages 443–458. Springer, 2008.

[123] S. Gulwani and G. C. Necula. Discovering Affine Aqualities using Random
Interpretation. In POPL, pages 74–84. ACM Press, 2003.

[124] S. Gulwani and G. C. Necula. Precise Interprocedural Analysis using Random
Interpretation. In POPL, pages 324–337. ACM Press, 2005.

[125] S. Gulwani, S. Srivastava, and R. Venkatesan. Program Analysis as Constraint
Solving. In PLDI, pages 281–292. ACM Press, 2008.

[126] A. Gupta, Z. Yang, P. Ashar, and A. Gupta. SAT-Based Image Computation
with Application in Reachability Analysis. In FMCAD, volume 1954 of Lecture
Notes in Computer Science, pages 354–371. Springer, 2000.

[127] N. Halbwachs. Détermination Automatique de Relations Linéaires Vérifiées par
les Variables d’un Programme. PhD thesis, Universit’e Scientifique et Médicale
de Grenoble, 1979. http://www-verimag.imag.fr/~halbwach/bib.html.

[128] Hex-Rays SA. IdaPro. http://hex-rays.com/idapro/. Visited: April 2012.

[129] N. Holsti. Analysing Switch-Case Tables by Partial Evaluation. In WCET.
Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI),
Schloss Dagstuhl, Germany, 2007.

[130] J. M. Howe, A. King, and L. Lu. Analysing L ogic Programs by Reasoning
Backwards. In Program Development in Computational Logic, volume 3049 of
Lecture Notes in Computer Science, pages 152–188. Springer, 2004.

[131] H. Jin and F. Somenzi. CirCUs: A Hybrid Satisfiability Solver. In SAT,
volume 3542 of Lecture Notes in Computer Science, pages 211–223. Springer,
2005.

[132] N. Jones. Arrays of Pointers to Functions. Embedded Systems Programming
Magazine, 05:46–56, May 1999.

[133] Y. Jung, J. Kim, J. Shin, and K. Yi. Taming False Alarms from a Domain-
Unaware C Analyzer by a Bayesian Statistical Post Analysis. In SAS, volume
3672 of Lecture Notes in Computer Science, pages 203–217. Springer, 2005.

[134] J. B. Kam and J. D. Ullman. Monotone Data Flow Analysis Frameworks.
Acta Informatica, 7:305–317, 1976.

173

http://www-verimag.imag.fr/~halbwach/bib.html
http://hex-rays.com/idapro/

Bibliography

[135] D. Kapur. Automatically Generating Loop Invariants Using Quantifier Elimi-
nation. In Deduction and Applications, volume 05431. IBFI, 2005.

[136] M. Karr. Affine Relationships among Variables of a Program. Acta Informatica,
6:133–151, 1976.

[137] N. Kettle. Anytime Algorithms for ROBDD Symmetry Detection and Approx-
imation. PhD thesis, Computing Laboratory, 2008.

[138] N. Kettle, A. King, and T. Strzemecki. Widening ROBBDs with Prime
Implicants. In TACAS, volume 3920 of Lecture Notes in Computer Science,
pages 105–119. Springer, 2006.

[139] Y. Kim, J. Lee, H. Han, and K.-M. Choe. Filtering False Alarms of Buffer
Overflow Analysis using SMT Solvers. Inform. & Softw. Techn., 52(2):210–219,
2010.

[140] J. Kinder and D. Kravchenko. Alternating Control Flow Reconstruction. In
VMCAI, volume 7148 of Lecture Notes in Computer Science, pages 267–282.
Springer, 2012.

[141] J. Kinder and H. Veith. Jakstab: A Static Analysis Platform for Binaries.
In CAV, volume 5123 of Lecture Notes in Computer Science, pages 423–427.
Springer, 2008.

[142] J. Kinder, H. Veith, and F. Zuleger. An Abstract Interpretation-Based
Framework for Control Flow Reconstruction from Binaries. In VMCAI,
volume 5403 of Lecture Notes in Computer Science, pages 214–228. Springer,
2009.

[143] A. King and L. Lu. Forward versus Backward Verification of Logic Programs.
In ICLP, volume 2916 of Lecture Notes in Computer Science, pages 315–330.
Springer, 2003.

[144] A. King and H. Søndergaard. Inferring Congruence Equations Using SAT.
In CAV, volume 5123 of Lecture Notes in Computer Science, pages 281–293.
Springer, 2008.

[145] A. King and H. Søndergaard. Automatic Abstraction for Congruences. In
VMCAI, volume 5944 of Lecture Notes in Computer Science, pages 197–213.
Springer, 2010.

[146] D. E. Knuth. The Art of Computer Programming, volume 3. Addison-Wesley,
1997.

174

Bibliography

[147] T. Kremenek and D. R. Engler. Z-Ranking: Using Statistical Analysis to
Counter the Impact of Static Analysis Approximations. In SAS, volume 2694
of Lecture Notes in Computer Science, pages 295–315. Springer, 2003.

[148] D. Kroening and O. Strichman. Decision Procedures. Springer, 2008.

[149] D. Kroening, A. Groce, and E. M. Clarke. Counterexample Guided Abstraction
Refinement Via Program Execution. In ICFEM, volume 3308 of Lecture Notes
in Computer Science, pages 224–238. Springer, 2004.

[150] D. Kroening, N. Sharygina, S. Tonetta, A. Tsitovich, and C. M. Wintersteiger.
Loop Summarization Using Abstract Transformers. In ATVA, volume 5311 of
Lecture Notes in Computer Science, pages 111–125. Springer, 2008.

[151] D. Kroening, N. Sharygina, S. Tonetta, A. Tsitovich, and C. M. Wintersteiger.
Loopfrog: A Static Analyzer for ANSI-C Programs. In ASE, pages 668–670.
IEEE Computer Society Press, 2009.

[152] S. K. Lahiri, R. E. Bryant, and B. Cook. A Symbolic Approach to Predicate
Abstraction. In CAV, volume 2725 of Lecture Notes in Computer Science,
pages 141–153. Springer, 2003.

[153] S. K. Lahiri, R. Nieuwenhuis, and A. Oliveras. SMT Techniques for Fast
Predicate Abstraction. In CAV, volume 4144 of Lecture Notes in Computer
Science, pages 424–437. Springer, 2006.

[154] W. Lee, W. Lee, and K. Yi. Sound Non-Statistical Clustering of Static Analysis
Alarms. In VMCAI, volume 7148 of Lecture Notes in Computer Science, pages
299–314. Springer, 2012.

[155] J. Leroux and G. Sutre. Accelerated Data-Flow Analysis. In SAS, volume
4634 of Lecture Notes in Computer Science, pages 184–199. Springer, 2007.

[156] J. Leroux and G. Sutre. Acceleration in Convex Data-Flow Analysis. In
FSTTCS, volume 4855 of Lecture Notes in Computer Science, pages 520–531.
Springer, 2007.

[157] F. Logozzo and M. Fähndrich. Pentagons: A Weakly Relational Abstract
Domain for the Efficient Validation of Array Accesses. Sci. Comput. Program.,
75(9):796–807, 2010.

[158] L. Lu and A. King. Backward Pair Sharing Analysis. In FLOPS, volume 2998
of Lecture Notes in Computer Science, pages 132–146. Springer, 2004.

175

Bibliography

[159] Y. S. Mahajan, Z. Fu, and S. Malik. zChaff: An Efficient SAT Solver. In SAT,
volume 3542 of Lecture Notes in Computer Science, pages 360–375. Springer,
2004.

[160] M. J. Maher. Abduction of Linear Arithmetic Constraints. In ICLP, volume
3668 of Lecture Notes in Computer Science, pages 174–188. Springer, 2005.

[161] M. J. Maher. Heyting Domains for Constraint Abduction. In AI, volume 4304
of Lecture Notes in Computer Science, pages 9–18. Springer, 2006.

[162] M. J. Maher and G. Huang. On Computing Constraint Abduction Answers.
In LPAR, volume 5330 of Lecture Notes in Computer Science, pages 421–435.
Springer, 2008.

[163] V. M. Manquinho, P. F. Flores, J. P. Marques Silva, and A. L. Oliveira. Prime
Implicant Computation Using Satisfiability Algorithms. In ICTAI, pages
232–239. IEEE Computer Society Press, 1997.

[164] K. L. McMillan. Applying SAT Methods in Unbounded Symbolic Model
Checking. In CAV, volume 2404 of Lecture Notes in Computer Science, pages
250–264. Springer, 2002.

[165] P. B. Miltersen, J. Radhakrishnan, and I. Wegener. On Converting CNF to
DNF. Theor. Comput. Sci., 347(1-2):325–335, 2005.

[166] A. Miné. The Octagon Abstract Domain. Higher-Order and Symbolic Compu-
tation, 19(1):31–100, 2006.

[167] D. Monniaux. Automatic Modular Abstractions for Linear Constraints. In
POPL, pages 140–151. ACM Press, 2009.

[168] D. Monniaux. Quantifier Elimination by Lazy Model Enumeration. In CAV,
volume 6174 of Lecture Notes in Computer Science, pages 585–599. Springer,
2010.

[169] D. Monniaux. Automatic Modular Abstractions for Template Numerical
Constraints. Logical Methods in Computer Science, 6(3), 2010.

[170] M. Müller-Olm and H. Seidl. A Note on Karr’s Algorithm. In ICALP, volume
3142 of Lecture Notes in Computer Science, pages 1016–1028. Springer, 2004.

[171] M. Müller-Olm and H. Seidl. Analysis of Modular Arithmetic. In ESOP,
volume 3444 of Lecture Notes in Computer Science, pages 46–60. Springer,
2005.

176

Bibliography

[172] M. Müller-Olm and H. Seidl. Analysis of Modular Arithmetic. ACM Trans. Pro-
gram. Lang. Syst., 29(5), August 2007.

[173] M. Müller-Olm and H. Seidl. Upper Adjoints for Fast Inter-procedural Variable
Equalities. In ESOP, volume 4960 of Lecture Notes in Computer Science,
pages 178–192. Springer, 2008.

[174] R. Muth, S. K. Debray, S. A. Watterson, and K. De Bosschere. Alto: A
Link-Time Optimizer for the Compaq Alpha. Softw., Pract. Exper., 31(1):
67–101, 2001.

[175] H. Oh, K. Heo, W. Lee, W. Lee, and K. Yi. Design and Implementation of
Sparse Global Analyses for C-like Languages. In PLDI. ACM Press, 2012. to
appear.

[176] R. Piskac and T. Wies. Decision Procedures for Automating Termination
Proofs. In VMCAI, volume 6538 of Lecture Notes in Computer Science, pages
371–386. Springer, 2011.

[177] C. Pizzuti. Computing Prime Implicants by Integer Programming. In ICTAI,
pages 332–336, 1996.

[178] D. A. Plaisted and S. Greenbaum. A Structure-Preserving Clause Form
Translation. Journal of Symbolic Computation, 2(3):293–304, September 1986.

[179] D. A. Plaisted, A. Biere, and Y. Zhu. A Satisfiability Procedure for Quantified
Boolean Formulae. Discrete Applied Mathematics, 130(2):291–328, 2003.

[180] PLCopen. Safety Software, Technical Specification, Part 1: Concepts and
Function Blocks. online, 2006.

[181] A. Pnueli. The Temporal Logic of Programs. In FOCS, pages 46–57. IEEE
Computer Society Press, 1977.

[182] W. V. Quine. A Way to Simplify Truth Functions. American Mathematical
Monthly, 62(9):627–631, 1955.

[183] R. C. Read. Everyone a Winner. Annals of Discrete Mathematics, 2:107–120,
1978.

[184] J. Regehr. Who Verifies the Verifiers? http://blog.regehr.org/archives/

370, 2011. Visited: April 2012.

[185] J. Regehr and U. Duongsaa. Deriving Abstract Transfer Functions for Ana-
lyzing Embedded Software. In LCTES, pages 34–43. ACM Press, 2006.

177

http://blog.regehr.org/archives/370
http://blog.regehr.org/archives/370

Bibliography

[186] J. Regehr and A. Reid. HOIST: A System for Automatically Deriving Static
Analyzers for Embedded Systems. ACM SIGOPS Operating Systems Review,
38(5):133–143, 2004.

[187] T. Reinbacher and J. Brauer. Precise Control Flow Recovery Using Boolean
Logic. In EMSOFT, pages 117–126. ACM Press, 2011.

[188] T. Reinbacher, J. Brauer, M. Horauer, and B. Schlich. Refining Assembly
Code Static Analysis for the Intel MCS-51 Microcontroller. In SIES, pages
161–170. IEEE Computer Society Press, 2009.

[189] T. Reinbacher, M. Horauer, B. Schlich, J. Brauer, and F. Scheuer. Model
Checking Assembly Code of an Industrial Knitting Machine. In EM-COM,
pages 1–8. IEEE Computer Society Press, 2009.

[190] T. Reinbacher, J. Brauer, M. Horauer, A. Steininger, and S. Kowalewski. Test-
Case Generation for Embedded Binary Code Using Abstract Interpretation. In
MEMICS, volume 16 of OASICS, pages 101–108. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, Germany, 2010.

[191] T. Reinbacher, M. Horauer, B. Schlich, J. Brauer, and F. Scheuer. Model Check-
ing Assembly Code of an Industrial Knitting Machine. International Journal of
Information Technology, Communications and Convergence (IJITCC), 2010.

[192] T. Reinbacher, J. Brauer, M. Horauer, A. Steininger, and S. Kowalewski. Past
Time LTL Runtime Verification for Microcontroller Binary Code. In FMICS,
Lecture Notes in Computer Science, pages 37–51. Springer, 2011.

[193] T. Reinbacher, J. Brauer, D. Schachinger, A. Steininger, and S. Kowalewski.
Automated Test-Trace Inspection for Microcontroller Binary Code. In RV,
Lecture Notes in Computer Science. Springer, 2011. To appear.

[194] T. Reinbacher, A. Steininger, T. Müller, J. Brauer, and S. Kowalewski. Hard-
ware Support for Efficient Testing of Embedded Software. In MESA, 2011.

[195] T. W. Reps and G. Balakrishnan. Improved Memory-Access Analysis for x86
Executables. In CC, volume 4959 of Lecture Notes in Computer Science, pages
16–35. Springer, 2008.

[196] T. W. Reps, S. Horwitz, and M. Sagiv. Precise Interprocedural Dataflow
Analysis via Graph Reachability. In POPL, pages 49–61. ACM Press, 1995.

[197] T. W. Reps, M. Sagiv, and G. Yorsh. Symbolic Implementation of the Best
Transformer. In VMCAI, volume 2937 of Lecture Notes in Computer Science,
pages 252–266. Springer, 2004.

178

Bibliography

[198] X. Rival. Understanding the Origin of Alarms in Astrée. In SAS, volume 3672
of Lecture Notes in Computer Science, pages 303–319. Springer, 2005.

[199] X. Rival. Abstract Dependences for Alarm Diagnosis. In APLAS, volume
3780 of Lecture Notes in Computer Science, pages 347–363. Springer, 2005.

[200] X. Rival and L. Mauborgne. The Trace Partitioning Abstract Domain. ACM
Trans. Program. Lang. Syst., 29(5), 2007.

[201] E. Rodŕıguez-Carbonell and D. Kapur. An Abstract Interpretation Approach
for Automatic Generation of Polynomial Invariants. In SAS, volume 3148 of
Lecture Notes in Computer Science, pages 280–295. Springer, 2004.

[202] E. Rodŕıguez-Carbonell and D. Kapur. Automatic Generation of Polynomial
Invariants of Bounded Degree using Abstract Interpretation. Sci. Comput. Pro-
gram., 64(1):54–75, 2007.

[203] R. Rugina and M. C. Rinard. Symbolic Bounds Analysis of Pointers, Array
Indices, and Accessed Memory Regions. ACM Trans. Program. Lang. Syst.,
27(2):185–235, 2005.

[204] H. Säıdi and N. Shankar. Abstract and Model Check While You Prove. In
CAV, volume 1633 of Lecture Notes in Computer Science, pages 443–454.
Springer, 1999.

[205] E. W. Samson and B. E. Mills. Circuit Minimization: Algebra and Algorithms
for New Boolean Canonical Expressions. Technical Report TR 54-21, United
States Air Force, Cambridge Research Lab, 1954.

[206] S. Sankaranarayanan, H. Sipma, and Z. Manna. Constraint based Linear
Relations Analysis. In SAS, volume 3148 of Lecture Notes in Computer Science,
pages 53–68. Springer, 2004.

[207] B. Schlich. Model Checking of Software for Microcontrollers. Dissertation,
RWTH Aachen University, Aachen, Germany, June 2008. URL http://aib.

informatik.rwth-aachen.de/2008/2008-14.pdf.

[208] B. Schlich. Model Checking of Software for Microcontrollers. ACM Trans.
Embedded Comput. Syst., 9(4), 2010.

[209] B. Schlich, J. Brauer, J. Wernerus, and S. Kowalewski. Direct Model Checking
of PLC Programs in IL. In DCDS, 2009.

[210] B. Schlich, T. Noll, J. Brauer, and L. Brutschy. Reduction of Interrupt Handler
Executions for Model Checking Embedded Software. In HVC, volume 6405 of
Lecture Notes in Computer Science, pages 5–20. Springer, 2009.

179

http://aib.informatik.rwth-aachen.de/2008/2008-14.pdf
http://aib.informatik.rwth-aachen.de/2008/2008-14.pdf

Bibliography

[211] B. Schlich, J. Brauer, and S. Kowalewski. Application of Static Analyses for
State-Space Reduction to the Microcontroller Binary Code. Sci. Comput. Pro-
gram., 76(2):100–118, 2011.

[212] P. Schrammel and B. Jeannet. Logico-Numerical Abstract Acceleration and
Application to the Verification of Data-Flow Programs. In SAS, volume 6887
of Lecture Notes in Computer Science, pages 233–248. Springer, 2011.

[213] H. Seidl, A. Flexeder, and M. Petter. Analysing All Polynomial Equations
in Z2w . In SAS, volume 5079 of Lecture Notes in Computer Science, pages
299–314. Springer, 2008.

[214] A. Sepp, B. Mihaila, and A. Simon. Precise Static Analysis of Binaries by
Extracting Relational Information. In WCRE, pages 357–366. IEEE Computer
Society, 2011.

[215] M. Sharir and A. Pnueli. Two Approaches to Interprocedural Data Flow
Analysis. In Program Flow Analysis: Theory and Applications, pages 189–234.
Prentice Hall, 1981.

[216] M. Sheeran and G. St̊almarck. A Tutorial on St̊almarck’s Proof Procedure for
Propositional Logic. Formal Methods in System Design, 16(1):23–58, 2000.

[217] S. Sheng and M. S. Hsiao. Efficient Preimage Computation Using A Novel
Success-Driven ATPG. In DATE, pages 10822–10827. IEEE, 2003.

[218] J. P. M. Silva. On Computing Minimum Size Prime Implicants. In International
Workshop on Logic Synthesis, 1997.

[219] A. Simon. Value-Range Analysis of C Programs. Springer, August 2008.

[220] A. Simon. Splitting the Control Flow with Boolean Flags. In SAS, volume
5079 of Lecture Notes in Computer Science, pages 315–331. Springer, 2008.

[221] A. Simon and A. King. Exploiting Sparsity in Polyhedral Analysis. In SAS,
volume 3672 of Lecture Notes in Computer Science, pages 336–351. Springer,
2005.

[222] A. Simon and A. King. Widening Polyhedra with Landmarks. In APLAS,
volume 4279 of Lecture Notes in Computer Science, pages 166–182. Springer,
2006.

[223] A. Simon and A. King. Taming the Wrapping of Integer Arithmetic. In SAS,
volume 4634 of Lecture Notes in Computer Science, pages 121–136. Springer,
2007.

180

Bibliography

[224] A. Simon, A. King, and J. M. Howe. Two Variables per Linear Inequality as
an Abstract Domain. In LOPSTR, volume 2664 of Lecture Notes in Computer
Science, pages 71–89. Springer, 2002.

[225] A. Simon, A. King, and J. M. Howe. The Two Variable Per Inequality Abstract
Domain. Higher-Order and Symbolic Computation, 23(1):87–143, 2010.

[226] F. Somenzi. CUDD: CU Decision Diagram Package Release 2.4.2. Available
online at http://vlsi.colorado.edu/~fabio/CUDD, 2011. Visited: April
2012.

[227] A. Srivastava and D. W. Wall. A Practical System for Intermodule Code
Optimization at Link-Time. Journal of Programming Languages, 1(1):1–18,
December 1992.

[228] A. Thakur and T. W. Reps. A Method for Symbolic Computation of Abstract
Operations. Technical Report TR-1708, Computer Sciences Department,
University of Wisconsin, Madison, WI, January 2012.

[229] A. Thakur and T. W. Reps. A Method for Symbolic Computation of Abstract
Operations. In CAV, Lecture Notes in Computer Science. Springer, 2012. To
appear.

[230] A. Thakur, M. Elder, and T. W. Reps. Bilateral Algorithms for Symbolic
Abstraction. Technical Report TR-1713, Computer Sciences Department,
University of Wisconsin, Madison, WI, March 2012.

[231] A. V. Thakur, J. Lim, A. Lal, A. Burton, E. Driscoll, M. Elder, T. Andersen,
and T. W. Reps. Directed Proof Generation for Machine Code. In CAV,
volume 6174 of Lecture Notes in Computer Science, pages 288–305. Springer,
2010.

[232] H. Theiling. Extracting Safe and Precise Control Flow from Binaries. In
RTCAS, pages 23–30. IEEE Computer Society Press, 2000.

[233] R. Thiemann and J. Giesl. Size-Change Termination for Term Rewriting.
In RTA, volume 2706 of Lecture Notes in Computer Science, pages 264–278.
Springer, 2003.

[234] G. S. Tseitin. On the Complexity of Derivation in the Propositional Calculus. In
A. O. Slisenko, editor, Studies in Constructive Mathematics and Mathematical
Logic, volume Part II, pages 115–125, 1968.

[235] A. Tsitovich, N. Sharygina, C. M. Wintersteiger, and D. Kroening. Loop
Summarization and Termination Analysis. In TACAS, volume 6605 of Lecture
Notes in Computer Science, pages 81–95. Springer, 2011.

181

http://vlsi.colorado.edu/~fabio/CUDD

Bibliography

[236] C. Umans. The Minimum Equivalent DNF Problem and Shortest Implicants.
In FOCS, pages 556–563. IEEE Computer Society Press, 1998.

[237] M. Van Emmerik and T. Waddington. Using a Decompiler for Real-World
Source Recovery. In WCRE, pages 27–36. IEEE Computer Society, 2004.

[238] B. Wachter and L. Zhang. Best Probabilistic Transformers. In VMCAI,
volume 5944 of Lecture Notes in Computer Science, pages 362–379. Springer,
2010.

[239] H. S. Warren. Hacker’s Delight. Addison-Wesley, 2002.

[240] S. Weaver, J. V. Franco, and J. S. Schlipf. Extending Existential Quantification
in Conjunctions of BDDs. JSAT, 1(2):89–110, 2006.

[241] V. Weispfenning. Comprehensive Gröbner Bases. Journal of Symbolic Com-
putation, 14(1):1–30, 1992.

[242] J. Whittemore, J. Kim, and K. Sakallah. SATIRE: A New Incremental
Satisfiability Engine. In DAC, pages 542–545. ACM Press, 2001.

[243] C. M. Wintersteiger, Y. Hamadi, and L. de Moura. Efficiently Solving Quanti-
fied Bit-Vector Formulas. In FMCAD, pages 239–246. IEEE Computer Society
Press, 2010.

182

Bibliography

Aachener Informatik-Berichte

This is the list of all technical reports since 1987. To obtain copies of reports

please consult

http://aib.informatik.rwth-aachen.de/

or send your request to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,

Email: biblio@informatik.rwth-aachen.de

1987-01 ∗ Fachgruppe Informatik: Jahresbericht 1986

1987-02 ∗ David de Frutos Escrig, Klaus Indermark: Equivalence Relations of Non-

Deterministic Ianov-Schemes

1987-03 ∗ Manfred Nagl: A Software Development Environment based on Graph

Technology

1987-04 ∗ Claus Lewerentz, Manfred Nagl, Bernhard Westfechtel: On Integration

Mechanisms within a Graph-Based Software Development Environment

1987-05 ∗ Reinhard Rinn: Über Eingabeanomalien bei verschiedenen Inferenzmod-

ellen

1987-06 ∗ Werner Damm, Gert Döhmen: Specifying Distributed Computer Archi-

tectures in AADL*

1987-07 ∗ Gregor Engels, Claus Lewerentz, Wilhelm Schäfer: Graph Grammar

Engineering: A Software Specification Method

1987-08 ∗ Manfred Nagl: Set Theoretic Approaches to Graph Grammars

1987-09 ∗ Claus Lewerentz, Andreas Schürr: Experiences with a Database System

for Software Documents

1987-10 ∗ Herbert Klaeren, Klaus Indermark: A New Implementation Technique

for Recursive Function Definitions

1987-11 ∗ Rita Loogen: Design of a Parallel Programmable Graph Reduction Ma-

chine with Distributed Memory

1987-12 J. Börstler, U. Möncke, R. Wilhelm: Table compression for tree au-

tomata

1988-01 ∗ Gabriele Esser, Johannes Rückert, Frank Wagner Gesellschaftliche As-

pekte der Informatik

1988-02 ∗ Peter Martini, Otto Spaniol: Token-Passing in High-Speed Backbone

Networks for Campus-Wide Environments

1988-03 ∗ Thomas Welzel: Simulation of a Multiple Token Ring Backbone

1988-04 ∗ Peter Martini: Performance Comparison for HSLAN Media Access Pro-

tocols

183

http://aib.informatik.rwth-aachen.de/

Bibliography

1988-05 ∗ Peter Martini: Performance Analysis of Multiple Token Rings

1988-06 ∗ Andreas Mann, Johannes Rückert, Otto Spaniol: Datenfunknetze

1988-07 ∗ Andreas Mann, Johannes Rückert: Packet Radio Networks for Data

Exchange

1988-08 ∗ Andreas Mann, Johannes Rückert: Concurrent Slot Assignment Protocol

for Packet Radio Networks

1988-09 ∗ W. Kremer, F. Reichert, J. Rückert, A. Mann: Entwurf einer Netzw-

erktopologie für ein Mobilfunknetz zur Unterstützung des öffentlichen

Straßenverkehrs

1988-10 ∗ Kai Jakobs: Towards User-Friendly Networking

1988-11 ∗ Kai Jakobs: The Directory - Evolution of a Standard

1988-12 ∗ Kai Jakobs: Directory Services in Distributed Systems - A Survey

1988-13 ∗ Martine Schümmer: RS-511, a Protocol for the Plant Floor

1988-14 ∗ U. Quernheim: Satellite Communication Protocols - A Performance

Comparison Considering On-Board Processing

1988-15 ∗ Peter Martini, Otto Spaniol, Thomas Welzel: File Transfer in High Speed

Token Ring Networks: Performance Evaluation by Approximate Analy-

sis and Simulation

1988-16 ∗ Fachgruppe Informatik: Jahresbericht 1987

1988-17 ∗ Wolfgang Thomas: Automata on Infinite Objects

1988-18 ∗ Michael Sonnenschein: On Petri Nets and Data Flow Graphs

1988-19 ∗ Heiko Vogler: Functional Distribution of the Contextual Analysis in

Block-Structured Programming Languages: A Case Study of Tree Trans-

ducers

1988-20 ∗ Thomas Welzel: Einsatz des Simulationswerkzeuges QNAP2 zur Leis-

tungsbewertung von Kommunikationsprotokollen

1988-21 ∗ Th. Janning, C. Lewerentz: Integrated Project Team Management in a

Software Development Environment

1988-22 ∗ Joost Engelfriet, Heiko Vogler: Modular Tree Transducers

1988-23 ∗ Wolfgang Thomas: Automata and Quantifier Hierarchies

1988-24 ∗ Uschi Heuter: Generalized Definite Tree Languages

1989-01 ∗ Fachgruppe Informatik: Jahresbericht 1988

1989-02 ∗ G. Esser, J. Rückert, F. Wagner (Hrsg.): Gesellschaftliche Aspekte der

Informatik

1989-03 ∗ Heiko Vogler: Bottom-Up Computation of Primitive Recursive Tree

Functions

1989-04 ∗ Andy Schürr: Introduction to PROGRESS, an Attribute Graph Gram-

mar Based Specification Language

1989-05 J. Börstler: Reuse and Software Development - Problems, Solutions, and

Bibliography (in German)

1989-06 ∗ Kai Jakobs: OSI - An Appropriate Basis for Group Communication?

184

Bibliography

1989-07 ∗ Kai Jakobs: ISO’s Directory Proposal - Evolution, Current Status and

Future Problems

1989-08 ∗ Bernhard Westfechtel: Extension of a Graph Storage for Software Doc-

uments with Primitives for Undo/Redo and Revision Control

1989-09 ∗ Peter Martini: High Speed Local Area Networks - A Tutorial

1989-10 ∗ P. Davids, Th. Welzel: Performance Analysis of DQDB Based on Sim-

ulation

1989-11 ∗ Manfred Nagl (Ed.): Abstracts of Talks presented at the WG ’89 15th

International Workshop on Graphtheoretic Concepts in Computer Sci-

ence

1989-12 ∗ Peter Martini: The DQDB Protocol - Is it Playing the Game?

1989-13 ∗ Martine Schümmer: CNC/DNC Communication with MAP

1989-14 ∗ Martine Schümmer: Local Area Networks for Manufactoring Environ-

ments with hard Real-Time Requirements

1989-15 ∗ M. Schümmer, Th. Welzel, P. Martini: Integration of Field Bus and

MAP Networks - Hierarchical Communication Systems in Production

Environments

1989-16 ∗ G. Vossen, K.-U. Witt: SUXESS: Towards a Sound Unification of Ex-

tensions of the Relational Data Model

1989-17 ∗ J. Derissen, P. Hruschka, M.v.d. Beeck, Th. Janning, M. Nagl: Inte-

grating Structured Analysis and Information Modelling

1989-18 A. Maassen: Programming with Higher Order Functions

1989-19 ∗ Mario Rodriguez-Artalejo, Heiko Vogler: A Narrowing Machine for Syn-

tax Directed BABEL

1989-20 H. Kuchen, R. Loogen, J.J. Moreno Navarro, M. Rodriguez Artalejo:

Graph-based Implementation of a Functional Logic Language

1990-01 ∗ Fachgruppe Informatik: Jahresbericht 1989

1990-02 ∗ Vera Jansen, Andreas Potthoff, Wolfgang Thomas, Udo Wermuth: A

Short Guide to the AMORE System (Computing Automata, MOnoids

and Regular Expressions)

1990-03 ∗ Jerzy Skurczynski: On Three Hierarchies of Weak SkS Formulas

1990-04 R. Loogen: Stack-based Implementation of Narrowing

1990-05 H. Kuchen, A. Wagener: Comparison of Dynamic Load Balancing

Strategies

1990-06 ∗ Kai Jakobs, Frank Reichert: Directory Services for Mobile Communica-

tion

1990-07 ∗ Kai Jakobs: What’s Beyond the Interface - OSI Networks to Support

Cooperative Work

1990-08 ∗ Kai Jakobs: Directory Names and Schema - An Evaluation

1990-09 ∗ Ulrich Quernheim, Dieter Kreuer: Das CCITT - Signalisierungssystem

Nr. 7 auf Satellitenstrecken; Simulation der Zeichengabestrecke

185

Bibliography

1990-11 H. Kuchen, R. Loogen, J.J. Moreno Navarro, M. Rodriguez Artalejo:

Lazy Narrowing in a Graph Machine

1990-12 ∗ Kai Jakobs, Josef Kaltwasser, Frank Reichert, Otto Spaniol: Der Com-

puter fährt mit

1990-13 ∗ Rudolf Mathar, Andreas Mann: Analyzing a Distributed Slot Assign-

ment Protocol by Markov Chains

1990-14 A. Maassen: Compilerentwicklung in Miranda - ein Praktikum in funk-

tionaler Programmierung (written in german)

1990-15 ∗ Manfred Nagl, Andreas Schürr: A Specification Environment for Graph

Grammars

1990-16 A. Schürr: PROGRESS: A VHL-Language Based on Graph Grammars

1990-17 ∗ Marita Möller: Ein Ebenenmodell wissensbasierter Konsultationen - Un-

terstützung für Wissensakquisition und Erklärungsfähigkeit

1990-18 ∗ Eric Kowalewski: Entwurf und Interpretation einer Sprache zur

Beschreibung von Konsultationsphasen in Expertensystemen

1990-20 Y. Ortega Mallen, D. de Frutos Escrig: A Complete Proof System for

Timed Observations

1990-21 ∗ Manfred Nagl: Modelling of Software Architectures: Importance, No-

tions, Experiences

1990-22 H. Fassbender, H. Vogler: A Call-by-need Implementation of Syntax

Directed Functional Programming

1991-01 Guenther Geiler (ed.), Fachgruppe Informatik: Jahresbericht 1990

1991-03 B. Steffen, A. Ingolfsdottir: Characteristic Formulae for Processes with

Divergence

1991-04 M. Portz: A new class of cryptosystems based on interconnection net-

works

1991-05 H. Kuchen, G. Geiler: Distributed Applicative Arrays

1991-06 ∗ Ludwig Staiger: Kolmogorov Complexity and Hausdorff Dimension

1991-07 ∗ Ludwig Staiger: Syntactic Congruences for w-languages

1991-09 ∗ Eila Kuikka: A Proposal for a Syntax-Directed Text Processing System

1991-10 K. Gladitz, H. Fassbender, H. Vogler: Compiler-based Implementation

of Syntax-Directed Functional Programming

1991-11 R. Loogen, St. Winkler: Dynamic Detection of Determinism in Func-

tional Logic Languages

1991-12 ∗ K. Indermark, M. Rodriguez Artalejo (Eds.): Granada Workshop on the

Integration of Functional and Logic Programming

1991-13 ∗ Rolf Hager, Wolfgang Kremer: The Adaptive Priority Scheduler: A More

Fair Priority Service Discipline

1991-14 ∗ Andreas Fasbender, Wolfgang Kremer: A New Approximation Algo-

rithm for Tandem Networks with Priority Nodes

186

Bibliography

1991-15 J. Börstler, A. Zündorf: Revisiting extensions to Modula-2 to support

reusability

1991-16 J. Börstler, Th. Janning: Bridging the gap between Requirements Anal-

ysis and Design

1991-17 A. Zündorf, A. Schürr: Nondeterministic Control Structures for Graph

Rewriting Systems

1991-18 ∗ Matthias Jarke, John Mylopoulos, Joachim W. Schmidt, Yannis Vassil-

iou: DAIDA: An Environment for Evolving Information Systems

1991-19 M. Jeusfeld, M. Jarke: From Relational to Object-Oriented Integrity

Simplification

1991-20 G. Hogen, A. Kindler, R. Loogen: Automatic Parallelization of Lazy

Functional Programs

1991-21 ∗ Prof. Dr. rer. nat. Otto Spaniol: ODP (Open Distributed Processing):

Yet another Viewpoint

1991-22 H. Kuchen, F. Lücking, H. Stoltze: The Topology Description Language

TDL

1991-23 S. Graf, B. Steffen: Compositional Minimization of Finite State Systems

1991-24 R. Cleaveland, J. Parrow, B. Steffen: The Concurrency Workbench: A

Semantics Based Tool for the Verification of Concurrent Systems

1991-25 ∗ Rudolf Mathar, Jürgen Mattfeldt: Optimal Transmission Ranges for

Mobile Communication in Linear Multihop Packet Radio Networks

1991-26 M. Jeusfeld, M. Staudt: Query Optimization in Deductive Object Bases

1991-27 J. Knoop, B. Steffen: The Interprocedural Coincidence Theorem

1991-28 J. Knoop, B. Steffen: Unifying Strength Reduction and Semantic Code

Motion

1991-30 T. Margaria: First-Order theories for the verification of complex FSMs

1991-31 B. Steffen: Generating Data Flow Analysis Algorithms from Modal Spec-

ifications

1992-01 Stefan Eherer (ed.), Fachgruppe Informatik: Jahresbericht 1991

1992-02 ∗ Bernhard Westfechtel: Basismechanismen zur Datenverwaltung in struk-

turbezogenen Hypertextsystemen

1992-04 S. A. Smolka, B. Steffen: Priority as Extremal Probability

1992-05 ∗ Matthias Jarke, Carlos Maltzahn, Thomas Rose: Sharing Processes:

Team Coordination in Design Repositories

1992-06 O. Burkart, B. Steffen: Model Checking for Context-Free Processes

1992-07 ∗ Matthias Jarke, Klaus Pohl: Information Systems Quality and Quality

Information Systems

1992-08 ∗ Rudolf Mathar, Jürgen Mattfeldt: Analyzing Routing Strategy NFP in

Multihop Packet Radio Networks on a Line

1992-09 ∗ Alfons Kemper, Guido Moerkotte: Grundlagen objektorientierter Daten-

banksysteme

187

Bibliography

1992-10 Matthias Jarke, Manfred Jeusfeld, Andreas Miethsam, Michael Gocek:

Towards a logic-based reconstruction of software configuration manage-

ment

1992-11 Werner Hans: A Complete Indexing Scheme for WAM-based Abstract

Machines

1992-12 W. Hans, R. Loogen, St. Winkler: On the Interaction of Lazy Evaluation

and Backtracking

1992-13 ∗ Matthias Jarke, Thomas Rose: Specification Management with CAD

1992-14 Th. Noll, H. Vogler: Top-down Parsing with Simultaneous Evaluation

on Noncircular Attribute Grammars

1992-15 A. Schuerr, B. Westfechtel: Graphgrammatiken und Grapherset-

zungssysteme(written in german)

1992-16 ∗ Graduiertenkolleg Informatik und Technik (Hrsg.): Forschungsprojekte

des Graduiertenkollegs Informatik und Technik

1992-17 M. Jarke (ed.): ConceptBase V3.1 User Manual

1992-18 ∗ Clarence A. Ellis, Matthias Jarke (Eds.): Distributed Cooperation in

Integrated Information Systems - Proceedings of the Third International

Workshop on Intelligent and Cooperative Information Systems

1992-19-00 H. Kuchen, R. Loogen (eds.): Proceedings of the 4th Int. Workshop on

the Parallel Implementation of Functional Languages

1992-19-01 G. Hogen, R. Loogen: PASTEL - A Parallel Stack-Based Implementation

of Eager Functional Programs with Lazy Data Structures (Extended

Abstract)

1992-19-02 H. Kuchen, K. Gladitz: Implementing Bags on a Shared Memory MIMD-

Machine

1992-19-03 C. Rathsack, S.B. Scholz: LISA - A Lazy Interpreter for a Full-Fledged

Lambda-Calculus

1992-19-04 T.A. Bratvold: Determining Useful Parallelism in Higher Order Func-

tions

1992-19-05 S. Kahrs: Polymorphic Type Checking by Interpretation of Code

1992-19-06 M. Chakravarty, M. Köhler: Equational Constraints, Residuation, and

the Parallel JUMP-Machine

1992-19-07 J. Seward: Polymorphic Strictness Analysis using Frontiers (Draft Ver-

sion)

1992-19-08 D. Gärtner, A. Kimms, W. Kluge: pi-Redˆ+ - A Compiling Graph-

Reduction System for a Full Fledged Lambda-Calculus

1992-19-09 D. Howe, G. Burn: Experiments with strict STG code

1992-19-10 J. Glauert: Parallel Implementation of Functional Languages Using

Small Processes

1992-19-11 M. Joy, T. Axford: A Parallel Graph Reduction Machine

1992-19-12 A. Bennett, P. Kelly: Simulation of Multicache Parallel Reduction

188

Bibliography

1992-19-13 K. Langendoen, D.J. Agterkamp: Cache Behaviour of Lazy Functional

Programs (Working Paper)

1992-19-14 K. Hammond, S. Peyton Jones: Profiling scheduling strategies on the

GRIP parallel reducer

1992-19-15 S. Mintchev: Using Strictness Information in the STG-machine

1992-19-16 D. Rushall: An Attribute Grammar Evaluator in Haskell

1992-19-17 J. Wild, H. Glaser, P. Hartel: Statistics on storage management in a

lazy functional language implementation

1992-19-18 W.S. Martins: Parallel Implementations of Functional Languages

1992-19-19 D. Lester: Distributed Garbage Collection of Cyclic Structures (Draft

version)

1992-19-20 J.C. Glas, R.F.H. Hofman, W.G. Vree: Parallelization of Branch-and-

Bound Algorithms in a Functional Programming Environment

1992-19-21 S. Hwang, D. Rushall: The nu-STG machine: a parallelized Spineless

Tagless Graph Reduction Machine in a distributed memory architecture

(Draft version)

1992-19-22 G. Burn, D. Le Metayer: Cps-Translation and the Correctness of Opti-

mising Compilers

1992-19-23 S.L. Peyton Jones, P. Wadler: Imperative functional programming (Brief

summary)

1992-19-24 W. Damm, F. Liu, Th. Peikenkamp: Evaluation and Parallelization of

Functions in Functional + Logic Languages (abstract)

1992-19-25 M. Kesseler: Communication Issues Regarding Parallel Functional

Graph Rewriting

1992-19-26 Th. Peikenkamp: Charakterizing and representing neededness in func-

tional loginc languages (abstract)

1992-19-27 H. Doerr: Monitoring with Graph-Grammars as formal operational Mod-

els

1992-19-28 J. van Groningen: Some implementation aspects of Concurrent Clean

on distributed memory architectures

1992-19-29 G. Ostheimer: Load Bounding for Implicit Parallelism (abstract)

1992-20 H. Kuchen, F.J. Lopez Fraguas, J.J. Moreno Navarro, M. Rodriguez

Artalejo: Implementing Disequality in a Lazy Functional Logic Language

1992-21 H. Kuchen, F.J. Lopez Fraguas: Result Directed Computing in a Func-

tional Logic Language

1992-22 H. Kuchen, J.J. Moreno Navarro, M.V. Hermenegildo: Independent

AND-Parallel Narrowing

1992-23 T. Margaria, B. Steffen: Distinguishing Formulas for Free

1992-24 K. Pohl: The Three Dimensions of Requirements Engineering

1992-25 ∗ R. Stainov: A Dynamic Configuration Facility for Multimedia Commu-

nications

189

Bibliography

1992-26 ∗ Michael von der Beeck: Integration of Structured Analysis and Timed

Statecharts for Real-Time and Concurrency Specification

1992-27 W. Hans, St. Winkler: Aliasing and Groundness Analysis of Logic Pro-

grams through Abstract Interpretation and its Safety

1992-28 ∗ Gerhard Steinke, Matthias Jarke: Support for Security Modeling in In-

formation Systems Design

1992-29 B. Schinzel: Warum Frauenforschung in Naturwissenschaft und Technik

1992-30 A. Kemper, G. Moerkotte, K. Peithner: Object-Orientation Axiomatised

by Dynamic Logic

1992-32 ∗ Bernd Heinrichs, Kai Jakobs: Timer Handling in High-Performance

Transport Systems

1992-33 ∗ B. Heinrichs, K. Jakobs, K. Lenßen, W. Reinhardt, A. Spinner: Euro-

Bridge: Communication Services for Multimedia Applications

1992-34 C. Gerlhof, A. Kemper, Ch. Kilger, G. Moerkotte: Partition-Based

Clustering in Object Bases: From Theory to Practice

1992-35 J. Börstler: Feature-Oriented Classification and Reuse in IPSEN

1992-36 M. Jarke, J. Bubenko, C. Rolland, A. Sutcliffe, Y. Vassiliou: Theories

Underlying Requirements Engineering: An Overview of NATURE at

Genesis

1992-37 ∗ K. Pohl, M. Jarke: Quality Information Systems: Repository Support

for Evolving Process Models

1992-38 A. Zuendorf: Implementation of the imperative / rule based language

PROGRES

1992-39 P. Koch: Intelligentes Backtracking bei der Auswertung funktional-

logischer Programme

1992-40 ∗ Rudolf Mathar, Jürgen Mattfeldt: Channel Assignment in Cellular Ra-

dio Networks

1992-41 ∗ Gerhard Friedrich, Wolfgang Neidl: Constructive Utility in Model-Based

Diagnosis Repair Systems

1992-42 ∗ P. S. Chen, R. Hennicker, M. Jarke: On the Retrieval of Reusable Soft-

ware Components

1992-43 W. Hans, St.Winkler: Abstract Interpretation of Functional Logic Lan-

guages

1992-44 N. Kiesel, A. Schuerr, B. Westfechtel: Design and Evaluation of GRAS,

a Graph-Oriented Database System for Engineering Applications

1993-01 ∗ Fachgruppe Informatik: Jahresbericht 1992

1993-02 ∗ Patrick Shicheng Chen: On Inference Rules of Logic-Based Information

Retrieval Systems

1993-03 G. Hogen, R. Loogen: A New Stack Technique for the Management of

Runtime Structures in Distributed Environments

190

Bibliography

1993-05 A. Zündorf: A Heuristic for the Subgraph Isomorphism Problem in Ex-

ecuting PROGRES

1993-06 A. Kemper, D. Kossmann: Adaptable Pointer Swizzling Strategies in

Object Bases: Design, Realization, and Quantitative Analysis

1993-07 ∗ Graduiertenkolleg Informatik und Technik (Hrsg.): Graduiertenkolleg

Informatik und Technik

1993-08 ∗ Matthias Berger: k-Coloring Vertices using a Neural Network with Con-

vergence to Valid Solutions

1993-09 M. Buchheit, M. Jeusfeld, W. Nutt, M. Staudt: Subsumption between

Queries to Object-Oriented Databases

1993-10 O. Burkart, B. Steffen: Pushdown Processes: Parallel Composition and

Model Checking

1993-11 ∗ R. Große-Wienker, O. Hermanns, D. Menzenbach, A. Pollacks, S. Repet-

zki, J. Schwartz, K. Sonnenschein, B. Westfechtel: Das SUKITS-Projekt:

A-posteriori-Integration heterogener CIM-Anwendungssysteme

1993-12 ∗ Rudolf Mathar, Jürgen Mattfeldt: On the Distribution of Cumulated

Interference Power in Rayleigh Fading Channels

1993-13 O. Maler, L. Staiger: On Syntactic Congruences for omega-languages

1993-14 M. Jarke, St. Eherer, R. Gallersdoerfer, M. Jeusfeld, M. Staudt: Con-

ceptBase - A Deductive Object Base Manager

1993-15 M. Staudt, H.W. Nissen, M.A. Jeusfeld: Query by Class, Rule and Con-

cept

1993-16 ∗ M. Jarke, K. Pohl, St. Jacobs et al.: Requirements Engineering: An

Integrated View of Representation Process and Domain

1993-17 ∗ M. Jarke, K. Pohl: Establishing Vision in Context: Towards a Model of

Requirements Processes

1993-18 W. Hans, H. Kuchen, St. Winkler: Full Indexing for Lazy Narrowing

1993-19 W. Hans, J.J. Ruz, F. Saenz, St. Winkler: A VHDL Specification of a

Shared Memory Parallel Machine for Babel

1993-20 ∗ K. Finke, M. Jarke, P. Szczurko, R. Soltysiak: Quality Management for

Expert Systems in Process Control

1993-21 M. Jarke, M.A. Jeusfeld, P. Szczurko: Three Aspects of Intelligent Co-

operation in the Quality Cycle

1994-01 Margit Generet, Sven Martin (eds.), Fachgruppe Informatik: Jahres-

bericht 1993

1994-02 M. Lefering: Development of Incremental Integration Tools Using For-

mal Specifications

1994-03 ∗ P. Constantopoulos, M. Jarke, J. Mylopoulos, Y. Vassiliou: The Software

Information Base: A Server for Reuse

1994-04 ∗ Rolf Hager, Rudolf Mathar, Jürgen Mattfeldt: Intelligent Cruise Control

and Reliable Communication of Mobile Stations

191

Bibliography

1994-05 ∗ Rolf Hager, Peter Hermesmann, Michael Portz: Feasibility of Authenti-

cation Procedures within Advanced Transport Telematics

1994-06 ∗ Claudia Popien, Bernd Meyer, Axel Kuepper: A Formal Approach to

Service Import in ODP Trader Federations

1994-07 P. Peters, P. Szczurko: Integrating Models of Quality Management

Methods by an Object-Oriented Repository

1994-08 ∗ Manfred Nagl, Bernhard Westfechtel: A Universal Component for the

Administration in Distributed and Integrated Development Environ-

ments

1994-09 ∗ Patrick Horster, Holger Petersen: Signatur- und Authentifikationsver-

fahren auf der Basis des diskreten Logarithmusproblems

1994-11 A. Schürr: PROGRES, A Visual Language and Environment for PRO-

gramming with Graph REwrite Systems

1994-12 A. Schürr: Specification of Graph Translators with Triple Graph Gram-

mars

1994-13 A. Schürr: Logic Based Programmed Structure Rewriting Systems

1994-14 L. Staiger: Codes, Simplifying Words, and Open Set Condition

1994-15 ∗ Bernhard Westfechtel: A Graph-Based System for Managing Configura-

tions of Engineering Design Documents

1994-16 P. Klein: Designing Software with Modula-3

1994-17 I. Litovsky, L. Staiger: Finite acceptance of infinite words

1994-18 G. Hogen, R. Loogen: Parallel Functional Implementations: Graphbased

vs. Stackbased Reduction

1994-19 M. Jeusfeld, U. Johnen: An Executable Meta Model for Re-Engineering

of Database Schemas

1994-20 ∗ R. Gallersdörfer, M. Jarke, K. Klabunde: Intelligent Networks as a Data

Intensive Application (INDIA)

1994-21 M. Mohnen: Proving the Correctness of the Static Link Technique Using

Evolving Algebras

1994-22 H. Fernau, L. Staiger: Valuations and Unambiguity of Languages, with

Applications to Fractal Geometry

1994-24 ∗ M. Jarke, K. Pohl, R. Dömges, St. Jacobs, H. W. Nissen: Requirements

Information Management: The NATURE Approach

1994-25 ∗ M. Jarke, K. Pohl, C. Rolland, J.-R. Schmitt: Experience-Based Method

Evaluation and Improvement: A Process Modeling Approach

1994-26 ∗ St. Jacobs, St. Kethers: Improving Communication and Decision Mak-

ing within Quality Function Deployment

1994-27 ∗ M. Jarke, H. W. Nissen, K. Pohl: Tool Integration in Evolving Informa-

tion Systems Environments

1994-28 O. Burkart, D. Caucal, B. Steffen: An Elementary Bisimulation Decision

Procedure for Arbitrary Context-Free Processes

192

Bibliography

1995-01 ∗ Fachgruppe Informatik: Jahresbericht 1994

1995-02 Andy Schürr, Andreas J. Winter, Albert Zündorf: Graph Grammar En-

gineering with PROGRES

1995-03 Ludwig Staiger: A Tight Upper Bound on Kolmogorov Complexity by

Hausdorff Dimension and Uniformly Optimal Prediction

1995-04 Birgitta König-Ries, Sven Helmer, Guido Moerkotte: An experimental

study on the complexity of left-deep join ordering problems for cyclic

queries

1995-05 Sophie Cluet, Guido Moerkotte: Efficient Evaluation of Aggregates on

Bulk Types

1995-06 Sophie Cluet, Guido Moerkotte: Nested Queries in Object Bases

1995-07 Sophie Cluet, Guido Moerkotte: Query Optimization Techniques Ex-

ploiting Class Hierarchies

1995-08 Markus Mohnen: Efficient Compile-Time Garbage Collection for Arbi-

trary Data Structures

1995-09 Markus Mohnen: Functional Specification of Imperative Programs: An

Alternative Point of View of Functional Languages

1995-10 Rainer Gallersdörfer, Matthias Nicola: Improving Performance in Repli-

cated Databases through Relaxed Coherency

1995-11 ∗ M.Staudt, K.von Thadden: Subsumption Checking in Knowledge Bases

1995-12 ∗ G.V.Zemanek, H.W.Nissen, H.Hubert, M.Jarke: Requirements Analy-

sis from Multiple Perspectives: Experiences with Conceptual Modeling

Technology

1995-13 ∗ M.Staudt, M.Jarke: Incremental Maintenance of Externally Materialized

Views

1995-14 ∗ P.Peters, P.Szczurko, M.Jeusfeld: Oriented Information Management:

Conceptual Models at Work

1995-15 ∗ Matthias Jarke, Sudha Ram (Hrsg.): WITS 95 Proceedings of the 5th

Annual Workshop on Information Technologies and Systems

1995-16 ∗ W.Hans, St.Winkler, F.Saenz: Distributed Execution in Functional

Logic Programming

1996-01 ∗ Jahresbericht 1995

1996-02 Michael Hanus, Christian Prehofer: Higher-Order Narrowing with Defi-

nitional Trees

1996-03 ∗ W.Scheufele, G.Moerkotte: Optimal Ordering of Selections and Joins in

Acyclic Queries with Expensive Predicates

1996-04 Klaus Pohl: PRO-ART: Enabling Requirements Pre-Traceability

1996-05 Klaus Pohl: Requirements Engineering: An Overview

1996-06 ∗ M.Jarke, W.Marquardt: Design and Evaluation of Computer–Aided

Process Modelling Tools

193

Bibliography

1996-07 Olaf Chitil: The Sigma-Semantics: A Comprehensive Semantics for

Functional Programs

1996-08 ∗ S.Sripada: On Entropy and the Limitations of the Second Law of Ther-

modynamics

1996-09 Michael Hanus (Ed.): Proceedings of the Poster Session of ALP96 - Fifth

International Conference on Algebraic and Logic Programming

1996-09-0 Michael Hanus (Ed.): Proceedings of the Poster Session of ALP 96 -

Fifth International Conference on Algebraic and Logic Programming:

Introduction and table of contents

1996-09-1 Ilies Alouini: An Implementation of Conditional Concurrent Rewriting

on Distributed Memory Machines

1996-09-2 Olivier Danvy, Karoline Malmkjær: On the Idempotence of the CPS

Transformation

1996-09-3 Vı́ctor M. Guĺıas, José L. Freire: Concurrent Programming in Haskell

1996-09-4 Sébastien Limet, Pierre Réty: On Decidability of Unifiability Modulo

Rewrite Systems

1996-09-5 Alexandre Tessier: Declarative Debugging in Constraint Logic Program-

ming

1996-10 Reidar Conradi, Bernhard Westfechtel: Version Models for Software

Configuration Management

1996-11 ∗ C.Weise, D.Lenzkes: A Fast Decision Algorithm for Timed Refinement

1996-12 ∗ R.Dömges, K.Pohl, M.Jarke, B.Lohmann, W.Marquardt: PRO-

ART/CE* — An Environment for Managing the Evolution of Chemical

Process Simulation Models

1996-13 ∗ K.Pohl, R.Klamma, K.Weidenhaupt, R.Dömges, P.Haumer, M.Jarke: A

Framework for Process-Integrated Tools

1996-14 ∗ R.Gallersdörfer, K.Klabunde, A.Stolz, M.Eßmajor: INDIA — Intelligent

Networks as a Data Intensive Application, Final Project Report, June

1996

1996-15 ∗ H.Schimpe, M.Staudt: VAREX: An Environment for Validating and

Refining Rule Bases

1996-16 ∗ M.Jarke, M.Gebhardt, S.Jacobs, H.Nissen: Conflict Analysis Across

Heterogeneous Viewpoints: Formalization and Visualization

1996-17 Manfred A. Jeusfeld, Tung X. Bui: Decision Support Components on

the Internet

1996-18 Manfred A. Jeusfeld, Mike Papazoglou: Information Brokering: Design,

Search and Transformation

1996-19 ∗ P.Peters, M.Jarke: Simulating the impact of information flows in net-

worked organizations

1996-20 Matthias Jarke, Peter Peters, Manfred A. Jeusfeld: Model-driven plan-

ning and design of cooperative information systems

194

Bibliography

1996-21 ∗ G.de Michelis, E.Dubois, M.Jarke, F.Matthes, J.Mylopoulos, K.Pohl,

J.Schmidt, C.Woo, E.Yu: Cooperative information systems: a manifesto

1996-22 ∗ S.Jacobs, M.Gebhardt, S.Kethers, W.Rzasa: Filling HTML forms simul-

taneously: CoWeb architecture and functionality

1996-23 ∗ M.Gebhardt, S.Jacobs: Conflict Management in Design

1997-01 Michael Hanus, Frank Zartmann (eds.): Jahresbericht 1996

1997-02 Johannes Faassen: Using full parallel Boltzmann Machines for Optimiza-

tion

1997-03 Andreas Winter, Andy Schürr: Modules and Updatable Graph Views

for PROgrammed Graph REwriting Systems

1997-04 Markus Mohnen, Stefan Tobies: Implementing Context Patterns in the

Glasgow Haskell Compiler

1997-05 ∗ S.Gruner: Schemakorrespondenzaxiome unterstützen die paargramma-

tische Spezifikation inkrementeller Integrationswerkzeuge

1997-06 Matthias Nicola, Matthias Jarke: Design and Evaluation of Wireless

Health Care Information Systems in Developing Countries

1997-07 Petra Hofstedt: Taskparallele Skelette für irregulär strukturierte Prob-

leme in deklarativen Sprachen

1997-08 Dorothea Blostein, Andy Schürr: Computing with Graphs and Graph

Rewriting

1997-09 Carl-Arndt Krapp, Bernhard Westfechtel: Feedback Handling in Dy-

namic Task Nets

1997-10 Matthias Nicola, Matthias Jarke: Integrating Replication and Commu-

nication in Performance Models of Distributed Databases

1997-11 ∗ R. Klamma, P. Peters, M. Jarke: Workflow Support for Failure Manage-

ment in Federated Organizations

1997-13 Markus Mohnen: Optimising the Memory Management of Higher-Order

Functional Programs

1997-14 Roland Baumann: Client/Server Distribution in a Structure-Oriented

Database Management System

1997-15 George Botorog: High-Level Parallel Programming and the Efficient Im-

plementation of Numerical Algorithms

1998-01 ∗ Fachgruppe Informatik: Jahresbericht 1997

1998-02 Stefan Gruner, Manfred Nagel, Andy Schürr: Fine-grained and

Structure-Oriented Document Integration Tools are Needed for Devel-

opment Processes

1998-03 Stefan Gruner: Einige Anmerkungen zur graphgrammatischen Spezi-

fikation von Integrationswerkzeugen nach Westfechtel, Janning, Lefering

und Schürr

1998-04 ∗ O. Kubitz: Mobile Robots in Dynamic Environments

195

Bibliography

1998-05 Martin Leucker, Stephan Tobies: Truth - A Verification Platform for

Distributed Systems

1998-06 ∗ Matthias Oliver Berger: DECT in the Factory of the Future

1998-07 M. Arnold, M. Erdmann, M. Glinz, P. Haumer, R. Knoll, B. Paech, K.

Pohl, J. Ryser, R. Studer, K. Weidenhaupt: Survey on the Scenario Use

in Twelve Selected Industrial Projects

1998-09 ∗ Th. Lehmann: Geometrische Ausrichtung medizinischer Bilder am

Beispiel intraoraler Radiographien

1998-10 ∗ M. Nicola, M. Jarke: Performance Modeling of Distributed and Repli-

cated Databases

1998-11 ∗ Ansgar Schleicher, Bernhard Westfechtel, Dirk Jäger: Modeling Dy-

namic Software Processes in UML

1998-12 ∗ W. Appelt, M. Jarke: Interoperable Tools for Cooperation Support using

the World Wide Web

1998-13 Klaus Indermark: Semantik rekursiver Funktionsdefinitionen mit Strik-

theitsinformation

1999-01 ∗ Jahresbericht 1998

1999-02 ∗ F. Huch: Verifcation of Erlang Programs using Abstract Interpretation

and Model Checking — Extended Version

1999-03 ∗ R. Gallersdörfer, M. Jarke, M. Nicola: The ADR Replication Manager

1999-04 Maŕıa Alpuente, Michael Hanus, Salvador Lucas, Germán Vidal: Spe-

cialization of Functional Logic Programs Based on Needed Narrowing

1999-05 ∗ W. Thomas (Ed.): DLT 99 - Developments in Language Theory Fourth

International Conference

1999-06 ∗ Kai Jakobs, Klaus-Dieter Kleefeld: Informationssysteme für die ange-

wandte historische Geographie

1999-07 Thomas Wilke: CTL+ is exponentially more succinct than CTL

1999-08 Oliver Matz: Dot-Depth and Monadic Quantifier Alternation over Pic-

tures

2000-01 ∗ Jahresbericht 1999

2000-02 Jens Vöge, Marcin Jurdzinski A Discrete Strategy Improvement Algo-

rithm for Solving Parity Games

2000-03 D. Jäger, A. Schleicher, B. Westfechtel: UPGRADE: A Framework for

Building Graph-Based Software Engineering Tools

2000-04 Andreas Becks, Stefan Sklorz, Matthias Jarke: Exploring the Semantic

Structure of Technical Document Collections: A Cooperative Systems

Approach

2000-05 Mareike Schoop: Cooperative Document Management

2000-06 Mareike Schoop, Christoph Quix (eds.): Proceedings of the Fifth Inter-

national Workshop on the Language-Action Perspective on Communi-

cation Modelling

196

Bibliography

2000-07 ∗ Markus Mohnen, Pieter Koopman (Eds.): Proceedings of the 12th In-

ternational Workshop of Functional Languages

2000-08 Thomas Arts, Thomas Noll: Verifying Generic Erlang Client-Server Im-

plementations

2001-01 ∗ Jahresbericht 2000

2001-02 Benedikt Bollig, Martin Leucker: Deciding LTL over Mazurkiewicz

Traces

2001-03 Thierry Cachat: The power of one-letter rational languages

2001-04 Benedikt Bollig, Martin Leucker, Michael Weber: Local Parallel Model

Checking for the Alternation Free mu-Calculus

2001-05 Benedikt Bollig, Martin Leucker, Thomas Noll: Regular MSC Languages

2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-

Order Logic

2001-07 Martin Grohe, Stefan Wöhrle: An Existential Locality Theorem

2001-08 Mareike Schoop, James Taylor (eds.): Proceedings of the Sixth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2001-09 Thomas Arts, Jürgen Giesl: A collection of examples for termination of

term rewriting using dependency pairs

2001-10 Achim Blumensath: Axiomatising Tree-interpretable Structures

2001-11 Klaus Indermark, Thomas Noll (eds.): Kolloquium Programmier-

sprachen und Grundlagen der Programmierung

2002-01 ∗ Jahresbericht 2001

2002-02 Jürgen Giesl, Aart Middeldorp: Transformation Techniques for Context-

Sensitive Rewrite Systems

2002-03 Benedikt Bollig, Martin Leucker, Thomas Noll: Generalised Regular

MSC Languages

2002-04 Jürgen Giesl, Aart Middeldorp: Innermost Termination of Context-

Sensitive Rewriting

2002-05 Horst Lichter, Thomas von der Maßen, Thomas Weiler: Modelling Re-

quirements and Architectures for Software Product Lines

2002-06 Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party

Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic

Finite Automata

2002-07 Jörg Dahmen: Invariant Image Object Recognition using Gaussian Mix-

ture Densities

2002-08 Markus Mohnen: An Open Framework for Data-Flow Analysis in Java

2002-09 Markus Mohnen: Interfaces with Default Implementations in Java

2002-10 Martin Leucker: Logics for Mazurkiewicz traces

2002-11 Jürgen Giesl, Hans Zantema: Liveness in Rewriting

2003-01 ∗ Jahresbericht 2002

197

Bibliography

2003-02 Jürgen Giesl, René Thiemann: Size-Change Termination for Term

Rewriting

2003-03 Jürgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations

2003-04 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Improving Dependency Pairs

2003-05 Christof Löding, Philipp Rohde: Solving the Sabotage Game is

PSPACE-hard

2003-06 Franz Josef Och: Statistical Machine Translation: From Single-Word

Models to Alignment Templates

2003-07 Horst Lichter, Thomas von der Maßen, Alexander Nyßen, Thomas

Weiler: Vergleich von Ansätzen zur Feature Modellierung bei der Soft-

wareproduktlinienentwicklung

2003-08 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Mechanizing Dependency Pairs

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003

2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic

2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting

2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming

2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on

Functional and (Constraint) Logic Programming

2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming

2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination

2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information

2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity

2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules

2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004

2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer

School Applied IT Security”

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-

proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for

the Steiner Tree Problem

198

Bibliography

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing

Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Infor-

mation

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking:

Exploring a Root-Cause Methodology to Prevent Distributed Denial-of-

Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With

Applications To Max-Cut

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General

Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts

2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture

2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-

ficient Reductions for Wait-Free Termination Detection in Faulty Dis-

tributed Systems

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting

Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization

2005-15 Uwe Naumann: The Complexity of Derivative Computation

2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)

2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraproce-

dural Adjoint Code)

2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-

berger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann,

Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-

Entwicklungsprozess - Abschlußbericht des GI-Arbeitskreises “Features”

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented

LL-Parsers

2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbil-

dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-

bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-

gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit

BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-

ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-

ized Fair Exchange with Secret Shared Coins

199

Bibliography

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:

Decision Making Based on Approximate and Smoothed Pareto Curves

2005-24 Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering

with Motes: Real-World Physical Attacks on Wireless Sensor Networks

2006-01 ∗ Fachgruppe Informatik: Jahresbericht 2005

2006-02 Michael Weber: Parallel Algorithms for Verification of Large Systems

2006-03 Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Generated

by the Differentiation-Enabled NAGWare Fortran Compiler

2006-04 Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static

Memory Jacobian Accumulation

2006-05 Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozyurt,

Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint

Code by Source Transformation with OpenAD/F

2006-06 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Divide-

and-Color

2006-07 Thomas Colcombet, Christof Löding: Transforming structures by set

interpretations

2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-

Expression-Use Graphs

2006-09 Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic

Model Checking

2006-10 Mesut Günes, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,

Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid

MCG-Mesh Testbed

2006-11 Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowalewski:

Model Checking Software for Microcontrollers

2006-12 Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker:

Replaying Play in and Play out: Synthesis of Design Models from Sce-

narios by Learning

2006-13 Wong Karianto, Christof Löding: Unranked Tree Automata with Sibling

Equalities and Disequalities

2006-14 Danilo Beuche, Andreas Birk, Heinrich Dreier, Andreas Fleischmann,

Heidi Galle, Gerald Heller, Dirk Janzen, Isabel John, Ramin Tavakoli

Kolagari, Thomas von der Maßen, Andreas Wolfram: Report of the

GI Work Group “Requirements Management Tools for Product Line

Engineering”

2006-15 Sebastian Ullrich, Jakob T. Valvoda, Torsten Kuhlen: Utilizing optical

sensors from mice for new input devices

2006-16 Rafael Ballagas, Jan Borchers: Selexels: a Conceptual Framework for

Pointing Devices with Low Expressiveness

200

Bibliography

2006-17 Eric Lee, Henning Kiel, Jan Borchers: Scrolling Through Time: Improv-

ing Interfaces for Searching and Navigating Continuous Audio Timelines

2007-01 ∗ Fachgruppe Informatik: Jahresbericht 2006

2007-02 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, and Harald Zankl: SAT Solving for Termination Anal-

ysis with Polynomial Interpretations

2007-03 Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-

Kamp: Proving Termination by Bounded Increase

2007-04 Jan Buchholz, Eric Lee, Jonathan Klein, and Jan Borchers: coJIVE: A

System to Support Collaborative Jazz Improvisation

2007-05 Uwe Naumann: On Optimal DAG Reversal

2007-06 Joost-Pieter Katoen, Thomas Noll, and Stefan Rieger: Verifying Con-

current List-Manipulating Programs by LTL Model Checking

2007-07 Alexander Nyßen, Horst Lichter: MeDUSA - MethoD for UML2-based

Design of Embedded Software Applications

2007-08 Falk Salewski and Stefan Kowalewski: Achieving Highly Reliable Em-

bedded Software: An empirical evaluation of different approaches

2007-09 Tina Kraußer, Heiko Mantel, and Henning Sudbrock: A Probabilistic

Justification of the Combining Calculus under the Uniform Scheduler

Assumption

2007-10 Martin Neuhäußer, Joost-Pieter Katoen: Bisimulation and Logical

Preservation for Continuous-Time Markov Decision Processes

2007-11 Klaus Wehrle (editor): 6. Fachgespräch Sensornetzwerke

2007-12 Uwe Naumann: An L-Attributed Grammar for Adjoint Code

2007-13 Uwe Naumann, Michael Maier, Jan Riehme, and Bruce Christianson:

Second-Order Adjoints by Source Code Manipulation of Numerical Pro-

grams

2007-14 Jean Utke, Uwe Naumann, Mike Fagan, Nathan Tallent, Michelle Strout,

Patrick Heimbach, Chris Hill, and Carl Wunsch: OpenAD/F: A Modu-

lar, Open-Source Tool for Automatic Differentiation of Fortran Codes

2007-15 Volker Stolz: Temporal assertions for sequential and concurrent pro-

grams

2007-16 Sadeq Ali Makram, Mesut Güneç, Martin Wenig, Alexander Zimmer-

mann: Adaptive Channel Assignment to Support QoS and Load Bal-

ancing for Wireless Mesh Networks

2007-17 René Thiemann: The DP Framework for Proving Termination of Term

Rewriting

2007-18 Uwe Naumann: Call Tree Reversal is NP-Complete

2007-19 Jan Riehme, Andrea Walther, Jörg Stiller, Uwe Naumann: Adjoints for

Time-Dependent Optimal Control

201

Bibliography

2007-20 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, and Verena Wolf:

Three-Valued Abstraction for Probabilistic Systems

2007-21 Tingting Han, Joost-Pieter Katoen, and Alexandru Mereacre: Com-

positional Modeling and Minimization of Time-Inhomogeneous Markov

Chains

2007-22 Heiner Ackermann, Paul W. Goldberg, Vahab S. Mirrokni, Heiko Röglin,

and Berthold Vöcking: Uncoordinated Two-Sided Markets

2008-01 ∗ Fachgruppe Informatik: Jahresbericht 2007/2008

2008-02 Henrik Bohnenkamp, Marielle Stoelinga: Quantitative Testing

2008-03 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, Harald Zankl: Maximal Termination

2008-04 Uwe Naumann, Jan Riehme: Sensitivity Analysis in Sisyphe with the

AD-Enabled NAGWare Fortran Compiler

2008-05 Frank G. Radmacher: An Automata Theoretic Approach to the Theory

of Rational Tree Relations

2008-06 Uwe Naumann, Laurent Hascoet, Chris Hill, Paul Hovland, Jan Riehme,

Jean Utke: A Framework for Proving Correctness of Adjoint Message

Passing Programs

2008-07 Alexander Nyßen, Horst Lichter: The MeDUSA Reference Manual, Sec-

ond Edition

2008-08 George B. Mertzios, Stavros D. Nikolopoulos: The λ-cluster Problem on

Parameterized Interval Graphs

2008-09 George B. Mertzios, Walter Unger: An optimal algorithm for the k-fixed-

endpoint path cover on proper interval graphs

2008-10 George B. Mertzios, Walter Unger: Preemptive Scheduling of Equal-

Length Jobs in Polynomial Time

2008-11 George B. Mertzios: Fast Convergence of Routing Games with Splittable

Flows

2008-12 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, Verena Wolf: Ab-

straction for stochastic systems by Erlang’s method of stages

2008-13 Beatriz Alarcón, Fabian Emmes, Carsten Fuhs, Jürgen Giesl, Raúl

Gutiérrez, Salvador Lucas, Peter Schneider-Kamp, René Thiemann: Im-

proving Context-Sensitive Dependency Pairs

2008-14 Bastian Schlich: Model Checking of Software for Microcontrollers

2008-15 Joachim Kneis, Alexander Langer, Peter Rossmanith: A New Algorithm

for Finding Trees with Many Leaves

2008-16 Hendrik vom Lehn, Elias Weingärtner and Klaus Wehrle: Comparing

recent network simulators: A performance evaluation study

2008-17 Peter Schneider-Kamp: Static Termination Analysis for Prolog using

Term Rewriting and SAT Solving

202

Bibliography

2008-18 Falk Salewski: Empirical Evaluations of Safety-Critical Embedded Sys-

tems

2008-19 Dirk Wilking: Empirical Studies for the Application of Agile Methods

to Embedded Systems

2009-01 ∗ Fachgruppe Informatik: Jahresbericht 2009

2009-02 Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:

Quantitative Model Checking of Continuous-Time Markov Chains

Against Timed Automata Specifications

2009-03 Alexander Nyßen: Model-Based Construction of Embedded & Real-

Time Software - A Methodology for Small Devices

2009-05 George B. Mertzios, Ignasi Sau, Shmuel Zaks: A New Intersection Model

and Improved Algorithms for Tolerance Graphs

2009-06 George B. Mertzios, Ignasi Sau, Shmuel Zaks: The Recognition of Tol-

erance and Bounded Tolerance Graphs is NP-complete

2009-07 Joachim Kneis, Alexander Langer, Peter Rossmanith: Derandomizing

Non-uniform Color-Coding I

2009-08 Joachim Kneis, Alexander Langer: Satellites and Mirrors for Solving

Independent Set on Sparse Graphs

2009-09 Michael Nett: Implementation of an Automated Proof for an Algorithm

Solving the Maximum Independent Set Problem

2009-10 Felix Reidl, Fernando Sánchez Villaamil: Automatic Verification of the

Correctness of the Upper Bound of a Maximum Independent Set Algo-

rithm

2009-11 Kyriaki Ioannidou, George B. Mertzios, Stavros D. Nikolopoulos: The

Longest Path Problem is Polynomial on Interval Graphs

2009-12 Martin Neuhäußer, Lijun Zhang: Time-Bounded Reachability in

Continuous-Time Markov Decision Processes

2009-13 Martin Zimmermann: Time-optimal Winning Strategies for Poset

Games

2009-14 Ralf Huuck, Gerwin Klein, Bastian Schlich (eds.): Doctoral Symposium

on Systems Software Verification (DS SSV’09)

2009-15 Joost-Pieter Katoen, Daniel Klink, Martin Neuhäußer: Compositional

Abstraction for Stochastic Systems

2009-16 George B. Mertzios, Derek G. Corneil: Vertex Splitting and the Recog-

nition of Trapezoid Graphs

2009-17 Carsten Kern: Learning Communicating and Nondeterministic Au-

tomata

2009-18 Paul Hänsch, Michaela Slaats, Wolfgang Thomas: Parametrized Regular

Infinite Games and Higher-Order Pushdown Strategies

2010-01 ∗ Fachgruppe Informatik: Jahresbericht 2010

203

Bibliography

2010-02 Daniel Neider, Christof Löding: Learning Visibly One-Counter Au-

tomata in Polynomial Time

2010-03 Holger Krahn: MontiCore: Agile Entwicklung von domänenspezifischen

Sprachen im Software-Engineering

2010-04 René Wörzberger: Management dynamischer Geschäftsprozesse auf Ba-

sis statischer Prozessmanagementsysteme

2010-05 Daniel Retkowitz: Softwareunterstützung für adaptive eHome-Systeme

2010-06 Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:

Computing maximum reachability probabilities in Markovian timed au-

tomata

2010-07 George B. Mertzios: A New Intersection Model for Multitolerance

Graphs, Hierarchy, and Efficient Algorithms

2010-08 Carsten Otto, Marc Brockschmidt, Christian von Essen, Jürgen Giesl:

Automated Termination Analysis of Java Bytecode by Term Rewriting

2010-09 George B. Mertzios, Shmuel Zaks: The Structure of the Intersection of

Tolerance and Cocomparability Graphs

2010-10 Peter Schneider-Kamp, Jürgen Giesl, Thomas Ströder, Alexander Sere-

brenik, René Thiemann: Automated Termination Analysis for Logic

Programs with Cut

2010-11 Martin Zimmermann: Parametric LTL Games

2010-12 Thomas Ströder, Peter Schneider-Kamp, Jürgen Giesl: Dependency

Triples for Improving Termination Analysis of Logic Programs with Cut

2010-13 Ashraf Armoush: Design Patterns for Safety-Critical Embedded Systems

2010-14 Michael Codish, Carsten Fuhs, Jürgen Giesl, Peter Schneider-Kamp:

Lazy Abstraction for Size-Change Termination

2010-15 Marc Brockschmidt, Carsten Otto, Christian von Essen, Jürgen Giesl:

Termination Graphs for Java Bytecode

2010-16 Christian Berger: Automating Acceptance Tests for Sensor- and

Actuator-based Systems on the Example of Autonomous Vehicles

2010-17 Hans Grönniger: Systemmodell-basierte Definition objektbasierter Mod-

ellierungssprachen mit semantischen Variationspunkten

2010-18 Ibrahim Armaç: Personalisierte eHomes: Mobilität, Privatsphäre und

Sicherheit

2010-19 Felix Reidl: Experimental Evaluation of an Independent Set Algorithm

2010-20 Wladimir Fridman, Christof Löding, Martin Zimmermann: Degrees of

Lookahead in Context-free Infinite Games

2011-01 ∗ Fachgruppe Informatik: Jahresbericht 2011

2011-02 Marc Brockschmidt, Carsten Otto, Jürgen Giesl: Modular Termination

Proofs of Recursive Java Bytecode Programs by Term Rewriting

2011-03 Lars Noschinski, Fabian Emmes, Jürgen Giesl: A Dependency Pair

Framework for Innermost Complexity Analysis of Term Rewrite Systems

204

Bibliography

2011-04 Christina Jansen, Jonathan Heinen, Joost-Pieter Katoen, Thomas Noll:

A Local Greibach Normal Form for Hyperedge Replacement Grammars

2011-06 Johannes Lotz, Klaus Leppkes, and Uwe Naumann: dco/c++ - Deriva-

tive Code by Overloading in C++

2011-07 Shahar Maoz, Jan Oliver Ringert, Bernhard Rumpe: An Operational

Semantics for Activity Diagrams using SMV

2011-08 Thomas Ströder, Fabian Emmes, Peter Schneider-Kamp, Jürgen Giesl,

Carsten Fuhs: A Linear Operational Semantics for Termination and

Complexity Analysis of ISO Prolog

2011-09 Markus Beckers, Johannes Lotz, Viktor Mosenkis, Uwe Naumann (Edi-

tors): Fifth SIAM Workshop on Combinatorial Scientific Computing

2011-10 Markus Beckers, Viktor Mosenkis, Michael Maier, Uwe Naumann: Ad-

joint Subgradient Calculation for McCormick Relaxations

2011-11 Nils Jansen, Erika Ábrahám, Jens Katelaan, Ralf Wimmer, Joost-Pieter

Katoen, Bernd Becker: Hierarchical Counterexamples for Discrete-Time

Markov Chains

2011-12 Ingo Felscher, Wolfgang Thomas: On Compositional Failure Detection

in Structured Transition Systems

2011-13 Michael Förster, Uwe Naumann, Jean Utke: Toward Adjoint OpenMP

2011-14 Daniel Neider, Roman Rabinovich, Martin Zimmermann: Solving Muller

Games via Safety Games

2011-16 Niloofar Safiran, Uwe Naumann: Toward Adjoint OpenFOAM

2011-17 Carsten Fuhs: SAT Encodings: From Constraint-Based Termination

Analysis to Circuit Synthesis

2011-18 Kamal Barakat: Introducing Timers to pi-Calculus

2011-19 Marc Brockschmidt, Thomas Ströder, Carsten Otto, Jürgen Giesl: Au-

tomated Detection of Non-Termination and NullPointerExceptions for

Java Bytecode

2011-24 Callum Corbett, Uwe Naumann, Alexander Mitsos: Demonstration of a

Branch-and-Bound Algorithm for Global Optimization using McCormick

Relaxations

2011-25 Callum Corbett, Michael Maier, Markus Beckers, Uwe Naumann, Amin

Ghobeity, Alexander Mitsos: Compiler-Generated Subgradient Code for

McCormick Relaxations

2011-26 Hongfei Fu: The Complexity of Deciding a Behavioural Pseudometric

on Probabilistic Automata

2012-01 Fachgruppe Informatik: Annual Report 2012

2012-02 Thomas Heer: Controlling Development Processes

2012-03 Arne Haber, Jan Oliver Ringert, Bernhard Rumpe: MontiArc - Architec-

tural Modeling of Interactive Distributed and Cyber-Physical Systems

2012-04 Marcus Gelderie: Strategy Machines and their Complexity

205

Bibliography

2012-05 Thomas Ströder, Fabian Emmes, Jürgen Giesl, Peter Schneider-Kamp,

and Carsten Fuhs: Automated Complexity Analysis for Prolog by Term

Rewriting

2012-06 Marc Brockschmidt, Richard Musiol, Carsten Otto, Jürgen Giesl: Au-

tomated Termination Proofs for Java Programs with Cyclic Data

2012-07 André Egners, Björn Marschollek, and Ulrike Meyer: Hackers in Your

Pocket: A Survey of Smartphone Security Across Platforms

2012-08 Hongfei Fu: Computing Game Metrics on Markov Decision Processes

2012-09 Dennis Guck, Tingting Han, Joost-Pieter Katoen, and Martin R.

Neuhäußer: Quantitative Timed Analysis of Interactive Markov Chains

2012-10 Uwe Naumann and Johannes Lotz: Algorithmic Differentiation of Nu-

merical Methods: Tangent-Linear and Adjoint Direct Solvers for Systems

of Linear Equations

2012-12 Jürgen Giesl, Thomas Ströder, Peter Schneider-Kamp, Fabian Emmes,

and Carsten Fuhs: Symbolic Evaluation Graphs and Term Rewriting —

A General Methodology for Analyzing Logic Programs

2012-15 Uwe Naumann, Johannes Lotz, Klaus Leppkes, and Markus Towara:

Algorithmic Differentiation of Numerical Methods: Tangent-Linear and

Adjoint Solvers for Systems of Nonlinear Equations

2012-16 Georg Neugebauer and Ulrike Meyer: SMC-MuSe: A Framework for

Secure Multi-Party Computation on MultiSets

2012-17 Viet Yen Nguyen: Trustworthy Spacecraft Design Using Formal Methods

2013-01 ∗ Fachgruppe Informatik: Annual Report 2013

2013-02 Michael Reke: Modellbasierte Entwicklung automobiler Steuerungssys-

teme in Klein- und mittelständischen Unternehmen

2013-03 Markus Towara and Uwe Naumann: A Discrete Adjoint Model for Open-

FOAM

2013-04 Max Sagebaum, Nicolas R. Gauger, Uwe Naumann, Johannes Lotz, and

Klaus Leppkes: Algorithmic Differentiation of a Complex C++ Code

with Underlying Libraries

2013-05 Andreas Rausch and Marc Sihling: Software & Systems Engineering

Essentials 2013

2013-06 Marc Brockschmidt, Byron Cook, and Carsten Fuhs: Better termination

proving through cooperation

2013-07 André Stollenwerk: Ein modellbasiertes Sicherheitskonzept für die ex-

trakorporale Lungenunterstützung

2013-08 Sebastian Junges, Ulrich Loup, Florian Corzilius and Erika Ábrahám:

On Gröbner Bases in the Context of Satisfiability-Modulo-Theories Solv-

ing over the Real Numbers

206

Bibliography

2013-10 Joost-Pieter Katoen, Thomas Noll, Thomas Santen, Dirk Seifert, and

Hao Wu: Performance Analysis of Computing Servers using Stochastic

Petri Nets and Markov Automata

2013-12 Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs, and

Jürgen Giesl: Alternating Runtime and Size Complexity Analysis of

Integer Programs

2013-13 Michael Eggert, Roger Häußling, Martin Henze, Lars Hermerschmidt,

René Hummen, Daniel Kerpen, Antonio Navarro Pérez, Bernhard

Rumpe, Dirk Thißen, and Klaus Wehrle: SensorCloud: Towards the

Interdisciplinary Development of a Trustworthy Platform for Globally

Interconnected Sensors and Actuators

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

207

	Introduction
	Abstract Interpretation of Machine Arithmetic
	The Drive for Automatic Abstraction
	Automatic Abstraction and Quantification
	Automatic Abstraction using Boolean Formulae
	Abstraction using Varieties of Domains
	Contributions
	Outline
	Bibliographic Notes

	Existential Quantification as Incremental SAT
	Prime Implicant Generation
	Dual-Rail Encoding for Implicant Generation
	Computing Implicants of Fixed Length
	Formal Correctness

	Anytime Quantifier Elimination
	Worked Example
	Formal Correctness

	Two-Phase Quantifier Elimination
	Worked Example
	Formal Correctness

	Experiments
	Benchmarks
	Anytime Quantifier Elimination
	Two-Phase Quantifier Elimination

	Related Work
	Consensus Method and Binary Resolution
	Complexity of Prime Implicant Generation
	Hybrid Methods and McMillan's Method
	Methods based on Prime Implicants and Cubes
	Methods for Quantified Boolean Formulae

	Discussion

	Control Flow Reconstruction using Boolean Logic
	Block-Level Abstraction
	Bit-Blasting Blocks
	Value Set Abstraction using Incremental SAT Solving
	Deriving Pre- and Postconditions

	Program-Level Abstraction
	Overview
	Forward Analysis with Invariant Refinement

	Experiments
	Benchmarks
	Results
	Comparison

	Related Work
	Platform-Specific Decompilation
	Control Flow Reconstruction by Abstract Interpretation
	Control Flow Reconstruction in Model Checking and Testing
	Path-Sensitive Abstract Interpretation

	Discussion

	Automatic Abstraction of Bit-Vector Formulae
	Separation of Modes
	Detecting Feasible Modes
	Incremental Feasibility Checks

	Symbolic Abstractions for Bit-Vectors
	Octagons
	Convex Polyhedra
	Non-Optimal Polyhedral Abstraction
	Arithmetical Congruences
	Affine Equalities
	Bounded Polynomials

	Flexible Bit-Widths by Extrapolation
	Templates for Extrapolation
	Extrapolation for Octagons
	Extrapolation for Affine Equalities

	Experiments
	Benchmarks
	Intervals (intV V V V)
	Octagons (octV V V V)
	Convex Polyhedra (convV V V V)
	Arithmetical Congruences (a-congV V V V)
	Affine Equalities (affV V V V)
	Polynomial Equalities (polyV V V V)
	Extrapolation

	Discussion

	Transformers for Template Constraints
	Lifting Equalities to Template Domains
	Lifting Affine Equalities to Intervals
	Lifting Affine Equalities to Octagons
	Lifting Polynomial Equalities to Intervals
	Lifting Polynomial Equalities to Octagons

	Characterizing Linear Templates using Quantification
	Specifying Optimal Intervals using Quantifiers
	Generalization

	Interleaved Abstraction and Refinement
	Optimal Affine Updates on Octagons
	Inferring Polynomial Equalities for Octagons
	Optimal Affine Updates on Arithmetical Congruences

	Affine Transformers for Non-Affine Relations
	From Convex Polyhedra to Intervals
	From Convex Polyhedra to Octagons
	Interleaving Polyhedral Abstraction and Maximization

	Experiments
	Lifting and Transformation
	Quantification
	Interleaved Abstraction

	Related Work
	Generation of Symbolic Best Transformers
	Modular Arithmetic
	Polynomial Relations
	Summary-based Program Analysis

	Discussion

	Complete Transformers
	Backward Analysis for Counterexamples
	Worked Example
	Deriving Complete Abstractions
	Extending Complete Abstractions
	Disjunctive Extensions

	Formalization
	Algorithm
	Soundness and Completeness

	Experiments
	Effects of Domain Combinations
	Complete Extrapolation

	Related Work
	Counterexamples in Model Checking
	Counterexamples in Abstract Interpretation
	Completeness in Abstract Interpretation

	Discussion

	Conclusion
	Discussion
	Summary
	Future Work

