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Abstract

Creating software for embedded systems requires rigid quality measures. The reason
for this is that errors in the software may have very expensive or even disastrous
consequences. This gives rise to the use of formal methods for software verification,
such as model checking, theorem proving, and static analysis.
Many embedded systems rely on either application-specific circuits, reconfig-

urable logics, or microcontrollers. Manufacturers of microcontrollers typically offer
a wide variety of devices based on the same core architecture, which are equipped
differently and thus offer different functionality. Furthermore, some tool chains ex-
ist that allow developers not only to choose from such off-the-shelf devices, but to
customize them for specific kinds of tasks. In some cases, this may go to the extent
of actually designing new architectures.
It is precisely this wide variety of available devices that complicates the use

of automated verification. Tools need to be adapted to a new platform, or even
recreated in case they should be implemented in a too hardware-dependent way.
The topic this thesis deals with is the reduction of the necessary effort for adapting

a verification tool to new microcontrollers. To this end, we designed a language for
describing microcontrollers, Sgdl, and a compiler for translating such descriptions
into operative simulators and static analyzers. We based our work on [mc]square,
which is a platform for model checking and static analysis of assembly code software.
In order to counter the state explosion problem, it is also necessary to include

abstractions in generated simulators. We illustrate, on a number of abstraction
techniques, how they can be integrated into the approach and whether they can be
generated either partly or entirely.
A number of case studies concerning the implementation of simulators with our

new language is presented. Additionally, we examine the effectiveness of the afore-
mentioned abstractions that are integrated into the generated simulators, and com-
pare the results to those obtained when using manually implemented simulators.

i





Zusammenfassung

Die Implementierung von Software für eingebettete Systeme erfordert strenge Maß-
nahmen zur Qualitätssicherung. Der Grund hierfür ist, daß Fehler in dieser Art
von Software sehr teuer werden oder gar katastrophale Auswirkungen haben kön-
nen. Hieraus motiviert sich der Einsatz formaler Methoden zur Verifikation von
Software, wie etwa Model-Checking, Theorem Proving, oder statischer Analysen.
Viele eingebettete Systeme basieren entweder auf applikationsspezifischen Schal-

tungen, rekonfigurierbarer Logik, oder Mikrocontrollern. Typischerweise bieten die
Hersteller von Mikrocontrollern eine Vielzahl verschiedener Geräte mit der gleichen
Kernarchitektur an, die sich im Hinblick auf die verfügbare Ausstattung unterschei-
den. Darüber hinaus gibt es Software-Werkzeuge, mit denen Entwickler bestehende
Mikrocontroller an ihre eigenen Anforderungen anpassen oder sogar bei Bedarf neue
Architekturen entwickeln können.
Aus der Vielfalt an verfügbaren Geräten ergeben sich allerdings auch Nachteile.

Die Möglichkeit zur automatisierten formalen Verifikation wird eingeschränkt, weil
die dafür benötigten Werkzeuge zunächst einmal an jede neue Plattform angepaßt
werden müssen. Je nach Werkzeug kann dies auch bedeuten, daß eine komplette
Neuimplementierung nötig wird.
Das Thema dieser Dissertation ist die Reduktion des Aufwandes, der nötig ist, um

ein Verifikationswerkzeug an neue Mikrocontroller anzupassen. Zu diesem Zweck
haben wir eine Sprache zur Beschreibung von Mikrocontrollern entworfen, Sgdl,
und einen Compiler implementiert, der Beschreibungen in dieser Sprache überset-
zen kann in funktionsfähige Simulatoren und statische Analyse-Werkzeuge. Unsere
Arbeit basiert auf [mc]square, einer Plattform für das Model-Checking und die
statische Analyse von Assembler-Code.
Um das Problem der Zustandsexplosion zu begrenzen, ist es erforderlich, daß die

generierten Simulatoren auch Abstraktionstechniken unterstützen. Anhand einer
Reihe von Abstraktionstechniken zeigen wir, wie diese in den vorgestellten Ansatz
integriert werden können, und inwieweit es möglich ist, sie ganz oder teilweise
automatisch zu erzeugen.
In unseren Fallstudien demonstrieren wir die Implementierung von Simulatoren

mit unserer neuen Sprache. Darüber hinaus untersuchen wir die Wirksamkeit der
bereits genannten Abstraktionstechniken in den generierten Simulatoren, und ver-
gleichen die Ergebnisse mit denen von handgeschriebenen Simulatoren.
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1 Introduction

Nowadays, we are surrounded by countless computer systems. These systems are
not necessarily immediately recognizable as such because they are integrated into
other systems, and therefore, are called embedded systems. People normally do
not interact directly with the computer system, but with the embedding system.
In many cases, the functionality of the embedding system would not be possible
without the embedded system. Typical tasks for these devices are to measure
data from sensors interfacing to their environment, and respond to such input by
controlling actuators that are part of the embedding system.
A very common field of application for embedded systems are cars. Several

assistance systems, like anti-lock braking systems, electronic stability programs, or
cruise control, are realized by means of embedded systems. In this setting, the car is
the overall embedding system, which has several embedded systems integrated into
it. For such tasks, it is also necessary for embedded systems to be networked, as
for instance the data acquired by the systems that measure the speed of individual
wheels need to be joined. Hence, even though embedded systems are typically
integrated into components, they are not necessarily isolated from each other.
Another scenario for applying embedded systems are industrial plants. In such

settings, the embedded systems are tasked, for instance, with controlling conveyor
belts, robotic arms, and other devices necessary for production. It is also possible
to control entire production processes at the field level.
There are several categories for distinguishing embedded systems. The aforemen-

tioned use of embedded systems in cars is typically referred to as an example of
product automation, whereas their usage in plants is called production automation.
Product automation implies that the embedded system, or systems, must not ex-
ceed given cost thresholds, as they have to be produced in quantities. Opposed to
this, production plants are not built nearly as many times as products, therefore
the cost for individual embedded systems is not as important. Due to this differ-
ence, the type of systems used in these settings differ. For products, frequently
used devices include microcontrollers, and several types of programmable logic, e.g.
Field Programmable Gate Arrays (FPGAs). Plants, on the contrary, typically rely
on more elaborate and expensive devices, such as Programmable Logic Controllers
(PLCs), which already provide some critical functionality required in their respec-
tive fields of application. For instance, PLCs are able to guarantee the completion
of operations within a certain time, i.e., are capable of real time computations.

1



1 Introduction

Creating similar functionality on microcontrollers is typically also possible, but re-
quires additional effort, including the effort for establishing the correctness of such
capabilities.
The correct operation of products containing embedded systems depends heavily

on the correctness of the hardware and software of which the embedded system
consists. Furthermore, errors in the software of such systems are particularly acute
because it is virtually impossible for the vendor to apply a patch. Unlike in general-
purpose computing, the systems are typically not accessible to the end user, and in
safety-critical systems like cars, it is not even desirable to expose an interface to the
user. Hence, to fix mistakes, it is necessary to recall such devices, or even to replace
them. Thus, it is vital for a software developer to detect errors before the system
is shipped to the customer, and, to this end, apply rigid verification techniques.

1.1 Objectives

Embedded systems used in products are often based on processor-based architec-
tures. In many cases, these processors are stand-alone computers on a single chip,
so called systems-on-chip (SoC). This means that they are equipped with some
on-chip memory, peripherals, and I/O ports for interfacing to the outside world.
Microcontrollers fall into this category of devices.
Developers wanting to create a system based on microcontrollers have a wide

range of devices at their disposal. Many device manufacturers sell microcontrollers,
e.g. Intel, Renesas, Infineon, PIC, and Atmel. Each of these provides one or more
families of controllers, and within these families, very different devices, ranging from
cheap, sparsely equipped chips to complex devices with many on-chip peripherals.
The latter sometimes eliminate the need for integrating further chips into a design,
for instance when a microcontroller provides communication controllers for busses
such as CAN. In some cases, developers can even rely on tools to create customized
microcontrollers, which allows them to remove unnecessary parts and add needed
ones, thus reducing the overall cost for a design.
While this wide range of devices certainly has advantages, it complicates the

development of reliable software. As long as developers build their system from
off-the-shelf devices from the existing manufacturers, they can typically use the
development tools provided by the respective device manufacturer. In most cases,
this includes assemblers, linkers, and C compilers. Developing software in C pro-
vides at least a certain degree of hardware abstraction, thus easing the porting of
software in case a chosen platform should prove to be no longer suitable. However,
when creating customized hardware, there is no compiler support yet. The compiler
needs to be created. Software quality ensurance faces a similar problem, as existing
tools also need to be rewritten or retargeted to the new platform.
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1.2 Contribution

Some tool chains exist that facilitate the creation of compilers, assemblers, and
similar tools, for new platforms. To the best of our knowledge, however, this has so
far not been the case with regard to model checkers, which are a special kind of tool
for detecting errors. It is therefore our goal to create a means for doing so, such
that it becomes possible to retarget a model checking tool to new platforms with
time efforts that would make the procedure feasible for industrial applications.

1.2 Contribution

In this thesis, we make the following contributions:

• We describe a system for generating state space generators from a hardware
description. The description can be created by developers in a language,
Sgdl, which we designed with the goal of accelerating the development of
such generators.

• To illustrate the advantage of creating state space generators with our tool,
instead of implementing them manually in Java, we present three implementa-
tion-related case studies. In these case studies, we used our tool chain to create
simulators for the Atmel ATmega16 and ATmega644 microcontrollers and for
the 8051, a member of the Intel MCS-51 family of microcontrollers.

• We show that even when synthesizing simulators instead of manually fine-
tuning them, it is possible to integrate abstraction techniques. In this respect,
we also prove that certain abstractions can be added automatically, without
the developer having to be familiar at all with the concept.

• In a series of case studies consisting of executable programs for all three
platforms, we compare several qualities of synthetic simulators with those
of existing handcrafted simulators, some of which have been optimized over
years. Our main result from these case studies is that synthetic simulators
can compete with handcrafted code in most aspects.

• Finally, we develop ideas on how to further improve the generation of auto-
matic abstractions. With this purpose in mind, we have created a tool for
static analysis of hardware descriptions, which can derive certain information
about an architecture automatically. The derived information can then be
used for lifting the given concrete syntax of, for instance, instructions, to an
abstract one.

3



1 Introduction

1.3 Outline

The rest of this thesis is structured as follows. Chapter 2 presents preliminary
work relevant for the topic of this thesis. Next, Chapter 3 discusses related work
and certain requirements, from which we deduced the necessity of our research.
A brief overview of the synthesis system that we created during that research is
given in Chapter 4. Following, Chapters 5 to 7 detail the structure of the synthesis
system, starting with the description of the input in a domain-specific language, and
ending with a discussion of the generated code. Chapter 8 explains the abstraction
techniques which we integrated into the synthesis system as an improvement. Next,
two case study chapters first present the implementation of simulators using our
new language (Chapter 9), and then illustrate how the generated simulators can
be applied to microcontroller programs for the respective platforms (Chapter 10).
Finally, Chapter 11 concludes this thesis.

1.4 Bibliographic Notes

Parts of the research presented in this thesis has been previously published in some
of our earlier publications. The idea of retargeting a model checker by means
of a hardware description was first described in our contribution to a doctoral
symposium [26], and in a journal article [79]. A first operative version was presented
in [29]. Improvements over the initial version, which introduced early versions
of some abstraction techniques, were the topic of another publication [28]. This
publication also included a first version of our implementation of an abstraction
called path reduction (originally created by other authors). We contributed to
enhancing this technique in another publication [10], the results of which were first
obtained using one of our generated simulators, before backporting them to the
simulator used in the publication.
Related work by other authors is presented in the individual chapters, either

within the presentation where appropriate, or in a concluding section dedicated to
related work.
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2 Preliminaries

Within this chapter, we introduce the background that this thesis relies upon. The
main tiers of our work are model checking, static analysis, and compiler construc-
tion. Model checking is a technology for verifying systems, and is used, in our
setting, for verifying properties of microcontroller programs. Static analysis is a
technique that can serve for various purposes. We use it in both for supporting the
model checker and in a more classical setting, that is, in a compiler for processing
the input.
The rest of this chapter is structured as follows. First of all, in Sect. 2.1, we

define notations that are frequently used throughout the thesis. In Sect. 2.2, we
explain Kripke structures, which we use to model systems. The next section then
introduces temporal logics, with a focus on Computation Tree Logic (ctl). In
Sect. 2.4, we introduce the concept of model checking, and illustrate how model
checking combines the previously defined temporal logics and Kripke structures.
An overview of static analysis is given in Sect. 2.5. Finally, an introduction into
the [mc]square model checking tool concludes this chapter.
Our descriptions of Kripke structures, temporal logics, and model checking, are

based on Clarke et al. [16], and on Baier and Katoen [9]. For static analysis, we
refer to Nielson et al. [49]. The description of the [mc]square model checker is
based on Schlich [68] and on our own contributions to this project.

2.1 Notations

2.1.1 Number Representations

For representing numbers by different bases, we abide by the notation used by
Oberschelp and Vossen [51]. Hence, we define the following:

1. A number z ∈ N is a short-hand representation of a sum:

z = (zn−1zn−2 . . . z0) =

n−1∑
i=0

zib
i

where n, zi, b ∈ N. n is the length of the representation and b is a base, also
called a radix [78]. Unless specified otherwise, we use b = 10.
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2 Preliminaries

2. For representing a number by a base other than 10, we enclose the number
by parentheses and append the value for b at the lower right parenthesis:

(z)b

Hence, for instance 10 = (10)10 = (1010)2.

3. Hexadecimal values are prefixed with 0x, for example 0xff .

4. Binary values are prefixed with 0b, for example 0b1011.

2.1.2 Fonts

Tool names are printed in uppercase, e.g. SGDL-STA. The names of temporal
logics are printed in the same style, e.g. ctl. Java class names are printed in
a slanted font, such as Analyzer. Finally, for code snippets we use a typewriter
style, e.g. execute, and for longer code fragments we use a syntax highlighting
appropriate for the respective language.

2.2 Kripke Structures

Kripke structures, or labeled transition systems, are a means for modeling concur-
rent systems.

Definition 2.1. Kripke structure
Let AP be a set of atomic propositions. Let Pot(M) := 2M , i.e., the powerset of
M . A Kripke structure K over AP is defined as K = (S, S0, R, L), where

• S is a finite set of states

• S0 ⊆ S is the set of initial states

• Act is a set of actions

• R ⊆ S ×Act × S is a transition relation

• L : S → Pot(AP ) is a function that maps each state to the set of atomic
propositions valid in that state. L is also called labeling function.

This definition, which defines a set of actions that can be associated with tran-
sitions, is taken from Baier and Katoen. Actions are labels for transitions. The
definition used by Clarke et al. does not require such a set, even though they
sometimes also use labelled transitions.
Kripke structures extend the concept of propositional logics by states, which

are also called universes. An atomic proposition no longer is either true or false,
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2.3 Temporal Logics

1 r := i n i t i a l node o f the Kripke s t r u c tu r e
2 v i s i t ( r )
3

4 v i s i t ( v )
5 f o r a l l s u c c e s s o r s v ’ o f v
6 add v ’ to the t r e e
7 add edge (v , v ’ )
8 v i s i t (v ’ )

Listing 2.1: Algorithm for unwinding a Kripke structure

but may have different values depending on the current state. Hence, using Kripke
structures, it is possible to describe systems that evolve over time, such as automata,
or programs modifying the memory of a computer device.
For reasoning about Kripke structures, we usually transform them into a tree

representation, which is called a computation tree [16]. Computation trees are con-
structed by unwinding [16] the Kripke structure. We sketch the required algorithm
in pseudo code in Listing 2.1. Note that the resulting tree may be infinite, as the
Kripke structure may contain loops. Thus, the tree construction algorithm may
not terminate. Each of the paths in the tree corresponds to a possible sequence of
states in the Kripke structure. Such sequences are called executions by both Clarke
et al. and Baier and Katoen.

2.3 Temporal Logics

Formulas in traditional propositional logics consist of Boolean statements called
atomic propositions, and of conjunctions of such statements by means of operators
such as AND, OR, and negation. Atomic propositions can be either true or false,
but is is possible to map more general expressions to these two truth values. For
instance, it is legal to express that a variable v has a given value of 12 by an atomic
proposition v = 12. The satisfiability problem for propositional logics (SAT) is
decidable, though it is known to be NP-complete (Cook’s theorem, as described
in [3, 35]; a proof is given by Hopcroft et al. [34]).
A general assumption in propositional logics is that there is just a single uni-

verse, in which formulas can be evaluated to either true or false. This restriction
complicates the modeling of time-related properties, e.g. specifying that a variable
sequentially takes several given values. Kripke structures allow the modeling of
such sequences, as each of the states can be seen as a certain point in time, and
may have its own set of true and false atomic propositions. Furthermore, states in
Kripke structures may also have more than one successor, corresponding to multi-

7



2 Preliminaries

ple, possibly different, evolutions of a system. Properties that are satisfied on one
set of paths need not necessarily be true on other sets. Hence, to benefit from these
modeling possibilities, a logic should provide

• path quantifiers: a set of paths (e.g. all or at least one) satisfy a property

• recursion: conventional propositional and also predicate logic can only specify
properties proportional in the length of the formula. In order to describe prop-
erties such as eventually (after finitely many steps) or always, it is necessary
for the logic to provide a recursional description mechanism.

These restrictions are remedied by temporal logics. Two of these are ltl and
ctl, which we describe in more detail in the following sections. Both are special
cases of a more generalized logic called ctl∗, from which they can be derived by
imposing certain restrictions on the usage of path quantors and temporal operators.
An important aspect of temporal logics is that the term temporal does not relate

to a precise timing. These logics typically do not provide the means to describe
properties such as whenever p holds, after two seconds q holds. Instead, the term
temporal rather refers to a relative order of events (cf. [9]), meaning that is it
possible to describe sequences of events while omitting the exact period of time
elapsing between them.

Definition 2.2. Temporal operators
A temporal operator is one of {X,F,G,U} with the following semantics:

• XΦ means that the formula Φ holds starting from the next state, seen from
a current state s in a Kripke structure.

• FΦ means that the formula Φ eventually holds.

• GΦ means that the formula Φ holds globally, i.e., in all states.

• ΦUΨ means that the formula Φ holds in all states along the path until a state
is reached in which Ψ holds, and there has to be such a state.

Definition 2.3. Path quantifiers
A path quantifier is one of {A,E} with the following semantics:

• AΦ means that the formula Φ has to hold on all paths starting from the
current state.

• EΦ means that there has to be at least one path, starting from the current
state, on which the formula Φ holds.
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2.3.1 LTL

Linear time temporal logics (ltl) allow formulas to express properties along paths
of arbitrary length. The general assumption is that given a state s in a Kripke
structure K and a formula Φ, there can be only one future of s, i.e. a sequence
of successor states (s′, s′′, . . .). In case the unwinding of K yields a tree containing
nodes with multiple successors, the resulting paths are considered separately. All
ltl formulas are implicitly preceded by an A path quantifier, hence

K, s |= Φ⇔ Φ evaluates to true for each of the paths starting at s.

As the model checking tool [mc]square, which we used for our research, started
as a ctl model checker without support for ltl, we conducted our research on the
basis of the ctl model checking algorithm. At the time of this writing, the tool had
recently been extended to additionally support ltl. Therefore, we do not provide
further details on ltl, but only use this short reference to point out some of the
characteristics of ctl in the next section.

2.3.2 CTL

Computation Tree Logic (ctl) is a branching time temporal logic. ctl can be
derived from ctl∗ by requiring that each path quantor must be combined with
exactly one temporal operator and vice versa.

Definition 2.4. Syntax of ctl
Let AP be a set of atomic propositions. The set of ctl formulas over AP is defined
as follows:

• p is a ctl formula ∀p ∈ AP

• If Φ is a ctl formula, then ¬Φ is a formula

• If Φ is a ctl formula, then

– AGΦ, AFΦ, AXΦ

– EGΦ, EFΦ, EXΦ

are ctl formulas, where A and E are path quantors, and G,F,X are temporal
operators, as declared above

• If Φ,Ψ are ctl formulas, then

– A(ΦUΨ)

– E(ΦUΨ)

are ctl formulas, where A,E are path quantors and U is a temporal operator
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• If Φ,Ψ are ctl formulas, then

– Φ ∨Ψ

– Φ ∧Ψ

– Φ→ Ψ

are ctl formulas

Additionally, there is a release operator R, but that operator can be expressed by
means of the other operators (cf. Clarke). Clarke also describes how to represent
any ctl formula using only an existential subset, that is, using formulas containing
only the operator and quantifier types EX, EG, and EU .

Unlike ltl, which specifies properties over single paths of the unwinding tree
and implicitly requires these to be true for all such paths, ctl specifies properties
over different paths starting from specific nodes in the tree. There is no implicit A
quantifier.

Example 2.1. Examples for CTL formulas

• AG¬ (Φ ∧Ψ) : on all paths, Φ and Ψ are mutually exclusive

• EFΦ : there is a path on which Φ eventually holds

• A (r1 = 10U r17 ≥ 20) : on all paths, the atomic r1 = 10 must evaluate to
true (i.e., r1 has a certain value) until r17 is larger or equal to 20

2.4 Model Checking

Model checking is a formal method for verifying systems. Starting from a model
of a system and a specification, a model checking algorithm can automatically
verify whether the system satisfies its specification. In case the system is found to
violate the specification, it is usually possible to create a counterexample, that is,
a trace of events leading to the state of the system in which the specification is no
longer satisfied. The procedure as such requires large amounts of memory, and it is
possible that the model checking algorithm has to abort verification. In that case,
it is possible that the result is only valid for the subset of system states visited so
far, or that there is no result at all.
The underlying idea of model checking is that of exhaustive exploration of all

reachable system states. It is possible to separate two phases, exploration, also
called state space building, and verification, though some model checkers entwine
these with each other, for instance in an alternating mode of operation that allows
for early pruning of certain paths. In the state space building phase, the algorithm
uses a given a set of initial states of the system, and checks this set for possible
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evolutions. All steps the system may take are examined, leading to a new set of
states. These are then the basis for further exploration, and are again checked
for possible evolutions. Eventually, when no more new states are created, state
space building terminates, and the actual verification phase starts. In this phase,
depending on the (means of) specification, the model checking algorithm typically
searches the state space for patterns of states, such as chains on which all states
satisfy some property. Finally, depending on the result of the verification phase,
the aforementioned counterexample may be generated.
The following parts of this section focus on the use of Kripke structures and

temporal logics in the context of model checking.

2.4.1 Specification

Prior to any formal verification, it is necessary to capture the requirements for a
given system in a sound manner that is amenable to algorithmic uses. Natural
language is not suitable for this purpose, as it is usually too vague and ambiguous.
Even the result of a proper requirements analysis (e.g. [74]) does not provide the
mathematically rigorous description of system properties that is needed. Hence,
the first step towards formal verification by means of model checking is to translate
the natural-language specification into a formula in some temporal logic, and to
represent that formula in the input format of the model checking tool of choice.
The temporal logic introduced in detail the last section, ctl, allows the de-

scription of evolutions of a system. In our setting, which is formal verification of
embedded software, the atomics are statements about the memory contents of a
microcontroller. Paths relate to the sequence of steps the microcontroller takes
while executing a program, that is, a statement involving temporal operators spec-
ifies possible computations, while path quantors impose requirements such as all
possible computations starting from here or at least one computation starting from
here must satisfy a given requirement.

2.4.2 Modeling

Using Kripke structures, it is possible to describe a system that may take several
possible states. For software verification, the set of initial states is equivalent to
the state the machine has before execution of the program starts. Each instruction
then correlates to at least one transition from one state to another. That is, an
instruction modifies the system state. In the terms of a Kripke structure, the
state reached after execution of an instruction is typically labelled differently: a
different program or line counter, and a different set of atomic propositions. Hence,
statements on the value of such atomics may also evaluate differently for different
states.
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Modeling systems can be handled either manually or automatically. For general
purpose model checkers such as SMV [16], NuSMV [14], and UPPAAL [39], the
input describes a set of automata, represented in the idiom understood by the tool.
Such an approach has various advantages, but also a number of disadvantages. For
one, it is possible to deliberately add or omit information about the behavior of the
actual system, which helps counter the state explosion problem (cf. the next section
and Chapt. 8). On the downside, this also means that the modeling has to be done
manually, which may become difficult for very large or complex systems, or when
the modeling step has to be done anew. The latter typically becomes necessary
when model checking is successful, i.e., when an error is found, and the problem is
fixed in the system under test. Then, the new system candidate has to be checked
again, which requires a new or modified system model.
In the case of the already mentioned software model checking, the likelihood of

such changes is very high, considering that modifying a program is simple. However,
this is not necessarily a problem for model checking, as the changes of machine
state associated with instructions in any programming or machine-level language
are predictable, either from the language definition or the processor data sheet.
Thus, it is possible to automate the modeling step for software.
Examples for tools that provide automatic modeling are Java PathFinder [33,

83] (Java source code and Java bytecode), MoonWalker [1] (CIL bytecode of
Microsoft .NET programs), CBMC [17] (ANSI C), and [mc]square [68] (micro-
controller binary code). The internal approaches in these tools vary profoundly,
as for instance later versions of Java PathFinder and [mc]square interpret ma-
chine code for building state spaces, whereas CBMC translates the source code of
the program into a boolean formula and delegates the actual checking to a SAT
solver.

2.4.3 Verification

In the verification phase, the formalized specification and the system model serve
as input for the model checking algorithm. Fig. 2.1 illustrates the procedure. De-
pending on the algorithm used, either a subset or the entire reachable state space
is created and checked for property violations. Eventually, there may be three pos-
sible results. One of these is that the system model satisfies the formula, which
means that no property violation was found. Another possible result represents
the opposite case: some system state or a set of states violates the formula. In
that case the model checker may attempt to create a counterexample (see below).
Finally, the third possible situation is that the model checking algorithm was still
active but ran out of memory, which resulted in a premature end of the verification.
Such a situation may occur due to the state explosion problem, which refers to a
rapid growth of the number of sytem states. This growth may be exponential in
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Property Specification

Violated +
Counterexample

System Requirements

System Model

Model Checking

FormalizationModeling

Satisfied
Out of
memory

Figure 2.1: Model checking procedure as described by Baier and Katoen [9] and
Schlich [68]
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the number of involved concurrent components in the system model, for instance
the number of states of individual automata in an automaton-based system model.
Counterexamples illustrate the causes of errors, that is, property violations. They

consist of a sequence of steps starting from an initial state, up to a state where a
property from the specification no longer holds true. Hence, they provide an invalu-
able insight into problematic system behavior, which helps the developer reduce the
number of remaining errors. This is fundamentally different from the outcome of
testing, where only the effects of errors become visible, but not their origins.
Creating a counterexample is possible under certain circumstances, and its com-

plexity depends highly on the logics used for specification. For automata-based ltl
model checking [9], creating a counterexample imposes virtually no additional cost,
as the necessary steps are part of the verification already. However, ltl verification
is PSPACE-complete [9, 16], and therefore already very complex. On the other
hand, ctl model checking does not automatically create a counterexample, which
is why creating one requires additional effort. This is alleviated by the possibility
to model check formulas with less time and space complexity than for ltl. Still, it
is possible that some abstractions used during the verification process require spe-
cial treatment of the state space created by the actual model checking algorithm
in order to extract a counterexample from it, or that such a creation is altogether
infeasible. One example for such an abstraction is path reduction (cf. Chapt. 8).

2.5 Static Analysis

Static analyses gather information about a program without actually executing it.
Hence, the object of the analysis is not the binary program, as would be the case for
dynamic approaches like testing. Instead, static analysis focuses on the source code.
A variety of techniques exist, and some authors also include manual approaches such
as code inspections, reviews, or code metrics (e.g. Liggesmeyer [40]). In this section,
however, we do not consider these. Instead, we focus on automated techniques as
described by Nielson et al. [49] and Aho et al. [2]. This section is based primarily
on these two sources.

2.5.1 Motivation

Static analyses are extensively used in compilers, with the intention of optimizing
a program at compile time. It is possible, for instance, to detect unnecessary
and repeated computations, unreachable code, or loop-invariant code, i.e., code
that could be moved out of a loop without altering the program semantics. Some
examples for such uses are described below in this section.
Static analysis can also be used in stand-alone tools. Possible fields of application

are vulnerability scanning [2] and the examination of timing behavior. For the latter
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and some additional examples, we refer to the section on related work in Chapter 6.

2.5.2 Control Flow Analysis

The goal of control flow analysis is to create a control flow graph (CFG) from a
program. This graph illustrates the relation between instructions in the program,
that is, possible sucessors, predecessors, loops and branches. Data flow analyses,
which we describe below, typically operate on control flow graphs.
Creating the control flow graph can itself already be a challenging analysis. This

is especially acute when analysing binary code. Under such circumstances, the
successor relation is not always clear, for example due to the existence of indirect
jumps. In some cases, like the analysis of potentially malicious code, the program
may also be designed such that the control flow is not obvious.

2.5.3 Data Flow Analysis

As described by Nielson et al., data flow analyses can be conducted given

• a CFG, or flow relation

• a suitable lattice for representing the desired program properties

• a set of rules describing how program locations modify the analysis informa-
tion

Then, it is possible to derive an equation system from the graph. The solution of
the equation system can be obtained by a fixed point iteration.
Some examples of data flow analyses, and how they relate to specific optimiza-

tions in compiler construction, are listed below. These are taken from [2]:

• Live Variable Analysis: computes, for all program locations, the set of vari-
ables whose values are going to be read. Any variable not contained therein
will either be overwritten before it is read the next time, or it will never be
read again before the end of the program. Such variables are called dead.
The corresponding code optimization employed by a compiler is called Dead
Code Elimination: assignments to a dead variable can be removed from the
program without altering the program semantics.

• Reaching Definitions Analysis: computes, for all program locations and all
variables within scope, the locations at which these variables were last as-
signed a value (i.e., were defined). This analysis allows to determine potential
values of variables at given program locations. In case a variable is found to
have only a single possible value, it can be used by an optimization called
constant propagation, which replaces variables by their known value.
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• Available Expressions Analysis: computes the set of expressions that are cer-
tain to have been computed on the way to any program location. For an
expression to remain in the set for a location, it must still evaluate to the
same value, that is, no subexpression or variable contained therein may have
changed. Using this analysis, it is possible to reuse previously computed
expressions without computing their value again. The corresponding opti-
mization is called Common Subexpression Elimination.

2.6 [mc]square

[mc]square is a model checker for microcontroller binary code, which was origi-
nally developed by Schlich [68] at the Embedded Software Laboratory of RWTH
Aachen University in Germany. Over the years, several students of RWTH Aachen
University as well as external partners contributed to it.

[mc]square operates on disassembled binary programs and follows a hardware-
dependent approach: instead of providing a general purpose input language as an
interface to the user, [mc]square can directly load the files intended to be deployed
to the target microcontroller. Currently, it supports the Atmel ATmega16 and
ATmega644, Intel MCS-51, and the Renesas R8C \23. Furthermore, it supports
programs for Programable Logic Controllers (PLCs) written in Instruction List
(IL) [84]. Previously supported platforms, for which support has been discontinued
in [mc]square, comprise the Atmel ATmega128 and Infineon XC167. Concerning
temporal logics used for specifying properties, [mc]square supports ctl. Formulas
may contain atomic propositions about virtually any memory location occurring in
a microcontroller, including registers and main memory.
An overview of the model checking process implemented in [mc]square is shown

in Fig. 2.2. Programs to be checked for property violations serve as the input
to the tool, along with a formula. In a first processing step, both of these are
parsed by suitable parsers and then passed to the core component of [mc]square,
which consists of the actual model checking algorithm steering the verification, a
simulator, and the state space. After termination of the model checking algorithm,
and depending on the result, the counterexample generator may be triggered to
extract a counterexample or a witness from the statespace created so far.
Programs are given as binary files in container formats such as ELF [80], Intel

HEX, or Motorola S-Record. It is possible though not necessary to also provide the
corresponding C source files, which, if present, can be used by [mc]square to create
counterexamples that directly relate to source code lines. Otherwise, [mc]square
is still able to point out problems with the input program, but will have to display
errors in assembly only instead. In Fig. 2.2, the source code files are depicted as
optional files.
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Figure 2.2: Core components of the model checking process in [mc]square. The
figure was originally designed by Schlich and since then used in most
publications on [mc]square, including our own.

Both program and temporal formula may be preprocessed by a static analyzer.
The task of this component is to discover useful pieces of information about the
program and to annotate it accordingly. Useful in this context relates to possible
reductions of the state space size during the actual model checking, for instance by
determining when values are no longer required, or which parts of the program are
entirely irrelevant for the result and can safely be omitted. We give an overview of
the effects of these techniques and of related work in Chapter 8, Abstraction.
Simulators are used to create the state space in [mc]square. The tool provides

a simulator for each of the supported platforms. At a glance, the mode of operation
of these simulators resembles that of regular simulators, such as those provided by
hardware vendors: they contain a model of the hardware, execute programs by
applying the semantics of instructions to the aforementioned model, and simulate
the effects of interrupts and on-chip peripheral devices. However, there are also
several differences due to the requirements in state space building:

• Simulators in [mc]square need to support nondeterminism. Nondeterminism
arises from the necessity of creating an over-approximation of the behavior
of the real hardware, and is introduced into the system primarily from two
sources: first, the assumption that the environment of the microcontroller
may exhibit any behavior, and second, from interrupts, that may occur but
may also not occur.

• Abstraction from time. The model checking algorithm used in [mc]square is
based on the assumption that there is no time except for a partial ordering of
events. This means that simulators do not have to keep track of the amount
of time elapsed since a certain event, such as the start of the simulation, and
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states accordingly do not have to store it. Hence, for states to be identi-
cal, it suffices that all memory locations are identical. This design decision
in [mc]square eliminates the need for real time model checking algorithms,
and also has the beneficial effect that states reachable in a loop may have
to be stored only once. Therefore, the absence of time facilitates the veri-
fication process. A disadvantage, though, is that all timing-related on-chip
peripherals also have to be considered to be able to show nondeterministic
behavior. Therefore, timer and counter registers are also possible sources for
nondeterminism.

• Third, the simulation should omit information irrelevant for the verification
process. A very accurate simulation of internal processes of a device, such
as the states of an analog to digital converter (A/D converter) may be help-
ful when developing circuitry containing the actual device, but in the realm
of model checking, this additional information may increase the number of
different states that have be stored. Therefore, simulators in [mc]square
do usually not simulate devices as accurately as the simulators provided by
hardware manufacturers.

• Finally, the state of the hardware is frequently stored to and restored from the
state space, requiring simulators in [mc]square to perform these two steps
very quickly. This requirement excludes a complex object oriented internal
data structure for state representations, as traversing such structures is very
time-consuming. General purpose simulators from hardware vendors usually
never have to perform save and restore steps, which is why they are not
optimized for it, and consequently, perform poorly in this regard.

If desired, it is possible to provide a more accurate model of the environment in
order to reduce the over-approximation of the behavior of external devices. Such a
model is called a user defined environment (UDE), which we introduced in an ear-
lier publication [70]. The UDE provides details about possible values of input ports
and also internal devices such as timers, which are usually modeled using nonde-
terminism. UDEs are attached to the simulator component and extend it, without
being visible to other parts of [mc]square. Without a UDE, model checking is
still possible, as providing one is strictly optional.

The state creation process in [mc]square works as follows:

• Load a state from the state space into the simulator.

• Determine whether any nondeterministic bits need to be assigned a determin-
istic value, that is, either 0 or 1.
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• For each assignment, decide whether it indicates the occurrence of an inter-
rupt. If this is the case, then simulate the effect of that interrupt. Otherwise,
proceed with the current instruction instead.

• Check atomic propositions for the state reached.

• Store resulting states in the state space. Add successor edges from the original
state to the newly created ones.

Nondeterministic bits in the simulation represent either a 0 or a 1. Under certain
circumstances, it is necessary to determine the actual value of such a location before
simulation may proceed. A very frequent example of this is the decision whether a
flag bit used by an active interrupt is set or not, that is, whether simulation has to
continue in the way expected for an interrupt occurred or in the regular way. We call
the process of determining the deterministic value, in compliance with Schlich [68],
instantiation or determinization.
Instantiation of n nondeterministic bits results in 2n possible assignments, and

consequently, states. Thus, the number of states increases exponentially in the
number of instantiated bits, and consecutive instantiations typically result in state
explosion. Therefore, several abstractions are implemented in [mc]square. Details
on these are given in Chapter 8.
As pointed out before, [mc]square can create counterexamples and witnesses

if necessary. These can be inspected on the GUI in different views: first of all, in
either the assembly code or in the C code. In the presence of the source code and
suitable debug information, these two panels are also linked, such that stepping
through the states of the counterexample in one of the panels also updates the
position in the other. Next, the counterexample can also be displayed graphically,
as a sequence of states in the state space. Finally, it can be shown in the control
flow graph on the static analyzer panel.
Apart from model checking, [mc]square also provides means for manual sim-

ulation. The developer may use the aforementioned C and assembly code panels
to step through the program and inspect the reachable states. When interrupts
are enabled, or nondeterministic choices on data occur, the simulator on the GUI
allows to select a specific trace through the program. It is noteworthy that due
to the state space being used for storing all seen states, this debugger also allows
stepping backwards, which is a feature not normally found in software debuggers.
In particular, this feature enables the developer to step backwards to points where
choices were required (i.e., nondeterminism had to be resolved), and evaluate the
effects of different choices.
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The intention of this chapter is to point out the reasons for describing hardware,
give an overview of available approaches, and establish the link to model checking
of software for embedded systems. The latter step directly leads to a motivation of
our research.
Several means for describing hardware were developed over the past decades, with

different intentions. The most frequent reasons were either retargeting of existing
tools, exploration of possible hardware designs, actually designing hardware, or
simulating devices with the intention of developing software for these platforms.
We provide an overview of these different goals in the next section. Section 3.2
contains a survey of existing approaches, which were designed to meet these goals.
In the third section, we point out why it is desirable to integrate a means for de-

scribing hardware into a model checker. Briefly, the issue encountered in the model
checker [mc]square is its hardware-dependent approach. As [mc]square relies on
simulators to build state spaces, it benefits from a very accurate model, and can
provide exact and easy to understand counterxamples. On the downside, this ap-
proach renders it inherently hardware-dependent, and adapting it to new platforms
is rather time-consuming. The requirements analysis in Section 3.3 therefore points
out the features we deem necessary to remedy this hardware dependency.

3.1 Reasons for Describing Hardware

Within the scope of this section, we focus solely on the reasons for describing
hardware designs by means of software. Examples for actual systems are given in
the next section because many of these systems may be used for more than one
area of application.
Hardware description languages can be classified in various ways. Some of them

provide means for a low-level description of individual circuits and can be synthe-
sized to actual hardware. The most prominent members of this class are VHDL
and Verilog [42, 48], which can be used for designing devices and simulating their
behavior on the level of signals. Other languages aim at the description of more spe-
cific classes of devices, such as processors. Unlike VHDL, these languages usually
assume, for instance, that there are instructions to be processed by a device, with
the consequence that there must be some means for loading, decoding, and execut-
ing them. Other typical assumptions may include the existence of special-purpose
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memory locations (registers), and among these, registers like a program counter
and a stack pointer. For reasons pointed out below, we focus on processor-oriented
languages.
Beyond this very coarse categorization, with VHDL / Verilog on one side, and

special purpose languages for processors on the other, it is possible to create finer
categories for the latter. A categorization which we consider helpful is presented by
Halambi et. al. [32]. In their publication, they focus on systems on chip, and use the
term architecture description language (ADL) for what we call processor-oriented.
Their classification scheme is based on whether a language is designed primarily
to describe the behavior of a device, or whether it rather focuses on describing its
structure. Languages that allow, to some extent, to describe both, they call mixed
level architecture description languages.
Another method of distinguishing languages is the level of abstraction they pro-

vide. VHDL provides a very low-level means of describing, based on state ma-
chines, clock cycles, and assignments to signals. Another level would be the register
transfer level. On this level, actions performed by the hardware are described as
assignments of values to individual registers. Machine instructions thus become a
sequence of such assignments. Languages on this level are typically difficult to read
and write. CSDL [59] is a language developed at the university of Virginia within
the Zephyr compiler project. It consists of four languages, one of which is λ−RTL.
This language is a register-transfer level language, but it already contains some im-
provements over plain RTL approaches for the convenience of a human developer.
Contrasting to these low-level approaches, languages such as SystemC [42] resemble
typical general-purpose programming languages.

3.1.1 Tool Retargeting

The idea of avoiding reimplementation effort by means of high-level languages can
be traced back at least to the advent of Unix and the C programming language.
According to Tanenbaum [77], from which this description of the history of Unix
and C is taken, the motivation for designing C was to be able to reimplement Unix
in a language that would ease porting the operating system to a new architecture.
Instead of reimplementing the entire system, the necessary steps would be reduced
to creating a C compiler that could generate code for the new architecture, and
adapt some hardware-dependent parts written in assembler. Johnson eventually
succeeded in creating such a portable C compiler. For details and references, we
refer to the overview by Tanenbaum.
As C is still a relevant language in the operating systems and embedded systems

domain, C compilers are still relevant as well. Therefore, it is necessary to create
C compilers for new platforms. There are two approaches to this:

• retargetable C compilers
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• generation of C compilers

An example for a retargetable C compiler is the GNU Compiler Collection, com-
monly referred to as GCC [24]. GCC has a backend that uses so-called machine
description files, which are necessary for translating the intermediate code into bi-
nary code for the target machine. Supplying a new set of these files is therefore
sufficient for adding support for a new platform to GCC. The other approach would
be the generation of C compilers. Certain hardware description languages and as-
sociated toolkits facilitate the retargeting of C compilers, or even create entire tool
chains consisting of compilers, assemblers, linkers, and profilers. Some of these are
listed in the next section.

3.1.2 Synthesis and Simulation of Actual Hardware

As pointed out in the introduction of this chapter, languages like VHDL and Verilog
provide means for describing hardware, and also synthesizing descriptions to actual
hardware. For instance, it is possible to create a VHDL description that can be syn-
thesized into an FPGA or CPLD. The advantage of such techniques is that changing
the hardware is simple, compared to creating application-specific integrated circuits
(ASICs), which are hard-wired for a specific application. Beneficial effects are on
the one hand, that designing devices is easier, as no time-consuming manufacturing
step is necessary, and on the other hand, it may be possible to modify a device that
has already been shipped to customers.
With regard to simulation, however, there are also severe disadvantages when

using VHDL or Verilog. As pointed out for instance by Pees et al. [55], these de-
scriptions contain far too many details, which are not needed for evaluating new
designs. Apart from the consequence that developers thus need to implement as-
pects of the hardware they are not interested in at that stage of design, this also
reduces simulation speed. Finally, another important aspect pointed out by Pees
et al. is that it rather difficult to extract the instruction set from such descriptions.
VHDL descriptions can describe the components of the machine that fetch, decode
and execute instructions, but there is no need nor means for describing the instruc-
tions themselves. With regard to the machine, they are just input, i.e., data, but
not entities of the hardware description.

3.1.3 Design Space Exploration

Design space exploration refers to the development of a device for a specific scenario.
A new device is tailored such that it meets its requirements. Often, this term is
used together with the term hardware-software co-design. The latter refers to a
division of tasks that need to be performed by the system into tasks that need
to be executed by specialized hardware, and tasks that are better to be realized
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in software. For instance, designing an ASIC with specialized hardware devices
may reduce power consumption, or enable it to perform time-critical tasks such as
language processing without having to use a processor core that is too powerful
and therefore, expensive. Other functionality that is prone to modification, or in
general difficult to implement in hardware, should instead be handled by software.
Consequently, design space exploration involves the modification of the target

processor, which in turn implies the modification of software tools designed for
it. The latter typically consist of an assembler, a compiler (in most cases, C),
and of tools for evaluating the performance of the overall system, e.g. profilers.
While the modification of the processor design could be handled in general-purpose
hardware description languages, the subsequent re-implementation of the software
tool chain cannot be handled manually because the manual overhead would seriously
restrict the modifications to the hardware. Hence, some languages and toolchains
were specifically designed to allow for describing the hardware, and generating the
necessary tool chain from the same description.
Tools like the CoWare Processor Designer [18], or the MESCAL project [37] were

developed to support this design process.

3.1.4 Verification of Hardware

Faults in hardware may have serious and costly consequences, e.g. the Pentium
FDIV bug.The latter has actually become a textbook example for motivating the
use of formal methods, such as model checking and static analysis (e.g. [9]), on
hardware designs [9, 16]. Unlike testing, these techniques typically do not operate
on the physical device, which is why they need to be provided with some form of
description of the hardware.
Apart from faults, there are other reasons for examining hardware descriptions. A

very frequently found example is the analysis of worst case execution time (WCET)
properties. Determining the maximum amount of time it takes for a device to
execute certain instructions is important when deciding whether a system can be
guaranteed to respond to an input within a given amount of time. Thus, WCET
properties directly relate to the field of real-time computing.

3.2 Survey of Existing Approaches

LISA [55] is a language that started as a pipeline description language. In the
classification scheme of Halambi et al., LISA is a mixed-level architecture descrip-
tion language, meaning that it focuses both on the structure of a device and on
the behavior, i.e., the instruction set. The language LISA is part of a commercial
product by CoWare, now part of Synopsys [18]. Given a LISA description, the
tool chain allows the developer to automatically generate tools such as compilers,
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assemblers, profilers, and simulators. Simulators can be both cycle-accurate and
instruction-accurate.

EXPRESSION is an architecture description language developed at the Univer-
sity of California, Irvine [25, 31, 32]. It was designed for design space exploration
of embedded systems on chip (SoC) and concentrates on both the structure and
the behavior of processor-based designs. EXPRESSION can be used for gener-
ating retargetable compilers as well as functional (i.e., instruction-accurate) and
cycle-accurate simulators.

ISDL is a language created at MIT, the main scope of which is the description
of Very Long Instruction Word (VLIW) architectures [30]. The non-abbreviated
name is Instruction Set Description Language. It was explicitly designed to support
design space exploration, and can be used to generate a variety of tools. Tools
named in publications on ISDL include an assembler, a compiler, and a so-called
instruction-level simulator. The latter is another synonym for instruction-accurate
simulation, also called functional simulation.

Another language abbreviated ISDL was developed at the University of Califor-
nia, LA, by Titzer and Palsberg. In a technical report [82] on the language and
system, the language was also called Isildur. Despite the same naming, there is
no connection between the two ISDL languages. Isildur was used in the AVRora
project, which aims at simulating sensor nodes, where it was used to describe the
instruction set of the Atmel AVR family of microcontrollers. Apparently, the lan-
guage emphasizes the instruction set, but provides almost no means for describing
the structural aspects of a device.

MADL stands for Mescal Architecture Description Language, and was developed
at Princeton [37, 58]. It is based on a two layer approach, which are called the core
layer and the annotation layer. The core layer contains a description of machine
behavior in the form of finite automata, which are used to represent the state of
the available instructions. Instructions can be bound to different pipeline states
of the target machine, and there are no assumptions about the structure of the
pipeline. Hence, MADL appears to be suitable for describing any kind of pipelined
architecture. The second layer, called annotation layer, relates to different software
tools that can be generated. Hence, this separation of concerns makes the approach
very flexible, as it avoids mixing tool-specific and device-specific information. Tools
generated from MADL descriptions include cycle-accurate and instruction-accurate
simulators, a register allocator, and a reservation table scheduler. In this respect,
MADL appears to be about as flexible as EXPRESSION and LISA.

25



3 Hardware Descriptions

3.3 Requirements Analysis

[mc]square is an assembly code model checker, which builds state spaces using
simulators, which are used to simulate microcontrollers. Based on experience from
adding support for new platforms, it is possible to estimate the effort for manually
implementing such a simulator. The Atmel ATmega128 and XC167 simulators
were implemented by diploma thesis students [47, 67], and the 8051 simulator was
implemented by Reinbacher partly before and partly within a master’s thesis [61–
63]. At the end of these theses, the simulators were operative, but not all of the
peripherals had been implemented. Depending on whether there was interest in
further uses of the simulator, it was then necessary to continue development, ending
up in a total effort of about one year for a single full-time developer.
Thus, implementing these simulators manually is too time-consuming, especially

for using [mc]square in industrial settings. Our motivation was therefore to reduce
this effort. We intended to use a hardware description language, and to generate
simulators instead of manually implementing them. As pointed out in Section 2.6,
simulators in [mc]square differ from simulators used in other scenarios. Based
on the list of characteristics, we deduced a set of functional requirements for any
generated simulators:

• It must be possible to generate instruction-accurate simulators.

• The language must provide means for describing abstractions, such that gen-
erated simulators support these out of the box.

• It must be possible to integrate simulators into [mc]square.

• The range of devices that can be described must cover at least all the existing
platforms in [mc]square.

• Both language and simulators must natively handle nondeterminism.

• It must be possible to also generate a static analyzer from the description.

• There must be no licensing issues restricting the manipulation of the language,
the processing chain, or the distribution of simulators.

Furthermore, we deem the following non-functional requirements necessary:

• Generated simulators must be fast, i.e. support load and store operations for
their entire internal state.

• The effort for creating a simulator description must be considerably lower
than six months.
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• The developer must be able to decide which and how many details he wants
to integrate into a description.

Starting from these requirements, we then conducted a survey of the available
languages and generation systems. As we intended to eventually create both simula-
tor and static analyzer for a platform, we concluded that a layered architecture like
the one used in MADL would suit our purposes. However, the language emphasizes
the pipeline of a processor, whereas microcontrollers seldom feature any pipelining,
being focussed on low cost rather than high performance. A similar argument ap-
plies to LISA, which is also proprietary, and therefore not very easy to modify in
case this should have become necessary. Furthermore, work on MADL appeared to
have ceased, and the fragments available to the public were not operative.
Considering that we would likely have to modify the language during our research,

we decided for the language Isildur used in the AVRora project. This language had
been developed up to a point where describing microcontroller instruction sets had
become feasible, and its developer, Ben Titzer, granted us the right to modify it at
will. Furthermore, there were previous experiences with AVRora in [mc]square,
as the original simulator used in [mc]square was the AVRora simulator. There
was no complete processing chain, except for a parser and a few fragments of the
abstract syntax tree. Thus, this language appeared to be suitable.
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In this chapter, we summarize the most important aspects of the synthesis system.
First, we briefly point out its features and its architecture. Next, we focus on the
concepts used for state space building, or simulation, and those relevant for static
analysis. The chapter concludes with an overview of the concept of abstraction.
These illustrations are relevant for the subsequent chapters, in which we detail how
we realized them.

4.1 Features

The main features of our simulator synthesis system are:

• Generation of simulators

– New language for the description of microcontrollers: Sgdl

– Description of simulators in Sgdl considerably shorter than full imple-
mentation, ratio approximately 1 line of code (LOC) in Sgdl for 10 lines
of generated code

– Considerably faster development: 1 week for basic MCS-51 implementa-
tion

• Input assist

– Static analyzer for Sgdl integrated into the synthesis system, which can
automatically deduce information about a platform; reduces need for
explicit descriptions

– Code templates for the Sgdl preprocessor to accelerate development

– Syntax highlighting for Sgdl in the open source editor Programmer’s
Notepad [75]

• Supported platforms

– Atmel ATmega16

– Atmel ATmega644

– Intel MCS-51
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– Library of supported instructions for all Atmel AVR microcontrollers,
automatically extracted from data sheets

• Support for binary file formats

– Executable and Linkable Format (ELF)

– Intel HEX file format

• Automatic and assisted semi-automatic generation of abstraction techniques

– Lazy Stack Evaluation

– On-the-Fly Path Reduction

– Dead Variable Reduction

– Delayed Nondeterminism

– Generated simulators support static analysis of programs to allow further
abstractions

4.2 Architecture

In this section, we describe the architecture of the synthesis system as a whole.
On this level, elements of the architecture include a language for describing the
input, a processing tool chain, and eventually, generated components. These indi-
vidual elements of the architecture refer to complex systems, each of which has an
architecture of its own, which we detail in subsequent chapters.
Fig. 4.1 illustrates the top-level architecture. Generating state space generators

for microcontrollers, that is, simulators combined with an optional static analyzer,
requires first of all a means for describing the relevant aspects of microcontroller
devices. As our requirements were not met by any of the ADLs presented so far, we
have decided to develop a new ADL for this purpose, which is called Sgdl. An Sgdl
description is processed by the Sgdl compiler contained in the synthesis framework.
The compiler generates an executable simulator and a static analyzer for the target
microcontroller. Additionally, it creates glue code interfacing these two components
to the other parts of [mc]square, especially the core static analyzer, the model
checker, and the graphical user interface.
In the following, we provide a brief overview of these major components of the

system. Details are given in the respective chapters.

4.2.1 Description of Input

For a given device, we need to capture at least the instruction set, resources (i.e.,
memories), the relationship between memories, and the interrupt system. Moreover,
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SGDL Description

SGDL Compiler

Generated Simulator Generated Static Analyzer

Glue Code

[mc]square

Figure 4.1: Architecture of the synthesis system. Thin arrows illustrate the pro-
cessing direction at compile time, whereas thick arrows show data flow
in the generated system, that is, at runtime.

we need a description of possibly nondeterministic behavior, that is, situations in
which we cannot predict the exact behavior, but need to approximate. This involves
the following aspects:

• All cases in which the simulated microcontroller reads values from its envi-
ronment. Behavior of external devices cannot be predicted, and therefore,
for the sake of preserving an over-approximation, we need to consider it as
possible that any value is sent from the environment to the microcontroller.
Under certain circumstances, it is possible to reduce the over-approximation,
as was shown by us in a previous publication [70].

• Occurrence of interrupts. In our discrete timing model, whenever the simu-
lated device can execute an instruction, we also need to consider the possibility
that an event associated with an active interrupt occurs. Such an event may
result in a branch of the computation to the interrupt handler. Since such an
event may, but not necessarily must occur, there are two possible continua-
tions of the current computation path, i.e., there is a nondeterministic choice.
The description of the hardware has to provide ample means for describing
the event sources of interrupts, the condition leading to interrupts, and the
actions to perform in case the system decides that an interrupt has occurred.
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• Timing. [mc]square conducts discrete model checking. Hence, transitions
in the Kripke structure are either related to the execution of instructions,
the occurrence of interrupts, or some step performed by a concurrent on-chip
peripheral changing its state. Opposed to this, in continuous-time model
checkers such as UPPAAL [39], the passing of time already leads to new
states. While the approach in [mc]square is therefore less likely to result
in state explosion, it has the obvious disadvantage that all timing-related
information is lost. Thus, timers on the microcontroller cannot be modeled
accurately, and the value of their timer/counter registers must be considered
nondeterministic whenever the timer/counter is active.

• Parts of the system intentionally modeled using nondeterminism. An accurate
description of machine states can have disadvantageous effects. For instance,
an analog to digital converter (ADC) has several internal states which it
assumes during a conversion. Modeling all of these results in several distin-
guished states, each of which needs to be stored in the state space. However,
from the stance of instruction-accurate simulation, the internal states of the
ADC may be irrelevant. Hence, a less accurate modeling, in which starting
the ADC sets its result register and conversion finished flag to nondeterminis-
tic, can cause many of the intermediate states to vanish, and therefore counter
the state explosion problem. Consequently, our description mechanism has to
provide means for marking any memory location as nondeterministic to allow
for such simplified modeling.

In Sections 4.3 and 4.4, we detail several further requirements relevant for simu-
lation and static analysis. Chapter 5 describes the language we developed to meet
these requirements.

4.2.2 Processing the Input

The input is processed by the Sgdl compiler, which is part of the synthesis frame-
work. Besides processing the hardware description and generating the state space
generator, the compiler also contains a subcompiler for a specialized subset of
Sgdl. The subset contains language elements for describing certain properties
of the generated code, such as its location in the [mc]square package hierarchy,
and how to derive the names of the main classes. Using a description in this sub-
language, the Sgdl compiler can automatically integrate a newly created simulator
into [mc]square. Details on the Sgdl compiler are provided in Chapt. 6.
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4.2.3 Generated State Space Generators

Generated simulators consist of generated code and of code in libraries. The gen-
erated code is specific to the description in the input, whereas the library code
represents parts of simulators that are comparatively independent of an actual
hardware, and can therefore be reused. Examples for the latter include storage
classes for memories, generalized data type classes, and classes for creating bit
patterns, which are used in resolving nondeterminism.

4.3 State Space Building

Our generated simulators create the state space in the same way as the existing
simulators that were implemented manually. That is, they are initialized to a state
that should be equivalent to the reset state of the physical device. Machine states
can be changed by instructions, interrupts, and internal devices. Sgdl provides
means for describing all of these. A detailed description of the mode of operation
of the generated simulators is given in Chapter 7.

4.4 Static Analyzers

There are two static analyzers involved with the synthesis system:

• In order to support the model checking process, [mc]square provides a frame-
work for static analysis of microcontroller code. This framework can be used
to perform a preprocessing and annotation of a microcontroller program, be-
fore the model checking is started. Information obtained during the static
analysis can then be used to reduce the size of the state space.

• Sgdl itself can be analyzed by a static analyzer that is integrated into the
Sgdl compiler. By means of this analyzer, it is often possible to omit some
explicit descriptions of hardware behavior, as it can be derived from the in-
formation that is already present.

Analyzers for microcontroller code, which are based on the framework in [mc]-
square, are too different from analyzers for high-level languages such as Sgdl.
Therefore, the two analyzers do not share any code.
The framework in [mc]square facilitates the creation of a static analyzer for

a new platform. Still, there is some effort involved in creating such an operative
analyzer. Therefore, the Sgdl compiler can generate the necessary code from an
Sgdl description, provided the necessary information is available in the description.
In case it is not available in an explicit form (i.e., implemented by the simulator
developer), the analyzer in the Sgdl compiler, Sgdl-Sta, will try to obtain it. If
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that should not yield the required result, the generated analyzer may be inoperative,
either as a whole or in parts.
The generation of static analyzers is covered in Sect. 8.5. Sgdl-Sta is illustrated

in Sect. 6.5.

4.5 Abstraction

As model checking in general suffers from the state explosion problem, we need
to integrate abstractions into our generated simulators. Abstractions help reduce
the number of states that have to be stored during model checking, and in some
cases they even reduce the number of states that have to be created. In the ideal
case, such abstractions should be generated automatically from the description of
the platform, that is, without requiring additional information provided by the
simulator developer. The intention behind this is that ideally, a developer capable
of understanding microcontroller data sheets, should also be able to implement
simulators for model checking. The alternative would be to require him to be an
expert both in microcontrollers and in formal verification. Besides the resulting
higher cost of simulator implementation, this would also result in reimplementation
of existing abstractions, which should be avoided wherever applicable.
The Sgdl compiler can actually create some abstractions completely automati-

cally, e.g. Path Reduction. Others, like Delayed Nondeterminism and Dead Vari-
able Reduction, require some additional information that has to be provided by
the developer, but the synthesis system at least assists in generating the actual ab-
straction from the high-level information. Finally, some abstractions, like the ADC
example in Sect. 4.2, where irrelevant intermediate states of an internal device are
abstracted away, depend on the level of precision that is desired for verification. For
such abstractions, it is still necessary for the developer to carefully design the sim-
ulator to suit his needs, as the Sgdl system cannot possibly guess which precision
is adequate.
A thorough introduction into the available abstractions and the concept of ab-

straction in general is provided in Chapter 8.
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Language

The language that serves as input for our synthesis system is called State Space
Generator Description Language (Sgdl). Sgdl was originally based on the Isildur
language (Isdl) from the AVRora project [81, 82], which served as a starting point
for our research. AVRora is a project aiming at a cycle-accurate simulation of sensor
networks, initiated by Titzer. The original intention for creating Isdl was to reduce
the effort for adding support for new types of sensor nodes. However, the project
restricted itself to supporting certain specific types of nodes, one of which is based
on the Atmel AVR family of microcontrollers. Thus, there was no need to foster
Isdl, which was therefore dropped in a relatively early stage of development. Up to
that point, however, the project had already produced a complete Isdl description
of the AVR instruction set. The description was not complete in that resources
were not defined, interrupts were missing, and there was no means of restricting
the instruction set to a subset supported by a specific device.
State space building in [mc]square was originally based on the AVRora AT-

mega16 simulator, which was later replaced by a reimplementation that better suits
the needs of a model checker. For this reason, we decided to design our new hard-
ware description language starting from Isdl. Bogosavljevic [11] extended Isdl in
his master’s thesis and created a first version of the synthesis system that is now the
Sgdl compiler. The resulting language was then called Dices, and subsequently
renamed to Sgdl.
Even though there are still similarities between the two languages, Isdl and Sgdl

are not compatible. Many features have been invented specifically for Sgdl, such as
the mechanisms for describing resources (i.e., memories, interrupts and peripherals),
guards for enabling instructions, or all language elements related to abstraction.
Features inherited from Isdl relate mostly to the description of instructions and
subroutines, though most of these have been extended or modified as well. This
chapter describes syntax and semantics of Sgdl in detail.

5.1 Overview

An Sgdl description of a microcontroller consists of these major components, which
are detailed in the following sections:
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• header

• memory description

• instruction set description

• interrupt system description

• declaration of atomics

• specification of loaders

The header contains the name of the architecture, and is the only element out-
side any block. All other elements are contained within the brackets of the main
block. The memory description declares all memories present in the described
microcontroller. From this, we generate the resource model used in simulation.
The instruction set description describes all instructions supported by the micro-

controller, and may also include additional helper methods. Instructions operate
on the resource model and modify it.
All interrupts are described in the interrupt description. Interrupts can also

modify the resource model.
Atomics assign names to memory locations and can be used in ctl formulas.

Furthermore, they are also used for display in the [mc]square GUI. They appear
in the memory monitor on the simulation panel, where they are shown in tooltips
when the mouse hovers over a named location.
Finally, a loader specification indicates that the microcontroller simulator should

be able to read programs from a specific file format. The information in the loader
section describes how to generate the necessary binary file loader, which can extract
the instruction stream from a container format such as ELF [80], and write it to
the correct location in the program memory.

5.2 Memory Description

Memory descriptions in Sgdl consist of two mandatory components: memory dec-
laration and memory access. A memory declaration is in principle equivalent to an
array declaration in any imperative programming language. However, the declared
array can never be accessed directly. For accessing the memory, for instance from
within an instruction, a memory alias is required. The alias contains all necessary
information for accessing the memory cell, e.g. whether the memory is accessed
bytewise or wordwise, the size of a word, the endianness, and how to interpret the
content of the cell. This abstraction layer allows for different ways of accessing
memory cells, which is required in some architectures. For instance, on the At-
mel ATmega16, the register bank is mapped into the SRAM address space [5, 6].
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0 1 1 0 0 1 0 0 0 0 1 0 1 0 0 1
a a+1

Ascending addresses

Figure 5.1: Interpretation of memory contents. The contents of the 8 bit cells a
and a + 1 can be read as either two separate 8 bit values or a single
16 bit value. Furthermore, the ordering of the bytes may be swapped,
with either a or a + 1 as the lowest byte in a 16 bit value. Other
interpretations are also possible.

Hence, accessing the register bank (seemingly) modifies the SRAM, and vice versa.
Using aliases, these different addressing modes can be resolved without the need for
conditional access code (i.e., if-blocks). Memory aliases are semantically equivalent
to typed pointers in languages such as C and Pascal.

Example 5.1. Interpretation of memory contents
Let a be an address in a memory space, a ∈ N. Let val(a) denote the value of the
memory cell at address a. All cells have a width of eight bits.
Valuation. Let val(a) := 100 = (01100100)2, val(a+ 1) := 41 = (00101001)2.
The memory layout and representation are depicted in Fig. 5.1. Read in ascend-

ing order, the memory cells contain the concatenated bit patterns of the two values,
i.e., 0110010000101001. Possible interpretations of this pattern include

• Word size 8 bits: values 100, 41

• Word size 16 bits, big endian mode: the value is interpreted as

(val(a) val(a+ 1))2 = (25641)10

• Word size 16 bits, little endian mode: the value is interpreted as

(val(a+ 1) val(a))2 = (10596)10

5.2.1 Memory Declaration

Syntax:
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memory array <name> = {<attribute list>};

• <name>: an identifier

• <attribute list>: a comma-separated list of attribute = value and
attribute = "some string" pairs. The ordering of the elements in the list
is irrelevant.

The following values are allowed or required in the attribute list:

• size: Integer attribute. Mandatory. Denotes the size of the array, counted
in bytes.

• always_deterministic: String attribute. Optional. Defines which mem-
ory cells must always remain deterministic. The value of this attribute is a
comma-separated list of integers, which can be given either as decimals or
hexadecimals.

• memory_type: String attribute. Optional. Selects a different array implemen-
tation. The default memory array of size n in Sgdl corresponds to a byte
array in the target language of size n. Alternatively, this attribute can be set
to differentialArray, which is a kind of array that stores only those values
that are unequal to zero. This feature is only useful if most of the memory is
known beforehand to be zero, or if the content of the memory changes only
marginally during simulation (which often holds true for the program mem-
ory, for instance). In such cases, the reduced memory footprint of individual
microcontroller states requires less time for transferring data to and from the
state space, thus accelerating state space building.

• never_reset: String attribute. Optional. Defines which memory cells must
never be reset by an abstraction technique such as Dead Variable Reduction
(cf. Sect. 8.5).

• bitwise: String attribute. Optional. Defines which memory cells are to be
modeled bitwise in static analysis. The value of this attribute is a comma-
separated list of integers, which can be given either as decimals or hexadeci-
mals.

5.2.2 Memory Alias Declaration

Syntax:

memory alias <name> : <type> = {<attribute list>};
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• <name>: an identifier

• <type>: one of the following values

– memory: used for multi-byte ranges of memory

– bit: used for single bits

– reg: similar to memory, but limited to a maximum length of 32 bits

– <attribute list>: a comma-separated list of attribute = value and
attribute = "some string" pairs. The ordering of the elements in the
list is irrelevant.

The allowed or required values in the attribute list depend on the type of alias:

• memory requires / allows

– block_size: Integer attribute. Defines the size in bytes of the element
at each address of the alias.

– block_count: Integer attribute. Defines the number of elements.

– endianness: String attribute. Possible values: "little", "big". This
attribute is relevant for block sizes larger than 1, where it defines whether
the least significant bit (LSB) or most significant bit (MSB) comes first.

– underlying: String attribute. Defines the name of the memory array
this alias refers to.

– u_from: Integer attribute. Defines the index in the memory array where
to start the mapping (i.e., where address 0 of the alias is located).

– u_to: Integer attribute. Defines the last index in the memory array
covered by this alias.

– op: String attribute. Defines how to interpret the content of the memory
cells referenced by the alias. For instance, it can be interpreted as a
signed byte or an unsigned byte value.

– uniquetype: String attribute. Optional. If the alias is supposed to
fulfill a special function, which no other alias may have, then this can
be indicated by setting this attribute. Possible values: "program" (the
only program memory), "data" (the main address space).

– description: String attribute. Optional. If set, this alias is marked for
display on the graphical user interface. The compiler will generate code
to create a new tab in the memory monitor on the GUI, and the tab will
be labeled with the description text.

– writable: String attribute. Optional. Possible values: "true", "false".
Defaults to "true".
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– addressOutOfBoundsBehavior: String attribute. Optional. Defines
what should happen if the alias is accessed with an invalid address. Pos-
sible values: "error" (default, causes a simulator error), "zero" (read
accesses return 0, write accesses are ignored), "wrap" (wrap around:
access address modulo block_count)

• bit requires / allows

– underlying: String attribute. Same semantics as for memory aliases.

– u_byte: Integer attribute. Defines an index in the memory array, count-
ing in bytes from the start of the array. The bit addressed by the alias
has to be one of the eight bits in this byte.

– u_bit: Integer value ∈ {0, . . . 7}. Defines the index of the bit inside the
byte referenced by u_byte.

• reg requires / allows

– underlying: String attribute. Same semantics as for memory aliases.

– u_byte: Integer attribute. Similar to the attribute u_byte in the bit
alias type. This value describes the first byte index of where the register
is located. Unlike bit, however, the reg alias can also access adjacent
bytes with a higher index.

– bit_width: Integer attribute. Defines the number of bits that form this
register, starting with the first bit of the referenced byte, i.e., u_byte[0].

– op: String attribute. Same semantics as for memory aliases.

– endianness: String attribute. Same semantics as for memory aliases.

– uniquetype: String attribute. If the alias is supposed to fulfill a special
function, which no other alias may have, this can be indicated by setting
this optional attribute. Possible values: "pc" (indicating this alias is the
unique program counter).

5.2.3 Memory Initialization

Syntax:

init memory = {
<statements>

};

• <statements>: Arbitrary code. See the section on code blocks (Sect. 5.9) for
details.
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5.2.4 Mandatory Memories

Each platform has certain special function memories: a program memory, a pro-
gram counter, one or multiple stack pointers, and a main address space. Each of
these has to be defined in the Sgdl description. Those memories that are unique
for a platform are declared by setting the optional uniquetype attribute in an alias
declaration. If set for an alias, then no other alias may have its uniquetype at-
tribute set to the same value. For example, to declare a program counter (PC), we
first of all have to declare a memory array containing the PC. Next, we define an
alias to access the array, and set its uniquetype attribute to the value pc.
The following values for uniquetype attributes exist:

• pc: program counter

• program: the program memory where the program is stored

• data: the main address space

Stacks are another type of mandatory memory. An architecture may have more
than one stack, hence uniquetype is not applicable for the declaration of stacks.
Instead, there is a dedicated language element for declaring stacks:

stack <name> = {<attribute list>};

where

• <name>: an identifier. Mandatory.

• <attribute list>: a list of entries of the form key=value

– stackpointer: String attribute. Mandatory. The name of the alias to
be used as a stack pointer.

– memory: String attribute. Mandatory. The name of the alias where the
stack is actually stored.

– bottom: Integer attribute. Mandatory. The address to which the first
element in the stack will be pushed.

– direction: Mandatory. The direction in which the stack grows. Possi-
ble values: left, right. The values correspond to a graphical represen-
tation of intervals, where left means smaller addresses and right larger
ones. Hence, for stacks growing from high to low addresses, left is the
appropriate setting.

– stackpointerposition: String attribute. Mandatory. Possible values:
ahead, exact. This attribute describes whether the stack pointer points
to the next free position on the stack or to the last occupied one.
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– maxtop: Integer attribute. Mandatory. Indicates the largest (or smallest,
depending on growth direction) address that the stack may occupy. Can
be used to identify faulty program behavior and abort simulation in case
the stack grows into reserved memory areas.

5.2.5 Memory Cell Dependencies

Memory cells can depend on other memory cells. For instance, the content of
an I/O register, which represents the value of an I/O port, usually depends on
the port configuration. That configuration is stored in one or multiple memory
locations, which are often registers themselves. Reading from or writing to the I/O
register requires at least a read access to the configuration registers, i.e., there is a
dependency between registers.
Besides dependencies between registers, there are also dependencies between reg-

isters and interrupts. An interrupt may be enabled depending on the value of one
or several configuration bits, which may be distributed among multiple registers.
Certain abstractions, such as Dead Variable Reduction, might modify memory

locations. These abstractions have to be aware of such dependencies, lest they result
in spurious behavior. The syntax for describing dependencies is depicted below.
Syntax:

dependencies {
(<dependency declaration>)+

}

dependency declaration can be one of

• on <access type> <register> <access type> <register>
using mask <mask>;

• <register> influences interrupt <interrupt> using mask <mask>;

where

• access type: can be either read or write.

• register: Indicates the name of a register alias.

• mask: an Integer value indicating the relevant bits in the register.

• interrupt: Indicates the name of an interrupt.
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5.3 Instruction Set Description

The instruction set description consists of the following language elements:

• encoding format declarations (optional)

• operand type declarations (optional)

• the actual instruction elements (mandatory)

• a value for the global attribute instruction word size (optional)

• subroutine declarations

5.3.1 Encoding Format Declarations

Encoding formats can be used to facilitate the declaration of instruction elements.
They describe the structure of binary encodings of instructions. Declaring and using
an encoding format is useful whenever several instructions share a similar encoding,
such as different instructions using the same addressing mode. For instructions with
unique patterns, it is also possible to declare the encoding within the scope of the
instruction element, without declaring a name for it.
Syntax:

format <identifier> = {<attribute list>};

• <identifier>: a name by which the format can be referenced

• <attribute list>: an ordered list of entity declarations. An entity is de-
clared implicitly by an identifier and an indicator. The latter defines the bits
of which the entity is composed. The list of entities is read from left to right.

Example:

format ADDRESS_11_FIRST = { ta rg e t [ 1 0 : 8 ] , opcode [ 4 : 0 ] ,
t a r g e t [ 7 : 0 ]

In this example, the first three bits of the binary input stream are the bits 10
to 8 of an entity called target. The next five bits of the input stream are all five
bits of an entity called opcode. After that, the next eight bits of the input stream
are bits 7 to 0 of target. Inside the instruction element, we can reference the
entities by their names, and we do not have to care about their representation. In
this example, this especially means that target can be referenced as a whole by its
name, even though its binary representation in the stream is split (a so-called split
field).
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Note that even though the structure of the encoding is defined by a format, the
format does not contain any statement regarding the value of bits. Thus, any bit
of any entity in the encoding could be 0 or 1. This distinction is only made when
defining instructions using such a pattern. Thus, in the above example, there are
25 possible values for opcode.

5.3.2 Operand Type Declarations

Operand types are similar to type declarations in C/C++. Any sequence of bits
can be assigned a domain by an operand type declaration.
Syntax:

operand <identifier>[<length>] :
<operand class> = <domain declaration>;

• <identifier>: a name for the operand type

• <length>: the number of bits needed for representing an operand of this type

• <operand class>: the type of the operand. Possible values:

– unsigned: an unsigned integer domain

– signed: a signed integer domain

– symbol: a custom name for each of the bit patterns. Bit patterns are
represented by their decimal values.

• <domain declaration>: depends on the value of operand class:

– for signed and unsigned, possible values are: [<x>, <y>], where <x>,
<y> are signed integers.

– for symbol, possible values are: {< identifier0 >=< value0 >, . . . , <
identifiern >=< valuen >}, where the identifiers can be selected as
desired and n = 2<length> − 1

Example:

operand SIGNED_IMM8[8] : signed = {-128, 127];
operand ADDRESS_REGISTER[1] : symbol = {

R0 = 0, R1 = 1
};

The declaration of operand types already existed in Isdl and remained almost
unchanged in Sgdl. The only exception is that we also allowed the use of named
constants, e.g. for the bit width.
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5.3.3 Instruction Element

The instruction element of Sgdl is used for describing the instruction set of a
device. Each instruction in the device’s instruction set is mapped to one occurrence
of the instruction element, unless peculiarities of the device require more than one
such occurrence.
An instruction declaration consists of several subsections. The ordering of these

subsections is irrelevant. The following sections are allowed:

• encoding (mandatory) (from AVRora)

• operandtypes (optional) (from AVRora)

• no auto increment of pc (optional)

• syntax (optional) (from AVRora)

• enabled (optional)

• cycles (optional) (from AVRora)

• instantiate (optional)

• dnd instantiate (optional)

• static behavior (optional)

• execute (mandatory) (from AVRora)

• execute "DND" (optional)

The instruction element and each of its subsections is described in detail in
the following sections.

Syntax of instruction

instruction <identifier> {
encoding = <indirect encoding> | <direct encoding>;
operandtypes = {<list>};
no auto increment of pc;
syntax = <format string>;
enabled = <boolean constant>;
cycles = <number>;
instantiate = <list>;
dnd instantiate = <list>;
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static behavior = {
type = <type>;
reads = {<reads list>};
writes = {<writes list>};
target = <target expression>;

}
execute = {<statements>};
execute "DND" = {<statements>};

};

Identifier

The identifier is a mandatory attribute of an instruction element. It assigns
a unique name to the element, which is used in code generation. The name is
also used for display on the GUI, where an instruction is represented by a string
concatenation of name and instruction operands. It is possible to change the latter
by assigning a value to the syntax attribute of the instruction element.

Encoding

The encoding is a mandatory attribute. It describes a binary bit pattern by which
the instruction can be identified within a bit stream. There are two possible ways
of describing the encoding:

• direct encoding: the encoding is described entirely in situ.

• indirect encoding: the encoding follows some pattern, i.e., a format from the
format section (cf. Sect. 5.3.1).

Direct encodings are useful when describing single instructions that are not part
of any identifiable group. However, most instructions on many devices can be
grouped, for instance by the addressing mode they use. A typical structure would
be "n bits of opcode, followed by k bits identifying a register x, followed by l bits
identifying another register y". The practical implication of the existence of such
patterns is that Sgdl developers should use formats whenever applicable to avoid
redundancies in the description.

• Syntax of direct encoding:

encoding = {<binary pattern>};

Example:

encoding = { 0b01000100 };
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• Syntax of indirect encoding:

encoding = <format name> where {<attribute list>};

In the attribute list, the identifiers in the declaration of the encoding format
have to be mapped to 0 or 1, or remain undetermined. Determined bits are
used for matching the instruction in the binary input stream. Bits which are
not determined are free, and are assigned a value from the actual bit pattern
in the stream when the instruction is matched. Example:

encoding = ACC_DIRECT where { opcode = 0b01010101 };

Operand Types

Operand types describe how to interpret the bit pattern of variables, that is, the
entities in encodings related to free bits. Those can be accessed by their name
in any code block within the scope of the instruction. Given an encoding and no
operand type, the only information about a parameter is its length in bits. Hence,
additional information is required in order to decide whether the parameter is, for
instance, a signed or unsigned int, or a symbol.
Another reason for using an operand type is to clarify the semantics of parame-

ters. For instance, an eight bit value can be considered an address or an immediate.
In both cases, it has to be interpreted as an unsigned integer value (unsigned byte,
ubyte). Therefore, any computation involving the value will yield the same result.
However, to clarify the semantics, the developer can create two types address8
and imm8.
Example:

operandtypes = {imm : IMM8};
operandtypes = {reg : GPR};
operandtypes = {address : ADDRESS8, imm : IMM8};

Pre-defined operand types are

• ubyte

• uint

• boolean

• void (not available for instruction parameters)
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Automatic Incrementation of PC

Syntax:

no auto increment of pc;

By default, in the generated simulator, the program counter (PC) is automatically
incremented by the size of the current instruction before the code in the execute
section is executed. While this facilitates development for most instructions, it can
complicate the implementation of instructions that directly modify PC. Especially
relative and conditional jumps can be easier to implement (that is, closer to the
data sheet) without the automatic incrementation. Adding this directive to an
instruction deactivates automatic incrementation for that instruction only.

Syntax

For pretty-printing instructions on the GUI, developers may add a formatting
string. This is one of the features inherited from Isdl that is barely used in Sgdl,
as it has no effect on actual instruction semantics.

Enabling of Instructions

Allows to enable or disable instructions when compiling a simulator. This feature
allows the developer to create a description of instructions for an entire family
of devices, and to only activate those instructions supported by a specific device.
Instructions that are not enabled are skipped at compile time by the Sgdl compiler.
Hence, they are not present in the generated simulator, and also not in the generated
static analyzer.
Symbolic constants are allowed for this property. Hence, it is possible to create

a list of constants for numerous devices, and to use the include capability of Sgdl
to import the correct one for a given device. We call this step parameterization
of the instruction set. Currently, we provide a parameterized instruction set and
a library of enabling constants for most members of Atmel’s AVR family of 8 bit
microcontrollers.
The enabled attribute is optional. If absent, it defaults to true.

Cycles

The integer value for the attribute cycles indicates the number of cycles required
for executing the instruction. This attribute is inherited from Isdl and its value
is currently ignored by the Sgdl compiler. We have decided not to remove it,
though, because certain operations on some microcontrollers may fail if not com-
pleted within a certain number of cycles. An example are flash memory write
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operations on the Atmel AVR microcontrollers. Adding the ability to check for
such problems would require such an attribute.

Instantiate and Dnd Instantiate

Some instructions may have to operate on nondeterministic data. For deterministic
simulation, such data has to be instantiated first, that is, the value of nondeter-
ministic bits is determined to be either 0 or 1. After instantiation, the code in
the execute section of the instruction can be executed just as for any other in-
struction. Hence, the code in the execute section will only operate on two-valued
boolean logic, instead of ternary logics (i.e., values in {0, 1, n}∗).
The instantiate directive tells the Sgdl compiler to generate the necessary

code for instantiating any location named within the directive. instantiate is
used for deterministic simulation, whereas dnd instantiate is used when Delayed
Nondeterminism (cf. Sect. 8.6) is active.
Example:

instruction "in" {
...
instantiate = { $ioregs(imm) };
dnd instantiate = {};
...
execute = {

$regs(rd) = $ioregs(imm);
};

execute "DND" = {
$regs(rd) = $ioregs(imm);
#regs(rd) = #ioregs(imm);

}
};

In this example, $ioregs(imm) is instantiated before execute. In case Delayed
Nondeterminism is used, the dnd instantiate directive is used before executing
execute "DND", which instantiates nothing (empty set). Note that the content of
the two sections is independent and always defaults to the empty set, hence the
dnd instantiate section is not required in this case.

Static Behavior Section

Syntax:

static behavior = {
type = <type>;
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reads = {<reads list>};
writes = {<writes list>};
target = <target expression>;

}

• <type>: Optional attribute. Specifies the relationship between this instruc-
tion and succeeding instructions. The value of the attribute is needed for
constructing a control flow graph for a program containing an instance of the
instruction. It can be one of the following:

– add: the successor of the current instruction is the next instruction in
the stream. This is the default case, implying that the instruction does
not explicitly modify the program counter.

– jump: the successor of the current instruction is the instruction indicated
by the value of the target attribute, which has to be provided when
using this type.

– branch: similar to jump, this type indicates that the instruction is a
conditional jump. As such, it has two possible successors, both of which
have to be indicated in the value of the target attribute.

– call: similar to jump, the instruction causes execution to continue at
the location indicated by the value of the target attribute. The differ-
ence is that in the CFG, the transition from the current to the target
instruction has to be represented by a call edge. Additionally, the target
is considered the start of a function instead of a regular node. Therefore,
it becomes the first node of a new CFG fragment.

– end: end is the counterpart to call, which is used at the end of a CFG
fragment. It indicates that the current instruction does not have any
successors.

Note that for most instructions, the type can be derived automatically from
the execute section by means of a static analysis. The static analyzer for
Sgdl, Sgdl-Sta, conducts such an analysis. Therefore, it is not necessary
to specify a type, unless the automatically derived type deviates from the
required type. In the latter case, an explicitly provided type overrides the
result from the analysis. See Sect. 6.5 for details on the analyses.

• <reads list>, <writes list>: Mandatory attributes. Each of these lists
is a comma-separated list of alias addresses accessed by the instruction in
reading or writing, respectively. The addresses are specified in the same
manner as in code blocks, that is, an alias name followed by an index in
parentheses, and an optional bit index in brackets. Arithmetic expressions are
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also allowed in the indexes, for instance to compute an address dependent on
an operand. When creating these lists, developers also have to add addresses
accessed in subroutines called by this instruction (transitive hull of function
calls).

• target expression: Mandatory attribute in case the instruction type is in
{jump, branch, call}. The value of this attribute is an expression (therefore
allowing arithmetic operations) describing the target of the jump. Subroutine
calls in the expression are also allowed for computing the address.

As static analysis operates not on the concrete, but on an abstract machine
model, it may be necessary to add an offset to the target.

Example:

instruction "brcs" {
encoding = BRSET where { bit = 0b000 };
operandtypes = {target: SREL};
cycles = 1;
static behavior = {

type = "branch";
reads = {$C};
target = relative(target, $pc) + 1;

};
execute = {

if ( $C ) relativeBranch(target);
};

};

The above example illustrates the similarity of static behavior section and execute
section. This redundancy may be problematic, just as in any other program. There-
fore, it is beneficial to have the information in the static behavior section derived
by Sgdl-Sta whenever possible, and only provide an explicit description for those
instructions for which the analysis fails to derive an accurate result.

Execute Sections

Syntax:

execute = {<code block>};
execute "DND" = {<code block>};

• code block: a list of statements, as described in Sect. 5.9
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When the simulator has to execute an instruction, that is, apply the effects of
that class of instruction to the resource model, it uses the code in either the execute
or the execute "DND" section. Which one of these is selected depends on the active
type of simulation. For details, refer to the chapter on abstractions (Chapt. 8).

5.3.4 Global Attribute "instruction word size"

Syntax:

global instruction word size = <integer value>;

The optional global attribute instruction word size specifies the number of
bytes occupied by an instruction. This is used only in the disassembler: whenever
the disassembler encounters a bit pattern that cannot be matched by an instruction
pattern, it can either stop disassembling immediately (not knowing where the next
instruction would start), or use this value to seek the beginning of the next valid
instruction. If unspecified, the disassembler will create InvalidInstruction objects
for all bytes following an unmatched pattern.

5.3.5 Subroutine Declarations

There are three types of subroutines: internally-defined subroutines, user-defined
subroutines, and subroutines declared as external.

Internally Defined Subroutines

Internally defined subroutines are provided by the synthesis system. Technically,
they are implemented in the synthesizer’s code generation templates, resulting in
generated code that can be adapted for each simulator. The implemented functions
are shown below. The name before the colon is the name of the function, followed
by the return type after the colon:

• instructionSize(): ubyte. Returns the size of the current instruction.
Note that inside execute sections, the PC usually already points to the next
instruction. This is the case because PC is incremented implicitly by the size
of the current instruction before the code in the execute section is executed
(unless the developer turns it off explicitly by the "no auto increment of
pc" directive). Hence, the value returned by instructionSize() is actually
the size of the next instruction. This function allows for the implementation
of skip instructions.

• notImplemented(): void. Throws an error if called. Can be used to signal
the use of code blocks that have not been fully implemented yet.
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• sleep(): void. Sets an internal flag indicating that the device is asleep.

• wakeUp(): void. Sets an internal flag indicating that the device is not
asleep.

User-Defined Subroutines

User-defined subroutines are declared and defined in the Sgdl file, or files linked
into the main file. The syntax is

subroutine <name>(<parameter list>) : <return type> { <code block> };

The parameter list can be empty or a comma-separated list of name and operand
type pairs. Its syntax is shown below:

<identifier> : <operand class>

Hence, an identifier is followed by a colon and its data type.
The return type of the subroutine can be any operand class including the built-in

types void, ubyte and uint. In case of a non-void return type, there must be a
return statement at the end of each of the possible execution paths through the
subroutine.
The code block consists of any number of statements. Sect. 5.9 provides details

on code blocks.
Example:

subroutine getIndirect(addressReg:ADDRESS_REGISTER) : ubyte {
local memoryContent: ubyte = 0;
if (addressReg == 0){

memoryContent = $sram( getRegInActiveBank(0) );
}
else{

memoryContent = $sram( getRegInActiveBank(1) );
}
return memoryContent;

};

External Subroutines

Subroutines declared as external are declared inside the Sgdl file, but their im-
plementation is located in the file <platform name>External.java. The platform
name is the name from the header of the Sgdl file.
Syntax:
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external <name>(<parameter list>) : <return type>;

Thus, syntax and semantics of the elements are the same as for user-defined sub-
routines, except that the code block is substituted by a semicolon.
An important difference between internal and external subroutines is that the

latter are Java code instead of Sgdl code. As such, they are not amenable to
the analyses conducted by the Sgdl static analyzer, Sgdl-Sta (cf. Sect. 6.5).
Therefore, it is not possible to automatically derive the effects these functions have
on the resource model of the simulated microcontroller. It is safe though inaccurate
to assume that calling such a function may change anything, and that it might
read any memory location. This effect propagates upwards to all callers of such a
function. Hence, any instruction depending directly or indirectly on an external
subroutine cannot be analyzed, and requires a static behavior section.

5.4 Atomics

Atomics assign names to memory locations. They serve two purposes: first, a
memory location with a name can be referenced by that name in ctl formulas.
Second, the name of a location is displayed on the GUI in the memory monitor on
the simulation panel whenever the mouse cursor hovers over that location.
Syntax:

atomics = {<name list>};

• <name list>: a comma-separated list of entries of the form <identifier> =
$<alias name>(<integer constant>)

• <integer constant>: a decimal or hexadecimal value denoting the address
in the alias where <identifier> is located

Example:

atomics = {
PCON = $sfrs(0x7),
SBUF = $sfrs(0x19),
SCON= $sfrs(0x18)

};

5.5 Loader Description

Loaders load the program from the compiler’s output and write it into the simulated
device’s memory. The output from the compiler can be a container format like ELF.
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In the loader description, there always is one section providing general information
on the device and several optional sections, one for each class of loader.
Syntax:

loader general = {<general attribute list>};
loader elf = {<elf attribute list>};
loader hex = {<hex attribute list>};

Syntax of the attribute lists:

• <general attribute list>: contains attributes of the form <identifier>
= <value>. Possible attributes:

– PLATFORM_NAME: String attribute. Arbitrary value is possible.

– PROGRAM_MEMORY_ADDRESSING: String attribute. Possible values
BYTEWISE and WORDWISE

– PROGRAM_SECTION_MAX_PHYSICAL_ADDRESS: Integer attribute.

– GLOBAL_VARIABLE_OFFSET: Integer attribute.

• <elf attribute list>: contains attributes of the form <identifier> =
<value>. Possible attributes:

– MACHINE_CODE: Integer attribute. Denotes the machine code used in the
elf format. The machine codes prevents tools for specific platforms from
loading code intended to be used on other platforms (if they evaluate it).
This is a multi-valued attribute, i.e., it can have more than one value if
necessary. To assign more than one value, the developer may use multiple
assignments to MACHINE_CODE within the same <elf attribute list>.

• <hex attribute list>: contains attributes of the form <identifier> =
<value>. Possible attributes:

– DEBUG_FORMAT: String attribute. Defines which debug file parser should
be used for obtaining additional information about the program, such as
where the compiler has placed variables, which code line in the assembly
relates to which C code line etc. Possible values: Default, Avr.

5.6 Modeling of Peripherals

State space building in [mc]square is based on instruction-accurate simulation
of the microcontroller. In each step, an instruction or an interrupt modifies the
resource model, thus resulting in a successor state. From this stance, actions of pe-
ripheral components correspond to concurrent modifications of the resource model,
which do not relate to the current instruction.
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This view allows developers to model the on-chip peripherals by means of func-
tion calls that have to occur at certain events during successor state creation. For
this purpose, Sgdl provides so-called triggers, or hooks, which are called auto-
matically. Currently, Sgdl provides three types of triggers: beforeInstruction,
afterInstruction, and beforeAndAfterInstruction.
A beforeInstruction trigger is executed at the beginning of each step, before

the simulator starts dealing with instructions or interrupts. This can be used, for
example, for deriving the nondeterminism status of I/O registers from the value of
the according configuration registers. An afterInstruction trigger, on the other
side, is executed after the step, but before internal cleanups (such as correcting
erroneous nd mask/value combinations). Hence, the actions in such a trigger will
still be subject to automatic cleanups. They can be used to conduct customized
post-processing steps, which would otherwise have to be inserted into each instruc-
tion. If the same action has to be executed both before and after an instruction,
the beforeAndAfterInstruction is the appropriate choice. During our implemen-
tation case studies, we found the beforeAndAfterInstruction trigger to be the
most commonly used form.
Example:

trigger "DDRinputChange" event = "beforeInstruction" {
// if bit in DDR is 0, then the same bit in PIN is
// nondeterministic
#PINA = ~$DDRA;
#PINB = ~$DDRB;
#PINC = ~$DDRC;
#PIND = ~$DDRD;

};

trigger "CleanupExample" event = "afterInstruction" {
$sram(1) = 0;

};

5.7 Modeling of Interrupts

The interrupt system can differ considerably between microcontrollers. Moreover,
for our purposes, an accurate modeling of interrupts is crucial. Hence, the interrupt
subsystem in generated simulators is very complex. Consequently, the associated
language elements are also complex. Besides the instruction element, the subset
of the language associated with interrupts is the most complex part of Sgdl. For
details on the mode of operation, refer to Sect. 7.3. This section first details how
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to capture the static properties of interrupts, that is, the interrupt vector table.
Afterwards, we focus on the description of the operational behavior of interrupts.
Operational aspects involve the checking whether an interrupt may occur, and how
the resource model is modified in that case.

5.7.1 Interrupt Vector Table

Upon occurrence of an interrupt, microcontrollers usually first save the current
value of the program counter in some location such as the stack, before loading a
special fixed value into the program counter. These values, which are addresses in
the program memory, are called interrupt vectors, and the set of all such values is
called interrupt vector table. We require a description of the interrupt vector table
for two distinct purposes: first, when conducting static analysis of a program for
the microcontroller, we need to know the entry points of subroutines. Any inter-
rupt vector represents an entry point to a subroutine, namely the interrupt service
routine (ISR). Second, simulation on the GUI and counterexample representation
benefit greatly from labelled transitions, as the labels ease understanding of the
steps. For transitions related to interrupts, it is desirable to obtain and display
the name of the interrupt that has occured, instead of being able to provide just a
generic label such as some interrupt.
Technically, the desired properties can be implemented by creating a list of tuples

of the form (interrupt name, program counter). In case a platform provides more
than one vector for an interrupt (for instance, multiple vector tables that can be
switched between), the developer has to provide multiple program counter values.
We have decided to cover the latter case by allowing a comma-separated list of
integers.
Syntax:

interruptvector {
(interrupt <name> at pc <value>(, <value>)* ;)*

};

Example:

interruptvector {
interrupt "RESET" at pc 0x0;
interrupt "INT0" at pc 0x2;
interrupt "INT1" at pc 0x4;
interrupt "TIMER2_COMP" at pc 0x6;

};
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5.7.2 Operational Behavior of Interrupts

Syntax:

interrupt <name> {
id { <id> };
sourceEnabled { <source condition> };
activated { <activated condition> };
post { <post code> };
posted { <posted condition> };
priority { <priority> };
interruptvector { <vector computation code> };
setNondeterminism { <set nondeterminism code> };
getNondeterminism { <nondeterminism condition> };
execute { <code block> };

};

• <name>: a unique name for the interrupt

• <id>: a unique identifier for the interrupt

• <source condition>: code for checking whether the event source for this
interrupt is active

• <activated condition>: code for checking whether the interrupt is config-
ured as active

• <post code>: code for posting any flags associated with the occurrence of the
interrupt. When the interrupt system decides that the interrupt occurred, this
code will be executed.

• <posted condition>: code for checking whether the flags for this interrupt
have been posted

• <priority>: code returning an integer value indicating the priority of the
interrupt. It is possible to consider the current machine state in this compu-
tation to model architectures with configurable interrupt priorities.

• <vector computation code>: code returning an integer value. The result
is the current value of the interrupt vector for this interrupt, which may,
on some architectures, depend on the machine state. The set union over all
possible return values should be the same set as in the interrupt vector table
(cf. Sect. 5.7.1).

58



5.8 Data Types and Type System

• <set nondeterminism code>: code used for marking flags as nondetermin-
istic if the event source of the interrupt is active.

• <nondeterminism condition: code for checking whether the flags are non-
deterministic.

• <code block>: code to be executed whenever the interrupt handler is to be
entered. Usually this consists of saving the program counter on one of the
hardware’s stacks and branching to the program location in the interrupt
vector table.

5.8 Data Types and Type System

Sgdl provides several pre-defined data types. These are described in Sect. 5.3.3.
Additionally, the developer may create customized operand types, as detailed in
Sect. 5.3.2.
Currently, there are neither String data types nor floating point types. All avail-

able types except boolean are integers, which can be either signed or unsigned.
The symbol operand type allows a mapping of symbolic names to arbitrary integer
values, that is, it is an ordinal type that can be used to realize enumerations.
The type system does not preserve any information about types when performing

computations on data. This is realized by implicitly converting, or widening, the
type to a new type unknown (cf. Aho et al. on type systems in compilers [2]). In
assignments, in which the left-hand side is typed, this requires a following implicit
conversion to the target type. A possible direction for future work would be to
replace this behavior by a strongly typed approach based on type synthesis (also
described by Aho et al.).

5.9 Code Blocks

Code blocks can contain statements and declarations of local variables. The syntax
of statements resembles C and Java, whereas the syntax for declaring local variables
is similar to Pascal. Statements can be assignments, control structures, and function
calls. Each statement has to be terminated by a semicolon. This part of the Sgdl
language is for the most part inherited from Isdl. Our main contributions for code
blocks are assignments to the nondeterminism mask, loops, scopes for variables,
and named constants.
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Figure 5.2: Representation of ternary values by means of parallel array structures.
The bottommost line is not stored but illustrates the logical value.

5.9.1 Accessing Global Variables

We use the term global variable as a synonym for any accessible memory location
in the resource model, that is, for aliases. Global variables, as opposed to local
ones, always consist of two parallel and separate memory structures, as is shown in
Fig. 5.2. The so-called value of a location represents the content of the location as
it is present in the actual device, while the nondeterminism mask (nd mask) does
not correspond to a physical memory. Both locations together are used to represent
a value in ternary logic, which extends regular two-valued boolean logic by a third
symbol meaning unknown value. Whenever a bit is set to 1 in the nd mask, we say
the corresponding bit in the composed value is nondeterministic. Thus, it could be
0 or 1, meaning the actual content of the value storage is irrelevant.
Whether an assignment or a fetch accesses the value or the nd mask depends on

the prefix of the alias. Using a $, that is, a dollar access, indicates an access of the
value. Opposed to this, prefixing an alias with a # indicates an access of the nd
mask. An example is shown in the next section.

5.9.2 Assign Statements

An assign statement assigns a value to a global or local variable. The left-hand side
value (lhs) must be an identifier that can be resolved to an address. It denotes the
target location of the assignment. The right-hand side value (rhs) value, which is
the source of the assignment, can be a literal, an expression, or a function call.
Syntax

<target> = (<literal> | <expression> | <function call>);

Example:
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$sram(10) = 12;
$sram(11) = 0xff;
$registers(0x10) = calcSomeValue();
someLocalVariable = calcSomeValue() + 1;
$someBitAlias = true;

The example illustrates that the allowed values differ depending on the type of
the target. Assignments to bit aliases require that the source either is a boolean
value or contains such a value. Other alias types allow for integer values instead.
Moreover, local variables, in this example someLocalVariable, can and must be
accessed without providing an address. In contrast to this, memory aliases require
an address. Register aliases may be used with a bit index instead, and bit aliases
need neither.

Value Versus Nondeterminism Mask Assignments

Syntax

$<target> = (<literal> | <expression> | <function call>);
#<target> = (<literal> | <expression> | <function call>);

As described earlier in this section, there are two parallel memory structures for
each global variable. A bit that is set to one in the nd mask (i.e., the structure
accessed with a hash) is considered to be nondeterministic. For instance, consider
sram to be an alias with a block size of 1 byte. Then, to mark all 8 bits in address
0 as nondeterministic, we can write

#sram(0) = 0xff

In this case, the value of $sram(0) becomes irrelevant, as the symbolic value of the
location is (nnnnnnnn). Thus, if any computation requires the actual value of this
memory cell, each of the n bits has to be instantiated, resulting in all possible bit
patterns including the one actually stored in the $ location.

Bit Assignments and Bit Reads

Bits are accessed by an integer enclosed by brackets (i.e., []). Example:

$carryFlag = result[8];

This assignment fetches the value of the bit at index 8 in result, implicitly converts
it to boolean by checking whether it is inequal to 0, and assigns the resulting boolean
object to the alias named carryFlag.
Ranges of bits can be read and written as well. For this, developers have to

provide multiple integers, separated by a colon, that is, [n:k].
Example:
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local temp1: uint = a1[3:0];
temp[7:0] = target[7:0];

subroutine lowByte(v: uint): ubyte {
return v[7:0];

};

When accessing bits inside aliases of the memory type, it is also necessary to specify
the index in the alias as well. Example:

$sram[7] = 1; //wrong, no index specified
$sram(0xa)[7] = 1; //correct: write to address 0xa at bit 7

This addressing using both an address and a bit is neither necessary nor allowed
for aliases of the types register and bit. The reason why memory aliases require
them is that this type of alias offers the most versatile (i.e., direct) access to the
underlying memory array. Register and bit aliases provide more abstraction because
the array structure of the underlying array is not visible.

5.9.3 Control Structures

The available control structures in Sgdl are if and for statements.

Syntax of if

if (<condition>) <statement>
if (<condition>) { <statement block> }

Optional else:

else <statement>
else { <statement block> }

Example:

if ( dist == 4 ) cyclesConsumed = cyclesConsumed + 2;

if(($TCCR0 << 5) == 0){
#TCNT0 = 0x00;
#TIFR = #TIFR & ~((1 << 0) | (1 << 1));

}else{
#TCNT0 = 0xFF;

}
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Syntax of for

for (local <variable> : <data type> = <value>; <condition>; <action>)
<statement>

for (local <variable> : <data type> = <value>; <condition>; <action>)
{<statement block>}

• <variable>: a variable identifier

• <data type>: an integer data type

• <value>: an integer value

• <condition>: a condition that must hold while in the loop

• <action>: an action to be executed in each iteration of the loop, typically an
incrementation of <variable>

• <statement>: a single statement as the loop body

• <statement block>: the loop body, consisting of multiple statements

Example:

for (local i: uint = 96; i < 1120; i = i + 1 ){
$sram(i) = 0;
#sram(i) = 0xff;

}

5.9.4 Local Variables

Local variables can be declared inside any code block. Their visibility and validity
is restricted to that specific code block.
Syntax

local <identifier> : <data type> = <expression>

• <identifier>: a name for the variable

• <data type>: a data type for the variable

• <expression>: the initial value for the variable, given as a literal, an expres-
sion or a function call.

Example:

local byteAddress : uint = bitAddress / 8;
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5.9.5 Function Calls

Functions, or subroutines, can be called in any expression or as a statement (pro-
cedures), that is, they can be called in any code block. Functions are allowed to
have side effects, meaning they can modify the resource model. While side effects
are not desirable in regular programs, and should be avoided for most functions
in Sgdl as well, there are a few use cases for them when modeling processors.
For instance, a function can be used to compute the result of the addition of two
register contents. The same function can also set the device’s flag register accord-
ingly. Thus, multiple instructions can share the same function, which is important
because processors usually offer variants of the same instruction, e.g. add register
to register, add immediate to register, or addition with versus without carry.
Examples:

callSomeFunction();
callSomeFunction(1,2,3);
variable = someFunction( $sram(1000) );

5.9.6 Accessing the [mc]square options

The generated code can react to the [mc]square options, which allows users
of [mc]square to change behavior at runtime. In Sgdl, the global options of
[mc]square can be accessed by means of the symbol OPTIONS.
Syntax:

OPTIONS.<keyword>

where <keyword> is one of the following:

• USE_LSE: evaluates to true at runtime in case the user has enabled Lazy Stack
Evaluation.

• DET_SIMULATION: evaluates to true at runtime in case the user has deactivated
Delayed Nondeterminism.

• DND_SIMULATION: evaluates to true at runtime in case the user has activated
Delayed Nondeterminism.

Example:

if (OPTIONS.USE_LSE){
$sram(0) = $sram(0);

}
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5.10 Comments

Comments in Sgdl are equivalent to comments in C and Java. Hence, there is a
type of comment marking the rest of the current line as a comment, and a multi-line
comment.
Example:

//this is a single line comment
<some language expression>; //the rest of this line is a comment

/*
* This is a multi-line comment.
*/

5.11 Constants

Sgdl code can contain #define preprocessor directives just like C (cf. Sect. 5.12).
These are replaced by a preprocessor which is run in case at least one such directive
occurs in the input. However, just as in C, there is no type checking for this type of
constants. Therefore, Sgdl also contains typed constants, which are to be preferred.
The syntax for declaring typed constants resembles the syntax for declaring and

immediately defining local variables:

const <identifier> : <data type> = <expression>

Example:

//Example: declaration of constants
const intValue : ubyte = 1;
const someFlag : boolean = true;
const SREG_ADDRESS : uint = 0x95;
const I_BIT : ubyte = 7;

//Example: assignment using constants
$sram(SREG_ADDRESS) = $sram(SREG_ADDRESS) | (1 << I_BIT);

5.12 Preprocessor Directives

Sgdl files may contain preprocessor directives in the style of the C programming
language, which are processed by a preprocessor run before the actual compiler. The
preprocessor can perform various actions related to string pattern matching and
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string replacement. Similar to C, directives in Sgdl consist of a hash followed by a
keyword, e.g. #define. Some of the directives serve as a kick-starter for simulator
development, i.e., they are translated into Sgdl template code by the preprocessor.
Thus, it is possible to accelerate recurring tasks such as implementing instructions
the addressing modes of which are already known. The output is placed into a
separate file, from which the developer may fetch it and insert it into the original
Sgdl file. This provides text editor-independent support during development. In
the following paragraphs, we detail the available directives.

5.12.1 Defines

#define works just like its C counterpart:

#define key value

where key is an identifier and value can be any string. Every occurrence of key
in the input file will be replaced by value. The positioning of the directive within
the code is irrelevant, as the Sgdl preprocessor passes twice over the input. On
the first pass, it collects all the key-value pairs, and on the second pass, it replaces
occurrences of keys by their values.

5.12.2 Generation of Empty Source Files

#create_template is the first of the kick-starter templates. When used, it will be
replaced by a skeleton Sgdl file containing the basic structure of a simulator.

5.12.3 Instruction Templates

#instruction generates empty instruction elements. Three variants are available:

• #instruction name: creates an empty instruction called name

• #instruction name encoding1 encoding2, ..., encodingn:
creates n empty instructions, each called name, one for each encoding.

• #instruction name n: creates n empty instructions, each called name. Each
of these has its own unique encoding, which is created by appending increasing
numbers to a fixed prefix.

5.12.4 Alias Templates

#alias creates empty alias declarations. As there are three alias types, each of
which requires a different set of attributes to be defined, there also exist three
variants of this preprocessor directive:

66



5.13 Compilation Units

• #alias name memory: creates a new alias of the memory type, which is used
for ranges consisting of multiple addresses.

• #alias name register: creates a new alias of the reg type, which is used
for single addresses consisting of up to 32 bits.

• #alias name bit: creates a new alias of the bit type, which is used for single
bits.

5.12.5 Interrupt Template

#interrupt name creates an empty interrupt called name.

5.13 Compilation Units

Sgdl descriptions of microcontrollers may consist of multiple compilation units.
The main compilation unit must have the file extension ".sgdl". All units that
can be integrated into another unit need to have their file extensions set to ".frag-
ment.sgdl". It is possible to integrate a fragment into another fragment. The
include statement directs the Sgdl compiler to process another file before contin-
uing with the current file.
Syntax

include <relative path>;

• <relative path>: a path to a fragment file. The path is relative to the di-
rectory containing the current file (i.e., the file containing the include state-
ment).
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In this chapter, we detail the structure of the Sgdl compiler. The core compiler is a
stand-alone command line tool that is independent of [mc]square and also does not
depend on a specific development environment. In order to facilitate development,
though, we have added an Eclipse plugin, which automatically recompiles simulators
in case any of their source files is modified, and which also features error highlighting
in the source code. Additionally, we have added syntax highlighting for Sgdl in
Programmer’s Notepad, which is an editor that ships with the WinAVR compiler
package.

6.1 Outline

The task of the Sgdl compiler is to transform the Sgdl description of a microcon-
troller into an executable form. The executable form, from our point of view, is a
state space generator (simulator) in the form of Java source code. Even though this
is not immediately executable, it already consists of concrete instructions (as op-
posed to the declarative character of Sgdl), and can be translated into executable
Java bytecode by the Java compiler.
Technically, the Sgdl compiler is a special-purpose compiler with a structure

similar to standard compilers, as described for instance by Aho et al [2]. Its runtime
structure is shown in Fig. 6.1, whereas Fig. 6.2 shows its package structure in the
form of an UML package diagram [19, 21, 42]. The following sections focus on
components of this structure. On the side of the input, apart from the actual
compiler, are the data sheet of the microcontroller or microcontroller family, the
Sgdl input file, and the simulator information file. On the side of the output, there
is the generated simulator.
A data sheet is the usual starting point for any developer wanting to implement

a simulator. This holds true regardless of whether a tool is used, such as our
synthesis tool chain, or whether the developer implements the simulator directly
in an imperative programming language such as Java. Sgdl was designed to be
similar to the notations used in data sheets, thus to allow developers to translate
the information they already have to a machine-usable representation with very
little effort.
The Sgdl description is the result of the manual translation. It has to con-

tain all the platform-specific information that is to be used in the simulator. Fur-

69



6 SGDL Compiler

Figure 6.1: Structure of the Sgdl compiler

thermore, the developer may augment the description by some meta information
about the code to be generated, such as its location in the Java package structure
of [mc]square. If present, such meta information allows the Sgdl compiler to
generate some glue code, which automatically integrates the new simulator into
[mc]square.

6.2 Preprocessor

The preprocessor is the first component of the Sgdl compiler that processes the
input. Its main purpose is to provide a means for quickly generating code fragments,
but it also provides means for defining constants. Technically, it performs simple
string pattern matching and replacing. The resulting output is then passed on to
the actual Sgdl parser. A more detailed description of the preprocessor and the
available directives is given in Sect. 5.12.

6.3 Parser

The Sgdl parser reads the input provided by the developers and translates it into
the internal representation. While doing so it additionally checks for syntax errors
and also some semantic errors. Regarding the latter, the parser creates symbol
tables (one new table per declaration block) in the usual tree-like manner. Based
on these tables, the parser can decide whether identifiers have been declared before
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Figure 6.2: UML package diagram of the Sgdl compiler
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their use. The symbol tables are stored for later use during the static analysis and
subsequently, the synthesis phases. For further details on the construction and uses
of symbol tables, we refer to [2].
Originally, the parser was based on the Isdl parser from the AVRora project,

though, as the new language evolved, we added more and more extensions and
modifications of our own. It is still based on a grammar for the JavaCC [57] parser
generator.

6.4 Abstract Syntax Tree and Intermediate Representation

Logically, the Sgdl compiler contains two intermediate representations. The first
of these is the Abstract Syntax Tree, created on-the-fly from the parse tree while
parsing the input. The second is the actual intermediate representation, which is
created after parsing, and is more amenable to synthesis purposes than the AST.
Temporally, however, the compiler contains three intermediate representations.

Certain information is not present in the AST because it has to be derived from it by
combining information that is split among several entities. Two steps require such a
preprocessing: first, the checking for errors. For instance, no two instructions may
have the same binary encoding. If we allowed this, then we could not decide which
instruction to create when we encounter that bit pattern in the binary instruction
stream. However, in the AST, there are only instruction elements, some of which
may be referring to format elements, but there is no binary pattern associated with
instructions. Such patterns only become visible when merging the information from
instruction and format elements. The second major step relying on preprocessed
information is the static analysis of the input by the Sgdl static analyzer, Sgdl-
Sta. Analysis results are required for the synthesis of code, which is why the
analyzer has to operate on a not yet complete intermediate representation.
Concerning sources, only the first intermediate representation is based on AVRora.

All subsequent components, especially those related to error-checking and static
analysis, were added within the scope of our project.

6.5 Static Analyzer

The Sgdl compiler features a static analyzer, Sgdl-Sta, which can automatically
deduce certain information about an architecture. Such information may then be
used for a variety of purposes, such as enhanced error detection while creating the
Sgdl description, or to eliminate the need for explicit description of already obvious
features.
The foremost reason for us to analyze instructions by means of a static analyzer

is the verbosity and redundancy in the Sgdl Static Behavior Section (SSBS). This
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section, which is an optional part of the instruction element (cf. Sect. 5.3.3),
describes certain properties of instructions:

• which locations are read and written when executing the instruction

• the type of instruction, e.g. whether it is a regular instruction, or manipulates
the control flow (call, return, or a conditional / unconditional jump)

• for control-flow manipulating instructions, the number of succeeding instruc-
tions, and how to determine their addresses

If this information is available, the Sgdl compiler can generate an operative static
analyzer for the target platform (not to be confused with the analyzer for Sgdl
itself, Sgdl-Sta). The description of read and written locations is a prerequisite
for generating the LVA and RDA builders, and the control flow type is necessary for
the target analyzer because it has to be able to construct a control flow graph from
machine code. Hence, without the SSBS, the target simulator is not equipped with
an operative analyzer, which in turn deactivates all abstractions based on static
analyses.
Comparing the execute section and the SSBS reveals that the former already

contains all the required pieces of information, though in the form of Sgdl code
blocks. Locations read and written can be deduced from expressions and assign-
ments in Sgdl. Similarly, the control flow type can be determined. The idea for
this is to consider the way an instruction manipulates the program counter, and, in
case of calls and returns, the stack. We detail this procedure in one of the following
subsections. In case the analysis conducted by Sgdl-Sta succeeds, it it still possi-
ble to provide an SSBS, but it is no longer required. Our experiments have shown
that for the platforms we implemented, in fact very few instructions remain that
require manual annotation in an SSBS, while for most instructions, the analyzer
correctly derives the type.

6.5.1 Mode of Operation

A run of Sgdl-Sta for a given platform description in Sgdl consists of multiple
phases. First of all, the analyzer constructs control flow graphs including call edges.
Next, it runs each of the individual analyses, which in turn can be decomposed into
an intraprocedural analysis and an interprocedural analysis. Upon completion of
the analyses, Sgdl-Sta enters the deduction phase, in which the information gained
during the analysis phase are used to obtain useful facts about the platform under
consideration. A more detailed description of each of these phases is given in the
following paragraphs.
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Control Flow Graph

All static analyses performed by Sgdl-Sta operate on control flow graphs (CFGs),
each of which includes call edges, i.e., call graphs. A CFG is constructed for each
code block in the input: execute sections in instructions, subroutines, and the
code blocks in interrupts. For interrupts, the relevant blocks are the execute
section (executed when the interrupt has occurred), the post section (executed to
simulate the effect of setting the interrupt flag), and the priority section (used in
determining the active interrupt with the highest priority, if any).
The procedure for each code block is the same, regardless of where it is used.

First of all, a node is created for each of the instructions of which the code block is
composed, and bidirectional edges are added to link each such node to its successors
and predecessors. Nodes obtain a reference to the AST object representing the
instruction. Next, the construction algorithm creates a virtual line numbering and
assigns a number to each of the nodes. Line numbers are required for identifying
nodes in later phases of the analysis, and also to be able to inspect the CFG in a
textual representation for debugging purposes. Having enumerated all the nodes,
the construction algorithm then adds synthetic entry and exit nodes that do not
correspond to any instruction. These serve special purposes during the analyses.
Entry nodes only have one successor, which is the first instruction in the code
block. Exit nodes may have multiple predecessors, due to branches or multiple
return statements in a code block. An example is shown in Listing 6.1 and the
corresponding graph in Figure 6.3.

instruction "mul_a_b" {
. . .

execute = {
l o c a l r e s u l t : u int = $ACC ∗ $B_REG;
$ACC = lowByte ( r e s u l t ) ;
$B_REG = highByte ( r e s u l t ) ;
i f ( r e s u l t > 0 x f f ) {

$OV = true ;
}
$CY = f a l s e ;

} ;

Listing 6.1: Execute block of the Sgdl description of the instruction MUL AB
from the MCS-51 instruction set, which multiplies the contents of the
accumulator (ACC) and of register B (B_REG)

Upon completion of the construction of CFGs for all code blocks, the CFG con-
struction algorithm iterates again over all CFGs and searches for function calls.
A function call is represented by a call edge that is added to the node in which
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$B_REG = highByte(result);

Entry

local result : uint
 = $ACC * $B_REG;

$ACC = lowByte(result);

if (result > 0xff)

$OV = true;

$CY = false;

Exit

CFG of subroutine lowByte

CFG of subroutine highByte

call

call

true

false

Figure 6.3: Control flow graph for the MCS-51 instruction MUL AB
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the call occurs. The target of a call edge is always an entry node of another CFG
fragment. In case the function call is not caused by a call statement but is part of
an expression, it is also possible that a node is the source for multiple call edges.

Analyses

Sgdl-Sta is capable of both intraprocedural and interprocedural analysis. An in-
traprocedural analysis focusses on a single CFG and ignores any call edges contained
therein, whereas interprocedural analysis takes the call edges into account. Inter-
procedural analysis is required because any code block may contain function calls,
and subroutines may change the global resource model representing the microcon-
troller memories. We decided to implement interprocedural analyses using the call
summary approach [49], which can be summarized as analyze individual methods,
then project the results into the source nodes of call edges. In the form we imple-
mented it, this is a context-insensitive analysis, though this could be improved, for
instance by means of call strings (cf. [49]).
Using summaries for function calls allows us to also handle recursive functions,

including indirect recursion, i.e., recursion that involves one or more intermediate
functions before the recursion becomes obvious. However, we decided to exclude
recursion to facilitate the structure of the analyzer. Therefore, all functions involved
in recursive calls are not analyzed. This is achieved by computing the transitive hull
of function calls and intersecting it with the list of functions known to be recursive.
Consequently, instructions and interrupt code blocks calling any such functions
are also excluded. A similar exclusion is necessary for external subroutines, which
are implemented as Java code outside of the Sgdl description. As these are not
accessible for Sgdl-Sta, we would have to over-approximate their behavior by
assuming that they could read and write anything. Given that this information
would propagate along call edges to callers of such functions, the result for any
method, instruction or interrupt code block involved in such a call hierarchy would
be that no accurate analysis result could be obtained. Thus, excluding these from
the analysis phase does not impact correctness but saves time because the result is
already known.
Currently, Sgdl-Sta supports three analyses: Reaching Definitions Analysis

(RDA), Read Variable Analysis (RVA), and Written Variable Analysis (WVA).
All of these are forward analyses, that is, information is propagated along the CFG
edges in the same direction as the program would be executed.
Reaching Definitions Analysis is a standard textbook analysis (cf. for instance

Nielson et. al. [49]), which determines, for each variable v in a program and program
location l, the set of preceding locations {k1, . . . kn} where v was last assigned a
value. Variations of RDA also collect the assigned value or expression along with
the location, allowing to recognize the set of possible values v may have at l.
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Read Variable Analysis is a variant of another textbook analysis, which is called
Live Variable Analysis (LVA). Technically, it is what Nielson et al. [49] refer to as
the collecting semantics of LVA, that is, an LVA with the usual gen function and
an empty kill function. This ensures that information about read variables is only
added to the analysis information sets, but never removed. Applied to a CFG, the
RVA information in the exit node therefore provides an overview of all variables
ever read within the scope of the associated code.
Written Variable Analysis is the counterpart of RVA with regard to written vari-

ables. Hence, the WVA result in exit nodes points out which variables could possi-
bly be written by the code fragment. As with RVA, the fact that no information is
ever removed allows this analysis to be executed either as a forward or a backward
analysis without altering the result.

Fixed Point Computation

Static analysis for Sgdl is conducted by performing a fixed point iteration over each
of the equation systems induced by individual code fragments. That is, nodes in the
CFG representing instructions contain an entry set AI entry and an exit set AI exit,
AI ∈ {RDA,RVA,WVA}, representing the status of the analysis information before
and after executing the instruction. An instruction defines a transfer function
that describes how to modify the entry information in order to obtain the exit
information. Consecutively applying the transfer functions eventually leads to a
fixed point, which is reached as soon as re-applying the transfer functions to the
associated AI sets does not change anything anymore.
In the first phase, Sgdl-Sta computes fixed points for individual CFGs, that is,

intraprocedurally. In the second phase, an interprocedural fixed point computation
uses the results from individual CFGs to compute fixed points for callers, based on
function summaries. In case anything changes during a fixed point computation,
the procedure is repeated. This corresponds to the global fixed point computation
algorithm, which is the most basic fixed point computation strategy in the litera-
ture. For the rather small code fragments we encountered so far in microcontroller
descriptions, this simple strategy did not cause any performance problems. If this
should ever pose a problem, it could be remedied by implementing one of the more
sophisticated algorithms, such as the worklist algorithm [49].

6.5.2 Structure of the Analyzer

Figure 6.2 shows the overall structure of the Sgdl compiler, of which Sgdl-Sta is a
part. The packages named therein directly relate to Java packages of the same name.
As Sgdl-Sta operates on the intermediate representation, its package structure is
located inside the intermediate package. The root package for Sgdl-Sta is called

77



6 SGDL Compiler

Analyzer
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Figure 6.4: UML class diagram showing the most important classes of Sgdl-Sta

staticanalzyer.
Classes in the topmost package, staticanalyzer, either contain such functional-

ity that is not part of any specific analysis, or provides access points for other parts
of the compiler. Creation, manipulation and traversal of the CFG is handled by
the classes inside the package cfg. Finally, analyses contains the actual analyses,
the algorithm for fixed point computation, and the representation of the analysis
information by which the CFG can be annotated.
An overview of the most important classes is shown in the UML class diagram [19,

21, 66] in Figure 6.4, and their sizes are listed in Table 6.1. For the sake of brevity,
less relevant classes have been omitted, and are also not contained in the description
below.

• Package staticanalyzer

– Analyzer: the core class of Sgdl-Sta, which controls the analysis pro-
cess and provides an interface to other components, both for starting an
analysis and for retrieving the results.
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– InstructionClassifier: determines the type of an instruction on the basis
of its behavior. This class is covered in detail in Sect. 6.5.3.

– RecursionDetector: computes the set of recursive instructions and func-
tions.

• Package cfg

– CallEdge: represents a call edge in the call graph.

– CfgBuilder: constructs control flow and call graphs for intra- and inter-
procedural analyses.

– CfgTools: encapsulates frequently used graph algorithms, such as depth
first search, getting a list of exit nodes, and getting a list of called sub-
routines.

– Node: represents a node in a CFG. Nodes contain a pair of analysis
information sets for each analysis, one representing an entry information
and another the exit information. Nodes may also contain any number
of references to call edges.

• Package analyses

– AbstractAnalysisController: a common super class for all analysis con-
trollers. An analysis controller is responsible for conducting a single
analysis such as RDA. For the most part, the abstract analysis con-
troller is a container for data structures and for references, for instance
to a CfgBuilder.

– AbstractAnalysisInformation: an interface defining methods for joining
and cloning analysis information (AI) sets. By using this interface, we
have decoupled the analysis algorithm from the data on which it oper-
ates.

– AnalysisAlgorithms: generalized algorithms for static analysis. Cur-
rently contains an implementation of a forward traversal algorithm, based
on a global fixed point iteration.

– BaseAnalysisInformation: a lattice element containing entries.

– MemoryCellId: this class and its subclasses provide a way of assigning
unique identifiers to memory locations, which are required as elements
of analysis information sets.

– RdaBuilder: encapsulates the RDA-specific part for conducting an anal-
ysis. This is technically an implementation of the strategy pattern (cf.
Gamma et al. [23]), which parameterizes the algorithm for computing
a fixed point. The most important parts of this include a definition
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of the kill and gen functions for all language elements that could be
encountered, and statement visitors for both the intraprocedural and
interprocedural modes of operation.

– RdaController: controls the RDA. This involves the following steps:

∗ Initialization of all RDentry and RDexit sets in all CFGs

∗ Creation of an appropriate intra- or interprocedural RdaBuilder

∗ Conducting the RDA for instructions, subroutines, and interrupt
code blocks

– RdaElement: represents an analysis information for RDA, such as
RDentry and RDexit

– RdaInformationHandler: subclass ofAnalysisInformationHandler, which
determines which analysis information sets are to be manipulated. Al-
lows the analysis algorithm to operate on the appropriate sets without
having to know them, i.e., decoupling. In this case, accesses are directed
to the RDA sets.

– RvaBuilder, RvaController, RvaElement and RvaInformationHandler:
classes for RVA, analogously to the classes of the same name for RDA

– WvaBuilder, WvaController, WvaElement and WvaInformationHandler:
classes for WVA, analogously to the classes of the same name for RDA

6.5.3 Instruction Set Classification

As pointed out in the motivation for this section, Sgdl-Sta should derive the con-
trol flow type of instructions to avoid requiring the developer to denote it explicitly
in the SSBS. For an instruction to be classified, the classification algorithm requires
the RDA, RVA and WVA to have been completed successfully. The idea of the al-
gorithm is to examine read and write accesses to certain special memory addresses,
that is, the program counter (PC) and the stack pointer (SP). An illustration of
the steps is shown in the UML activity diagram [19, 21, 42] in Fig. 6.5.
Combined with the analysis phase, the classification algorithm works as follows

(as described in one of our previous publications [27]):

• Construct the control flow graphs for the current instruction and all called
functions, including transitive calls

• All instructions implicitly increment the program counter by their own size,
so insert one reaching definition (RD) for the program counter (PC) into the
entry node of the CFG for the instruction
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Class Lines of code
Analyzer 322
InstructionClassifier 266
RecursionDetector 93
Other classes in package staticanalyzer 619
AbstractAnalysisController 88
AbstractAnalysisInformation 22
AddressBasedMemoryCellID 59
AnalysisAlgorithms 101
AnalysisBuilder 46
AnalysisInformationHandler 25
BaseAnalysisInformation 235
MemoryCellAnalysisInformationEntry 171
MemoryCellID 24
RDA-related classes 855
RVA-related classes 465
WVA-related classes 443
Other classes in package analyses 134
CallEdge 30
CfgBuilder 571
CfgTools 140
Node 159
Other classes in package cfg 110
Total 4,978

Table 6.1: Code size overview for Sgdl-Sta

81



6 SGDL Compiler

• Conduct all analyses

• Classify instructions based on the number and origin of RDs for PC reaching
the exit node:

– 1 RD from the entry node: regular instruction (PC is not modified in
the code block)

– 1 RD, but not from the entry node: program counter is inevitably over-
written with a single value, i.e. an unconditional jump instruction

– 2 RDs: a conditional jump

• Refinement phase: jump instructions manipulating the stack could be call or
return instructions, depending on whether they push the PC to or pop it from
the stack. These operations can be distinguished by the associated read and
write operations, which are represented in the results of RVA and WVA.

While this algorithm yields the type of an instruction, it does not provide the
target for jumps, calls and returns. To this end, we developed a concept in [27],
which would enable a subsequent analysis to obtain the jump targets as well. Sum-
marizing it, it is based on locating assignments to PC by means of a Reaching
Definitions Analysis, and then attempting to obtain the expression assigned to
PC. The procedure involves a backwards search through the CFG in order to col-
lect subexpressions used in such assignments, which appears feasible to us for the
rather small and simple-structured code fragments used in execute sections. For
instructions for which this succeeds, an explicit entry in the SSBS becomes obsolete.
All other jump, call and return instructions still require it.

6.5.4 Further Uses

Automatic Derivation of Instruction Semantics

As pointed out in the last section, we investigated how to obtain jump targets for
jumps and function-call related instructions. The same approach could possibly be
generalized and used to automatically rewrite the semantics of given instructions.
This would then not focus on jumps, but rather on arithmetic and logic operations
as well as data transfer instructions. The overall idea is to avoid operating on
concrete values, but to use symbols instead. A thorough description of the concept,
which we have not implemented yet, is given in one of our publications [27]. The
feasibility of the approach depends on whether Sgdl-Sta can be extended such that
it collects all sub-expressions used in assignments, which would allow rewriting them
based on the free variables of a code block (i.e. parameters or operands).
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Construct CFGs

Insert PC modification

Intraprocedural
RDA, RVA, WVA

Interprocedural
RDA, RVA, WVA

1 RD, from entry node

1 RD, not from
 entry node

More than 1 RD for PC

type := regular

2 RDs > 2 RDs

type := jump

type := branch type := unknown

writes to stack top

reads from stack top no stack access

type := call type := return type := jump

Classification

Figure 6.5: Instruction classification algorithm as an UML activity diagram. The
outgoing edges from the final nodes for types regular, branch and un-
known to the exit node have been omitted for clarity.
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Instruction Disassembling and GUI Presentation

Instructions should be displayed on the [mc]square GUI in a human-readable way.
As Sgdl forces all instructions to be given a name, it is simple to display a name
instead of a bit pattern. Unfortunately, it is not as simple with the operands, as
their purpose is not statically known. For instance, the AVR instruction OUT 0x3e
0x1d should rather be presented as OUT SPH, R29.
For enumerable locations such as registers, Sgdl has inherited a means from Isdl

for assigning names to them, but only if the reference is stored in an appropriate
data type. Therefore, it is possible to create the output R29 instead of 0x1d ,
but the approach is not applicable to larger memories and fails in the presence
of instructions adding an offset to their operands. OUT is an example of such an
instruction, which adds 0x20 to its first argument. In the above example, therefore,
the first parameter 0x3e actually points at address 0x5e in the global address space,
which is named SPH.
Hence, in the current implementation, operands are typically displayed as integer

literals, with the above exception. In order to determine whether the name of an
address should be displayed instead, it is necessary to determine which operands
are used as an address or part of an address expression. Such an expression could
then be rendered as a text and displayed, in case it does not contain function calls
or is overly complex to display. From a technical stance, the steps required for such
a resolution closely resemble those described in the previous section.
We consider this approach only useful as a possible side-result of the research

proposed in the previous section. Implementing such analyses for the sole purpose
of improving the GUI is not beneficial because there is an easier approach to this.
The simulator developer could provide some sort of formatting string, which would
be evaluated at compile time. However, this would necessarily prolong the Sgdl
description, in the worst case by one additional line per instruction for defining the
string. Therefore, this should be avoided if possible.

Interrupt Analysis

Furthermore, the analyzer may help reduce the need for explicit descriptions with
regard to the interrupt system. The behavior of an interrupt may depend on sev-
eral configuration registers, which must never be altered by any abstraction during
simulation. In particular, this applies to Dead Variable Reduction (DVR) (cf.
Sect. 8.5), which resets unused memory locations to 0. To avoid an unintentional
reset of locations that may have side effects, the generated simulator needs to be
equipped with a list of excluded addresses. The current approach to this is to add
an Sgdl dependencies section and therein, create entries of the form register
influences interrupt interruptname using mask bitmask, where interrupt-
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Figure 6.6: Structure of the backend for code generation in the Sgdl compiler

name designates an already declared interrupt and bitmask indicates the relevant
bits in the register.
For the ATmega16, the part of the dependencies list related to interrupts consists

of 40 entries. Each of these corresponds to a read access of the named register in
one of the interrupt code blocks. The most frequently occurring register is SREG,
and the bit mask value is 0x80 , that is, the global interrupt enable flag. Obviously,
to obtain the same information, Sgdl-Sta would need to conduct a Read Variable
Analysis on each of the interrupt code blocks. At the time of this writing, it already
creates the necessary CFG fragments, but no analysis is executed yet.

6.6 Compiler Backend For Code Synthesis

The backend of the Sgdl compiler processes the last intermediate representation,
which we refer to as synthesis tree, and generates Java code. The structure of the
backend is depicted in Fig. 6.6. As displayed in the figure, there are four components
involved: the synthesis tree, generators, the StringTemplate library, and several
template files.
Code generation is controlled by so-called generators. For each output file to

be created, there is a specific generator. A generator requires the synthesis tree,
from which it reads the information necessary for creating its output. For most
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generators, this is only a subset of the entire tree, e.g. the instruction-related
leaves for the instruction set generators. The generator may perform one final
processing step to rearrange the data, and then assigns the data to a template for
the StringTemplate library.

StringTemplate [54] is a template engine for generating strings. It is part of the
ANTLR [53] parser generator project. Technically, StringTemplate provides us
with the equivalent of a parser generator with regard to generating output. To use it,
we define templates (i.e., grammars), in which we declare terminal symbols (i.e., text
that is to be generated exactly as defined in the template) and nonterminal symbols
(i.e, text that can be replaced). Therefore, we can assign values to the nonterminal
symbols, and eventually trigger StringTemplate to generate all possible output
words. The library accepts Java objects as values, and can automatically process
multi-valued attributes such as lists. StringTemplate accesses class members
named in templates by means of Java Reflection [45], generating the names of
accessor methods if necessary. As this also allows for navigating of data structures,
ignoring the visibility concept of Java, we have decided to restrict the access of
StringTemplate to the very last synthesis tree.
The templates used for StringTemplate are stored in text files. The main

template in each of these files corresponds to a Java class, which may rely on
several internal templates. For example, the template for creating a deterministic
instruction visitor (cf. the structure of the generated simulator in Chapt. 7), is less
than 100 lines of code, with the main template consisting of 75 LOC. In the case of
the ATmega16 simulator, StringTemplate generates approximately 1,800 LOC
of code from this template. Thus, the template approach allows for very compact
representations of complex structures.
Finally, after StringTemplate has applied the attributes to the template, it

returns control to the generator. The last step for the generator is then to write the
output to a file, the name of which is specific for each generator. After that, the
backend calls the next generator in a simple linear list of generators, where the same
process takes place. Eventually, when all generators are finished, the synthesizer
terminates.

6.7 Glue Code Subcompiler

After the main Sgdl compiler has finished processing an Sgdl description, the
generated simulator is available within the package structure of [mc]square. In
case of a newly added simulator, however, the model checker is not yet aware of its
existence. Options and the graphical user interface need to be adapted accordingly.
In order to ease adding a new simulator, we have performed two steps. First, we

have refactored the hardware dependent parts of [mc]square such that automati-
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Class X
+ methodA
+ methodB
+ methodC
   ...

Class AbstractX
+ methodA
+ methodC
   ...

Class X
+ methodB

Template X
+ methodBgenerated

(a) (b)

Figure 6.7: Replacement pattern for platform-dependent class X. (a) shows the
starting point, with methodB being platform-dependent. (b) shows the
situation after extracting the platform-independent code of X into Ab-
stractX. The class X is now a generated class, created from a template
file.

cally generated code can be used. Most of these locations involve checking variables
of a few enum data types for the currently active microcontroller, and setting op-
tions or GUI elements depending on the value of the variable. For this purpose, we
have followed a pattern: wherever we encountered platform dependency in a class
X , we have extracted all non-hardware dependent code to a super class AbstractX .
The remaining code in the original class X , which was usually very compact, be-
came the basis for a StringTemplate template file. The procedure is illustrated
in Fig. 6.7. By this procedure, we safeguarded the code against accidental man-
ual modification, which happens frequently when using for instance the refactoring
tools provided by the Eclipse IDE. At the same time, it allowed us to generate the
hardware dependent parts by overwriting the now very compact subclasses (in the
above example, X).
The second step we performed to assist in adding new simulators was the creation

of a specific subcompiler. The input for the subcompiler is a very simple file, which
provides information on which platforms are to be supported in [mc]square, in
which package they are located, and whether they are handcrafted or synthetic. In
the latter case, the file also contains the common prefix of all the simulator files, and
also which loaders (ELF, HEX) the platform supports. Name prefixes combined
with the package name allow for fully qualified referencing of the simulator classes in
the generated glue code. An excerpt from such a description is shown in Listing 6.2.
Theoretically, it is not strictly necessary for the subcompiler to rely on explicitly

provided information about the available simulators. The main Sgdl compiler
could provide this information as well. Nevertheless, we decided to keep these two
compilers separated for reasons related to software quality and to performance.
The first argument is based on the fact that we intentionally designed the main
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compiler not to modify anything except in packages containing Sgdl files. We
did not desire accidental changes to code outside of the respective package, which
may occur due to errors during development. Such changes, on the other hand,
are obviously exactly the purpose of the subcompiler. Apart from that, our second
argument, performance, relates to the fact that changes to an existing simulator
are far more frequent than the addition of a new simulator. Hence, there is no need
for regenerating options and GUI on each compile.

1 handwritten platform "ATmega16" {
2 enum name = "ATMEGA16" ;
3 description = "ATmega16" ;
4 }
5

6 handwritten platform "PLC" {
7 enum name = "PLC" ;
8 description = "PLC" ;
9 }

10

11 generated platform "ATmega16Synthetic" {
12 enum name = "ATMEGASYNTH" ;
13 description = "ATMega Synthes i zed " ;
14 package name = "mc_square . s imu la tor . avr . atmega16 " ;
15 class name prefix = "Atmega16 " ;
16 supported loaders = " . e l f " , " . hex " ;
17 }

Listing 6.2: Excerpt from the list of available simulators used by the subcompiler

6.8 Related Work

6.8.1 Compiler Technology

Bogosavljevic [11] created a language processor for a language called Dices in his
thesis. That work was itself based on code from AVRora [81], and some of the
code still remains as part of the Sgdl compiler. The parts associated with AVRora
are the parser and the abstract syntax tree, both of which were modified by us
to accommodate for the new language elements in Sgdl and requirements in the
processing chain.
In most respects, the Sgdl compiler abides by the general principles found in

compilers. Its parser, which is generated by JavaCC [57], is based on an LL (k)
approach. There are multiple intermediate representations, a static analyzer, and
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finally, a code generation stage. Variables in the input languages are restricted to a
certain scope, which we realized by means of symbol tables, also a general concept.
A thorough overview of these concepts, and of possible implementations, can be
found in the very comprehensive book on compilers by Aho et al. [2].

6.8.2 Static Analysis

An overview of static analysis in general is given by Nielson et al. [49], and, to a
certain degree, also by Aho et al. [2].
The following overview of related work on static analysis, which is more specif-

ically focussed on hardware descriptions, is taken partly from one of our earlier
publications [27].
HOIST is a system by Regehr and Reid [60] that can derive static analyzers

for embedded systems, specifically for the Atmel ATmega16 microcontroller. In
this regard, their approach resembles ours, as we also create static analyzers for
microcontrollers, and as we also support the Atmel ATmega16. The key difference
is that they do not use a description of the hardware, but either a simulator or
the actual device. For a given instruction that is executed on the microcontroller,
HOIST conducts an exhaustive search over all the possible inputs, executes the
instruction once for any given input, and protocols the effects on the hardware.
These deduced transfer functions are then compacted into binary decision diagrams
(BDDs), and eventually translated into C code. Benefits of this approach are that
it can be automated almost entirely, and that it achieves a very high accuracy in
instruction effects. On the downside, however, there is the exponential complexity
in the number of bits in the parameters of instructions. In our approach, there is
no such complexity issue, as Sgdl-Sta operates not on a simulator or the physical
device, but on a description of it, and does not need to execute instructions to
examine their effects. However, this also restricts the validity of our results, which
depend on the correctness of the description, whereas the results obtained by HOIST
are implicitly verified against the actual device.
Chen et al. [15] have created a retargetable static analyzer for embedded software

within the scope of the MESCAL project [37]. Similar to our approach, they process
a description of the architecture, which in their case is called a Mescal Architecture
Description (MAD). Automatic classification of instructions for constructing the
CFG is apparently also possible in their approach, and they hint at that this is
possible due to some attributes present in the MAD that allow identification of,
for instance, the program counter. However, no further details are provided on the
ideas involved in classification. The generated analyzer is suitable for analyzing
worst case execution time (WCET) issues of certain classes of programs intended
to run on the hardware.
Schlickling and Pister [72] also analyze hardware descriptions, in their case VHDL
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code. Their system first translates the VHDL input into a sequential program, be-
fore applying well-known data flow analyses such as constant propagation analysis.
These analyses are then used to prove or disprove WCET properties of the hard-
ware. In contrast to this, we focus on the way the resource model is altered by
instructions, and timing-related properties are of no relevance for our approach.
Might [46] focuses on the step from concrete to abstract semantics for a vari-

ant of lambda calculus. In their examples, they also relate their work to register
machines, which, albeit a concept from theory, share some commonalities with
microcontrollers. They point out the similiarities between concrete and abstract
semantics, and contribute an almost algorithmic approach for lifting concrete se-
mantics to abstract ones, which is to to be used by developers. Our work on
Sgdl-Sta pursues a similar goal, in that we intended to derive some abstractions
automatically. As this is future work for our system, however, we cannot state
for certain whether such an entirely automatic approach is actually feasible in our
setting.
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Within the scope of this chapter, we detail the structure and mode of operation of
generated simulators in general. Regarding the structure, we describe the under-
lying resource model and the instructions modifying it, as well as the organization
of the interrupt subsystem. Concerning the mode of operation, we commence by
explaining the process of creating successor states, followed by a discussion of nec-
essary components such as the disassembler and binary file loaders. Finally, we
describe the automatically created interfaces for monitoring simulator activities,
and how to validate simulators against their respective data sheets.

7.1 Resource Model

The term resource in a generated simulator refers to globally available memory.
Local variables declared in subroutines are not part of the resource model because
they only exist in the simulating system. As such, they are not part of the states
that have to be stored in the state space.
As pointed out in Chapter 5, we distinguish memory arrays and memory aliases.

These are directly mapped to Java classes. Both MemoryArray and MemoryAlias
are superclasses of a class hierarchy. Depending on specific options present in the
Sgdl description, it is possible that the generated code references a subclass. For
instance, when the developer requests a memory array using differential storage, an
instance of DifferentialMemoryArray is created instead of a MemoryArray .

7.2 Instructions

Instructions are mapped to a set of classes, as shown in the UML class diagram in
Fig. 7.1. Technically, these classes can be distinguished by whether they are used
for simulation or for static analysis. Those classes that are used for simulation of
program execution modify the resource model, whereas the classes for static analysis
operate on an abstract machine model, as described by Schlich [68]. Besides those,
there exist a few shared classes.
For implementing instructions, we decided to abide by the same principle used

by all the other simulators in [mc]square. Hence, instructions are implemented
using the visitor pattern, as described by Gamma [23]. This pattern implies that
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«interface»

<Platform>InstructionVisitor

«interface»

<Platform>DeterminizationVisitor

<Platform>Instruction

<Instruction Name> <Platform>DeterministicDeterminizationVisitor <Platform>DndDeterminizationVisitor

<Platform>DeterministicInstructionVisitor

<Platform>DndInstructionVisitor

<Platform>StaticAnalyzerCfgBuilder

<Platform>StaticAnalyzerCallGraph

<Platform>StaticAnalyzerActionListBuilder

Figure 7.1: Generated classes that are related to the instruction set

each instruction in the Sgdl file is represented by a class, and that behavioral
aspects (i.e., the content of the execute and execute DND) sections are separated
from these classes. Instead, behavior is placed into a Visitor class. Therefore,
executing a behavior associated with an instance of an instruction consists of the
following steps:

• create an instance v of a visitor, for instance a DeterministicInstructionVisi-
tor, which implements the code for a completely deterministic simulation

• call the instruction’s accept method and pass the visitor as an argument

• the instruction calls the overloaded accept method of the visitor, passing
itself as a reference. Thus, the runtime environment selects the appropriate
implementation of accept by means of the signature.

• the now called method of the visitor contains the actual behavior associated
with the instruction

Using this principle allows us to store a single data structure for the instruction
instead of one per simulation type. Additionally, the concept also covers the re-
quirements of static analysis, in that the abstract semantics is just a different kind
of instruction visitor operating on the same data structure as regular simulation.
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In the following, we describe the classes relating to the instruction set. All of
these are implicitly prefixed with the name of the architecture, hence, in an actual
simulator, the name is <architecture> <name from below>:

• Instruction: contains the previously described instruction classes, which are
implemented as inner subclasses of Instruction.

• Simulation-related:

– InstructionVisitor: an interface used in the visitor pattern implementa-
tion for instruction execution

– DeterministicInstructionVisitor: a visitor used for deterministic simula-
tion, in which nondeterminism is resolved immediately whenever it is
encountered

– DelayedNondeterminismInstructionVisitor: a visitor used for simulation
with the abstraction Delayed Nondeterminism (cf. Chapt. 8) active
(meaning nondeterminism is propagated through memory)

• Instantiation-related:

– DeterminizationVisitor: an interface used in the determinization (also
called instantiation) of nondeterministic values. This is also an imple-
mentation of the visitor pattern used with the instruction class structure.

– DeterministicDeterminizationVisitor: a visitor that implements Deter-
minizationVisitor, used together with DeterministicInstructionVisitor in
deterministic simulation

– DndDeterminizationVisitor: analogous toDeterministicDeterminization-
Visitor, but for simulation using Delayed Nondeterminism

• Static analysis-related:

– StaticAnalyzerActionListBuilder: abstract semantics for all instructions
in the instruction set architecture. For a detailed description of the
concept, refer to Sect. 8.5.2, where we describe the generation of the
static analyzer in the context of an abstraction called Dead Variable
Reduction. The existence of such a class is required by the static analyzer
component of [mc]square.

– StaticAnalyzerCfgBuilder: the static analysis framework contained in
[mc]square requires a simulator to provide an implementation of a Cfg-
Builder. The latter is contained in the static analyzer package, and as
that is not part of our contribution, we do not provide any details on
it here. The builder is used to create a control flow graph (CFG) from
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a program written for the platform. As the program consists of indi-
vidual instructions, and each instruction becomes a node in the graph
depending on the effect it has on control flow, this task is realized by an
implementation of InstructionVisitor.

– StaticAnalyzerCallGraph: this class closely resembles the CFG builder,
but its task is not to add regular control flow edges. Instead, it has to
add call and return edges to an already existing CFG for instructions
related to function calls. Thus, it is used during the transition from a
control flow graph to a call graph. The existence of this class is also
required by the static analyzer component of [mc]square, where the
actual graph construction takes place.

7.3 Interrupts

The interrupt system in our generated simulators is a generalization of the systems
implemented in the handcrafted simulators in [mc]square. The foremost difference
is that we need to be able to handle any kind of interrupt priority system, which
increases the complexity even for architectures with a fixed priority (e.g. Atmel
AVR microcontrollers). The reason why this is relevant is detailed in Sect. 7.4,
where we explain successor state creation.
The interrupt system principally consists of interrupt classes, one for each in-

terrupt, an interrupt list, and a container class that becomes a so-called interrupt
manager at runtime. Futhermore, there is a comparator for interrupt priorities. All
classes of the interrupt system are contained in the manager class, which interfaces
to the determinizer. The interrupt classes contain the Java code corresponding to
the input from the Sgdl file. Finally, the list and the comparator interact to pro-
vide a sorted list of interrupts, which allows retrieving the interrupt that currently
has the highest priority and is also active.

7.4 Determinizer and Splitter

During successor state creation, the determinizer has to prepare the simulator state
such that there is no nondeterministic choice regarding the next step. That is, it
has to create a distinct state for each possible occurrence of an active interrupt.
For those situations in which no interrupt occurs, the determinizer has to ensure
that the next instruction can be processed. If necessary, this includes resolving
nondeterminism in the input for the instruction, i.e., also creating multiple states.
After the determinizer has finished, the next step the simulator has to take is
determined unambiguously by the hardware state.
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An important entity used during this process is a so-called splitter. Whenever
a memory location containing nondeterministic bits has to be instantiated, the
result is a set of possible valuations for this location. Each of these valuations
corresponds to a distinct state of the microcontroller. This split of the formerly
partially symbolic state into multiple states is the reason why these entities are
called splitters. Splitters are used by the determinizer.
Determinizer and splitter are concepts that were already present in the hand-

crafted simulators. In generated simulators, they are necessarily generalized. With
regard to the determinizer, this means increased complexity, whereas the general-
ized splitters are comparatively simple. This is due to the fact that they cannot
exploit platform peculiarities.

7.4.1 Mode of Operation

The determinizer is implemented as a state machine. It is created for a given
microcontroller state, starts in its intial state, and, when requested to return the
next possible valuation, it does so and may change its internal state. The following
states exist:

• Init Interrupts: this is the initial state. The interrupt manager initializes all
interrupts for the current machine state. This means that all interrupts are
checked whether they are enabled, and in case they are, they are added to
a list of currently nondeterministic interrupts. Finally, the list is sorted by
the current interrupt priority, depending on the state of the hardware. The
determinizer then transitions to the Interrupts state.

• Interrupts: in this state, the determinizer iterates over a list of all interrupts,
which is sorted by priority.

– If any active interrupt is found the flag of which is already posted, the
determinizer can immediately proceed to the finished state. The reason
is that due to the sorting, no other interrupt could possibly occur and
have a higher priority. Also, as any occuring interrupt would alter control
flow to the interrupt handler, it is also certain that no instruction could
be executed instead.

– Otherwise, if an active interrupt is found that is currently marked as
nondeterministic, i.e., it could occur but does not have to, the deter-
minizer creates two states: one in which the interrupt occurs, and one
in which it does not. In the former the determinizer proceeds to the fin-
ished state, having discovered an occurring interrupt, and in the latter,
it returns to Interrupts, where the search for an interrupt continues.
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• Nondeterministic Interrupts: serves as a marker for the determinizer that the
last creation of a microcontroller state yielded a situation where an interrupt
marked as nondeterministic was instantiated to has occurred. The necessary
step from here is to create the situation where it certainly does not occur,
and to continue the search for the next lower-priority interrupt by returning
to the Interrupts state.

• Init Instructions: in this state, it is certain that the successor states will be
created by executing the current instruction. Hence, the state machine has
to determine whether it is necessary to instantiate any of the arguments used
by that instruction. To this end, it creates a splitter and stores it, before
performing a transition to the state Instructions.

• Instructions: having reached this state, the determinizer uses the splitter
created in the last state to create all possible valuations for the arguments
of the instruction. Each of these is returned to the simulator as a complete
microcontroller state. When the last state has been created, the determinizer
enters the Finished state.

• Finished : the final state of the state machine, which is also a sink.

7.5 Loaders

Several steps are necessary for loading a binary program into [mc]square. The
first of these is to read and parse the binary file created by the compiler, which may
contain the initial content for multiple memories, such as Flash and EEPROM.
Commonly found file formats are, for instance, the Executable and Linkable For-
mat (ELF) [80], Intel HEX, and Motorola S-Record. Simulators in [mc]square can
access these file formats by means of so-called loaders, which can be parameterized.
A loader consists of a parser for the corresponding file content and a component
that writes the discovered memory contents to their designated memories. Eventu-
ally, when the program memory has been written, the loader may also invoke the
disassembler (see the next section).
We decided to reorganize the already existing ELF and HEX loaders such that

they can be reused for multiple platforms. This step included introducing parame-
ters, such as program memory word sizes, endianness, maximal addresses for data,
and platform identifiers that are checked during loading to ensure a file is intended
for the active platform. Such information is encoded in specialized classes, which
are instantiated and passed to the loaders when loading a file. The concept has
proven to be applicable to both handcrafted and synthetic simulators. In case of
generated simulators, the necessary file is generated from the loader section in the
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Figure 7.2: Mode of operation of the disassembler

Sgdl file. Hence, we obtained a library of reusable loaders, from which developers
can select as many as desired.

7.6 Disassembler

The task of the disassembler is to read the memory of the simulated device at a
specified position and to create instruction objects from the memory contents. For
this purpose, it contains patterns of the binary encodings of all instructions in the
instruction set.
Fig. 7.2 illustrates the disassembler’s mode of operation for a single instruction.

First of all, the disassembler tries to match a prefix of the binary stream to one
of the formats from the format section in the Sgdl file. If this succeeds for any
format, disassembling continues for that format, trying to match the prefix to a
specific instruction. In case this succeeds, the position in the stream is increased
by the size of the instruction, and the process starts anew for the next instruction.
Otherwise, the disassembler attempts a match against the next format. In case
none of the formats matches the prefix, the disassembler tries to find a match
for instructions that do not use a format (i.e., they declare their encoding inline).
Finally, if this also does not yield a valid instruction, the disassembler enters error
recovery mode.
In error recovery mode, the disassembler can try two different strategies. If the
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developer has provided a maximum length for instructions in the Sgdl file, then
the disassembler can try all addresses following the current one up to current plus
the maximum size for a valid instruction. In that case, the current address contains
an invalid instruction, for which an instance of InvalidInstruction is inserted into
the disassembled program. Otherwise, that is, without a value for the maximum
instruction size, the disassembler cannot continue, as we cannot distinguish between
opcode and data any more. In that case, we insert InvalidInstruction objects for
all remaining addresses.

It is worth mentioning that the current implementation of the disassembler tries
to match fixed bit patterns against the binary input stream. Thus, the prefix of
the input is read several times. This does not necessarily pose a problem in case
of short programs, especially if they are disassembled only once upon loading. For
large programs, or when disassembling becomes necessary during simulation (on-
the-fly disassembling), however, this can severely slow down simulation. Existing
algorithms for string pattern matching, for instance Knuth-Morris-Pratt [2, 38], or
techniques based on so-called tries (e.g. suffix trees) [2], could possibly be used for
enhancing this.

7.7 Data Types

All data types are internally mapped to the Java type int, which is 32 bits wide.
Compared to an entirely symbolic number representation, which would provide
arbitrary bit widths, this approach has both advantages and disadvantages. The
obvious disadvantage is that in the current form, Sgdl cannot be used to model
microcontrollers with more than 32 bits register width. Even modeling a 32 bit
machine could be problematic because of the internal representation of integers in
the Java Virtual Machine (JVM), which uses two’s complement representation. An
advantage of this approach over a symbolic one, however, is the improved perfor-
mance. It is not necessary to perform computations on symbols (i.e., in software),
but the simulating computer can do these natively, that is, in hardware. Further-
more, model-checking software with [mc]square for any architecture of more than
16 bits width seems currently infeasible due to the explicit-state approach. Hence,
we conclude that using int is no real restriction at the moment, and that the per-
formance advantage justifies this approach. Should there be need to change this,
we assume that moving to 64 bit, by using the Java type long instead, would be
straightforward, and a symbolic approach seems possible as well.
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Figure 7.3: Double observer pattern for memories

7.8 Observer Interface

Resources in generated simulators, as described in Sect. 7.1, relate to global mem-
ories, represented by memory arrays and memory aliases. Monitoring accesses to
such resources may be necessary for various reasons. We required such a possibility,
for instance, for implementing an abstraction called On-the-Fly Path Reduction, for
sanity and consistency checks of memory contents, and also for a variant of an ab-
straction called Delayed Nondeterminism. Details on these techniques, including a
motivation for each, are provided in Chapt. 8.
An obvious solution to the problem of monitoring memories is the observer pat-

tern (cf. [23]). However, in our design, the memory system consists of two different
levels, namely the actual storage level realized by memory arrays, and the access
level, represented by the memory aliases. Consequently, there are also two different
starting points for monitoring. We decided for a double observer pattern implemen-
tation, as illustrated in Fig. 7.3. Both the memory aliases and the memory arrays
can be observed, and all memory aliases are also observers for memory arrays. This
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design decision was motivated by several reasons:

1. Completeness: accessing a memory cell should alert all observers listening to
it. It must not be possible that an access via one alias is properly registered
by its observers, but another alias for the same cell is unaware of the access.

2. Flexibility: depending on the purpose behind monitoring, it should be possible
to attach an observer either to the lowest level (i.e., memory arrays), or to a
higher level (i.e., an alias).

3. Loose coupling: memory accesses in Sgdl code blocks are always routed
through aliases. Hence, in case an alias is given, no knowledge about the
actual storage is required. Thus, it should be possible to attach an observer
to the alias.

Property (1) is guaranteed in our design because any access to a memory cell
conducted via an alias will result in the underlying array to broadcast an access
message to its observers, including all aliases registered with it. The necessary
registration is performed automatically on initialization of the simulator. Properties
(2) and (3) are fulfilled because aliases themselves can be observed.
The two interfaces implemented by the observers, MemoryAliasAccessObserver

and MemoryArrayAccessObserver, distinguish between read and write accesses,
and the observables respect the difference as well. Hence, it is possible for observers
to restrict their attention to read or to write events, if required.

7.9 Validation

Generated simulators may contain errors introduced by the developer, errors in
the synthesis system, or both. If an instruction is not implemented correctly with
regard to its specification in the data sheet, the generated simulator will create
incorrect state spaces, which in turn may result in incorrect model checking results.
Hence, it is necessary to increase the confidence in the correctness of the generated
simulator. For this purpose, every instruction and every subroutine in the Sgdl
input should be tested adequately. Other components that are provided by the
synthesis system, such as memory storage classes and operands, are independent of
specific simulators, and can therefore be tested independently. Within this section,
we take it for granted that these components are properly tested and operate as
supposed to. Hence, the focus is on how and to what extent the synthesis system
can assist in validating the generated code against the device specification.
In order to facilitate validation, the synthesizer not only generates the simulator,

but also a class containing JUnit [22] tests for the instruction set. The test class
covers the following:

100



7.9 Validation

• Creation of the simulator. Each test run is preceded by the initialization of a
new hardware, options, and deterministic instruction visitor. These compo-
nents are then available in the actual tests.

• Subroutines. The generator creates test stubs for each of the subroutines in
the Sgdl file. These stubs are already marked for test execution by means of
the Junit @Test annotation. It is up to the developer to design test cases for
the method under test, and to implement the actual test code.

• Instruction encodings. For each instruction present in the Sgdl input, an
empty encoding pattern in the form of a Java byte array is created. These
encodings are then used in the test for that instruction. A generated test
checks whether the length of the array matches the length of the instruction
that is derived from the Sgdl input.

• Instruction disassembling. The test for the generated disassembler invokes
the latter with the aforementioned encoding in the array. In case the disas-
sembler operates correctly, it should return a single non-null instruction of
the respective class. Otherwise, the test fails.

• Instruction execution. Following successful disassembling, the generated test
attempts to execute the instruction. As we assume that there might be errors
anywhere in Sgdl file and synthesis system, we do not generate any code
for automatic checking of any postconditions. Hence, the developer has to
add the necessary code for inspecting the machine state reached after the
execution.

An important aspect of these tests is that the mentioned instruction patterns are
empty, thus forcing the developer to inspect the device’s data sheet or instruction
set manual for finding valid opcode and parameter encodings. While it would be
possible to derive valid patterns for the instructions from the descriptions in the
Sgdl file, we have deliberately abstained from doing so due to principles from
software testing theory:

• Testing requires some means for determining the correct result for an input.
Typically, this sort of reference is called a test oracle (e.g. [40]).

• In case of regression tests, for instance, an older version of the system serves
as the oracle, and in model based testing, a model of the system [40, 74].

Consequently, generating both the simulator and the pattern from the same de-
scription could result in the test not discovering any errors even for a completely
incorrect implementation. Thus, we decided to automate the test case generation
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as far as seemed reasonable. In order to allow for the necessary manual extension
of the tests, the Sgdl compiler will not overwrite an already existing test class.
Listing 7.1 shows an excerpt from the automatically generated JUnit test class

for our Sgdl implementation of the Intel MCS-51 microcontroller. Positions to be
manually enhanced by the developer are marked by generated TODO markers.

1 //TODO: f i l l in the co r r e c t b inary r ep r e s en t a t i on o f the
i n s t r u c t i o n s here . S e l e c t v a r i a b l e va l u e s as you l i k e !

2 protected stat ic f ina l byte [ ] Mcs51_ACALL_ENCODING =
{0x51 , 0x2c } ;

3 protected stat ic f ina l byte [ ]
Mcs51_ADD_ACC_REG_ENCODING = {0x28 } ;

4 protected stat ic f ina l byte [ ]
Mcs51_ADD_ACC_DIRECT_ENCODING = {0x25 , 0} ;

5

6 private Mcs51Hardware hardware ;
7 private OptionsValuesWritable opt ions ;
8 private Mcs51Det e rm in i s t i c I n s t ru c t i onV i s i t o r v i s i t o r ;
9

10 @Before
11 public void setUp ( ) {
12 OptionsApi . i n i t i a l i z e ( ) ;
13 opt ions = OptionsValues . getWritable ( ) ;
14 hardware = new Mcs51Hardware ( opt ions ) ;
15 v i s i t o r = new Mcs51Det e rm in i s t i c I n s t ru c t i onV i s i t o r (

hardware ) ;
16 }
17

18 @After
19 public void tearDown ( ) {
20 opt ions = null ;
21 hardware = null ;
22 v i s i t o r = null ;
23 }
24

25 /∗∗
26 ∗ Test code f o r the subrou t ine
27 ∗ <code>Operand getRegInActiveBank (Operand reg )</

code>
28 ∗/
29 @Test
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30 public void testSubroutine_getRegInActiveBank ( ) {
31 }
32

33 /∗∗
34 ∗ Test code f o r the i n s t r u c t i o n
35 ∗ <code>Mcs51Instruct ion . a c a l l (IMM11 t a r g e t ) )</code>
36 ∗/
37 @SuppressWarnings ( " nu l l " )
38 @Test
39 public void testMcs51_ACALL ( ) {
40 // I n i t i a l i z e the program memory us ing the va l u e s

prov ided in the cons tan t s s e c t i on
41 a s s e r tEqua l s ( "tstTestSetup_ACALL" , 2 ,

Mcs51_ACALL_ENCODING. l ength ) ;
42 byte [ ] program = new byte [ 2 ] ;
43 for ( int i = 0 ; i < Mcs51_ACALL_ENCODING. l ength ; i

++){
44 program [ i ] = Mcs51_ACALL_ENCODING[ i ] ;
45 }
46

47 //Test whether the d i sa s s emb l e r p rope r l y c r ea t e s an
Mcs51Instruct ion .ACALL from the by t e [ ]

48 Mcs51Instruct ion [ ] i n s t r u c t i o n s = Mcs51Disassembler .
d i sa s semble ( program , 0 , hardware ) ;

49 asse r tTrue ( "tstDisassACALL1" , i n s t r u c t i o n s != null ) ;
50 asse r tTrue ( "tstDisassACALL2" , i n s t r u c t i o n s . l ength >=

1) ;
51 asse r tTrue ( "tstDisassACALL3" , i n s t r u c t i o n s [ 0 ] != null )

;
52 try{
53 @SuppressWarnings ( "unused" )
54 Mcs51Instruct ion .ACALL castAttempt = (

Mcs51Instruct ion .ACALL) i n s t r u c t i o n s [ 0 ] ;
55 }
56 catch ( ClassCastExcept ion e ) {
57 f a i l ( "Wrong␣ c l a s s ␣ c rea ted ␣by␣ d i sa s s emb l e r ! ␣Expected

: ␣Mcs51Instruct ion .ACALL, ␣but␣was : ␣" +
i n s t r u c t i o n s [ 0 ] . g e tC la s s ( ) ) ;

58 }
59

60 //TODO: add code f o r t e s t i n g the r e s u l t s o f
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i n s t r u c t i o n execu t i on here !
61 i n s t r u c t i o n s [ 0 ] . accept ( v i s i t o r ) ;
62 }

Listing 7.1: Auto-generated test for the Intel MCS-51 instruction set

The only manual modification in Listing 7.1 involves the selection of the array
contents at the beginning. All other code has been generated. Hence, these tests
usually provide a basic coverage of instruction behavior, and require little effort.
However, without exploiting knowledge about the instructions it is not possible to
automatically cover corner cases, and therefore it is necessary to manually imple-
ment further tests. We detail possible approaches in this direction in Sect. 9.3.
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In this chapter, we present the abstractions that are available in the synthetic
simulators. Abstractions are used to counter the state explosion problem, which
is a general problem in model checking. In the first section, we provide detailed
information on this problem, and how this relates to the state space generator. All
following sections then focus on specific approaches.
Most of the abstractions presented in this chapter were already described in

some of our earlier publications, or were originally introduced by other authors. A
thorough description of such previous contributions by others, and how they relate
to our designs, is given in Sect. 8.8. Concerning our own previous work, Lazy Stack
Evaluation for synthetic simulators was presented in [28], together with an early
version of On-the-Fly Path Reduction, which was then still named Dynamic Path
Reduction. A more advanced version of On-the-Fly Path Reduction was presented
in [10], though the simulator used in that publication was not a generated one. Still,
the advanced version was first implemented in one of our synthetic simulators, and
later ported to the handcrafted simulator used in the publication. Regarding further
abstractions, we contributed a publication to a workshop [27] in which we pointed
out the necessary steps for automating the generation of a static analyzer and of a
semantics for delayed nondeterminism.

8.1 Motivation

Model checking in general is a means for verification that requires large amounts
of memory. The memory is needed for storing the state space, which is traversed
in order to check for property violations. In case the system employed for the
verification process runs out of memory, model checking may have to terminate
prematurely. In that case, depending on the actual algorithm used, the usefulness
of the results obtained may be very limited: they may be valid only for the part
of the system checked so far, or there may be no result at all yet. This problem is
particularly acute for software model checking, as the number of states to be stored
correlates with the number of steps the system may take, and a step in a program
is typically a single instruction. On the assembly level, this implies a large number
of states to be stored even for small programs, as most instructions result in rather
slight modifications of the machine state.
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Microcontrollers usually have small memory sizes, ranging from less than hundred
bytes to more than ten MBytes for very large devices. Typically, though, microcon-
trollers have memories much smaller than one MB. The devices we consider are the
Atmel ATmega16 and the Intel MCS-51. Omitting the separate program memory
and EEPROM, the ATmega16 features only one kByte of SRAM plus 96 bytes of
registers, resulting in an overall random-access memory size of 1120 bytes. At a
glance, this might seem so small as to render storage issues irrelevant. However,
this is not the case. Each of the 1120 bytes consists of eight bits, hence there are
8960 bits, each of which may be either 0 or 1. Therefore, the number of states the
microcontroller might be in is

28960 ≈ 1.69 · 102697

Therefore, regardless of the memory technology available, it is simply infeasible to
store all possible states, or even to only compute them. The corresponding value
for the MCS-51 with its 128 bytes of RAM would be 1.8 · 10308 states, which is why
storing all states would be equally infeasible even for this device with its rather
small amount of memory.
It is possible to remedy this problem by several approaches. Clarke et al. [16]

for instance distinguish between symbolic algorithms, symmetry reduction, assume
guarantee reasoning, , induction, and abstraction. We illustrate some of these in
the section on related work (cf. Sect. 8.8). Within the scope of this chapter, we
focus on reductions of the number of states that are based on abstraction. The
general idea of abstraction (as defined by both Clarke and Baier and Katoen [9]) is
that instead of verifying properties of the actual system, we first map the system to
a smaller, abstract system. It is necessary that the mapping preserves the validity
of properties, such that a formula proven to be valid for the abstract system must
also hold true for the actual system. In that case, it is therefore not necessary to
create the actual system at all.
The aforementioned preservation of properties is crucial for any abstraction. Sim-

ilar to the problem of creating an appropriate model of a system, it is possible to
omit important aspects of a system when abstracting. Hence, it may occur that
checking a given specification against the abstracted system results in a false nega-
tive. That is, the concrete system is rejected because the property does not hold on
the abstract system, even though it would hold true on the concrete one. Analo-
gously, a false positive would be the acceptance of a faulty concrete system because
the abstract system satisfies a property, for instance because it may exhibit more
behavior than the concrete one due to simplification. Hence, designing abstractions
requires special care, and in some cases it is necessary to re-check a system with-
out an abstraction to ensure whether a discovered issue is actually present in the
concrete system.
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8.2 Language Elements Related to Abstraction

In this section, we provide a brief overview of language elements that were intro-
duced into Sgdl only for abstraction purposes. These are a distinguishing feature
of the language when compared to other hardware description languages. Details
on the syntax of these language elements are given in Chapter 5, where the lan-
guage as such is described. Their semantics is covered in the context of specific
abstraction techniques, which are described in later sections of this chapter.

• Static Behavior Section

– Set of read locations

– Set of written locations

– Set of possible successors

• Dependency Section

– Register to register dependencies

– Register to interrupt dependencies

• Multiple execute sections per instruction (e.g. execute "DND")

• Instantiation sets

– For deterministic simulation: instantiate

– For simulation with delayed nondeterminism: dnd instantiate

• Nondeterminism mask in all global memories

• Possibility for differential storage of memories to improve memory footprint
of states in the state space

• Stack and stack pointer declaration
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Figure 8.1: Principle of Lazy Stack Evaluation: (A) evolution of the stack without
reset, (B) reset to 0, (C) reset to nondeterministic

8.3 Lazy Stack Evaluation

Lazy Stack Evaluation (LSE) 1 (see also [68]) is a very powerful abstraction that
preserves the expressiveness of the abstracted system. In the handcrafted simu-
lators, it has proven itself to be an invaluable abstraction, without which most
programs would not be manageable for the model checker, and which is therefore
active by default.
The idea behind lazy stack evaluation is shown in Fig. 8.1. It is based on two

premises:

• A program generated by a compiler will only access the contents of the frame
of a function while the frame of that function is still stored on the stack. That
is, the values of local variables and the return address become irrelevant when
exiting a function.

• The stack pointer indicates the actual size of the stack, and is only modified
by means of push and pop operations.

Whenever an element is taken from the stack by a pop operation, reducing the size
of the stack, it is copied to some target location. However, the originating memory
cell still contains the value. Due to the assumptions, though, it is certain that it
will never be read again before it is overwritten. Hence, the stack pointer register
(or registers, in case the platform provides more than one) also points to the last
element that actually needs to be stored. This observation is exploited by LSE.

1Bibliographic note: this section is an improved and extended version of our description of LSE
in one of our previous publications [28]
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By resetting the elements beyond the top to a common reset value, it allows states
that differ only in those irrelevant memory locations to be merged. In the example
in Fig. 8.1, this is depicted for a previous value of the stack pointer (SP) of 5. By
three pop operations, the value of SP has been reduced to 2, allowing for the values
X3, X4 and X5 to be discarded.
It is possible to guarantee a valid over-approximation even in the rare case the

program should read a value beyond the address pointed to by SP. Such a read
access may be caused for instance by a dangling pointer. To safeguard against this,
locations are not only reset on pop, but also marked nondeterministic. Vice versa,
pushing a (deterministic) value on the stack will render a location deterministic
again. Thus, should the program ever read an address beyond SP, which used to
be part of the stack, the content of that address will be instantiated, generating all
possible values for that address. Hence, the set of values generated then will also
include the original value that was deliberately dropped by the reset step of LSE.
Obviously, LSE can have little impact if the program scarcely modifies the stack

pointer. For instance, among the programs introduced in the next chapter, there is
a program called Experimental Plant, which was written for the ATmega16 micro-
controller. Experimental Plant contains only two active interrupts and no function
calls except an initialization method that is called only once. LSE is ineffective on
this program. The opposite case is given when there are many function calls joined
with a large number of simultaneously active interrupts. Then, it is possible for an
interrupt to occur at any point during function execution, especially while entering
or leaving the function. This, combined with the different orderings in which the
interrupts may occur, can result in the stack containing many different combina-
tions of remaining return values. Under such circumstances, LSE can reduce up
to 98% of the state space. The effect becomes visible for the test program called
Window Lift, which is also introduced in the next chapter. The differences between
the None and the LSE settings in Tables 10.4 and 10.5 are due to the application
of LSE.
When activated, LSE invariably marks the former top of the stack nondetermin-

istic, resulting in a side effect: the memory cells marked nondeterministic describe
the maximum size the stack has reached in the past. Even though the logics we use
do not allow specifying statements about the content of the NDM, the information
is nevertheless stored. Hence, states can differ in these locations, and it is desirable
to drop this undesired information. This is possible by initializing the entire ad-
dress space as nondeterministic when creating the simulator, which results in pop
operations returning the NDM to its previous (nondeterministic) state instead of
adding new information. Special care is needed, though, as such an initialization
creates nondeterministic values in internal memory cells that would never become
nondeterministic in certain types of simulation. Hence, even in deterministic simu-
lation, in which instructions operate on deterministic data only, read accesses must
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instantiate, and write accesses must be accompanied by modifications of the NDM.
The latter is especially important, as otherwise it is possible for memory cells to
contain non-zero values while being nondeterministic at the same time, thus allow-
ing for state explosion. However, adding the NDM modifications explicitly to the
execute sections can interfere with certain abstractions, apart from the additional
manual effort. In Sect. 8.7, we describe techniques that can automatically correct
the NDM if necessary, preserving the flexibility of the code in the execute section.
Lazy stack evaluation therefore deals with a problem that is not present in theory,

but occurs in real hardware. A stack on paper would never contain any values that
have been removed by a pop. In contrast to this, a processor-based architecture
only needs to return the value at the top of the stack and modify the stack pointer
(either grow or shrink it), but there is no need for the processor to reset any values
in memory. Hence, the value at the former top of the stack remains in memory.
LSE can therefore only preserve a simulation relation between the abstracted and
the concrete state space: the state space after the reset may exhibit more behavior
than the concrete one.
In case the Sgdl description of a platform routes all accesses to the stack over a

push and a pop subroutine, LSE can be implemented with minimal effort. In the
case of the ATmega16 simulator, the following modifications were necessary:

• in pop:

– store the value of the stack, which is about to be returned, in a temporary
variable

– reset the value by writing a 0 to the SRAM location pointed to by SP

– label all bits of the location as nondeterministic by writing 0xff to its
nondeterminism mask

– return the value

• in push: reset the nd mask of the location where the new element is placed
by writing 0x00 to it, thus marking it as deterministic

Thus, the overall effort amounts to three new lines of code (reset value, set nd
mask, and reset nd mask). We have investigated the possibility of automating
this, and concluded that it is possible by providing generic and already adapted
versions of push and pop. Simulator developers would then have to use these
methods for implementing stacks instead of implementing the associated semantics
themselves. However, the generic methods need to consider platform peculiarities
such as endianness, word size, the direction in which the stack grows, whether SP
points to the last occupied or the next free position, and the possibility of multiple
stacks. Hence, they would not necessarily relieve the developer due to their own
complex handling.
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8.4 On-the-Fly Path Reduction

Bibliographic note. The contents of this section are an improved and extended
version of our description of Dynamic Path Reduction in one of our previous pub-
lications [28]. Dynamic Path Reduction itself was originally implemented for the
handcrafted simulators in [mc]square by other members of the team. Our con-
tribution is the elimination of remaining hardware dependencies in the technique,
such that it became possible for us to generate the necessary code directly, that is,
without the developer having to provide any additional information. Additionally,
we experimented with the approach and improved it. Some of these improvements
were later ported back into the handcrafted ATmega16 simulator and used for a
publication in which we participated [10].

8.4.1 Concept of and Approaches to Path Reduction

The idea behind path reduction is to reduce long chains of states with only one
successor each into a single step from the first state in the chain to the last. States in
between are not stored. Apart from saving memory, this also has the advantage that
the simulator state does not have to be stored after each step, which is very time-
consuming. Previous examinations have shown that saving and restoring states
consumes most of the time in model checking with [mc]square, i.e., most time
is spent on moving arrays in memory, whereas the effort for model checking is
negligible. A possible disadvantage of path reduction, however, which can occur
depending on the program and the formula, is that states that have to be revisited
during model checking may have to be recreated (when they are not stored). Hence,
the typically much smaller state space size does not imply that the time required
for model checking also shrinks. Instead, the time effort can even increase. Several
conditions must be met for allowing states to be compacted by path reduction:

• no split-up due to instantiation of a nondeterministic value

• no active interrupts

• no change of any memory location relevant for the ctl formula

• no state occurs twice in the chain, i.e. no loop in the state space

Static path reduction [71, 86] uses a static analysis to derive the information about
instantiation and active interrupts. The analysis is conducted prior to simulation.
When in doubt about whether the condition will be fulfilled at a specific location,
the information provided by the static analysis has to be that reduction is not
possible. On-the-Fly Path Reduction (OTF-PR) [10] does not require a static anal-
ysis, but simply checks for each created state during simulation whether the above
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conditions are still satisfied. This results in an additional effort at runtime, but is
more accurate, as there can be no doubt about whether it is safe to add a state to
a chain. Thus, OTF-PR is more effective than static path reduction, and can be
implemented with far less effort.
From a theoretical point of view, there is one situation in which static path reduc-

tion could perform better than OTF-PR. This would be the case for an extremely
long chain. Due to the necessity to prevent loops in the state space, OTF-PR has
to store some information about already seen states, which would be, in the most
memory-efficient implementation, a hash value. Hence, it is possible that the as-
sociated data structure grows beyond memory limitations, causing model checking
to abort. Opposed to this, the static approach would determine the chain ranges
beforehand, and not allocate any memory while creating the chain. However, this
scenario is not likely to occur. It corresponds to a program in which the microcon-
troller only computes and does not react to events from the environment, i.e., there
must be no input operations, no interrupts, and deactivated internal peripherals.
Moreover, it must not reach a previously reached internal state, as this would also
terminate the chain.
Hence, we conclude that for realistic programs not tailored to break the principle,

OTF-PR is always a better choice than static path reduction. The results from [10]
underline this conclusion. Therefore, we have decided against implementing the
static approach in synthetic simulators.

8.4.2 Condition Checking in On-the-Fly Path Reduction

As mentioned in the last subsection, there are four conditions that need to be
checked by an implementation of OTF-PR. The checking for only a single successor
is related to the first two conditions in the above list, that is, there must be no
instantiation and no possible interrupt. Ensuring that this condition is met is
trivial, as we only need to verify, after creating the successors of a state, whether
there is only a single successor. For the third condition, which turned out to be more
complicated, we investigated the impact of two different approaches, described in
detail below. Loop detection in the state space (fourth condition), is again a simple
task, as it is not hardware-dependent at all. In our implementation, we decided for
a loop detection based on hash collision checking.
The only obstacle we encountered was related to the third condition, i.e., checking

whether the step modifies any memory location relevant for the ctl formula. We
decided to obtain this information by means of a dynamic analysis, instead of forcing
the Sgdl developer to provide a list of written locations. Fig. 8.2 illustrates our
solution for this problem. The idea is to monitor write accesses to the memories
during successor state creation. If an access modifies a formula-relevant location,
then the successor state which was just created cannot be added to the current

112



8.4 On-the-Fly Path Reduction

Figure 8.2: Monitoring of memory accesses in OTF Path Reduction

chain. Instead, its predecessor, to which we need to keep a reference, is the final
state in the chain. This approach causes the synthetic simulators to always perform,
for each chain, one step more than necessary to discover formula modification.
However, the benefit of it is that it eliminates any need for knowing the effects of
instruction execution in advance, thus facilitating implementation.

A refinement of the technique is based on the observation that not every modi-
fication of a formula-relevant location has an effect on the validity of the formula.
For the validity to change, at least one of the atomic propostions has to toggle its
truth value, e.g. from true to false. Atomics like x ./ y, where x, y are either names
of registers, memory addresses, or literals, ./∈ {=,≤,≤,≥,≥} , are either true or
false for equivalence classes of values. Hence, writing a new value to a location
that is in the same equivalence class as the previous value will not toggle the truth
value of the atomic. In case this holds true for all atomics of the formula, the truth
value of the latter will also not change, implying the new state is equivalent to its
predecessor with regard to formula validity. We can exploit this by requiring that a
chain must be terminated not already when a formula-relevant location is written,
but only when this has an impact on formula validity. In some of our case studies,
this modification has allowed for an additional 30% reduction of the number of
states stored in the state space.
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8.5 Dead Variable Reduction

At some point during simulation, it may occur that values are no longer needed
neither for the computation, nor for verifying the formula. We call the memory
locations containing such values dead variables. A variable x becomes irrelevant for
the computation at a program counter l iff, for all possible continuations starting
at l, x is never read again.
Let Dl be the set of dead variables at l. By definition, modifying the value of

any x ∈ Dl does not impact the outcome of the simulation, and also does not affect
the truth value of the formula. We can exploit this observation for reducing the
number of states that have to be stored, by means of merging states. Let s1, s2
be states, representing the microcontroller at program counter l, and let s1 6= s2.
If s1, s2 differ only at memory locations xi ∈ Dl, 1 ≤ i ≤ n, n ∈ N, we can set
xi := 0∀i ∈ {1, . . . n}, to obtain states x′1, x

′
2. Hence, x

′
1 = x′2, meaning only one of

them has to be stored.
This abstraction is known in the literature under the term Dead Variable Reduc-

tion. Applying it to a program necessitates the presence of information about which
variables are dead at a given program location. For implementing it, it suffices to
know the location at which a variable dies, i.e., changes its status from needed to
no longer needed.

8.5.1 Static Analysis

In order to obtain the sets of dying variables, we conduct a static analysis of
the microcontroller program. The procedure is exactly the same as described by
Schlich [68], with the only difference being that in our setting, the simulators are
synthetic ones, and that the static analyzer as such is also generated instead of
handcrafted. Hence, we just briefly summarize the intent for using a static analy-
sis:

• Future behavior. For a given program location l and memory locations
xi, . . . xn, we need to decide whether xi ∈ Dl. This problem is equal to
deciding whether there will be a next read access to xi, i.e., requires deciding
the reachability problem for Turing machines. This problem is undecidable,
as being able to decide whether a certain configuration is reachable could be
used to decide the halting problem. The latter is undecidable, as shown for
instance by Hromkovic [35]. We show a very simple proof in Fig. 8.3, which
is similar to a proof used by Nielson et al. [49] to show that the constantness
property for variables is undecidable.

Therefore, it is not possible to decide this problem, but is is possible to obtain
a safe under-approximation of reducible variables by means of a static analysis.
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TM A

call A

read x

Figure 8.3: Proof that it is not possible to determine, at the call instruction, whether
the variable x is still alive, due to undecidability. The problem is that
reaching the read access for variable x depends on whether the Turing
machine A terminates.

The under-approximation guarantees that no variable that is in fact alive is
reset.

• Scalability. Static analysis scales well with the size of the program, and as
such, poses only negligible overhead when run before the state space building
starts. During the latter, there is therefore no overhead for checking any
additional conditions on variable liveness.

• Termination. Static analyses obtain information about a program Π without
actually executing it. Also, instead of aiming at exact information, which
is in most cases not computable due to undecidability issues, static analysis
usually only yields approximations of actual program behavior. While this
requires a thorough design of analyses, depending on whether the analysis
must return an over- or an under-approximation of the desired property, it
also has advantages. The most important of these is termination, which can
be guaranteed for the analysis algorithm.

The most often used form of static analysis consists of a translation of the in-
put program Π into a control flow graph (CFG), either of the Single Instruction
or of the Basic Block type. Depending on the type, either single instructions or
non-branching blocks of instructions become nodes in the graph, which are inter-
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connected by edges iff control flow can pass from one instruction to its successor in
Π.
Analyses that are conducive to conducting DVR are Live Variable Analysis (LVA)

and Reaching Definitions Analysis (RDA). These are standard textbook analyses,
described for instance in [49]. Primarily, DVR depends on the results of LVA, but
its accuracy can be increased by an additional RDA. Other analyses may be helpful
for increasing the accuracy, and thus, allow for a larger numbers of variables to be
recognized as dead.

8.5.2 Generating the Static Analyzer

Static analysis for microcontroller code in [mc]square is provided to simulator de-
velopers in the form of a framework. This framework is not part of our contribution,
but was created by other team members (cf. [41, 68, 71]). It helps to construct a
platform-specific analyzer, which can conduct the actual analyses, if provided with
some platform-specific information. The foremost of these describe the relation
between instructions and their succeeding instructions, which is needed for con-
structing a control flow graph for a given microcontroller program. Furthermore,
for conducting LVA and RDA, the framework requires a list of read and written
locations, respectively.
The following list describes the generated classes related to the static analyzer:

• StaticAnalyzer: conducts the analyses and provides an interface to the results.

• StaticAnalyzerFactory : creates objects used in static analysis, such as call
graphs, dependency maps, and builders for the various available analyses.

• StaticAnalyzedProgram: a container for microcontroller programs, storing
information derived from the input program by means of static analysis.

• CfgBuilder: creates a control flow graph for a given microcontroller program.

• CallGraph: provides a call graph of the program to be analyzed. To this end,
this class implements the visitor pattern for the platform’s instruction set,
with the semantic of all non-call instructions being empty, and call instruc-
tions adding call edges.

• ActionListBuilder: contains the abstract semantics of all instructions in the
instruction set architecture. The static analyzer in [mc]square abstracts
from concrete instruction effects in that only reads and writes need to be
denoted, with a further distinction of entire addresses, bits, and interval ac-
cesses. We adopted this concept for the synthetic simulators, with most of
the information for this class being derived from the Sgdl static behavior
sections (SSBS).
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• DependencyMap: stores information about possible side effects of read and
write accesses on other registers and on interrupts (cf. Sect. 5.2.5).

• Constants: contains constants used by the generated part of the static ana-
lyzer.

• LvaBuilder: this is the main class for performing Live Variable Analysis in
generated simulators.

• LvaLatticeElement: a data structure used for storing elements of the lattice
used in the LVA.

• RdaBuilder: analogous to LvaBuilder, but for Reaching Definitions Analysis.

• RdaLatticeElement: analogous to LvaLatticeElement.

• Resetter: computes and sets, for each instruction in the program, the set of
dying variables, which is used after the analysis has terminated for actually
performing the reset step of DVR.

The information for generating these classes originates from several different
sources in the Sgdl file, and some of it can also be derived automatically. First
of all, the read and write effects of instructions are denoted explicitly in the SSBS
of each instruction (cf. Sect. 5.3.3). This section is also supposed to provide a
type for the instruction, and, in case that type deviates from add (i.e., the instruc-
tion jumps to some not immediately following succeeding instruction), provide a
means for computing that successor. By this information, it is possible to create
the control flow graph, hence it is used for generating the CfgBuilder. Finally,
dependencies are listed in the Sgdl file in the element of the same name.
As described in Sect. 6.5, some of these pieces of information need not be provided

explicitly in the Sgdl file. Instead, a static analysis of the Sgdl file itself, focussing
on instructions, subroutines, and code blocks of interrupts, can yield the necessary
information. At the time of this writing, the Sgdl static analyzer, Sgdl-Sta, can
successfully determine the type of all instructions for the Intel MCS-51 and Atmel
AVR instruction sets, thus eliminating the need for that part of the SSBS.

8.5.3 Application in State Space Building

If an operative static analyzer is available for a platform, [mc]square can use it to
analyze the microcontroller program. The analysis is conducted before the actual
model checking is started, i.e., before state space building begins. As described in
the previous section, the resetter annotates all instructions in the program with
the set of dying variables. Therefore, applying the actual reduction during simula-
tion consists of iterating over the set of the current instruction, and resetting the
locations listed therein to zero.
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8.6 Delayed Nondeterminism

State space building for microcontroller software requires a means for handling
nondeterministic data. Nondeterminism arises, for instance, from I/O ports, timer-
s/counters, and interrupts. As described in Sect. 2.6, when reading input from
an I/O port, we have to assume that every pin configured as an input pin could
have a logical value of either 0 or 1, thus requiring the creation of successor states
for both cases. For n input pins, this results in 2n different successor states for a
state in which a read command is executed. We also refer to this split-up as the
instantiation of nondeterministic locations.
Hence, there is an exponential blowup of the number of successors (and there-

fore, paths) occurring immediately when accessing a memory location that is at least
partially nondeterministic. We refer to this kind of simulation as deterministic sim-
ulation because the only instructions that could encounter a nondeterministic value
are those able to read I/O and timer/counter registers. For all other instructions,
it is guaranteed that they will never have to operate on nondeterministic data.
Noll and Schlich [50] investigated how to avoid the immediate split-up caused by

the instantiation of nondeterministic bits. Their approach, which we generalized
and incorporated into our generated simulators, is called Delayed Nondeterminism.

8.6.1 Concept of Delayed Nondeterminism

The general idea in delayed nondeterminism is to postpone the instantiation until
an exact value is required. Figures 8.4 and 8.5 illustrate this. Fig. 8.4 shows the
evolution of a computation path using deterministic simulation, whereas Fig. 8.5
shows the same computation path using delayed nondeterminism.
Deterministic simulation. For an 8 bit processor such as the Atmel AVRs, each

of the read instructions in the code fragment would result in 256 successor states
being created. Their distinguishing value is stored in register R6. Each of these
states is the starting point of a new path on which the following instructions have
to be executed. Therefore, there are actually 256 different microcontroller states
when executing the second read instruction. Thus, the blowup amounts to 65,536
states being created by the two read instructions.
Delayed Nondeterminism. Instead of immediately instantiating the nondeter-

ministic bits, delayed nondeterminism propagates nondeterministic values through
memory. That is, internal memory cells may be marked as being nondeterministic,
and therefore more instructions than before may have to deal with nondeterminism.
As can be seen from the second figure, this approach eliminates most of the states
in the example, which do not even have to be created. The reduction is possible
because the instruction at program counter 0x2f does not depend on the exact
value copied into register R6, and the instruction at program counter 0x31 only
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IN R6, PINA

IN R7, PINB IN R7, PINB IN R7, PINB

SBRS R6,7 SBRS R6,7

..........................

..........................

0x002d : IN R6, PINA
0x002f  : IN R7, PINB
0x0031 : SBRS R6,7
0x0033 : SEI
0x0035 : EOR R0, R0
0x0037 : ...

SEI

EOR R0, R0

Figure 8.4: Computation path using deterministic simulation

IN R6, PINA

IN R7, PINB

SBRS R6,7

0x002d : IN R6, PINA
0x002f  : IN R7, PINB
0x0031 : SBRS R6,7
0x0033 : SEI
0x0035 : EOR R0, R0
0x0037 : ...
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EOR R0, R0

Figure 8.5: Computation path using Delayed Nondeterminism
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requires a single bit of R6. Furthermore, the exact value of R7 (i.e., the second
read) is not needed at all within the scope of this code snippet, hence instantiating
it is not required yet.
Analysis. RISC-like architectures like the Atmel ATmega microcontrollers usu-

ally perform computations in a load-store manner, meaning values are loaded from
some memory location into some internal registers, transformed, and written back
to memory. This structure is exploited by delayed nondeterminism: the instruction
encountering nondeterministic values in the first place, e.g. a read, does not require
a deterministic value. Reads do neither modify nor use the value, they only copy
it into an internal memory. Subsequent instructions may then also only propagate
the marker, or they may depend on the actual value. In that case, it is possible
that not all bits need to be instantiated but only a subset. This can be observed in
Fig. 8.5, where the SBRS only needs bit 7 to be deterministic.
For delayed nondeterminism to have an impact on actual programs, several con-

ditions must be met:

• First of all, the microcontroller must provide copy instructions that do not
have side effects. For instance, the Infineon XC167 sets flags depending on the
data contained in the source of a copy [50, 67]. On such a platform, it is either
necessary to allow nondeterministic flags, resulting in nonderministic control
flow, or to immediately instantiate the source. In the latter case, delayed non-
determinism is therefore not applicable. In the former case, i.e., permitting
nondeterministic control flow, the expressiveness of the model checking results
is severely reduced (cf. Nondeterministic Status Register in [36]). The reason
for this is that in the deterministic case, data involved in operations results
in flags being set. If that dependency is deliberately broken up, it is possible
for the control flow to reach locations that would otherwise be inaccessible
(e.g. if the flags indicate that the last operation yielded a result that was at
the same time zero, negative, and odd).

• Second, programs must depend on data the value of which is unknown at
compile time. A program that does not depend on values read from the
environment would result in a state space that cannot be reduced by delayed
nondeterminism. Such programs are not unrealistic, for instance as they may
perform internal computations and interact with the environment by sending
values to it. They may still result in state explosion, for instance if the results
of such internal operations are stored in memory.

8.6.2 Delayed Nondeterminism in Generated Simulators

We investigated multiple approaches towards adapting the technique such that it
becomes applicable to arbitrary platforms:
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• Dynamic Delayed Nondeterminism. This approach consists of simply mon-
itoring the memory locations accessed by an instruction in a deterministic
simulation step. Then, the simulator state is reverted, and the source loca-
tions are checked for nondeterministic bits. If any such bit is found, then all
written locations are marked as fully nondeterministic. The only exception
are those registers relevant for control flow, which trigger an instantiation in
case they are a write target.

• Explicit description of DND semantics. For this approach, we added an op-
tional second execute section to the instruction element in Sgdl. The new
section contains a manually implemented second semantics to be used only
when delayed nondeterminism is active.

• Automatic derivation of the semantics for delayed nondeterminism. A thor-
ough analysis of the Sgdl code is used to determine the effects of instructions,
and to derive an abstract semantics. In case this is not possible, it relies on
an additional manual description.

Our examinations showed that the principle of Dynamic Delayed Nondeterminism
(DDND) as such works as intended, and requires no modification of the Sgdl de-
scriptions. Nondeterminism in the input is propagated through memory. However,
there is a serious disadvantage: for a given instruction, a single nondeterministic
bit in the input suffices to render all the output locations nondeterministic. This
effect propagates as well, effectively resulting in many memory locations becom-
ing nondeterministic. At some point in time, for most programs we examined,
an instantiation is triggered, which then creates even more successor states than
deterministic simulation would have. Therefore, we decided to drop this approach.
An explicit description of the DND semantics was the key idea for our second

approach. This is technically very close to the way delayed nondeterminism is im-
plemented in the the manually created simulators, where the developer is tasked
with creating a second set of instruction semantics. This requires the developer to
implement a new instruction visitor, and, for each instruction, code for instanti-
ating all memory locations that have to be deterministic. Furthermore, the new
abstraction has to be integrated into the simulator. For a synthetic simulator, the
corresponding steps in the Sgdl description are: add a new section called execute
"DND" to each instruction for which the DND semantics deviates from the deter-
ministic semantics, and define a set of locations to be instantiated in DND mode
by means of the dnd instantiate directive. The integration of the new available
abstraction can be handled automatically by the Sgdl compiler.
While the explicit approach via execute "DND" and dnd instantiate works as

supposed, and yields reductions similar to those reached in the manual simulators
(cf. Chapt. 10), it is also the one in which the Sgdl approach provides the least
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support. That is, it still requires the developer to be familiar with the concept
of Delayed Nondeterminism, and to manually implement the necessary instruction
semantics. It is desirable to automate these tasks. We explored approaches to
this goal and developed a concept based on static analyses of the code sections
in Sgdl descriptions (i.e., execute sections, interrupt handler code sections, and
subroutines), which we published in a paper [27]. As of this writing, however, the
concept has not been implemented yet, hence we refer to the section on future work
for details on the approach (cf. Chapt. 11).

8.7 Sanity Check-Based Approaches

Certain abstractions are specific to synthetic simulators, that is, there is no counter-
part in existing handcrafted simulators. Their purpose is to deal with peculiarities
in the use of resources, in which an inappropriate handling of value and nondeter-
minism mask may result in state explosion. While this class of problem may also
occur during development of handcrafted simulators, it is easier to resolve there,
as information on both the active instruction and the intended mode of simulation
(e.g., deterministic, or delayed nondeterminism) is readily available.
The abstractions presented in this section are, from a technical stance, com-

paratively simple, which contrasts with their impact on state space sizes. When
deactivated, several of our case study programs resulted either in state explosion,
or would require very long verification times. For instance, the time effort for build-
ing the state space for the test program called Light Switch Error increased from
minutes to hours. Actual values are given in Chapt. 10.

8.7.1 Implicit Determinization Guards

Memory cells may become nondeterministic during simulation, for instance by in-
structions copying a nondeterministic value into them, or by Lazy Stack Evaluation.
The associated difficulty is that eventually, these cells should become deterministic
again. For instance, the AVR instruction LDI Rx, #imm loads a constant value into
a memory cell. Constants being always deterministic, this instruction should there-
fore write imm into the value and reset the nondeterminism mask of target register
Rx. However, extending the instruction description such that the NDM is always
modified even for fully deterministic simulation would render the execute section
useless for an automatic derivation of techniques such as delayed nondeterminism.
The above situation becomes a serious problem when using Lazy Stack Evalu-

ation with memory initialization. As described in Sect. 8.3, LSE benefits from a
memory initialization, in which the entire memory is marked as nondeterministic
on startup. However, this also marks the area in which global variables are located
as nondeterministic. Without an adaptation of the NDM, this nondeterminism is
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not eliminated even if the program contains instructions to initialize these variables
to some value (program initialization, as opposed to memory initialization). Hence,
when the program accesses a global variable, that variable has to be instantiated,
which usually results in state explosion. Moreover, this effectively eliminates pro-
gram initialization, allowing undesired values that cannot occur on the real device,
therefore reducing expressiveness.
A simple though effective solution to the requirement "keep explicit NDM mod-

ification out of execute sections" and to this problem is illustrated in the Message
Sequence Chart [66] in Fig. 8.6. The idea is to monitor all addresses written during
successor state creation, i.e., the effects of instructions, interrupt handling code,
and triggers. To this end, we use the observer interface described in Sect. 7.8. The
observer creates two sets: a set of addresses at which the value was modified, and
another set of addresses at which the NDM was modified. At the end of a step, we
use these sets to compute the set of addresses the value of which was modified, but
the NDM remained unchanged. We can safely assume that these addresses were
assigned a deterministic value by an instruction unaware of the necessity to modify
the NDM. Hence, in a final step, we reset the NDM of these addresses to 0, thus
marking the location as entirely deterministic.
If the developer wants to prevent this mechanism from being applied to a location,

he can either deactivate it in the options for all memories, or explicitly modify the
NDM when modifying the value to indicate that there are no "forgotten" NDM
bits.

8.7.2 Restriction to Ternary-Valued Logics

Ternary, or three-valued, logics, are closely related to two-valued Boolean logics (cf.
for instance [3, 51]). Besides the values for true and false, represented by 0 and 1,
there also exists a third value in ternary logics, which represents an undetermined
or nondeterministic value. In our setting, we call this value n. Considering n as a
placeholder for a value that could be either 0 or 1 leads to a natural extension of
the truth tables for arithmetic and logic operations. For example, 0 ∧ n = 0, and
1 ∧ n = n. It would also be safe though inaccurate to define the outcome of any
operation involving n as being n again.
As pointed out before, memory in all generated simulators is represented by two

parallel arrays. One of these arrays is called the value, whereas the other is called
the nondeterminism mask (nd mask). The latter serves as a bit vector indicating
all nondeterministic bits, i.e., if a bit is set in the nd mask, the logical value of the
bit at that address is assumed to be any of {0, 1}. Hence, in such cases the content
of the array for storing the value becomes irrelevant. Nevertheless, the array still
exists for such addresses, therefore it has to have some value, which we decide, by
convention, to be uniformly 0 for all nondeterministic bits. In this configuration,
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Implicit
Determinization
Guard

Simulator
executing
program

Memory Memory
ND mask

write val
to address x

inform observer

write val
to address y

inform observer

write NDM at address y

inform observer

inform guard: step complete

compute
set of
addresses

adjust NDM at x

return control

Figure 8.6: Message Sequence Chart illustrating the mode of operation of the Im-
plicit Determinization Guard. During the step, the NDM of x is not
explicitly modified, but the one for y is. Hence, the guard only performs
a cleanup for x.
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the memory contents represent the aforementioned value n. Therefore, memory
cells containing a 1 in both the value and the nd mask array are considered to be
in an inconsistent state, which does not correspond to any of the values in ternary
logic (i.e., a fourth value).
The fourth value poses a problem in case the simulator developer has not properly

covered the conditions under which a fourth value may be created. While an over-
approximation is guaranteed even with the fourth value (the set bit in the nd mask
would trigger an instantiation if necessary), this still allows for logically equivalent
states being stored several times. To prevent this, we have added another sanity
check, which enforces the restriction policy to allow only three values. Similar to
the implicit determinization guards, a ConsistencyGuard monitors write accesses
to the memory to which it is attached, which can be used at the end of a step to
sanitize the content of modified cells.

8.8 Related Work

8.8.1 General Approaches Towards Countering the State Explosion
Problem

A variety of solutions have been proposed to counter the state explosion problem.
The survey by Clarke et al. [16] for instance mentions symbolic representations,
partial order reduction, exploiting modularity, assume guarantee reasoning, induc-
tive reasoning, abstraction and symmetry. In the next paragraph, we summarize
this survey.
Symbolic representations and symbolic algorithms aim at replacing the explicit

representation of values in states by symbols. Thus, entire sets of states may be
represented by a symbol. According to Clarke, the concept dates back to McMillan,
who discovered that using ordered binary decision diagrams (OBDDs) [12] would
allow the verification of systems that were several orders of magnitude larger than
those represented explicitly. The original approach scaled up to 1020 states, and
further research on OBDDs increased this value up to 10120 states.
Considering [mc]square, there is also a symbolic representation, which is used

in delayed nondeterminism. Technically, a state containing cells marked as being
nondeterministic represents a set of states.
Except for partial order reduction and abstraction, none of the other approaches

is used in [mc]square. Partial order reduction is used in a technique called In-
terrupt Handler Execution Reduction (IHER). However, the Sgdl compiler does
not explicitly generate support for it, hence it is not relevant for our contribution.
Concerning abstraction, [mc]square features a variety of methods, some of which
do not strictly comply with the definition found in the literature. We rather use the
term for any means for reducing the size of the state space, compliant with previous
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publications on [mc]square. For instance, path reduction does not comply with
the definition of an abstraction because the actual state space is not mapped to a
smaller one. When path reduction is active, [mc]square still has to create and
check the reachable part of the state space, though then it does not have to store it
completely. Similarly, the sanity-check based approaches are labelled abstractions,
though in the stricter sense, they are rather post-processing steps involved in state
creation.

8.8.2 Specific Approaches

Lazy Stack Evaluation was presented by Schlich [68]. They integrated this technique
into the handcrafted simulators in [mc]square that existed at the time, that is,
the ATmega16 and ATmega128, and the MCS-51. Our work on LSE is based upon
their results, and our contribution is an examination of the approach, with the
intention of generalizing it. As pointed out in Sect. 8.3, we achieved an integration
of LSE into the synthetic simulators, though not a fully automatic one.
Yorav and Grumberg [86] propose using static analyses for state space reductions.

In their contribution, they present two reductions based on static analyses, one of
which they call dead variable reduction. Self and Mercer [73] present a method
for dynamic dead variable reduction that exploits runtime information in order to
increase the accuracy of the analysis. Using runtime information allows them to
rule out irrelevant computation paths, for instance code fragments after branches
that cannot be reached for given parameter valuations. Variables used only in
such unreachable code may be dead. Trying to detect this fact using a strictly
static analysis must fail, however, as from the stance of the analysis, the branch
might be taken. Thus, a static analysis must yield that the variables in question
might still be alive. Self and Mercer implemented their suggested solution in the
Estes model checker [44]. As they point out, there is a restriction: the state space
of the program to be analyzed must not contain nondeterministic choices. The
absence of nondeterminism implies that there may be only a single future for any
given program location, which they require for the correctness of their method.
If this cannot be guaranteed, then their dynamic DVR is not applicable. From
our point of view, this is a restriction that may be acceptable for desktop and
general purpose computing. In that setting, a program may be started with some
parameters, perform computations, and terminate yielding a result. Opposed to
this, embedded software often is used to control devices, and to do so continuously.
Hence, embedded control software does not necessarily terminate, but reads input
from an environment in an infinite loop. Due to these requirements, we consider it
impractical to use the Self-Mercer DVR approach for verifying embedded software.

Path reduction is the other abstraction presented by Yorav and Grumberg in
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[86]. Their method is based on a static analysis of the input program, of which
they examine the control flow graph. In order to distinguish approaches based
on static analyses from those that check reduction conditions on the fly, we call
such approaches static path reductions. Opposed to these are on the fly algorithms.
Originally, the on the fly algorithm in [mc]square was called dynamic path reduc-
tion, but this term conflicted with an already existing publication by Yang et al.
[85]. Their contribution aims at checking for the feasibility of paths by means of an
SMT solver, with the intention of pruning infeasible paths. Thus, their technique
has a different objective than the path reduction in [mc]square. Consequently,
in a contribution to a conference in which we participated [10], the technique was
renamed. Throughout this thesis, we abide by the new naming. The key idea for
our classification scheme is that an on the fly algorithm can detect reducible chains
during state space creation.
A common denominator of both path reduction techniques is that they merge

equivalent states into single states. The underlying theoretical foundation is remi-
niscent to that of a stuttering bisimulation, as described by Baier and Katoen [9].
Stuttering bisimulation is a more lenient variant of bisimulation, in which the sim-
ulating transition system may combine multiple steps of the simulated system into
a single step (or represent a single step by many, respectively). It is necessary for
the states involved to satisfy certain equivalence conditions, which is precisely the
same requirement as in our reductions. Transition systems for which this holds true
may be considered abstractions or refinements of the other, and the concept may be
used to model systems at different levels of precision. Thus, it is possible to check a
smaller transition system instead of a larger one, and only start verification of the
larger system when no more errors are visible in the smaller (coarser) one. Con-
cerning this aspect, however, there is a thorough deviation to the path reduction
used in [mc]square: path reduction does not allow to check a smaller transition
system instead of larger one. While the system that has to be stored may in fact
be smaller, i.e., the state space consumes less memory, the verification process still
has to check the entire reachable state space. Hence, the larger system is always
built even if path reduction is active.
Delayed nondeterminism is described by Noll and Schlich [50] and Schlich [68].

Improvements over this were investigated by Kamin [36], whose contribution also
contains new approaches such as the Nondeterministic Status Register technique.
A survey of several on the fly approaches to state space reduction is given by

Pelanek [56]. The paper covers, among others, techniques based on discovering
dead variables as well as techniques similar to path reduction. It also illustrates
the theoretical background and examines their effectiveness.
Besides these approaches to reducing the number of states to be stored, it is also

possible to reduce the size of the state space by means of a more efficient storage.
We already mentioned the approach originally dating back to Clarke, namely using
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OBDDs for representing sets of states. Another concept tackles the memory foot-
print by avoiding redundant representations and compressing states. [mc]square
can compress individual states using Run Length Encoding (RLE) and ZIP com-
pression. As already described by Schlich [68], RLE appears to be the superior
choice for storing states representing microcontroller memories, as these memories
are often initialized to 0 and only a comparatively small number of cells is changed
during program execution. The latter holds true at least as long as programs do
not depend on large blocks of data, which might occur, for instance, when attaching
storage devices to an embedded system. Accessing data blocks on hard disk drives
or Compact Flash cards would imply at least 512 bytes of memory consumption,
as this is the smallest block size for these devices. Such a chunk of variable data
would be infeasible to handle with RLE. Therefore, we reconsidered using a ZIP-
like compression. The shortcoming of ZIP in [mc]square appears to be related to
the way the compression is used: whenever the simulator creates a new state, it
is first compressed, then added to the state space. The compression is performed
independently of previous compressions. For RLE, this is not a disadvantage. For
ZIP, which belongs to a class of compression algorithms called dictionary-based
compression algorithms, however, this approach is a huge disadvantage. ZIP does
not require storing the dictionary along with the compressed data, but creates it
on the fly when compressing or uncompressing. Therefore, using ZIP on individual
states is certain to waste most of the benefits of this algorithm, especially when
the individual data chunk to be compressed is small. Possible improvements were
investigated by Caron in a bachelor thesis [13], in which the dictionary was to be
separated from the states. States would be represented by index entries, which were
also to be separated for the different memories present in the microcontroller unit.
The resulting algorithm was a global state space compression, as opposed to the ex-
isting local compressions. It resembles the approach used in the second generation
of the Java Pathfinder model checker, where it is called collapsing of states [83].
Benefits of this approach over the RLE compression became already visible in the
vicinity of one kB of memory usage, though the data used in the case studies was
not, as intended, realistic data blocks, but generated test data.
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In this chapter, we present three case studies concerning the implementation of
state space generators and static analyzers using our synthesis tools. For the sake of
brevity, we refer, within this chapter, to the implementation of simulators, whenever
we want to refer to the implementation of an Sgdl description of such a device.
Two of the case studies involved the implementation of a simulator for a device

from Atmel’s AVR family of microcontrollers. For these, we extracted as much code
as seemed reasonable from the individual descriptions, and created a common code
base for the AVR family. Furthermore, as specific devices support only a subset of
the entire AVR instruction set, we created a library of supported instructions for
the entire family. This library was created by one of our separate tools, which can
parse the individual data sheets provided by Atmel (in PDF format), determine the
subset of supported instructions, and create one file per device that contains boolean
constants for all instructions. For using such constant lists, we extended Sgdl
such that instructions can be enabled or disabled (i.e., a guard for the availability
of instructions during the synthesis process), and used a naming scheme for the
constants that enable instructions. Hence, we can create simulators for specific
AVR-family microcontrollers by adding an appropriate include statement that
loads the associated constant list from the library, and by loading the parameterized
instruction set.
Our third case study focussed on a microcontroller from Intel, the Intel 8051

from the MCS-51 family, which has a comparatively different architecture than the
AVRs. While the foremost difference is the instruction set, there is also a significant
difference in the interrupt system, and in the handling of I/O ports.
Bibliographic note: we published a shorter version of the descriptions of the

ATmega16 and MCS-51 in a paper [28].

9.1 Atmel ATmega16

9.1.1 Background

The ATmega16 is a microcontroller from Atmel’s AVR family [6]. All AVR mi-
crocontrollers are 8 bit devices and feature a reduced instruction set (RISC) archi-
tecture. Hence, the number of instructions is rather low at 131, while at the same
time the number of general purpose registers (GPRs) has to be high, in this case 32.
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The latter is due to the load-store concept, in which data is loaded from memory,
modified inside registers, and rewritten to memory, as opposed to the availability of
complex instructions performing operations (seeemingly) directly in memory (i.e.,
a CISC architecture) [51, 78].
Concerning memories, the ATmega16 provides 32 GPRs, 64 I/O registers, and 1

kByte of SRAM. The latter are mapped into the main address space, which consists
of 1120 addresses. Additionally, it has 16 kBytes of flash memory and 512 bytes
of EEPROM. The ATmega16 is structured as a Harvard architecture [5, 78], that
is, program and data memory are separated, with the program being stored in the
flash and the volatile data in the SRAM. Furthermore, there is a third address
space for the EEPROM. Programs running on the device can modify themselves,
which allows the implementation of boot loaders.
No memory management or protection unit is available, thus programs can ba-

sically read and write any memory location. The only exception is that the device
can be configured at programming time by setting or unsetting so-called fuses and
lock bits, which prevent access to some memory locations. However, while this can
prevent programs from overwriting certain components, it mainly aims at securing
the content of the device against unauthorised modification. Additionally, fuses can
be used to configure the mode of operation, for instance by determining the location
of the interrupt vector on startup, or the clock source in the physical device.
A total of 21 interrupts is available on the ATmega16. Interrupts are not pri-

oritized except for their numbering, that is, when multiple interrupts occur at the
same time, the one with the lower number will be dealt with first. The absence of
hardware support for interrupt priorities implies that there is no means for the de-
veloper to configure an interrupt such that it can preempt another interrupt. When
entering an interrupt handler, the hardware automatically disables the global inter-
rupt enable flag. However, it is possible for the developer to immediately reactivate
interrupts after such an event in order to allow for preemption.
The device communicates with its environment by means of four I/O ports, each

of which is 8 bits wide. Developers can configure each pin individually as either
input or output by means of special configuration registers, which are called data
direction registers. Additionally, I/O pins can have so-called alternate port functions
in case an on-chip peripheral component takes control of them, for instance an
analog-to-digital converter, a timer generating PWM signals, or a USART. Further
details on on-chip peripherals are available from the data sheet [5].

9.1.2 Implementation

Our implementation of the ATmega16 is based on an existing instruction set de-
scription for the AVR family taken from the AVRora project. As pointed out before,
we originally decided to base our synthesis system on the Isdl language and associ-
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Figure 9.1: UML class diagram of the ATmega16 Sgdl description

ated processing tool chain from AVRora, and to gradually extend and modify that
system. The AVR description of the instruction set from AVRora was mostly com-
plete. Due to the lack of a suitable description mechanism for resources (mainly,
memories and interrupts), however, we had to develop means for describing these
on our own, and implement the necessary code. The ATmega16 served as our test
bed for these extensions, and was developed along with Sgdl and the tool chain for
processing Sgdl code. Consequently, there is no valid data available on the exact
time required for implementing this simulator.
Figure 9.1 illustrates the structure of the Sgdl description of the ATmega16

simulator. The individual sizes of these files, measured in lines of code (LOC), is
displayed in Table 9.1. An overview of their respective functions is shown below:

• ATmega16-specific files

– atmega16.sgdl: this is the main file of the simulator description, which
declares the name of the microcontroller. Its main purpose is to declare
constants and to include more specific parts of the description. The
aforementioned constants are needed for instance to locate such regis-
ters in memory whose location may differ between different members of
the AVR family. The included instruction set description relies on the
existence of these constants.

– atm16_interrupts.fragment.sgdl: provides a description of the interrupt
system of the ATmega16, consisting of the declarations of individual
interrupts and a declaration of the interrupt vector.

– atm16_memories.fragment.sgdl: contains declarations of memory aliases
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File Lines of code Device-specific
atmega16.sgdl 241 yes
atm16_interrupts.fragment.sgdl 877 yes
atm16_memories.fragment.sgdl 289 yes
atm16_on_chip_peripherals.fragment.sgdl 86 yes
atm16_subroutines.fragment.sgdl 92 yes
atmega16_instructionset.fragment.sgdl 122 no
avr_instructions.fragment.sgdl 2,057 no
avr_memories.fragment.sgdl 109 no
avr_subroutines.fragment.sgdl 279 no
Total 4,152

Table 9.1: Code size overview for the ATmega16 Sgdl description

that cannot be supposed to be present in all AVR microcontrollers, but
only in the ATmega16. Also contains the ATmega16-specific part of
memory initialization, and a description of dependencies between mem-
ories that is needed for generating a static analyzer (e.g. which additional
registers are read or written by the hardware when reading or writing a
register).

– atm16_on_chip_peripherals.fragment.sgdl: contains code to model on
chip peripheral devices such as timers, the behavior of ports, the USART,
or the A/D converter.

– atm16_subroutines.fragment.sgdl: subsumes all of the functions and
procedures used in the other files.

• Library files. atmega16_instructionset.fragment.sgdl: contains, for each of
the instructions declared in avr_instructions.fragment.sgdl, a boolean con-
stant that either enables or disables the instruction. Disabled instructions
are supposed to be not present in the specific architecture, in this case the
ATmega16.

• Shared files

– avr_instructions.fragment.sgdl: this is the instruction set for the entire
AVR family.

– avr_memories.fragment.sgdl: declares memories common to all AVR de-
vices. Constants are used wherever the size of a memory varies between
devices, such that it is possible to define the value of that constant in
one of the files for a specific device.
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– avr_subroutines.fragment.sgdl: provides subroutines required for mod-
elling AVR microcontrollers.

9.1.3 Validation

Besides the measures described in Sect. 7.9, which can be performed for any gener-
ated simulator, we also carried out the following steps to increase confidence in the
generated ATmega16 simulator:

• Parallel runs with the handcrafted ATmega16

• Randomized HEX file input

As [mc]square already provides a handcrafted simulator for this platform, which
has been developed and error-checked over several years, the obvious approach for
establishing a certain degree of confidence in the new simulator was to run both sim-
ulators in parallel for the same program. This procedure is known in the literature
as back to back testing (cf. for instance [40]). The first stage of this was to perform
trace comparisons. For this, we instrumented both simulators such that they logged
their program counter values to a suitable location. The resulting traces allowed
us to detect deviations in the control flow. Such deviations typically indicated dif-
ferent handling of branch instructions, or of flags used by such branches that were
incorrectly set by preceding instructions. While this kind of comparison proved
useful during the early stage of development, however, it became less effective over
time. The primary reason for this is that it can only detect serious errors in in-
struction descriptions. Moreover, it requires the use of programs that contain few
or no nondeterministic choices because a different successor creation order might
invalidate the trace, even if the created states were semantically equivalent when
ordered appropriately.
Thus, the second stage in comparing the output from both simulators targeted

the resulting state spaces during model checking. Such tests may be conducted
more or less lenient. The strictest equivalence requirement would be to demand
isomorphism, i.e., the resulting state spaces must be identical except for their num-
bering. A slightly less strict variant would be to require the number of states in
each state space to be identical. However, both criteria are impractical. The rea-
son for this is that neither the generated nor the handcrafted simulator provide an
exact simulation of the ATmega16 as described in the data sheet. For instance,
peripherals used to be simulated very accurately in earlier versions of the hand-
crafted simulator, even though the details were not accessible to the model checker.
Therefore, an improved version deliberately abstracted from these details, result-
ing in fewer states without loss of expressiveness. As a consequence, however, the
number of states varied. The identical number of states criterion would therefore
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not be satisfiable even for a single simulator, and certainly not for different sim-
ulators. Consequently, our correctness requirement is that for any given program,
the generated simulator must create a number of states that is at least in the same
order of magnitude if and only if both simulators use the same set of abstractions.
Chapter 10 illustrates to what extent this goal has been met.
Randomly generated instructions were the third stage of testing. To this end,

we generated HEX files containing random instructions, and had these executed
by both simulators. A complete dump of memory contents was then used to check
for deviations. This is an extended version of the trace comparison used in stage
1. The concept is analogous to the one described in detail in the section on the
implementation of the MCS-51. Using these tests, one error in flag handling was
detected.

9.2 Atmel ATmega644

9.2.1 Background

The ATmega644 is another member of the AVR family of microcontrollers from
Atmel [7]. Hence, its internal structure is similar to that of the ATmega16. Our
motivation for adding support for this device is twofold: first, the device is used
in a lab course for undergraduate students at our institute [76], which provides us
with a large number of possibly faulty programs to verify. Second, we wanted to
prove the effectiveness of our library of AVR descriptions.
In the aforementioned lab course, students are expected to create an operating

system for an embedded system, which involves preemptive multitasking using sev-
eral scheduler strategies, memory management, and communication with external
devices. From our experience in supervising sessions of this course, there are several
frequent errors related to race conditions and wrong use of peripherals, which are
hard to detect using only testing and debugging. Model checking these programs
could be more efficient, though likely to be prone to state explosion. Our intention
was therefore to strip down programs known to be faulty to a mere minimum and
use [mc]square to scan for such hard to detect issues. Given that [mc]square
did not support the ATmega644 used in the lab, and that creating one using the
manual approach would require at least six man-months with uncertain outcome,
this had not been attempted before. Using Sgdl, however, we expected the effort
to be less than one month, which seemed reasonable enough.
Compared to the ATmega16, the ATmega644 is in most respects the "larger"

device. Its internal SRAM has a size of 4 kBytes, as opposed to 1 kByte on the
ATmega16. The flash memory for storing programs consists of 64 kBytes, and its
EEPROM of 2 kBytes. The CPU core, however, is the same, at least from the
programmer’s point of view. That is, the number of instructions is also 131 and
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160 Extended I/O Registers

64 I/O Registers

32 General Purpose Registers

SRAM

0x0000,..., 0x001F

0x0020,..., 0x005F

0x0060,..., 0x00FF

0x0100,..., 0x10FF

Figure 9.2: Memory layout of the Atmel ATmega644, as described and also illus-
trated in the device datasheet [7]

there are 32 general purpose registers.

The memory layout is roughly the same, with GPRs and I/O registers mapped
into the main address space. Also, the ordering is the same: lowest addresses
for GPRs, followed by I/O registers, and eventually, SRAM cells. A noteworthy
difference, however, is that the ATmega644 implements a very large number of
internal peripherals, which results in the need for a larger I/O register range. As
shown in Fig. 9.2, the I/O register mapping range up to address 0x60 also exists on
the ATmega644, but it is followed by a second one that stretches over an additional
160 bytes. Thus, the SRAM starts at address 0x100 .

Both the ATmega16 and the ATmega644 possess 32 I/O pins, distributed over
I/O ports A to D. Pins are handled in the same way as on the ATmega16, that
is, by means of three dedicated registers DDRx, PORTx, and PINx, where x
∈ {A, . . . ,D}. The most obvious difference is that on the ATmega644, each of
these pins is associated with at least one interrupt. Consequently, also the num-
ber of interrupts is higher, though some of these are grouped together, reducing
the number of existing individual interrupt sources. In total, the interrupt vector
distinguishes 28 interrupt sources.
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9.2.2 Implementation

Analogously to the ATmega16, our implementation of the ATmega644 is based
on our library of AVR instruction set guards and our externalized, parameterized
instruction set. Hence, the implementation of the ATmega644 required only the
description of the memories, the interrupt system, and a review of instruction se-
mantics to check for deviations that were not visible when creating the library
(which was created based on experiences with the ATmega16). As a consequence,
the effort for implementing the simulator for this microcontroller was considerably
lower than when creating a new one from scratch using Sgdl, and very low when
compared to the effort for implementing it manually. Furthermore, we used the
kick-starter code templates in the Sgdl preprocessor to create the interrupt sys-
tem, which also saved time.
The overall effort for implementing the ATmega644 amounted to approximately

21 hours of work, meaning it was possible for us to achieve it within half a week.
However, we were familiar with both the Sgdl system and the format of the data
sheets published by Atmel. This biased the results in our favor. Therefore, we
assume that for an average developer not familiar with neither the effort would be
higher. An estimate would be one to two weeks, though for certainty about this,
it would be necessary to conduct experiments with a sufficiently high number of
participants.
The file structure for the ATmega644 simulator is structurally equivalent to the

one of the ATmega16, as shown in Fig. 9.1 and described in Sect. 9.1. This includes
the references to external library files. Therefore, no further detail on the structure
is given except for the required lines of code. These are shown in Tab. 9.2. As can
be seen from the table, more than half of the code base could be reused from the
shared library (approx. 2,500 LOC).

9.2.3 Validation

Most of the validation required for the ATmega644 simulator was already included
in the efforts for the ATmega16. The instruction set is not part of the corresponding
Sgdl descriptions but is included as a parameterized library, and was subject to
extensive testing in the tests for the ATmega16. Hence, we identified the following
remaining possible sources for errors: first, the guards needed to enable instructions,
second, the semantics of instructions, third, the interrupt system, and fourth, addi-
tional subroutines. We now describe each of these sources and our countermeasures
in more detail.
Guards. The guards for instructions decide whether an instruction is present in

a specific AVR device. As described before, we extracted these guards from the
PDF datasheets for individual devices by means of a tool, and stored them in a file
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File Lines of code Device-specific
atmega644.sgdl 429 yes
atm644_interrupts.fragment.sgdl 918 yes
atm644_memories.fragment.sgdl 313 yes
atm644_on_chip_peripherals.fragment.sgdl 90 yes
atm644_subroutines.fragment.sgdl 144 yes
atmega644_instructionset.fragment.sgdl 122 no
avr_instructions.fragment.sgdl 2,057 no
avr_memories.fragment.sgdl 109 no
avr_subroutines.fragment.sgdl 279 no
Total 4,461

Table 9.2: Code size overview for the ATmega644 Sgdl description

containing the guards in the form of boolean constants. If for any reason such a file
should be incomplete or erroneous, an instruction might be unintentionally active or
inactive in a device. In case it is deactivated even though it should be present, the
generated simulator would not know the instruction pattern, and throw an error
in case it encounters it in a program. Vice versa, an instruction that should be
unknown to a device must result in an error when encountered, or at least not have
the effect usually associated with it. Verifying this property for the ATmega644
consisted of manually comparing the list of supported instructions in the data sheet
to the list of guards, and was manageable within less than an hour.
Semantics of instructions. While the tests for the ATmega16 involved extensive

testing of instructions, it was possible still that some instructions have slightly
different semantics. Such deviations were to be expected for instructions dealing
with addresses that are not present on the ATmega16, but are on the ATmega644
with its larger memories. We therefore performed a review of such instructions
that accessed memories, e.g. those using address registers, and checked whether
the Sgdl code for these used possibly limiting code such as too small variables for
pointers.
Interrupts. Considering that the interrupt system in Sgdl was tailored to meet

the requirements in describing the Atmega16, describing another device from the
same family turned out to be possible without any modifications to the language.
That is, the kind of preconditions for enabling an interrupt source, and for enabling
the interrupt itself, were the same for both ATmega16 and ATmega644. Only the
actual event sources differed. Hence, we considered it appropriate to only check
the correctness by two programs: one in which no interrupt was enabled, and one
in which all interrupts were enabled. In the former case, the simulator embedded
into the [mc]square GUI was expected to show no branching of the computation
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path, whereas in the latter case, it had to show a branch for each of the enabled
interrupts.
Subroutines. All subroutines used in the ATmega644 implementation are either

getter methods that map a hardware state to a value, or are reused from the library.
The getters are integral parts of other functionality such as the interrupt system,
which is why they are covered by the respective tests. Hence, no additional tests
for individual methods were added so far.

9.3 Intel MCS-51

9.3.1 Background

The MCS-51 is a family of microcontrollers from Intel [65, 78]. Its first and best-
known member is the 8051, which is in production since 1981. Despite its age,
variants of the device are still widespread today, and MCS-51-based designs are
available from a variety of manufacturers. More recent implementations also in-
tegrate peripherals not present in the original version, such as USB and CAN.
Furthermore, there are also open source implementations of the 8051 CPU core
freely available on the Internet, e.g. [52].
Similarly to the AVR family, the 8051 is an 8 bit microcontroller. In contrast

to the more modern AVR, however, the MCS-51 family is based on a complex
instruction set computer (CISC) design. The number of instructions according to
the data sheet reads 111, but, considering duplicate instructions due to different
addressing modes, there are actually 256 different instruction encodings. Due to
the CISC approach, the instruction set contains instructions that can modify data
directly in memory, which contrasts with the load-modify-store approach found in
RISC devices. Hence, the device requires far less registers.
The sizes of the addressable memories are comparatively low. In principle, MCS-

51 devices can address 64 KB of program memory and 64 KB of data memory (i.e.,
RAM), but only when using external memories, which comes at the cost of up to
two I/O ports. Internal memory sizes are typically much lower. The 8051, on which
we focussed in our case study, has only 128 bytes of RAM, including the general
purpose registers. These are organized in four register banks of eight registers
each (i.e., R0, . . . R7), which can be switched by software. Special function (SFR)
and I/O registers are mapped to the SRAM addresses 128 to 255. This memory
organization complicates access to memory locations at the same address as the
SFRs in devices such as the 8052.
A specialty of the MCS-51 is the existence of addressable single bits, and of

instructions for directly manipulating single bits. There are two bit-addressable
ranges in memory on the 8051, one in the lower 128 bytes and one in the upper 128
bytes (SFR region). Similarly to the duplication of addresses in devices with more
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than 128 bytes of memory (like the aforementioned 8052), it is therefore necessary
to distinguish bit addresses and byte addresses. Which addressing is used depends
on the instruction. An advantage of the existence of addressable bits is that there
is very little need for specialized flags, as the developer can realize custom flags in
software.

Due to the low amount of available memory, the stack pointer (SP) on the 8051 is
only eight bits wide. Along with the rather tight memory bounds of 128 bytes, from
which at least the lowest register bank has to be subtracted in order to provide one
set of working registers, there is thus very little space for activation blocks needed
for calling functions. This restriction has an impact on the design of software
intended to run on the 8051, as cascading function calls could easily result in the
stack hitting the register bank.

Concerning the interrupt system, there are five distinct interrupt sources on the
8051. INT0 and INT1 are external interrupts, which can be either level- or edge-
triggered. The Timer 0 and Timer 1 interrupts occur whenever the respective
timer overflows, and the Serial Port Interrupt signals a transmission or reception
of a byte via the UART. Interrupt priorities can be configured by software, and
interrupts of higher priority can interrupt the handlers of lower priority interrupts.
Each interrupt can be assigned to one of two layers. Within a layer, there is a fixed
ordering of interrupts, such that there is a well-defined execution order even in case
of simultaneous occurrence of two interrupts of the same priority. Consequently,
to technically allow for cascading interrupts, the hardware does not automatically
delete the global interrupt enable flag when entering an interrupt handler. Instead,
the possibility of further interrupts depends on the configuration of the priorities.

The 8051 communicates with its environment via four I/O ports, which are enu-
merated. From the programmer’s stance, however, there are at most three ports.
Port 0 and Port 2 are used for outputting 16 bit addresses, leaving only Ports 1
and 3 for I/O operations. Each of the pins of the ports can be configured indi-
vidually as input or output. A peculiarity of the MCS-51 family is the way this
configuration has to be performed. In contrast to, for instance, the AVRs, where
port configuration is handled by means of dedicated data direction registers, there
is no such register on the MCS-51. Instead, port pins are configured as input by
writing a logical 1 into the corresponding bit in the associated port register. This
is the same procedure that is to be performed when writing output to the pin.
Furthermore, ports are equipped with an additional buffer (a D-flip flop), which
can be read instead of the state of the actual pins. It depends on the instruction
whether the pin or the buffer is accessed.
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9.3.2 Implementation

The MCS-51 Sgdl description was not based on any previous work, hence we
were able to accurately measure the effort for implementing a simulator using our
language and tool chain. As [mc]square already contains a handcrafted simulator
for the 8051, we also had a reference for comparing our effort to that of a fully
manual approach.

Effort

Compared to the usual six months span required for manual implementation, the
effort when using Sgdl was considerably lower. A first version of the simulator
was operational after only 23 hours. At this stage, programs could be loaded, in-
structions could be disassembled and executed, and their effects could be inspected
on the GUI. Implementing a first version of the interrupt system, providing names
for registers such that they were available for use in atomic propositions in ctl
formulas, and adapting the synthesis system wherever necessary, increased the ef-
fort to 40 hours. This did not include the rather complicated modeling of the I/O
ports, which is not as cleanly structured as on the AVRs, where port configuration
is controlled by separate registers. Implementing these, and improving the inter-
rupt system such that it results in a tighter over-approximation, increased the total
effort to approximately 60 hours.
Therefore, we come to the conclusion that the basic implementation of a simulator

for an average microcontroller can be handled within two weeks. The 8051 may
be simple with regard to on-chip peripherals and memories, but both the interrupt
system and the I/O handling result in a more complicated modeling.

Technical Aspects

Similarly to our implementation of the ATmega16 and ATmega644, we have split
the description of the MCS-51 into several files, in anticipation of the implementa-
tion of further members of the family. As we have not added any library of device
capabilities yet, though, the file structure is simpler:

• mcs51.sgdl: the main file, in wich the other files are referenced by include
statements.

• mcs51_instructions.fragment.sgdl: a description of the instruction set.

• mcs51_interrupts.fragment.sgdl: contains the complete interrupt model, in-
cluding required triggers and subroutines.

• mcs51_memories.fragment.sgdl: declarations of memories and aliases.
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File Lines of code Device-specific
mcs51.sgdl 85 yes
mcs51_interrupts.fragment.sgdl 269 yes
mcs51_memories.fragment.sgdl 160 yes
mcs51_subroutines.fragment.sgdl 387 yes
mcs51_instructions.fragment.sgdl 1,503 yes
Total 2,404

Table 9.3: Code size overview for the MCS-51 Sgdl description

• mcs51_subroutines.fragment.sgdl: general-purpose subroutines.

9.3.3 Validation

For validating the correctness of our implementation, we pursued a three-stage
approach. First of all, we used our automatically generated test stubs (cf. Sect. 7.9).
Selecting such instruction encodings as seemed reasonable provided us with a first
result concerning the correct operation of the disassembler. We also implemented
test code for some of the more frequently used subroutines, for which the Sgdl
compiler had also generated test stubs. The next step was to run the existing
handcrafted simulator by Reinbacher and our new synthetic one in parallel for some
rather small programs, and to have the simulators log the reached program counter
values to a file. We were then able to compare these traces and to check for equality.
This test checked mainly for correctness of the instructions relevant for program
flow, but did not provide adequate coverage of the way data was manipulated.
Therefore, we performed a larger test, which we published in a paper [64]. In

this contribution, six different MCS-51 simulators were checked for trace equality,
but more thoroughly than in our second test. Instead of checking the sequence
of program counter values, the entire memory content was checked. Additionally,
whenever a deviation between simulators was discovered, we additionally checked
the instruction specification to figure out which of the simulators operated correctly,
if any. This procedure uncovered several errors in our synthetic simulator, which
occurred in corner cases that we had not implemented correctly. We subsequently
fixed all of these errors, such that the synthetic simulator passed all tests used in
the paper.
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Within this chapter, we present several case studies, covering all of the platforms
implemented with Sgdl. Each case study consists of one or more programs written
for a specific platform. There are multiple motivations for this:

• First of all, we need to verify that the generated simulators are actually ca-
pable of simulating the behavior of the respective hardware.

• Second, we need to establish a statement about the correctness of the simula-
tion. That is, when model checking a program, the result must be exactly the
same for the generated simulator as for the handcrafted one, where applicable.

• Third, state space sizes should be in the same order of magnitude for the
generated and the handcrafted simulators.

• Finally, as we have emphasized the importance of fast simulation, which in-
fluenced the design of the internal state of our simulators, it is necessary for
generated simulators to be able to compete with the handcrafted ones.

The verification goals from the first and second item in the above list can be
combined by conducting model checking in [mc]square on a list of programs, and
requiring that for both simulators and each formula, the model checking algorithm
eventually yields the same truth value. Thus, this is a strict requirement, and
erroneous behavior is simple to recognize, as formulas can only evaluate to either
true or false. On the other hand, goals three and four are more difficult to attain.
For state spaces to be of similar size, both simulators need to use the same set
of abstractions. Currently, the handcrafted simulators provide more abstractions
than the generated ones, which is why some of these need to be deactivated in
order to guarantee a fair comparison. Even then, a more elaborate version of a
technique may result in deviating sizes, which is why we require the number of states
only to be in the same order of magnitude. Similarly, the fourth criterion, which
focusses on speed, cannot be subject to a strict comparison. The reason for this is
that the generated simulators need to operate on generalized data types, requiring
conversions even for numeric operations. Opposed to this, the developers who
created the handcrafted simulators could often use very fast operations that operate
directly on suitable primitive data types. Due to this fact, generated simulators are
to be expected to be slower by at least a constant factor.
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Note on revision numbers. Throughout this chapter, we refer to specific versions
of [mc]square by means of Subversion (SVN) revision numbers. The source code
of [mc]square and the Sgdl compiler, which is part of it, are kept in an SVN
repository. During the writing of this thesis, however, [mc]square evolved into the
Arcade project, and its architecture was thoroughly changed. While [mc]square
is a plain Java project, Arcade is an Eclipse plugin, and as such, is based on
OSGi [20, 43]. Furthermore, the revision control system was changed from SVN
to Git, and Arcade now resides in a Git repository on GitHub.com. Adapting
Sgdl and the compiler to the new architecture has been infeasible so far due to the
estimated effort, which is why we decided to stick to [mc]square for the time being.
Therefore, we cloned the SVN repository of [mc]square prior to the modifications
that led to Arcade. This decision has the following consequences:

• SVN revisions up to revision 9278 (inclusive) refer to the original repository.

• After SVN revision 9278, evolution of the projects continued in parallel. That
is, revision numbers may occur multiple times.

Within the scope of this thesis, revision numbers larger than 9278 always refer to
the cloned SVN repository.

10.1 Atmel ATmega16 Case Studies

The Atmel ATmega16 was of particular interest for us because of the manually im-
plemented simulator for this platform that exists in [mc]square. This simulator
is the oldest simulator in [mc]square, and it has constantly been maintained and
improved. Thus, it is a stable platform, and provides nearly all the abstractions
developed within the project. As a consequence, creating a competitive simula-
tor using Sgdl would imply that synthetic simulators can actually be a suitable
replacement for such fine-tuned handcrafted ones.
As pointed out before, we used the ATmega16 as a test bed and reference platform

during the development of Sgdl and the Sgdl compiler. For this reason, an exact
comparison with regard to implementation effort is not possible.
Schlich [68] used a series of programs to illustrate the use of [mc]square on pro-

grams for this platform. In his rather extensive overview, he examined the memory
consumption, number of states in the state space, and time required for model
checking these programs. Hence, we recreated parts of this series of runs using the
same programs, which allows, to a certain degree, to compare the quality of our
generated simulators to that of the handcrafted one at that time. The validity of
any such comparison is limited, though, because [mc]square consists of several
components that also evolved since then. For instance, the static analyzer is one
such component, and advances therein directly impact the size of the state space.
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Some of these improvements were beneficial, others detrimental because the older
implementation did not always guarantee an over-approximation due to implemen-
tation faults. Therefore, our generated simulator benefits from some new features
that were not present at the time Schlich conducted his case studies. Consequently,
for the sake of a fair comparison, we also provide the values obtained using the
current handcrafted simulator.

10.1.1 Impact of Abstractions

In this case study, we investigated the impact of our abstractions on the size of
the state space, number of states, and time required for model checking. For a
description of the function of the programs under test, we refer to the description
by Schlich. In order to facilitate the comparison with the values obtained by Schlich,
we have tried to abide by the same table scheme as far as seemed reasonable. The
comparison is feasible because the generated ATmega16 simulator supports the
same set of abstractions as the handcrafted simulator at the time of Schlich’s case
study.

Setup

Our standard case is a configuration where Lazy Stack Evaluation and the Con-
sistency Guards are active. Additionally, the interrupt system uses delayed nonde-
terminism. This is similar to Schlichs setting, where also lazy stack evaluation was
active, and DND for interrupts was also active.
This case study was conducted on a SUN Fire X4600 M2 server equipped with

eight AMD Opteron 8220 dual core processors at 2.8 GHz, 256 GB RAM, and 2
TB of hard disk space. Windows Server 2008 was used as the operating system,
and Oracle Java Development Kit 1.7 as the Java Runtime Environment (JRE).
Therefore, the time required for state space building is not comparable to the values
by Schlich, who used a notebook instead.
SVN revision 9283 of [mc]square was used for this case study. The test files,

taken from the separate [mc]square test file repository, were used in SVN revision
55.
The ctl formula AGTT was used for all runs. In the syntax of [mc]square,

this formula denotes AG true. It is an invariant and causes the model checker to
build the entire reachable state space.

Results

Table 10.1 shows the results obtained using the generated ATmega16 simulator.
The results for the current version of the handcrafted ATmega16 simulator are
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displayed in Table 10.2, and a summary of the values obtained by Schlich for the
case all abstractions active is shown in Table 10.3.
As is visible from the tables, our generated simulator competes very well with

regard to the number of states created and the number of states stored. In most
cases, the values are slightly larger than for the current handcrafted simulator, and
generally at least on a par with the older version. Deviations are likely to be due
to a different modeling of internal states, especially of peripheral devices.
Considering simulation speed, the handcrafted simulator is obviously faster. Most

obviously this is the case for Window Lift, which is the only program in this set
resulting in a larger state space. The values suggest that the handcrafted simulator
is approximately five times faster. As pointed out before, a certain speed tradeoff
was to be expected due to the different handling of primitive data types.
Reductions achieved by the abstractions are also in the same order of magnitude

for both simulators. This result means that using Sgdl neither impairs the integra-
tion of abstractions into a state space generator, nor the quality of the abstractions.

Note on Memory Consumption

During the case study, we observed that the memory consumption could not be
measured reliably. As [mc]square is implemented in Java, there is no direct way
for determining the sizes of data structures used. While languages such as C provide
a sizeof operator for this purpose, Java does not have any equivalent operation.
Therefore, the typical approach towards computing the size of any data structure
in a Java program works as follows:

• Create the data structure

• Obtain the current memory consumption m by means of a special call to the
Java Virtual Machine (JVM)

• Eliminate all references to the data structure

• Trigger the garbage collection built into the JVM (repeatedly, if necessary)

• Obtain the new memory consumption m′ by repeating the call to the JVM

• Memory used by the data structure was m−m′

The result is always an approximation and not exact. This approach is also imple-
mented in [mc]square. In previous case studies, this procedure returned values
that were reasonable enough, though sometimes a few repetitions were required.
The typical initial size of the hash tables, for instance, turned out to be around
22 MB. This was also a recurring value in this case study for some of the smaller
programs and both simulators.
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Program Options States States Time Reduction of
used stored created [s] states stored

Li
gh

t
Sw

it
ch

Standard 4,021 8,119 1.42 -
DND 353 381 0.90 91.22%
DVR 3,233 6,981 1.27 19.6%

OTF-PR 472 56,788 4.83 88.26%
DVR & PR 340 51,759 4.42 91.54%

All 20 406 0.51 99.5%

P
la
nt

Standard 131,573 138,262 14.89 -
DND 131,573 138,262 14.30 0%
DVR 131,573 138,262 11.67 0%

OTF-PR 4,049 205,010 14.16 96,92%
DVR & PR 4,049 205,010 13.59 96,92%

All 4,049 205,010 19.54 96,92%

R
ee
nt
ra
nc
e

Standard 110,960 117,583 11.71 -
DND 110,960 117,583 11.89 0%
DVR 109,157 115,780 8.63 1.62%

OTF-PR 6,623 352,649 23.45 94.03%
DVR & PR 6,623 347,240 21.87 94.03%

All 6,623 347,240 25.58 94.03%

T
ra
ffi
c
Li
gh

t Standard 10,256 11,285 1.99 -
DND 10,256 11,285 1.28 0%
DVR 10,256 11,285 2.20 0%

OTF-PR 516 30,149 2.59 94.97%
DVR & PR 516 30,149 2.59 94.97%

All 516 30,149 2.45 94.97%

W
in
do

w
Li
ft Standard 2,559,671 2,934,246 256.84 -

DND 340,406 532,146 40.88 86.7%
DVR 333,548 373,205 31.74 86.97%

OTF-PR 189,604 6,128,530 420.16 92.59%
DVR & PR 22,429 741,167 68.77 99.12%

All 7,639 314,807 27.92 99.7%

Table 10.1: Results of the run of the synthetic ATmega16 simulator on various
programs
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Program Options States States Time Reduction of
used stored created [s] states stored

Li
gh

t
Sw

it
ch

Standard 4,268 6,296 0.38 -
DND 352 380 0.50 91.75%
DVR 3,318 5,119 1.78 22.26%

OTF-PR 494 25,223 0.53 88,43%
DVR & PR 357 21,604 2.25 91.64%

All 15 331 1.07 99.65%

P
la
nt

Standard 130,524 135,949 3.21 -
DND 130,524 135,949 3.25 0%
DVR 130,524 135,949 7.03 0%

OTF-PR 3,205 167,114 2.54 97.54%
DVR & PR 3,205 167,114 6.51 97.54%

All 3,205 167,114 5.39 97.54%

R
ee
nt
ra
nc
e

Standard 107,649 110,961 2.45 -
DND 107,649 110,961 2.38 0%
DVR 147,381 154,004 3.47 -36.91%

OTF-PR 3,312 124,207 1.65 96.92%
DVR & PR 6,623 248,361 5.55 93.85%

All 6,623 248,361 3.96 93.85%

T
ra
ffi
c
Li
gh

t Standard 9,998 10,514 0.56 -
DND 9,998 10,514 0.45 0%
DVR 9,998 10,514 2.41 0%

OTF-PR 259 15,131 0.26 97.41%
DVR & PR 259 15,131 2.90 97.41%

All 259 15,131 1.79 97.41%

W
in
do

w
Li
ft Standard 2,342,564 2,589,665 47.54 -

DND 316,334 442,055 8.90 86.5%
DVR 300,078 328,098 11.77 87.19%

OTF-PR 123,585 4,123,385 46.29 94.72%
DVR & PR 15,382 531,494 11.68 99.34%

All 5,182 223,709 8.80 99.78%

Table 10.2: Results of the run of the handcrafted ATmega16 simulator on various
programs
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Program States States Time Reduction of
stored created [s] states stored

Light Switch 45 262 < 0.01 99.28%
Plant 9,844 218,022 2.82 94.41%

Reentrance 6,631 122,999 1.54 93.84%
Traffic Light 522 12,812 0.20 94.78%
Window Lift 5,232 217,577 2.62 99.78%

Table 10.3: Summary of the values obtained by Schlich [68] for the handcrafted
simulator, SVN revision 2233, for the case All options used

However, during this case study, we observed large and frequent deviations. For
instance, using the handcrafted simulator and the light switch program in the DND
run, we obtained memory consumptions of 22 MB and 2,2 GB in subsequent runs.
Similar values became visible for the synthetic simulator, e.g. in the reentrance
program. The effect did not depend on whether [mc]square was restarted in
between runs.
In order to eliminate outliers, we reconducted the run in cases that were obviously

not credible. As the results did not stabilize, however, we assume that the deviation
is due to some change in the current JVM (1.7), and that the JVM either allocates
memory in advance or performs internal housekeeping involving large amounts of
memory. Consequently, we decided to drop the column for the memory consumption
from our tables.

Note on Possible Errors

In the table showing the results for the handcrafted simulator, i.e., Tab. 10.2, there
is one peculiarity. Activating Dead Variable Reduction (DVR) for the reentrance
program actually led to an increase of the number of states. This effect can be
observed both for the change from the standard run to the DVR run and for the
change from OTF-PR to OTF-PR & DVR.
Such an increase should not be possible: at most DVR should not be able to

reduce the number of states for a given program, but never increase it. An increase
is likely to be an error in the implementation of the static analyzer component of
[mc]square. We examined the issue and located the instruction causing the effect,
but a resolution was not possible.
As both the handcrafted and our generated simulator rely on the static analyzer,

it is likely that the generated simulator is affected as well. The corresponding values
for the generated simulator in Tab. 10.1 do not show any such increase, i.e. appear
to be sound. However, a thorough investigation would be required to figure out the
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root causes for this.

10.1.2 Case Study: Window Lift

For our second case study, we used a program called Window Lift. It models an
electric window lift for cars and was originally introduced by Schlich and Kowalewski
in [69]. It was also used by Schlich in [68]. Three versions of the program are
available: Window Lift Error 1, Window Lift Error 2 and Window Lift Fixed. The
Error 1 program consists of 112 lines of C code, corresponding to 288 lines of
assembly code, and is compiled using avr-gcc. We already used this version of the
program in the previous case study.
Window Lift models the functionality of the power window lift by means of a state

machine. Events such as button pressed trigger transitions and result value changes
to specific output pins, that is, a Moore / Mealy automaton [19, 48, 51]1. In the
Window Lift Error 1 program, there is a subtle error related to the behavior of the
automaton in case an object is stuck in the window. The expected behavior in this
situation is that the window has to be opened completely before normal operation
is allowed again. However, in case two special events occur at the same time, it
is possible for the program to return to normal operation before the window has
been opened completely. In terms of the underlying automaton, this corresponds
to taking a transition that is not supposed to be allowed. Window Lift Error 2
represents a first attempt to removing this undesired behavior, which results in
another error, and Window Lift Fixed actually resolves the issue.
The aim of this case study was to check the truth value of certain formulas. We

used the handcrafted simulator as an oracle that yields the correct result.

Setup

This case study was conducted on the same SUN Fire server as the previous case
study. [mc]square was used in SVN revision 9287 and the test files in revision 55.

Results

Table 10.4 shows the results, which were obtained using the synthetic simulator,
for all three versions of the program. Analogously, Table 10.5 contains the corre-
sponding values for the handcrafted simulator.
The formulas that were model checked, and which are referenced in the table,

are the following:

• Φ1 := AG(mode ≥ 0 ∧mode ≤ 6)

1Moore automata write output based on their state, whereas Mealy automata write depending
on transitions.
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• Φ2 := AG(mode = 5→ ¬E(mode = 5U(mode 6= 5 ∧mode 6= 6)))

Concerning options, the values in the tables were the following:

• Synthetic ATmega16 simulator

– None: All abstractions deactivated. Only the consistency guards were
active.

– LSE: Lazy Stack Evaluation and the consistency guards were active.

– Standard: LSE, DND, DVR, and the consistency guards were active.

– All: as Standard plus On-the-Fly Path Reduction.

• Handcrafted ATmega16 simulator

– None: no abstraction was active.

– LSE: Lazy Stack Evaluation was active.

– Standard: LSE, DND and DVR active.

– All: as Standard plus On-the-Fly Path Reduction.

These settings were chosen such that certain properties become visible. First of all,
we wanted to obtain the size of the state space during verification in the absence of
any abstraction. In the second setting, LSE, only Lazy Stack Evaluation is active,
which illustrates the impact of this specific technique on programs with multiple
simultaneously active interrupts. Next, we were interested in the amount of time
required for the fastest settings possible. As path reduction can increase the time
effort, we decided to exclude it, resulting in the standard setting. Finally, to obtain
values for the smallest state space size, we activated path reduction (i.e., all).
Inspecting these values demonstrates that, within the scope of this case study,

model checking using the synthetic simulator yields the same truth values as when
using the handcrafted simulator. Furthermore, the truth value is not affected by
the set of active abstractions. The number of states for each corresponding run is
very similar.
A significant difference can be seen in the amount of time required for model

checking. In this regard, the synthetic simulator is about five to six times slower
than the handcrafted one, as we already observed in the previous case study.
As for the previous case study, we have decided to omit the memory consumption,

as the computation in Java is currently not possible reliably.

10.2 Atmel ATmega644 Case Studies

As pointed out in Sect. 9.2, the ATmega644 forms the basis for a lab course at the
Embedded Software Laboratory of RWTH Aachen University, which is compulsory
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Program Formula Options States States Time Truth
used stored created [s] value

W
in
do

w
Li
ft

E
rr
or

1 Φ1

None 184,642,321 241,875,351 21,194.6 valid
LSE 2,559,671 2,934,246 266.7 valid

Standard 121,775 145,101 17.64 valid
All 7,628 314,521 27.05 valid

Φ2

None 7,612,190 9,930,188 909.43 invalid
LSE 212,736 248,695 28.33 invalid

Standard 13,117 16,219 3.83 invalid
All 1,151 52,114 4.79 invalid

W
in
do

w
Li
ft

E
rr
or

2 Φ1

None 174,705,586 228,911,900 19,104.62 valid
LSE 2,336,043 2,655,246 246.7 valid

Standard 113,663 133,835 16.6 valid
All 6,784 285,367 25.59 valid

Φ2

None 34,894,983 46,138,425 4,025.18 invalid
LSE 873,766 1,007,382 114.95 invalid

Standard 40,806 50,762 8.24 invalid
All 3,220 142,347 12.85 invalid

W
in
do

w
Li
ft

F
ix
ed

Φ1

None 154,984,097 197,530,241 16,492.16 valid
LSE 1,706,583 1,953,510 170.81 valid

Standard 24,003 34,386 5.62 valid
All 1,063 96,855 9.67 valid

Φ2

None 154,984,097 197,530,241 19,107.22 valid
LSE 1,706,583 1,953,510 213.41 valid

Standard 24,003 34,386 5.91 valid
All 1,510 93,200 9.71 valid

Table 10.4: Model checking results for Window Lift, synthetic ATmega16 simulator
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Program Formula Options States States Time Truth
used stored created [s] value

W
in
do

w
Li
ft

E
rr
or

1 Φ1

None 174,731,303 228,938,135 3,845.33 valid
LSE 2,342,564 2,589,665 45.33 valid

Standard 111,032 127,301 9.78 valid
All 9,110 197,666 10.40 valid

Φ2

None 6,873,844 9,063,182 219.32 invalid
LSE 118,945 129,604 3.86 invalid

Standard 10,524 12,609 8.46 invalid
All 961 25,949 7.47 invalid

W
in
do

w
Li
ft

E
rr
or

2 Φ1

None 174,585,948 228,753,466 3,845.62 valid
LSE 2,286,938 2,510,865 48.92 valid

Standard 110,049 124,978 8.24 valid
All 8,247 187,421 8.16 valid

Φ2

None 34,832,243 46,014,095 1,089.25 invalid
LSE 839,278 907,806 21.65 invalid

Standard 39,412 45,887 9.57 invalid
All 3,261 84,920 7.92 invalid

W
in
do

w
Li
ft

F
ix
ed

Φ1

None 154,875,555 197,384,199 3,423.57 valid
LSE 1,660,560 1,815,293 31.44 valid

Standard 22,625 29,313 7.82 valid
All 1,485 61,016 6.82 valid

Φ2

None 154,875,555 197,384,199 4,716.66 valid
LSE 1,660,560 1,815,293 40.64 valid

Standard 22,625 29,313 7.02 valid
All 1,485 61,016 6.55 valid

Table 10.5: Model checking results for Window Lift, handcrafted ATmega16
simulator
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to undergraduate students. The subject of this lab course is the implementation of a
small operating system including resource management and preemptive multitask-
ing. Especially experimenting with the latter was interesting because [mc]square
had so far never been used on programs on top of an operating system. One rea-
son for this was that context switching necessarily involves manipulating the stack
pointer, and earlier versions of [mc]square relied on this not to happen.
Having supervised multiple runs of the lab course and several of the six exper-

iments involved, we had access to both student solutions and the official ones.
Several of the sometimes subtle issues encountered during the implementation mo-
tivated us to attempt a formal verification, at least of the core components. Given
the complexity of the operating system, however, we realized that this would go
beyond the scope of our work. Thus, we decided to at first only provide the simula-
tor, which would be necessary anyway. Actually verifying the system would require
more sophisticated abstractions than are available to us at the moment.
Hence, the rest of this section is structured as follows:

• In the next subsection, we illustrate our experience loading and simulating
the operating system from the lab course, which is referred to as HnPOS.

• In the last subsection, we examine using the ATmega644 simulator on a heav-
ily reduced operating system.

The operating system in the second section is not related to the system from the
lab, but is a system we created ourselves. It is stripped down to the mere minimum
required: it includes a preemptive scheduler and a means for mutual exclusion in
accessing shared resources. The latter is achieved by semaphores [77]. In contrast
to HnPOS, it is actually possible to conduct model checking on this system.

10.2.1 HnPOS in [mc]square

For this case study, we used an early version of HnPOS, in which only the basic
functionality was implemented. It was part of our own preparation for supervis-
ing one of the lab course experiments, and as such, not designed for being model
checked.

[mc]square in SVN revision 9288 was used. We compiled the project using
Atmels AVR Studio 4 and avr-gcc from WinAVR. Loading the generated ELF
file was possible with the parameterized ELF loader that is part of the synthetic
ATmega644 simulator. [mc]square creates multiple tab views on the GUI, one for
each source file. It is possible to step through the program using the simulation
panel on the GUI.
Model checking this program using the formula AG true discovered an error. At

some point during simulation, an invalid instruction is reached, which is located
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10.2 Atmel ATmega644 Case Studies

at location 211 (0xD2 ). Inspecting this location using the simulator on the GUI
shows that there is actually no instruction at that location, but there is an STS
instruction at 210. Given that

• there is a variant of the STS instruction in the AVR instruction set that is 32
bits long (cf. the AVR Instruction Set Manual [6])

• the bit pattern at addresses 210 and 211 matches that instruction

• the ATmega644 has a program memory that is addressed wordwise, i.e., in
units of 16 bit length,

it is therefore certain that address 210 contains a part of an instruction, and not a
valid instruction itself.
It is important to point out that we cannot state for certain whether this er-

ror is actually a problem with HnPOS, or whether this indicates a problem in
[mc]square. It could be related to an implementation error in the synthetic sim-
ulator. As it is a real-world program not tailored for model checking purposes,
analyzing it manually is a tedious task. We used the formula EF PC = 210 to
generate a trace leading to the relevant program location, but the resulting trace
consists of more than 80,000 states. Analyzing this issue is therefore beyond the
scope of this thesis.
On a physical ATmega644, an invalid instruction would be ignored. Hence, if the

problem were real, it would be impossible to notice it. In that case, however, there
would still be a serious flaw inside the program, which causes program execution
to continue at undesired locations. For a different jump target, this could easily
result in serious consequences such as a system failure.

10.2.2 Simple Operating System in [mc]square

Considering the complexity of HnPOS, we created a very simple operating system
ourselves. The system has the following structure

• OS core: the system can be separated into a core part and a user-process
part. However, as the AVR microcontrollers provide no memory protection,
this is only of architectural relevance.

• Scheduling system: preemptive scheduling is provided. One of the timers of
the ATmega644 is used to trigger context switches to the operating system on
a regular basis. The scheduler uses configurable time quantums for processes,
and is aware of possibly blocked processes.

• Resource management: a means for mutual exclusion is provided, which is
based on semaphores.

Due to its simplicity, we decided to call it SimpleOS.
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Setup

For the verification, we used the same SUN Fire server as in the previous case
study. SVN revision 9290 of [mc]square was used, and SimpleOS, which resides
in another of our repositories, in SVN revision 394.
Three versions of SimpleOS exist:

• simpleos_only_idle: SimpleOS with no processes except the idle process,
which is active whenever no other process requires the CPU

• simpleos_idle_and_p1: same as simpleos_only_idle, but there is an ad-
ditional process P1

• simpleos_idle_and_p1_p2: same as simpleos_idle_and_p1, but there is
an additional process P2

Processes P1 and P2 create output on PORTA to show that they are alive.
P1 outputs an increasing bit pattern on the lower half of PORTA (i.e., the lower
nibble), whereas P2 does the same on the upper half. We tested this functionality
on an actual ATmega644P from Atmel [8], which was seated on an Atmel STK500
board [4].

SimpleOS directly manipulates the stack, that is, writes to it directly instead
of using push and pop operations. As the abstractions had so far never been
tested on such programs, we decided to deactivate all of them. A test run in fact
indicated that LSE, DND and DVR currently all result in spurious behavior for
SimpleOS. Probably the stack manipulation violates some assumption involved in
either the techniques themselves, or in their current implementation. Due to the
effort involved, we did not examine this further.

Verification of Properties

Table 10.6 provides an overview of all the model checking results of this case study.
The first property we were interested in to verify was whether the variable cur-

rentProcess has always a well-defined value. As none of the three test programs
creates more than three processes, the variable should always be in {0, 1, 2}. This
is encoded by the formula

Φ1 := AG(currentProcess ≥ 0 ∧ currentProcess ≤ 2)

As expected, Φ1 is satisfied for all examined versions of SimpleOS.
Checking whether a context switch actually occurs was the second property of

interest. However, requiring that eventually a switch from process idle to process
P1 must occur is not possible, as [mc]square would discover a path on which
the timer interrupt for the scheduler never occurs. Even though such a path is

156



10.2 Atmel ATmega644 Case Studies

Program Formula States States Time Truth
stored created [s] value

simpleos_only_idle

Φ1 13,220 13,253 3.00 valid
Φ2 13,220 13,253 2.40 invalid
Φ3 13,220 13,253 1.86 invalid
Φ4 13,220 13,253 1.52 invalid
Φ5 13,220 13,253 3.21 invalid

simpleos_idle_and_p1

Φ1 291,185 291,938 47.67 valid
Φ2 1,453 1,453 0.25 valid
Φ3 291,185 291,938 38.10 invalid
Φ4 291,185 291,938 39.97 valid
Φ5 291,185 291,938 49.40 invalid

simpleos_idle_and_p1_p2

Φ1 3,049,418 3,061,718 418.30 valid
Φ2 1,762 1,762 0.25 valid
Φ3 2,337 2,337 0.34 valid
Φ4 3,049,418 3,061,718 430.70 valid
Φ5 3,049,418 3,061,718 446.69 valid

Table 10.6: Model checking results for SimpleOS

infeasible in the physical system, it is possible in the model. Using user-defined
environments [70] would allow to exclude the infeasible path from the model, but
as of the time of this writing, support for this technique has not been added yet
to the synthetic simulators. Therefore, we decided to check for a weaker property,
which is is a context switch possible. This property can be represented by the
following formulas:

Φ2 := EF currentProcess = 1

Φ3 := EF currentProcess = 2

[mc]square reports Φ2 to be violated for simpleos_only_idle, and to be sat-
isfied for the other two versions, where a process P1 exists. Analogously, Φ3 is
violated for simpleos_only_idle and simpleos_idle_and_p1, and satisfied for
simpleos_idle_and_p1_p2. This corresponds to the expected behavior in all cases.
Finally, we wanted to obtain a statement whether a context switch always remains

possible. An error in the scheduler or the implementation of the processes, which
could for instance deactivate the global interrupt enable flag, could cause the system
to get stuck. The corresponding formulas are

Φ4 := AG(EF currentProcess = 0 ∧ EF currentProcess = 1)

Φ5 := AG(EF currentProcess = 0∧EF currentProcess = 1∧EF currentProcess = 2)
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As is visible from Tab. 10.6, the properties are always satisfied whenever the pro-
cesses requested in the formulas actually exist. Otherwise, the formulas are found
to be false.
As a result of this case study, we conclude that the generated ATmega644 sim-

ulator can be used to model check programs for this platform. However, in its
current state, it can only be used to verify small programs. Especially the growth
of the state space when adding another process is an obstacle, as can be seen for
the variants of SimpleOS. Therefore, for future work, we consider it important to
adapt the abstractions such that they can be used in the presence of an operating
system.

10.3 Intel MCS-51 Case Studies

The goal of this case study was to prove that the simulators generated by the Sgdl
tool chain can also simulate the behavior of platforms other than Atmel’s AVR
family. To this end, we show that state space building and model checking is also
possible for the Intel MCS-51. Given that we have already demonstrated that the
approach is feasible for the AVRs, though, we have decided for a comparatively
simple case study.

10.3.1 Setup

We used SDCC (Small Device C Compiler) for compiling the programs checked in
this case study. SDCC is a freely available C compiler for a variety of platforms. The
case study was conducted using SVN revision 9290 of [mc]square. The programs
to be checked reside in the same repository, hence they were also present in revision
9290.
This case study was conducted on a notebook equipped with an Intel Core 2 Duo

T7300 at 2.0 GHz, 4 GB RAM, and a 120 GB hard disk. Windows 7 Professional
in a 32 bit edition served as the operating system, and an Oracle JDK 1.7 as the
Java Runtime Environment.
The program we used for this case study is called All Interrupts. As its name

indicates, it activates all interrupts of the device, but not necessarily their sources.
On the 8051, this results in the following scenario:

• External Interrupt 0: active, may occur

• External Interrupt 1: active, may occur

• Timer 0 Interrupt: active, but may not occur since the timer is not running

• Timer 1 Interrupt: active, but may not occur for the same reason as Timer 0
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• Serial Port Interrupt: active, may occur

The above list of interrupts and their event sources are taken from Roth [65],
which we also used as a reference during the implementation of the simulator. We
also obtained the position of the interrupts in the interrupt table from this source.
The expected behavior for this program is therefore that all interrupts except

the two timer interrupts may occur. We also created an additional version of this
program called All Interrupts Active Timers Active, in which we additionally
activate the timers.

10.3.2 Verification

The MCS-51 family has an interrupt table that is located at a fixed position. This
fact facilitates checking whether an interrupt occurs, as we only need to check
whether the program counter eventually evaluates to one of these positions. Such
properties can be encoded by EF formulas: is there a path on which eventually
the program counter has a certain value? The corresponding formulas were the
following:

• Φ1 := EF PC = 0x03 : checks occurrence of External Interrupt 0

• Φ2 := EF PC = 0x0b : checks occurrence of Timer 0 Overflow

• Φ3 := EF PC = 0x13 : checks occurrence of External Interrupt 1

• Φ4 := EF PC = 0x1b : checks occurrence of Timer 1 Overflow

• Φ5 := EF PC = 0x23 : checks occurrence of Serial Port Interrupt

As expected, [mc]square reports that for the program All Interrupts, the
formulas describing timer overflow interrupts (i.e., Φ2 and Φ4) are not satisfied. All
other formulas are found to be satisfied. Verification took less than one second for
each formula and resulted in less than 1,000 states stored.
Next, we checked the program All Interrupts Active Timers Active using

the same set of formulas. Φ1, Φ3 and Φ5 are again satisfied, and additionally, Φ2

and Φ4 as well.
A conclusion from this case study is that the generated MCS-51 simulator can

be used to model check properties for this platform. Hence, the Sgdl approach
works at least for the AVR family of microcontrollers and for the MCS-51. As a
possible direction for future work, a more extensive case study could be conducted
to obtain a statement about qualities such as state space size and simulation speed,
especially in comparison to an existing handcrafted simulator.
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11 Conclusion

In this chapter, we first summarize the results obtained by our research, which are
presented in this work. In the second section, we provide an overview of possible
directions for future research.

11.1 Conclusion

The topic of this thesis is a new method for coping with the problem that a tool
intended for model checking embedded software has to support a wide variety of
platforms. The approach is based on the creation of simulators and static analyzers
for specific platforms from hardware descriptions. These two components form
what we call a state-space generator, i.e., a software module suitable for creating
the state space for a model checker.
Chapter 4 outlines the structure of our synthesis system and points out its key

features. The system consists of a hardware description language, Sgdl, a compiler
for processing it, and a runtime library. The Sgdl compiler analyzes and translates
a hardware description in Sgdl to Java code, and the runtime library contains those
components that are shared between such generated simulators. If provided with
some additional information about a compiled simulator, the Sgdl compiler can
also automatically integrate it into [mc]square.
In Chapter 5, we describe the language we chose for our research, Sgdl. The

language is based on previous work from the AVRora project, parts of which were
formerly incorporated into [mc]square for some time. In AVRora, the language
had been called isildur, or shorthand Isdl, and was used to describe the AVR
instruction set. Several extensions and modifications of our own distinguish Sgdl
and Isdl, which is why the two language still strongly resemble each other, while
at the same time they are no longer compatible.
Most of the extensions relate to the description of resources, the interrupt sys-

tem, and language elements required for model checking. The latter include, for
instance, the description of atomics to be used in ctl formulas, nondeterminism,
and abstraction techniques. Opposed to this, the syntax used in code blocks, e.g.
execute sections of instructions, remained virtually unchanged.
Chapter 6 focusses on the Sgdl compiler, that is, its architecture and mode of

operation. The compiler can be decomposed into an analysing part and a code
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generation part. The analysing part consists of a preprocessor, a parser, several
intermediate representations, validity checkers, and a static analyzer, Sgdl-Sta.
By means of the latter, the developer is not required to explicitly provide certain
pieces of information about the target microcontroller because the analyzer may
already be able to infer it from the given information. Finally, the code generation
backend of the compiler is tasked with the creation of Java code. Technically, this
is realized by means of code templates, and therefore, by exchanging these, it would
be possible for the Sgdl compiler to create, for instance, C code instead of Java.

An overview of generated simulators is provided in Chapter 7. This includes
their mode of operation, and most importantly, illustrates a means for validating
them. Assisting developers in validating their simulators is strictly necessary in
order to increase confidence in the correctness of any simulation, which is in turn a
precondition for obtaining useful results during model checking. The Sgdl compiler
assists the developer in this regard by creating a number of test cases for the JUnit
testing framework from the given hardware description. These tests are deliberately
incomplete, thus forcing the developer to manually describe and check the expected
behavior. Thus, deviations between data sheet and actual implementation, which
are not accessible to the tool chain, can also be checked.

Abstractions are the topic of Chapter 8. We added several abstractions that were
previously developed by other researchers, but also some of our own. The principal
result from this work is that even for generated simulators, it is possible to add
abstractions, and that some of these can also be created automatically. For some
abstractions, like Path Reduction, a fully automatic creation is feasible, whereas for
others, like Dead Variable Reduction and Delayed Nondeterminism, some additional
information is required. If that information is present, these can also be generated
along with the simulator, and no manual modification of the generated code is
necessary.

Our research indicates that the aforementioned additional information, which
augments the instruction set and resource description, can be at least partly omit-
ted. A static analysis of the hardware description could possibly deduce it, which
is a possible direction for future research. We comment on this in the next section.

Chapters 9 and 10 concentrated on case studies. In these case studies, we first
implemented three platforms using Sgdl: the Atmel ATmega16, the Atmel AT-
mega644, and the Intel 8051. Then, we examined the behavior of the respective
generated simulators on a number of test programs. For the ATmega16 and 8051,
we were able to compare the behavior shown by the generated simulator to that of
an already existing handcrafted one. This allowed us to evaluate the quality of the
simulation with regard to state space size and simulation speed.
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11.2 Future Work

One possible direction for future research would be the already mentioned automatic
derivation of abstractions such as delayed nondeterminim. The current approach
to adding this specific abstraction is based on adding the desired behavior in an
additional execute section to each instruction. During simulation, the code created
from the new section is executed, instead of the code in the regular one. This
approach has several disadvantages. First of all, it is redundant code, and reduces
maintainability. This might be of importance when fixing errors in a description, or
when generalizing it such that it can be reused for further devices. Furthermore, it
complicates the combination of several abstractions. In the worst case, this might
lead to implementing a separate execute section for each possible combination of
abstractions. That is, n abstractions would require 2n execute sections, which is
why this approach is infeasible.
An automatic derivation of abstractions could be based on a thorough analysis of

the Sgdl code, for instance by the Sgdl static analyzer, Sgdl-Sta. We illustrated
a concept for this in a paper [27]. The actual research in this direction, and to what
extent it is feasible and applicable to other abstractions, would be subject to future
research.
Another direction for future research could investigate the possibility of replacing

Sgdl by an established hardware description language. We designed Sgdl with the
intention of proving that retargeting a hardware-dependent assembly code model
checker is possible, while preserving the ability to integrate abstractions. In our
opinion, these goals have been met. However, Sgdl is only one of several special-
purpose languages for describing hardware (cf. the overview in Chapt. 3). As
such, the only tools for processing it are the ones we created ourselves, and there is
currently no means to connect the toolchain to existing workflows, which are based
on widespread languages like SystemC, VHDL, or LISA.
Consequently, future work with regard to the language could attempt to use

one of the established languages instead. This would also grant access to already
existing processor descriptions, e.g. IP cores. Given that Sgdl already exists and
provides the necessary language elements, such work could first of all investigate
the possibility of a cross-compiler, which translates parts of a hardware description
to Sgdl. In case that succeeds, a direct translation would also be possible, which
could allow for an integration of the approach into existing toolchains.
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SGDL . . . . . . . . . State space Generator Description Language
SGDL-STA . . . . Sgdl Static Analyzer
SP . . . . . . . . . . . . Stack Pointer
SSBS . . . . . . . . . . Sgdl Static Behavior Section
SVN . . . . . . . . . . Subversion
UDE . . . . . . . . . . User Defined Environment
USART . . . . . . . Universal Synchronous / Asynchronous Receiver and Transmitter
VLIW . . . . . . . . . Very Long Instruction Word
WVA . . . . . . . . . . Written Variable Analysis
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2012-07 André Egners, Björn Marschollek, and Ulrike Meyer: Hackers in Your

Pocket: A Survey of Smartphone Security Across Platforms

2012-08 Hongfei Fu: Computing Game Metrics on Markov Decision Processes

2012-09 Dennis Guck, Tingting Han, Joost-Pieter Katoen, and Martin R.
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2012-12 Jürgen Giesl, Thomas Ströder, Peter Schneider-Kamp, Fabian Emmes,

and Carsten Fuhs: Symbolic Evaluation Graphs and Term Rewriting —

A General Methodology for Analyzing Logic Programs

2012-15 Uwe Naumann, Johannes Lotz, Klaus Leppkes, and Markus Towara:

Algorithmic Differentiation of Numerical Methods: Tangent-Linear and

Adjoint Solvers for Systems of Nonlinear Equations

2012-16 Georg Neugebauer and Ulrike Meyer: SMC-MuSe: A Framework for Se-

cure Multi-Party Computation on MultiSets

2012-17 Viet Yen Nguyen: Trustworthy Spacecraft Design Using Formal Methods

2013-01 ∗ Fachgruppe Informatik: Annual Report 2013

2013-02 Michael Reke: Modellbasierte Entwicklung automobiler Steuerungssys-

teme in Klein- und mittelständischen Unternehmen
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