RWTH Aachen

Department of Computer Science
Technical Report

Proceedings of the International Joint
Workshop on Implementation of
Constraint and Logic Programming
Systems and Logic-based Methods in
Programming Environments 2014

Thomas Stroder and Terrance Swift (Editors)

ISSN 0935-3232 . Aachener Informatik-Berichte . AlB-2014-09

RWTH Aachen - Department of Computer Science - June 2014 (revised version)

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Table of Contents

Table of Contents

1 VSL Preface

2

Preface by the Editors

Program Committee

Additional Reviewers

Contributions

5.1

W/

5.3

5.4

9.5

5.6

5.7

5.8

5.9

Jirgen Giesl, Thomas Stroder, Peter Schneider-Kamp, Fabian
Emmes, and Carsten Fuhs:

SYMBOLIC EVALUATION GRAPHS AND TERM REWRITING —
A GENERAL METHODOLOGY FOR ANALYZING LOGIC PRO-

Michael Codish, Luis Cruz-Filipe, Michael Frank, and Peter
Schneider-Kamp:

PROOFS FOR OPTIMALITY OF SORTING NETWORKS BY LOGIC
PROGRAMMING e
Joachim Jansen and Gerda Janssens:

REFINING DEFINITIONS WITH UNKNOWN OPENS USING XSB
FOR IDP3
Alexei A. Morozov and Alexander F. Polupanov:
INTELLIGENT VISUAL SURVEILLANCE LOGIC PROGRAMMING:
IMPLEMENTATION ISSUES
Vincent Bloemen, Daniel Diaz, Machiel van der Bijl and Sal-
vador Abreu:

EXTENDING THE FINITE DOMAIN SOLVER OF GNU PRro-
LOG v v v o e e e e e
Gopalan Nadathur and Mary Southern:

A LAMBDA PROLOG BASED ANIMATION OF TWELF SPECI-
FICATIONS . . . v v v v i e e e e e e e e e e e e s e
Jose F. Morales and Manuel V. Hermenegildo:

TOWARDS PRE-INDEXED TERMS
Md Solimul Chowdhury and Jia-Huai You:

A SYSTEM FOR EMBEDDING GLOBAL CONSTRAINTS INTO
SAT . . e
Jan Wielemaker:

SWI-PROLOG VERSION 7 EXTENSIONS

11

11

13

15

31

47

63

79

CICLOPS-WLPE 2014

5.10 Flavio Cruz, Ricardo Rocha and Seth Goldstein:
A PARALLEL VIRTUAL MACHINE FOR EXECUTING FORWARD-
CHAINING LINEAR LOGIC PROGRAMS 125
5.11 Theofrastos Mantadelis and Ricardo Rocha:
A PORTABLE PROLOG PREDICATE FOR PRINTING RATIO-
NAL TERMS e e e 141

6 Former AIB Technical Reports 155

VSL Preface

VIENNA
SUMMER
OF LoGIC

2014

In the summer of 2014, Vienna hosted the largest scientific conference in the history of
logic. The Vienna Summer of Logic (VSL, http://vs12014.at) consisted of twelve large
conferences and 82 workshops, attracting more than 2000 researchers from all over the
world. This unique event was organized by the Kurt Gédel Society at Vienna University
of Technology from July 9 to 24, 2014, under the auspices of the Federal President of
the Republic of Austria, Dr. Heinz Fischer.

The conferences and workshops dealt with the main theme, logic, from three important
angles: logic in computer science, mathematical logic, and logic in artificial intelli-
gence. They naturally gave rise to respective streams gathering the following meetings:

Logic in Computer Science / Federated Logic Conference (FLoC)

e 26th International Conference on Computer Aided Verification (CAV)
e 27th IEEE Computer Security Foundations Symposium (CSF)

e 30th International Conference on Logic Programming (ICLP)

e 7th International Joint Conference on Automated Reasoning (IJCAR)
o 5th Conference on Interactive Theorem Proving (ITP)

o Joint meeting of the 23rd EACSL Annual Conference on Computer Science Logic
(CSL) and the 29th ACM/IEEE Symposium on Logic in Computer Science (LICS)

e 25th International Conference on Rewriting Techniques and Applications (RTA)
joint with the 12th International Conference on Typed Lambda Calculi and Ap-
plications (TLCA)

e 17th International Conference on Theory and Applications of Satisfiability Test-
ing (SAT)

e 76 FLoC Workshops

e FLoC Olympic Games (System Competitions)

Mathematical Logic

Logic Colloquium 2014 (LC)

Logic, Algebra and Truth Degrees 2014 (LATD)
Compositional Meaning in Logic (GeTFun 2.0)
The Infinity Workshop (INFINITY)

Workshop on Logic and Games (LG)

Kurt Godel Fellowship Competition

CICLOPS-WLPE 2014

Logic in Artificial Intelligence
e 14th International Conference on Principles of Knowledge Representation and
Reasoning (KR)
e 27th International Workshop on Description Logics (DL)
e 15th International Workshop on Non-Monotonic Reasoning (NMR)

e 6th International Workshop on Knowledge Representation for Health Care 2014
(KR4HC)

The VSL keynote talks which were directed to all participants were given by Franz
Baader (Technische Universitidt Dresden), Edmund Clarke (Carnegie Mellon Univer-
sity), Christos Papadimitriou (University of California, Berkeley) and Alex Wilkie (Uni-
versity of Manchester); Dana Scott (Carnegie Mellon University) spoke in the opening
session. Since the Vienna Summer of Logic contained more than a hundred invited
talks, it is infeasible to list them here.

The program of the Vienna Summer of Logic was very rich, including not only scientific
talks, poster sessions and panels, but also two distinctive events. One was the award
ceremony of the Kurt Gddel Research Prize Fellowship Competition, in which the Kurt
Godel Society awarded three research fellowship prizes endowed with 100.000 Euro
each to the winners. This was the third edition of the competition, themed Logical
Mind: Connecting Foundations and Technology this year.

The other distinctive event was the /st FLoC Olympic Games hosted by the Federated
Logic Conference (FLoC) 2014. Intended as a new FLoC element, the Games brought
together 12 established logic solver competitions by different research communities. In
addition to the competitions, the Olympic Games facilitated the exchange of expertise
between communities, and increased the visibility and impact of state-of-the-art solver
technology. The winners in the competition categories were honored with Kurt Godel
medals at the FLoC Olympic Games award ceremonies.

Organizing an event like the Vienna Summer of Logic has been a challenge. We are in-
debted to numerous people whose enormous efforts were essential in making this vision
become reality. With so many colleagues and friends working with us, we are unable
to list them individually here. Nevertheless, as representatives of the three streams of
VSL, we would like to particularly express our gratitude to all people who have helped
to make this event a success: the sponsors and the honorary committee; the organization
committee and the local organizers; the conference and workshop chairs and program
committee members; the reviewers and authors; and of course all speakers and partici-
pants of the many conferences, workshops and competitions.

The Vienna Summer of Logic continues a great legacy of scientific thought that started
in Ancient Greece and flourished in the city of Godel, Wittgenstein and the Vienna
Circle. The heroes of our intellectual past shaped the scientific world-view and changed
our understanding of science. Owing to their achievements, logic has permeated a wide
range of disciplines, including computer science, mathematics, artificial intelligence,
philosophy, linguistics, and many more. Logic is everywhere — or in the language of
Aristotle, ndvta TAYjpn Aoyixdic téyvng.

Vienna, July 2014

Matthias Baaz, Thomas Eiter, Helmut Veith

Preface of the Editors

CICLOPS-WLPE 2014:
PREFACE

Thomas Stroder Terrance Swift
July 17-18, 2014 - Vienna, Austria

http://vsl2014.at/ciclops-wlpe/

Software plays a crucial role in modern society. While the continuous advent of faster,
smaller and more powerful computing devices makes the development of new and in-
teresting applications feasible, it puts even more demands on the software developer.
Indeed, while software keeps on growing in size and complexity, it is more than ever
required to be delivered on time, free of error and to meet the most stringent efficiency
requirements. Consequently, it is widely recognized that there is a need for methods and
tools that support the programmer in every aspect of the software development process.

Having logic as the underlying formalism means that logic-based analysis techniques
are often successfully used for program verification and optimization. Emerging pro-
gramming paradigms and growing complexity of the properties to be verified pose new
challenges for the community, while emerging reasoning techniques can be exploited.

The International Colloquium on Implementation of Constraint and LOgic Program-
ming Systems (CICLOPS) provides a forum to discuss the design, implementation,
and optimization of logic, constraint (logic) programming systems, and other systems
based on logic as a means of expressing computations. Experience backed up by real
implementations and their evaluation is given preference, as well as descriptions of work
in progress in that direction.

The aim of the Workshop on Logic-based methods in Programming Environments
(WLPE) is to provide an informal meeting for researchers working on logic-based meth-
ods and tools that support program development and analysis. As in recent years,
these topics include not only environmental tools for logic programming, but increas-
ingly also logic-based environmental tools for programming in general and frameworks
and resources for sharing in the logic programming community.

The combination of these two areas of interest in this year’s joint workshop provides
a forum to discuss together the states of the art for using logic both in the evaluation of
programs and in meta-reasoning about programs.

CICLOPS-WLPE 2014

Due to the strong overlap between the CICLOPS-WLPE community and several
FLoC communities (in particular logic (programming), verification, automated reason-
ing, rewriting techniques, and SAT solving), the workshop is affiliated to several confer-
ences:

30th International Conference on Logic Programming (ICLP)
26th International Conference on Computer Aided Verification (CAV)
7th International Joint Conference on Automated Reasoning (IJCAR)

Joint meeting of the 23rd EACSL Annual Conference on Computer Science Logic
(CSL) and the 9th ACM/IEEE Symposium on Logic in Computer Science (LICS)

25th International Conference on Rewriting Techniques and Applications (RTA)
joined with the 12th International Conference on Typed Lambda Calculi and Ap-
plications (TLCA)

17th International Conference on Theory and Applications of Satisfiability Testing
(SAT)

In 2014, CICLOPS-WLPE also joins its program with the 11th International Work-
shop on Constraint Handling Rules (CHR) and has one joint session together with the
Workshop on Probabilistic Logic Programming (PLP).

The International Joint Workshop on Implementation of Constraint and Logic Pro-
gramming Systems and Logic-based Methods in Programming Environments 2014 con-
sists of nine regular submissions and two invited talks. These informal proceedings
contain the regular papers and the abstracts of the two invited talks.

We would like to thank all people involved in the preparation and execution of the
workshop, including the participants, the members of the program committee, and the
local organizers.

Thomas Stroder and Terrance Swift
CICLOPS-WLPE 2014 Program Co-Chairs

Program Committee and Additional Reviewers

Program Committee

Michael Codish
Daniel De Schreye
Carsten Fuhs

John Gallagher
Marco Gavanelli
Michael Hanus
Gerda Janssens
Yoshitaka Kameya
Matthias Knorr

Jael Kriener
Joachim Schimpf
Peter Schneider-Kamp
Tobias Schubert
Thomas Stroder
Terrance Swift
Christian Theil Have
German Vidal

Jan Wielemaker

Additional Reviewers

Broes De Cat
Bart Demoen

Ben-Gurion University

Katholieke Universiteit Leuven
University College London

Roskilde University

University of Ferrara

CAU Kiel

Katholieke Universiteit Leuven

Meijo University

CENTRIA, Universidade Nova de Lisboa
University of Kent

Coninfer Ltd, London

University of Southern Denmark
Albert-Ludwigs-University Freiburg
RWTH Aachen University

Universidade Nova de Lisboa

University of Copenhagen

MiST, DSIC, Universitat Politecnica de Valencia
VU University Amsterdam

Katholieke Universiteit Leuven
Katholieke Universiteit Leuven

CICLOPS-WLPE 2014

10

Symbolic Evaluation Graphs and Term Rewriting — A General Methodology for Analyzing
Logic Programs

Symbolic Evaluation Graphs and Term
Rewriting — A General Methodology for
Analyzing Logic Programs™*

Jiirgen Giesl!, Thomas Stroder!, Peter Schneider-Kamp?, Fabian Emmes', and
Carsten Fuhs®

! LuFG Informatik 2, RWTH Aachen University, Germany
2 Dept. of Mathematics and Computer Science, University of Southern Denmark
3 Dept. of Computer Science, University College London, UK

There exist many powerful techniques to analyze termination and complexity
of term rewrite systems (TRSs). Our goal is to use these techniques for the anal-
ysis of other programming languages as well. For instance, approaches to prove
termination of definite logic programs by a transformation to TRSs have been
studied for decades. However, a challenge is to handle languages with more com-
plex evaluation strategies (such as Prolog, where predicates like the cut influence
the control flow).

We present a general methodology for the analysis of such programs. Here,
the logic program is first transformed into a symbolic evaluation graph which
represents all possible evaluations in a finite way. Afterwards, different analyses
can be performed on these graphs. In particular, one can generate TRSs from
such graphs and apply existing tools for termination or complexity analysis of
TRSs to infer information on the termination or complexity of the original logic
program.

More information can be found in [1].

References

1. J. Giesl, T. Stroder, P. Schneider-Kamp, F. Emmes, and C. Fuhs. Symbolic eval-
uation graphs and term rewriting — a general methodology for analyzing logic
programs. In Proc. PPDP ’12, pages 1-12. ACM Press, 2012.

* Supported by the DFG under grants GI 274/5-3 and GI 274/6-1, the DFG Research
Training Group 1298 (AlgoSyn), and the Danish Council for Independent Research,
Natural Sciences.

11

CICLOPS-WLPE 2014

12

Proofs for Optimality of Sorting Networks by Logic Programming

Proofs for Optimality of Sorting Networks by
Logic Programming

Michael Codish!, Luis Cruz-Filipe?, Michael Frank!, and Peter
Schneider-Kamp?

! Department of Computer Science, Ben-Gurion University of the Negev, Israel
{mcodish,frankm}@cs.bgu.ac.il

2 Department of Mathematics and Computer Science, University of Southern
Denmark, Denmark
{1lcf,petersk}@imada.sdu.dk

Abstract. We present a computer-assisted non-existence proof of nine-
input sorting networks consisting of 24 comparators, hence showing that
the 25-comparator sorting network found by Floyd in 1964 is optimal. As
a corollary, we obtain that the 29-comparator network found by Waks-
man in 1969 is optimal when sorting ten inputs. This closes the two
smallest open instances of the optimal size sorting network problem,
which have been open since the results of Floyd and Knuth from 1966
proving optimality for sorting networks of up to eight inputs.

The entire implementation is written in SWI-Prolog and was run on a
cluster of 12 nodes with 12 cores each, able to run a total of 288 con-
current threads, making extensive use of SWI-Prolog’s built-in predicate
concurrency/3. The search space of 2.2 x 103" comparator networks was
exhausted after just under 10 days of computation. This shows the abil-
ity of logic programming to provide a scalable parallel implementation
while at the same time instilling a high level of trust in the correctness
of the proof.

13

CICLOPS-WLPE 2014

14

Refining Definitions with Unknown Opens using XSB for IDP3

Refining definitions with unknown opens using
XSB for IDP3

Joachim Jansen, Gerda Janssens

Department of Computer Science, KU Leuven
joachim.jansen, gerda.janssens@cs.kuleuven.be

Abstract. FO(-)™ is a declarative modeling language that extends
first-order logic with inductive definitions, partial functions, types and
aggregates. Its model generator IDP? grounds the problem into a low-
level (propositional) representation and consequently use a generic solver
to search for a solution. Recent work introduced a technique that eval-
uates all definitions that depend on fully known information before the
grounding step. In this paper, we extend this technique, which allows
us to refine the interpretation of defined symbols when they depend on
information that is only partially given instead of completely given. We
use our existing transformation of FO(-)™ definitions to Tabled Prolog
rules and extend it to support definitions that depend on information
that is possibly partially unknown. In this paper we present an algo-
rithm that uses XSB Prolog to evaluate these rules in such a way that
we achieve the most precise possible refinement of the defined symbols.
Experimental results show that our technique derives extra information
for the defined symbols.

1 Introduction

Recent proposals for declarative modeling use first-order logic as their starting
point. Examples are Enfragmo [1] and FO(-)™", the instance of the FO(+) family
that is supported by IDP?2, the current version of the IDP Knowledge Base
System [6]. FO(-)™ extends first-order logic (FO) with inductive definitions,
partial functions, types and aggregates. IDP? supports model generation and
model expansion [11, 4] as inference methods.

IDP? supports these inference methods using the ground-and-solve approach.
First the problem is grounded into an Extended CNF (ECNF) theory. Next a
SAT-solver is used to calculate a model of the propositional theory. The tech-
nique that is presented in this paper is to improve the efficiency and robustness
of the grounding step. One of the problems when grounding is the possible com-
binatorial blowup of the grounding. A predicate p(z1,z2...2z,) with s as the
size of the domain of its arguments has s™ possible instances. A grounding that
has to represent all these possible instances is therefore possibly very large. Most
Answer Set Programming (ASP) systems solve this problem by using semi-naive
bottom-up evaluation [8,9] with optimizations. On a high level IDP? uses three

15

CICLOPS-WLPE 2014

techniques to manage the complexity of the grounding process: definition eval-
uation [10], Lifted Unit Propagation (LUP) [15] and Grounding With Bounds
(GWB) [16].

Our previous work [10] is a pre-processing step that calculates in advance the
two-valued interpretations for defined predicates that depend on fully known in-
formation. We call such defined predicates input+ predicates. The definitions
of these predicates and the information on which they depend are translated
into a XSB Prolog [12] program that tables the defined input* predicates, sup-
porting the well-founded semantics [14,13]. This Tabled Prolog program is then
queried to retrieve the atoms for which the tabled predicates are true. The input
structure (the initially given partial structure) is extended with the calculated
information. The input* predicates become completely known: they are true for
the tabled atoms and false for all the other instances. As a result, definitions
of the inputx predicates are no longer needed and they are repoved from the
problem specification.

Lifted Unit Propagation (LUP) is another preprocessing step that further
refines the partial structure. LUP propagates knowledge about true and false
atoms in the formulas of the FO(-)™? theory. For the definitions of the FO(-)™?
theory LUP uses an approximation by propagating on the completion of the
definitions. The method of this paper is an alternative for using LUP on the
completion of the definitions. We extend our existing preprocessing step [10] to
be able to refine the interpretation of defined predicates in the partial structure
when the predicates depend on information that is only partially given. This
extension can then be used as an alternative to executing LUP on the completion
of definitions. Our method uses XSB to compute the atoms (instances of the
predicate) that are true and others that are unknown. The computed atoms
are used to refine the partial structure. Moreover, XSB’s support for the well-
founded semantics makes atoms false when XSB detects unfoundedness. This
detection of unfoundedness is not present in the approach that uses LUP on the
completion of definitions to refine them.

Grounding With Bounds (GWB) uses symbolic reasoning when grounding
subformulas to derive bounds. Because GWB uses the input structure, it can
benefit from the extra information that is inferred thanks to the refinement done
by LUP. Using this extra information, possibly tighter bounds can be derived.
Therefor it is beneficial to refine the input structure as much as possible before
grounding (using GWB). Because of this, we will measure the effectiveness of
the discussed methods by how much they are able to refine the input structure.
The actual grounding process that will benefit from this refined structure is
considered out of scope for this paper.

Our contribution is a new way to perform lifted propagation for definitions.
Experimental results compare the new technique with the old one of performing
LUP for the completion of the definition.

In Section 2 we introduce IDP? and FO(-). Section 3 explains our approach
using an example. In Section 4 we describe the extensions to the transformation
to Tabled Prolog rules and the workflow of our interaction with XSB. Section 5

16

Refining Definitions with Unknown Opens using XSB for IDP3

presents the high-level algorithm that is used to refine all defined symbols as
much as possible using the previously mentioned XSB interaction. In Section 6
we present experimental results. Section 7 contains future work and concludes.

2 Terminology and Motivation

2.1 The FO(-)™ language

We focus on the aspects of FO(-)IF that are relevant for this paper. More details
can be found in [6] and |2, where one can find several examples. An FO(-)™?
model consists of a number of logical components, a.o. vocabularies, structures,
and theories.

A wocabulary declares the symbols to be used.

A structure is used to specify the domain and data; it provides an interpre-
tation of the symbols in the vocabulary. The interpretation of a symbol specifies
for this symbol which atoms (instances) are true, unknown, and false. Inter-
pretations that contain elements that are unknown are also called a partial (or
three-valued) interpretation. Otherwise, the interpretation is said to be two-
valued.

A theory consists of FO(-)™F formulas and definitions. An FO(-)™" formula
differs from FO formulas in two ways. Firstly, FO(-)I" is a many-sorted logic:
every variable has an associated type and every type an associated domain.
Moreover, it is order-sorted: types can be subtypes of others. Secondly, besides
the standard terms in FO, FO(:)™® formulas can also have aggregate terms:
functions over a set of domain elements and associated numeric values which
map to the sum, product, cardinality, maximum or minimum value of the set.

An FO(-)™definition is a set of rules of the form VZ : p(Z) < ¢[Z]. where
¢[z] is an FO(-)™® formula. We call p(z) the head of the rule and ¢[z]. the body
of the rule. The defined symbols of a theory are the symbols that appear in a
head of any rule. The other symbols, which appear only in bodies of definitions
are the open symbols. We remind the reader that previous work [10] describes
a transformation of FO(-)™" definitions into Tabled Prolog rules. This includes
a transformation of the interpretation of the open symbols to (Tabled) Prolog
facts.

2.2 The IDP2 system

IDP? is a Knowledge Base System [6], meaning it supports a variety of problem-
solving inferences. One of these inferences is model expansion. The model expan-
sion of IDP? extends a partial structure (an interpretation) into a two-valued
structure that satisfies all constraints specified by the FO(-)™" model. Formally,
the task of model expansion is, given a vocabulary V', a theory T over V and a
partial structure S over V (at least interpreting all types), to find a two-valued
structure M that satisfies T" and extends S, i.e., M is a model of the theory and
the input structure S is a subset of M.

17

CICLOPS-WLPE 2014

As mentioned before, IDP? uses the ground-and-solve approach. It grounds
the problem and then uses the solver MINISAT(ID) [3, 5], based on the solver
MINISAT [7].

There are three techniques that IDP? uses to optimise its grounding process:
definition evaluation [10], Lifted Unit Propagation (LUP) [15] and Grounding
With Bounds (GWB) [16].

Our previous work [10] introduces a pre-processing step that reduces the
IDP? grounding by calculating some definitions in advance. We calculate the
two-valued interpretations for defined predicates that depend on completely
known information. We transform the relevant definition into Tabled Prolog
rules, we add the relevant fragment of the input structure as Prolog facts, and
we query XSB for the desired interpretation. We use the computed atoms to
complete the two-valued interpretation for the defined symbols. The definitions
are no longer needed and can be removed from the theory.

LUP can most easily be explained based on what SAT solvers do. Most
SAT solvers start by performing Unit Propagation (UP) on the input to derive
new information about the search problem. LUP is designed to refine the input
structure using unit propagation, but on the FO(:)™" formulas instead of on
the ground representation, which is why it is called “lifted”. It is important
to note that LUP only refines the structure with respect to the formulas and
not w.r.t. the definitions. To resolve this, LUP is executed for the completion
of the definitions, but this is an approximation of what can be derived from
definitions. In this paper, we extend the technique used to evaluate definitions
to perform lifted propagation on definitions that have opens with a three-valued
interpretation. This extension can then be used as an alternative to executing
LUP on the completion of definitions.

GWB uses symbolic reasoning when grounding subformulas. Given the input
structure, it derives bounds for certainly true, certainly false and unknown for
quantified variables over (sub)formulas. Consequentially, since GWB uses the
structure, it can benefit from the extra information that is inferred thanks to the
refinement done by LUP. Using this extra information, possibly tighter bounds
can be derived.

3 Example of refining structures

The example shown in Figure 1 expresses a reachability problem for colored
nodes using undirected edges. We use this example to illustrate some of the
concepts.

The theory T in the example contains one formula and two definitions: one
definition defines the symbol uedge/2 and the other definition defines reach/2.
We abuse notation and use “uedge/2 definition” to denote the definition defining
the uedge/2 symbol. The uedge/2 definition has only one open symbol: edge/2.
Because edge/2 has a two-valued interpretation, our original method [10] is ap-
plicable, so we perform definition evaluation for the uedge/2 definition. The
calculated interpretation for uedge/2 can be seen in S2, depicted in Figure 2.

18

Refining Definitions with Unknown Opens using XSB for IDP3

vocabulary V {

type node isa int type color constructed from {RED, BLUE}
edge (node ,node) uedge (node ,node)
color (node, color) reach (node, color)

start (node)
}
theory T : V {
{ uedge(z,y) <+ edge(s,y) V edge(y,z). }
{ reach(z,c) < start(z).
reach(y,c) < reach(z,c) A uedge(z,y) A color(y,c). }
Vz: color (z ,RED) < -color (z,BLUE).

}

structure S : V {
node = {1..6} start = {1}
color<ct> = {2 ,RED} color<cf> = {3 ,RED}
edge = {1,2; 3,1; 3,5; 4,2; 4,3; 6,6}

}

Fig.1. An IDP?® problem specification example. The notation color<ct> and
color<cf> is used to specify which elements are certainly true, respectively certainly
false for the color(node,color) relation in structure S. Tuples that are in neither of these
specifications are unknown.

The reach/2 definition has three open symbols: start/1, uedge/2, and color /2.
Because color/2 has a three-valued interpretation, we cannot perform definition
evaluation for the reach/2 definition. This concludes what can be done with
regards to definition evaluation and we proceed with the theory 72 and S2 as
depicted in Figure 2. For compactness, S2 only shows symbols for which the
interpretation has changed with regards to S. The vocabulary remains the same
as in Figure 1.

Next, we can perform Lifted Unit Propagation for the formula in 72. This
formula expresses that when a node is RED, it cannot be BLUE and vice versa.
Since the structure S2 specifies that node 3 cannot be RED, we derive that node
3 has to be BLUE. In the same manner we can derive that node 2 cannot be
BLUE. This results in structure S3 as depicted in Figure 2. The theory remains
the same as in Figure 2.

This leaves us with the reach/2 definition to further refine S3. There are
two approaches to performing lifted propagation on this definition: first we can
perform LUP on the completion of the reach/2 definition or alternatively, we
use the new method introduced in this paper. Structure S4 in Figure 4 shows
what can be derived using the existing LUP method on the completion of the
reach/2 definition, which is the following equivalence:

Yy c: reach(y, c) < start(y) V 3z : (reach(x, c) A uedge(z,y) A color(y, c)).

Note that in S4 node 1 is reachable using BLUE as well as RED because the
first rule in the reach/2 definition says the starting node is always reachable

19

CICLOPS-WLPE 2014

theory T2 : V {
{ reach(z,c) « start(z).
reach (y,c) « reach(z,c) A uedge(z,y) A color(y,c). }
Vz: color (z,RED) < -color (z,BLUE).

}
structure S2 : V {
wedge = { 1,2; 1,3; 2,1; 2,4; 3,1; 3,4; 3.,5; 4,2;
4,3; 5,3; 6,6 }
}

Fig. 2. The theory and structure after performing definition evaluation on 7" and S.
The interpretation of node, start/1, color/2 and edge/2 remains the same as in S.

structure S3 : V {
color<ct> = {2,RED; 3,BLUE} color<cf> = {2,BLUE; 3 ,RED}
}

Fig. 3. The structure after performing LUP on the formula in 72 using S2. The inter-
pretation of node, start/1, edge/2 and uedge/2 remains the same as in S2.

with all colors. Also note that S4 specifies that reach(5, RED) is false because
there is no edge from a RED reachable node to 5.

structure S4 : V {
reach<ct> — { 1,BLUE; 1,RED; 2 RED; 3,BLUE }
reach<cf> = { 2,BLUE; 3,RED; 5,RED }

Fig. 4. The structure after LUP on the completion of the reach/2 definition using S3.
The interpretation of all other symbols remains the same as in S3

Structure S5 in Figure 5 shows the result after executing definition refine-
ment. Structure S5 is more refined than structure 54, since it specifies the atoms
(6,RED) and (6,BLUE) to be false, whereas these atoms are unknown in struc-
ture S4. These atoms can be derived to be false because they form an unfounded
set under the Well-Founded Semantics [14]. An unfounded set is a set of atoms
that only have a rule making them true that depends on themselves. The def-
inition, which is shown below for y = 6 and x = 6, illustrates that the above
derived atoms are an unfounded set. The first rule of the definition is not ap-
plicable since start(6) is false. The second rule shows that the truth value of

20

Refining Definitions with Unknown Opens using XSB for IDP3

structure S5 : V {
reach<ct> { 1,BLUE;
reach<cf> = { 2,BLUE

)

1 2, ,BLUE }
;3 5, 6

RED; RED; 3
RED; RED; 6 ,RED;

,BLUE }

}

Fig. 5. The structure after definition refinement on the reach/2 definition using S3.
The interpretation of all other symbols remains the same as in S3

reach(6, ¢) depends on reach(6, c) itself.

{reach(& ¢) < start(6). }

reach(6, c) < reach(6, c) A uedge(6,6) A color(6,c).

This concludes our example of the different ways of performing lifted propaga-
tion to refine the input structure. Our next section presents the changes we had
to make to our original approach for evaluation definition to extend it for defini-
tion refinement. Section 4.3 contains the complete interaction between the XSB
interface and IDP? that is needed to perform the above definition refinement
for the reach/2 definition.

4 Updating the XSB interface

Our new method differs only in a few ways from our original technique’s usage of
XSB [10]. The transformation of the inductive definitions to an XSB program
does not need to change. Here we discuss the necessary extensions:

— Provide support for translating the interpretation of symbols that are not
completely two-valued to XSB.

— Update the interaction with XSB to also query the possible unknown an-
swers for the queried definition.

4.1 Translating unknown opens

Open symbols can now have an interpretation for which the union of the certainly
true and certainly false tables does not contain all elements. Therefore we need
to provide a translation for the unknown elements in the interpretation of an
open symbol. We illustrate this using the following example: ¢(z) is an open
symbol and the type of x ranges from 1 to 5. Say ¢(x) is known to be true for
{1,2} and known to be false for {4,5}. As a result, the truth value for ¢(3) is not
known. The open symbol ¢(z) for the above interpretation will be represented
in XSB as follows, given that xsb_q(X) is the corresponding symbol present in
the XSB program for ¢(z):

:- table xsb_q/1.
xsb_q(1).

21

CICLOPS-WLPE 2014

xsb_q(2).
xsb_q(3) :- undef

:- table undef/0.
undef :- tnot(undef).

Calling xsb_q(X) results in X = 1, X = 2, and X = 3, with X = 3 being
annotated as “undefined”. This is because XSB detects the loop over negation
for X = 3. Note the use of tnot/1 instead of the regular not/1 to express
negation. This is because tnot/1 expresses the negation under the Well-Founded
Semantics for tabled predicates, whereas not/1 expresses Prolog’s negation by
failure.

4.2 Updating the interaction with XSB

We explain the change in interaction using an example. Say we are processing
a definition that defines symbol p(z). Let xsb_p(X) be the corresponding sym-
bol present in the XSB program. The original interaction between XSB and
IDP3 [10] queries XSB with

:- call_tv(xsb_p(X), true).

which computes all values of X for which xsb_p(X) is true and retrieves the
table of results, which we shall call ¢;. Next, we change the interpretation of p(z)
in the partial structure into a two-valued one in which the atoms in the table ¢;
are true and all the others are false.

The new XSB interface uses the same query as above and additionally queries
XSB with

- call_tv(xsb_p(X), undefined).

which computes all values of X for which xsb_p(X) is annotated as undefined
and retrieves the table of results, which we shall call ¢,. Next, we change the
interpretation of p(z) in the partial structure into a three-valued one in which
the atoms in the table ¢; are true, the atoms in table ¢, are unknown and all
the others are false.

4.3 Example of a complete run

This section give a complete overview of all the actions for performing defini-
tion refinement on the reach/2 definition from Section 3. First, the definition is
translated into an XSB program:

:- set_prolog_flag(unknown, fail).

:- table xsb__reach/2.

xsb_reach(X,C) :- xsb_start(X), xsb_color_type(C).
xsb_reach(Y,C) :- xsb_reach(X,C), xsb_uedge(X,Y), xsb_color(Y,C).

22

Refining Definitions with Unknown Opens using XSB for IDP3

And the structure is also translated into a corresponding XSB program:

xsb__start(1).

xsb_ color__type(xsb_RED).
xsb_color_type(xsb_BLUE).

xsb_uedge(1,2).
xsb_uedge(1,3).
xsb_uedge(2,1).
xsb_uedge(2,4).
xsb_uedge(3,1).
xsb_uedge(3,4).
xsb_uedge(3,5).
xsb_uedge(4,2).
xsb_uedge(4,3).
xsb_uedge(5,3).
xsb_uedge(6,6).

:- table xsb__color/2.
xsb__color(1,xsb_RED) :- undef.
xsb__color(1,xsb_BLUE) :- undef.
xsb__color(2,xsb__RED).
xsb__color(3,xsb_BLUE).
xsb__color(4,xsb_RED) :- undef.
xsb__color(4,xsb_BLUE) :- undef.
xsb__color(5,xsb_RED) :- undef.
xsb__color(5,xsb_BLUE) :- undef.
xsb__color(6,xsb_RED) :- undef.
xsb__color(6,xsb_BLUE) :- undef.

- table undef/0.

undef :- tnot(undef).

These two programs are then loaded, along with some utility predicates.
Next, we query XSB with the following queries:

| ?7- call_tv(xsb_reach(X,Y),true).

X = 3,Y = xsb_BLUE;

X =2,Y = xsb_RED;

X =1,Y = xsb_BLUE;

X =1,Y = xsb_RED;

no

| 7- call_tv(xsb_reach(X,Y),undefined).
X =5,Y = xsb_BLUE;

X =4,Y = xsb_BLUE;

X =4,Y = xsb_RED;

23

CICLOPS-WLPE 2014

no

As a final step, the interpretation for reach/2 is changed so that it is true
for {(3, BLUE) (2,RED) (1, BLUE) (1, RED)} and that it is unknown for
{(5,BLUE) (4,BLUE) (4, RED)}, and false for everything else. This is de-
picted in Figure 5.

5 Lifted Propagation

The previous section explains how we construct an interface to XSB to retrieve a
refined interpretation for the defined symbols in a single definition. Algorithm 1
shows an algorithm that uses this XSB interface to refine a structure as much
as possible when there are multiple definitions in a theory. For the scope of
this algorithm, the XSB interface is called as it if were a subroutine (called
XSB-INTERFACE). We maintain the set of definitions that need to be processed
as Set. Initially, Set contains all definitions and until Set is empty, we take
one definition from it and process it using the XSB interface. The most impor-
tant aspect of the presented algorithm is in line 12, where definitions that may
have been processed before, but have an open symbol that was “updated” by
processing another definition, are put back into Set to be processed again.

input : A structure S and a set A of definitions in theory T’
output: A new structure S’ that refines S as much as possible using A

1 Set < A

2 while Set is not empty do

3 0 < an element from Set

4 XSB-INTERFACE (6,5)

5 if inconsistency is detected then

6 ‘ return an inconsistent structure

7 end

8 Insert the new interpretation for the defined symbols in S
9 X} <~ The symbols for which the interpretation has changed
10 for &' in A do

11 if &' has one of X in its opens then

12 | add &' to Set

13 end

14 end

15 remove ¢ from Set

16 end

Algorithm 1: Lifted Propagation for multiple definitions

On line 5 we need to detect when an inconsistency arises from processing
a definition. On line 9 we retrieve all symbols for which the interpretation has
changed by processing definition J. Since these features were not mentioned in
the previous section we shortly explain here how these can be achieved. When

24

Refining Definitions with Unknown Opens using XSB for IDP3

the XSB interface processes a definition (say, XSB-INTERFACE (4,5) is called),
it does not use the interpretation of the defined symbols in § in S for any of
its calculations. We use I, to denote the interpretation of defined symbol ¢ in
structure S. XSB calculates a “new” interpretation for every defined symbol o
in §, which we will call I/. If the number of true or the number of false atoms
in I, and I/ differ, XSB has changed the interpretation of symbol o and this
symbol will be present in X' as displayed in line 9. If there is an atom that is
true in I, and and false in I/, or vice versa, there is inconsistency and the check
on line 5 will succeed.

A possible point of improvement for this algorithm is the selection done in
line 3. One could perform a dependency analysis and stratify the definitions that
have to be refined. In this way, the amount of times each definition is “processed”
is minimized. This stratification is ongoing work.

A worst case performance for the proposed algorithm is achieved when there
are two definitions that depend on each other, as given in the following example:

{p(()). }
P(z) + Q(z —1).

{@@) « P@-1).}

If we start with processing the P/1 definition, we derive P(0). Processing Q/1
then leads to deriving Q(1). Since the interpretation of /1 changed and it is
an open symbol of the P/1 definition, the P/1 definition has to be processed
again. This continues for as many iterations as there are elements in the type
of x. Since every call to the XSB interface for a definition incurs inter-process
overhead, this leads to a poor performance. This problem can be alleviated by
detecting that the definitions can safely be joined together into a single definition.
The detection of joining definition to improve the performance of the proposed
algorithm is part of future work.

6 Experimental evalutation

In this section we evaluate our new method of refining definitions by comparing
it to its alternative: performing Lifted Unit Propagation (LUP) on the comple-
tion of the definitions. We will refer to our new method for Definition Refinement
as “the DR approach”. In the IDP? system, there are two ways of performing
LUP on a structure: using an Approximating Definition (AD) [4] or using Binary
Decision Diagrams (BDD) [15]. We will refer to these methods as “the AD ap-
proach” for the former and “the BDD approach” for the latter. The AD approach
expresses the possible propagation on SAT level using an IDP? definition. This
definition is evaluated to derive new true and false bounds for the structure.
Note that this approximating definition is entirely different from any other pos-
sible definitions originally present in the theory. The BDD approach works by
creating Binary Decision Diagrams that represent the formulas (in this case the

25

CICLOPS-WLPE 2014

formulas for the completion of the definitions) in the theory. It works symboli-
cally and is approximative: it will not always derive the best possible refinement
of the structure. The AD approach on the other hand is not approximative.

Table 1 shows our experiment results for 39 problems taken from past ASP
competitions. For each problem we evaluate our method on 10 or 13 instances.
The problem instances are evaluated with a timeout of 300 seconds. We present
the following information for each problem, for the DR approach:

— sPE The number of runs that succeeded

tuDvZ” The average running time (in seconds)

tDR

max

The highest running time (in seconds)
DR

— gy, The average number of derived atoms

The same information is also given for the BDD and the AD approach, with the
exception that aﬁgD and aﬁg only take into account runs that also succeeded
for the DR approach. This allows us to compare the number of derived atoms,
since it can depend strongly on the instance of the problem that is run.

Comparing the DR approach with the AD approach, one can see that the
DR approach is clearly better. The AD approach fails to refine the structure for
even a single problem instance for 20 out of the 39 problems. When both the DR
and the AD approaches do succeed, AD derives as much information as the DR
approach. One can conclude from this that there is no benefit to using the AD
approach over the DR approach. Moreover, the DR approach is faster in most
of the cases.

Comparing the DR approach with the BDD approach is less straightforward.
The BDD approach has a faster average and maximum running time for each
of the problems. Additionally, for 11 out of the 39 problems the BDD approach
had more problem instances that did not reach a timeout. These problems are
indicated in bold in the s2PP column. For some problems the difference is small,
as for example for the ChannelRouting problem where average running times are
respectively 7.16 and 5.67. For other problems however, the difference is very
large, as for example for the PackingProblem problem where average running
times are respectively 199.53 with 7 timeouts and 0.1 with 0 timeouts. Although
the BDD approach is clearly faster, there is an advantage to the DR approach:
for 8 problems, it derives extra information compared to the BDD approach.
These instances are indicated in bold in the a2 column. This difference is
sometimes small (80 vs. 8 for SokobanDecision) and sometimes large (25119
vs. 0 for Tangram). This shows that there is an advantage to using our newly
proposed DR approach.

There is one outlier, namely the NoMystery problem in which more informa-
tion is derived with the BDD approach than by the DR approach. This is because
DR does lifted propagation in the “direction” of the definition: for the known in-
formation of the body of a rule, try to derive more information about the defined
symbol. However, sometimes it is possible to derive information about elements
in the body rules using information that is known about the head of the rule.
Since LUP performs propagation along both directions and DR only along the

26

Refining Definitions with Unknown Opens using XSB for IDP3

first one, it is possible that LUP derives more information. As one can see in
the experiment results, it is only on very rare occasions (1 problem out of 39)
where this extra direction makes a difference. Integrating this other direction of
propagation into the DR approach is ongoing work.

Definition Refiniement Binary Decision Diagrams |Approximating Definition
Problem Name A el i I e A
15Puzzle 10/10 5.3 6.24 482| 10/10 0.07 0.08 256 0/10 - 0 -
BlockedNQueens 10/10 7.16 12.56 0] 10/10 5.67 10.44 0/10/10 5.3 10.01 0
ChannelRouting 10/10 5.62 7.28 0/ 10/10 458 6.1 0/10/10 4.23 5.35 0
ConnectedDominatingSet 10/10 0.39 1.13 0/ 10/10 0.01 0.02 0| 7/10 55.79 129.04 0
EdgeMatching 10/10 4.46 8.35 0| 10/10 0.28 0.37 0] 1/10 2.68 2.68 0
GraphPartitioning 13/13 0.27 0.48 0] 13/13 0.02 0.02 0]13/13 14.34 48.73 0
HamiltonianPath 10/10 143 2.12 1/ 10/10 0.02 0.02 1/ 0/10 - 0 -
Hierarchical Clustering 10/10 9.11 89.86 0| 10/10 6 58.82 0/10/10 6.42 63.24 0
MazeGeneration 10/10 3.2 7.08 1| 10/10 2.38 4.63 1] 2/10 65.27 65.84 1
SchurNumbers 10/10 0.01 0.01 0] 10/10 0 0.01 0/10/10 0.03 0.04 0
TravellingSalesperson 10/10 0.51 0.71 73/ 10/10 0.05 0.06 73|10/10 0.72 0.84 73
‘WeightBoundedDominatingSet|10/10 0.03 0.04 0| 10/10 0.02 0.03 0/10/10 0.03 0.05 0
‘WireRouting 10/10 1.25 2.26 7/ 10/10 0.12 0.18 7| 0/10 - 0 -
GeneralizedSlitherlink 0/10 - 0 -l10/10 0.13 0.28 -| 0/10 - 0 -
FastfoodOptimalityCheck 1/10 18.43 18.43 36072(10/10 249 3.77 36072| 0/10 - 0 -
SokobanDecision 10/10 58.61 114.92 80| 10/10 0.11 0.14 8| 0/10 - 0 -
Knight Tour 6/10 9.03 31.9 0j10/10 1.14 4.07 0] 8/10 53.06 293.07 0
DisjunctiveScheduling 10/10 4.49 10.67 0/ 10/10 2.69 5.74 0/10/10 3.52 9.67 0
PackingProblem 3/10 199.53 243.46 17/10/10 0.1 0.13 17| 0/10 - 0 -
Labyrinth 2/10 103.77 192.16 105533(10/10 0.62 1.2 104668| 0/10 - 0 -
Numberlink 9/10 891 304 0j]10/10 0.28 1.34 0| 0/10 - 0 -
ReverseFolding 1/10 49.84 49.84 978|10/10 1 211 16| 0/10 - 0 -
HanoiTower 10/10 28.42 56.87 28020| 10/10 0.2 0.25 25042| 0/10 - 0 -
MagicSquareSets 10/10 044 101 1659| 10/10 0.12 0.15 0| 0/10 - 0 -
AirportPickup 10/10 40.09 100.78 1267| 10/10 0.16 0.28 1267| 0/10 - 0
PartnerUnits 10/10 13.43 14.87 100{ 10/10 0.02 0.03 100{ 0/10 - 0 -
Tangram 13/13 37.84 41.33 25119| 13/13 0.33 0.4 0] 0/13 - 0 -
Permutation-Pattern-Matching|10/10 33.53 115.63 0| 10/10 0.01 0.01 0| 7/10 85.6 258.84 0
Graceful-Graphs 10/10 0.01 0.02 0/ 10/10 0.01 0.02 0/10/10 0.03 0.04 0
Bottle-filling-problem 10/10 1.43 5.09 0| 10/10 0.96 3.57 0{10/10 0.81 2.68 0
NoMystery 4/10 64.82137.36 20780410/10 0.57 1.3 207821| 0/10 - 0 -
Sokoban 6/10 86.79 196.84 18254(10/10 0.11 0.12 8| 0/10 - 0 -
Ricochet-Robot 0/10 - 0 -| 10/10 2.68 3.16 -| 0/10 - 0 -
‘Weighted-Sequence-Problem [10/10 0.25 0.3 0/ 10/10 0.22 0.23 0/10/10 0.16 0.2 0
Incremental-Scheduling 0/10 - 0 -| 8/10 54.34 229.59 -| 0/10 - 0 -
Visit-all 3/10 349 3.97 15/10/10 0.03 0.04 15| 0/10 - 0 -
Graph-Colouring 10/10 0.12 0.15 0] 10/10 0.02 0.03 0/10/10 0.22 0.28 0
LatinSquares 10/10 0.02 0.02 0/ 10/10 0.01 0.02 0/10/10 0.03 0.04 0
Sudoku 10/10 0.2 0.3 0/ 10/10 0.16 0.26 0/10/10 0.14 0.23 0

Table 1. Experiment results comparing Definition Refinement (DR) with the Binary
Decision Diagram (BDD) and Approximating Definition (AD) approach

Our experiments show the added value of our DR approach, but also indicate
that more effort should be put into this approach towards optimising runtime.

7 Conclusion
In this paper we described an extension to our existing preprocessing step [10] for

definition evaluation to be able to refine the interpretation of defined predicates
in the partial structure when the predicates depend on information that is only

27

CICLOPS-WLPE 2014

partially given. Our method uses XSB to compute the atoms (instances of the
predicate) that are true and others that are unknown. This method is an alter-
native for using LUP on the completion of the definitions. Because LUP for the
completion of the definition is an approximation of what can be derived for that
definition, our method is able to derive stricly more information for the defined
symbols than the LUP alternative. The extra information that can be derived
is the detection of unfounded sets for a definition. Because GWB uses the infor-
mation in the structure to derive bounds during grounding, this extra derived
information possibly leads to stricter bounds and an improved grounding.

Our experiments show the added value of our new method, but also indicate
that it is not as robust in performance as LUP (using BDDs). This paper in-
dicates two ways in which the performance of the proposed method might be
improved:

— Perform an analysis of the dependencies of definitions and query them ac-
cordingly to minimize the number of times a definition is re-queried

— Similar to the element above, try to detect when definitions can be joined
together to minimize XSB overhead

These improvements are future work. Another part of future work is combining
the new method for lifted propagation for definitions with the LUP for formulas
in the theory. Combining these two techniques might lead to even more derived
information, since the formulas might derive information that allows the defini-
tion the perform more propagation and vice versa.

References

1. Amir Aavani, Xiongnan (Newman) Wu, Shahab Tasharrofi, Eugenia Ternovska,
and David G. Mitchell. Enfragmo: A system for modelling and solving search
problems with logic. In Nikolaj Bjgrner and Andrei Voronkov, editors, LPAR,
volume 7180 of LNCS, pages 15-22. Springer, 2012.

2. Maurice Bruynooghe, Hendrik Blockeel, Bart Bogaerts, Broes De Cat, Stef De
Pooter, Joachim Jansen, Marc Denecker, Anthony Labarre, Jan Ramon, and Sicco
Verwer. Predicate logic as a modeling language: Modeling and solving some ma-
chine learning and data mining problems with IDP3. CoRR, abs/1309.6883, 2013.

3. Broes De Cat, Bart Bogaerts, Jo Devriendt, and Marc Denecker. Model expansion
in the presence of function symbols using constraint programming. In ICTAI pages
1068-1075. IEEE, 2013.

4. Broes De Cat, Joachim Jansen, and Gerda Janssens. IDP3: Combining symbolic
and ground reasoning for model generation. In Workshop on Grounding and Trans-
formations for Theories with Variables, La Corufia, 15 Sept 2013, 2013.

5. Broes De Cat and Maarten Marién. MINISAT(ID) website. http://dtai.cs.
kuleuven.be/krr/software/minisatid, 2008.

6. Stef De Pooter, Johan Wittocx, and Marc Denecker. A prototype of a knowledge-
based programming environment. In International Conference on Applications of
Declarative Programming and Knowledge Management, 2011.

7. Niklas Eén and Niklas S6rensson. An extensible SAT-solver. In Enrico Giunchiglia
and Armando Tacchella, editors, SAT, volume 2919 of LNCS, pages 502-518.
Springer, 2003.

28

Refining Definitions with Unknown Opens using XSB for IDP3

10.

11.

12.

13.

14.

15.

16.

Wolfgang Faber, Nicola Leone, and Simona Perri. The intelligent grounder of DLV.
Correct Reasoning, pages 247-264, 2012.

Martin Gebser, Roland Kaminski, Arne Ko6nig, and Torsten Schaub. Advances
in gringo series 3. In James P. Delgrande and Wolfgang Faber, editors, LPNMR,
volume 6645 of LNCS, pages 345-351. Springer, 2011.

Joachim Jansen, Albert Jorissen, and Gerda Janssens. Compiling inputx FO(-)
inductive definitions into tabled Prolog rules for IDP®. TPLP, 13(4-5):691-704,
2013.

David G. Mitchell and Eugenia Ternovska. A framework for representing and
solving NP search problems. In Manuela M. Veloso and Subbarao Kambhampati,
editors, AAAI pages 430-435. AAAI Press / The MIT Press, 2005.

T. Swift and D.S. Warren. XSB: Extending the power of Prolog using tabling.
TPLP, 12(1-2):157-187, 2012.

Terrance Swift. An engine for computing well-founded models. In Patricia M. Hill
and David Scott Warren, editors, ICLP, volume 5649 of LNCS, pages 514-518.
Springer, 2009.

Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded se-
mantics for general logic programs. Journal of the ACM, 38(3):620-650, 1991.
Johan Wittocx, Marc Denecker, and Maurice Bruynooghe. Constraint propaga-
tion for first-order logic and inductive definitions. ACM Trans. Comput. Logic,
14(3):17:1-17:45, August 2013.

Johan Wittocx, Maarten Marién, and Marc Denecker. Grounding FO and FO(ID)
with bounds. Journal of Artificial Intelligence Research, 38:223-269, 2010.

29

CICLOPS-WLPE 2014

30

Intelligent Visual Surveillance Logic Programming: Implementation Issues

Intelligent Visual Surveillance Logic
Programming: Implementation Issues

1, 1,2

Alexei A. Morozov!? and Alexander F. Polupanov

! Kotel’nikov Institute of Radio Engineering and Electronics of RAS,
Mokhovaya 11, Moscow, 125009, Russia
2 Moscow State University of Psychology & Education,
Sretenka 29, Moscow, 107045, Russia
morozov@cplire.ru, sashap55@mail.ru

Abstract. The main idea of the logic programming approach to the in-
telligent video surveillance is in using a first order logic for describing
complex events and abstract concepts like anomalous human activity, i.e.
brawl, sudden attack, armed attack, leaving object, loitering, pick pock-
eting, personal theft, immobile person, etc. We consider main implemen-
tation issues of our approach to the intelligent video surveillance logic
programming: object-oriented logic programming of concurrent stages of
video processing, translating video surveillance logic programs to fast
Java code, embedding low-level means for video storage and processing
to the logic programming system.

Keywords: intelligent visual surveillance, object-oriented logic programming,
concurrent logic programming, abnormal behavior detection, anomalous human
activity, Actor Prolog, complex events recognition, computer vision, technical
vision, Prolog to Java translation

1 Introduction

Human activity recognition is a rapidly growing research area with important ap-
plication domains including security and anti-terrorist issues [1,11,12]. Recently
logic programming was recognized as a promising approach for dynamic visual
scenes analysis [7,24,23,14,22]. The idea of the logic programming approach is
in usage of logical rules for description and analysis of people activities. Knowl-
edge about object co-ordinates and properties, scene geometry, and human body
constraints is encoded in the form of certain rules in a logic programming lan-
guage and is applied to the output of low-level object / feature detectors. There
are several studies based on this idea. In [7] a system was designed for recogni-
tion of so-called long-term activities (such as fighting and meeting) as temporal
combinations of short-term activities (walking, running, inactive, etc.) using a
logic programming implementation of the Event Calculus. The ProbLog prob-
abilistic logic programming language was used to handle the uncertainty that
occurs in human activity recognition. In [24] an extension of predicate logic with

31

CICLOPS-WLPE 2014

2 Alexei A. Morozov, Alexander F. Polupanov

the bilattice formalism that permits processing of uncertainty in the reason-
ing was proposed. The VidMAP visual surveillance system that combines real
time computer vision algorithms with the Prolog based logic programming had
been announced by the same team. In [23] the VERSA general-purpose frame-
work for defining and recognizing events in live or recorded surveillance video
streams is described. According to [23], VERSA ensures more advanced spatial
and temporal reasoning than VidMAP and is based on SWI-Prolog. In [14] a
real time complex audio-video event detection based on Answer Set Program-
ming approach is proposed. The results indicate that this solution is robust and
can easily be run on a chip.

The distinctive feature of our approach to the visual surveillance logic pro-
gramming is in application of general-purpose concurrent object-oriented logic
programming features to it, but not in the development of a new logical for-
malism. We use the Actor Prolog object-oriented logic language [15,16,17,19,18]
for implementation of concurrent stages of video processing. A state-of-the-art
Prolog-to-Java translator is used for efficient implementation of logical infer-
ence on video scenes. Special built-in classes of the Actor Prolog language were
developed and implemented for the low-level video storage and processing.

Basic principles of video surveillance logic programming are described in Sec-
tion 2. The concurrent logic programming issues linked with the video processing
are described in Section 3. The problems of efficient implementation of logical
inference on video scenes and translation of logic programs to fast Java code are
discussed in Section 4. The problems of video storage and low-level processing
are considered in Section 5.

2 Basic principles of video surveillance logic programming

A common approach to human activity recognition includes low-level and high-
level stages of the video processing. An implementation of the logic programming
approach requires consideration of different mathematical and engineering prob-
lems on each level of recognition:

1. Low-level processing stages usually include recognition of moving objects,
pedestrians, faces, heads, guns, etc. The output of the low-level procedures
is an input for the high-level (semantic) analyzing procedures. So, the low-
level procedures should be fast enough to be used for real time processing
and the high-level logical means should utilize effectively and completely the
output of the low-level procedures.

2. Adequate high-level logical means should be created / used to deal with
temporal and spatial relationships in the video scene, as well as uncertainty
in the results of low-level recognition procedures.

3. A proper hierarchy of the low-level and high-level video processing proce-
dures should be constructed. The procedures of different levels are usually
implemented on basis of different programming languages.

4. Selection of logic programming system for implementation of the logical in-
ference is of great importance, because it should provide high-level syntax

32

Intelligent Visual Surveillance Logic Programming: Implementation Issues

Intelligent Visual Surveillance Logic Programming 3

means for implementation of required logical expressions as well as compu-
tation speed and efficiency in real time processing of big amount of data.

Let us consider an example of logical inference on video. The input of a
logic program written in Actor Prolog is the Fight_OneManDown standard
sample provided by the CAVIAR team [8]. The program will use no additional
information about the content of the video scene, but only co-ordinates of 4
defining points in the ground plane (the points are provided by CAVIAR), that
are necessary for estimation of physical distances in the scene.

Fig. 1. An example of CAVIAR video with a case of a street offence: one person attacks
another.

The video (see Fig. 1) demonstrates a case of a street offence—a probable
conflict between two persons. These people meet in the scope of the video camera,
then one person attacks another one, the second person falls, and the first one
runs away. This incident could be easily recognized by a human; however an
attempt to recognize it automatically brings to light a set of interesting problems
in the area of pattern recognition and video analysis.

First of all, note that probably the main evidence of an anomalous human
activity in this video is so-called abrupt motion of the persons. Abrupt motions
can be easily recognized by a human as motions of a person’s body and / or arms
and legs with abnormally high speed / acceleration. So, a logic programmer has a
temptation to describe an anomalous human activity in terms of abrupt motions,
somehow like this: “Several persons have met sometime and somewhere. After
that they perform abrupt motions. This is probably a case of a street fighting.” It
is not a problem to implement this definition in Prolog using a set of logical rules,
however real experiments with video samples show that this naive approach is
an impractical one or simply does not work. The problem is that in the general
case computer low-level procedures recognize abrupt motions much worse than
a human and there are several serious reasons for this:

1. Generally speaking, it is very difficult to determine even the exact co-ordi-
nates of a person in a video scene. A common approach to the problem is

33

CICLOPS-WLPE 2014

4 Alexei A. Morozov, Alexander F. Polupanov

usage of so-called ground plane assumption, that is, the computer determines
co-ordinates of body parts that are situated inside a pre-defined plane and
this pre-defined plane usually is a ground one. So, one can estimate properly
the co-ordinates of person’s shoes, but a complex surface of a ground and /
or presence of stairs and other objects, etc. make the problem much more
complex.

2. Even computing the first derivative of moving person’s co-ordinates is a
problem usually, because the silhouette of the person changes unpredictably
in different lighting conditions and can be partially overlapped by other
objects. As a consequence, the trajectory of a person contains a big amount
of false co-ordinates that makes numerical differentiation senseless.

3. One can make abrupt motions even standing still. This means that in the
general case the program should recognize separate parts of person’s body
to determine abrupt motions in a robust and accurate way.

All these issues relate to the low-level video processing and probably are
not to be implemented in a logic language. Nevertheless, they illustrate a close
connection between the principles to be used for logical description of anomalous
human activity and the output of low-level video processing procedures. We take
into account this connection in our research, when we address the problem of
the high-level semantic analysis of people activities.

In the example under consideration, we will solve the problem of anoma-
lous human activity recognition using automatic low-level algorithms that trace
persons in video scene and estimate average velocity in different segments of
the trajectories [22]. This low-level processing includes extraction of foreground
blobs, tracking of the blobs over time, detection of interactions between the
blobs, creation of connected graphs of linked tracks of blobs, and estimation
of average velocity of blobs in separate segments of tracks. This information
is received by the logic program in a form of Prolog terms describing the list
of connected graphs. We will use the following data structures for describing
connected graphs of tracks?:

DOMAINS:
ConnectedGraph = ConnectedGraphEdge*.
ConnectedGraphEdge = {
framel: INTEGER,
x1: INTEGER, y1: INTEGER,
frame2: INTEGER,
x2: INTEGER, y2: INTEGER,
inputs: EdgeNumbers,
outputs: EdgeNumbers,
identifier: INTEGER,
coordinates: TrackOfBlob,

3 Note, that the DOMAINS, the PREDICATES, and the CLAUSES program sections
in Actor Prolog have traditional semantics developed in the Turbo / PDC Prolog
system.

34

Intelligent Visual Surveillance Logic Programming: Implementation Issues

Intelligent Visual Surveillance Logic Programming 5

mean_velocity: REAL

}.
EdgeNumbers = EdgeNumber*.
EdgeNumber = INTEGER.
TrackOfBlob = BlobCoordinates*.

BlobCoordinates = {
frame: INTEGER,
x: INTEGER, y: INTEGER,
width: INTEGER, height: INTEGER,
velocity: REAL
}.

That is, connected graph of tracks is a list of underdetermined sets [15]
denoting separate edges of the graph. The nodes of the graph correspond to
points where tracks cross, and the edges are pieces of tracks between such points.
Every edge is directed and has the following attributes: numbers of first and last
frames (framel, frame2), co-ordinates of first and last points (x1, y1, 2, y2),
a list of edge numbers that are direct predecessors of the edge (inputs), a list
of edge numbers that are direct followers of the edge (outputs), the identifier
of corresponding blob (an integer identifier), a list of sets describing the co-
ordinates and the velocity of the blob in different moments of time (coordinates),
and an average velocity of the blob in this edge of the graph (mean_velocity).

The logic program will check the graph of tracks and look for the follow-
ing pattern of interaction among several persons: “If two or more persons met
somewhere in the scene and one of them has run after the end of the meeting,
the program should consider this scenario as a kind of a running away and a
probable case of a sudden attack or a theft.” So, the program will alarm if this
kind of sub-graph is detected in the total connected graph of tracks. In this case,
the program marks all persons in the inspected graph by yellow rectangles and
outputs the “Attention!” warning in the middle of the screen (see Fig. 2).

One can describe the concept of a running away formally using defined con-
nected graph data type:

PREDICATES:
is_a_kind_of_a_running_away(
ConnectedGraph,
ConnectedGraph,
ConnectedGraphEdge,
ConnectedGraphEdge,
ConnectedGraphEdge) - (i,i,0,0,0);

We will define the is_a_kind_of_a_running-away(G, G, P1, E, P2) predicate
with the following arguments: G—a graph to be analyzed (note that the same
data structure is used in the first and the second arguments), F—an edge of the
graph corresponding to a probable incident, P1—an edge of the graph that is a
predecessor of ¥, P2—an edge that is a follower of E. Note that G is an input

35

CICLOPS-WLPE 2014

6 Alexei A. Morozov, Alexander F. Polupanov

Fig. 2. A logical inference has found a possible case of a sudden attack in the graph
of blob trajectories. All probable participants of the conflict are marked by yellow
rectangles. The tracks are depicted by lines.

argument of the predicate and P1, E, and P2 are output ones. Here is an Actor
Prolog program code with brief explanations:

CLAUSES:
is_a_kind_of_a_running_away([E2|_],G,E1,E2,E3):-
E2 == {inputs:0,outputs:B|_},
B==1[_,_1_1,
contains_a_running_person(B,G,E3),
is_a_meeting(0,G,E2,E1),!.
is_a_kind_of_a_running_away([_IR],G,E1,E2,E3):-
is_a_kind_of_a_running_away(R,G,E1,E2,E3).
contains_a_running_person([N|_],G,P):-
get_edge (N,G,E),
is_a_running_person(E,G,P),!.
contains_a_running_person([_|R],G,P):-
contains_a_running_person(R,G,P).
is_a_meeting(0,_,E,E):-
0==[_,_I_11,".
is_a_meeting([N1|_],G,_,E2):-
get_edge(N1,G,E1),
El == {inputs:0|_},
is_a_meeting(0,G,E1,E2).
get_edge(1, [Edge|_],Edge) :-!.
get_edge (N, [_|Rest] ,Edge) : -
N >0,
get_edge (N-1,Rest,Edge) .

In other words, the graph contains a case of a running away if there is an
edge E2 in the graph that has a follower E3 corresponding to a running person
and predecessor E'1 that corresponds to a meeting of two or more persons. It is

36

Intelligent Visual Surveillance Logic Programming: Implementation Issues

Intelligent Visual Surveillance Logic Programming 7

requested also that E2 has two or more direct followers (it is a case of branch-
ing in the graph). Note, that in the Actor Prolog language, the == operator
corresponds to the = ordinary equality of the standard Prolog.

A fuzzy definition of the running person concept is as follows:

is_a_running_person(E,_,E):-
E == {mean_velocity:V,framel:T1,frame2:T2|_},
Mi== ?fuzzy_metrics(V,1.0,0.5),
D== (T2 - T1) / sampling_rate,
M2== ?7fuzzy_metrics(D,0.75,0.5),
M1 % M2 >= 0.5,!.
is_a_running_person(E,G,P):-
E == {outputs:B|_},
contains_a_running_person(B,G,P).

The graph edge corresponds to a running person if the average velocity and
the length of the track segment correspond to the fuzzy definition. Note that
Actor Prolog implements a non-standard functional notation, namely, the 7 pre-
fix informs the compiler that the fuzzy_metrics term is a call of a function, but
not a data structure.

An auxiliary function that calculates the value of the fuzzy metrics is repre-
sented below. The first argument of the function is a value to be checked, the
second argument is a value of a fuzzy threshold, and the third one is the width of
the threshold ambiguity area. The = delimiter defines an extra output argument
that is a result to be returned by the function:

fuzzy_metrics(X,T,H) = 1.0 :-
X > T +H,!.

fuzzy_metrics(X,T,H) = 0.0 :-
X<=T-H,!.

fuzzy_metrics(X,T,H) =V :-
V== (X-T+H) * (1 / (2*H)).

Note that 37 lines of the Actor Prolog code considered above correspond to
301 lines of the optimized Java source code implementing graph search opera-
tions and this is perhaps the best demonstration of the reasons why the Prolog
language is a good choice for this application.

This example illustrates the basic principles of logical description of anoma-
lous human activity and logical inference on video data. However, even a simplest
scheme of video surveillance logic program should contain much more elements,
including video information gathering, low-level image analysis, high-level logical
inference control, and reporting the results of intelligent visual surveillance.

3 Concurrent video processing

It is a good idea to divide a visual surveillance logic program to concurrent sub-
processes implementing different stages of video processing, because the working

37

CICLOPS-WLPE 2014

8 Alexei A. Morozov, Alexander F. Polupanov

intensity of different sub-processes is various. For instance, video data gathering
and low-level analysis require a big amount of computational resources and other
sub-processes that implement high-level analysis and visualizing results of video
surveillance could wait for the output of the former sub-process.

In the example under consideration, we will create two concurrent processes
with different priorities?. The first process has higher priority and implements
video data gathering. This process reads JPEG files and sends them to the in-
stance of the 'ImageSubtractor’ predefined class that implements all low-level
processing of video frames. The sampling rate of the video is 25 frames per
second, so the process loads a new JPEG file every 40 milliseconds. The sec-
ond concurrent process implements logical analysis of collected information and
outputs results of the analysis. The analysis of video frames requires more com-
putational resources, but it does not suspend the low-level analysis, because
the second process has less priority. The analysis includes creation of connected
graphs of linked tracks of blobs and estimation of average velocity of blobs in
separate segments of tracks. This information is received by the logic program
in a form of connected graphs described in the previous section.

The total text of the logic program is not given here for brevity; we will
discuss only the structure of the main class of the program.

class ’Main’ (specialized ’Alpha’):

constant:
data_directory = "data";
target_directory = "Fight_OneManDown";
sampling_rate = 25.0;

stage_one = ((’ImagePreprocessor’,
data_directory,
target_directory,
sampling_rate,
low_level_analyzer,
stage_two));

stage_two = ((’ImageAnalyzer’,
low_level_analyzer,
sampling_rate));

internal:

low_level_analyzer = (’ImageSubtractor’,
extract_blobs= ’yes’,
track_blobs= ’yes’,

DN

The 'Main’ class has the stage_one and the stage_two slots® containing
two above mentioned processes. The low_level_analyzer slot contains an in-
stance of the 'ImageSubtractor’ built-in class implementing low-level video anal-
ysis procedures (see Fig. 3). The data_directory, the target_directory, and the

4 See [17] for details of Actor Prolog model of asynchronous concurrent computations.
® The slot is a synonym for the instance variable in the Actor Prolog language.

38

Intelligent Visual Surveillance Logic Programming: Implementation Issues

Intelligent Visual Surveillance Logic Programming 9

sampling_rate auxiliary slots contain information about source data files loca-
tion and the sampling rate of the video clip.

The idea of the schema is the following: the instance of the ' ImageSubtractor’
built-in class is used as a container for storing video data and intermediate results
of the low-level processing. The instances of the 'I'magePreprocessor’ and the
'I'mageAnalyzer’ classes accept the low_level_analyzer slot as an argument and
use it for the inter-process data exchange. So, the object-oriented features give
us an essential solution of the problem of big data storage in the logic language;
all low-level video data is encapsulated in the special class and the logic program
handles medium-size terms describing the results of the low-level analysis only.

The low_level_analyzer argument

Root process (Main)

ImageSubtractor

Process 2 Process 3

(ImagePreprocessor) (ImageAnalyzer)
Synchronized Synchronized
ImageSubtractor ImageSubtractor

Fig. 3. The ’'SynchronizedImageSubtractor’ class implements synchronization of
three concurrent processes and ensures a safe access to the internal data arrays of
the 'I'mageSubtractor’ class instance.

The low_level_analyzer
argument

The 'ImagePreprocessor’ class implements video data gathering and all low-
level processing of video frames. The 'ImageAnalyzer’ class contains the rules
considered in the previous section, implements high-level stage of video analysis,
and outputs the results of intelligent video surveillance.

Note, that Actor Prolog prohibits a process from invoking a predicate from a
class instance belonging to another process. This means that the sharing of the
'ImageSubtractor’ class instance mentioned above requires an additional care.
In detail, the '"ITmageAnalyzer’ class uses the 'SynchronizedImageSubtractor’
built-in class as an envelope for the ‘TmageSubtractor’ class instance.

class ’ImageAnalyzer’ (specialized ’Alpha’):
constant:
sampling_rate;
low_level_analyzer;
internal:
subtractor = (’SynchronizedImageSubtractor’,
image_subtractor= low_level_analyzer);

39

CICLOPS-WLPE 2014

10 Alexei A. Morozov, Alexander F. Polupanov

The ’SynchronizedImageSubtractor’ built-in class implements the same
methods of low-level video processing as the 'ImageSubtractor’ class. The only
difference is that the instance of the 'SynchronizedImageSubtractor’ class is
created inside the 'I'mageAnalyzer’ process and there are no restrictions on the
usage of its methods inside this process (see Fig. 3).

Thus, the 'SynchronizedImageSubtractor’ class ensures a safe access to the
internal data arrays of the ‘ITmageSubtractor’ class from concurrent processes
and implements all necessary operations on video data. The data access synchro-
nization is implemented inside the built-in classes, but not at the level of the
programming language; Actor Prolog is asynchronous concurrent language, it
has no syntactical means for concurrent processes synchronization and supports
syntactically only the asynchronous inter-process communications.

4 Prolog to Java translation

A high CPU / memory consumption is a characteristic of the video processing.
So, the visual surveillance application is a good way to test whether the logic
programming system is mature enough to be used in the industry. One could
enumerate the following requirements for a logic programming system / language
selected as a basis for the visual surveillance application:

1. Firstly, the logic programming system should generate a fast executable code.
A deep code optimization is absolutely necessary even for the logic programs
that use 2D graphic intensively for reporting intelligent visual surveillance
results.

2. The executable code should be robust; absence of any memory leak should
be guaranteed. An incorrect memory handling and / or incorrect concurrent
access to data structures produce an unavoidable crash of the program.

3. The logic programming system should be an open one; the extension of the
system by specialized classes / procedures implementing low-level processing
should be easy and transparent for application programmers.

These requirements are contradictory because considerable code optimization
implies usage of complex compilation algorithms and low-level code generation
that are potential reasons for difficult-to-locate errors, memory leaks, and un-
stable operation of executable code. Even if the compiler is well-debugged the
permanent development of built-in classes and libraries is a constant potential
source of such errors. There is a fundamental contradiction between the openness
and the optimization of the programming system.

In particular, application of a compilation schema based on C / C++ inter-
mediate code generation (Mercury [10], KLIC [9], wamcc [3]) was recognized as
an appropriate way to obtain maximal speed of the executable code. On the other
hand, generation of Java intermediate code (Actor Prolog [20], PrologCafe [2],
KLIJava [13], SAE-Prolog [6], jProlog [5]) ensures platform independence of the
application software and guarantees absence of difficult-to-locate errors caused
by memory leaks and out-of-range array operations. We use a compilation from

40

Intelligent Visual Surveillance Logic Programming: Implementation Issues

Intelligent Visual Surveillance Logic Programming 11

the Actor Prolog language to Java, because, from our point of view, modern
processors are fast enough to give up the speed of the executable code for the
sake of robustness, readability, and openness of the logic program. Moreover,
using an industrial Java virtual machine as a basis for the logic programming
system ensures its flexibility and quick adaptation to new operational systems
and processor architectures.

In contrast to conventional approaches, we use neither WAM (PrologCafe,
wamcc) nor binarization of the logic program (jProlog, BinProlog [25]). The
Actor Prolog compiler generates a kind of an idiomatic (i.e., well-readable) source
code (SAE-Prolog, P# [4]), but in contrast to the SAE-Prolog project [6] we use
domains / predicates declarations to process non-deterministic, deterministic,
and imperative predicates in different ways. In contrast to the P# project [4]
we implement non-idiomatic predicate calls from idiomatic predicates and vice
versa.

The Actor Prolog logic language differs from the Clocksin&Mellish Prolog
a lot. Turbo-Prolog style Domain and Predicate declarations of Actor Prolog
are very important for the industrial application programming and help in ex-
ecutable code optimization. On the other hand, object-oriented features and
supporting concurrent programming make translation of an Actor Prolog code
to be a non-trivial problem.

The state-of-the-art compilation schema of the Actor Prolog system includes
the following steps:

1. Source text scanning and parsing. Methods of thinking translation preventing
unnecessary processing of already translated source files are implemented.
That is, after the update of source codes, the compiler tries to use infor-
mation collected / computed during its previous run. This feature is very
important for the industrial programming.

2. Inter-class links analysis. On this stage of global analysis, the translator
collects information about usage of separate classes in the program, including
data types of arguments of all class instance constructors. This information
is necessary for the global flow analysis and the global optimization of the
program (unused predicates are eliminated from the program).

3. Type check. The translator checks data types of all predicate arguments and
arguments of all class instance constructors.

4. Determinism check. The translator checks whether predicates are determin-
istic or non-deterministic. A special kind of so-called imperative predicates
is supported, that is, the compiler can check whether a predicate is deter-
ministic and never fails.

5. A global flow analysis. The compiler tracks flow patterns of all predicates in

all classes of the program.

. Generation of an intermediate Java code.

7. Translation of this Java code by a standard Java compiler.

(=2}

The determinism check ensures a possibility to use different optimization
methods for different kinds of predicates:

41

CICLOPS-WLPE 2014

12 Alexei A. Morozov, Alexander F. Polupanov

1. The imperative predicates check is the most complex stage in the translation
schema, because it requires a check of all separate clauses as well as mutual
influence of the clauses / predicates. Nevertheless, this check is of critical
importance, because the imperative predicates usually constitute the main
part of the program and the check gives information for very high level
optimization of these predicates—the logic language clauses are translated
to Java procedures directly.

2. Deterministic predicates are translated to Java procedures too (all clauses
of one predicate correspond to one Java procedure). Backtracking is imple-
mented using a special kind of light-weight Java exceptions.

3. Non-deterministic predicates are implemented using a standard method of
continuation passing. Clauses of one predicate correspond to one or several
automatically generated Java classes.

Tail recursion optimization is implemented for recursive predicates; that is
critically important for the video processing applications. Recursive predicates
are implemented using the while Java command. Moreover, the Actor Prolog
language supports explicit definition of ground / non-ground domains and the
translator uses this information for deep optimization of ground term unification.

Table 1. Prolog benchmark testing (Intel Core 15-2410M, 2.30 GHz, Win?7, 64-bit)

Test Iter. No. Actor Prolog to Java SWI-Prolog v. 7.1.10
NREV 3,000,000 109,090,909 lips 15,873,523 lips
CRYPT 100,000 1.758510 ms 2.03347 ms

DERIV 10,000,000 0.055747 ms 0.0104318 ms
POLY_10 10,000 3.756900 ms 4.3681 ms

PRIMES 100,000 0.042540 ms 0.13478 ms

QSORT 1,000,000 0.042924 ms 0.059561 ms
QUEENS(9) 10,000 17.495200 ms 31.729 ms

QUERY 10,000 3.141500 ms 0.3713 ms

TAK 10,000 4.010800 ms 10.2836 ms

The described compilation schema ensures an acceptable performance of the
executable code (see Table. 1). Deterministic and imperative predicates with
ground arguments are optimized quite well (the NREV test demonstrates more
than 100 millions lips). At the same time, non-deterministic predicates work
slowly (CRYPT, QUEENS, QUERY); this is a fundamental disadvantage of
the approach based on continuation passing and translation to the high-level
intermediate language, because it cannot handle possible run-time optimiza-
tion of Prolog stacks. Arithmetical predicates work fast enough in Actor Prolog
(PRIMES, QSORT, TAK), but there is a possibility for better optimization of
symbolic computations (DERIV, POLY_10).

Note that development of standard benchmark set relevant to the visual
surveillance application domain is still a challenge, because different stages of

42

Intelligent Visual Surveillance Logic Programming: Implementation Issues

Intelligent Visual Surveillance Logic Programming 13

video processing (low-level and high-level) demand different performance require-
ments. At present, we can demonstrate only that the Actor Prolog system is fast
enough for real-time analyzing clips of the standard data set [8].

The translator creates Java classes corresponding to the classes of an object-
oriented Actor Prolog program. Given external Java classes can be declared as
ancestors of these automatically created classes and this is the basic principle
of the implementation of built-in classes [21] and integration of Actor Prolog
programs with external libraries. The possibility of easy extension of the Actor
Prolog programming system by new built-in classes is a benefit of the selected
implementation strategy. For instance, the Java2D and the Java3D libraries are
connected with the Actor Prolog system in this way.

5 Low-level video processing

A typical intelligent video surveillance system includes high-level procedures
(that is, anomalous human activity recognition) and low-level video processing
procedures (for instance, background subtraction, discrimination of foreground
blobs, tracking blobs over time, detection of interactions between the blobs,
etc.). We have developed and implemented in Java the 'ImageSubtractor’ built-
in Actor Prolog class supporting all necessary low-level procedures. This class
implements the following means:

1. Video frames pre-processing including 2D-gaussian filtering, 2D-rank filter-
ing, and background subtraction.

2. Recognition of moving blobs and creation of Prolog data structures describ-
ing the co-ordinates of the blobs in each moment.

3. Recognition of tracks of blob motions and creation of Prolog data structures
describing the co-ordinates and the velocity of the blobs. The tracks are
divided into separate segments; there are points of interaction between the
blobs at the ends of a segment.

4. Recognition and ejection of immovable and slowly moving objects. This fea-
ture is based on a simple fuzzy inference on the attributes of the tracks
(the co-ordinates of the tracks and the average velocities of the blobs are
considered).

5. Recognition of connected graphs of linked tracks of blob motions and creation
of Prolog data structures describing co-ordinates and velocities of blobs. We
consider two tracks as linked if there are interactions between the blobs of
these tracks. In some applications, it is useful to eject tracks of immovable
and slowly moving objects from the graphs before further processing of the
video scenes.

We have started our experiments with low-level procedures implemented in
pure Java; however, it is clear that further development of video surveillance
methods requires usage of advanced computer vision libraries. A promising ap-
proach for implementation of the low-level recognition procedures in a logic lan-
guage is usage of the OpenCV computer vision library and we are planning to
link Actor Prolog with the JavaCV library that is a Java interface to OpenCV.

43

CICLOPS-WLPE 2014

14 Alexei A. Morozov, Alexander F. Polupanov
6 Conclusion

We have created a research software platform based on the Actor Prolog concur-
rent object-oriented logic language and a state-of-the-art Prolog-to-Java trans-
lator for experimenting with the intelligent visual surveillance. The platform
includes the Actor Prolog logic programming system and an open source Java
library of Actor Prolog built-in classes [21]. It is supposed to be complete for
facilitation of research in the field of intelligent monitoring of anomalous people
activity and studying logical description and analysis of people behavior.

Our study has demonstrated that translation from a concurrent object-orien-
ted logic language to Java is a promising approach for application of the logic
programming to the problem of intelligent monitoring of people activity; the
Actor Prolog logic programming system is suitable for this purpose and ensures
essential separation of the recognition process into concurrent sub-processes im-
plementing different stages of high-level analysis.

7 Acknowledgements

Authors are grateful to Abhishek Vaish, Vyacheslav E. Antciperov, Vladimir V.
Deviatkov, Aleksandr N. Alfimtsev, Vladislav S. Popov, and Igor I. Lychkov for
cooperation.
The valuable comments of the anonymous referees are gratefully appreciated.
We acknowledge a partial financial support from the Russian Foundation for
Basic Research, grant No 13-07-92694.

References

1. Aggarwal, J., Ryoo, M.: Human activity analysis: A review. ACM Computing
Surveys (CSUR) 43(3), 16:1-16:43 (Apr 2011), http://doi.acm.org/10.1145/
1922649.1922653

2. Banbara, M., Tamura, N., Inoue, K.: Prolog Cafe: A Prolog to Java translator
system. In: Umeda, M., Wolf, A., Bartenstein, O., Geske, U., Seipel, D., Takata,
O. (eds.) Declarative Programming for Knowledge Management. pp. 1-11. LNAI
4369, Springer, Heidelberg (2006)

3. Codognet, P., Diaz, D.: wamcc: Compiling Prolog to C. In: Sterling, L. (ed.) ICLP
1995. pp. 317-331. MIT Press (1995)

4. Cook, J.J.: Optimizing P#: Translating Prolog to more idiomatic C#. In: CI-
CLOPS 2004. pp. 59-70 (2004)

5. Demoen, B., Tarau, P.: jProlog home page (1997), http://people.cs.kuleuven.
be/~bart.demoen/PrologInJava/

6. Eichberg, M.: Compiling Prolog to idiomatic Java. In: Gallagher, J.P., Gelfond, M.
(eds.) ICLP 2011. pp. 84-94. Dagstuhl Publishing, Saarbriicken/Wadern (2011)

7. Filippou, J., Artikis, A., Skarlatidis, A., Paliouras, G.: A probabilistic logic pro-
gramming event calculus (2012), http://arxiv.org/abs/1204.1851

8. Fisher, R.: CAVIAR test case scenarios. The EC funded project IST 2001 37540.
(2007), http://homepages.inf.ed.ac.uk/rbf/CAVIAR/

44

Intelligent Visual Surveillance Logic Programming: Implementation Issues

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Intelligent Visual Surveillance Logic Programming 15

Fujise, T., Chikayama, T., Rokusava, K., Nakase, A.: KLIC: A portable implemen-
tation of KL1. In: FGCS 1994. pp. 66-79. ICOT, Tokyo (Dec 1994)

Henderson, F., Somogyi, Z.: Compiling Mercury to high-level C code. In: CC 2002.
Grenoble, France (2002)

Junior, J., Musse, S., Jung, C.: Crowd analysis using computer vision techniques.
A survey. IEEE Signal Processing Magazine 27(5), 66-77 (Sep 2010)

Kim, I., Choi, H., Yi, K., Choi, J., Kong, S.: Intelligent visual surveillance—a
survey. International Journal of Control, Automation, and Systems 8(5), 926-939
(2010)

Kuramochi, S.: KLIJava home page (1999), http://www.ueda.info.waseda.ac.
jp/~satoshi/klijava/klijava-e.html

Machot, F., Kyamakya, K., Dieber, B., Rinner, B.: Real time complex event de-
tection for resource-limited multimedia sensor networks. In: Workshop on Activity
monitoring by multi-camera surveillance systems (AMMCSS). pp. 468-473 (2011)
Morozov, A.A.: Actor Prolog: an object-oriented language with the classical declar-
ative semantics. In: Sagonas, K., Tarau, P. (eds.) IDL 1999. pp. 39-53. Paris, France
(Sep 1999), http://www.cplire.ru/Labl44/paris.pdf

Morozov, A.A.: On semantic link between logic, object-oriented, functional, and
constraint programming. In: MultiCPL 2002. Ithaca, NY, USA (Sep 2002), http:
//www.cplire.ru/Lab144/multicpl.pdf

Morozov, A.A.: Logic object-oriented model of asynchronous concurrent compu-
tations. Pattern Recognition and Image Analysis 13(4), 640-649 (2003), http:
//www.cplire.ru/Lab144/pria640.pdf

Morozov, A.A.: Operational approach to the modified reasoning, based on the
concept of repeated proving and logical actors. In: Salvador Abreu, V.S.C. (ed.)
CICLOPS 2007. pp. 1-15. Porto, Portugal (Sep 2007), http://www.cplire.ru/
Lab144/ciclopsO07.pdf

Morozov, A.A.: Visual logic programming based on the SADT diagrams. In: Dahl,
V., Niemela, I. (eds.) ICLP 2007. pp. 436-437. LNCS 4670, Springer, Heidelberg
(2007)

Morozov, A.A.: Actor Prolog to Java translation (in Russian). In: ITP-9. pp. 696—
698. Torus Press Moscow, Budva, Montenegro (2012)

Morozov, A.A.: A GitHub repository containing source codes of Actor Pro-
log built-in classes (including the Vision package) (2014), https://github.com/
Morozov2012/actor-prolog-java-library

Morozov, A.A., Vaish, A., Polupanov, A.F., Antciperov, V.E., Lychkov, L.I., Al-
fimtsev, A.N., Deviatkov, V.V.: Development of concurrent object-oriented logic
programming system to intelligent monitoring of anomalous human activities.
In: Jr., A.C., Plantier, G., Schultz, T., Fred, A., Gamboa, H. (eds.) BIODE-
VICES 2014. pp. 53-62. SCITEPRESS (Mar 2014), http://www.cplire.ru/
Lab144/biodevices2014.pdf

O’Hara, S.: VERSA—video event recognition for surveillance applications. M.S.
thesis. University of Nebraska at Omaha. (2008)

Shet, V., Singh, M., Bahlmann, C., Ramesh, V., Neumann, J., Davis, L.: Predicate
logic based image grammars for complex pattern recognition. International Journal
of Computer Vision 93(2), 141-161 (Jun 2011)

Tarau, P.: The BinProlog experience: Architecture and implementation choices for
continuation passing Prolog and first-class logic engines. Theory and Practice of
Logic Programming 12(1-2), 97-126 (2012)

45

CICLOPS-WLPE 2014

46

Extending the Finite Domain Solver of GNU Prolog

Extending the Finite Domain Solver of
GNU Prolog

Vincent Bloemen', Daniel Diaz?, Machiel van der Bijl?, and Salvador Abreu*
L University of Twente, Formal Methods and Tools group, The Netherlands
v.bloemen@student.utwente.nl
2 University of Paris 1-Sorbonne - CRI, France
daniel.diaz@univ-parisl.fr
3 Axini B.V., The Netherlands
vdbijl@axini.com
4 Universidade de Evora and CENTRIA, Portugal

spa@di.uevora.pt

Abstract. This paper describes three significant extensions for the Fi-
nite Domain solver of GNU Prolog. First, the solver now supports neg-
ative integers. Second, the solver detects and prevents integer overflows
from occurring. Third, the internal representation of sparse domains has
been redesigned to overcome its current limitations. The preliminary per-
formance evaluation shows a limited slowdown factor with respect to the
initial solver. This factor is widely counterbalanced by the new possi-
bilities and the robustness of the solver. Furthermore these results are
preliminary and we propose some directions to limit this overhead.

1 Introduction

Constraint Programming [1,7,16] emerged, in the late 1980s, as a successful
paradigm with which to tackle complex combinatorial problems in a declarative
manner [11]. However, the internals of constraint solvers, particularly those over
Finite Domains (FD) were wrapped in secrecy, only accessible to only a few
highly specialized engineers. From the user point of view, a constraint solver
was an opaque “black-box” providing a fixed set of (hopefully) highly optimized
constraints for which it ensures the consistency.

One major advancement in the development of constraint solvers over FD
is, without any doubt, the article from Van Hentenryck et al. [12]. This paper
proposed a “glass-box” approach based on a single primitive constraint whose
understanding is immediate. This was a real breakthrough with respect to the
previous way of thinking about solvers. This primitive takes the form X in r,
where X is an FD variable and r denotes a range (i.e. a set of values). An X in r
constraint enforces X to belong to the range denoted by r which can involve
other FD variables. An X in r constraint which depends on another variable
Y becomes store sensitive and must be (re)activated each time Y is updated, to
ensure the consistency. The X in r constraint can be seen as embedding the

47

CICLOPS-WLPE 2014

core propagation mechanism. Indeed, it is possible to define different propagation
schemes for a given constraint, corresponding to different degrees of consistency.

It possible to define high-level constraints, such as equations or inequations,
in terms of X in r primitive constraints. It is worth noticing that these con-
straints are therefore not built into the theory. From the theoretical point of view,
it is only necessary to work at the primitive level as there is no need to give special
treatment to high-level constraints. This approach yielded significant advances in
solvers. From the implementation point of view, an important article is [5] which
proposed a complete machinery (data structures, compiler, instruction set) to
efficiently implement an FD solver based on X in r primitives. It also shows
how some optimizations at the primitive level can, in turn, be of great benefit
to all high-level constraints. The resulting system, called clp(FD), proved the
efficiency of the approach: the system was faster than CHIP, a highly optimized
black-box solver which was a reference at the time. This work has clearly inspired
most modern FD solvers (SICStus Prolog, bProlog, SWI Prolog’s clpfd, Choco,
Gecode, ...) but also solvers over other domains like booleans [4], intervals [10]
or sets [9,2]. Returning to FD constraints, a key point is the ability to reason
on the outcome of a constraint (success or failure). Again, the “RISC” approach
restricted the theoretical work about entailment at the primitive level [3]. This
allowed a new kind of constraints: reified constraints, in which a constraint be-
comes concretized. The “RISC” approach was also very convenient for constraint
retraction [6].

When GNU Prolog was developed, it reused the FD solver from clp(FD).
The X in 7 constraint was generalized to allow the definition of new high-level
constraints, e.g. other arithmetic, symbolic, reified and global constraints. Nev-
ertheless, the internals of the solver were kept largely unchanged. The outcome
is a fast FD solver, but also one with some limitations:

— First, the domain of FD variables is restricted to positive values (following
the original paper [12]). This is not restrictive from a theoretical point of
view: a problem can always be “translated” to natural numbers but, from a
practical point of view, there are several drawbacks: the translation is error-
prone, the resulting programs are difficult to read and can exhibit significant
performance degradation.

— Second, the domain representation uses a fixed-size bit-vector to encode
sparse domains. Even if this size can be controlled by the user, it is eas-
ily and frequently misused. In some cases, the user selects a very large value
for simplicity, without being aware of the waste of memory nor the loss of
efficiency this induces.

— Lastly, for efficiency reasons the GNU Prolog solver does not check for integer
overflows. This is generally not a problem when the domains of FD variables
are correctly specified, as all subsequent computation will not produce any
overflow. However, if one forgets to declare all domains, or does not declare
them at the beginning, an overflow can occur. This is the case of:

|7- X * Y #= Z.
No

48

Extending the Finite Domain Solver of GNU Prolog

Indeed, without any domain definition for X and Y the non-linear con-
straint X * Y #= Z will compute the upper bound of Z as 228 x 228 which
overflows 32 bits resulting in a negative value for the max, thus the fail-
ure (max < min). This behaviour is hard to understand and requires an
explanation. We admit this is not the Way of Prolog and does not help to
promote constraint programming to new users. We could raise an exception
(e.g. instantiation_error or representation_error) but this would still
be of little help to most users.

In this article we describe and report on initial results for the extension and
modification of the GNU Prolog FD solver to overcome these three limitations.
This is a preliminary work: special attention has been put on ensuring correct-
ness and the implementation is not yet optimized. Nevertheless the results are
encouraging, as we shall see, and there is ample room and directions to research
on performance improvements.

The remainder of this article is organized as follows: Section 2 introduces
some important aspects of the original FD solver required to understand the
modifications. Section 3 is devoted to the inclusion of negative values in FD
domains. Section 4 explains how integer overflow is handled in the new solver,
while Section 5 explains the new representation for sparse domains. A perfor-
mance evaluation may be found in Section 6. Section 7 provides some interesting
directions to optimize the overall performance. A short conclusion ends the pa-
per.

2 The GNU Prolog FD Solver

The GNU Prolog solver follows the “glass-box” approach introduced by Van
Hentenryck et al. in [12], in which the authors propose the use of a single prim-
itive constraint of the form X in 7, where X is an FD variable and r denotes
a range (ie. a set of values). An X in r constraint enforces X to belong to the
range denoted by r which can be constant (e.g. the interval 1..10) but can also
use the following indexicals:

dom(Y) representing the whole current domain of Y.

— min(Y") representing the minimum value of the current domain of Y.

max (Y) representing the maximum value of the current domain of Y.
val(Y) representing the final value of the variable of Y (when its domain is
reduced to a singleton). A constraint using this indexical is postponed until
Y is instantiated.

An X in r constraint which uses an indexical on another variable Y becomes
store sensitive and must be (re)activated each time Y is updated to ensure
the consistency. Thanks to X in r primitive constraints it is possible to define
high-level constraints such as equations or inequations. Obviously all solvers
offer a wide variety of predefined (high-level) constraints to the programmer.
Nevertheless, the experienced user can define his own constraints if needed.

49

CICLOPS-WLPE 2014

The original FD solver of GNU Prolog is also based on indexicals. Its im-
plementation is widely based on its predecessor, c1p(FD) [5]. In the rest of this
section we only describe some aspects of the original implementation which are
important later on. The interested reader can refer to [8] for missing details.

2.1 The FD definition language

The original X in r is not expressive enough to define all needed constraints
in practice. We thus defined the FD language: a specific language to define
the constraints of the GNU Prolog solver. Figure 1 shows the definition of the
constraint A x X =Y in the FD language:

ax_eq_y(int A, fdv X, fdv Y) /* here A '= 0 *x/
{
start X in min(Y) /> A .. max(Y) /< A /* X =Y / A x/
start Y in min(X) * A .. max(X) * A /* Y =X * A %/
}

Fig. 1. Definition of the constraint A x X =Y in the FD language

The first line defines the constraint name (ax_eq-y) and its arguments to-
gether with their types (A is expected to be an integer, X and Y FD variables).
The start instruction installs and activates an X in 7 primitive. The first
primitive computes X from Y in the following way: each time a bound of Y is
modified the primitive is triggered to reduce the domain of X accordingly. The
operator /> (resp. /<) denote division rounded upwards (resp. downwards). Sim-
ilarly, the second primitive updates (the bounds) of ¥ with repect to X. This
is called bound consistency [1] : if a hole appears inside the domain of X (i.e. a
value V different from both the min and the max of X has beed removed from
the domain of X), the corresponding value A x V will not be removed from the
domain of Y. If wanted, such a propagation (called domain consistency) could
be specified using the dom indexical.

A compiler (called £d2c) translates an FD file to a C source file. The use
of the C language as target is motivated by the fact that all the GNU Prolog
system is written in C (so the integration is simple) but mainly by the fact that
modern C compilers produce very optimized code (this is of prime importance if
we consider that a primitive constraint can be awoken several thousand times in
a resolution). When compiled such a definition gives rise to different C functions:

— the main function: a public function (ax_eq_y) which mainly creates an envi-
ronment composed of the 3 arguments (A, X,Y") and invokes the installation
functions for the involved X in r primitives.

— the installation function: a private function for each X in r primitive which
is responsible for the installation of the primitive. This consists of installing

50

Extending the Finite Domain Solver of GNU Prolog

the dependencies (e.g. add a new dependency to Y, so that each time YV
is modified the primitive is re executed to update X) and the execution
function is invoked (this is the very first execution of the primitive).

— the execution function: a private function for each X in r primitive which
computes the actual value of r and enforces X € r. This function will be
(re)executed each time an FD variable appearing in the definition of r is
updated.

2.2 Internal domain representations

There are 2 main representations of a domain (range):

— MinMaax: only the min and the max are stored. This representation is used
for intervals (including 0. .fd max_integer).

— Sparse: this representation is used as soon as a hole appears in the domain of
the variable. In that case, in addition to the min and the max, a bit-vector
is used to record each value of the range.

01011011011010101
10100101101010010
10010011101001101
bit-vector
Ptr to bit-vector W Ptr to bit-vector —
Max Max Max
Min Min Min
W Extra constrained? Extra constrained?
enpty range interval range sparse range
(mn > max) (bit=vector unused) (bit-vector allocated)

Fig. 2. Representations of a range

When an FD variable is created it uses a MinMazx representation. As soon as
a “hole” appears it is transparently switched to a Sparse representation which
uses a bit-vector. For efficiency reasons all bit-vector have the same size inside
0..fd_vector max. By default fd_vector_max equals 127 and can be redefined
via an environment variable or via a built-in predicate (this should be done
before any constraint is told). When a range becomes Sparse, some values are

o1

CICLOPS-WLPE 2014

possibly lost if fd_vector_max is less than the current max of the variable.
To inform the user of this source of incompleteness, GNU Prolog maintains
a flag to indicate that a range has been extra constrained by the solver (via
an imaginary constraint X in 0..fd_vector max). The flag extra_cstr associ-
ated to each range is updated by all operations, e.g. the intersection of two
ranges is extra-constrained iff both ranges are extra constrained, thus the re-
sulting flag is the logical and between the two flags. When a failure occurs on
a variable whose domain is extra constrained a message is displayed to inform
the user that some solutions can be lost since bit-vectors are too small. Fi-
nally an empty range is represented with min > max. This makes it possible
to perform an intersection between R; and Ry in MinMax mode simply with
Maxz(min(Ry), min(Rg))..Min(max(Ry), max(Rz)) which returns min > max
if either Ry or Ry is empty. Figure 2 shows the different representations of a
range.

3 Supporting Negative Values

In this section we describe how the inclusion of negative values in FD variables
is realized. First we show why the current implementation does not support
negative values. Then we show how to address the problems by mainly focusing
on the implementation. This section only describes bound consistency; negative
values are handled similarly in domain consistency due to the new sparse design,
described in Section 5.

3.1 Current limitations

The current implementation does not support negative values, FD variables
stay within the bounds 0..fd max_integer. Adding support for negative val-
ues seems obvious at a first glance, however some attention has to be paid.
The modifications concern constraints whose current implementation implicitly
utilize the fact that values are always positive, which is no longer valid. Other
modifications concern constraints which are sign sensitive from the interval arith-
metical point of view. This is the case for multiplication: if X is in min..max
then —X is in —max.. — min. Let us consider again the case of the constraint
A x X =Y whose current definition is presented in Figure 1. Presuming that A
can be negative the current definition will not update the domains of X and Y
correctly: in that case X will be constrained to [qu(y)]“tmaz(y)J which pro-
duces an empty interval since min(X) > max(X). To support negative values
in FD variables, this instance, as well as other arithmetical constraints require
updating to handle negative values properly.

3.2 Method and approach

One possible approach to deal with negative numbers is to construct a map-
ping for negative values to natural numbers so that the arithmetic constraints

52

Extending the Finite Domain Solver of GNU Prolog

can continue to operate strictly on the positive domain. Another approach is
to update the constraints to be fully functional for both positive and negative
domains. The former is undesirable since the translation quickly becomes cum-
bersome and would carry a considerable performance impact. Aside from that,
several operations such as taking the power or root are affected by the variable
sign. As the latter approach is less error-prone and more robust, we chose to
implement it and thus need to reformulate several arithmetic constraints.

First, the initial domain bounds of FD variables are updated to range in
fd min_integer..fd max_integer. To remain backwards compatible, an envi-
ronment variable is created that, if set, will use the original bounds for FD
variables.

On updating the arithmetic constraints, all possible cases for each FD vari-
able need to be considered, that is < 0, = 0 and > 0 for both the min and max
of the variable. For instance, the A x X =Y constraint from Figure 1 is updated
as follows:

ax_eq_y(int A, fdv X, fdv Y) /*x A 1= 0 %/

{

start X in ite(A>0, min(Y), max(Y)) /> A /* X =Y / A x/
.. ite(A>0, max(Y), min(Y)) /< A

start Y in ite(A>0, min(X), max(X)) * A /* Y =X *x A x/

. ite(A>0, max(X), min(X)) * A
}

where ite represents an if-then-else expression (corresponding to the C opera-
tor ?7:). This modification ensures that for all interpretations of A, X and Y the
domains are updated correctly.

A more complex example is the constraint X# =Y, where X and Y are FD
variables and A is an integer > 2. In the current version, this constraint is given
as follows:

x_power_a_eq_y(fdv X, int A, fdv Y) /* A > 2 %/
{

start Y in Power(min(X), A)..Power(max(X), A)

start X in Nth_Root_Up(min(Y), A)..Nth_Root_Dn(max(Y), A)
}

With the introduction of negative values, the constraint is specified as:

x_power_a_eq_y(fdv X, int A, fdv Y) /* A > 2 %/
{
start X in ite(is_even(4),
min_root (min(X), min(Y), max(Y), A),
ite(min(Y) < 0,
-Nth_Root_Dn(-min(Y), A),
Nth_Root_Up(min(Y), A)))
. ite(is_even(Ad),
max_root (max(X), min(Y), max(Y), A),

53

CICLOPS-WLPE 2014

ite(max(Y) < O,
-Nth_Root_Up(-max(Y), A),
Nth_Root_Dn(max(Y), A)))

start Y in ite(min(X) < 0 && is_odd(A),
Power (min(X), A),
Power(closest_to_zero(min(X), max(X)), A))
. ite(min(X) < 0 && is_even(A),
Power (Max (abs (min(X)), max(X)), A),
Power (max(X), A))
}

here, a couple of C functions and macros are introduced:

— Min and Max are used to compute the minimum resp. maximum of two values.

— is_even and is_odd return wether the variable is even or odd.

— min_root and max_root calculate the minimum and maximum value of + ¥/Y
that lie in the bounds of min(X) . .max(X).

— Power and Nth_Root refer to C functions that calculate the n'” power and
nt? root of a variable.

— closest_to_zero(A,B) returns the closest value to 0 in the interval A. .B.

In this specification, Y can only include negative values if X contains negative
values and A is an odd number (e.g. —23 = —8). Similarly, if Y is strictly positive,
X can only take negative values if A is an even number (e.g. —2* = 16). In
short, the above constraint needs to distinguish between even and odd powers
of X, which was originally unnecessary. With this definition, the following query
correctly reduces the domains of X and Y:

| 7- fd_domain([X,Y],-50,150), X **x 3 #= Y.
X = _#0(-3..5)
Y _#17(-27..125)

The support for negative values in FD variables is achieved by carefully re-
designing the arithmetic constraints. An obvious side-effect of the modifications
is that some overhead is introduced, even when considering strictly positive FD
variables. The benchmark tests, see Section 6, will show the impact of the mod-
ifications compared to the original solver.

4 Handling Integer Overflows

4.1 Current limitations

The current implementation of GNU Prolog does not check for overflows. This
means that without preliminary domain definitions for X, Y and Z, the non-
linear constraint X x Y = Z will fail due to an overflow when computing the
upper bound of the domain of Z : 22% x 228, In 32-bit arithmetic, this overflow

o4

Extending the Finite Domain Solver of GNU Prolog

causes a negative result for the upper bound and the constraint then fails since
min(X) > maz(X).

At present, the user needs to adapt the variable bounds beforehand to prevent
this constraint from failing. To reduce the burden to the user and improve the
robustness of the solver, we propose a better way of handling overflows.

4.2 Method and approach

There are two approaches to handle overflows. One is to report the problem via
an ISO exception (e.g. evaluation_error), thereby informing the user that the
domain definitions for the FD variables are too mild and should be made more
restrictive. The other approach is to instrument the solver to detect overflows
and cap the result. As placing less restrictions on the user and more robustness
for the solver is desirable, the second approach is chosen.

The key idea behind preventing overflows is to detect when one would occur
and provide means to restrict this from happening. For the solver this means
that when a multiplication or power operation is applied in a constraint, an
overflow prevention check should be considered. This can also be the case for
other arithmetic operations.

Consider again the constraint X x Y = Z. Because both 1 x and
228 x 1 = 22% the maximum value that both X and Y can take is 228. Therefore
the following (and current implementation) for finding the domain for Z causes
an overflow:

228 — 228

start Z in min(X) * min(Y) .. max(X) * max(Y)

For this case and similar instances, the following function is designed to cap
results of arithmetic, thereby preventing overflows:

static int inline mult(int a, int b)
{
int64_t res = ((int64_t) a) * ((int64_t) b);
if (res > max_integer)
res = max_integer;
else if (res < min_integer)
res = min_integer;
return (int) res;

}

Since integers only need 29-bits, the 64-bit result is enough to check if an overflow
occurs and cap the result if needed. In the constraint definitions, the standard
multiplication gets replaced with a mult call when it could cause an overflow.
For the X x Y = Z constraint, this is as follows:®

start Z in mult(min(X), min(Y)) .. mult(max(X), max(Y))

5 The constraint is further modified for negative values, along the same lines.

95

CICLOPS-WLPE 2014

As a consequence, the X X Y = Z constraint now gives the following result:

- X xY #= Z.

= _#3(-268435456..268435455)
_#20(-268435456. .268435455)
_#37(-268435456. .268435455)

I
X
Y
yA

where -268435456 = fd min_integer and 268435455 = fd max_integer.

At first, we used mult for every applied multiplication in the constraint def-
initions. However, in some cases it is not necessary to check for overflows. For
instance, consider the implementations for ax_eq_y and x_power_a_eq_y of Sec-
tion 3.2. By first restricting the domain of X (in both cases), no overflow can
occur when the domain of Y is calculated. Note that if the domain of Y is com-
puted first, an overflow could happen. Note however, that such an optimization
is not possible for some constraints, for instance X x Y = Z, since the domains
of X and Y do not necessarily get reduced.

In conclusion, even if several overflow problems could be resolved by re-
arranging the order of execution, in general it is necessary to take preventive
measures.

5 New Domain Representation

5.1 Current limitations

In the current implementation, when a domain gets a hole, its representation
is switched to the Sparse form, which stores domains using a static-sized bit-
vector. The problem with this approach is that values which lie outside the
range 0..fd_vector max are lost. An internal flag extra_cstr is set when this
occurs to inform the user of lost values. Even though the user is able to globally
set fd_vector_max, there are several problems with this representation:

— The user has to know the variable bounds in advance; an over-estimate of
the domain size results in a waste of memory (and loss of efficiency).

— There is an upper-limit for fd_vector_max which is directly related to the
available memory space in bits. Also note that doing operations on a large
bit-vector can severely impact the performance.

— The current Sparse representation is unable to store negative values.

5.2 Method and approach

To deal with the limitations, a redesign is needed for the Sparse representation.
Some research has been done in representing sparse domains [13,14]. Consid-
ering the requirements — remain efficient while taking away the limitations —
there are several options for the redesign, while also considering alternatives and
variations:

10

56

Extending the Finite Domain Solver of GNU Prolog

1. Use a list of MinMaxz chunks: Store only the minimum and maximum of
consecutively set values. The values between two chunks are defined to be
all unset. This is especially effective if the number of holes is small or large
gaps exist in the domain.

2. Use a list of bit-vector chunks: Use a bit-vector together with an offset to
store all (un)set actual values. The values between two chunks can either be
defined as all set or all unset (possibly defined per chunk with a variable).
This is in particular effective on small domains with many holes.

3. A combination of (1) and (2): Determine per chunk whether it should be a
MinMazx chunk or bit-vector chunk, so that the number of total chunks is
minimal. This takes the advantages of both individual options but it does
introduce extra overhead for determining which representation to choose and
operations between two different chunk representations can become difficult.

Note that all suggested model takes away the limitations of the current design.
Le Clément et al. [13] provide a more in-depth analysis on the different repre-
sentations with respect to their time complexities. Note that differences arise
for specific operations on domains: for instance, a value removal is done more
efficiently in a bit-vector while iteration is more efficient on MinMax chunks.

We initially opted for the combination of the MinMaz and bit-vector chunks
because the extra overhead is presumed to not be a significant factor. For the
moment, however, we implemented a list of MinMax chunks. Its performance
compared to the original Sparse implementation shows a limited slowdown fac-
tor, as discussed in Section 6. Because of these results (a slowdown is expected
anyway, due to the new possibilities), the addition of a bit-vector representation
was postponed. We now discuss the new implementation using a list of MinMaz
chunks.

Range
Range ™ Chunk <— [6..100]
min min
max max Y 4
first prev Chunk #1 Chunk #2 Chunk #3
last next [6..9] [« > [11..60] r« » [80..100]

Fig. 3. Left: UML diagram of the new Sparse range, right: example for repre-
senting the set of values {6..9,11..60,80..100}.

The domain initially uses a MinMaz representation (just a Range instance)
which only stores min and max, with first and last being null pointers. When
a hole appears, the domain switches to the Sparse representation by adding
Chunk instances. The range keeps track of the first and last chunk of the list
and continues to maintain the min and max of the whole domain (range.min
= range.first.min). The list is a doubly-linked list for efficient insertion and

11

57

CICLOPS-WLPE 2014

removal of chunks, each chunk maintains its minimum and maximum values.
This representation is depicted in Figure 3.

For every two consecutive chunks c¢; and co, we have ¢;.max + 1 < ¢o.min ;
chunks are sorted and always have at least one unset value between them. Fur-
thermore, ¢;.min < ¢;.max.

Operations on Sparse ranges (e.g. intersection, union, ...) are efficiently done
by iterating over the chunks and updating these in place whenever possible. An
example of this is provided in Table 1 for intersecting two Sparse ranges. The
implementation only considers one chunk of each range at a time and the cases
are considered from top to bottom.

Case: Action (in pseudo code):

chunk_1.max < chunk_2.min |- Remove chunk_1

- chunk_1 = chunk_1.next // advance chunk_1
chunk_1.max < chunk_2.max |- Create new chunk and set before chunk_1
with min = Maz(chunk_1.min, chunk_2.min)
and max = Min(chunk_1.max, chunk_2.max)

- chunk_1 = chunk_1.next advance chunk_1
chunk_1.min > chunk 2.max |- chunk 2 = chunk 2.next // advance chunk 2
chunk_1.max > chunk_2.max |- Create new chunk and set before chunk_1
with min = Maz(chunk_1.min, chunk 2.min)
and max = Min(chunk_1.max, chunk_2.max)

- chunk_2 = chunk_2.next advance chunk_2
Table 1. Implementation of the range intersection operation.

Because the solver may need to backtrack, domains need to be trailed. Mod-
ifications on domains can cause its chunks to disperse in memory, therefore all
chunks of the domain are saved on the trail, upon modification. A classical
timestamp technique is used to avoid trailing more than once per choice-point.

With this new implementation for the Sparse domain, it is now possible to
store negative values and the domain bounds are no longer limited to a static
arbitrary value, thereby rendering the extra_cstr flag useless.

6 Performance Analysis

In this section we compare the original FD constraint solver to a version that
includes the new extensions. Table 2 presents the total execution times (in mil-
liseconds) for runs of several benchmarks. Neg + Oufl consists of the negative
values extension and the overflow prevention (the Oufl extension is implemented
simultaneously with Neg). Neg + Oufl + Dom includes all three extensions pre-
sented in this article. Times are measured on a 64-bit i7 Processor, 2.40GHzx8
with 8GB memory running Linux (Ubuntu 13.10).6

5 The results can be reproduced with version 1.4.4 of GNU Prolog for the current

version and the git branch negative-domain for the new version.

12

58

Extending the Finite Domain Solver of GNU Prolog

Program Original Neg + Ovfl Neg + Ovfl + Dom
Time Time [Speedup Time [Speedup
queens 29 429 414| 1.04 644 0.66
digit8 ff (x100) 787 1197| 0.66 1082 0.73
qe5 11 (x10) 610 593| 1.03 813| 0.75
queens ff 100 156 153 1.02 201 0.77
partit 600 200 266/ 0.75 254 0.79
eq20 (x100) 189 249| 0.76 228 0.83
crypta (x1000) 888 1016| 0.87 1075 0.83
langford 32 551 549 1.00 646| 0.85
magsq 11 810 802| 1.01 923| 0.88
multipl (x10) 567 577 0.98 604| 0.94
magic 200 180 178 1.02 180 1.00
donald (x10) 167 158 1.06 166 1.00
alpha (x10) 409 407 1.00 396 1.03
interval 256 (x10) 217 205 1.06 140 1.55
Geometric mean 364 389| 0.94 413 0.88

Table 2. Performance Impact of Extensions (times in ms.)

The original implementation and the benchmark tests are solely designed
for the positive domain. Therefore the domain bounds are restricted to positive
values (using the environment variable discussed in Section 3.2), while making
use of the updated constraint definitions. Multiple test runs show an estimated
standard deviation of 3 milliseconds. The annotation (x10) indicates that the
test time is formed from 10 consecutive executions (to reduce the effect of the
deviation).

On average, the introduction of negative domains + overflow detection pe-
nalizes the benchmarks by 6%. This slowdown is an expected consequence of
the increased complexity, and we are quite pleased that it turns out small. The
worst case is for digit8 ff with a 34% performance loss (see [15] for a definition
of “performance gain”). The reason for this is because the square root is often
calculated, which is slower as both the positive and negative solutions are con-
sidered in the predicates. The best case scenario is for donald, which exhibits
a 6% performance gain over the base version: the redesign for the predicates
actually improved the solver’s performance in several cases.

With the inclusion of the new Sparse domain alongside the other extensions,
on average the benchmarks suffer a performance loss of 12%. The worst case test
is queens 29 with 34% and the best case, interval 256, has a 55% performance
gain over the base version. The queens 29 test creates a lot of holes on a small
domain which is more efficient with a bit-vector than MinMaz chunks. The
interval 256 test often iterates on domains: this is more efficient in the new
Sparse domain because finding the n‘" element is achieved in O(nr. of holes)
time. The base version has to iterate over the bit-vector until the n'”* element is
found, making the time complexity O(size of bit-vector).

13

59

CICLOPS-WLPE 2014

Note that these benchmark tests do not utilize the enhanced capabilities of
the new solver. For instance, test programs that use the negative domain cannot
be tested in the original solver. It is therefore difficult to make a fair comparison.

7 Future Work

While the results show that the extensions only cause a limited slowdown factor,
there is much room for improvements.

The measures taken to prevent overflows can be optimized further. In the
new implementation, several unnecessary preventive checks are still being done:
for instance, for the constraint X + Y = Z no overflow detection is needed
when computing Z, since adding two 29-bit values cannot cause overflow in
32-bit arithmetic, yet it’s being checked for. Furthermore, when the run-time
domain bounds imply that no overflows can occur; for instance if X and Y are
in 0..10 there is no need to check for overflow in the constraint X xY = Z, since
domains are reduced monotonically. As seen in section 3.2, supporting negative
numbers for X4 = Y implies testing the parity of A. At present this is done
every time the constraint is reactivated, however, with a slightly more complex
compilation scheme, there will be two versions of the execution function (see 2.1):
one specialized for even As and another for odd. The installation function would
be responsible to select the adequate execution function, depending on the actual
value of A at run-time. This will entail enriching the FD language to be able to
express user-specified installation procedures.

It will definitely be interesting to combine our new Sparse domain represen-
tation with bit-vectors, whenever applicable. We will experiment in this direc-
tion. Similarly, instead of using a (doubly-linked) list for maintaining chunks,
a tree-structure is likely to be more efficient. Ohnishi et al. [14] describe how
a balanced tree structure is realized on interval chunks. Incorporation of this
structure should improve the time complexity on insertion and deletion from
O(n) to O(logn) (for n as the number of chunks) in worst case scenarios.

The added expressiveness allows us to tackle more complex problems, which
were previously hard or impossible to model. These will also have to be bench-
marked against other systems.

8 Conclusion

We presented a set of extensions to the GNU Prolog FD solver which allow
it to more gracefully handle real-world problems. Central to these is a domain
representation that, in order to gain generality, forgoes the compactness found
in the existing solver: we moved from static vectors to dynamic data structures.
The solver is now also capable of handling negative values and measures were
taken to improve its robustness and correctness. The result is a system which
can more easily model complex problems.

14

60

Extending the Finite Domain Solver of GNU Prolog

The performance evaluation of the initial, suboptimal, implementation shows
encouraging results: the slowdown is quite acceptable, in the order of 12%. Fur-
thermore, we have proposed ways to further reduce the impact of these design
options, and thus hope to reclaim the lost performance.

References

1. Krzysztof R. Apt. Principles of constraint programming. Cambridge University
Press, 2003.

2. Federico Bergenti, Alessandro Dal Palu, and Gianfranco Rossi. Integrating Fi-
nite Domain and Set Constraints into a Set-based Constraint Language. Fundam.
Inform., 96(3):227-252, 2009.

3. Bjorn Carlson, Mats Carlsson, and Daniel Diaz. Entailment of Finite Domain
Constraints. In Pascal Van Hentenryck, editor, ICLP, pages 339-353. MIT Press,
1994.

4. Philippe Codognet and Daniel Diaz. clp(B): Combining Simplicity and Efficiency
in Boolean Constraint Solving. In Manuel V. Hermenegildo and Jaan Penjam,
editors, PLILP, volume 844 of Lecture Notes in Computer Science, pages 244—260.
Springer, 1994.

5. Philippe Codognet and Daniel Diaz. Compiling Constraints in clp(FD). Journal
of Logic Programming, 27(3):185-226, 1996.

6. Philippe Codognet, Daniel Diaz, and Francesca Rossi. Constraint Retraction in

FD. In Vijay Chandru and V. Vinay, editors, FSTTCS, volume 1180 of Lecture

Notes in Computer Science, pages 168-179. Springer, 1996.

Rina Dechter. Constraint processing. Elsevier Morgan Kaufmann, 2003.

8. Daniel Diaz, Salvador Abreu, and Philippe Codognet. On the implementation of
GNU Prolog. TPLP, 12(1-2):253-282, 2012.

9. Carmen Gervet. Conjunto: Constraint Logic Programming with Finite Set Do-
mains. In Maurice Bruynooghe, editor, ILPS, pages 339-358. MIT Press, 1994.

10. Frédéric Goualard, Frédéric Benhamou, and Laurent Granvilliers. An Extension of
the WAM for Hybrid Interval Solvers. Journal of Functional and Logic Program-
ming, 1999(Special Issue 1), 1999.

11. Pascal Van Hentenryck. Constraint Satisfaction in Logic Programming. The MIT
Press, 1989.

12. Pascal Van Hentenryck, Vijay A. Saraswat, and Yves Deville. Design, Implemen-
tation, and Evaluation of the Constraint Language cc(FD). In Andreas Podelski,
editor, Constraint Programming, volume 910 of Lecture Notes in Computer Science,
pages 293-316. Springer, 1994.

13. Vianney Le Clément de Saint-Marcq, Pierre Schaus, Christine Solnon, and
Christophe Lecoutre. Sparse-Sets for Domain Implementation. In CP workshop on
Techniques foR Implementing Constraint programming Systems (TRICS), pages
1-10, September 2013.

14. Shuji Ohnishi, Hiroaki Tasaka, and Naoyuki Tamura. Efficient Representation of
Discrete Sets for Constraint Programming. In Francesca Rossi, editor, C'P, volume
2833 of Lecture Notes in Computer Science, pages 920-924. Springer, 2003.

15. David A Patterson and John L. Hennessy. Computer Organization and Design: the
Hardware/Software Interface. Morgan Kaufmann, 2013.

16. F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint Programminyg.
Elsevier, 2006.

=

15

61

CICLOPS-WLPE 2014

62

A Lambda Prolog Based Animation of Twelf Specifications

A AProlog Based Animation
of Twelf Specifications

Mary Southern and Gopalan Nadathur

University of Minnesota, Minneapolis MN 55455, USA

Abstract. Specifications in the Twelf system are based on a logic pro-
gramming interpretation of the Edinburgh Logical Framework or LF. We
consider an approach to animating such specifications using a AProlog
implementation. This approach is based on a lossy translation of the de-
pendently typed LF expressions into the simply typed lambda calculus
(STLC) terms of AProlog and a subsequent encoding of lost dependency
information in predicates that are defined by suitable clauses. To use
this idea in an implementation of logic programming a la Twelf, it is
also necessary to translate the results found for AProlog queries back
into LF expressions. We describe such an inverse translation and show
that it has the necessary properties to facilitate an emulation of Twelf
behavior through our translation of LF specifications into AProlog pro-
grams. A characteristic of Twelf is that it permits queries to consist
of types which have unspecified parts represented by meta-variables for
which values are to be found through computation. We show that this
capability can be supported within our translation based approach to
animating Twelf specifications.

1 Introduction

The Edinburgh Logical Framework or LF [4] is a dependently typed lambda
calculus that has proven useful in specifying formal systems such as logics and
programming languages (see, e.g., [5]). The key to its successful application in
this setting is twofold. First, the abstraction operator that is part of the syntax
of LF provides a means for succinctly encoding formal objects whose structures
embody binding notions. Second, LF types can be indexed by terms and, as
such, they can be used to represent relations between objects that are encoded
by terms. More precisely, types can be viewed as formulas and type checking as
a means for determining if a given term represents a proof of that formula. Proof
search can be introduced into this context by interpreting a type as a request
to determine if there is a term of that type. Further, parts of a type can be
left unspecified, thinking of it then as a request to fill in these parts in such a
way that the resulting type is inhabited. Interpreting types in this way amounts
to giving LF a logic programming interpretation. The Twelf system [9,10] is a
realization of LF that is based on such an interpretation.

An alternative approach to specifying formal systems is to use a predicate
logic. Objects treated by the formal systems can be represented by the terms of

63

CICLOPS-WLPE 2014

this logic and relations between them can be expressed through predicates over
these terms. If the terms include a notion of abstraction, e.g., if they encompass
simply typed lambda terms, then they provide a convenient means for represent-
ing binding notions. By restricting the formulas that are used to model relations
suitably, it is possible to constrain proof search behavior so that the formulas can
be given a rule-based interpretation. The logic of higher-order hereditary Harrop
formulas (hohh) has been designed with these ideas in mind and many exper-
iments have shown this logic to be a useful specification device (see, e.g., [7]).
This logic has also been given a computational interpretation in the language
AProlog [8], for which efficient implementations such as the Prolog/Mali [1] and
the Teyjus [11] systems have been developed.

The two different approaches to specification that are described above have
a relationship that has been explored formally. In early work, Felty and Miller
showed that LF derivations could be encoded in hohh derivations by describing
a translation from the former to the latter [3]. This translation demonstrated the
expressive power of hohh, but did not show the correspondence in proof search
behavior. To rectify this situation, Snow et. al. described a transformation of LF
specifications into hohh formulas that allowed the construction of derivations
to be related [12]. This work also showed how to make the translation more
efficient by utilizing information available from a static checking of LF types,
and it refined the resulting hohh specifications towards making their structure
more closely resemble that of the LF specifications they originated from.

The primary motivation for the work of Snow et. al. was a desire to use
Teyjus as a backend for an alternative implementation of logic programming in
Twelf. However, it falls short of achieving this goal in two ways that we address
in this paper. First, although it relates derivations from LF specifications to ones
from their translations, it does not make explicit the process of extracting an LF
“result” term from a successful hohh derivation; such an extraction is necessary if
Teyjus is to serve as a genuine, invisible backend. To close this gap, we describe
an inverse translation and show that it has the necessary properties to allow
Twelf behavior to be emulated through computations from AProlog programs.
Second, Snow et. al. dealt only with closed types, i.e., they did not treat the idea
of filling in missing parts of types in the course of looking for an inhabitant. To
overcome this deficiency, we include meta-variables in specifications and treat
them in the back-and-forth translations as well as in derivations; the last aspect,
that is also the most critical one in our analysis, requires us to build substitutions
and unification explicitly into our formalization of derivations.

The remainder of this paper is structured as follows. Sections 2 and 3 re-
spectively present LF and the hohh logic together with their computational
interpretations. Section 4 describes a translation from LF specifications into
hohh ones together with an inverse translation for extracting solution terms
from hohh derivations. We then propose an approach for developing a proof of
correctness for this translation. Section 5 improves the basic translation and Sec-
tion 6 uses it to illustrate our proposed approach to realizing logic programming
in Twelf. Section 7 concludes the paper.

64

A Lambda Prolog Based Animation of Twelf Specifications

_X:iAeA e ar
I'kFs X: A
Y sig c:Ae X . I'ts A:Type INv:AbFsxs M:B .
const-obj abs-obj
I'kxc: AP I'bFx Oz:AM) : (ITz:AP.B)
Fs INectx z:Ael’ . I'bts M:Ox:AB I'tks N:A .
var-obj app-obj

Ibx z: A° I'tx (M N): (B[N/z])®

Fig. 1. Rules for typing LF objects

2 Logic programming in LF

Three categories of expressions constitute LF: kinds, type families or types which
are classified by kinds, and objects which are classified by types. Below, x denotes
an object variable, X an object meta-variable, c an object constant, and a a type
constant. Letting K range over kinds, A and B over types, and M and N over
objects, the syntax of these expressions is given as follows:

K n= Type| Hu:A.K
AB = a|Illz:AB|AM
M,N = c|z|X|:AM|MN

Both IT and A are binders which also assign types to the (object) variables
they bind over expressions. Notice the dependency present in LF expressions: a
bound object variable may appear in a type family or kind. In the remainder of
this paper we use U and V ambiguously for types and objects and P similarly
for types and kinds. The shorthand A — P is used for ITx:A.P if P is a type
family or kind that is not dependent on the bound variable, i.e. if does not
appear free in P. Terms differing only in bound variable names are identified.
We write U[M;/z1,..., My /x,] to denote the capture avoiding substitution of
My, ..., M, for the free occurrences of x1, ..., x, respectively in U.

LF kinds, types and objects are formed relative to a signature X' that identi-
fies constants together with their kinds or types. In determining if an expression
is well-formed, we additionally need to consider contexts, denoted by I, that
assign types to variables. The syntax for signatures and contexts is as follows:

Y = | Xa:K|Xec:A r == -|Lxz:A

In contrast to usual LF presentations, we have allowed expressions to contain ob-
ject meta-variables. We assume an infinite supply of such variables for each type
and that an implicit meta-variable context A assigns types to these variables.
These meta-variables act as placeholders, representing the part of an expression
one wishes to leave unspecified.

Complementing the syntax rules, LF has typing rules that limit the set of
acceptable or well-formed expressions. These rules define the following mutually
recursive judgments with the associated declarative content:

X sig 2 is a valid signature

65

CICLOPS-WLPE 2014

Fy I ctx I' is a valid context relative to the (valid) signature X'
I' by K kind K is a valid kind in signature X' and context I'

I'kFy A K A is a type of kind K in a signature X' and context I’
'ty M: A M is an object of type A in signature 3 and context I'

In our discussion of logic programming, we rely on a specific knowledge of the
rules for only the last of these judgments which we present in Figure 1; an
intuition for the other rules should follow from the ones presented and their
explicit presentation can be found, e.g., in [4]. By these rules we can see that if a
well-formed expression contains a meta- variable X of type A, then replacing the
occurrences of X with a well- formed object of type A will produce an expression
which is also well-formed.

The rules in Figure 1 make use of an equality notion for LF expressions that
is based on [-conversion, i.e., the reflexive and transitive closure of a relation
equating two expressions which differ only in that a subexpression of the form
((Az:A.M) N) in one is replaced by M[N/z] in the other. We shall write U”
for the S-normal form of an expression, i.e., for an expression that is equal to U
and that does not contain any subexpressions of the form ((Az:A.M) N). Such
forms are not guaranteed to exist for all LF expressions. However, they do exist
for well-formed LF expressions [4], a property that is ensured to hold for each
relevant LF expression by the premises of every rule whose conclusion requires
the S-normal form of that expression.

Equality for LF expressions also includes n-conversion, i.e., the congruence
generated by the relation that equates Az:A.(M z) and M if x does not appear
free in M. The -normal forms for the different categories of expressions have
the following structure

Kind Ixq:A;. ... Hx,: A, Type
Type IHy:By....Hy,:Bp.a My ... M,
Object \x1:Aq.... Axp:Apu My ... M,

where u is an object constant or variable and where the subterms and subtypes
appearing in the expression recursively have the same form. We refer to the part
corresponding to a My ... M, in a type in this form as its target type and to
By, ..., By, as its argument types. Let w be a variable or constant which appears
in the well-formed term U and let the number of ITs that appear in the prefix
of its type or kind in beta normal form be n. We say w is fully applied if every
occurrence of w in U has the form w M; ... M,. A type of the form a M; ... M,
where a is fully applied is a base type. We also say that U is canonical if it
is in normal form and every occurrence of a variable or constant in it is fully
applied. It is a known fact that every well-formed LF expression is equal to one
in canonical form by virtue of Sn-conversion [4]. For the remainder of this paper
we will assume all terms are in S-normal form.

A specification in LF comprises a signature that, as we have seen, identifies
a collection of object and type constants. The Curry-Howard isomorphism [6]
allows types to be interpreted dually as formulas. The dependent nature of the

66

A Lambda Prolog Based Animation of Twelf Specifications

nat : type. list : type.
z : nat. nil : list.
s : nat -> nat. cons : nat -> list -> list.

append : list -> list -> list -> type.
app-nil : append nil L L.
app-cons : append L1 L2 L3 -> append (cons X L1) L2 (comns X L3).

Fig. 2. A Twelf signature specifying lists and the append relation

LF type system allows type constants to take objects as arguments. Such con-
stants then correspond to the names of predicates over suitably typed objects.
Moreover, the same isomorphism allows object constants, which provide a means
for constructing expressions of particular types, to be viewed as the names of
parameterized rules for constructing proofs of the relations represented by the
types.

Figure 2 presents a concrete signature to illustrate these ideas. In showing
this and other similar signatures, we use the Twelf syntax for LF expressions. In
this syntax, ITx:A.U is written as {z : A} U and Az:A.M is written as [z : A] M.
Further, bindings and the corresponding type annotations on variables are made
implicit in situations where the types can be uniquely inferred; the variables
that are implicitly bound are denoted in Prolog style by tokens that begin with
uppercase letters. The initial part of the signature in Figure 2 defines type and
object constants that provide a representation of the natural numbers and lists
of natural numbers. The signature then identifies a type constant append that
takes three lists as arguments. Under the viewpoint just explained, this constant
can be interpreted as a predicate that relates three lists. Objects of this type
can be constructed by using the constants app-nil and app-cons that are also
presented in the signature. Viewed differently, these constants name rules that
can be used to construct a proof of the append relation between three lists.
Notice that app-cons requires as an argument an object of append type. This
object plays the role of a premise for the rule that app-cons identifies.

The logic programming use of LF that underlies Twelf consists of presenting
a type A in the setting of a signature Y. Such a type corresponds to the request
to find an object M such that the judgment Fx M : A is derivable. Alternately,
a query in Twelf can be seen as the desire to determine the derivability of a
formula, the inhabiting term that is found being its proof. The type that is
presented as a query may also contain meta-variables, denoted by tokens that
begin with uppercase letters. In this case, the request is to find substitutions for
these variables while simultaneously showing that the instance type is inhabited.

An example of a query relative to the signature in Figure 2 is the following.

append (cons z nil) nil L

An answer to this query is the substitution (cons z nil) for L, together with the
object (app-cons (cons z nil) nil (cons z nil) (app-nil nil)) that in-
habits that type. Another query in this setting is

{x:nat} append (cons x nil) (cons z (cons x nil)) (L x).

67

CICLOPS-WLPE 2014

ﬁTR =, ry{D} — G R c¢ =2 EU{chT — Glc/x]
=i =T —D>G =T —V2.G
— — —
E;F—>G1[t1/m1] E;F—>Gn[t1/x1,...7tn/xn]
= backchain
= — A
where VH.(Gl D...D ‘v’:c_n).(Gn DA)..)€eT,
— —
t_f7 .. .,EL) are E-terms and A’[t1/x1,...,tn/Tn] = A

Fig. 3. Derivation rules for the hohh logic

in which L is a “higher-order” meta-variable of type nat -> 1list. The substi-
tution that would be computed by Twelf for the variable L in this query is

[y:nat] (cons y (cons z (cons y nil))),
and the corresponding inhabitant or proof term is

[y:nat] app-cons nil (cons z (cons y nil))
(cons z (cons y nil)) y
(app—nil (cons z (cons y nil)))

Notice that the variable x that is explicitly bound in the query has a different
interpretation from the meta-variable L. In particular, it receives a “universal”
reading: the query represents a request to find a value for L that yields an
inhabited type regardless of what the value of x is.

Although neither of our example queries exhibited this behavior, the range
of an answer substitution may itself contain variables and there may be some
residual constraints on these variables presented in the form of a collection of
equations between object expressions called “disagreement pairs.” The interpre-
tation of such an answer is that a complete solution can be obtained from the
provided substitution by instantiating the remaining variables with closed object
expressions that render identical the two sides of each disagreement pair.

3 Logic programming based on hohh

An alternative approach to specifying formal systems is to use a logic in which
relationships between terms are encoded in predicates. The idea of animating a
specification then corresponds to constructing a proof for a given “goal” formula
in the chosen logic. To yield a sensible notion of computation, specifications
must also be able to convey information about how a search for a proof should
be conducted. Towards this end, we use here the logic of higher-order hereditary
Harrop formulas, referred to in short as the hohh logic. This logic underlies the
programming language AProlog [8].

The hohh logic is based on Church’s Simple Theory of Types [2]. The ex-
pressions of this logic are those of a simply typed A-calculus (STLC). Types
are constructed from the atomic type o for propositions and a finite set of other
atomic types by using the function type constructor —. We assume we have been

68

A Lambda Prolog Based Animation of Twelf Specifications

nat : type. list : type.
z : nat. nil : list.
s : nat -> nat. cons : nat -> list -> list.

append : list -> list -> list -> o.

VL. append nil L L.
VXVL1VL2VL3. append L1 L2 L3 D append (cons X L1) L2 (cons X L3).

Fig. 4. An hohh specification of lists and the append relation

given a set of variables and a set of constants, each member of these sets being
identified together with a type. More complex terms are constructed from these
atomic symbols by using application and A-abstraction in a way that respects
the constraints of typing. As in LF, terms differing only in bound variable names
are identified. The notion of equality between terms is further enriched by - and
n-conversion. When we orient these rules and think of them as reductions, we
are assured in the simply typed setting of the existence of a unique normal form
for every well-formed term under these reductions. Thus, equality between two
terms becomes the same as the identity of their normal forms. For simplicity, in
the remainder of this paper we will assume that all terms have been converted
to normal form. We write t[s1/z1,...,S,/2,] to denote the capture avoiding
substitution of the terms sy, ..., s, for free occurrences of z1,...,x, in t.

Logic is introduced into this setting by identifying a sub-collection of the set
of constants as logical constants and giving them a special meaning. The logical
constants that we shall use here are the following;:

T of type o
D of typeo—0— o0
IT of type (T — 0) — o for each type 7

We intend T to denote the always true proposition and D, which we will write in
infix form, to denote implication. The symbol IT corresponds to the generalized
universal quantifier: the usual notation Vz.F for universal quantification serves
as a shorthand for IT(Az.F).

To construct a specification within the hohh logic, a user must identify a
collection of types and a further set of constants, called non-logical constants,
together with their types. A collection of such associations forms a signature.
There is a proviso on the types of non-logical constants: their argument types
must not contain o. Non-logical constants that have o as their target or result
type correspond to predicate symbols. If ¢ is such a constant with the type
T — ... T, —oandty,...,t, are terms of type 71, ..., T, respectively, then
the term (¢ t1... t,) of type o constitutes an atomic formula. We shall use the
syntax variable A to denote such formulas. More complex terms of type o are
constructed from atomic formulas by using the logical constants. Such terms are
also referred to as formulas.

The hohh logic is based on two special classes of formulas identified by the
following syntax rules:

G = T|A|DDG|Vz.G D == A|GD>D|Vx.D

69

CICLOPS-WLPE 2014

(u) :==u

¢(A) := If-obj when A is a base type (z) ==

o(IIz:A.P) := ¢p(A) — ¢(P) (X):=X
¢(Type) == If-type (My M) := (My) (M>)
Az:AM) = AN (M)

Fig. 5. Flattening of types and encoding of terms

We will refer to a D-formula also as a program clause. Notice that, in elaborated
form, such a formula has the structure Vzi.(Gy D ... D VZ,.(G,, D A)...); we
write Vz here to denote a sequence of universal quantifications.

The computational interpretation of the hohh logic consists of thinking of a
collection of D-formulas as a program and a G-formula as a goal or query that
is to be solved against a given program P in the context of a given signature =.
We represent the judgment that the query G has a solution in such a setting by
the “sequent” =;P — G. The rules for deriving such a judgment are shown in
Figure 3. Using these rules to search for a derivation leads to a process in which
we first simplify a goal in a manner determined by the logical constants that
appear in it and then employ program clauses in a familiar backchaining mode
to solve the atomic goals that are produced. A property of the hohh logic that
should be noted is that both the program and the signature can change in the
course of a computation.

We illustrate the use of these ideas in practice by considering, once again,
the encoding of lists of natural numbers and the append relation on them. Fig-
ure 4 provides both the signature and the program clauses that are needed
for this purpose. This specification is similar to one that might be provided
in Prolog, except for the use of a curried notation for applications and the
fact that the language is now typed. We “execute” these specifications by pro-
viding a goal formula. As with Twelf, we will allow goal formulas to contain
free or meta-variables for which we intend instantiations to be found through
proof search. A concrete example of such a goal relative to the specification
in Figure 4 is (append (cons z nil) nil L). This goal is solvable with the
substitution (cons z nil) for L. Another example of a query in this setting is
Vx.(append (cons x nil) (cons z (cons x nil)) (L x)) and an answer to
this goal is the substitution A\y.(cons y (cons z (cons y nil))) for L.

4 Translating Twelf specifications into predicate form

We now turn to the task of animating Twelf specifications using a AProlog
implementation. Towards this end, we describe a meaning preserving translation
from LF signatures into hohh specifications. Our translation extends the one in
[12] by allowing for meta-variables in LF expressions. We also present an inverse
translation for bringing solutions back from AProlog to the Twelf setting.

70

A Lambda Prolog Based Animation of Twelf Specifications

{IIz:A.B} .= AM. Vz. ({A} =) D ({B} (M z))
{A} := AM. hastype M (A) where A is a base type

Fig. 6. Encoding of LF types using the hastype predicate

The first step in our translation is to map dependently typed lambda expres-
sions into simply typed ones. We shall represent both types and objects in LF by
STLC terms (which are also hohh terms), differentiating the two categories by
using the (simple) type If-obj for the encodings of LF objects and If-type for those
of LF types. To play this out in detail, we first associate an hohh type with each
LF type and kind that is given by the ¢(-) mapping shown in Figure 5. Then,
corresponding to each object and type-level LF constant u : P, we identify an
hohh constant with the same name but with type ¢(P). Finally, we transform
LF objects and kinds into hohh terms using the (-) mapping in Figure 5.

We would like to consider an inverse to the transformation that we have
described above. We have some extra information available in constructing such
an inverse: the constants that appear in the hohh terms of interest have their
correlates which have been given specific types in the originating LF signature.
Even so, the lossy nature of the translation makes the inversion questionable.
There are two kinds of problems. First, because (the chosen) simple typing is
not sufficiently constraining, we may have well-formed STLC terms for which
there is no corresponding LF expression. As a concrete example, consider the
following LF signature:

i : type j : type a:i->j c: i
In the encoding we will have the following two constants with associated types:
a : 1lf-obj -> 1lf-obj c : 1lf-obj

This means that we can construct the simply typed term (a (a c)) which
cannot be the image of any LF expression that is well-formed under the given
signature. The second problem is that when an hohh term involves an abstrac-
tion, the choice of LF type to use for for the abstracted variable is ambigu-
ous. As a concrete example, consider the hohh term Az.r that has the type
1f-obj -> 1lf-obj. This term could map to the LF objects [x:nat] x and
[x:1ist] x, amongst many other choices.

Our solution to these problems is twofold. First, we will assume that we
know the type of the LF object that the inversion is to produce; this information
will always be available when the hohh terms arise in the course of simulating
LF typing derivations using hohh derivations. Second, we will define inversion
as a partial function: when we use it to calculate an LF expression from an
answer substitution returned by an hohh computation, we will have an additional
obligation to show that the inverse must exist.

The rules in Figure 7 define the inverse transformation. The judgments
invt(t; A;0) = M and inv'(t; A;0) = M are to be derivable when ¢ is an

71

CICLOPS-WLPE 2014

X:Ae A . invY(M;B;©,x: A) = M’
inv-var inv-abs

inv' (X;4;0) = X inv*(\o.M; [T2:A.B; 0) = Aw:A.M'

inv' (My; T2:B.A; ©) = M invt(Mz; B; ©) = M}

inv-app
invT (M1 Ma; A[M3/x); ©) = M{ Mj}
u:Ae€eO . invT(M;A;0) =M
— mnv-const nv-syn
inv'(u; A;0) = u invt(M; A;0) = M’

Fig. 7. An inverse encoding

hohh term in S-normal form that inverts to the LF object M that has type A
in a setting where variables and constants are typed according to @. The differ-
ence between the two judgments is that the first expects A as an input whereas
the second additionally synthesizes the type. The process starts with checking
against an LF type—this type will be available from the original LF query—and
it is easily shown that if invt(t; A; X UT') = M, then I' -x M : A. Notice that
we will only ever check an abstraction term against an LF type, ensuring that
the type chosen for the bound variable will be unique. We say a substitution 6 is
invertible in a given context and signature if each term in its range is invertible
in that setting, using the type associated with the domain variable by A.

The translation of LF expressions into hohh terms loses all relational informa-
tion encoded by dependencies in types. For example it transforms the constants
encoding the append relation in Figure 2 into the following hohh signature:

append : 1lf-obj -> 1lf-obj -> 1f-obj -> 1lf-type.
app—nil : 1lf-obj -> 1lf-obj.
app-cons : lf-obj -> 1lf-obj —>

1f-obj -> 1lf-obj -> 1lf-obj -> 1lf-obj.

It is no longer possible to construe this as a specification of the append relation
between lists. To recover the lost information, we employ a second pass that uses
predicates to encode relational content. This pass employs the hohh predicate
hastype with type If-obj — If-type — o and generates clauses that are such that
hastype X T is derivable from them exactly when X is the encoding of an LF
term M of a base LF type whose encoding is 7. More specifically, this pass
processes each item of the form U : P in the LF signature and produces from it
the clause { P} (U) using the rules in Figure 6 that define {-}.

To illustrate the second pass, when used with the signature in Figure 2, we
see that it will produce the following clauses:

hastype z nat.
Vx.hastype x nat D hastype (s x) nat.
hastype nil list.
Vx. (hastype x nat D
V1. (hastype 1 list D hastype (cons x 1) list)).

V1.hastype 1 list D hastype (app-nil 1) list.

72

A Lambda Prolog Based Animation of Twelf Specifications

Vx.(hastype x nat D V11.(hastype 11 list D
V12. (hastype 12 list D V13.(hastype 13 list D
Va. (hastype a (append 11 12 13)D
hastype (app-cons x 11 12 13 a)
(append (cons x 11) 12 (comns x 13))))))).

Contrasting these clauses with the ones of the AProlog program in Figure 4, we
see that it is capable not only of producing answers to append queries but also
a “proof-term” that traces the derivation of such queries.

The correctness of our translation is captured by the following theorem
(whose proof is currently incomplete). We had said earlier that when looking
at terms that are produced by hohh derivations from LF translations, we would
have an assurance that these terms are invertible. This is a property that flows,
in fact, from the structure of the hastype clauses: as a hohh derivation is con-
structed, all the substitution terms that are generated are checked to be of the
right type using the hastype predicate, and so we will not be able to construct
a term which is not invertible.

Theorem 1. Let X be an LF signature and let A be an LF type that possibly
contains meta-variables.

1. If Twelf solves the query M : A with the ground answer substitution o, then
there is an invertible answer substitution 0 for the goal {A} (M) wrt {X}
such that the inverse 8" of 6 generalizes o (i.e. there exists a o' such that
ool =0).

2. If 0 is an invertible answer substitution for {A} (M), then its inverse is an
answer substitution for M : A.

Our approach to proving this theorem is to consider the operational semantics
of the two systems and to show that derivations in each system can be factored
into sequences of steps that can be simulated by the other system. Moreover, this
simulation ensures the necessary relationships hold between the answer substitu-
tions that are gradually developed by the derivations in the respective systems.

5 Optimizing the translation

The translation presented in the preceding section does not lend itself well to
proof search because it generates a large amount of redundant typing checking.
There are many instances when this redundancy can be recognized by a direct
analysis of a given Twelf specification: in particular, we can use a structural
analysis of an LF expression to determine that a term being substituted for
a variable must be of the correct type and hence it is unnecessary to check
this explicitly. In this section we develop this idea and present an improved
translation. We also discuss another optimization that reflect the types in the
Twelf signature more directly into types in hohh. The combination of these
optimizations produce clauses that are more compact and that resemble those
that might be written in AProlog directly.

73

CICLOPS-WLPE 2014

dom(I');-;x Co A; for some A; in Z

Iix cZ A
Iy:A;xzC: B - In;xCce B I,y: B, In;yCe A oTX,
I';x e [y:A.B In,y:B,IyzC A
yi € d for each y; in 7 each variable in 7 is distinct NI
AjdyxCox 7 ’
y ¢ A and A;0;x Co M; for some M; in ﬁ APP Ay y;x Co M ABS
AidixToy]\7 ° A by Co My ALM °

Fig. 8. Strictly occurring variables in types and objects

We are interested in translating an LF type of the form ITxy:A;. ... [lx,:A,.B
into an hohh clause that can be used to determine if a type B’ can be viewed as
an instance B[Mj/x1,..., M, /x,] of the target type B. This task also requires
us to show that M, ..., M, are inhabitants of the types A1,..., A,; in the naive
translation, this job is done by the hastype formulas pertaining to x; and A; that
appear in the body of the hohh clause produced for the overall type. However, a
particular x; may occur in B in a manner which already makes it clear that the
term M; which replaces it in any instance of B must possess such a property.
What we want to do, then, is characterize such occurrences of x; such that we
can avoid having to include an inhabitation check in the hohh clause.

We define a strictness condition for variable occurrences and, hence, for vari-
ables that possesses this kind of property. By using this condition, we can simplify
the translation of a type into an hohh clause without losing accuracy. In addition
to efficiency, such a translation also produces a result that bears a much closer
resemblance to the LF type from which it originates.

The critical idea behind this criterion is that the path down to the occurrence
of x is rigid, i.e., it cannot be modified by substitution and z is not applied to
arguments in a way that could change the structure of the expression substituted
for it. We know that the structure will be unchanged by application of arguments
by requiring the occurrence of x to be applied only to distinct A-bound variables.
Thus we know that any term substituted for x has the correct type without
needing to explicitly check it. Specifically, we say that the bound variable z;
occurs strictly in the type ITxq1:A;. ... I x,:A,.B if it is the case that

Ty A1, RN oF S I Az?l; xr; Ct HLL'7;+1ZAi+1. . Ix,:A,.B

holds. We have been able to extend the strictness condition as described in [12]
recursively while preserving its utility in recognizing redundancy in type check-
ing. We consider occurrences of bound variables to be strict in the overall type
if they are strict in the types of other bound variables that occur strictly in the
target type. The relation defined in Figure 8 formalizes this idea.

When I';x C; A is derivable it means that the variable x appears strictly in
the type A in the context I'. As we work down through the structure of a type
we will eventually look at a specific term M and a derivation of A;d;x C, M
means that x appears strictly in the term M. Here, A and ¢ are both lists of

74

A Lambda Prolog Based Animation of Twelf Specifications

(u) :==u
o(a My ... M,) := a-type (z) ==z
O(Iz:A.P) := $(A) — ¢(P) (X):= X
¢(Type) = If-type (My M) := (M) (Ma)
Az AM) = ANz (M)
AM. Vz. T D [B]f (M z) if 'z B

[[z:A.B]} = { ~ .
AM. V. [A]~ (z) D [B]f.,(M x) otherwise
[u ﬁ}]; =M. u m M
[Mz:A.B]~ := AM. Va. [A]F(x) D [B] ™ (M 2)

[u N]™ = AM. u (N} M

Fig. 9. Optimized translation of Twelf signatures to AProlog programs

variables where § contains the A-bound variables currently in scope, while A
contains the I7-quantified variables collected while walking through the type A.

Another, more direct, optimization is to reflect the LF types into types in
the simply typed lambda calculus. Along with this optimization we can also use
specialized predicates, rather than just hastype. For each LF type u : K we will
create a new atomic type u-type in hohh, as well as a new predicate u which
has the type ¢(K) -> u-type -> o. We then use these to encode the signature
in a more natural way. See Figure 9 for the new translation.

There are now two modes in which translation operates, the negative, [-]~,
which is essentially the same as before in that it does not check for strictness
of bound variables, and the positive, [-]T, which will only generate hastype
formulas for variables which do not appear strictly. We do this to insure that
the eliminations occur in situations in which it makes sense to think of the
implication encoding an inhabitation check. We will write Vx.[[B]HJ, L(M z) for
Va.T D [[B]]Fx(M x) in future to simplify the generated signatures. These op-
timizations not only clean up the generated signature, but they also improve
performance as we have limited the number of clauses which match the head of
any given goal formula.

6 An illustration of the translation approach

We illustrate the use of the ideas described in the earlier sections by considering
the append relation specified in Twelf by the signature in Figure 2. The Twelf
query that we shall consider is the following that we previously saw in Section 2:

{x:nat} append (cons x nil) (cons z (cons x nil)) (L x).

This query asks for a substitution for L that yields an inhabited type and an
object that is a corresponding inhabitant.

75

CICLOPS-WLPE 2014

nat : nat-type -> o.
list : list-type -> o.
append : list-type -> list-type -> list-type -> append-type -> o.

nat z.

Vx. nat x D nat (s x).

list nil.

Vx.(nat x DV1. 1list 1 D 1list (cons x 1)).

V1. append nil 1 1 (app-cons 1).
VxV11V12V13Va. append 11 12 13 a D
append (cons x 11) 12 (cons x 13) (app-cons x 11 12 13 a).

Fig. 10. The Twelf specification of append translated into AProlog

Applying the optimized translation to the signature in Figure 2 yields the
AProlog program shown in Figure 10. Further, the Twelf query of interest trans-
lates into the hohh goal formula

Vx. append (cons x nil) (comns z (coms x nil)) (L x) M.
The answer substitution for this goal in AProlog is

L
M

y\ cons y (cons z (cons y nil)),

y\ app-cons nil (cons z (comns y nil))
(cons z (cons y nil)) y
(app—nil (cons z (cons y nil)))

Applying the inverse translation described in Section 4 to this answer substitu-
tion yields the value for L and the proof term for the Twelf query that we saw
in Section 2.

7 Conclusion

We have considered here the possibility of implementing the logic programming
treatment of LF specifications that is embodied in Twelf by using the Teyjus
implementation of AProlog as a backend. Central to the approach we have ex-
amined is a meaning-preserving translation of Twelf specifications into AProlog
programs. The basic structure of such a translation has previously been described
by Snow et. al. [12]. However, to use our approach in an actual implementation
of Twelf, it is necessary to complement the translation with a method for turn-
ing solutions found in the AProlog setting into expressions in LF syntax that
constitute answers to the original queries. Towards this end, we have described
an inverse encoding that maps hohh terms back to LF objects that are well-
formed with respect to the starting signature. In their translation, Snow et. al.
only considered LF expressions that are closed. To capture the full scope of
logic programming in Twelf, we have allowed LF types that constitute queries
to contain meta-variables and we have provided a treatment for such variables

76

A Lambda Prolog Based Animation of Twelf Specifications

in both the back-and-forth translations and in derivations. Finally, we have for-
mulated a correctness theorem for our approach to implementing Twelf and we
have outlined a method for proving this theorem that relates a unification based
operational semantics for Twelf and the hohh logic. Our ongoing work is directed
at completing the proof of the correctness theorem and at obtaining an empirical
assessment of our proposed approach by experimenting with an implementation
of Twelf that is based on it.

Acknowledgements

This work has been partially supported by the NSF Grant CCF-0917140. Opin-
ions, findings, and conclusions or recommendations expressed in this paper are
those of the authors and do not necessarily reflect the views of the National
Science Foundation.

References

1. P. Brisset and O. Ridoux. The compilation of AProlog and its execution with
MALI. Publication Interne 687, IRISA, 1992.

2. Alonzo Church. A formulation of the simple theory of types. J. of Symbolic Logic,
5:56-68, 1940.

3. Amy Felty and Dale Miller. Encoding a dependent-type A-calculus in a logic
programming language. In Mark Stickel, editor, Proceedings of the 1990 Conference
on Automated Deduction, volume 449 of LNAI, pages 221-235. Springer, 1990.

4. Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. Journal of the ACM, 40(1):143-184, 1993.

5. Robert Harper and Daniel R. Licata. Mechanizing metatheory in a logical frame-
work. Journal of Functional Programming, 17(4-5):613-673, July 2007.

6. William A. Howard. The formulae-as-type notion of construction, 1969. In J. P.
Seldin and R. Hindley, editors, To H. B. Curry: FEssays in Combinatory Logic,
Lambda Calculus, and Formalism, pages 479-490. Academic Press, New York, 1980.

7. Dale Miller and Gopalan Nadathur. Programming with Higher-Order Logic. Cam-
bridge University Press, June 2012.

8. Gopalan Nadathur and Dale Miller. An Overview of AProlog. In Fifth International
Logic Programming Conference, pages 810-827, Seattle, August 1988. MIT Press.

9. Frank Pfenning. Logic programming in the LF logical framework. In Gérard Huet
and Gordon D. Plotkin, editors, Logical Frameworks, pages 149-181. Cambridge
University Press, 1991.

10. Frank Pfenning and Carsten Schiirmann. Twelf User’s Guide, 1.4 edition, Decem-
ber 2002.

11. Xiaochu Qi, Andrew Gacek, Steven Holte, Gopalan Nadathur, and Zach Snow.
The Teyjus system — version 2, March 2008. http://teyjus.cs.umn.edu/.

12. Zachary Snow, David Baelde, and Gopalan Nadathur. A meta-programming ap-
proach to realizing dependently typed logic programming. In ACM SIGPLAN
Conference on Principles and Practice of Declarative Programming (PPDP), pages
187-198, 2010.

77

CICLOPS-WLPE 2014

78

Towards Pre-Indexed Terms

Towards Pre-Indexed Terms*

J. F. Morales! and M. Hermenegildo'-?

I IMDEA Software Research Insitute, Madrid, Spain
2 School of Computer Science, Technical University of Madrid, Spain

Abstract. Indexing of terms and clauses is a well-known technique used
in Prolog implementations (as well as automated theorem provers) to
speed up search. In this paper we show how the same mechanism can be
used to implement efficient reversible mappings between different term
representations, which we call pre-indexings. Based on user-provided
term descriptions, these mappings allow us to use more efficient data
encodings internally, such as prefix trees. We show that for some classes
of programs, we can drastically improve the efficiency by applying such
mappings at selected program points.

1 Introduction

Terms are the most important data type for languages and systems based on
first-order logic, such as (constraint) logic programming or resolution-based au-
tomated theorem provers. Terms are inductively defined as variables, atoms,
numbers, and compound terms (or structures) comprised by a functor and a
sequence of terms.?> Two main representations for Prolog terms have been pro-
posed. Early Prolog systems, such as the Marseille and DEC-10 implementations,
used structure sharing [2], while the WAM [13,1] —and consequently most modern
Prolog implementations— uses structure copying. In structure sharing, terms are
represented as a pair of pointers, one for the structure skeleton, which is shared
among several instances, and another for the binding environment, which deter-
mines a particular instantiation. In contrast, structure copying makes a copy of
the structure for each newly created term. The encoding of terms in memory
resembles tree-like data structures.

In order to speed up resolution, sophisticated term indexing has been im-
plemented both in Prolog [1,8] and automated theorem provers [7]. By using
specialized data structures (such as, e.g., tries), indexing achieves sub-linear
complexity in clause selection. Similar techniques are used to efficiently store
predicate solutions in tabling [11]. This efficient machinery for indexing is often

* Research supported in part by projects EU FP7 318337 ENTRA, Spanish MINECO
TIN2012-39391 StrongSoft and TIN2008-05624 DOVES, and Comunidad de Madrid
TIC/1465 PROMETIDOS-CM.

3 Additionally, many Prolog systems implement an extension mechanism for variable
domains using attributed variables.

79

CICLOPS-WLPE 2014

attractive for storing and manipulating program data, such as dynamic predi-
cates. Indexed dynamic predicates offer the benefits of efficient key-value data
structures while hiding the implementation details from the user program.

Modulo some issues like variable sharing, there is thus a duality in program-
ming style between ezplicitly encoding data as terms or encoding data implicitly
as tuples in dynamic predicates. However, although both alternatives have some
declarative flavor, it is also frequent to find code where, for performance rea-
sons, the data is represented in the end in a quite unnatural way. E.g., the set
{1,2,3,...,n} can be represented naturally as the term [1,2,3,...,n] (equiv-
alent to a linked list). However, depending on the lifetime and operations to be
performed on the data, binary trees, some other map-like structure, or dynamic
predicates may be preferable. These changes in representation often propagate
through the whole program.

The goal of this paper is to study the merits of term indexing during term
creation rather than at clause selection time. We exploit the fact that data has
frequently a fixed skeleton structure, and introduce a mapping in order to index
and share that part. This mapping is derived from program declarations spec-
ifying term encoding (called rtypes, for representation types) and annotations
defining the program points where pre-indexing of terms is performed. This is
done on top of structure copying, so that no large changes are required in a
typical Prolog runtime system. Moreover, the approach does not require large
changes in program structure, which makes rtypes easily interchangeable.

We have implemented a prototype as a Ciao package that deals with rtype
declarations as well as with some additional syntactic sugar that we provide for
marking pre-indexing points. We leave as future work the automatic selection of
encoding decisions based on profiling and more detailed cost models.

2 Background

We follow the definitions and naming conventions for term indexing of [4,7].
Given a set of terms £ (the indezed terms), a binary relation R over terms (the
retrieval condition), and a term t (the query term), we want to identify the
subset M C L consisting of all the terms ! such that R(l,t) holds (i.e., such that
l is R-compatible with t). We are interested in the following retrieval conditions
R (where o is a substitution):

— unif(l,t) < Jo lo =to (unification)
— anst(l,t) & Jo l =to (instance check)
—gen(l,t) & Jolo=t (generalization check)
— wariant(l,t) < Jo lo =t and o is a renaming substitution (variant check)

Ezample 1. Given L = {h(f(A)),h(f(B,C)),h(g(D))}, t = h(f(1)), and R =
unif, then M = {h(f(A))}.

The objective of term indexing is to implement fast retrieval of candidate
terms. This is done by processing the indexed set £ into specialized data struc-
tures (index construction) and modifying this index when terms are inserted or
deleted from L (index maintenance).

80

Towards Pre-Indexed Terms

When the retrieval condition makes use of the function symbols in the query
and indexed terms, it is called function symbol based indexing.

In Prolog, indexing finds the set of program clauses such that their heads
unify with a given literal in the goal. In tabled logic programming, this is also
interesting for detecting if a new goal is a variant or subsumed by a previously
evaluated subgoal [6,10].

Limitations of indexing. Depending on the part of the terms that is indexed
and the supporting data structure, the worst case cost of indexing is proportional
to the size of the term. When computing hash keys, the whole term needs to be
traversed (e.g., computing the key for h(£(A)) requires walking over h and f).
This may be prohibitively costly, not only in the maintenance of the indices, but
also in the lookup. As a compromise many systems rely only on first argument,
first level indexing (with constant hash table lookup, relying on linear search
for the selected clauses). However, when the application needs stronger, multi-
level indexing, lookup costs are repeated many times for each clause selection
operation.

3 Pre-indexing

The goal of pre-indexing is to move lookup costs to term building time. The
idea that we propose herein is to use a bijective mapping between the standard
and the pre-indexed representations of terms, at selected program points. The
fact that terms can be partially instantiated brings in a practical problem, since
bounding a variable may affect many precomputed indices (e.g., precomputed
indices for H=h (X), G=g(X) may need a change after X=1). Our proposed solution
to this problem is to restrict the mapping to terms of a specific form, based on
(herein, user-provided) instantiation types.

Definition 1 (Instantiation type). We say that t is an instance of an in-
stantiation type 7 (defined as a unary predicate), written as check(r(t)), if there
exists a term 1 such that 7(l) is in the model of T and gen(l,t) (or inst(t,1)).

For conciseness, we will describe the restricted form of instantiation types used
herein using a specialized syntax: *

:- rtype 1lst ---> [] ; [anyllst]

In these rules any represents any term or variable while nv represents any nonvar
term. The rule above thus corresponds to the predicate:

1st([1).
1st([_|Xs]) :- 1st(Xs).

* Despite the syntax being similar to that described in [9], note that the semantics is
not equivalent.

81

CICLOPS-WLPE 2014

Example 2. According to the definition above for 1st, the terms [1,2,3] and
[-,2] belong to 1st while [1]_] does not. If nv were used instead of any in the
definition above then [_,2] would also not belong to 1st.

Type-based pre-indexing. The idea behind pre-indexing is to maintain
specialized indexing structures for each rtype (which in this work is done based on
user annotations). Conceptually, the indexing structure will keep track of all the
rtype inhabitants dynamically, assigning a unique identifier (the pre-index key) to
each of them. E.g., for 1st we could assign {[] — ko, [_.] — k1, [,.1 — ko,...}.

Translation between pre-indexed and non-pre-indexed forms is defined in
terms of a pre-indexing casting. Given check(t(t)), 31 € |7| (set of “weakest”
terms for which 7 holds) such that gen(l,t).

Definition 2 (Pre-indexing cast). A pre-indexing cast of type 7 is a bijective
mapping between terms, denoted by #7, with the following properties:

— For every term x and substitution o so that check(T(x)), then #71(xo) =
#7(x)o (0-commutative), and

— the first-level functor of #7(x) encodes the structure of the arguments (so
that it uniquely identifies the rtype inhabitant).

Informally, the first property ensures that pre-indexing casts can be selec-
tively introduced in a program without altering the (substitution) semantics.
Moreover, the meaning of many built-ins is also preserved after pre-indexing, as
expressed in the following theorem.

Theorem 1 (Built-in homomorphism). Given check(t(z)) and check(t(y)),
then unif(z,y) < unif(#7(x), #7(y)) (equivalently for gen, inst, variant, and
other built-ins like ==/2, ground/1).

Proof. unif(z,y) < [def. of unif] Jo xo = yo. Since #7 is bijective, then
#71(xo) = #7(yo) & [o-commutative] #7(x)o = #7(y)o. Given the def. of
unif, it follows that unif(#7(x),#7(y)). The proofs for other built-ins are simi-
lar.

In this work we do not require the semantics of built-ins like @< (i.e., term or-
dering) to be preserved, but if desired this can be achieved by selecting carefully
the order of keys in the pre-indexed term. Similarly, functor arity in principle
will not be preserved since ground arguments that are part of the rtype structure
are allowed to be removed.

3.1 Building pre-indexed terms

We are interested in building terms directly into their pre-indexed form. To
achieve this we take inspiration from WAM compilation. Complex terms in
variable-term unifications are decomposed into simple variable-structure uni-
fications X = f(Ay,...,A,) where all the A; are variables. In WAM bytecode,

82

Towards Pre-Indexed Terms

this is further decomposed into a put_str f/n (or get_str f/n) instruction
followed by a sequence of unify_arg A;. These instructions can be expressed as
follows:

put_str(X,F/N,S0,S1), h | F/N |
unify_arg(A1,S1,S2) % | F/N | A1 |

unify_arg(An,Sn,S) % | F/N | AL | ... | An |

where the S; represent each intermediate heap state, which is illustrated in the
comments on the right.

Assume that each argument A; can be split into its indexed part A;k and its
value part A;v (which may omit information present in the key). Pre-indexing
builds terms that encode A;k into the main functor:

g_put_str(X,F/N,S0,S1), % | F/N |
g_unify_arg(A1,S1,S2) % | F/N<A1k> | Alv |

g_unify_arg(An,Sn,S) % | F/N<Alk,...,Ank> | Alv | ... | Anv |

The rtype constructor annotations (that we will see in Section 3.2) indicate
how the functor and arguments are indexed.

Cost analysis. Building and unifying pre-indexed terms have impact both on
performance and memory usage. First, regarding time, although pre-indexing
operations can be slower, clause selection becomes faster, as it avoids repetitive
lookups on the fixed structure of terms. In the best case, O(n) lookups (where
n is the size of the term) become O(1). Other operations like unification are
sped-up (e.g., earlier failure if keys are different). Second, pre-indexing has an
impact on memory usage. Exploiting the data structure allows more compact
representations, e.g., bitpair(bool,bool) can be assigned an integer as key
(without storage costs). In other cases, the supporting indezx structures may
effectively share the common part of terms (at the cost of maintaining those
structures).

3.2 Pre-indexing Methods

Pre-indexing is enabled in an rtype by annotating each constructor with mod-
ifiers that specify the indexing method. Currently we support compact trie-like
representations and packaged integer encodings.

Trie representation is specified with the index (Args) modifier, which indi-
cates the order in which arguments are walked in the decision-tree. The process
is similar to term creation in the heap, but instead of moving a heap pointer,
we combine it with walking through a trie of nodes. Keys are retrieved from the
term part that corresponds to the rtype structure.

For example, let us consider the input set of terms [a(z), c(2)], [a(x), d(w)],
[b(y),c(2)], [b(y),d(w)], where a,b,c,d are function symbols and z,y, z,w are

83

CICLOPS-WLPE 2014

/2 /2 /2 /2
1/ \/ 1/ \ /N /N

a/ /2 a/ /2 b/1 /2 b/1 /2
|7~ @ 7N | 7N | /N
x cf [] x djl [1 ¥ cf 17 v djl []

Fig. 1. Example terms for pre-indexing

Fig. 2. Index for example terms (rtype 1st ---> [1 ; [nvllstl:::index([0,1,2]))

variable symbols. The heap representation is shown in Fig. 1.° We will compare
different rtype definitions for representing these terms.

As mentioned before, nv represents the rtype for any nonvar term (where its
first level functor is part of the type). The declaration:

:- rtype 1st -—-> [] ; [nvl|lst]:::index([0,1,2]).

specifies that the lookup order for [_|_] is a) the constructor name (./2), b) the
first argument (not pre-indexed), and ¢) the second argument (pre-indexed). The
resulting trie is in Fig. 2. In the figure, each node number represents a position
in the trie. Singly circled nodes are temporary nodes, doubly circled nodes are
final nodes. Final nodes encode terms. The initial node (#1) is unique for each
rtype. Labels between nodes indicate the lookup input. They can be constructor
names (e.g., ./2), nv terms (e.g., b(y)), or other pre-indexed 1st (e.g., #2 for
[], or #5(z) for [c(z)]). The arguments are placeholders for the non-indexed
information. That is, a term [a(g),c(h)] would be encoded as #9(g,h).

Trie indexing also supports anchoring on non-root nodes. Consider this dec-
laration:

5 Remember that [1,2] = .(1,.(2,[1)).

84

Towards Pre-Indexed Terms

[]

@

Fig. 3. Index for example terms (rtype 1st ---> [1 ; [nv|lst]l:::index([2,0,1]))

:- rtype 1lst ---> [1 ; [nv|lst]:::index([2,0,1]).

Figure 3 shows the resulting trie. The lookup now starts from the second ar-
gument, then the constructor name, and finally the first argument. The main
difference w.r.t. the previous indexing method is that the beginning node is an-
other pre-indexed term. This may lead to more optimal memory layouts and
need fewer lookup operations. Note that constructor names in the edges from
initial nodes need to be prefixed with the name of the rtype. This is necessary
to avoid ambiguities, since the initial node is no longer unique.

Garbage Collection and Indexing Methods. Indexing structures require
special treatment for garbage collection.® In principle, it would not be necessary
to keep in a trie nodes for terms that are no longer reachable (e.g., from the
heap, WAM registers, or dynamic predicates), except for caching to speed-up
node creation. Node removal may make use of lookup order. That is, if a key at
a temporary level n corresponds to an atom that is no longer reachable, then all
nodes above n can be safely discarded.

Anchoring on non-root nodes allows the simulation of interesting memory
layouts. For example, a simple way to encode objects in Prolog is by introducing a
new object operation that creates new fresh atoms, and storing object attributes
with a dynamic objattr(0bjId, AttrName, AttrValue) predicate. Anchoring
on 0bjId allows fast deletion (at the implementation level) of all attributes of a
specific object when it becomes unreachable.

4 Applications and Experimental Evaluation

To show the feasibility of the approach, we have implemented the pre-indexing
transformations as source-to-source transformations within the Ciao system.
This is done within a Ciao package which defines the syntax and processes the
rtype declarations as well as the marking of pre-indexing points.

5 Automatic garbage collection of indexing structures is not supported in the current
implementation.

85

CICLOPS-WLPE 2014

compress(Cs, Result) :- % Compress Cs
build_dict(256), % Build the dictionary

compress_(Cs, #1st([]), Result).

compress_([], W, [I]) :- % Empty, output code for W
dict(W,I).
compress_([CICs], W, Result) :- % Compress C
WC = #1st([CI"W]),
(dict(WC,_) -> % WC is in dictionary
w2 = WC,
Result = ResultO
; dict(W,I), % WC not in dictionary
Result = [I|ResultO], % Output the code for W
insert (WC), % Add WC to the dictionary
W2 = #1st([C])
),

compress_(Cs, W2, ResultO).

Fig. 4. LZW Compression: Main code.

As examples, we show algorithmically efficient implementations of the Lempel-
Ziv-Welch (LZW) lossless data compression algorithm and the Floyd-Warshall
algorithm for finding the shortest paths in a weighted graph, as well as some
considerations regarding supporting module system implementation. In the fol-
lowing code, forall/2 is defined as \+ (Cond, \+ Goal).

4.1 Lempel-Ziv-Welch compression

Lempel-Ziv-Welch (LZW) [14] is a lossless data compression algorithm. It en-
codes an input string by building an indexed dictionary D of words and writing
a list of dictionary indices, as follows:

1- D :={w | w has length 1} (all strings of length one).

2- Remove from input the longest prefix that matches some word W in D, and
emit its dictionary index.

3- Read new character C', D := D U concat(W,C), go to step 2;
otherwise, stop.

A simple Prolog implementation is shown in Fig. 4 and Fig. 5. Our imple-
mentation uses a dynamic predicate dict/2 to store words and corresponding
numeric indices (for output). Step 1 is implemented in the build_dict/1 predi-
cate. Steps 2 and 3 are implemented in the compress_/3 predicate. For encoding
words we use lists. We are only interested in adding new characters and word
matching. For that, list construction and unification are good enough. We keep
words in reverse order so that appending a character is done in constant time.
For constant-time matching, we use an rtype for pre-indexing lists. The imple-
mentation is straighforward. Note that we add a character to a word in WC =

86

Towards Pre-Indexed Terms

W~ O O Wi

% Mapping between words and dictionary index
:— data dict/2.

% NOTE: #lst can be changed or removed, " escapes cast
% Anchors to 2nd arg in constructor
:- rtype 1lst ---> [] ; [int|1lst]:::index([2,0,1]).

build_dict(Size) :- % Initial dictionary
assertz(dictsize(Size)),
Sizel is Size - 1,
forall(between(0, Sizel, I), % Single code entry for 1
assertz(dict (#1st([I]1), I))).

insert (W) :- % Add W to the dictionary

retract(dictsize(Size)), Sizel is Size + 1, assertz(dictsize(Sizel)),
assertz(dict (W, Size)).

Fig. 5. LZW Compression: Auxiliary code and rtype definition for words.

data size indexing (time)
original | result none | clause | term
datal 1326 732 || 0.074 | 0.025 | 0.015
data2 83101 | 20340 || 49.350 | 1.231 | 0.458
datad | 149117 | 18859 || 93.178 | 2.566 | 0.524

Table 1. Performance of LZW compression (in seconds) by indexing method.

#1st ([C|"W]) (Line 8). The annotation indicates that words are pre-indexed
using the 1st rtype and that W is already pre-indexed (indicated by the escape
~ prefix). Thus we can effectively obtain optimal algorithmic complexity.

Performance evaluation. We have encoded three files of different format and
size (two HTML files and a Ciao bytecode object) and measured the performance
of alternative indexing and pre-indexing options. The experimental results for
the algorithm implementation are shown in Table 1.7 The columns under in-
dexing show the execution time in seconds for different indexing methods: none
indicates that no indexing is used (except for the default first argument, first
level indexing); clause performs multi-level indexing on dict/2; term uses pre-
indexed terms.

Clearly, disabling indexing performs badly as the number of entries in the
dictionary grows, since it requires one linear (w.r.t. the dictionary size) lookup
operation for each input code. Clause indexing reduces lookup complexity and
shows a much improved performance. Still, the cost has a linear factor w.r.t. the

" Despite the simplicity of the implementation, we obtain compression rates similar
to gzip.

87

CICLOPS-WLPE 2014

0~ O U W

word size. Term pre-indexing is the faster implementation, since the linear factor
has disappeared (each word is uniquely represented by a trie node).

4.2 Floyd-Warshall

floyd_warshall :-
% Initialize distance between all vertices to infinity
forall ((vertex(I), vertex(J)), assertz(dist(I,J,1000000))),
% Set the distance from V to V to 0
forall (vertex(V), set_dist(V,V,0)),
forall(weight(U,V,W), set_dist(U,V,W)),
forall((vertex(K), vertex(I), vertex(J)),
(dist(I,X,D1),
dist(K,J,D2),
D12 is D1 + D2,
mindist(I,J,D12))).

mindist(I,J,D) :- dist(I,J,01dD), (D < 01dD -> set_dist(I,J,D) ; true).

set_dist(U,V,W) :- retract(dist(U,V,_)), assertz(dist(U,V,W)).

Fig. 6. Floyd-Warshall Code

The Floyd-Warshall algorithm computes the shortest paths problem in a
weighted graph in O(n?) time, where n is the number of vertices. Let G = (V, E)
be a weighted directed graph, V = vy, ..., v, the set of vertices, E C V2, and Wy, j
the weight associated to edge (v;,v;) (where w; ; = oo if (v;,v;) ¢ E and w;; =
0). The algorithm is based on incrementally updating an estimate on the shortest
path between each pair of vertices until the result is optimal. Figure 6 shows a
simple Prolog implementation. The code uses a dynamic predicate dist/3 to
store the computed minimal distance between each pair of vertices. For each
vertex k, the distance between each (i, j) is updated with the minimum distance
calculated so far.

Performance evaluation. The performance of our Floyd-Warshall implemen-
tation for different sizes of graphs is shown in Fig. 7. We consider three indexing
methods for the dist/3 predicate: def uses the default first order argument
indexing, t12 computes the vertex pair key using two-level indices, p12 uses a
packed integer representation (obtaining a single integer representation for the
pair of vertices, which is used as key), and p12a combines p12 with a specialized
array to store the dist/3 clauses. The execution times are consistent with the
expected algoritmic complexity, except for def. The linear relative factor with the
rest of methods indicates that the complexity without proper indexing is O(n*).

10

88

Towards Pre-Indexed Terms

I
def
i 15 t12
2 I31122
2 1of i |
(]
2
&
[
v 5f .
=
'_
O L | | | | | l
20 40 60 80 100

Number of nodes

Fig. 7. Execution time for Floyd-Warshall

On the other hand, the plots also show that specialized computation of keys and
data storage (p12 and p12a) outperforms more generic encoding solutions (¢12).

4.3 Module System Implementations

Module systems add the notion of modules (as separate namespaces) to predi-
cates or terms, together with visibility and encapsulation rules. This adds a sig-
nificantly complex layer on top of the program database (whether implemented
in C or in Prolog meta-logic as hidden tables, as in Ciao [5]). Nevertheless, almost
no changes are required in the underlying emulator machinery or program se-
mantics. Modular terms and goals can be perfectly represented as M: T terms and
a program transformation can systematically introduce M from the context. How-
ever, this would include a noticeable overhead. To solve this issue, Ciao reserves
special atom names for module-qualified terms (currently, only predicates).

We can see this optimization as a particular case of pre-indexing, where the
last step in module resolution (which maps to the internal representation) is a
pre-indexing cast for an mpred rtype:

:- rtype mpred ---> nv:nv ::: index([1,0,2]).

For example, given a module M = 1lists and goal G = append(X,Y,Z), the
pre-indexed term MG = #mpred(M:G) can be represented as
’lists:append’ (X,Y,Z),® where the first functor encodes both the module and
the predicate name. To enable meta-programming, when MG is provided, both M
and G can be recovered.

Internally, another rewrite step replaces predicate symbols by actual pointers
in the bytecode, which removes yet another indirection step. This indicates that

8 Note that the identifier does not need any symbolic description in practice.

11

89

CICLOPS-WLPE 2014

it would be simple to reuse pre-indexing machinery for module system imple-
mentations, e.g., to enhance modules with hierarchies or provide better tools
for meta-programming. In principle, pre-indexing would bring the advantages of
efficient low-level code with the flexibility of Prolog-level meta representation of
modules. Moreover, anchoring on M mimicks a memory layout where predicate
tables are stored as key-value tables inside module data structures.

5 Related Work

There has been much previous work on improving indexing for Prolog and
logic programming. Certain applications involving large data sets need any- and
multi-argument indexing. In [3] an alternative to static generation of multi-
argument indexing is presented. The approach presented uses dynamic schemes
for demand-driven indexing of Prolog clauses. In [12] a new extension to Prolog
indexing is proposed. User-defined indexing allows the programmer to index both
instantiated and constrained variables. It is used for range queries and spatial
queries, and allows orders of magnitude speedups on non-trivial datasets.

Also related is ground-hashing for tabling, studied in [15]. This technique
avoids storing the same ground term more than once in the table area, based on
computation of hash codes. The approach proposed adds an extra cell to every
compound term to memoize the hash code and avoid the extra linear time factor.

Our work relates indexing techniques (which deal with fast lookup of terms in
collections) with term representation and encoding (which clearly benefits from
specialization). Both problems are related with optimal data structure imple-
mentation. Prolog code is very often used for prototyping and then translated to
(low-level) imperative languages (such as C or C++) if scalability problems arise.
This is however a symptom that the emulator and runtime are using subopti-
mal data structures which add unnecessary complexity factors. Many specialized
data structures exist in the literature, with no clear winner in all cases. If they
can be directly implemented in Prolog, they are often less efficient than their
low-level counterparts (e.g., due to data immutability). Without proper abstrac-
tion they obscure the program to the point where a low-level implementation
may not be more complex. On the other hand, adding them to the underlying
Prolog machines is not trivial. Even supporting more than one term represen-
tation may have prohibitive costs (e.g., efficient implementations require a low
number of tags, small code that fits in the instruction cache, etc.). Our work
aims at reusing the indexing machinery when possible and specializing indexing
for particular programs.

6 Conclusions and Future Work

Traditionally, Prolog systems index terms during clause selection (in the best
case, reducing a linear search to constant time). Despite that, index lookup is
proportional to the size of the term. In this paper we have proposed a mixed
approach where indexing is precomputed during term creation. To do that, we

12

90

Towards Pre-Indexed Terms

define a notion of instantiation types and annotated constructors that specify
the indexing mode. The advantage of this approach is that lookups become
sub-linear. We have shown experimentally that this approach improves clause
indexing and that it has other applications, for example for module system im-
plementation.

These results suggest that it may be interesting to explore lower-level index-
ing primitives beyond clause indexing. This work is also connected with structure
sharing. In general, pre-indexing annotations allow the optimization of simple
Prolog programs with scalability problems due to data representation.

As future work, there are some open lines. First, we plan to polish the current
implementation, which is mostly based on program rewriting and lacks garbage
collection of indexing tables. We expect major performance gains by optimizing
some operations at the WAM or C level. Second, we want to extend our repertoire
of indexing methods and supporting data structures. Finally, rtype declarations
and annotations could be discovered and introduced automatically via program
analysis or profiling (with heuristics based on cost models).

References

1. Ait-Kaci, H.: Warren’s Abstract Machine, A Tutorial Reconstruction. MIT Press
(1991)

2. Boyer, R., More, J.: The sharing of structure in theorem-proving programs. Ma-
chine Intelligence 7 pp. 101-116 (1972)

3. Costa, V.S., Sagonas, K.F., Lopes, R.: Demand-driven indexing of prolog clauses.
In: Dahl, V., Niemeld, I. (eds.) ICLP. Lecture Notes in Computer Science, vol.
4670, pp. 395-409. Springer (2007)

4. Graf, P.: Term Indexing, Lecture Notes in Computer Science, vol. 1053. Springer
(1996)

5. Hermenegildo, M.V., Bueno, F., Carro, M., Lépez, P., Mera, E., Morales,
J., Puebla, G.: An Overview of Ciao and its Design Philosophy. The-
ory and Practice of Logic Programming 12(1-2), 219-252 (January 2012),
http://arxiv.org/abs/1102.5497

6. Johnson, E., Ramakrishnan, C., Ramakrishnan, I., Rao, P.: A space efficient engine
for subsumption-based tabled evaluation of logic programs. In: Middeldorp, A.,
Sato, T. (eds.) Functional and Logic Programming, Lecture Notes in Computer
Science, vol. 1722, pp. 284-299. Springer Berlin / Heidelberg (1999)

7. Ramakrishnan, I.V., Sekar, R.C., Voronkov, A.: Term indexing. In: Robinson, J.A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 1853-1964. Elsevier
and MIT Press (2001)

8. Santos-Costa, V., Sagonas, K., Lopes, R.: Demand-Driven Indexing of Prolog
Clauses . In: International Conference on Logic Programming. LNCS, vol. 4670,
pp- 395-409. Springer Verlag (2007)

9. Schrijvers, T., Costa, V.S., Wielemaker, J., Demoen, B.: Towards Typed Prolog.
In: Pontelli, E., de la Banda, M.M.G. (eds.) International Conference on Logic
Programming. pp. 693-697. No. 5366 in LNCS, Springer Verlag (December 2008)

10. Swift, T., Warren, D.S.: Tabling with answer subsumption: Implementation, ap-
plications and performance. In: Janhunen, T., Niemel4, 1. (eds.) JELIA. Lecture
Notes in Computer Science, vol. 6341, pp. 300-312. Springer (2010)

13

91

CICLOPS-WLPE 2014

11.

12.

13.

14.

15.

Swift, T., Warren, D.S.: Xsb: Extending prolog with tabled logic programming.
TPLP 12(1-2), 157187 (2012)

Vaz, D., Costa, V.S., Ferreira, M.: User defined indexing. In: Hill, P.M., Warren,
D.S. (eds.) ICLP. Lecture Notes in Computer Science, vol. 5649, pp. 372-386.
Springer (2009)

Warren, D.H.D.: An Abstract Prolog Instruction Set. Technical Report 309, Ar-
tificial Intelligence Center, SRI International, 333 Ravenswood Ave, Menlo Park
CA 94025 (1983)

Welch, T.A.: A technique for high-performance data compression. IEEE Computer
17(6), 8-19 (1984)

Zhou, N.F., Have, C.T.: Efficient tabling of structured data with enhanced hash-
consing. TPLP 12(4-5), 547-563 (2012)

14

92

A System for Embedding Global Constraints into SAT

A System for Embedding Global Constraints
into SAT

Md Solimul Chowdhury and Jia-Huai You

Department of Computing Science
University of Alberta

Abstract. Propositional satisfiability (SAT) and Constraint Program-
ming (CP) are two dominant tools for solving combinatoral search prob-
lems. Both of these has their own strengths and weaknesses. In this
report, we describe a tight integration of SAT with CP, called SAT(gc),
which embeds global constraints into SAT. A system named SATCP is
implemented by integrating the DPLL based SAT solver zchaff and the
generic constraint solver gecode. Experiments are carried out for bench-
marks from puzzle domains and planning domains to reveal insights in
compact representation, solving effectiveness, and novel usability of the
new framework. We highlight some issues with the current implementa-
tion of SATCP, with possible directions to resolve those issues.

Keywords: SAT, CSP, Global Constraints, Integration, Embedding.

1 Introduction

Constraint Programming (CP) [15] is a programming paradigm, developed for
studying and solving constraint problems. It has been applied to solving many
practical problems from domains of scheduling, planning, and verification [20].
For practical applications, languages for CP have been developed to facilitate
the definitions of constraints in terms of primitive constraints and built-in con-
straints. One kind of these built-in constraints are called global constraints [19].
The use of global constraints not only facilitate problem representation, but also
have very efficient implementation based on special data structures and dedi-
cated constraint propagation mechanisms (see, for example, [3]).

Another way of solving combinatorial search problems is Boolean Satisfiabil-
ity (SAT), in which a problem is represented by a collection of Boolean clauses,
called a formula. To solve a SAT formula, we need to determine whether there
is a truth value assignment that satisfies all the clauses.

In recent years, cross fertilization of these two areas has become a topic of
interest. It is argued that complex real world applications may require effec-
tive features of both [4]. A number of approaches have been pursued in this
direction. For example, in SAT Modulo Theory (SMT) [13], theory solvers of
various kinds are incorporated into a SAT solver, where part of the problem is
encoded in an embedded theory and solved by a dedicated theory solver. To

93

CICLOPS-WLPE 2014

2 Md Solimul Chowdhury and Jia-Huai You

deal with numeric constraints, the SAT community has moved to a different di-
rection - pseudo Boolean constraints, where constraints are expressed by linear
inequalities over sum of weighted Boolean functions (see, e.g., [5]). The paper
[14] presents a tight integration of SAT and CP, where CSP propagators are
emulated as learned SAT clauses. In [9], a framework for integrating CSP style
constraint solving in Answer Set Programming (ASP) has been developed, em-
ploying an evaluation strategy similar to the lazy SMT approach. In [8], the
authors propose a translational approach to constraint answer set programs and
show its effectiveness. The usefulness of combining ASP and CP to industrial
sized problems is demonstrated in [1].

We pursue a tight integration of SAT and CSP which implies tight interleaves
between SAT and CSP solver. Tight integration poses a number of challenging
issues like, how to represent a SAT problem in the presence of global constraints,
and how deductions, conflict analysis and backtracking with learning can be per-
formed in the presence of global constraints. In our work, we develop a framework
to incorporate CSP style constraint solving into SAT solving with the anticipa-
tion that this tight integration will enhance the usability of SAT solver and
increase its efficiency for some application domains. The report presented here
is an extended version of [7], providing more details on implementation, some
system level problems and possible solutions.

The rest of this report is organized as follows. The next section presents
an embedding of global constraints into SAT, called SAT(gc). We describe a
prototype system of SAT(gc), named SATCP, in Section 3. In Section 4, we
describe the experiments we carry out, along with details on the benchmarks
used, their encoding in SAT(gc), the experimental results and analysis. We then
discuss some implementation issues of SATCP in Section 5. Section 6 com-
pares SAT(gc) with related frameworks, with Section 7 providing conclusions
and pointing to future directions.

2 The SAT(gc) Framework

In this section, we describe the framework for tightly embedding global con-
straints in SAT solving, which we refer to as SAT(gc).

Here, first we will provide the language and notation specification of the
SAT(gc) framework. Then we will describe the algorithm for SAT(gc) solver,
which deals with the following two major issues of the integration - how to
perform deduction in the presence of global constraints in a SAT(gc) formula,
and how to perform conflict directed backtracking and learning in the presence
of global constraints.

2.1 Language and Notation

In SAT, a formula is a finite set of clauses in propositional logic, where a clause
is a disjunction of literals and a literal is either a proposition or its negation.
Propositions are also called variables. To distinguish, let us call these variables

94

A System for Embedding Global Constraints into SAT

A System for Embedding Global Constraints into SAT 3

normal variables. In the language of SAT(gc), we have two additional types of
variables/literals. The first is called a global constraint literal, or just a gc-literal,
which represents a call to a global constraint. E.g., we can write a clause

allDif f(xzo : {v1,v2}, 21 : {v2,v3}) V —p

where the first disjunct is a call to the global constraint allDifferent in which
xg and x1 are CSP variables each of which is followed by its domain. In the
sequel, we will use a named variable in the place of a gc-variable, with the
correspondence between it and the (call to the) global constraint as part of a
SAT(gc) instance.

A gc-literal is true if and only if the corresponding global constraint is solv-
able. Then it means that there exists one or more solutions for that gc-literal.
Such a solution can be represented by a conjunction of propositional variables,
each of which is a proposition representing that a given CSP variable takes a
particular value from its domain. These new type of variables are called value
variables. For each CSP variable & and each value «a in its domain, we write x=a
for the corresponding value variable. Semantically, x =a is true iff x is assigned
with value a. Since a value variable is just a proposition, it can appear in clauses
of a SAT(gc) instance.

As a CSP variable cannot be assigned to more than one value from its domain,
we impose the ezxclusive value azioms (EVAs): for each CSP variable z and
distinct domain values a and b, we have a clause —(z =a)V—(z=b). In the sequel,
we assume that EVAs are part of a SAT(gc) instance, so that unit propagation
enforces these axioms automatically.

With the language of SAT(gc) defined above, given a SAT(gc) instance, a
ge-variable in it is semantically equivalent to a disjunction of conjunctions of
value variables, augmented by the exclusive value axioms, with each conjunction
representing a solution of the corresponding global constraint (if such a disjunc-
tion is empty, it represents false). That is, a SAT(gc) instance is semantically
equivalent to a propositional formula. Given a SAT(gc) instance I1, let us de-
note by o(II) this propositional formula. We now can state precisely what the
satisfiability problem in the current context is: Given a formula II in the lan-
guage of SAT (gc), determine whether there exists a variable assignment such
that o(II) evaluates to true.

2.2 Representation in SAT(gc)

Let us consider some examples. In the first, suppose given a 4 by 4 board where
each cell contains a number from a given domain D. We can express a disjunctive
constraint, “at least one row has the sum of its numbers equal to a given number,
say k7,