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Abstract
With an increasing number of mobile devices like smartphones and tablets, their relevance
to users and growing number of available applications, also their field of application
widens. For the software quality of mobile applications, the application life cycle - the
process-related states and state transitions - plays an important role. Today’s mobile
platforms, like Android, iOS and Windows Phone, have specific scheduling policies on
application level to ensure the reactiveness of an application, targeting an improved
responsiveness and a good user experience. Depending on the life cycle state of an
application, it is allowed or restricted to access resources like RAM and CPU. Such
policies can lead to data loss and unexpected behavior of the mobile application.

This work presents a conceptual approach for testing application properties which
are related to life cycle state changes, so called life cycle-related properties. The first
step consists of reverse engineering the life cycles of mobile applications. These life
cycles are used as a basis for testing life cycle-related properties at state changes. The
testing approach uses callback-mechanisms of the underlying mobile platforms to check
assertions about life cycle-related properties. It handles application components with
an own life cycle as units and tests each unit in a unit-based testing approach. In a
case study, the conceptual approach is implemented for the mobile platform Android.
One of the results of the case study is the AndroLIFT tool for testing life cycle-related
properties of Android applications.

The evaluation of this work presents the capabilities and limitations of the conceptual
approach. While the approach is well-suited for today’s mobile platforms, extensible
and scalable with respect to the type and number of life cycle-properties, it mainly
depends on the callback-mechanism of the underlying mobile platform. The evaluation
of the AndroLIFT tool in the context of a practical course with student participants
confirms the value of the Android implementation of the presented approach to test life
cycle-related properties of Android applications.
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Zusammenfassung
Mit der steigenden Anzahl mobiler Endgeräte wie Smartphones oder Tablets, ihrer Rele-
vanz heutzutage sowie einer stetig wachsenden Anzahl verfügbarer mobiler Apps, wächst
auch ihr Anwendungsbereich. Für die Softwarequalität von Apps spielt ihr Lebenszyklus
- bestehend aus prozessbezogenen Zuständen und Zustandsübergängen - eine wichtige
Rolle. Aktuelle mobile Plattformen wie Android, iOS und Windows Phone haben Stra-
tegien für das Scheduling von Apps, welche sich von dem Scheduling auf Desktop- und
Server-Betriebssystemen unterscheiden. Das Scheduling auf mobilen Plattformen soll
insbesondere eine hohe Reaktivität von Apps sicherstellen, mit dem Ziel Reaktionszeiten
möglichst kurz zu halten und eine hohe Benutzerfreundlichkeit zu gewährleisten. Abhän-
gig von dem Zustand einer App kann ihr der Zugriff auf Ressourcen wie RAM und CPU
gewährt oder verwehrt werden. Dieses Verhalten kann zu Datenverlust und unerwartetem
App-Verhalten führen.

Diese Arbeit stellt einen konzeptuellen Ansatz zum Testen von App-Eigenschaften, die
in Bezug zum Lebenszyklus der App stehen, vor. Im ersten Schritt wird ein Vorgehen
vorgestellt, welches das Reverse Engineering von Lebenszyklus-bezogenen Eigenschaften
erlaubt. Die resultierenden Lebenszyklen werden als Basis für das Testen Lebenszyklus-
bezogener Eigenschaften verwendet. Der Ansatz nutzt Callback-Mechanismen der darun-
terliegenden Plattformen um Annahmen über Lebenszyklus-bezogene Eigenschaften zu
überprüfen. Anwendungskomponenten mit eigenen Lebenszyklen werden von dem Ansatz
als Module angesehen und im Rahmen von Modultests getestet. In einer Fallstudie wird
der konzeptuelle Ansatz für die mobile Plattform Android implementiert. Aus dieser Fall-
studie geht AndroLIFT hervor, eine Bibliothek zum Testen von Lebenszyklus-bezogenen
Eigenschaften von Android Apps.

Die Evaluierung dieser Arbeit stellt die Potentiale und Grenzen des konzeptuellen
Ansatzes vor. Der Ansatz ist leicht für die heutigen mobilen Plattformen zu implementie-
ren, er skaliert mit einer zunehmenden Anzahl von Annahmen und ist leicht anpassbar
und erweiterbar im Hinblick auf unterschiedliche Annahmen. Aber es zeigt sich auch
eine Abhängigkeit von den für diesen Ansatz benötigten Callback-Mechanismen der
darunterliegenden Plattformen. Die Evaluation von AndroLIFT im Rahmen eines studen-
tischen Praktikums bestätigt den Nutzen der Android Implementierung des vorgestellten
Ansatzes um Lebenszyklus-bezogene Eigenschaften zu überprüfen.
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1 Introduction
Mobile devices, like smartphones and tablets, are omnipresent today. They significantly
change the traditional computer market by shifting the focus from PCs to smartphones
and tablets. This leads to a continuous decrease of PC sales and increase of sales in the
mobile device area in the recent past and expected in the future. For instance, worldwide
PC sales are forecast to decrease by 7.6 percent from 2012 to 2013 and the sales of
mobile devices (smartphones and tablets) to increase by 11.3 percent in the same time
period [77]. Although the performance of mobile devices continuously improves with the
booming market, they still are limited in their capabilities. Major limitations arise from
the limited battery capacity, CPU, RAM and restricted possibilities to receive input from
the user and present information to the user.

Nonetheless, the number of available mobile devices increases continuously. With the
growing number of devices also the number of applications for these devices increases.
For instance, Google counts 48 billion installations of Android applications and Apple
50 billion iOS installations (status May 2013) [56]. In such a growing and booming
mobile application market, software quality is an important topic. Many quality issues on
mobile devices arise from the fact that applications do not deal appropriately with the
scarce resources, causing applications to halt, crash or any other unexpected application
behavior [92]. This leads to a bad user experience and decreases the experienced quality
of the application.

To prevent such an application behavior, today’s mobile platforms, like Android, iOS
and Windows Phone, have more or less similar policies regarding the access of applications
to the device resources. Many mobile platforms allow only a very limited number of
visible applications to be executed simultaneously. This number is often even limited
to one single application. Since usually smartphones have a small display to present
information to the user, the only applications being executed are the ones presenting
information to the user. There may also be other services (not displaying data to the user
through the user interface) and system tasks active in the background, but the number
of visible applications is strictly limited. This ensures that the visible applications have
sufficient resources available to stay reactive and execute user tasks in time. A good
responsiveness is an important factor for a good user experience and high usability.

To ensure the policy of only few (or one) visible applications being executed at a time,
today’s mobile platforms manage life cycles on application level. These life cycles specify
the application behavior with regard to the application’s states and state transitions. An
application can be in different states in which it has different levels of access to resources.
For instance, an application in the state running can have access to all resources, while
an application in the state stopped has no access to the CPU and a shut down application
has not even access to the RAM. To ensure that only one visible application is being
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1 Introduction

executed at a time, the mobile platform allows only one single application at a time to
be in the state running. All other applications, which are usually not visible at that time,
remain in other states with limited access to resources.

If only very few (or one) applications are presented to the smartphone or tablet user
simultaneously, the user has to switch often between the different applications. For
instance, if the user reads an e-mail, the e-mail application is open. When he clicks on a
link in the e-mail, the Internet browser application might be opened. While using the
Internet browser, an incoming call might occur, which would open the phone application.
All these actions cause state changes in the life cycles of the involved mobile applications.
With every state change an application might loose access to resources. For instance, if
an application is shut down or killed by the system, it is usually also flushed out of RAM.
Such state changes might cause data loss and unexpected application behavior, e.g. if
the entered e-mail text is lost after resuming with the intention to continue to write the
unfinished e-mail.

On today’s mobile platforms it is the responsibility of the application developer to
deal with life cycle state changes of his application on application level. For instance,
when an incoming call interrupts the running application, a banking application should
appropriately shut down all secure connections and an e-mail application should store the
e-mail content. In the following, properties which go beyond single life cycle states of an
application are called life cycle-related properties. There exists no conceptual approach
to test life cycle-related properties with the specific issues of today’s mobile applications.

1.1 Objectives
The objective is to implement a conceptual approach to test life cycle-related properties
of mobile applications. This approach shall not depend on a specific platform, but be
applicable to a wide range of current mobile platforms. It shall be sufficiently generic to
not depend on a specific system or system architecture and it shall not limit the number
and kind of life cycle-related properties that can be tested. The approach shall be easy
to implement for a specific platform to test life cycle-related properties.

To achieve these goals, first the status quo of how application life cycles are provided
and handled by today’s mobile platforms has to be analyzed. Afterwards, we have to find
a common basis between the mobile platforms to identify and apply established testing
techniques with the purpose of testing life cycle-related properties. Third, we have to
evaluate our approach by implementing it for a specific mobile platform.

1.2 Contributions
The main contributions supporting the objectives of our work are the following:

∙ We provide a concept for reverse engineering mobile application life cycles. Due to
the lacking quality of many official documentations on application life cycles [65],
this approach can be used by developers to reverse engineer the actual application

2



1.3 Outline

life cycle of a mobile platform. This approach is platform-independent and can be
applied to current mobile platforms. It is applicable to graphical applications as
well as services of mobile platforms.

∙ We applied this concept to various mobile platforms for reverse engineering life
cycles of applications and services on Android, iOS, Java ME and Windows Phone.
The results consist of reverse engineered life cycles of service and application
components of various platforms. The results also contain trigger catalogs which
trigger different life cycle state change sequences of a mobile application on a
specific platform. These catalogs can be used for testing life cycle-related properties
of further platforms.

∙ We developed a platform-independent, conceptual approach for testing life cycle-
related properties on today’s mobile platforms. The approach can be easily imple-
mented on a specific mobile platform. It is a unit-based testing approach which
works in a White-box manner and uses assertions. The approach is based on life
cycle callback mechanisms of the mobile platforms.

∙ We implemented this approach in a case study for the mobile platform Android.
The implementation resulted in a library and plug-in for testing life cycle-related
properties of Android applications. The tools can be easily extended to test appli-
cation-specific life cycle-related properties. They help users to quickly and easily
test properties in a structured and efficient way.

1.3 Outline
Chapter 2 presents preliminaries used in this thesis. This includes background about
application life cycles, unit and White-box testing as well as basic information about the
tools used in our case study. Chapter 3 introduces our approach on reverse engineering
application life cycles. The approach is used to test life cycle-related properties of mobile
applications. It also presents the reverse engineered application life cycles of different
mobile platforms, including Android. The results from reverse engineering are used to
test life cycle-related properties of Android applications in our case study. In Chapter 4
our conceptual approach of testing application life cycles is presented. This approach is
applied in a case study to test life cycle-related properties of Android applications. The
case study and the results are presented in Chapter 5. This chapter also introduces the
tools developed during the case study. The experiences and results from our case study
are evaluated in Chapter 6. Chapter 7 presents related work and Chapter 8 concludes
this thesis and sketches future work.

1.4 Bibliographic Notes
Some parts of this thesis are based on previous work, published beforehand. We describe
the approach of reverse engineering life cycles of mobile applications and corresponding
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1 Introduction

case studies on this in [55, 65, 67, 84, 85]. The approach of testing life cycle-related
properties and applications of the approach were reported in [55, 62, 68, 69, 71, 120].
Related tools, like the AndroLIFT library, plug-in and Higgs are presented in [55, 60,
70, 88, 102, 123, 137]. Some work done on specifying requirements on life cycle-related
properties is summarized in [72, 88]. The conceptual approach was also considered while
working on real-time systems, like the real-time capable Android, and presented in
[61, 79, 93, 94, 126, 134]. Some ideas in this work arose from our work on a mobile
Android client for a project which deals with energy-efficient navigation for electric
wheelchairs [36, 51–54, 63, 64, 66]. Basic conceptual ideas and inspiration are taken from
various other own work published in [32, 47, 48, 78, 97, 100, 107, 110, 125, 127].
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2 Preliminaries

2.1 Application Life Cycles
In this work, the term application life cycle refers to the process-related states of an
application during runtime and transitions between these states. Application life cycles
play an important role for the quality of today’s mobile applications. Mobile devices
like smartphones and tablets have limited amounts of resources like CPU, RAM and
battery. Additionally, they have restricted capabilities in terms of output information
and user input. Therefore, today’s mobile platforms like Android, iOS and Windows
Phone schedule their applications in a specific way: At each moment in time, only a very
limited number of visible applications (often only one single application, next to some
background services) is allowed to be active. This application has access to all resources.
While one application is active, the other applications remain in other states. Figure
2.1 sketches a simplified life cycle of a Java ME application [69]. Regarding the Java
ME policies related to this life cycle, only one single visible application is allowed to
be in the state active, while all other applications have to be in the states paused or
destroyed. Depending on the current state of an application, the mobile platforms restrict
the access of the application to resources. While the only active application has access to
all resources, all paused applications usually have only access to RAM. This way, paused
applications are started more quickly when being resumed. Applications which are in
the state destroyed, are usually completely shut down and do not have access to any
resources like CPU and RAM.

Such scheduling policies of today’s mobile platforms lead to many application state
changes. For instance, if one application is active and visible to a smartphone user and
he switches to a different (e.g. destroyed) application, the following state changes are
necessary (assuming the application life cycle of Fig. 2.1):

startApp() 

active 

destroyed 

paused 

pauseApp() 

Figure 2.1: Simplified Life Cycle of a Java ME application
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∙ The currently active application has to be paused. It may also be destroyed,
depending on other platform-specific scheduling policies.

∙ The starting (from the state destroyed) application has first to be paused, too.

∙ Then the starting application has to switch its state from paused to active.

After these state changes, the second application is visible to the user. Depending on the
platform-specific application life cycles, for an application switch often even more state
changes are necessary like on Android, iOS and Windows Phone.

As the mobile applications may be forced to release resources when changing their
states, the applications have to take care of data loss and consistency. For instance:

A user types in a long text into an e-mail text field. Unexpectedly, he is
interrupted by an incoming call. When resuming the e-mail application, he
expects it to have stored the e-mail text. Therefore, the application needs to
be notified by the underlying platform in case of an upcoming state change
to be able to store the entered e-mail text.

Another example scenario:

A smartphone user is using a gaming application. Due to the high power
demand of the game, the low battery capacity shrinks quickly and the smart-
phone shuts down. The user expects his game to be paused where it was
interrupted and his gaming score to be stored.

To notify mobile applications of upcoming state changes, today’s mobile platforms use
callback mechanisms. While on Android and iOS the platforms execute callback methods
of the applications, Windows Phone notifies its applications sending a corresponding
event. The transitions in Fig. 2.1 are labeled with the names of the corresponding callback
methods of Java ME applications. So regarding the life cycle in Fig. 2.1, the callback
method startApp() of a paused application is called when the application changes its
state to active. The moment in time, when exactly the call is made, depends on the
platform specification. The developer of a mobile application usually has the possibility
to override the callback method in his application. He can insert data to store e-mail
content persistently, pause games, shut down connections appropriately and so on. An
application might have various callback methods, not only for life cycle actions, but
also for notifications of actions like pushing a button. To clearly distinguish the callback
methods called during state changes from other callback methods, we introduce the term
life cycle callback methods. Life cycle callback methods are those callback methods of an
application which are called as a consequence of a state change of the application. Further,
we define the term to implement an application life cycle. An application implements
the application life cycle if at least one of its life cycle callback methods is overridden.
The application life cycles and life cycle callback methods play an important role when
testing life cycle-related properties.
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Figure 2.2: Unit Testing in the V-Model

2.2 Unit Testing
Testing of software is an extensive and multilevel task. Following the V-Model for software
development, the different test tasks can be integrated into the V-Model as presented in
Fig. 2.2 [26]. An important and widespread technique for testing on implementation level
is unit testing. A unit is often referred to as a closed and smallest testable entity [99].
What a unit is in a specific case, depends on the programming language. For instance,
it can be a function in C and C++, procedure or function in Ada, method in Java or
subroutine in Fortran [26]. Sometimes classes, which can contain multiple methods, are
called modules. In this case, a class in isolation is referred to as module testing (see Fig.
2.2) [26]. But in the context of object-oriented systems a whole class is also called unit. In
object-oriented unit tests one unit might consist of one or multiple classes interacting with
each other [99]. The major goal during unit testing is to create an isolated environment
for the unit to test. The influences on the unit shall be in strict control of the tester.
During test execution, the tester injects input triggers to a unit (e.g. method parameters
of a certain value) and observes the reaction (e.g. output/return values) of the unit. The
unit has to be isolated to make sure that the only reasons for the reaction of the unit
are the input triggers. A unit can be tested with or without the internal knowledge of a
unit [26]. For testing the unit in isolation, often test stubs are used [26]. These stubs are
connected to the unit under test and inject the input triggers.

Unit testing is also an important application area for control flow testing [99]. In
control flow testing the code structure is analyzed and the test progress can be monitored
using coverage criteria. The IEC 61508-3 states that each software module has to provide
a specified functionality. This standard uses the term shall show, which does not ask
for a prove, but a demonstration [99]. It also hints that it is not necessary to cover
all possible in- and output combinations, but, e.g., to work with formal methods and
assertions. Units are not only separated for testing, but can also already be separated
during development [42]. Different developers might separately develop single units. Then
each unit can also be tested separately. When different units (or modules) are integrated
during development, integration testing can be used for quality assurance (see Fig. 2.3).

7



2 Preliminaries

Yes 

Integration 

process 

(Sub-) System 

Exit 

criteria 

met? 

No 

Integration test 

Unit test 

Software or hardware components 

Entry 

criteria 

met? 

No 

Yes 

Figure 2.3: Unit and Integration Testing

Unit and integration tests are inherently finite, but cannot detect all defects, even if
completely executed. Only a combination of the two approaches together with a risk-based
test strategy can detect the important defects [42]. The testing concept presented in the
following is most efficient and makes most sense if used together with other testing
techniques to ensure the quality of the whole application, not only with respect to life
cycle-related properties.

2.3 White-box Testing
A common categorization for test techniques is the distinction between White- and
Black-box testing. Tests of both categories belong to the area of dynamic testing [99],
where, e.g., a unit is executed and feeded with input [26]. The output is observed and
analyzed. During White-box testing, the tester has knowledge about the internals of a
unit [49]. For instance, he can see the control structures of the unit, branches, individual
conditions and statements [26]. Thus, all structure-oriented test techniques are White-box
tests. With knowledge about the internal structures of a unit, the tester can configure
the input to a unit for a test case so that certain structures of the unit are entered
and corresponding actions triggered (see Fig. 2.4 left) [99]. In contrast to White-box
testing, during Black-box testing the tester has no insight into units. The input to the
unit during testing is done without any knowledge of the internals of the unit (see Fig.
2.4 right). Many White-box techniques require more effort to learn the internals of a unit
and implementing tests, but White-box tests also have a higher coverage effectiveness
[35]. In both testing categories the test output of a unit is compared to the expected
behavior, e.g., derived from the specification.
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Figure 2.4: White- and Black-box Testing

2.4 Reverse Engineering
Referring to Chikofsky and Cross [44] reverse engineering is the process of analyzing a
subject system to create representations of the system at a higher level of abstraction.
During this process the reverse engineered software is not modified, which would be
reengineering. There are various techniques for reverse engineering a software system.
In our work, we reverse engineer the system by feeding it with triggers during runtime
and logging its reactions. In a subsequent step, we analyze the log data to construct an
abstract view (related to life cycles) on the system. It is common to use this procedure
to, e.g., reconstruct missing or incomplete system documentation or various views on the
same system [95]. Additionally, misbehavior of the system can be exposed if the reverse
engineered behavior or design does not correspond to the specified one. Exposing system
errors and completing documentations can improve the overall quality of the reverse
engineered system.

2.5 Eclipse IDE and Android ADT
The Eclipse integrated development environment (IDE) is a platform for tool integration,
available for many operating systems (Windows, OS X, Linux, ...). As part of the Eclipse
software development kit (SDK), the Java Development Kit (JDK) can be used to
develop Java applications within the Eclipse IDE. Other integrated tools are source
code management (SCM) tools, like Concurrent Versions System (CVS) and Apache
Subversion (SVN), task and life cycle management tools, like Mylyn1 and many others,
usually available as Eclipse plug-ins.

Eclipse provides a rich client platform (RCP) for the integration and extension of
functionality [103]. This facilitates the development and integration of plug-ins. For

1See http://www.eclipse.org/mylyn.
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Figure 2.5: Eclipse Platform Architecture

instance, many of the available features in the Eclipse SDK, like JDT, are plug-ins, too
[89]. Fig. 2.5 presents the Eclipse platform architecture [46]. The bottom layer unites the
components building the RCP and the layer on top of the workbench IDE components.
The RCP layer consists of components which allow the integration and execution of rich
client applications. The Platform Runtime component, being itself an Open Services
Gateway initiative (OSGi) module system, is the core of this layer. RCP provides as
widget toolkit the Standard Widget Toolkit (SWT) and for drawing graphical user
interfaces JFace [86]. The workbench IDE layer, on top of the RCP layer, contains various
components for user interfaces, debug and team functionality. Additionally, the Eclipse
SDK also contains plug-ins like JDT and the Plug-in Development Environment (PDE)
[74].

One of the available Eclipse plug-ins is the Android Developer Tools (ADT) Eclipse plug-
in [4]. On the official Android pages, ADT is the recommended way to develop software
for Android [12]. The plug-in integrates various features to Eclipse, like Extensible Markup
Language (XML) editors for viewing Android-specific XML files, views for previewing
Android user interfaces and tools from the Android SDK [4]. Together with the Android
SDK, the ADT Eclipse plug-in provides an integrated usage of ADT in Eclipse [4]:

∙ Traceview: Profiling of Android applications.

∙ android: Creation of Android projects, managing and starting Android emulators
and much more.

10



2.5 Eclipse IDE and Android ADT

∙ Dalvik Debug Monitor Server (DDMS): Debugging features, as thread and heap
information, Logcat and screen capturing.

∙ Android Debug Bridge (adb): Access to devices and emulators for file transfer, shell
commands, installing Android applications and so on.

Within the context of the case study, we extend the ADT Eclipse plug-in with the
functionality to test life cycle-related properties. Therefore, we make use of the ADT,
like adb and DDMS and integrate the modifications in Eclipse using Eclipse components
like views and perspectives.
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Cycles

Since application life cycles play an important role for the quality of today’s mobile
applications, it is important to implement the life cycle appropriately. To be able to do
so, good documentations and representations of the life cycles are necessary. During our
work with application life cycles of current mobile platforms like Android, iOS, Java
ME and Windows Phone, we noticed that many of the official documents on life cycles
are incorrect, incomplete and inconsistent. In this section, we present an approach to
reverse engineer application life cycles in four major steps. We also present the results of
applying this approach to the mobile platforms Android 2.2, Java ME with MIDP 2.0,
iOS 4.0 and Windows Phone 7.5.

3.1 Issues with official Life Cycle Models
During our research on application life cycles, we faced a couple of different issues
resulting from the official documentations and representations of life cycles. A complete
list of the issues and details can be found in [55, 65, 84]. In the following, we present
some interesting issues.

One convenient and typical way to test mobile applications of today’s mobile platforms
is to use the provided simulators and emulators. To test life cycle-related properties of an
application with a simulator or emulator, it is necessary that the simulator or emulator
provides the required options to trigger life cycle state changes. For instance, the emulator
must be capable of simulating an incoming call, a shutdown due to low battery, killing
an application as a consequence of running out of memory, change the device orientation,
lock the screen, press hardware buttons and much more. All these actions may result in
state changes of the not shut down applications and may lead to different traces in the
application’s life cycle. Our experiences with the available simulators and emulators for
the platforms Android 2.2, iOS 4.0, Java ME and Windows Phone 7.5 show that none of
them fulfills the requirements completely [65]. For instance, it is not possible to simulate
an incoming phone call and an empty battery with the iOS 4.0 simulator. Furthermore,
the CPU and RAM capacities of the iOS 4.0 simulator running on a desktop operating
system equal the capacities of the underlying operating system. So if the developer
runs the simulator on a MacBook Pro with 6 GB of RAM, the simulator has access to
the whole unused part of the 6 GB RAM. Thus, e.g., it is hard to simulate killing an
application due to an out of memory situation.

13



3 Reverse Engineering Application Life Cycles

Another major issue are several inaccuracies in official life cycle documentations and
representations [65]. Usually, life cycles are taught to developers by a documentation with
a corresponding life cycle model representation. For instance, the documentation of the
Android 2.2 Activity, which is the main class for Android applications with a graphical
user interface, does not define the state shut down. But this state is a part of the official
life cycle model representation (see Fig. 3.1) [2, 55]. On the contrary, the states paused
and stopped are not presented in the model representation, but defined in the textual
documentation [2, 55]. The textual documentation mentions the possibility of calling the
life cycle method onStart() immediately followed by onStop(). This sequence of life cycle
callback methods is not possible in the corresponding model representation (see Fig. 3.1).

In contrast to the mostly informal life cycle model representation of Android 2.2, iOS
4.0 and Windows Phone 7.5, the official detailed representation of the Java ME MIDP
2.0 life cycle model is kept predominantly formal (see Fig. 3.2) [121]. Nonetheless even
there are some issues, since not all transitions follow the same syntax [55]. For instance,
transitions follow the notation event [guard] / action [55, 121]. But, e.g., the transition
from the state start to destroyed is labeled /AMS: Create MIDlet() [RuntimeException
thrown]. This does not fit into the notation, as it is unclear if [RuntimeException thrown]
is the guard and what AMS: Create MIDlet() is.

Due to unclear, ambiguous and incomplete official material on application life cycles,
it is hard for developers to correctly implement and reliably test application life cycles.
The goal of reverse engineering application life cycles is to obtain a more reliable, more
complete and unambiguous model representation of the life cycle.

3.2 Conceptual Approach
The life cycle is usually implemented by the core application class of an application,
whereas the whole application might consist of multiple classes. For instance, on Android
the core application class may be an instance of the Activity-class and on iOS an instance
of the application-class. The code of these classes is usually executed after startup of
an application and they play an important role during runtime. On Android, which is
Java-based, the thread executing the Activity-class has the privilege to be the only thread
of the whole application to access the user interface. All user interface updates have to
be done through this thread. Furthermore, the Activity class also has access to various
platform resources, like the application context. As the core application classes are also
able to implement the life cycle by overriding the life cycle callback methods or handling
life cycle events, they are in the main focus when reverse engineering the application life
cycles.

The approach basically sees the application core classes as black boxes. It feeds the
black boxes with life cycle triggers, like starting an application and interrupting it with an
incoming call. Additionally, it monitors and logs the behavior of the application life cycle,
as a consequence of the received triggers. The recorded information are then evaluated to
restore information about the actual life cycle. The approach consists of four major steps,
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Figure 3.1: Official Life Cycle Model Representation of the Android 2.2 Activity
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Figure 3.3: Logger Example with two logging Applications

summarized in the following section. More details on each of the steps can be found in
[55, 65].

3.3 Extracting the Life Cycle in four Steps
The first step is the full implementation of the application life cycle. The developer has
to implement all application life cycle callback methods or catch all life cycle relevant
events. The exact procedure depends on the underlying platform, e.g., Android uses
callback methods and Windows Phone events. To get a full list of the life cycle callback
methods and events, the developer has to check the documentation of the platform, the
life cycle model representation, if available, the source code of the core application class,
if accessible, and developer guidelines. For instance, regarding only the application life
cycle model representation in Fig. 2.1, the life cycle methods pauseApp(), startApp() and
destroyApp() have to be overridden in the application core class. The resulting application
can be a simple Hello, world! application with all life cycle methods overridden. It
is important that the application itself does not affect the application life cycle, e.g.,
by invoking life cycle callback methods manually through method calls. So a small
application, e.g., which displays in a text view Hello, world! to the developer, suits the
requirements.

In the second step, log injection, the developer has to inject log functionality into each
of the overridden life cycle callback methods. Each time one of the methods is called, the
following information shall be logged: A current timestamp, a unique name to identify
the application and an identifier to unambiguously identify the life cycle callback method.
The timestamp is needed to detect the call sequence of different methods. The names
of the application and callback method are necessary to unambiguously identify the
life cycle callback method. This is especially important if the developer has multiple
applications running, e.g., while examining the life cycle callback method sequences when
opening one application out of another. A log output example, based on the life cycle
model presented in Fig. 2.1, is given in Fig. 3.3 [65]. The example shows that first the life
cycle callback method pauseApp() of the application App1 is called, next the startApp()
of App2 and finally destroyApp() of App1. So after App2 has already been started, further
life cycle state changes are triggered in the background. This is also the case on, e.g.,
Android 2.2.
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Figure 3.4: Transition-Trigger Detection using a Black-box Approach

Transition-trigger detection, as the third step, identifies triggers which cause state
changes of applications. For each mobile platform, there is a limited amount of triggers
which cause different sequences of life cycle state changes. For instance, on Android 2.2
locking the screen pauses a running application and accepting an incoming call stops it.
The trigger catalog can be established using Black-box testing [114]. Figure 3.4 depicts
the procedure. After the developer specifies a trigger for a test case, he executes it on the
mobile device. The mobile platform receives the trigger, e.g. pressing the Home-button,
and decides what to do next. If the Home-button is pressed, the platform intends to
present the home screen to the user. So if an application is currently active, it has to be
paused or even destroyed. When changing the states of the active application, the system
invokes the corresponding life cycle callback methods. Due to the injected logging code
in the callback methods, each invocation of the methods is logged. In Fig. 3.4 the two
callback methods pauseApp() and destroyApp() are called as a result to the trigger Press
Home-button while App1 is active.

Two questions remain: At which point did the developer specify a sufficient number of
test cases and is the resulting trigger catalog complete? With this approach, there is no
way to verify that the resulting trigger catalog is complete. First of all, the developer
should try out the most obvious life cycle state change triggers, like incoming phone calls,
accepting and declining these calls, receiving SMS messages and so on. Additionally, he
has to check the official platform documentation, developer manuals and other available
documents for triggers that might lead to a different sequence of state changes. Finally,
he can also explore already available trigger catalogs from other platforms, like the
ones presented in this work. At some point, the developer does not produce any new
state change sequences, which are not already in the catalog. For instance, receiving an
incoming call from the persons A and B on the Android platform leads to the same state

18



3.4 Case Studies

changes as an interrupted running application. The same holds for being interrupted by
an incoming SMS or e-mail. In the end, the developer has a catalog of single triggers
(no combinations) and corresponding state change sequences, which all differ in their
sequences. Table 3.1 presents a part of the catalog from reverse engineering the Android
2.2 Activity life cycle [65]. Since usually there are no life cycle callback methods called
when the application is killed, the developer has to get this information from the system
log. Android, for instance, which is running on a Linux kernel, reports the killing of
an application by logging the process ID of the underlying killed Linux process. Our
experiences with the platforms Android, iOS, Windows Phone and Java ME confirm
that such a catalog is usually sufficiently complete to rebuild a reliable life cycle model
representation.

In the fourth and last step, rebuilding the application life cycle, the developer is able to
reconstruct a life cycle model representation from the collected state change information,
represented by corresponding life cycle callback method sequences. Life cycle callback
method sequences from the test results must also be possible in the model representation.
Regarding Fig. 3.4, the sequence of pauseApp() followed by destroyApp() also has to be
possible in the derived model representation, which is indeed the case in Fig. 2.1. On
the contrary, the sequence of destroyApp() followed by startApp() could not be triggered
by any triggers in the catalog. Thus, the sequence is also not possible in the life cycle
model representation (see Fig. 2.1). The names of the states usually derive from the
official model representations, as well as from the official documentation. But sometimes
the reverse engineered model has more states than given in the official documents and
models [65, 67, 84]. In this case, it is up to the developer to give the states reasonable
names. Some reverse engineered life cycle model representations are presented in the
following section.

3.4 Case Studies
We applied the approach on reverse engineering application life cycles to various mobile
platform components, like the Android 2.2 service, Java ME MIDlet 2.0 application, iOS
4.0 service, Windows Phone 7.5 XNA applications and so on [55, 65, 84]. In this section,
we present some interesting results of reverse engineering the Android 2.2 Activity, iOS
4.0 and Windows Phone 7.5 Silverlight application life cycles. Further information and
more details on the process and results of reverse engineering these application life cycles
are given in [65, 84].

3.4.1 Android
Figure 3.5 presents the outcome of reverse engineering the Android 2.2 Activity life
cycle [65]. The life cycle model representation consists of four major states: shut down,
stopped, paused and running. The states are named after the states mentioned in the
official Android 2.2 documentation [2]. There is also a fifth state added to the model
representation, in which the application never remains. This state is presented smaller
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Table 3.1: Trigger Catalog for the Android 2.2 Activity
Trigger Reaction
(1) start application by clicking on the application item
on the home screen

onCreate(),

onStart(),

onResume()

(2) after (1) receive an incoming call onPause(),

onStop()

(3) after (2) decline the incoming call onRestart(),

onStart(),

onResume()

(4) after (1) press Back-button onPause(),

onStop(),

onDestroy()

(5) after (1) activate screen locking by shortly pressing the
On/Off -button

onPause()

(6) after (5) press Menu-/Home- or Call-button onResume()

(7) after (5) change device orientation (e.g. from vertical
to horizontal)

onStop(),

onDestroy(),

onCreate(),

onStart(),

onResume(),

onPause()

(8) after (1) change device orientation (e.g. from vertical
to horizontal)

onPause(),

onStop(),

onDestroy(),

onCreate(),

onStart(),

onResume()

(9) after (5) push the On/Off -button once and release
it, then hold it and choose Shut down from the upcoming
menu

onResume(),

onPause(), kill

(10) after (1) push the Home-button and shut the device
down

onPause(),

onStop(), kill

... ...
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Figure 3.5: Reverse Engineered Android 2.2 Activity Life Cycle

and not labeled, as it is only added for syntactical reasons of the model representation. It
is needed to stay conform with labeling each transition with only one life cycle callback
method name. So if two transitions are in sequence, there has to be a state in between.
This unlabeled state describes that the callback methods onCreate() and onRestart()
are always immediately followed by the callback method onStart(). The transitions
are labeled by seven different life cycle callback method names: onCreate(), onStart(),
onResume(), onPause(), onStop(), onRestart() and onDestroy(). The unlabeled transition
pointing from nowhere towards the state shut down marks this state as the initial state
for each Android 2.2 Activity. The unlabeled transitions from the states paused and
stopped towards shut down describe state changes in which the application is killed
without invocation of any life cycle callback methods. Indeed, running is the only state in
which an Activity cannot be killed in normal operation (e.g. not plunging the phone into
water). So storing data from a running Activity persistently should be done in the life
cycle callback method onPause(), since in all other states the application might get killed
without invocation of any callback method. In case of getting killed, the application is
not notified by any callback method, thus unable to execute any actions like storing data
or safely closing any connections.

The model representation also reveals that calls to onCreate() and onRestart() are
always immediately followed by a call to onStart(). If a developer wants to establish a
server connection when starting his application, he should do it in the callback method
onStart() instead of onCreate() or onRestart(). This way, the developer avoids redundant
code and related problems, e.g., maintenance and evolution of redundant code. The call
sequence of onStart() immediately being followed by onStop() shows that an application
can be started and stopped without being running in between. This fact is important
for application developers. For instance, an application developer who assumes that
an application is always running after being started, might open up a required server
connection in the onResume()-callback method and shut it down in onStop(). However, if
the application is not started, but immediately stopped after being started, the application

21



3 Reverse Engineering Application Life Cycles

kill or 

WillTerminate: 

WillResignActive: 

didFinish- 

Launching- 

WithOptions: 

not running 

inactive active background 

kill 

DidEnterBackground: 

suspended 

DidBecomeActive: WillEnterForeground: 

 DidEnterBackground: 

no more 

background 

work 

Figure 3.6: Reverse Engineered iOS 4.0 Application Life Cycle

tries to close a connection, which has not been established and probably has not even
been defined. That might lead to various errors at runtime, which are hard to track. This
state change sequence is not possible in the official life cycle model representation of the
Android 2.2 Activity (see Fig. 3.1).

3.4.2 iOS
The rebuilt iOS 4.0 application life cycle is presented in Fig. 3.6 [65]. It consists of five
states: not running, suspended, background, inactive and active. For reasons of clarity, we
abbreviated all method names by skipping the prefix application before each method and
application: before didFinishLaunchingWithOptions:. So not-abbreviated, the method
names are application:didFinishLaunchingWithOptions:, applicationDidBecomeActive:,
applicationWillResignActive: and so on. Like in case of the reverse engineered Android
2.2 Activity model, transitions labeled kill mark state changes where no callback method
is executed and which leave the application in the state not running. The transition
labeled no more background work depicts a state change which is also not accompanied
by a callback method call. If an application is in the state background and executes some
background actions, like downloading data, different state changes and invocations of
callback methods are possible than if the application is in the background and inactive.
So if an application is in the background and finishes its background tasks, it changes
its state to suspended, without any life cycle callback methods being executed [55, 65].
The transition from the state inactive to not running can be taken if the application is
killed or if it terminates regularly. In case of regular termination, the callback method
applicationWillTerminate: is called.

All state labels are taken from the official documentation of the iOS 4.0 application.
Further details about their meaning can be taken from the official documentation and our
work on reverse engineering the life cycle [31, 65]. The official documentation on the iOS
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4.0 application never tries to draw a complete life cycle model representation [55]. It draws
parts of the life cycle and a few example scenarios of implementing the life cycle. Since the
iOS 4.0 application life cycle is never drawn completely in the official documentation, it
cannot immediately be compared to the reverse engineered life cycle model representation.
But one interesting observation comparing the reverse engineered iOS 4.0 application to
the Android 2.2 Activity life cycle is the fact that iOS 4.0 applications in the state active
also cannot be killed without the invocation of at least one life cycle callback method.
From other states the iOS 4.0 application can be killed without invoking any callback
method. For instance, after finishing all background tasks in the state background, the
application is transferred to the state suspended and from there it can be killed without
the chance to react on the state change. So regarding the reverse engineered life cycle,
important data of an active iOS 4.0 application has to be stored persistently in the
callback methods applicationWillResignActive: or applicationDidEnterBackground:.

3.4.3 Windows Phone
Windows Phone is a recent mobile platform by Microsoft. Windows Phone 7.5 provides
two different frameworks for application development: Silverlight and XNA [118]. While
Silverlight usually covers applications with text fields, lists and buttons, XNA focuses
more on game-like applications, e.g. with the game-typical update-draw loop, canvas and
graphics functions. These two application types have different life cycles. In this section,
we present the Windows Phone 7.5 Silverlight application life cycle. More details on the
process of reverse engineering this life cycle, as well as reverse engineering the Windows
Phone 7.5 XNA application life cycle, can be found in [84].

Silverlight applications are notified on Windows Phone 7.5 using events instead of
callback methods. To react on such an event, the developer can implement a corresponding
method which is executed on arrival of the event. Such methods are similar to life cycle
callback methods on iOS and Android. Therefore, and to stay conform with the previous
sections, we immediately refer to the methods catching the events instead of the events
themselves. For instance, in the following the method Launching() is called when the
event for launching the application arrives and is caught by a corresponding method
handling this event. The same holds for all other methods in Fig. 3.7.

Figure 3.7 shows the result of reverse engineering the life cycle of a Windows Phone 7.5
Silverlight application [84]. On Windows Phone the life cycle is also often referred to as
the execution model [115]. The life cycle contains six different states: shut down, running,
obscured, dormant obscured, dormant unobscured and tombstoned. Kill and tombstone
mark state changes during which no callback method is executed. These state changes are
observable while logging with the debugger, since the debugger prints information about
the termination of threads and processes. The state shut down is the initial state of each
application. In this state the application holds no application-related data in RAM. In the
state running the application is started and in the foreground. If the application becomes
obscured, e.g. due to a ringing alarm clock, its state changes from running to obscured.
In case of leaving the application without terminating it, e.g. by backwards-navigation,
the application changes its state to one of the two dormant-states. If the application is in
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Figure 3.7: Reverse engineered Windows Phone 7.5 Application Life Cycle

the state running (not obscured) and switches to the state dormant unobscured, it may
continue execution in the state running, e.g. if the user navigates back to the application.
If the application is in the state obscured and switches to dormant, navigating back to
the application leads again to the state obscured. In both dormant-states the execution
of the application is stopped. In the state tombstoned the execution of the application is
stopped and additionally its threads are terminated. But still a certain amount of data
might be stored in RAM to reduce the time of resuming the tombstoned application.
This information about the state changes and life cycle behavior of an application are
not extractable from the official model [84, 116].
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This section presents the approach for testing life cycle-related properties of mobile
applications. First, it names the challenges which exist throughout current mobile
platforms. Second, it sketches the existing approaches and corresponding effort to test
such properties. Third, the reasons for choosing a unit- and assertion-based approach are
given. Fourth and last, the testing concept is presented in three steps.

4.1 Challenges in Testing Life Cycles
As explained in Sec. 2.1, mobile platforms schedule applications in a specific way which
might lead to killing of paused and stopped applications. This killing can be a result of
lacking memory resources. Usually the currently visible and active application has the
highest priority in scheduling. This ensures access to all resources, a high reactiveness
and a good user experience. The applications which are currently not visible or not active
often reside paused or stopped. The details vary from platform to platform. On Android,
for instance, the platform uses an application stack to assign priorities to the stopped and
paused applications [55]. Applications, which have been used by the user most recently,
have a higher priority in the stack than applications used some time ago. According to
this priority assignments on the stack, in out of memory situations the mobile platform
shuts down or kills the stopped and paused applications with the lowest priority first.

There are various scenarios in which the killing of an application or an unintended state
change behavior of an application might lead to an undesired behavior of the application.
In the following, we give some examples of requirements for different applications, which
might be affected by life cycle state changes [69]:

1. An e-mail or any other application may have various input elements (text input,
radio buttons, spinner elements, ...). The content of these elements is saved or
processed if the user clicks on a corresponding button, like Send E-mail or Save
Form. In case the user gets interrupted by an incoming call after entering some text
into text input elements or changing the state of some other input elements, the
developer may want to store the state of all input elements. When the application
resumes, it shall restore the state of all input elements so that the user can proceed
with the application where he was interrupted. The user shall not have to redo
any input actions and previously entered information shall not be lost. Such
an application behavior follows the user expectations and ensures a good user
experience.
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2. A Voice over Internet Protocol (VoIP) application is capable of establishing phone
calls using the Internet connection of the device (like the Skype application1). The
mobile platform users can usually install such applications next to native phone
applications, which use, e.g., Global System for Mobile Communication (GSM)
networks. If the user is currently having a GSM phone call and he concurrently
receives an incoming phone call through the VoIP application, the developer of
the VoIP application may intend to not disturb the phoning user and to ignore
the incoming VoIP call. Or he even may want to notify the VoIP caller that the
callee is currently busy with another phone call, e.g., by sending the caller a busy
signal. The developer may also want to notify the phoning user of the incoming
VoIP call by playing back a silent signal in the background of his current call to
let him decide whether to accept the incoming VoIP call or not. There might be a
different reaction desired if the user holds an active VoIP call and he additionally
receives an incoming GSM phone call. If the developer holds the opinion that
GSM phone calls are more important than VoIP calls, he might interrupt and
hold the ongoing VoIP call automatically as soon as an incoming GSM phone call
arrives. The VoIP call might also be hold for the duration of the GSM phone call
and resumed afterwards. The desired behavior depends on the intentions of the
developer and can be implemented by reacting appropriately on life cycle state
changes.

3. Mobile game applications are highly demanded on today’s platforms [111]. To
ensure a good quality of a game application, the developer also has to take care of
various sources of interference, like incoming phone calls, incoming messages, ringing
alarm applications and shut downs due to low battery. Thus, a game developer may
want to pause the game in each case of interruption and probably suppress some
distracting system notifications, like sounds and overlay notifications of incoming
messages. If the game is interrupted, the developer may not only intend to freeze
the game but also to store the state of the game application. The state may include
the current game level, the position of game elements, game settings and the current
score.

4. Systems on chips (SoC) of today’s mobile devices often contain many different
peripheral hardware components, like Global Positioning System (GPS), approxi-
mation and ambient light sensors, Bluetooth and a compass sensor. Some mobile
applications access these sensors only if they are currently visible to the user. An
application presenting a compass view to the user only needs to access the compass
sensor if it is visible to the user (not paused or in background). If such a compass
application is paused or stopped, it should release the compass sensor to make it
accessible for other applications and to not unnecessarily put load on the battery.
On the other hand, some applications require to use sensors and hardware modules
even though they are not visible to the user. A GPS tracking application, which
continuously tracks and stores the user location, may also have to work while the

1See http://www.skype.com.
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screen is locked or the user is having phone conversations. Releasing resources (like
GPS, Bluetooth modules, database connections, ...) and passing ongoing tasks
and required resources to background services does often make sense during state
changes.

5. Banking, corporate and some chat applications require secure server connections.
Such connections have to be set up before usage of the application and shut down
afterwards [82]. Depending on the purpose of the connection, developers may intend
to keep the connection up even if the application is paused or stopped, or to close it
in both cases. If the chat application shall receive messages in the background, even
if the application is not visible to the user, the connection has to remain active. If
a banking application requires user interaction, it would make sense to shut the
connection down each time the application is paused or stopped.

Most parts of all these requirements can be covered by appropriate actions during life
cycle state changes of the applications. These requirements, which describe properties
and features of the resulting applications, can only be tested if the state of the application
is changed. They cannot be tested by leaving the application in one single state. We
refer to such requirements, describing properties which go beyond one single state of
an application, as life cycle-related properties. Such properties are present on most
scheduling computer systems, including desktop and server systems. But due to the
often specific scheduling policies on today’s mobile platforms, these properties gain an
increased importance for high quality mobile applications (see Sec. 2.1) [62, 68]. This
holds in particular with regard to Sec. 3.4, where we have learned that on many mobile
platforms, such as Android, iOS and Windows Phone, applications are not always notified
in case of an upcoming killing event. In these situations the mobile applications cannot
react appropriately by, e.g., storing data persistently and shutting down connections
appropriately before being terminated. If an application developer does not pay enough
attention to life cycle-rleated properties, this might lead to an undesired application
behavior, data loss, issues in security and bad usability. Referring to the examples above:

1. If the developer misses to store the contents of input elements, like an e-mail text
or a selected radio button, and the user resumes the application, the information
might be lost. The user may find the application in its initial state, with e-mail
fields empty and default radio buttons chosen. Depending on the intention of the
application developer, this data loss might not be desired. If this behavior does not
correspond to the user expectations, it leads to unexpected application behavior
and bad user experience.

2. If the developer of the VoIP application does not specify and implement the
behavior of his application, e.g., in case of a concurrent GSM call, this might lead
to problems during runtime. For instance, if the user has an ongoing GSM call
while a VoIP call arrives, the uncontrolled ring tone for the incoming VoIP call
might disturb the phoning user. The VoIP application might experience problems
when trying to access the audio hardware, which is currently accessed by the GSM
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phone application. Insufficient attention on these life cycle-related properties during
specification and implementation might lead to various unintended and unexpected
situations, decreasing the experienced quality of the application.

3. If a game developer forgets to freeze a game application or to save the score, it
immediately affects user experience. For games it is often important that they do not
start automatically when the game application is resumed. When the application
resumes, the state needs to be restored (settings and scores set, same view and
perspective as before, ...) and the game paused. Then the user can decide, when he
is prepared to play on and push a corresponding button.

4. If an application, which is using a hardware module like GPS, does not turn off or
release the module, it might lead to wastage of energy and runtime problems. Since
energy resources on mobile devices are scarce, an efficient and energy-conscious
scheduling of energy consuming hardware modules is necessary. In times of not
only more powerful [129], but also more energy-consuming mobile devices [98],
applications with a high demand on energy lead to fast discharging of the battery
and in the end may be avoided by the user. A music playback application, which
currently does not necessarily require the audio module but still holds a lock on
it, leads to problems if another application like voice recording tries to access the
same hardware module.

5. Applications communicating sensitive data, like banking or secure communication
channels, require not only a proper connection setup but also a proper connection
shut down to ensure the security of the connection and data [82]. If such an
application misses to close a sensitive connection while shutting down, data security
cannot be assured [132].

To ensure these life cycle-related properties, they do not only need to be appropriately
specified in the specification of the application and implemented accordingly, but also
checked during quality assurance. One way to ensure the proper implementation of the
specified life cycle-related properties is testing. To be able to test these properties, the
developer has to pay attention to further obstacles related to life cycles.

Another very important obstacle is to understand how life cycles behave and how
notifications about state changes are communicated from the mobile platform to the
applications. Figure 4.1 sketches the connection between incoming events and the subse-
quent propagation of corresponding life cycle actions. The mobile platform receives the
incoming event, e.g., an incoming phone call and decides what to do next (see Chap. 3).
Depending on its policy on scheduling applications, the platform may stop the currently
active application, shut down a stopped application and kill another application due to
low memory (see Sec. 2.1). Then it might start the application handling the incoming
event, e.g. a phone application. This asynchronous triggering of life cycle actions and
the scheduling policies of mobile platforms may lead to counterintuitive life cycle action
sequences. Figure 4.2 presents a callback sequence revealed during reverse engineering
the Android 2.2 Activity life cycle [69]. At the beginning of this scenario, application A
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is running and application B is shut down, not having yet been started. In the next step,
application B is started from within application A. Application A could be an application
displaying all contacts and the user chooses a contact to establish a phone call. Since the
underlying platform knows that the phone application can establish phone calls, it starts
the phone application and dials the chosen number. In this scenario application B would
be the phone application. To switch the applications, the Android platform first pauses
application A by calling onPause(). Second, it moves application B from shut down to
running by calling onCreate(), onStart() and onResume(). After application B is already
running, application A is stopped. This sequence is counterintuitive as the developer
might expect that first application A is stopped completely and then application B is
started. It might also lead to various problems. For instance, if application A and B need
to access an exclusive resource, which only one application can use at a time, and the
developer expects that first application A is stopped, before application B is started.
Then he might release the resource in onStop() of application A and try to access it
in onCreate(), onStart() or onResume() of application B. If the application scheduling
from Fig. 4.2 applies to the underlying platform, his application switching scenario will
fail. In his scenario application B tries to access a certain resource that application A
releases in onStop(). Since all three life cycle callback methods onCreate(), onStart() and
onResume() of application B are executed before onStop() of application A, application B
cannot access the resource. Such errors are hard to track and difficult to debug, especially
if the state change sequences are not clear and not taught to the developer, as in the
given example. Unfortunately these scheduling policies and sequences are not given in
the official documents, a fact which significantly complicates a correct implementation of
life cycle-related properties and integration of manual testing processes [69].

There are also many other obstacles resulting from incomplete, incorrect and inconsis-
tent official documents on application life cycles (see Sec. 3.1). A documentation on a
life cycle not mentioning all available states, whose model representation is ambiguous
and where the model is inconsistent with the textual description, does not help the
developer to implement the life cycle requirements correctly, indeed it even distracts
him [55, 65, 67, 69, 84]. Our personal experience with mobile applications is that many
bugs, especially in freely available Android applications, result from life cycle-related
issues. One famous example is the news application Tagesschau for Android from the
German news station Arbeitsgemeinschaft der öffentlich-rechtlichen Rundfunkanstalten
der Bundesrepublik Deutschland (ARD)2. It has been downloaded 1-5 million times3, but
still has an annoying error related to life cycle-related properties: If the user interrupts
a running video playback of a news video by pushing the screen lock button, video
playback stops as expected. Then the user pushes the button again to unlock the screen.
By pushing the button on an Android device, usually the touch screen gets activated
and displays a mechanism to unlock the screen. To unlock the device screen, the user
then might have to type in a code, draw a gesture or simply move one item over the

2See http://www.ard.de.
3See https://play.google.com/store/apps/details?id=de.cellular.tagesschau&feature=
nav_result#?t=W251bGwsMSwyLDNd, status on 4th May 2013.
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touchscreen to a different place. But right after pushing the screen lock button and
before being able to unlock the screen, the application, which was paused by locking
the screen, gets active in the background. The news application immediately starts to
play back the video, although the user still might be busy unlocking the screen, e.g., by
drawing a gesture or typing in a code. But this is not the only life cycle-related issue in
this moment: Additionally, each time the application is paused this way and resumed,
the video playback starts from the beginning of the video and not where playback was
interrupted.

Concluding, there are many problems related to life cycles, their documentation and
representations, which make it difficult for developers to appropriately implement their
desired life cycle behavior and test it accordingly. But ensuring quality related to life
cycle-related properties is key for high quality mobile applications.

4.2 State of the Art
Testing is an important part of the development of mobile applications these days. In
an Android market with over 800.000 mobile applications (status January 2013) in
its application store Google Play4 [124] and over 775.000 applications in the iOS App
Store5 [29], quality is an essential selection criterion for users. As explained in Sec. 4.1,
application life cycle-related properties play an important role for the user experience,
data persistence, functionality and usability.

To ensure the quality of today’s mobile applications, many SDKs come with integrated
debugging, simulation and testing tools (Android SDK6, iOS SDK7, Windows Phone
SDK8, ...). Further tools for ensuring quality are available through corresponding com-
munities (Robotium9, Testing with Frank10, ...). A large group of all these tools focuses
on user experience. All current mobile platforms provide a simulator or emulator which
tries to execute and display the application similar to a real device. The user can also
simulate user interaction with the simulator or emulator and often even execute more
complicated gestures, e.g., pinching and spreading with two fingers. The simulators and
emulators usually also have access to the Internet through the underlying platform, can
simulate incoming calls, rotate the display, simulate GPS activity and so on [102].

Another large part of the integrated testing tools aims on functional testing, like
unit testing. For instance, to test Android applications the developer can use JUnit 3
tests [131], enriched by Android-specific functionality [8]. To test iOS applications, the
developer can use the integrated Cocoa Touch Unit Testing Bundle [30]. The open source
Android community tool Robotium allows advanced functional testing on user experience
level [81]. An excerpt from a functional test case with Robotium for an Android calculator

4See http://play.google.com.
5See http://www.apple.com/iphone/from-the-app-store.
6See http://developer.android.com/sdk.
7See http://developer.apple.com/iphone.
8See http://developer.windowsphone.com.
9See http://code.google.com/p/robotium.

10See http://testingwithfrank.com.
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Figure 4.3: View on the Android Calculator Application

application11 presented in Fig. 4.3 is given in Listing 4.1.

Listing 4.1: Excerpt from a Robotium Test Case for the Calculator Application
1 solo.clickOnText("2");
2 solo.clickOnText("+");
3 solo.clickOnText("2");
4 solo.clickOnText("=");
5 Assert.assertTrue(solo.searchText("4")); // should succeed
6
7 solo.clickOnText("CLEAR");
8 Assert.assertFalse(solo.searchText("4")); // should succeed

Robotium provides a quick way to write test cases by immediately addressing the visual
elements the user sees. Without Robotium, the command solo.clickOnText("2") had to
be hard coded in many lines of code. The visual element, displaying the number 2 to the
user, had to be found by traversing through all visible elements and then the element
had to be clicked. Robotium encapsulates all these steps and actions by using the various
tools and possibilities which the Android platform provides for developers and allows
to quickly write human readable test cases. Despite the availability and high quality of
testing tools for applications of today’s mobile platforms, none of them focuses on the
specific needs of testing life cycle-related properties. For instance, the Android-extended
JUnit 3 test cases cannot be used to assume that the content of a text field contains

11See http://code.google.com/p/robotium/wiki/RobotiumTutorials.
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the same text when the application is resumed after being killed in between. The JUnit
framework for the Android application is not targeted to keep and check assertions of an
application which is stopped or killed in between.

Nonetheless, our experience with the available tools is that especially the testing and
debugging tools for Android and iOS are mature and elaborated. Additionally, they all
contribute features, which at least allow developers to test manually for life cycle-related
properties. For instance, some allow simulation of incoming calls, manually shut down
and resume applications, trigger life cycle state changes due to device rotations and so on.
But if the developer wants to check a simple life cycle requirement, like if the content of
a text input element remains persistent when stopping and resuming the application, the
developer has to do it manually. Therefore, he can start the application, type text into
the text input element, manually execute an action which triggers the desired life cycle
behavior, like navigating to the home screen and resuming the application, and by looking
on the text input element, decide whether the actual content meets the requirements or
not. This would be the manual execution of a test case for one single life cycle trigger. But
as we know from reverse engineering application life cycles, different life cycle triggers
might lead to different life cycle state change sequences (see Chap. 3). So the developer
would need to redo the test with a different life cycle trigger and to manually decide if in
that specific case the outcome meets the requirement, by watching the outcome on the
screen. During beta testing, this manual testing is sometimes also outsourced or extended
to testing by potential users [58]. This user acceptance testing method is in the mobile
area today especially driven by Apple [28].

Our experience is that life cycle-related properties are rarely tested during application
development. The expected life cycle behavior is often not even specified in the speci-
fication of an application, which builds an obstacle to developers intending to test for
life cycle-related properties. Other obstacles are the lack of clear guidelines for testing
life cycle-related properties, ambiguous life cycle models and corresponding tool support,
which makes manual testing for life cycle-related properties a time consuming task and
keeps application developers from doing so [55, 84]. In the following, we present an ap-
proach which guides developers of mobile applications towards testing of life cycle-related
properties and builds the groundwork for platform-specific life cycle testing tools.

4.3 Approach
Each testing approach needs a clearly defined context. The potential factors of influence
during a test need to be identified and, if possible, prevented. The first part of this
section defines the context and potential factors of influence for this testing approach
and classifies the approach among other, well-established testing approaches. Thereby it
also draws the limits and potentials of this approach on an abstract level. The second
part of this section defines what a positive and negative testing result of this testing
approach is and how the developer can specify the expected results. Therefore, we use,
combine and extend in both parts well-known and widespread testing techniques: Unit
testing and testing with assertions.
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Figure 4.4: Two different Components of one Android 2.2 Application

4.3.1 Unit-based Approach
Applications for today’s mobile platforms are built up as modules, like Activities on
Android and applications on iOS [101, 105]. Each application has usually access to its own
private memory area where it can store sensitive data without other, potentially harmful
applications accessing it. On the current mobile platforms it is common style that one
mobile application has its user interface and view components integrated, e.g., following
the model-view-controller (MVC) architecture [104, 117]. Further, each application has
often its own privileges which describe that the application requires access to the Internet,
camera, GPS and so on. On Android this information is stored in the application-specific
manifest file [45].

One application might also consist of multiple viewable and executable components.
For instance, a Windows Phone application might contain multiple pages and an Android
application might consist of multiple Activities. Such components can be stand-alone
independent executables like Activities on Android, or belong to an executable super-
ordinated component like views in Windows Phone Silverlight applications. Figure 4.4
presents an example of an application consisting of two stand-alone executable com-
ponents. The example is taken from the Android platform and shows the Android 2.2
contacts application. The left screenshot presents a list of all contacts. In case the user
intends to add a new contact, he clicks the menu button and selects the New contact
option. As a result, the current contact list Activity starts another Activity, presented in
the right screenshot of Fig. 4.4. The contact list Activity leaves the state running, the
platform sets the next Activity as running and presents it to the user. The life cycle state
changes in the background can be similar to the application switch presented in Fig. 4.2.
In the second Activity the user can enter information about a new contact and navigate
back to the previous Activity using the buttons Done and Revert. These two Activities
are parts of the contacts application. But on platform level, they are two stand-alone
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Figure 4.5: Two different Views on one Windows Phone 7.5 Application

executable Activities. Each has its own life cycle and its own state. While the current
scroll bar position of the contacts list is part of the state of the contacts list Activity
(left screenshot), the entered name and surname of a new contact is part of the state of
the second Activity (right screenshot).

In such composed applications, the different single components, e.g. Activities on
Android, usually have clear separate functions and goals. If one component intends to
make use of a function of a different component, e.g. contact list application needs to add
a new contact or requires the result of that function, e.g. get information about a new
user and present it in the contacts list, the platforms provide techniques to pass data
to a starting component, or receive data when the component shuts down. On Android,
this is done by passing a data bundle when starting an Activity.

A different example of a composed application is presented in Fig. 4.5. On the left side
it presents a list of different items and by sliding with a finger from right to left the user
is able to view the information presented on the right side. In contrast to the example
from the Android platform (see Fig. 4.4), these two components of Fig. 4.5 are not
stand-alone executables, but they present different view components of one executable
component. Both views share the life cycle of the executable superordinated component.
Thus, the state of both components has to be managed by the superordinated executable
component, which can for instance be a subclass of PhoneApplicationPage.

But independent of the existence of multiple components or one single executable
component with different views, usually each active application has one component in the
state running. The system controls the whole application by communicating, notifying
and triggering life cycle state changes through this single active component [69].
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Figure 4.6: Asynchronous Triggering of Life Cycle Events

The mobile platform controls the life cycles of all executable components [69]. These
life cycles are independent of each other in the sense that the life cycle actions of one
component do not immediately influence life cycle actions of another component. Like on
most operating systems, the platform has the overview of all applications and their states
and controls the application scheduling [133]. Mobile platforms also trigger starting,
stopping and all other state changes of their applications. This way, the mobile platform
can ensure that all mobile applications are scheduled with respect to its scheduling policies.
Figure 4.6 sketches the separate and asynchronous triggering of life cycle actions by the
underlying platform [69]. The mobile platform decides for each running application with
an own life cycle when to start, stop, shut down or kill it. The platform is usually the only
component building a dependency between the life cycles of two different applications.
For instance, application A could be an application to compose SMS in the state active
and application B is a phone application in the state destroyed (see Fig. 4.6). If the
user, currently entering SMS text, is interrupted by an incoming call (see Fig. 4.1), the
system prompts the active SMS application to pause by calling the corresponding life
cycle methods. After that, or concurrently, the system starts the phone application by
triggering corresponding life cycle actions. If there is a scheduling policy on the mobile
platform, which takes care that only one application can be in the state active at a time,
the system has to trigger the life cycle changes accordingly. In that case, it would wait
until the SMS application has left the state active to run the phone application.

There are various platform-specific possibilities for mobile applications to communicate
with each other, e.g., through shared resources or asynchronous message passing [43].
Mobile platforms often communicate life cycle actions to applications using asynchronous
event handling. Life cycle actions are not communicated between two different applications,
but between the mobile platform and the corresponding application. This way, the mobile
platform can ensure its scheduling policies, e.g., only one running application at a time,
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Figure 4.7: Timeout during Triggering of Life Cycle Actions

which application to start next and which one to be killed to free resources. If an
application should need too much time to execute a triggered state change, e.g., if the
execution of the code in the corresponding life cycle callback method takes too long, the
mobile platform usually is able to execute further actions to terminate the application
and proceed the state change process [55, 84]. Such actions might be forcing or killing
of applications. For instance, if an iOS 4.0 application requires more than nine seconds
to execute the code in the life cycle callback method applicationDidEnterBackground:,
it either can request the system for more time or the application will be terminated
[55]. The same holds for the life cycle method applicationWillTerminate:. To make this
time-dependency between the platform and its applications more clear, the message
sequence chart (MSC) in Fig. 4.7 sketches the application switch from Fig. 4.2, but with
a timeout. The chart representation is simplified. The system tries to pause application
A while application B is still shut down. Application A requires time t to execute its
callback method onPause(). If t exceeds the maximum time an application is allowed to
move into the paused-state, the application might be killed by the system. Depending
on the configuration of the underlying system, all other remaining life cycle callback
methods might not be called when the application is terminated by the system. Some
mobile platforms allow to exceed the timeout or to receive requests from the application
for more time [55]. During our tests the default timeout of the Android 2.2 platform for
stopping an application was measured around 10 seconds.
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If an application requires too much time, e.g., for pausing, it might influence the
moment in time of executing life cycle methods of other applications (see Fig. 4.7). This
time dependency is also handled through the mobile platform, which in the end decides
with respect to its scheduling policies, when an application will be killed and the life cycle
actions of a different application proceeded. Like the other mentioned dependencies, this
does neither lead to direct dependencies and influences between two or more applications.
The common denominator, regarding the life cycles of the applications, remains the
underlying system.

For this reasons, we regard in our approach components with own life cycles (a whole
application or executable application components) as units. We take advantage of the
fact that the underlying platform is the main interface and factor of influence for each
unit, regarding their life cycle actions. In our approach, we neglect that an application
can timely influence the life cycle actions of another application. If this should be of
importance for one or another life cycle-related property, the developer can check the
time requirements by querying and recording of timestamps during testing.

This unit-based approach does not comply with unit testing in the original sense,
i.e. where the smallest testable component or method is tested in isolation [69, 83].
In the following testing approach, a unit can be a whole application with an own life
cycle. This is minimal in the sense that it has only one life cycle and the only source of
influence, regarding the life cycle, is the underlying platform. To test such an application
for life cycle-related properties, it might be necessary to shut down and restart the whole
application during the execution of a test case. In Sec. 4.4, we explain how such units
can be used for testing life cycle-related properties.

4.3.2 Using Assertions
A life cycle-related property is not satisfied or unsatisfied in general. This often depends
on the context. For instance, if the user is interrupted during the usage of a web browser
application by an alarm clock application, he might expect to see the same web page
again after resuming the web browser. But if the user checks today’s weather with a
weather application, closes it and reopens it one week later, he may expect to see the
weather of the actual day, not of the day last week. Even for one single application the
expected life cycle behavior might differ, depending on the user actions. For instance, if
an Android user quits the web browser application using the Back-button (which is often
associated on Android devices as quitting an application) and resumes the application
after some time, he might expect to see the welcome page of the browser and the cursor
focused in the empty URL input text field. But if the user quits the browser application
using the Home-button (which is often associated on Android devices as pausing the
application) and resumes the application afterwards, he might expect to see the same
browser page as when he left. The application behavior and user expectations are part of
the specification of the application, against which they have to be checked for conformance
during testing. One possibility to test such life cycle-specific requirements and properties
is to use assertions. The developer specifies the expected behavior for each test case by
defining corresponding assertions. These assertions are checked during runtime. This

38



4.4 Concept

technique is used, e.g., in JUnit testing and widespread [96]. We use this technique to
specify and test the different and specific life cycle-related properties.

4.4 Concept
This section presents a conceptual approach to test life cycle-related properties of mobile
applications. It tries to be platform independent. The conceptual procedure is kept
generic, to be easily extensible and applicable to different platforms, mobile or not.
Extensions could result in new assertion categories, depending on the field of application.
Other application areas of this approach could be desktop or server systems. Nonetheless,
by choosing examples from the mobile application area, the concept tries to be sufficiently
precise and concrete to be immediately applicable to mobile applications. An application
of this conceptual approach is presented in Sec. 5.2.

4.4.1 When to test Life Cycle Properties?
Requirements on life cycle-related properties go along with state changes (see Sec. 4.1).
The properties addressed by our approach do not cover requirements of an application in
one single state, e.g.:

In the state running, the content of the input text field has to be stored at
some point in time.

Instead, they cover requirements which imply state changes, e.g.:

When the application leaves the state running, the content of the input
text field has to be stored.

On code level, state changes on today’s mobile platforms can be identified by calls to
corresponding application life cycle callback methods or incoming life cycle notification
events. But some state changes do not lead to such notifications. This includes, e.g., the
killing of a suspended iOS 4.0 application (see Fig. 3.6) and changing the state of a Win-
dows Phone 7.5 application from the state dormant obscured immediately to tombstoned
(see Fig. 3.7). But the most regular state changes, caused during normal operation and
not, e.g., due to out of memory or low battery situations, lead to corresponding state
change notifications by callback methods or events. We make use of this fact to inject
the test code for life cycle-related properties into the corresponding life cycle callback
methods of the application under test (AUT) [69].

Using callback methods to test life cycle-related properties complies with our unit-
based testing approach (see Sec. 4.3.1). One test case, addressing a single unit, requires
only attention to the callback methods of this unit. The test code is injected into these
methods. It is the responsibility of the developer to control and reduce the impact of the
test code injected into these callback methods of the AUT. For instance, the injected
code should not have such a long execution time that the overall execution time of the
callback method exceeds the permitted time and thus leads to killing the AUT (see Sec.
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4.3.1). Regarding our measurements, this would be around ten seconds on Android and
around nine seconds on iOS 4.0 [55]. The injected testing code should be minimal in
the sense that, e.g., it looks for the required information like the content of a text input
element and stores them. But it may not modify any application data, so not modifying
the content of a text input element.

The callback methods, relevant to the current test case, can be extracted from the
official documentation or by reverse engineering the application life cycle (see Chap. 3).
In the following, we use the reverse engineered models, where possible. To make our
procedure in the following more clear, we use the contacts application from the Android
2.2 platform as an example. We focus on the Activity responsible to add a new contact
(see Fig. 4.4 right). A requirement for a life cycle-related property on this Activity can
look as follows [69]:

If the application is paused/stopped/shut down without interaction of the
user (he did not click any of the two buttons) and resumed afterwards, the
content of the input element shall be the same as when the application was
left.

This requirement avoids data loss in the text input element. This part of the specification
addresses directly the different state changes: pausing, stopping, shutting down and
resuming. Thus, the corresponding callback methods, invoked during these state changes,
are relevant for the test case. How this methods can be used to test life cycle-related
properties is introduced in the next section.

4.4.2 How to test Life Cycle Properties?
In Sec. 4.3.2 we introduce the idea of using assertions to test life cycle-related properties.
Assertions can be used to specify the expected behavior during a test case. Assuming,
we have the same requirement as given above [69]:

If the application is paused/stopped/shut down without interaction of the
user (he did not click any of the two buttons) and resumed afterwards, the
content of the input element shall be the same as when the application was
left.

Aligned to the usage of assertions in JUnit testing, a corresponding assertion on code
level can look as presented in Listing 4.2 [69]:

Listing 4.2: Example of an Assertion on Code Level
1 assertThat(oldTIEContent, equalTo(currentTIEContent))

The variables oldTIEContent contain the previous and currentTIEContent the current
values of the same text input element. This line of code assumes that the recent content
of the text input element is equal to the current content of the element. To be able
to check this assertion, on one side the old value of the text input element and on the
other side the current value must be known. These may be two different points in time.
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This leads to the question, at which position in code assertions about life cycle-related
properties can be defined and at which position they can be checked. We use the term to
define an assertion for the process of defining and storing assertion data with the purpose
of checking it later during runtime. For instance, the assertion above can be defined
when the value of oldTIEContent and the position in code where it will be checked (later
during runtime) is known. We use the term to check an assertion if at some position
in the code after its definition, the assertion is checked since all necessary information
(either stored or currently obtainable) are available. Given the example above, defining
and checking an assertion might happen at significantly different points in time. For
instance, if the application is shut down in between.

Positions of defining and checking assertions, mainly depend on the specification of
the application [69]. If we assume for the AUT the life cycle given in Fig. 2.1 and the
following requirement on its life cycle behavior [69]:

If the application is paused/stopped/shut down without interaction of the
user (he did not click any of the two buttons) and resumed afterwards, the
content of the input element shall be the same as when the application was
left.

Then we can identify certain life cycle callback methods as relevant for the corresponding
test case. Regarding the life cycle model representation in Fig. 2.1, the active application
can be paused and destroyed. In case of pausing the application, the callback method
pauseApp() is called. In case of transferring the application from the state active, in which
the user can interact with the application as addressed by the specification, immediately to
destroyed, the callback method destroyApp() is executed. When resuming the application,
i.e. changing back to the state active, in both cases startApp() is called. When the
application leaves the state active, the content of the text input elements is available
in the callback methods pauseApp() and destroyApp(). Referring to the assertion code
snippet above, this would be the position in the code where the value of the variable
oldTIEContent is available. The value of the variable currentTIEContent is available in
the callback method startApp().

In case of injecting code into life cycle callback methods, the developer has to be aware
of the fact that many applications use these callback methods for restoring and saving
the state of the application. For instance, startApp() can be used by the developer of the
application to restore the content of the text input element. For this reason, code that
defines and checks life cycle-related properties should be placed at the very end of the
life cycle callback methods.

Concluding, the relevant life cycle callback methods to check the life cycle-related
property above, are: pauseApp(), destroyApp() and startApp(). The position in code and
time of execution of definitions and checks of assertions may diverge. In this case, the
assertion has to be defined in the callback methods pauseApp() and destroyApp(), since
at this two points the content of the input text field (oldTIEContent) is known. These
methods are called during pausing/stopping/shutting down of the application, which is
part of the requirement. During resume of the application, which might be significantly
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later in time, the assertion can be checked in startApp(), where the new content of the
text input element (currentTIEContent) is known.

Since the moments of defining and checking assertions might diverge in time and code
position, the developer has to ensure that data of a defined assertion remains available
and consistent, until it is checked. Depending on the underlying platform it might be
necessary to persistently store defined, but not yet checked assertions. As outlined in Sec.
2.1 and 4.1, it is possible that on some platforms all application data might be removed
from RAM when the application enters a specific state (e.g. when it is destroyed, shut
down or killed). In test cases which include passing of such a state, defined assertions
stored in RAM might be lost, too. To avoid this, persistent storing of defined assertions
is necessary.

As introduced in Sec. 4.3.1, on many mobile platforms each application has access
to a dedicated, application-specific and private memory area (database, flash storage,
...). This is also the case for platforms keeping their applications for security reasons in
a sandbox environment [50, 108]. If applications on today’s mobile platforms are hold
in sandboxes, they usually have access to a clearly defined private and, e.g., to some
other shared memory areas [18]. The shared memory areas are often used to exchange
data with other applications. Memory access to areas outside of the sandbox are usually
prohibited by the platform. This way, the platform ensures that an application cannot
execute harmful operations by modifying memory areas, e.g., of other applications. The
private memory areas of applications can be used to store assertions persistently. This
ensures that the assertions are available during runtime of the application, the application
can access them and they are not modified by other applications. It is the responsibility
of the developer that the usage of the private memory area of the AUT does not influence
the regular execution of the application without the injected life cycle test code. If an
influence cannot be completely excluded, it has to be kept minimal and under strict
control. The developer has to be fully aware of the influence during testing. So what
should not happen, e.g., is that the AUT runs out of private memory due to too much
stored assertion data. Or a test case trying to store assertions outside of a sandbox
without corresponding permission. If the AUT persistently stores its assertions before a
shut down, it can restore them after resume. Referring to the example above: If the AUT
persistently stores the value of oldTIEContent in destroyApp(), it can restore the value
when resuming in startApp() and check the assertion by comparing the restored value
oldTIEContent to currentTIEContent.

The overall process of how to test life cycle-related properties looks as follows [69]:

1. The developer needs to extract all relevant life cycle callback methods/events for
a test case from the specification of the application. These methods are used for
defining and checking assertions. If the callback methods relevant to the test case
are obvious from the specification, like in If resuming from an incoming call ..., the
developer can identify the corresponding method names in the reverse engineered
models (see Chap. 3) or from the official documentation and guidelines of the
platform. If it is not clear which life cycle methods are affected by the specification,
like in Entered text field data might never get lost ..., the user has to analyze
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the specification of the application with respect to the underlying application life
cycle. The purpose of this analysis is to find out which life cycle state changes and
corresponding callback methods might be affected by this part of the specification.
In the example Entered text field data might never get lost ..., it would be all
transitions leaving the state in which the user may enter data into the text field.

2. In a second step, the developer needs to identify life cycle triggers which test the
properties named in the specification. If this is obvious from the specification, like
in If resuming from an incoming call ..., he can execute the triggers immediately.
In this case, it would be interrupting the running AUT by placing a call to the
device and resuming the AUT afterwards. If it is not clear from the specification
which triggers are necessary to test a requirement, the developer can make use of
the trigger catalogs from reverse engineering the application life cycles [65, 67, 84].
As presented in Chapter 3, during the process of reverse engineering application
life cycles a catalog with life cycle triggers, which lead to different sequences of life
cycle state changes of an application, is composed. The number of triggers in the
catalog is limited (see Chap. 3) [65, 67, 84]. The developer can execute all triggers
from the catalog. Depending on the test case, it might also be necessary to execute
different combinations and sequences of the triggers in the catalog.

3. After the definitions and checks of assertions are placed in the callback methods
and the life cycle triggers relevant to this test case identified, the developer needs to
execute the triggers, manually or automatically. During execution of the test case,
the assertions are defined (as the values of the variables are known) and checked.

4. In the last step, the results of the test case, the outcome of checking the assertions,
have to be collected and presented to the user. Therefore, each mobile platform
provides different possibilities, as e.g. logging functionality or debugging streams.

The remaining question is what life cycle-related properties can be tested with this
approach.

4.4.3 What can be tested?
In general, components and properties can be checked, whose state or value might have
changed during (at least one) state change [69]. They can be checked if as a consequence
of the state changes callback methods have been executed. The checks might include,
e.g., if a Bluetooth module has been turned off in between and was not turned on during
resuming or if the previous selection of radio buttons is still selected or restored.

Which properties are available on a specific mobile platform depends on the platform
and the device itself. For instance, near field communication (NFC) is natively supported
on the Android platform from version 2.3 on, so not on Android 2.2 and previous devices.
The same holds for multiple camera-support for Android applications. Some devices with
Android 2.3 still may have only one camera available. Additionally, it also depends on the
underlying platform whether the available properties can be checked on application level
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or not. Android devices may support placing calls, but for security reasons an Android
application cannot place a call without interaction12 of the user [102].

In the following, we classify the different life cycle-related properties into three categories
[69]. Our approach is not limited to these three categories, but can be extended depending
on the device capabilities, platform access and the available properties. According to our
experiences, the properties in these three categories are relevant for many mobile devices.
It is up to the accessibility of the applications on the platform and the capabilities of the
underlying device if these properties are checkable on a specific platform.

∙ Data Persistence: In the ever-changing environment of mobile devices, data persis-
tence is important and can be challenging. For the user, this is often a natural quality
of an application. Properties related to data persistence of mobile applications can
be categorized into three different subcategories [69].

– Volatile data contains all information not automatically stored by the platform
persistently. Depending on the platform and state changes, this includes data
from input text elements, spinner element selections and other input elements.
This also includes values of variables which are kept, e.g., in RAM and have
to be stored by the application itself to remain persistent.

– Persistent data includes data from databases and permanent storages (hard
drive, flash, memory card, ...). Data on persistent storages can often be
modified during runtime by different applications and services. For instance, a
service which updates stock data in a database table might run in background,
although the application with the user interface is not visible. At an initial
start of an application, corresponding databases and tables might have to
be created and initialized. A different application might modify the folder
structure on a flash storage so that important folders and files are moved.
These changes might be relevant for resuming applications and probably have
to be checked accordingly.

– Content providers are often realized on mobile platforms as services [69].
They provide functionality and data for other applications, which goes along
with the sandboxing approach (see Sec. 4.4.2). A content provider might, for
instance, provide contact information of the device to its applications. An
application which intends to access the data provided by a content provider
might require a corresponding permission. With the permission it might be
able to ask for a specific data set, e.g., all available forenames, surnames and
e-mail addresses. Due to its function as a service, data of a content provider
might often be manipulated by different applications. For a life cycle test it
might be of interest, e.g., if the contact data of the current application is still
up to date or if it has to ask the content provider for the actual data set, as
the data might have changed since the last execution of the application.

12This might be possible after rooting Android devices.
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∙ Hardware Status: Today’s mobile devices might have various different hardware
modules integrated on their SoCs: GPS module, front camera, back camera, proxim-
ity sensor, ambient light sensor, display, compass, inertial measurement unit (IMU)
and so on. Depending on the mobile application, the accessibility and availability of
these modules might be important. An application which requires actual GPS data,
like a GPS tracker, might want to check at startup if a GPS module is available or
switched on or off. For reasons of security, some platforms require user interaction
to turn the GPS module on. In this case, it would be necessary to provide the user
a corresponding notification at application startup.

∙ Connection Status: Depending on the available hardware of a mobile device, it
might have different types of connections: Bluetooth, Wi-Fi, NFC, radio-frequency
identification (RFID), connections over TCP/IP to servers and services and so
on. During the time an application is not active, the status of connections might
change. It might be necessary for an application to check the status or reconnect
a connection when resuming the application. An online chat application with a
connection to a corresponding chat-server might require to reconnect to the server
each time the application becomes active.

As mentioned above, whether properties are available and checkable on a specific platform,
depends on the platform itself. In Sec. 5.2.3 we give an overview of the checkable properties
on the Android 2.2 platform.
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This section presents the application and the results of applying the approach to the
mobile platform Android. Android is a mobile operating system, initially designed for
mobile devices like smartphones and tablets. At the moment of writing this thesis,
Android holds the largest market share in the area of mobile smartphone sales (see Fig.
5.1) [76]. There are multiple reasons for the popularity of Android and why it could
be able to defend its current position on the smartphone market in the future. Just
to name a few: Although Android is mainly managed by Google, its development and
evolution is also influenced by the Open Handset Alliance, which is a consortium of
software, hardware and telecommunication companies like T-Mobile, Wind River Systems,
Broadcom Corporation, HTC, Samsung Electronics and many others [25]. In contrast to
other strong competitors on the smartphone market, like Apple’s iOS and BlackBerry OS,
by BlackBerry Ltd., Android is not limited to devices of one single manufacturer, but is
capable to run on various devices by different manufacturers, like Samsung, Motorola and
HTC. Further, Android is also available in different release versions and configurations,
which allow it to be deployed to low, as well as highly capable recent devices. This
flexibility and adaptability allows Android to serve a large market. Another reason for
the popularity of Android is the fact that it is available open source [9]. Developers and
the Android community are able to modify, extend and port the operating system. Thus,
Android is also available on other devices like watches and tv boxes [80, 119].

The fact that Android is open source, helps when reverse engineering life cycles of the
Android platform. Confusing information about life cycles in the official documentations
and guidelines can be cleared by inspecting the source code. We made use of this
opportunity when reverse engineering the Android 2.2 Activity (see Chap. 3). Comparing
our case studies with various platforms and different components like Android services
[55, 67], iOS applications [55], iOS services [55], Windows Phone 7.5 Silverlight and
XNA applications [84], it is our experience that Android provides the most access to the
platform, hardware modules and applications. Thus, on Android we have been able to
check the largest number of different life cycle-related properties [102].

Android’s market share is growing continuously through the last few years [130].
Together with the fact that through the Open Handset Alliance various companies are
constantly in the process of developing and improving Android, this leads to many new
releases and short release cycles [1]. For instance, between May 2010 and May 2011 the
Open Handset Alliance released six different versions of Android (2.2, 2.3, 2.3.3, 2.3.4, 3.0
and 3.1). Additionally, the SDKs and official tools have their own release cycles, which
even may be shorter [14]. This leads to problems if developing tools with the intention
to serve all available Android versions. As a result of this case study, we present the
tool AndroLIFT. Initially we tried to keep up with the different releases of SDKs, tools
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Figure 5.1: Worldwide Mobile Device Sales to End Users in Q3 2012

and Android versions. But finally we did not had enough manpower to continue that
way and to proof the applicability of our testing approach in a case study, this is not
necessary. Thus, the case study and the resulting tools are based on Android 2.2, but
both is applicable and adaptable, with corresponding adjustments, to other versions, too.

At the time we started to work on the case study, Android 3.2 was already available.
But nonetheless, Android 2.2 had still a large market share, regarding all available
Android versions (see Fig. 5.2) [1]. Android 2.2 was the leading Android version for a long
time. A reason might be that the subsequent Android versions were released soon after
Android 2.2 and in short periods. They also did not introduce major new features, but,
e.g., Android 2.3 provided support for NFC and Android 3.x was optimized for execution
on tablets, whereas Android 2.2 worked on tablets, too [5, 6]. Due to the relevance and
distribution of the Android 2.2 version, our case study focuses on this version. Probably
the case study is also immediately applicable, or with small adjustments, to subsequent
Android versions, as to our best knowledge these versions do not modify the Android
Activity life cycle on application level.

This section is outlined as follows. First, it introduces the architectural and component-
based setup of the Android platform. The focus lies on the Android 2.2 Activity, which is
introduced in detail. In the second part, the conceptual approach of testing application
life cycle-related properties is applied to the Android 2.2 Activity. The procedure is
aligned to the conceptual approach presented in Sec. 4.4. The final part presents the
tools resulting from this case study.

5.1 Android Platform
The Android platform consists of a number of different components, arranged in layers.
This section first gives an overview of the overall system architecture of Android. It
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names and focuses on the relevant components for applying our testing approach. The
core component in this case study, the Android 2.2 Activity, is introduced in detail in
the second part of this section.

5.1.1 Overview
The Android platform consists of a layered architecture, presented in Fig. 5.3 [38]. Android
2.2 is based on a Linux 2.6 kernel. The kernel provides hardware-near functionalities to
Android, as drivers, process management and network stack [16]. It also manages the
execution of the Dalvik Virtual Machine (VM), which is part of the Android Runtime
layer. Android applications are predominantly written in Java and executed each in a
separate Dalvik VM. Android Runtime also manages access to the core Java libraries
[106]. Some C/C++ libraries which cover core system functionalities and hardware access,
are part of the Libraries layer. These libraries cover graphics (OpenGL|ES), display
(Surface Manager), audio, video (Media Framework) and database access (SQLite). The
Application Framework layer makes use of the Libraries and Android Runtime. It bundles
and encapsulates the functionalities for usage by the top application layer. For instance,
it manages different layouts and views (View System) like buttons, text boxes and grids,
provides access to resources (Resource Manager) like graphics, strings and audio files
and handles the execution of components like Content Providers and Activities (Activity
Manager). The topmost Applications layer contains all Android applications. These
include applications installed by the user as well as core Android applications, like Phone,
Contacts and Browser applications.

There are four executable components on Android with an own life cycle [7]:

∙ Activities: An Activity represents a component with a user interface. An application
might consist of multiple Activities, each serving a different purpose. For instance,
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Figure 5.4: Android Status Bar

one Activity might present a list of all contacts and a second one might provide
the functionality to edit or add a new user (see Fig. 4.4).

∙ Services: While Activities are mainly active when they are in the state running and
visible to the user, services are capable of doing work in the background. Typical
tasks of services are downloading content from the Internet, or handling an active
stopwatch while the screen is locked and turned off. Services on Android might
also be bound to an Activity. For instance, a music playback application might
consist of an Activity and a service. The Activity displays the user interface of
the application to the user. The service is responsible for playing the music. If the
user starts playback of a song and navigates to a different application, so that the
Activity of the music playback application is not visible any more, the song may
still be played in the background by the service.

∙ Content Providers: On Android, content providers are a common way to share and
reuse data. A content provider provides a well-defined interface for accessing and
sometimes also manipulating a set of data. This data might be, e.g., the contacts
information of the Android device or specific data of any other application. Due
to the sandboxing approach on Android (see Sec. 4.4.2), one application usually
cannot access data of another application. Content providers are one way to properly
bypass this obstacle in a well-defined way. They also allow to limit the access and
manipulation of data to specific applications with according permissions.

∙ Broadcast Receivers: Broadcast receivers are able to listen to system-wide notifica-
tions and react to specific ones. A reaction of a broadcast receiver to a notification
of interest could be displaying a notification icon in the Android status bar (see
Fig. 5.4) or notifying an application about a system-wide event.

Android applications might consist of an interplay of these different elements. But each
Android application with a user interface usually contains at least one Activity component.
Due to the importance of this component, we focus in the following on the Android
Activity.

5.1.2 Android Activities
The main component and entry point of an Android application with a user interface, is
usually an Activity. As presented in Sec. 5.1.1, an Android application might also consist
of multiple Activities and even other components. Depending on the size and purpose of
the application, a composed application might become complex. The following example
highlights the importance and key role of Activities in interactive, composed Android
applications. The example in Fig. 5.5 sketches the interplay of different components
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Figure 5.5: Role of Activities in Composed Applications

of one single audio playback application. For reasons of clarity, the presented example
is simplified. The original application is the native music playback application called
MP3-Player for the Samsung Galaxy Note 21. The application consists of two Activities,
one service and a broadcast receiver. One Activity, which could be the user entry point
for this simplified example, displays a list of all available songs. By clicking on one of the
songs in the list, the second Activity is opened. The second Activity presents details about
the selected song and may also display lyrics during playback and further information,
like release date of the song, name of the album and so on. In each of the two Activities
the user has the possibility to control music playback, e.g., by starting or stopping it. If
one of the buttons for playback control is clicked by the user, the corresponding command
is forwarded to a single service in the background. The service handles playing songs,
stopping, forwarding and so on. But since the service has no user interface, it cannot
immediately receive commands from the user. All user commands to the service are done
through one of the Activities. The role of the service usually remains invisible to the
user. If one of the two Activities are shut down, change their states or the user switches
between them, the service remains unaffected. If the user is about to receive an incoming
call on his smartphone, it would be appropriate to stop music playback and play back
a ring tone. This behavior can be realized by a corresponding broadcast receiver. The
receiver can be configured to react in a defined manner on certain system notifications,
e.g., other system actions which intend to concurrently access the audio playback module.

1See www.samsung.com/galaxynoteII.
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Figure 5.6: Status Bar Music Player Notifications

In case the broadcast receiver receives such a message, he can notify the service, which
again might stop music playback. Independent of the Activities, the service then can
change the status bar icon from playing (see Fig. 5.6 top) to paused (see Fig. 5.6 bottom).

The different components, including Activities, are units in the sense of life cycle
testing (see Sec. 4.3.1). Each Activity has its own life cycle, managed by the Activity
Manager (see Sec. 5.1.1) [7]. During reverse engineering the Android 2.2 Activity life
cycle, we identified the following callback methods, called in consequence of life cycle
state changes [2, 55, 65]:

∙ onCreate()

∙ onStart()

∙ onResume()

∙ onPause()

∙ onStop()

∙ onRestart()

∙ onDestroy()

∙ onSaveInstanceState()

∙ onRestoreInstanceState()
The reverse engineered Activity life cycle is presented in Fig. 3.5. According to this life
cycle, an Activity might be in one of four different states [55, 106, 112, 113]:

∙ Running: An Activity in this state is usually visible to the user and holds the focus.
It is currently being executed and has access to all required resources, as CPU,
RAM and so on. But an Activity might also be running if it is not currently visible
to the user. For instance, if the status bar is pulled down or the screen is locked,
but the display is active (see Sec. 4.1) [55].

∙ Paused: A paused Activity has lost the user focus but might still be visible to the
user. Figure 5.7 presents an Activity which is partly overlapped by another Activity
[55]. The Activity in the background is in the state paused, while the overlapping
Activity, entitled Subactivity, is in the state running. The state paused is often
entered by Activities for a short period of time, e.g, when changing state from
running to stopped (see Sec. 3.4.1).
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Figure 5.7: Example of Overlapping Activities

∙ Stopped: A stopped Activity is not visible to the user. It also does not have access
to the CPU in the sense that the main Activity thread, which also updates its user
interface, is not being executed. An Activity is transferred to the state stopped, e.g.,
if another Activity has been started and fills the whole screen. Stopped Activities
might still hold data in RAM.

∙ Shut down: An Activity in the state shut down does not hold any application data
in RAM and is not visible. This applies, e.g., to Activities which have not yet been
started or already killed.

In the following, we apply the conceptual approach of testing application life cycles to
the Android 2.2 Activity.

5.2 Testing the Android Activity Life Cycle
This section presents an application of the testing concept to the Android Activity. For
reasons of clarity, the structure of this section is aligned to the structure of the conceptual
approach presented in Sec. 4.4.
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Figure 5.8: Reverse Engineered Android 2.2 Activity Life Cycle

5.2.1 When to Test
Following our approach, the first step is to identify the callback methods which are called
as a consequence of life cycle state changes (see Sec. 4.4.1). On Android, we used the
following sources to find corresponding callback methods:

∙ The official Android guidelines [7, 19].

∙ The official life cycle model representation [2].

∙ The documentation of the source code [17].

∙ The Android source code [13].

As explained in Sec. 3.1, we experienced some inconsistencies with the official documents.
Thus, we also used the outcome of reverse engineering the Android 2.2 Activity life cycle
(see Chap. 3) as well as the corresponding model (see Fig. 3.5). Due to the importance
of the model in this case study and to facilitate inspection, we present the model
representation once again in Fig. 5.8 [65].

We identified the following life cycle callback methods for the Android 2.2 Activity
[55, 65]:

∙ onCreate()

∙ onStart()

∙ onResume()

∙ onPause()

∙ onStop()

∙ onRestart()
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∙ onDestroy()

We also identified two further methods, which are called during life cycle state changes
[55, 65]: onSaveInstanceState() and onRestoreInstanceState() (see Sec. 5.1.2). But these
methods are only called under certain conditions, e.g., at state changes due to locking the
screen or low battery [10, 38]. They provide a convenient way to the developers to store the
states of user interface view elements [38, 43]. If they are called, this happens in addition
to the life cycle callback methods listed above [55, 65]. For instance, onSaveInstanceState()
is called before onPause() and onRestoreInstanceState() after onStart() [55, 106]. Due to
their redundancy regarding the application life cycle and due to the fact that they do not
lead to new states [55, 65], we do not add these methods to the Android 2.2 Activity life
cycle callback methods. onCreate() is called when an Activity is started from the state
shut down (see Fig. 5.8). This is always followed by a call of onStart(), after which the
Activity is in the state paused. From paused the Activity can move to the states running,
stopped and shut down. When moving to running, onResume() is called. From running
the Activity always moves back to paused [65]. An Activity in the state running cannot
be stopped or shut down without at least a call to onPause() (see Fig. 5.8) [55]. If the
Activity changes its state from paused to stopped, onStop() is called. If it changes its state
from paused to shut down, e.g., by being terminated by the system due to low battery,
no callback method is being invoked. From the state stopped an Activity might change
to the states shut down or paused. The state change to shut down might happen in two
different ways. If the Activity is killed by the system, it changes its state to shut down
and no callback method is executed. The developer has no chance to react on this state
change [65]. If the Activity is terminated properly by the system, the callback method
onDestroy() is called. In this case the developer can use the callback method to react
to the shut down of the Activity. When switching states from stopped to paused, first
onRestart() is called followed by onStart(). onStart() is called, when the Activity changes
its state either from shut down or stopped to paused.

Since all Activity instances on Android inherit from the Activity class, the life cycle
callback methods can simply be overridden. An Activity which overrides all these life
cycle callback methods is given in Listing 5.1.

Listing 5.1: Activity Overriding Life Cycle Callback Methods
1 public class NewActivity extends Activity {
2
3 @Override
4 public void onCreate(Bundle savedInstanceState) {
5 super.onCreate(savedInstanceState);
6 // ...
7 }
8
9 @Override

10 protected void onStart() {
11 super.onStart();
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12 // ...
13 }
14
15 @Override
16 protected void onResume() {
17 super.onResume();
18 // ...
19 }
20
21 @Override
22 protected void onPause() {
23 super.onPause();
24 // ...
25 }
26
27 @Override
28 protected void onStop() {
29 super.onStop();
30 // ...
31 }
32
33 @Override
34 protected void onRestart() {
35 super.onRestart();
36 // ...
37 }
38
39 @Override
40 protected void onDestroy() {
41 super.onDestroy();
42 // ...
43 }
44 }

5.2.2 How to Test
According to Sec. 5.1.2, Android Activities are units in the sense of our unit-based testing
approach (see Sec. 4.3.1). Each Activity has its own life cycle, which is managed by
the system (see Sec. 5.1.2). Since in general there is no correct or incorrect behavior of
applications during life cycle state changes, as this depends on the specification of the
application, we decided to use assertions (see Sec. 4.3.2). Assertions can be defined in
one life cycle callback method and checked in another life cycle method, later in time.
According to Sec. 4.4.2, assertions have to be stored persistently, as an AUT might be
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shut down during test execution and its data (also the assertions) removed from volatile
memory (e.g. RAM). To store assertion data persistently on Android, we can make use
of the different storage options for Android applications [69]. There are different options
available [23]:

∙ Shared preferences: This memory option can be used to store persistently primitive
data (ints, longs, strings, ...) in key-value pairs.

∙ Internal and external storage: Data can be stored on internal and external storage
devices (e.g. flash card).

∙ SQLite Databases: Android supports SQLite databases.

All these storage options are usually available to the AUT. Depending on the type of the
data to store, corresponding storage options can be chosen. For instance, if an image shall
be stored for later comparison, the internal/external storage can be used. For storing few
single strings, shared preferences might be sufficient.

One design decision, which we made very early during this case study on Android,
is to encapsulate the functionality of testing application life cycle-related properties of
Activities into a library and provide an appropriate application programming interface
(API). There are multiple reasons for this decision [69]. Libraries are a common way to
share functionality and can usually be integrated with low effort into projects. They often
provide dedicated functionality, as for our purpose of testing life cycle-related properties.
If the API is designed and implemented well, the libraries are easy to understand and
use. By encapsulating a specific functionality, libraries stay modular and reusable. The
code, encapsulated in the library, remains in the library and is not injected into the AUT,
where it otherwise had to be removed after testing. At the time of this decision, we also
started planning the AndroLIFT tool, which is presented in Sec. 5.3. The library is also
used as a core component of the AndroLIFT tool. One important goal when designing
such a library, was to keep a high degree of independence regarding the Android versions
and the ADT versions. This is necessary to avoid problems resulting from the short
release cycles of the Android platform and ADT (see Chap. 5).

The core functionality of the library is to create, manage and check assertions. The
effort for a developer to define and check assertions shall be minimized by the library. In
a first step, an AndroLIFT object has to be instantiated in the AUT. This object is the
link to the library and takes care of the test management for this AUT. The initialization
of this object is presented in Listing 5.2.

Listing 5.2: Instantiating a Link to the Library
1 public class AUT extends Activity {
2 // ...
3
4 // link to the library
5 AndroLIFT androLift;
6
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Figure 5.9: Relations between Activities, Test Suites, Test Cases and Assertions

7 @Override
8 public void onCreate(...) {
9 // ...

10
11 // initiate the library
12 androLift = new AndroLIFT(this);
13
14 // set a test suite to be executed during runtime
15 androLift.setTestSuite(new TestSuite1(this));
16 }
17
18 // ...
19 }

During initialization, the developer passes a reference to the Activity under test to the
library (see Line 12 in Listing 5.2). This is required by the library to link the assertions
to this Activity and, e.g., to inform the developer about the results of checking the
assertions. Additionally, the developer has to specify the test suite containing test cases
to be executed during runtime. Every Activity under test can reference one test suite.
Each test suite can contain multiple test cases. Each test case can contain multiple
assertions. To keep test cases small and results traceable and reproducible, usually each
test case has only a small amount of assertions. The relations are sketched in Fig. 5.9.
This design is aligned to the well-established JUnit testing [131].

Next, we have to make sure that the library managing the assertions gets notified in
case of state changes. This information is required, e.g., if an assertion shall be checked
at a specific state change. To keep the influence of the library transparent to the user, he
has to actively notify the library at each state change. On one side, this means additional
effort to the developer, but on the other side he remains aware of the code injected to
the AUT and this approach favors the independence of the library regarding the Android
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version. The additional effort for the developer consists of adding one line of code at the
end of each life cycle callback method. The line of code, which has to be placed at the
very end of each method (see Sec. 4.4.2), is a call to a method within the library. The
method in the library has the same name as the corresponding life cycle callback method
of the AUT. When the library gets notified by calls to these methods, it can initiate
managing actions of the assertions, e.g., checking assertions scheduled for the current life
cycle state change. Listing 5.3 presents all life cycle callback methods with the injected
calls to the library.

Listing 5.3: Notifying the Library of State Changes
1 public class AUT extends Activity {
2 // ...
3
4 // link to the library
5 AndroLIFT androLift;
6
7 @Override
8 public void onCreate(...) {
9 super.onCreate();

10 // ...
11
12 // initiate the library
13 androLift = new AndroLIFT(this);
14
15 // set a test suite to be executed during runtime
16 androLift.setTestSuite(new TestSuite1(this));
17
18 // notify library
19 androLift.onCreate();
20 }
21
22 @Override
23 protected void onStart() {
24 super.onStart();
25 // ...
26
27 // notify library
28 androLift.onStart();
29 }
30
31 @Override
32 protected void onResume() {
33 super.onResume();
34 // ...
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35
36 // notify library
37 androLift.onResume();
38 }
39
40 @Override
41 protected void onPause() {
42 super.onPause();
43 // ...
44
45 // notify library
46 androLift.onPause();
47 }
48
49 @Override
50 protected void onStop() {
51 super.onStop();
52 // ...
53
54 // notify library
55 androLift.onStop();
56 }
57
58 @Override
59 protected void onRestart() {
60 super.onRestart();
61 // ...
62
63 // notify library
64 androLift.onRestart();
65 }
66
67 @Override
68 protected void onDestroy() {
69 super.onDestroy();
70 // ...
71
72 // notify library
73 androLift.onDestroy();
74 }
75
76 // ...
77 }

61



5 Case Study on Testing Life Cycles

A test suite, as defined in the onCreate()-method, can contain multiple test cases. An
example is given in Listing 5.4.

Listing 5.4: Example of a Test Suite
1 public class TestSuite1 extends TestSuite<AUT>{
2
3 public TestSuite1 (AUT activity) {
4
5 super(activity);
6 addTestCase(new TestCaseA());
7 addTestCase(new TestCaseB());
8 addTestCase(new TestCaseC());
9 // ...

10
11 }
12
13 }

A test suite class extends the TestSuite superclass of the AndroLIFT library, typed
with the activity under test (AUT ). This way, the test suite has access to all assertion
functionality of the superclass and Activity-specific values and methods of the given
Activity type. The same holds for test case classes (see Listing 5.5), which extend the
AndroLIFT class TestCase. The developer can define assertions in the corresponding
methods in the test case class. If his intention is to define an assertion in the onPause()
life cycle method, he can override the corresponding method in the test case class and
define the assertion. Assertions are defined using the factory pattern [73]. The developer
does not define any assertion objects by hand, but passes the corresponding arguments to
create an assertion to a factory. The method createDataAssertion(...) in Listing 5.5 calls
the factory to create a data assertion. Next, the developer needs to pass the required
parameters. In Listing 5.5 the developer defines an assertion to check the content of an
Android EditText element, which is a text input element. The first parameter contains a
custom description of the assertion, which is also printed in the test results. It may contain
debug information for the developer. The second argument specifies the callback method
at which this assertion has to be checked. In this example, the assertion will be checked in
the method onResume(), identified as a global variable ON_RESUME in the AndroLIFT
library. The third argument specifies the type of data assertion. In Listing 5.5 the global
variable DATA_EDITTEXT_STRING defines the assertion as a string comparison in
an EditText graphical input element. The different global variables are available through
the AndroLIFT library and documented in the AndroLIFT documentation. The fourth
parameter is a reference to the object of interest, which is in this case the EditText input
element, referenced by the global variable mText in the Activity under test. The four
parameters are sufficient if the view element, in this case mText, is created using XML in
the Android project. If this is the case, the given reference mText to the EditText-object
can be used by the library to access the object, even when the application has been killed
in between. If the view-object has not been defined using XML, but in Java source code,
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the library needs to use reflections to access the object [41]. For using reflections, the
library needs to have the name of the object as a string. Thus, the fifth parameter is
necessary, which is the name of the global variable in the Activity under test, holding a
reference to the view object. The developer can add further assertions to this method by
extending the assertions array. He can also add assertions defined in other methods by
overriding the corresponding methods in the test case class.

Listing 5.5: Defining a Test Case with one Assertion
1 public class TestCaseA extends TestCase<AUT>{
2 // ...
3
4 @Override
5 public Assertion[] onPause() {
6
7 return new Assertion[]{
8 createDataAssertion("Test case A: checking if ...",
9 ON_RESUME, DATA_EDITTEXT_STRING,

10 getActivity().mText, "mText")
11 };
12
13 }
14
15 }

After defining the assertions, the test case has to be executed. On Android, this is
possible with the emulator, provided with the ADT or a real device. Using an Android
emulator has the benefit of being able to simulate incoming calls and SMS by a click of a
button, via DDMS (see Sec. 2.5) [20]. Our experience is that emulators and simulators
often do not react similar to the corresponding real devices [55, 69, 102]. Thus, we
recommend to use real devices where possible. While the actions specified in the test
case specification are executed, e.g., interrupt the running AUT by an incoming call,
the corresponding life cycle callback methods are invoked. Thereby, the assertions are
defined, checked and results printed to the developer [69].

The assertion library keeps the defined assertions in lists. For each life cycle callback
method the library keeps a list with defined assertions, which have to be checked, e.g.,
by comparing two values. When the callback method is invoked, the library is notified of
the state change by forwarding the call to the library (see Line 19 in Listing 5.3). At that
point, the library starts to process the list of assertions attached to this callback method
and checks them. The results of checking the assertions are presented to the developer.

Listing 5.6: Logging Data with Logcat
1 import android.util.Log;
2 // ...
3 Log.i("Some tag", "And a message.");
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Figure 5.10: Logcat Output Example

To present the results to the developer, the library uses Logcat. Logcat is a logging
tool and comes with ADT [21]. It does not require any further packages. This goes along
with our approach to keep the library independent of the Android and ADT versions.
An exemplary usage of the Logcat tool can be found in Listing 5.6. In this example the
developer writes an information log message (Log.i(...)). There are also other types of log
messages available, like debug, warning and error [21]. A screenshot of the output with
the ADT Logcat view is presented in Fig. 5.10. The developer can see the log data level
(here: I for information), timestamp, process (PID) and thread IDs (TID), package name
of the application, tag and text message. These information are sufficient to notify the
developer about results from assertion checks. The library uses the tag entry to identify
the Activity and the text message to present the results of checking the assertion, often
appended by debugging or test result details.

Further details on the library, its architecture and implementation are given in Sec.
5.3. The library is a core component of the AndroLIFT tool.

5.2.3 What can be Tested
Fig. 5.11 presents a package overview of the assertion package of the library. The assertion
package of the library contains all available assertions for the Android platform. For
reasons of clarity, the package representation is simplified. Some classes and the superior
package context have been left out. A more detailed architecture and information about
the relations between the classes are given in Sec. 5.3.

The assertion package contains multiple classes and three other packages: data, hard-
ware and connection. The classes inside the assertion package provide functionality which
is important for all assertion classes. They also contain information which all assertions
have in common, e.g., log messages in case of a success or failure of the assertion. The
class AssertionFactory encapsulates the functionality to create new assertions. Creating
new assertions is done using the factory pattern [75]. The class Assertion holds infor-
mation and functionality relevant for all assertions. This is the superclass of all other
assertions in this package. CustomAssertion allows the developer to create customized
assertions, e.g., if the required assertion is not part of the available assertions. This might
for instance be the case if the developer uses a self-created graphical user interface (GUI)
element or has connected a specific hardware module. By extending CustomAssertion,
the library provides the developer a basis to define customized assertions, which are also
automatically managed, checked and the results printed by the library.

The data package contains assertions related to data persistence. This covers also the
content of text input elements, text labels and so on. One user scenario could be to
check the content of an EditText element, which is the base class for text input user
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Figure 5.11: Simplified assertion Package Overview

Figure 5.12: Radio Group Example

interface elements. The check could be a comparison of a previous content value to the
actual content. Another test could check for an empty search input field after starting an
Activity managing a contacts list. The class AssertionRadioGroupCheckedIndex checks
the state of radio groups. Fig. 5.12 presents an example of a radio group on Android.
For instance, the developer can check if the states of the radio group buttons have
changed or not. The class AssertionView extends Assertion and is a superclass of, e.g.,
AssertionEditTextString. It bundles the functionality to check assertions related to views,
like text input elements and labels. The developer can extend this class, e.g., for checking
customized or extended view elements.

The hardware package contains assertions for checking hardware-related properties.
This might be checking if the Bluetooth or GPS module is on or off, if the Wi-Fi
module is connected or if a microphone is switched on. Android also allows to check for
the level of display brightness. This can be relevant, e.g., for a torch light application.
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AssertionHardware provides all necessary functionality to allow the developer to create
custom hardware assertions which are fully managed by the library.

The connection package combines all functionality related to connection assertions.
For instance, the AssertionSocketOpen class can be used to check if a socket is opened
or not. This is a prerequisite for an active socket connection. Since Bluetooth, Wi-Fi,
UMTS and other connections are established on Android using socket connections, this
class already covers a large variety of possible connections. AssertionSocket, which is the
superclass of AssertionSocketOpen, can serve as a basis for other assertion classes related
to socket connections.

The assertions in the assertion package do not cover all possible assertions for Android.
As explained in Sec. 4.3.2, assertions depend on the corresponding test case. For instance,
a developer might want to check if a value which is present in a text input element before
stopping the application, is available in the database after resuming the application.
Therefore, a corresponding assertion might be of interest. This case is not immediately
covered by the assertions in the assertion package. We designed the library to be flexible
and extensible. With the given library architecture the developer is able to implement
the required assertions with low effort, e.g., by extending the existing corresponding
classes or extending CustomAssertion. By modifying the Android source code or rooting
Android devices, even more life cycle-related properties can be checked as more hardware
modules and software components may become accessible [102]. Further details on the
architecture of the library and its classes are available in Sec. 5.3.

5.2.4 Testing Google’s Notepad Application
In this section, we apply the implementation of the concept for testing life cycle-related
properties on the Android platform to Google’s notepad application. The notepad
application is one of many tutorial applications that Google provides on the Android
webpages [15]. This application was already available for early Android versions and is still
being adjusted and refined to cover recent Android implementation and design concepts,
too. The application presents the handling of interface elements, user interactions and
usage of databases [15]. Since it is available on the official Android tutorial pages, we
assume that it is widespread in the Android community and often used for learning
Android. Since it is open source, we can apply our approach to test life cycle-related
properties of the application. In this case study, we use the notepad version released with
Android 2.2.

The application consists of three Activities (see Fig. 5.13). One Activity presents all
available notes in a list (see Fig. 5.13 left). If the user clicks on one of the listed notes,
the corresponding note is presented in a second Activity (see Fig. 5.13 center). In this
Activity, the content of the note can be edited. By using the menu button in this second
Activity, the user can choose to edit the title of the currently opened note. Choosing this
option leads the user to a third Activity, which allows to edit the title of the note (see
Fig. 5.13 right). By pressing the button labeled OK, the user can save the changed title
and resume to the opened note. For reasons of clarity, we name the three Activities as
follows:
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Figure 5.13: Google’s Notepad Application

1. list Activity: Activity presenting the list with all notes

2. note Activity: Activity presenting the content of a single note in an editor

3. title Activity: Activity presenting the title of the note and allowing to edit it

Since we do not have the official specification of Google’s notepad application, we
specify the following requirement which describes life cycle-related properties and which
we want to check in the following [69]:

User input to the note Activity shall not get lost, neither by user interaction
like pushing buttons or switching to other Activities, nor by external events
like incoming calls or low battery.

This requirement shall ensure data persistence of the note Activity with respect to user
input. From this requirement and the possible user actions in the note Activity, we derive
the following three test cases [69]:

1. The user opens a note, edits it and then presses the Home-button to close the
application. After restarting the application, the entered text shall still be available.

2. The user opens a note, edits it, opens the menu and clicks on the button Edit title
to edit the title of the note. After resuming the note Activity, the entered text shall
still be available.

3. The user opens a note, edits it and then receives a call. After declining the call and
resuming the note Activity, the entered text shall still be available.
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Figure 5.14: Test Results as Log Output

From [65], we know which life cycle callback methods are invoked during the actions
described in the test cases [69]: Test case 1 corresponds to the 11th scenario in [65], test
case 2 to the 23rd, where the small alarm clock dialog is similar to the edit title dialog,
and test case 3 to the 4th scenario. For this reason, we focus during the three test cases on
the transitions between the states running and paused. We define AssertionEditTextString-
Assertions in the onPause() callback method and check them in the onResume() method.

All three test cases are executed on a real device, connected during test execution to
a computer to print test results. The device is a Motorola Milestone 2 with Android
2.2. The setup before each test execution is a new and clean installation of the notepad
application [69]. The only active applications on the device, next to notepad, are the
standard Android applications and services which are started automatically at device
boot. For each test case, the application is started using the application icon on the home
screen.

The test results are presented as Logcat output in Fig. 5.14 [69]. The results presented
in a) show that the assertion from the first test case was confirmed. If the author stops
the note Activity with unsaved changes by pressing the Home-button, the unsaved text
is still available after resume. The test results of the second test case show that the
assertion could not be confirmed. This test results expose the following behavior of the
note Activity [69]: The user opens an existing note with the text content, e.g., Hello (see
Fig. 5.15 left). He edits the note by extending the note content to Hello, world! (see Fig.
5.15 middle). As given by the test case, he does not actively save the note but chooses
from the menu to edit its title (see Fig. 5.15 right). Then he stores the title changes
by pressing the OK -button, which brings the user back to the note Activity. When he
resumes the note Activity, its content, which he changed before entering the title Activity
from Hello to Hello, world!, has changed to Hello again (see Fig. 5.15 left). This behavior
does not correspond to our expectations, since the unsaved modifications are lost. This is
not necessarily a bug, since we do not have the official specification of Google’s Notepad
application and thus do not know if this behavior is intended or not. But obviously data
is lost, which decreases the quality of data persistence, user experience and usability [69].
The assertion in the third test case was confirmed, too (see Fig. 5.14 c)). If the user is
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Figure 5.15: Note Activity of Google’s Notepad Application

interrupted by an incoming call while composing a note, the unsaved changes are still
available after resuming.

5.3 AndroLIFT
One of the results of the case study on Android is a tool for testing life cycle-related
properties of Android Activities. The name of the tool is AndroLIFT and its core consists
of the AndroLIFT library. The functionality and limitations of the library are presented
in Sec. 6.3. Section 5.3.1 gives details about the library. The focus remains on design-level.
The AndroLIFT plug-in, which is presented in Sec. 5.3.2, integrates the functionality of
the library into the Eclipse IDE. The plug-in also provides extended functionality which
facilitates testing of life cycle-related properties to the developer.

5.3.1 Library
The AndroLIFT library provides the core functionality to test life cycle-related properties
of Android Activities. The main tasks of the library are:

∙ Hold an extensible catalog of assertions.

∙ Provide an easy way to define assertions.

∙ Manage assertions during runtime.
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Figure 5.16: AndroLIFT Library Package Overview

∙ Take care of assertion persistence over the life time of the application.

∙ Check the assertions as specified.

∙ Report results and errors.

This functionality is splitted into different packages and provided to the developer
through a corresponding API. Figure 5.16 presents an overview of the different packages.
The androlift package holds the functionality on topmost level. This includes, e.g., the
AndroLIFT class, which allows to subscribe new assertions and notify AndroLIFT of
state changes (see Sec. 4.4.2). androlift also provides functionality to create test cases
and bind them to test suites. This structure is aligned to the well known and widespread
JUnit testing [135]. The package assertion holds the functionality and base classes for
all assertions. The different requirements and implementations of assertion classes are
bundled in the packages data, connection and hardware (see Fig. 5.11). The util package
holds functionality which does not immediately contribute to testing life cycle-related
properties, but is necessary for the functioning of the whole system. This includes different
reflection steps which are necessary, e.g., to reconstruct links to objects from given IDs
after the AUT was shut down and restarted. The database package holds functionality to
persistently store and retrieve assertion data over the life cycle of an Activity.

Figure 5.17 presents a class diagram containing some important classes of the library.
Each AndroLIFT instance takes care of one Activity. It manages the assertions of this
Activity, takes care of code injections and uses the Activity-specific sandbox for persistent
storage of the Activity’s assertions. Code injections also contain, e.g., notifying the
AndroLIFT instance of state changes of its Activity under test. The automatic code
injection is a feature of the AndroLIFT Eclipse plug-in. The AndroLIFT instance also
allows to define assertions. These are assigned to test cases, which are part of a test suite.
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Figure 5.17: AndroLIFT Library Class Overview
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One test suite might consist of multiple test cases, which again might contain several
assertions (see Sec. 5.2.2).

The abstract class Assertion provides functionality required by all assertion types. This
includes, e.g., the name of the assertion, the callback method in which the assertion shall be
checked as well as abstract method definitions for checking and defining the assertion. The
abstract methods are overridden in the concrete assertion classes with assertion-specific
actions. AssertionConnection, AssertionData, AssertionHardware and CustomAssertion
provide more concrete functionality required by the different assertion types. For instance,
AssertionData provides methods to reconstruct links to view element data after shutting
down or killing and restarting the application. One level below, the concrete classes,
as AssertionEditTextString and AssertionGPS can be used to check concrete life cycle-
related properties. The class AssertionEditTextString checks the content of an EditText
view element. AssertionGPS can check whether the GPS module is on or off. Details
about each concrete assertion type can be found in the corresponding documentation
files for the classes. With the abstract class CustomAssertion, we provide the developer a
basis for implementing own assertion classes which do not require any of the functionality
provided by AssertionConnection, AssertionData and AssertionHardware. For instance,
a developer can use this class to define application- or device-specific assertions, e.g.,
if a dedicated hardware module is connected to the Android device. The library is an
important part of the AndroLIFT Eclipse plug-in.

5.3.2 Eclipse Plug-in
The AndroLIFT Eclipse plug-in provides the functionality of the AndroLIFT library
plus additional functionality to the developer. This is accessible to the user through two
different Eclipse views: Life cycle view and AndroLIFT view.

The life cycle view provides three features. It presents a view on the life cycle model
of an Android 2.2 Activity (see Fig. 5.18). The model presents all states of an Activity
and the state transitions, based on the outcome of reverse engineering the Android 2.2
Activity (see Chap. 3). The transitions are labeled with names of the corresponding
callback methods or kill, in case a transition might be taken without invocation of any
callback method (see Sec. 3.3). The developer can immediately see which states are
available and which life cycle callback methods are called during state changes. He also
can see in which states the Activity might be killed without invocation of any callback
methods.

Another feature of the life cycle view is to highlight the current state of an Activity
and the state transitions in case of state changes. Therefore, the developer can choose one
Activity of which the life cycle view presents the state and state changes during runtime.
The current state and invoked transitions are marked by a thick dotted line. In Fig. 5.18
the Activity is currently in the state shut down. Since state changes of an Activity might
happen quickly, each action is presented to the developer in the model with a duration of
1000ms. For instance, if an application changes its state during startup from shut down
to running, first the state shut down is marked for 1000ms, next the transition between
shut down and paused for 1000ms, then the state paused for 1000ms and so on. This
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Figure 5.18: Life Cycle Model Representation of the AndroLIFT Life Cycle View

helps the developer to comprehend and learn the life cycle behavior of his application.
He also learns about the state changes a certain trigger, e.g. an incoming call, leads to.
This helps to implement requirements on the life cycle and to debug unexpected life cycle
behavior. Additionally, all state changes are logged in the Life Cycle History (see Fig.
5.18 left). The developer can use this log to retrace the life cycle actions and analyze the
temporal behavior of the life cycle.

The third feature of the life cycle view helps developers to implement life cycle-related
features. Therefore, the developer can click on a method name in the life cycle view
to get immediately to the corresponding life cycle callback method implementation in
the code (see Fig. 5.19). If the method is not implemented yet, the life cycle view will
automatically inject the code for overriding the clicked life cycle method and place the
cursor accordingly (see Listing 5.7). The developer can immediately start implementing
the life cycle actions.

Listing 5.7: Injected Life Cycle View Code
1 ...
2 // injected code start
3 @Override
4 protected void onStart() {
5 super.onStart();
6
7 // cursor position
8 }
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Figure 5.19: Link between Life Cycle View and Callback Method Implementation

9 // injected code end

The second view, called AndroLIFT view, provides the developer additional function-
ality to test life cycle-related properties. It allows developers to define assertions, specify
test cases and test suites through a GUI (see Fig. 5.20). All assertions which are available
in the AndroLIFT library can be defined using the corresponding GUI. Figure 5.21
presents the GUI while defining a Bluetooth assertion. The benefits of defining assertions
through the GUI is that the developer does not require knowledge of the AndroLIFT
API. He does neither need to use the AndroLIFT library, nor to work on code level.
When assertions are defined through the AndroLIFT GUI, the corresponding steps on
code level are done automatically:

∙ Resolve AndroLIFT dependencies, e.g., import the AndroLIFT library.

∙ Override all life cycle callback methods.

∙ Inject code required by AndroLIFT, e.g., notify the AndroLIFT library of state
changes (see Sec. 5.2.2).

∙ Place assertion definitions with all required information, e.g., when to check the
assertion.

During and after test execution, the results of the life cycle-related assertions are
printed in a JUnit-like view to the user. Figure 5.22 presents the states of assertions
during execution of a test case. The assertions that succeeded are marked green and the
ones that failed red. The assertions which already have been defined, but not yet checked,
are marked yellow. The developer also gets information on the name of each assertion,
the expected value and in which callback method the assertion is checked.
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Figure 5.20: AndroLIFT View for defining Assertions and Test Cases

Figure 5.21: Defining a Bluetooth Assertion through the AndroLIFT View
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Figure 5.22: AndroLIFT View presenting the States of Assertions

The AndroLIFT Eclipse plug-in is implemented as an extension to the ADT. Thereby
it has access to all required modules, like DDMS and Logcat.

The next section evaluates our conceptual approach regarding our experiences on
applying it to Android 2.2 Activities and services, iOS 4 applications and services,
Windows Phone 7.5 and Java ME MIDP 2.1 applications [55, 84]. Additionally, it presents
the results of evaluating the AndroLIFT library in a practical course for students.
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Next to the case study (see Chap. 5), where the presented approach is evaluated by
implementing it for the Android platform, the first two subsections evaluate the concept
with regard to capabilities and limitations. The third subsection presents an evaluation
of the Android implementation of our concept during a practical course for students.

6.1 Functionality
This section evaluates which functionality is covered by the presented testing concept
with respect to testing life cycle-related properties and beyond. Basically, the focus of
this concept is on requirements and test cases which include state changes. For instance,
a property, setting, state or value of a component can be checked at state changes. The
values can also be compared to corresponding values from preceding state changes. Each
test case can contain multiple state changes. The AUT can be shut down or killed during
test execution. Since the concept insists on storing assertions persistently, it is up to each
implementation of the concept to satisfy this requirement.

One important requirement for implementing this concept is the existence of mech-
anisms that notify the AUT about state changes and allow it to react on each state
change. Such reactions might be defining and checking of assertions. On the current
mobile platforms, which include Android, iOS and Windows Phone, such notification
mechanisms are available. The AUT might be notified by events, to which it can react
accordingly, or callback methods like on Android 2.2 (see Chap. 5).

Mainly, everything the AUT has access to can be checked with the presented approach.
This includes hardware modules, connection status and memory content like RAM,
flash memory and databases. If the concept is implemented to act as part of the AUT,
as presented in the case study with the Android Activity, the test components often
immediately have access to the same components, hardware modules and memory areas
as the AUT [55, 84].

The presented concept is not limited in its functional range to applications from the
mobile area. It can also be applied to other areas where state changes play an important
role.

6.2 Limitations
While the previous section highlights the chances and applicability of the presented
concept, this section hints to its limits. For instance, the presented concept is not
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designed to check assertions referring to states (instead of state changes). Thus, assertions
which, e.g., require user interaction while the application is active, cannot be checked
with the presented concept without modifications. For instance, a requirement like If
the user resumes the application and clicks on the Restore-button, he shall see the same
text he entered before leaving the application, cannot be checked. The presented concept
focuses on properties which play a role at state changes. For checking requirements which
refer to a behavior or function within one single state, other tools can be used, like unit
testing, Robotium or Frank [81, 96, 136]. For instance, Robotium can check if a certain
output is visible after the user has executed some actions (e.g. entering text to the GUI
and clicking buttons).

One requirement of the concept to be applicable is that the AUT gets notified of state
changes and is given the chance to react on them. If this should not be the case, the
concept is not immediately applicable without any modifications. One solution would be,
depending on the architecture and options of the underlying platform, to introduce one
further layer between the AUT and the platform. This layer notifies the AUT of state
changes. To be able to propagate state change information to the AUT, the additional
layer itself requires access to this information on platform level. Another solution could
be to modify the AUT so that at startup and shutdown of the application certain code
(within the application) is executed, e.g. defining and checking of assertions. This would
be raw code injections into the AUT, which have to be traced, whose influence on the
application behavior has to be measured and which have to be removed after testing.

There are certain life cycle-related properties which cannot be checked with the
presented testing concept. For instance, this holds for test cases going beyond state
changes: An assertion which has to be checked 30 seconds after the AUT has resumed,
is not covered by the concept. The presented concept uses events and methods at state
changes to define and check assertions. It is possible to extend this concept to cover
further assertions and test cases, to check and define assertions in arbitrary methods and
probably also cover time triggered assertions.

If the concept is implemented as part of the AUT, e.g., as in the case study (see Chap.
5), the test code usually has the same options and access as the AUT. Depending on
the test case it is also possible that the AUT requires different permissions during test
execution than during normal mode of operation. Due to existing security concepts,
as sandboxing (see Sec. 4.4.2), some adjustments might be necessary. This can be the
case, e.g., if the developer wants to use the AndroLIFT library (see Sec. 5.3) to test life
cycle-related properties of an application which does not have access to the database,
since in regular operation mode it does not make use of the database functionality.
The presented version of AndroLIFT uses databases to store and manage assertions
persistently, thus the AUT had to request corresponding permissions for testing life
cycle-related properties. The same might hold for hardware modules and memory areas,
depending on the AUT, the underlying platform and the test case.

Depending on the test case it might also be necessary that assertions are defined in
one component with an own life cycle and checked in a different component with its
own life cycle. Such components might be two Android Activities which are part of one
application. A corresponding test case can consist of one component which handles the
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creation of a new list element (e.g. name, address, ...) and another component which
displays the list with all elements. In this test case the user might define an assertion
when leaving the component after creating a new list element and check the assertion
when opening the list displaying all elements. The assertion could check if the entered
name of the list element appears in the list with all elements. The presented concept sees
components with an own life cycle as units (see Sec. 4.3.1) and sticks assertions strictly
to one unit like with JUnit testing [131]. If assertions pass the border of one single unit,
other factors of influence, e.g. the moment of switching to a different unit, might have an
impact on the test case. The concept had to be extended to be able to share, manage
and hold assertions consistently throughout different units.

Defining and checking assertions costs computing time and memory. This might
influence the execution of the AUT. Thus, implementations of this concept have to take
care to keep the influence of the test code under control and the tester has to be aware
of the impact of the test code. This holds especially if the AUT has strict timing or
real-time requirements or operates on scarce memory. Depending on the implementation
of our concept, the AUT might require a different amount of time and memory during
test execution than during normal mode of operation.

6.3 AndroLIFT
This section evaluates the implementation of our approach for the Android platform
(see Chap. 5). The evaluation took place within the context of a practical course at the
RWTH Aachen University with seven student participants. Six of the participants were
studying for master’s degree in computer science and one student for master’s degree in
Software Systems Engineering. The course introduced the students to the importance of
life cycle-related properties in the area of today’s mobile devices, the relevance of the
properties for the quality of mobile applications and how these properties can be tested
using our approach. The students were taught during multiple lectures and by presenting
them our approach on testing life cycle-related properties of mobile applications [69]. But
the students were not introduced to our implementation of the approach for the Android
platform, which is the AndroLIFT library. They did not had access or any details about
AndroLIFT, except some general information presented in [69]. During the practical
course, all students had to implement Google’s Notepad application (see Sec.5.2.4) by
following the corresponding tutorial [24]. Google’s Notepad application was in the focus
of this evaluation. To make the application more interesting for testing life cycle-related
properties, we modified the title Activity (see Sec. 5.2.4) of the Notepad application
by adding more graphical components. The three different Activities of the modified
Notepad application are presented in Fig. 6.1. The modified Activity is presented on
the right and is in the following referred to as properties Activity. It has different view
elements with which the user can specify the properties of a note. For instance, he can
specify the title, a category (private or work) and a due date. To enable the due date
view element, the checkbox above has to be checked first. After the students implemented
Google’s Notepad application, they also got the source code of the modified Notepad
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Figure 6.1: Modified Notepad Application

application (with the properties Activity) and studied this, too. Each student had to
prepare a presentation about the Notepad application and was asked questions on design
and implementation level to make sure each student got a good understanding of the
application. In a second step, each student had to derive at least eight different test cases
for life cycle-related properties of the modified Notepad application. One test case is
sketched in the following [37]:

Test Case ID:
7

Test Object:
Note Activity

Test Environment:
Ubuntu 12.04, Eclipse 4.2, Android SDK 22.0.1, Android 2.2 emulator,
Notepad application installed

Test Setup:
Start Notepad application. Open the options menu and click on Add note.
Enter the text Text1. Leave the note using the Back-button.

Test Execution:
Open the note entitled Text1 and append the text extension to the content
of the note. Press the Menu-button and choose Properties from the menu.
Leave the properties Activity using the Back-button.

Test Result (expected):
The content of the open note shall not have changed. It shall still be Text1
extension.
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In the field Test Result (expected) the students were asked to specify the result they
expect after test execution. For each two different students, who independently of each
other specified the same test case, the expected results were always the same. This
indicates that the expectations on the behavior of the modified Notepad application were
clear. After merging the test cases of all seven students, the resulting test case catalog
contained 15 different test cases. Two for the list Activity (see Fig. 6.1 left), six for the
note Activity (see Fig. 6.1 center) and seven for the properties Activity (see Fig. 6.1
right). Each student got the test case catalog and was asked to study and execute each
test case on an Android 2.2 emulator, running the modified Notepad application.

At this point each student had

∙ basic knowledge about life cycle-related properties and how to test them with our
approach (on conceptual, not implementation level).

∙ good knowledge about the modified Notepad application, on design and implemen-
tation level.

∙ good knowledge about all 15 test cases related to life cycle-related properties.

With this level of knowledge, each student was invited to separately participate in
an evaluation session. Basically each session consisted of two parts: In the first part,
the student was asked to solve a task with any approach and any available tools (no
limitations). In the second part, the student was asked to solve the same task with our
approach and our AndroLIFT library. The evaluation was mainly based on questionnaires
which the students filled out, enriched by observations and rarely interview sessions (e.g.
if the intention of a student during a session was not clear to us). Each session, attended
by one student participant, one recorder (a student assistant) and one observer (which is
the supervisor), was structured as follows (in this sequential order):

1. The student was given a first questionnaire to determine the programming skills of
the participant by self-evaluation. The student was asked for overall (programming
language-independent), Java-specific and mobile-specific programming skills. He
also was asked to give details about the mobile operating systems and devices with
which he already got in touch with. The last question aimed on experiences with
application life cycles before participating in this practical course.

2. After filling out the questionnaire, the student was shortly introduced to the system:
Eclipse 4.2, running on Ubuntu 12.04 with Android SDK 22.0.1, a running Android
2.2 emulator and the familiar, modified Notepad application already loaded as an
Eclipse project and ready to execute. The system was executed in a virtual machine
running on a Windows desktop host, so we are able to reset the virtual machine
to exactly the same starting point for each participant. This system filled one of
two 24 inch monitors. On the other monitor, the participant had access to a web
browser. In the web browser, the online Android documentation was already loaded,
so he could access it immediately. Additionally, the participant had unrestricted
access to the Internet during the session. He could also ask the observer questions.
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The observer may answer questions which result, e.g., from lacking experience
with Android programming or basic Java programming knowledge. Next to the
well known, modified Notepad application, each student also got the full test case
catalog, containing the 15 test cases, also well known to the student.
After introducing the student, he had two hours to implement the test cases from
the catalog in such a way, that after execution of each test case the information,
whether the expected results were met or not, were printed automatically by the
system (e.g. in log or console). The students were free to choose any approach
they like (even ours) and could make use of anything they needed (e.g. additional
libraries, JUnit, ...). But they were not given the AndroLIFT library, yet. At this
point, the student was in the role of an Android application developer, who knows
the application very well, who also knows the test cases very well and now wants
to test the 15 life cycle-related properties automatically. To keep the task simple
and comprehensive, test execution should still be done manually (e.g. by tapping
on the emulator), just the result of each test case should be printed after execution
(e.g. Test Case 1 passed.). Such an automatic checking and notifying of test case
results can help the developer to reuse the test code when testing a more recent
release of the same application. If the students have not been finished with all 15
test cases after two hours, they were interrupted.

3. The student was given a second questionnaire to determine a self-estimation of the
approach chosen by the students. Some questions were related to the conceptual
and other to the implementation level. The idea was to get an indication, which
approach application developers would choose to check life cycle-related properties
and if the absolutely freely chosen approaches were probably even better than our
approach.

4. Although the student was able to eat, drink, visit the restrooms etc. during the
first part, he had the option to have a break at this point.

5. The student got the same task as in step 2, but he had to solve it using our library.
So he had to execute all 15 test cases and print for each test case if the expected
test case results were met or not. Therefore, he first got access to the AndroLIFT
how-to, which is one wiki page with an introduction to the concept, library and a
first code example. Much of the information given in the wiki were also part of our
paper about testing life cycle-related properties [69], which the students already got
in advance and were allowed to take with them to this session. Next, the student
also got access to the documentation of the AndroLIFT library (generated with
Javadoc [128]). Once again, the student had two hours to solve this task.

6. A third questionnaire was given to the student determining his experiences with
our approach, on conceptual as well as implementation level. Additionally, we asked
about the experienced quality of the how-to and documentation of the library.
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Figure 6.2: Boxplot Semantics

Estimate your overall level of experience in programming 

(C++, C, Java, …). 

 

Estimate your level of experience in Java programming. 

 

Estimate your level of experience in the area of programming 

mobile devices  (smartphones und tablets). 

None Expert 

None Expert 

None Expert 

Figure 6.3: Questionnaire about Programming Skills

7. In the fourth questionnaire, we asked the student to compare his approach to our
approach regarding different indicators, as efficiency, simplicity, effort and so on.

The recorder kept track of the actions of each student (e.g. the approach the student
chose, taking timestamps, ...) and the observer answered specific questions. The observer
did not answer questions which immediately would have helped to solve the task (e.g. he
did not provide an approach to the student). But he helped with general questions, e.g.
if students with only few experience with Android did not know how view adapters or
database cursors on Android work. The questions were written down by the recorder.

In the following, we present the results of this evaluation in the same order as given
above. The questionnaire results are printed as boxplots with the semantics given in
Fig. 6.2. Fig. 6.3 presents the results from the first questionnaire, referring to the
programming skills of the participants. Basically, all participants had knowledge in
programming. For most participants, Java was their favorite and main programming
language. One participant (out of seven) even estimated his skill to expert in Java,
which was confirmed by the observer watching the student programming. Only few of the
participants have developed applications for smartphones and tablets before attending the
practical course. During the practical course, all participants got in touch with Android
applications like the Notepad tutorial and the modified Notepad application, which was
also the only application of interest during this evaluation session. Before the practical
course, some participants already tried out some other Android tutorials, some also have
developed applications for Android and one even had an Android application in Google’s
Play Store. Most students did not consciously come in touch with application life cycles.
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Figure 6.4: Questionnaire about the Student’s own Approach

Two participants got in touch with the Android application life cycle during the lecture
Introduction to Embedded Systems, held at the RWTH Aachen University. The lecture
gives a basic understanding of Android’s Activity life cyle and how to manage life cycle
state changes on application level.

Fig. 6.4 summarizes the answers from the second questionnaire, dealing with an
estimation of the approach chosen by the student. In general, the students tried very
different ways to solve this task. Some students immediately started implementing one
test case after the other. One student tried to solve this task using JUnit. Another
student separated the testing code from the AUT code by using different packages and
classes. Most approaches involved life cycle callback methods, which might result from
the fact that the students did not work with application life cycles before this practical
course and we introduced our testing approach (on conceptual level) before the evaluation
session. So for many students it seemed clear to go this way, too. Nonetheless, regarding
the results in Fig. 6.4, most students do not seem to be happy with their results. The
effort for testing life cycle-related properties with their approach seems to be high, their
approaches do not seem to scale with an increasing number of test cases (except for the
student who separated the test code in separate test packages), the conceptual approach
seems weak and the implementation does not seem to be satisfying. The student, who
tried to use JUnit for testing life cycle-related test cases, had a good feeling about the
scalability of his approach. The student separating test code from AUT code, estimated
that it would only take a low effort to create further test cases and that the technical
implementation of his approach was very good. In the end, the student trying out the
JUnit approach did not manage to get one single test case running in time and even
when he was finished, pure JUnit would not be able to deal with any of the test cases, as
they refer to running whole Android applications and not static code, e.g. single classes
or methods. The approach of separating test code from AUT code hints to our own
approach, whereas the student’s implementation of this approach was different. The
student created for every single test case custom methods in his test code, which are
called by the corresponding life cycle callback method in the AUT. So for each test case,
the AUT has to be adjusted. Another issue of this approach, which was an overall issue
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during most sessions, is the fact that data is stored as global or even static variables. The
global variables are cleared by the system as soon as the application, e.g., is destroyed
during life cycle actions. This happened to a large part of the participants. The static
variables are cleared by the system when the application (including the Dalvik Virtual
Machine) is shut down, e.g. after being killed by the system. Another major issue during
most sessions, was that the results from the different test cases were not being printed
separately, but got more and more as the number of implemented test cases increased. It
was hard for the students to distinguish the different test results in Android’s Logcat.
This issue is also related to another common problem: Many students added the test
code into the AUT. They used the same objects, references and variables as the AUT
and injected their code between code lines of the AUT. It was hard for them to trace the
test code and take care of any interferences between test and AUT code. Although the
students were allowed to use every approach and method they could think of, not one of
the students was able to implement all 15 test cases during the first two hours of the
session.

After the second questionnaire, the students got time for a break. Before starting to
solve the same task of implementing all 15 test cases, but this time with our library, the
students had to read through a how-to about the library. We measured the time it took
the students to read and understand the how-to. We also answered questions related
to the how-to and wrote down the student’s questions and issues for the purpose of
improving the quality of our how-to. On the average, it took the students 19.85 minutes to
read and understand the whole how-to. The minimal duration was measured 11 minutes
and the maximal duration was 37 minutes. The students with short reading times for
the how-to were mainly the students who had better programming skills (regarding their
answers from the first questionnaire). We did not find significant issues with the how-to.
There was one definition of a global variable missing, which was corrected after the session.
Very few students rushed so quickly through the how-to that they missed some details,
which were required when implementing the test cases afterwards. Since the students had
access to the how-to, AndroLIFT library and the Internet throughout the whole second
part of the evaluation session, they did look up the details while implementing the test
cases afterwards. This behavior seemed to be the usual behavior of the individual student
reading through how-tos. Some students even are used to read step by step through a
how-to and immediately implement the different steps. We kindly asked the students
to first read, understand and ask questions (if any) related to the how-to and do all
implementation steps afterwards.

When the students finished reading and understood the how-to, they had to execute
the same task as during the first half of the session, but this time using our approach,
implemented in the AntroLIFT library. They had to implement all 15 test cases. After
that they were asked to fill out a third questionnaire. This questionnaire contained the
same questions as the second questionnaire, but referred to our approach, instead of
the students approach. It also contained two more questions related to the quality of
the AndroLIFT documentation and how-to. The results of the third questionnaire are
summarized in Fig. 6.5. Most students experienced a very low effort for testing life
cycle-related properties with our approach. Many students used copy, paste and adjust
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Figure 6.5: Questionnaire about our Approach

to create new test cases. This made test case generation very easy and quick. However,
few students did not do all necessary adjustments after copying and pasting, which led
to issues during testing. For one student, the effort to copy and paste was too much. He
suggested to write a code generator with which the user can graphically specify test cases.
The students also felt that our approach and our implementation scales well with an
increasing number of test cases. One student, not being much familiar with testing, did
not like the idea of having each test case in a separate file. He would prefer to arrange
them in a different, more clear way (despite the fact that separate test cases can be
grouped with our approach in test suites). Most students liked our conceptual approach
as well as our implementation of the approach. They especially liked the separation of
test and application code, the reusability of test cases, scalability and how much work
the library did for them. Further, the approach and library seemed to be quite clear to
them, as all students immediately started to implement the first test case after reading
through the how-to. The students did also like the quality of the how-to as well as the
AndroLIFT documentation. Asking for possible issues of our approach, some students
had comments on the technical part of our implementation:

∙ If an assertion about a view element is defined, the developer needs to pass a
reference to the object of interest (e.g. text input element) to the library. The
reference to the object of interest can be passed as a Java object reference, e.g. a
global variable. If the view element is defined in advance in xml - as it is standard
procedure on Android [11], the library can access the object using the given reference.
But if the view element is defined programmatically (during runtime), the library
cannot access the object through this reference after the application has been killed
and flushed out of RAM. Therefore, the library also has to ask for the name of the
variable of the object of interest as a string, e.g. mTextView (see Sec. 5.2). With
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this information the library is capable to access the object of interest, even if it was
defined during runtime and in between deleted from RAM. The string is required
as the library uses Java Reflections for relocating the object of interest [59]. Some
students did not like the idea of passing two information for each object of interest
to the library. One student stated that he does not like reflections in Java at all.

∙ To notify the library about state changes of the Activity under test, the same code
(independent of the test cases) has to be injected into each Activity. The code is
injected by the developer during testing, so that he has full control of what he
injects into his AUT. Some students did not like the fact that any code has to be
injected into the AUT at all.

∙ If the user inserted new test cases into test suites and executed the suites, the old
test cases (not deleted from the test suite) have still been executed. One student
did not like this fact and proposed that the test cases also become aware of the test
actions (e.g. an application gets paused due to an incoming call and not because
the screen is being locked). This way, the developer would not have to specify a
certain test case for execution, but the test cases would be executed only when the
exactly specified actions (e.g. incoming call, not screen lock) are triggered.

∙ To make clear to the developer which objects of the AUT are accessed by our library,
he has to declare the corresponding objects of interest (e.g. test input element) in
the Activity under test as public. One student did not like this idea for security
reasons.

∙ One student had the feeling that using the library is easier if the developer has knowl-
edge of JUnit testing. Due to the unit-based setup and JUnit-like test organization,
we agree.

∙ One student did not like to manually add test cases to test suites. He suggested to
use Java annotations for this purpose [90].

While none of the students was able to implement all 15 test cases with an arbitrary
approach within two hours, all students were able to implement all test cases with our
approach (which they never used before) even quicker than in two hours. Fig. 6.6 presents
the progress during test case implementation for each student, with and without our
library. The different sections of each bar mark different test cases. The students are
enumerated S1, S2, ..., S7. For instance, student S3 was able to solve six test cases within
two hours without our library and all 15 test cases within 74 minutes with our library.
This figure also highlights that without the library only one student was capable to
implement more than half of the 15 test cases within two hours. Four students even only
implemented two or less test cases.

Fig. 6.7 presents the times each student needed to implement every test case using
AndroLIFT. One line corresponds to one student. The test cases are enumerated TC1,
TC2, ... , TC15. The time was measured from the moment a student started to work on
a test case until the correct test case result was printed in the Logcat after test execution.
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Figure 6.6: Progress Comparison of Implementing Test Cases with and without the
AndroLIFT Library
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Figure 6.8: Questionnaire comparing both Approaches

All students needed most time for the first test case. The fastest student for the first test
case was done with the test case after 18 minutes and the slowest student after 69 minutes.
We were able to observe that the overall times of implementing test cases correlated with
the programming skills of the students. The student who needed 69 minutes until he got
the result from the first test case, prepared during that time all other Activities which
were not required by the first test case, but by later test cases. This is also the reason
why that student required only very few time during the test cases 3 and 9. During these
two test cases most students required more time. The reason is that test cases 1 and 2
deal with the list Activity, test cases 3-8 deal with the note Activity and test cases 9-15
with the properties Activity. Since the students implemented the test cases in the order
TC1, TC2, ..., TC15, they all had to prepare the Activity under test only once, before
executing the first test case for this Activity. This explains the time peaks at test cases
1, 3 and 9, which are the first test cases in this sequence where a new Activity has to
be prepared. The time peak at test case 12 results from low experience of the students
with Android programming. The test case asks for the property of a view being enabled.
The students expected this property to be specific to the view. But this property is a
general property which holds for many different view elements. Thus, some of them (not
all) first had to check the AndroLIFT documentation in more detail and were soon able
to proceed.

In the fourth questionnaire the students have been asked to compare their own approach
to the given approach. The results of the fourth questionnaire are given in Fig. 6.8. The
answers depend on the self-estimation of the student’s approach. For instance, one student
found his own approach very easy, thus he did not value our implementation much more
easier than his. But most of the other students found it even much more easier than
their own approach. Overall, the students also agreed that testing with our approach
is more structured, more efficient and faster than their approach. Asking the students
which approach they would choose to test life cycle-related properties in the future, all
students agreed to use our approach.

Although comparing in the last questionnaire our elaborated and established approach
with the approach the students set up in 2 hours has a limited significance, one interesting
observation can be summarized: At the beginning of the evaluation session, each student

90



6.3 AndroLIFT

was in the role of an application developer who knows the application and all test cases
very well. In this session the application is quite simple, so are corresponding test cases,
too. Nonetheless it takes each developer a huge effort to implement a life cycle test case,
even if he is allowed to use any approach available. The reasons for this result from the
challenges when testing life cycle-related properties (see Sec.4.1). The implementation of
our approach for the Android 2.2 platform provides the developer an easy way to learn,
apply and efficiently implement test cases for life cycle-related properties. After a short
introduction into the AndroLIFT library, all students have been able to implement all
test cases in a quick and structured manner.
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The work by Mirzaei et al. deals with systematic generation of test cases [109]. The
authors put the focus on Android as a strictly event-driven system. The events might
be system-events (e.g. life cycle state changes), incoming triggers like calls and user
interaction. In their approach for automated testing techniques the authors use symbolic
execution to generate test cases for Android applications. Therefore, they use the tool
Symbolic PathFinder (SPF) [122]. This tool is able to generate test cases out of Java
byte-code. Since Android applications are executed on a Dalvik VM instead of a Java
VM, the authors transform the Dalvik byte-code to Java byte-code. Therefore, Android-
specific parts of each application are replaced by models. These models are responsible
for simulating the behavior of the replaced parts, which also includes the callback
behavior of the platform. This stubs are supplemented by so called mock classes which
are responsible to simulate further behavior of the Android platform, like composed
applications consisting of more than one Activity (e.g. multiple Activitites and services).
With the knowledge of each application, the authors derive a Context Free Grammar
to generate test drivers. A driver in this sense is a sequence of events that simulate
user’s interaction with the app [109]. These drivers are used to run test cases for single
Activities as well as composed Android applications. With this setup the authors are
able to automatically derive test cases from the source code of Android applications. The
test cases cover system-, user- and environmental events. The events also include life
cycle events like starting or pausing an Activity. To model the life cycle behavior of the
Android platform, the authors use own models. The model for the life cycle behavior
is given in [109]. It does not correspond to our reverse engineered Android life cycle,
e.g., since after creating an Activity, it is immediately in the running-state instead of
a paused-state. But as we also presented in [65], an Activity can also be paused and
stopped after being created. It does not necessarily first have to be running before being
stopped. If the mock classes, stubs and models for simulating the system behavior are not
representing the real system behavior, test results may not be reliable. As the authors
focus on automated test generation from the source code of the applications, they do not
present any approach to test life cycle-related properties. Their framework can be used
as a test executor for testing life cycle-related properties with the AndroLIFT library.

The work by Hu and Neamtiu describes a way of testing Android applications by
using JUnit tests [91]. The focus is on GUI testing of Android applications which might
consist of multiple Activities. The authors inject GUI events by using the Android tool
Monkey [22] and log system information of the reacting application. The analysis of the
resulting log information provides the authors also insight into life cycle-related issues of
the application. Regarding the log information, the authors can track the state changes
of the application. These state changes are then compared to a state machine of an
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Android Activity, which presents the Activity life cycle as a state machine. If the life
cycle state sequence from the log information is not retraceable in the state machine,
the authors mark this as a potential bug. A subsequent manual analysis of the test case
proves if this is a real bug. With this method the authors can reveal life cycle-related
bugs if an application does not follow the regular state machine, e.g., if it is killed during
a certain test case. But the authors do not focus and cover life cycle-related properties
like connection or hardware status, even if the test case includes killing and starting an
application again. They do not check states of components and hardware modules before
and after changing a state. They do not provide a system-independent concept but focus
on Android.

The proposals [34, 57, 87] use runtime verification to analyze the correctness of
applications. During runtime they check the behavior of an application against models
describing the desired behavior. Observer components monitor certain properties and
notify the developer in case of violations of the specified properties. Especially the work
by Espada et al. focuses on mobile applications and applies the approach to the Android
Activity life cycle [57]. In contrast to our testing approach, runtime verification requires
a setup of models describing the desired behavior. Additionally, if the model with the
desired behavior is not correct (e.g. since the Android life cycle might have changed in
the current version and the models have not been adjusted), the test results might not be
reliable, neither. In our approach, we do not externally implement the desired behavior,
but connect it tightly to the AUT (e.g. using a library or code injections). Thus, the life
cycle during test execution is always the one of the real AUT and not being compared to
a model or external instance.

Anand et al. present a concolic approach for automated testing of smartphone applica-
tions [27]. In their evaluation they focus on Android and GUI testing. Their approach
produces efficiently and automatically event input sequences for Android applications.
These event input cover touch screen events, but also can cover other events like keyboard
input. The authors do not refer to life cycle events or properties. If their approach
and implementation is capable of covering life cycle events, too, it could be used to
automatically generate and execute event input sequences, including user input as well
as life cycle state triggers. Our library would provide the functionality of checking life
cycle-related properties during test execution.

In their recent article about State Management tests, Google describes how to use the
testing tools from the Android SDK to test state-related properties [3]. This approach
is similar to manually testing life cycle-related properties (see Sec. 4.2), but allows to
simulate life cycle actions manually by corresponding commands. For instance, the tester
can call instrumentation.callActivityOnResume(someActivity) to directly invoke a call to
the Activity’s onResume()-method. But this call does not really resume the application
[3]. This might lead to a different behavior when directly calling these actions (without
really resuming) and when they are called in the context of a real state change implied
by the system. Additionally, the direct calls can be made by the developer in arbitrary
order and repeatedly. This may not correspond to the possible actions during a real
execution of the application. Our approach uses the real execution context of the AUT
and provides a way to manage and handle assertions related to life cycle-properties. Our
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conceptual approach is not only applicable to the Android platform, but is basically
platform-independent (see Sec. 4.4).

Bickford and Cáceres present an approach to preserve the states of mobile applications
throughout different mobile devices [40]. Both data and computation state are preserved.
The user can switch the mobile device while using a mobile application and proceed
using the same application in the same state on a different device. The authors focus
on reducing any latencies that may occur when switching the devices. The approach
uses incremental live synchronization of whole virtual machines that execute the mobile
applications. By synchronizing in the background during application execution, the
amount of data left to be synchronized when the user decides to switch to a different
device is reduced, avoiding extensive delays. The authors do not clearly define the life
cycle states of the applications that are synchronized. By synchronizing the data of whole
virtual machines, the included applications can be in any life cycle state. The authors do
not provide information about how the state of an applications is validated or checked
for consistency after synchronization. Neither do they refer to life cycle-related issues of
porting virtual machines.

In the work of Benli et al. different unit testing approaches for mobile applications
are compared [39]. The authors focus on Android and state that unit testing on mobile
applications differs reasonable from unit testing on desktop and server platforms. Referring
to the authors, Android unit tests need to reference the Android element ID, have a
longer execution time and so on. After seeding few errors into an application, the authors
execute White- and Black-box tests to detect the seeded errors. An interesting outcome is
that testing Android Activities should be done using White-box testing as state changes
do not provide much information to the outside of the Activity. Mainly Android internal
state information as well as Activity internal information change. This confirms our
decision to use White-box testing for life cycle-related properties. The authors do not go
deeper into unit testing of life cycle-related properties.

Kaasila et al. focus on testing mobile applications across different handsets of a variety
of manufacturers [92]. The work results in Testdroid, a tool for automated remote user
interface testing on Android. Testdroid users are able to specify user action scripts for
their application (push button A, check content of text field C, ...) and automatically
execute these scripts on a large number of devices from different manufacturers. The test
results are presented to the users and the authors report about the most common errors.
The most common error is failing to install the application on a device, e.g., due to the
wrong target Android version, missing permissions or unsupported screen resolutions.
The authors do not state how to test life cycle-related properties. But one clear way would
be to write user stories triggering life cycle actions and to execute them automatically
using Testdroid. User-centric tests, like expected content of text fields could be checked
with Testdroid. But as it is focusing on user interface, life cycle-related properties which
are not immediately visible in the user interface (e.g. Is the Bluetooth module on? or Is
the e-mail content stored in the database?) cannot be checked with Testdroid.

The work of Azim and Neamtiu presents explorations of Android applications for
systematic testing [33]. As a result of an evaluation, the authors state that the average
Android user only uses around 30% of the applicaion screens and only less than 7% of the
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application methods. The evaluation was done by seven users testing 25 popular Android
applications including BBC News, Amazon and YouTube. Based on these results, the
authors present two different approaches to significantly increase the screen and method
coverage. The authors do not report about life cycle-related states or methods. As the
visible screens on Android are bound to life cycle-related methods, there is a correlation.
But the authors do not give any further information. Increasing the application screen
and method coverage may also increase the coverage of life cycle callback methods. But
a more complete coverage is reached by using the test catalogs from reverse engineering
the application life cycles (see Chap. 3).
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This work presents a conceptual approach for testing life cycle-related properties of mobile
applications. In a first step, a concept for reverse engineering life cycles of applications is
introduced. This concept is independent of the mobile platform. It consists of four major
steps which result in more accurate life cycle models. In three case studies this concept
is used to reverse engineer the life cycles of Android 2.2 Activities, iOS 4.0 and Windows
7.5 applications. The concept faces the issues resulting from inaccurate, incomplete and
inconsistent official documentations on application life cycles. The resulting unambiguous
life cycle models with a clear syntax and semantics improve the understanding of
application life cycles for developers and serve as a basis for testing life cycle-related
properties.

The test approach is based on unit testing. It identifies and separates the key compo-
nents for testing life cycle-related properties as units. This allows structured testing of
applications composed of multiple units. The conceptual approach is platform indepen-
dent and uses assertions to define life cycle-related properties. Thereby it does not limit
the number or type of testable properties.

In a case study we implement the conceptual approach for the mobile platform Android.
Compared to other current mobile platforms, Android allows much access to the system
and applications. One result of the case study is the AndroLIFT library, which allows to
test life cycle-related properties of Android 2.2 Activities. This includes connection, data
as well as hardware assertions. The library is easily extensible for further assertions and
assertion types. Additionally, the library serves as the core of the AndroLIFT Eclipse
plug-in. The plug-in provides the functionality of the library in a graphical user interface.
Testers can use the plug-in to specify test cases without having knowledge on code level.

An evaluation reports about the capabilities and limitations of the presented conceptual
approach. The potential of the approach is often tightly coupled with the access permis-
sions of the application under test. By using the callback methods of the application
under test, everything the application has access to, can be accessed during testing, too.
The callback mechanisms allow to be implicitly notified in case of state changes and to
react immediately. But this also makes existing callback mechanisms, which notify the
application of state changes, an important requirement for this approach to be applicable.
By focusing on state changes to check life cycle-related properties, requirements which
hold within one single state, cannot be checked. Therefore a combination of the presented
approach with already existing other approaches is necessary.

In the context of a case study with students from a practical course, the approach and
the AndroLIFT library were evaluated. The students felt the approach was intuitive, it
scaled well with a growing number of assertions and was easy to understand and use.
After a short time of introduction into the approach and the library, the students were
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all able to implement and execute 15 test cases using the AndroLIFT library. They also
provided useful information about how to improve the Android 2.2 implementation of the
concept. One point of improvement of the usability was to consider not to use reflections
any more. Another interesting point was to use annotations to define assertions.

The presented approach provides a structured way to test life cycle-related properties.
It can be implemented with low effort for different mobile platforms. Many of the
presented artifacts like the reverse engineered life cycle models can be reused for future
implementations.

8.1 Future Work
The ongoing boom in the mobile market indicates that the number and importance of
mobile applications will continue to grow in the future. While the number of PC sales
decreases, the number of mobile device sales and app downloads increases continuously.
Android and iOS are also forecast to further lead the mobile market so that the presented
solutions in this work will keep their relevance. With the growing number of mobile
applications and solutions, one of the important decision criteria for users is quality.
Thus, it is expected that testing in the mobile application area remains an active and
innovative field.

During our work on life cycles, we noticed that specifying requirements on life cycle
properties in a clear and testable way seems to be an obstacle to developers. Requirements
are often mentioned implicitly in other specification documents. A structured approach
for specifying requirements on life cycle-related properties can help to lower this obstacle.
We already did some corresponding groundwork in [72, 88].

Another active field in the area of testing mobile applications is test automation.
An interesting challenge related to life cycles could be to automatically check for life
cycle-related properties. Combining the presented approach with other approaches from
the field of automated testing, e.g., automated test case generation or automated test
execution, is possible. We already did some preliminary work towards this field with our
Higgs tool [60, 102]. Higgs allows automated test execution of test cases including different
devices and platforms (Android, iOS). It also has been tested using life cycle-related
properties. But a full implementation of the life cycle testing approach for the Higgs tool
was not done.

As proposed by some students, certain adjustments of the AndroLIFT library may be
appropriate. This includes avoidance of assertions and introduction of annotations for
test specifications.

With the increasing performance, larger displays and higher resolutions, mobile device
manufacturers and platforms are about to increase the number of concurrently running
and visible applications. In this case not only one single application remains in the
state running, but multiple applications. Whether the presented concept is applicable
without modification to such scenarios, has to be checked by analyzing the corresponding
platforms and techniques.
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