
Fast Estimates of Greeks from
American Options: A Case Study in
Adjoint Algorithmic Differentiation
Jens Deussen
Viktor Mosenkis
Uwe Naumann

Department of Computer Science
Technical Report

Aachener Informatik-Berichte (AIB) | ISSN 0935-3232 | AIB-2018-02
RWTH Aachen University | Department of Computer Science | January 2018

The publications of the Department of Computer Science of RWTH Aachen University are in
general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

2

http://aib.informatik.rwth-aachen.de/

Fast Estimates of Greeks from
American Options: A Case Study in
Adjoint Algorithmic Differentiation

Jens Deussen*, Viktor Mosenkis and Uwe Naumann

LuFG Informatik 12, RWTH Aachen University
Software and Tools for Computational Engineering

52074 Aachen, Germany

Abstract

In this article algorithmic differentiation is applied to compute the sensitivities of the price of an
American option, which is computed by the Longstaff-Schwartz algorithm. Adjoint algorithmic
differentiation methods speed up the calculation and make the results more accurate and robust
compared to a finite difference approximation. However, adjoint computations require more memory
due to the storing of intermediate results. One possibility to reduce these memory requirements is to
use a technique called checkpointing: Instead of storing all intermediate results the required values are
recomputed. Another possibility is to apply a pathwise adjoint approach, which results from an analysis
of the Longstaff-Schwartz algorithm and the exploitation of its features. The presented approach is
embarrassing parallel and yields the same results as the other adjoint methods, but it reduces the
computational effort as well as the memory requirements of the computation to the level of a single
pricing calculation.

1. Introduction and Summary of the Results

There are several approaches to calculating the price of American-style options. Besides finite
difference and binomial tree methods, simulations can be used to estimate option prices. This
article focuses on the least-squares approach for American option pricing by Longstaff and
Schwartz (Longstaff and Schwartz, 2001). Some further research in the area of American option
pricing using simulation includes (Tilley, 1993; Carriere, 1996; Broadie et al., 1997; Rogers, 2002;
Glasserman, 2003). We chose a representative case study in order to illustrate many features of
problems considered in practice.

A naive ansatz for the estimation of the sensitivities of an American option is to use
numerical differentiation with a finite difference approximation (FD). One disadvantage of this
approach is its computational cost which grows with the number of input parameters. For each
first-order sensitivity an additional function evaluation is required at least. The calculation of
higher derivatives is even more expensive and the results are often inaccurate.

The preferred numerical method to derive the sensitivities of a computer program is
Algorithmic Differentiation (AD) (Griewank and Walther, 2008; Naumann, 2012). This technique
returns mathematically exact derivatives with machine accuracy up to an arbitrary order by
exploiting elemental symbolic differentiation rules and the chain rule. AD distinguishes
between two basic modes: the forward mode and the reverse mode. The forward mode builds
a directional derivative (also: tangent) code for the computation of the sensitivities at a cost
proportional to the number of input parameters. Similarly, the reverse mode builds an adjoint
version of the program but it can compute the Jacobian at a cost that is proportional to the
number of outputs. For that reason, the adjoint method is advantageous for problems with

*email: deussen@stce.rwth-aachen.de

3

a small set of output parameters, as it occurs frequently in many fields of Computational
Science and Engineering, for example in fluid dynamics (Giles and Pierce, 2000) or optimization
(Nikolova et al., 2004). Furthermore, adjoint methods should be suitable for an efficient
calculation of the sensitivities in option pricing, due to the fact, that the algorithms have a lot
of input variables but typically just a single output (the option price). The fact that AD can
also be used for problems in finance has been shown repeatedly e.g. (Giles and Glasserman,
2006; Leclerc et al., 2009; Capriotti and Giles, 2010; Capriotti, 2011; Henrard, 2013). The adjoint
computation comes along with potential high memory requirements due to the storage of the
values of all variables. To reduce this load, required values can be recomputed instead of stored
by using checkpointing schemes.

We developed another algorithm similar to the algorithm from (Leclerc et al., 2009) by
exploiting some properties of the Longstaff-Schwartz algorithm and using a simple assumption,
thus the memory requirements can be diminished further. This could be called a pathwise
adjoint approach, in which the time and the path loops are interchanged such that the path
loop is the outer loop and the time loop is the inner loop. Moreover, parallelization is enabled
for this approach.

The aim of this paper is to show that AD is applicable to American option pricing by simu-
lation, using the Longstaff-Schwartz algorithm as an example. Furthermore, finite differences,
tangent and adjoint results are compared to each other with respect to time and memory
requirements. We show that the run time as well as the memory requirements of the calculation
of the Greeks can be reduced almost to the level of the pricer by using the parallel pathwise
adjoint approach.

The paper is organized as follows: In section 2 there is a brief introduction to the problem,
the test cases and the methods which are used in this paper, AD, checkpointing and the
pathwise adjoint approach. Subsequently in section 3 the results are presented. First, the AD
methods and the FD approach are compared to each other in terms of run time. Then, the
memory requirements are reduced by using a checkpointing scheme or by computing the
adjoints pathwise. The last section gives a conclusion and an outlook.

2. Problem Description and Methodology

For the computation of the sensitivities we applied a numerical differentiation approach with
FD and diverse AD techniques. The finite differences are computed by using a central FD
scheme of order one for first-order sensitivities and of order two for second-order sensitivities.
The AD results are computed with the AD tool dco/c++ (Lotz et al., 2011), which computes
the derivatives of a function by operator and function overloading in C++. The employed AD
methods are the tangent mode, the adjoint mode as well as a checkpointed version of the adjoint
computation. For the checkpointing we picked a scheme with a recomputation of the cycles
of the time step loop. Thus, only the values of one loop iteration need to be stored at once.
The scheme is kept constant, because an analysis of this part is beyond the scope of this article.
Furthermore, a pathwise computation of the adjoints is used by exploiting some properties of
the Longstaff-Schwartz algorithm (LSA) (Longstaff and Schwartz, 2001).

2.1. American Option Pricing with the Longstaff-Schwartz Algorithm

For the comparison between the different methods, an American put option on a single asset
is considered. The LSA is used to compute the American option prices, at which the paths
are assumed to evolve as a geometric Brownian motion. Therefore, the stochastic differential
equation of the Black-Scholes model (Black and Scholes, 1973) is applied to generate the
stock prices. This model is chosen due to its easy comprehensibility and genericity of its
implementation. Furthermore, the implementation is modular, such that this model can be

4

replaced by another one without great effort. The price of the underlying asset St under the
risk neutral measure and without a dividend yield satisfies

dSt = rStdt + σStdWt ,

where r is the risk free interest rate, Wt is a standard Brownian motion and σ denotes the
volatility. The stock prices are then calculated as

St = S0 exp

((
r− 0.5σ2

)
tdt + σ

t

∑
i=1

Zi

)
.

Pseudo-random numbers are generated with a constant seed of the random number generator
rand() from the C random library to make the results comparable. To obtain the required
standard normal random numbers Z the pseudo-random numbers are converted with a Box-
Muller transformation (Box and Muller, 1958).

2.2. Algorithmic Differentiation

AD is a technique which transforms a primal function or primal code by using the chain rule to
compute additionally to the function value the derivative of that function with respect to a
given set of input and intermediate variables.

Inputs of a Monte Carlo simulation for American option pricing are for example the initial
stock price S0, the volatility σ, the random numbers Z and the number of simulated paths
NP, whereas output variables are for example the calculated option price V and the cash flow
matrix. For the determination of the option Greeks not all of the derivatives of the outputs with
respect to the inputs are needed. There are just derivatives of the option price with respect to
a specified set of the inputs required. The option price and this set of inputs are then called
active, while the elements of the cash flow matrix or the random numbers are passive. A tilde is
used to denote passive variables.

We consider that the given primal code has n+ñ inputs and m+m̃ outputs. Furthermore, for
simplicity it is assumed that the implementation only contains the calls of the subroutines f
and g. Thus, the implementation represents the function dependency between the set of inputs
x and the set of outputs y

x
f // v

g // y ,

in which v denotes the set of intermediate variables of the computation. Then, the composition
of the two functions f and g leads to the multivariate vector function

F : Rn+ñ → Rm+m̃, (y, ỹ) = F(x, x̃) = (g ◦ f) (x, x̃) .

The local differentiability of the vector function F and its corresponding implementation up to
the required order is necessary to compute the Jacobian

JF(x, x̃) =
(

∂yj

∂xi

)j=0,...,m−1

i=0,...,n−1
∈ Rm×n .

Tangent Mode

The tangent model can simply derived by differentiating the function dependence, using the
notation from (Naumann, 2012).

x(1)
f (1) // v(1)

g(1) // y(1)

5

The superscript (1) stands for the first directional derivative of the variable, also called tangent.
This leads to the functions

v(1) =
∂v
∂x

x(1) ,

y(1) =
∂y
∂v

v(1) ,

and hence

y(1) =
∂y
∂v

∂v
∂x

x(1) .

This approach is also called the forward mode and can be interpreted as a linear mapping with
the Jacobian JF ∈ Rm×n

y(1) = JF(x) · x(1) . (1)

For each evaluation of (1) with x(1) set to the i-th Cartesian basis vector in Rn, one gets the i-th
column of the Jacobian. To get all entries of the Jacobian by using this model, n evaluations are
required, for each active input respectively. Thus, the costs of the derivation of the Jacobian by
using a tangent model is proportional to the number of active input variables. Note that the
costs of this method are similar to the FD costs but this method is more accurate.

Adjoint Mode

Instead of deriving the first derivatives with the forward mode, the elements of the Jacobian
can be computed by using the adjoints of the particular variables. This mode is also called
reverse mode, due to the reverse computation of the adjoints compared to the computation of
the values. Therefore, a data-flow reversal of the program is required, such that additional
information on the computation (e.g. partial derivatives) needs to be stored (see (Hascoët et al.,
2005)), which potentially leads to high memory requirements. The data structure to store this
additional information is often called tape.

Again following the notation of (Naumann, 2012), the first-order adjoints are denoted with
a subscript (1) and they are defined as

x(1) =
(

∂v
∂x

)>
v(1) ,

v(1) =
(

∂y
∂v

)>
y(1) ,

which yields

x(1) =
(

∂v
∂x

)> (∂y
∂v

)>
y(1) .

The dependency of this model is visualized in Figure 1 in which the subroutines are represented
by squares. A rightwarded arrow at the bottom of a square indicates a forward execution of
the subroutine as well as the storage of additional information on the tape. Analogously a
leftwarded arrow denotes an execution in reverse order and an interpretation of the tape. The
order of execution is depth-first and from left to right.

Similar to the forward mode, the reverse mode describes a mapping with the transpose of the
Jacobian

x(1) = JF(x)> · y(1) .

The vector y(1) is consecutively set equal to each of the Cartesian basis vectors in Rm. After
running the reverse code the vector x(1) contains one row of the Jacobian. The costs of this mode
are then of order m, which is the number of active outputs.

6

F

f g

F

g f

Figure 1: Call tree of adjoint version with the dummy function F

F

f g

F

g f f

Figure 2: Call tree of adjoint version with checkpointing

Higher Derivatives To get second derivatives, the AD modes can be applied to an already
differentiated program. It is incidental that four combinations are possible. While the complexity
of the forward-over-forward mode is equal to that of the FD approach, respectively of order n2,
the other three combinations lead to a lower computational cost under the assumption that
m < n. For example the forward-over-reverse mode is generated by applying the forward mode
to a first-order adjoint code. This mode can compute the second derivatives at a cost of order
m · n. This procedure can be repeated for derivatives of arbitrary order.

Checkpointing

Checkpointing is a technique to reduce the memory requirements of the adjoint mode. Instead
of storing the complete forward section on the tape, some of the values can be recomputed.
In the following there is a minimal example for checkpointing with the above given function
dependency.

Rather than taping f during its forward computation only its input arguments are recorded
as a checkpoint. This is visualized by a downward pointing arrow on the left side of the square.
Then, g is executed as before with storing the additional information on the tape, followed by
its reverse computation. For the reverse section of f the additional information that was not
stored is required, such that the checkpoint is restored and f is executed again. This time the
execution is taped to make the additional information available. The re-storage is denoted by
an arrow on the left side pointing to the top. Figure 2 represents this example as a call tree.

Checkpointing can also be applied recursively. The recomputation of the values is always
feasible to save some memory at a computational cost, but since the computation should be as
fast as possible, a trade-off between memory requirement and computational time is sought.
Further information about checkpointing are given in (Volin and Ostrovskii, 1985; Griewank
and Walther, 2000; Naumann, 2012).

Code Analysis

In the LSA (Algorithm 1) there is a decision for each path whether to exercise the option at
that time or to wait and expect a higher cash flow in the future. Therefore, a predicted exercise
boundary is computed by a regression of the future cash flows on the current stock prices. This
exercise boundary is compared to the current cash flows of each path. A computational graph
of this algorithm is given in Figure 3(a) in which the data dependency is represented with
arrows. Due to the fact that the comparison behaves like a Heaviside step function, which is
not differentiable at the step, the AD methods cannot catch the influence of the regression to
the output.

7

Algorithm 1 Longstaff-Schwartz algorithm
In:

→ initial stock price S0, strike price K, time to maturity T, volatility σ, risk-free interest rate r

→ number of paths NP, number of time steps NT

→ accumulated random numbers Zp,t = z + Zp,t−1 with random numbers z

→ function generating the stock price for a given time t and path p
Sp = h(S0, T, σ, r, t, NT , Zp,t)

→ function computing the exercise boundary b with a regression of the in the money paths
I, their stock prices and current cash flows
b = R(I, (Si), (vi))

Out:

← option price: V ∈ R

← exercise time for each path: (t̃p) ∈NNP

Algorithm:
1: for p = 1→ NP do . Initialization of cash flow and exercise times for t = NT
2: Sp = h(S0, T, σ, r, NT , NT , Zp,NT)
3: if Sp < K then
4: vp ← K− Sp
5: t̃p ← NT
6: else
7: vp ← 0
8: end if
9: end for

10: for t = NT − 1→ 1 do . Time step loop
11: I ← {} . Set for indices of in-the-money paths
12: for p = 1→ NP do . Path loop
13: vp ← vp · exp (−r · T/NT)
14: Sp = h(S0, T, σ, r, t, NT , Zp,t)
15: if Sp < K then
16: I ← I ∪ {p};
17: end if
18: end for
19: b = R(I, (Si), (vi)) . Computation of the exercise boundary
20: for all p ∈ I do
21: if Sp < b then . Exercise decision
22: vp ← K− Sp
23: t̃p ← t
24: end if
25: end for
26: end for
27: V ← 0
28: for p = 1→ NP do
29: V ← V + vp
30: end for
31: V ← V · exp (−r · T/NT) /NP

8

American price

t = 0

t ∈ {NT − 1, . . . , 1}

t = NT

discounted
cash flow

...

cash flow

exercise
decision

regression

· · ·setup
path 1

setup
path NP

discounted
cash flow

...

cash flow

exercise
decision

stock price matrixdiscount

S0rT ν K

(a) Basic Longstaff-Schwartz algorithm

t = 0

t = 1

t = te − 1

t = te − 1

t = te

t = te

American price

· · ·· · ·
...

...

stock price matrixdiscount

S0rT ν K

discounted
cash flow

discounted
cash flow

discounted
cash flow

cash flow
for path 1

discounted
cash flow

discounted
cash flow

discounted
cash flow

cash flow
for path NP

(b) Pathwise adjoint approach

Figure 3: Computational graphs

The LSA computes the option price according to

V =
1

NP
∑
p

[
K exp

(
−r

T
NT

tp

)
− S0 exp

(
−0.5σ2 T

NT
tp + σ · Zp

)]
. (2)

The exercise boundary tp actually depends on the active input parameters. But in the code
there is no assignment from an active parameter to tp, such that tp is an independent variable
from the viewpoint of AD. Hence, differentiating (2) with respect to the initial stock price and
the volatility, we get

∂V
∂S0

=
1

NP
∑
p

[
− exp

(
−0.5σ2tp

T
NT

+ σ · Zp

)]
, (3)

∂V
∂σ

=
1

NP
∑
p

[
−S0 ·

(
−σtp

T
NT

+ Z
)
· exp

(
−0.5σ2tp

T
NT

+ σ · Zp

)]
. (4)

From (3) and (4) we can see that some second-order sensitivities are computed to be zero by
using AD methods, e.g. (3) differentiated with respect to the initial stock price.

The affected edges are dashed in the computational graph. The missing control-flow
dependency could lead to problems in cases where the current cash flow is close to the exercise
boundary.

Pathwise Adjoint Approach

One possibility of handling the discontinuity is to assume that the number of cases in which the
stock price is close to the exercise boundary is negligible compared the number of simulated
paths. Building the average over all paths should still allow the computation of the sensitivities.

9

Algorithm 2 Pathwise adjoint Longstaff-Schwartz algorithm
In:

→ active pricing parameters with an initial stock price S0 ∈ R, strike price K ∈ R, time to
maturity T ∈ R, volatility σ ∈ R, risk-free interest rate r ∈ R

→ number of paths NP ∈N, number of time steps NT ∈N

→ accumulated random numbers (Zp,t) ∈ RNP×NT

→ implementation of the LSA for a set of active pricing parameters, a number of paths, a
number of time steps and accumulated random numbers for computing the option price
V ∈ R and the exercise times for each path (t̃p) ∈NNP :
f : R5 ×N2 ×RNP×NT → R×NNP , (V, (t̃p)) = f (S0, K, T, σ, r, NP, NT , (Zp,t))

→ function generating the stock price for a given time and path:
h : R4 ×N2 ×R→ R, Sp = h(S0, T, σ, r, t, NT , Zp,t)

Out:

← option price: V ∈ R

← gradient of option price w.r.t. active pricing parameters: g = ∇(S0,K,T,σ,r)V

Algorithm:
1: (V, (t̃p)) = f (S0, K, T, σ, r, NP, NT , Z)
2: V ← 0
3: g← 0
4: for p = 1→ NP do
5: setup tape
6: Sp = h(S0, T, σ, r, t̃p, NT , Zp,t̃p

)

7: v← (K− Sp) · exp
(
−rt̃pT/NT

)
8: v(1) ← 1
9: interpret tape

10: V ← V + v
11: g← g + (S0,(1), K(1), T(1), σ(1), r(1))>

12: end for
13: V ← V/NP
14: g← g/NP

It follows that the adjoints of the exercise boundary b are zero and therefore the functional de-
pendency of the comparison on the option price (Algorithm 1 line 21) is negligible. Cutting this
dependency of the exercise time on the option price should be legitimate, due to the assumption
that the exercise time computed by the LSA maximizes the option price (see (Piterbarg, 2003)).
This will cause the adjoints of the regression to be zero as well and it is no longer necessary to
store these adjoints.

Algorithm 2 is developed to derive the sensitivities of the option with adjoint AD. A similar
algorithm was already mentioned in (Leclerc et al., 2009). It is assumed that the exercise times
are already computed and therefore it is not necessary to rerun the regression. Furthermore,
the time and the path loop are interchanged such that each path can be computed separately.
This has the advantage that the memory requirement can be diminished by computing local
sensitivities for each path and average them to get the Greeks.

The average of the adjoints of a path in line 14 of Algorithm 2 leads to the Greeks because of

10

the sum rule in differentiation and due to the fact that the number of paths NP is independent
of the active variables. This relation is given in

d ∑ vp(x)
NP

dx
=

∑
dvp(x)

dx
NP

.

The pathwise adjoint algorithm is also visualized as a computational graph in Figure 3(b). It
can be seen that this approach is embarrassing parallelized, due to the fact that the values vp of
the paths are independent of each other.

3. Results

This section is organized as follows: First, the blackbox AD methods are compared to the FD
approach in terms of accuracy, run time and memory requirements. Blackbox AD denotes the
usage of the AD methods without exploiting any structure of the code. In subsection 3.2 the
high memory requirement of the blackbox adjoint method is discussed.

The computation of the option price takes following inputs: S0 = 1, K = 1, T = 1, σ = 0.2,
r = 0.04 and α = 0.005. The test cases contains the computation of the option price, five
first-order sensitivities, respectively delta, vega, theta, rho and dual delta.

The timings and memory requirements of the test applications are generated using an
architecture with two multi-core processors of type Intel®Xeon®Processor E5-2630 with a clock
rate of 2.30 GHz. Each processor is built up of six CPUs and has access to a random-access
memory of 64 GB.

3.1. Blackbox Algorithmic Differentiation

Although the FD approach and AD methods compute the same price for the American option
there are differences in the values of the sensitivities. In general the FD results are more volatile
than the results computed with the AD methods.

In (Geske and Johnson, 1984) an analytical reference value is given for delta, which is
∆ref = −0.416. We are not aware of reference values for the other sensitivities. In 50% of the
test cases the FD approach leads to inaccurate values for the sensitivities with respect to S0 and
K and there are outlier with an absolute error up to 455. On the other hand, the computation of
these sensitivities by using AD is accurate for all test cases. The results for the computation of
the sensitivities of the basic LSA are identical for the different AD methods. All other first-order
sensitivities are similar for FD and AD.

The timings and the memory requirements of the pricer and of the diverse methods for
the sensitivity computation are visualized in Figure 4 and Figure 5, respectively. The results
are strongly dependent on the specified test cases and it can be observed that the run time
scales linearly by increasing the problem size, the number of paths and the number of exercise
opportunities respectively. The blackbox adjoint method is more than twice as fast as the
computation with FD, while the run times of the tangent mode computation is located between
those two methods.

The computation with the blackbox adjoint method has high memory requirements such
that the test cases with 500000 paths are omitted for this method. The other two methods need
approximately the same amount of memory which is required for one evaluation.

3.2. Reduction of Memory Requirements

To reduce the required memory of the blackbox adjoint method a checkpointing of the time-loop
is applied, in which each cycle of this loop is recomputed. Another approach is to use the
pathwise adjoint method for the computation. The checkpointed and the pathwise adjoint

11

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 200 400 600 800 1000

Ru
n

tim
e

(s
)

Number of Exercise Opportunities NT

Pricer
Finite Differences

Tangent Mode
Adjoint Mode

Checkpoint Adjoint
Pathwise Adjoint

(a) NP = 100000

 0

 250

 500

 750

 1000

 1250

 1500

 1750

 2000

 0 200 400 600 800 1000

R
un

 ti
m

e
(s

)

Number of Exercise Opportunities NT

Pricer
Finite Differences

Tangent Mode
Checkpoint Adjoint

Pathwise Adjoint

(b) NP = 500000

Figure 4: Visualization of the timings of the proposed methods

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 200 400 600 800 1000

U
se

d
M

em
or

y
(G

B
)

Number of Exercise Opportunities NT

Pricer
Finite Differences

Tangent Mode
Adjoint Mode

Checkpoint Adjoint
Pathwise Adjoint

(a) NP = 100000

 0

 8

 16

 24

 32

 40

 48

 56

 64

 0 200 400 600 800 1000

U
se

d
M

em
or

y
(G

B
)

Number of Exercise Opportunities NT

Pricer
Finite Differences

Tangent Mode
Checkpoint Adjoint

Pathwise Adjoint

(b) NP = 500000

Figure 5: Visualization of the required amount of memory of the proposed methods

method produce the same values as the other AD methods for the option price and for the
sensitivities.

Again, the timings as well as the memory requirements are visualized in Figure 4 and
Figure 5. Due to the recomputation of some values the adjoint method with a checkpointing
scheme has a slightly higher computational effort than the blackbox adjoint method. The
pathwise adjoint method is faster than the other methods. It has run times that are only 20%
higher than the costs of the pricer for the specified test cases. Using parallelization can reduce
the run times further such that the computational cost of the parallel approach is only 5%
higher compared to the pricer.

By using a checkpointing scheme the high amount of memory which is used by the blackbox
adjoint method can be decreased. Moreover, this enables the computation of the test cases with
500000 paths. The pathwise adjoint approach allows to compute the sensitivities using almost
the original amount of memory.

4. Conclusion and Outlook

The goal of this paper was the computation of sensitivities of an American option, which is
priced by the least squares approach of Longstaff and Schwartz.

12

The computation of the sensitivities was improved by using AD methods. The AD methods
led to more accurate values and the computations were faster than the FD approach. The
calculation of the adjoint mode with a checkpointing scheme made this method applicable to
the used architecture by decreasing the memory requirements. The run time as well as the
memory requirements of the computation were reduced almost to the level of the pricer by
using the (parallel) pathwise approach. The value of delta was an accurate approximation of
the analytical reference value. Because there were no analytical reference values for the other
Greeks a check of their correctness was not possible.

This work can be extended in several directions. Alternative models and stochastic differen-
tial equations for the stock price evolution can be applied, for example with a local volatility.
Furthermore, an optimal checkpointing scheme should be implemented by using the algorithm
from (Griewank and Walther, 2000).

Moreover, the approach can be advanced by saving the exercise boundary, instead of the
exercise times for each path. Then, the pathwise adjoint algorithm could check if the boundary
is accurate, by evaluating the Greeks and the option price with a new set of random numbers
and a new stock price matrix. After that, a comparison of the prices with two different sets of
random numbers is possible. This approach was already mentioned by citepGarcia03.

At the end, the correctness of the pathwise approach for sensitivities should be checked and
other test cases should be considered with an underlying of multiple assets.

References

Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of
Political Economy, 81(3):637–654.

Box, G. E. P. and Muller, M. E. (1958). A note on the generation of random normal deviates.
Ann. Math. Statist., 29(2):610–611.

Broadie, M., Glasserman, P., and Jain, G. (1997). Enhanced Monte Carlo estimates for American
option prices. The Journal of Derivatives, 5(1):25–44.

Capriotti, L. (2011). Fast Greeks by algorithmic differentiation. SSRN Electronic Journal.

Capriotti, L. and Giles, M. B. (2010). Fast correlation Greeks by adjoint algorithmic differentiation.
SSRN Electronic Journal.

Carriere, J. F. (1996). Valuation of the early-exercise price for options using simulations and
nonparametric regression. Insurance: Mathematics and Economics, 19(1):19–30.

Geske, R. and Johnson, H. E. (1984). The American put option valued analytically. The Journal of
Finance, 39(5):1511–1524.

Giles, M. and Glasserman, P. (2006). Smoking adjoints: Fast Monte Carlo Greeks. Risk,
19(1):88–92.

Giles, M. B. and Pierce, N. A. (2000). An introduction to the adjoint approach to design. Flow,
turbulence and combustion, 65(3-4):393–415.

Glasserman, P. (2003). Monte Carlo Methods in Financial Engineering. Springer New York.

Griewank, A. and Walther, A. (2000). Algorithm 799: Revolve: An implementation of check-
pointing for the reverse or adjoint mode of computational differentiation. ACM Transactions
on Mathematical Software, 26(1):19–45.

Griewank, A. and Walther, A. (2008). Evaluating Derivatives: Principles and Techniques of Algorith-
mic Differentiation. Society for Industrial & Applied Mathematics (SIAM).

13

Hascoët, L., Naumann, U., and Pascual, V. (2005). “To Be Recorded” Analysis in Reverse-Mode
Automatic Differentiation. Future Generation Computer Systems, 21(8):1401–1417.

Henrard, M. (2013). Calibration in finance: Very fast Greeks through algorithmic differentiation
and implicit function. Procedia Computer Science, 18:1145–1154.

Leclerc, M., Liang, Q., and Schneider, I. (2009). Fast Monte Carlo Bermudan Greeks. Risk,
22(7):84.

Longstaff, F. A. and Schwartz, E. S. (2001). Valuing American options by simulation: A simple
least-squares approach. Rev. Financ. Stud., 14(1):113–147.

Lotz, J., Leppkes, K., and Naumann, U. (2011). dco/c++ - Derivative Code by Overloading in
C++. Technical Report AIB-2011-06.

Naumann, U. (2012). The Art of Differentiating Computer Programs: An Introduction to Algorithmic
Differentiation, volume 24. SIAM.

Nikolova, N., Safian, R., Soliman, E., Bakr, M., and Bandler, J. (2004). Accelerated gradient
based optimization using adjoint sensitivities. IEEE Transactions on Antennas and Propagation,
52(8):2147–2157.

Piterbarg, V. (2003). Computing deltas of callable libor exotics in forward libor models. SSRN
Electronic Journal.

Rogers, L. C. G. (2002). Monte Carlo valuation of American options. Mathematical Finance,
12(3):271–286.

Tilley, J. A. (1993). Valuing American options in a path simulation model. Transactions of the
Society of Actuaries, 45(83):104.

Volin, Y. and Ostrovskii, G. (1985). Automatic computation of derivatives with the use of the
multilevel differentiating technique—1. algorithmic basis. Computers & Mathematics with
Applications, 11(11):1099–1114.

14

Aachener Informatik-Berichte

This list contains all technical reports published during the past three years. A complete

list of reports dating back to 1987 is available from:

http://aib.informatik.rwth-aachen.de/

To obtain copies please consult the above URL or send your request to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,

Email: biblio@informatik.rwth-aachen.de

2015-01 ∗ Fachgruppe Informatik: Annual Report 2015

2015-02 Dominik Franke: Testing Life Cycle-related Properties of Mobile Appli-

cations

2015-05 Florian Frohn, Jürgen Giesl, Jera Hensel, Cornelius Aschermann, and

Thomas Ströder: Inferring Lower Bounds for Runtime Complexity

2015-06 Thomas Ströder and Wolfgang Thomas (Editors): Proceedings of the

Young Researchers’ Conference “Frontiers of Formal Methods”

2015-07 Hilal Diab: Experimental Validation and Mathematical Analysis of Co-

operative Vehicles in a Platoon

2015-08 Mathias Pelka, Jó Agila Bitsch, Horst Hellbrück, and Klaus Wehrle (Ed-

itors): Proceedings of the 1st KuVS Expert Talk on Localization

2015-09 Xin Chen: Reachability Analysis of Non-Linear Hybrid Systems Using

Taylor Models

2015-11 Stefan Wüller, Marián Kühnel, and Ulrike Meyer: Information Hiding

in the Public RSA Modulus

2015-12 Christoph Matheja, Christina Jansen, and Thomas Noll: Tree-like

Grammars and Separation Logic

2015-13 Andreas Polzer: Ansatz zur variantenreichen und modellbasierten En-

twicklung von eingebetteten Systemen unter Berücksichtigung regelungs-

und softwaretechnischer Anforderungen

2015-14 Niloofar Safiran and Uwe Naumann: Symbolic vs. Algorithmic Differ-

entiation of GSL Integration Routines

2016-01 ∗ Fachgruppe Informatik: Annual Report 2016

2016-02 Ibtissem Ben Makhlouf: Comparative Evaluation and Improvement of

Computational Approaches to Reachability Analysis of Linear Hybrid

Systems

2016-03 Florian Frohn, Matthias Naaf, Jera Hensel, Marc Brockschmidt, and

JÃ1
4rgen Giesl: Lower Runtime Bounds for Integer Programs

2016-04 Jera Hensel, Jürgen Giesl, Florian Frohn, and Thomas Ströder: Proving

Termination of Programs with Bitvector Arithmetic by Symbolic Exe-

cution

2016-05 Mathias Pelka, Grigori Goronzy, Jó Agila Bitsch, Horst Hellbrück, and

Klaus Wehrle (Editors): Proceedings of the 2nd KuVS Expert Talk on

Localization

2016-06 Martin Henze, René Hummen, Roman Matzutt, Klaus Wehrle: The

SensorCloud Protocol: Securely Outsourcing Sensor Data to the Cloud

2016-07 Sebastian Biallas : Verification of Programmable Logic Controller Code

using Model Checking and Static Analysis

2016-08 Klaus Leppkes, Johannes Lotz, and Uwe Naumann: Derivative Code by

Overloading in C++ (dco/c++): Introduction and Summary of Features

2016-09 Thomas Ströder, Jürgen Giesl, Marc Brockschmidt, Florian Frohn,

Carsten Fuhs, Jera Hensel, Peter Schneider-Kamp, and Cornelius As-

chermann: Automatically Proving Termination and Memory Safety for

Programs with Pointer Arithmetic

2016-10 Stefan Wüller, Ulrike Meyer, and Susanne Wetzel: Towards Privacy-

Preserving Multi-Party Bartering

2017-01 ∗ Fachgruppe Informatik: Annual Report 2017

2017-02 Florian Frohn and Jürgen Giesl: Analyzing Runtime Complexity via

Innermost Runtime Complexity

2017-04 Florian Frohn and Jürgen Giesl: Complexity Analysis for Java with

AProVE

2017-05 Matthias Naaf, Florian Frohn, Marc Brockschmidt, Carsten Fuhs, and

Jürgen Giesl: Complexity Analysis for Term Rewriting by Integer Tran-

sition Systems

2017-06 Oliver Kautz, Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe:

CD2Alloy: A Translation of Class Diagrams to Alloy

2017-07 Klaus Leppkes, Johannes Lotz, Uwe Naumann, and Jacques du Toit:

Meta Adjoint Programming in C++

2017-08 Thomas Gerlitz: Incremental Integration and Static Analysis of Model-

Based Automotive Software Artifacts

2017-09 Muhammad Hamad Alizai, Jan Beutel, Jó Ágila Bitsch, Olaf Landsiedel,

Luca Mottola, Przemyslaw Pawelczak, Klaus Wehrle, and Kasim Sinan

Yildirim: Proc. IDEA League Doctoral School on Transiently Powered

Computing

2018-01 ∗ Fachgruppe Informatik: Annual Report 2018

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

	Introduction and Summary of the Results
	Problem Description and Methodology
	American Option Pricing with the Longstaff-Schwartz Algorithm
	Algorithmic Differentiation
	Tangent Mode
	Adjoint Mode
	Checkpointing
	Code Analysis
	Pathwise Adjoint Approach

	Results
	Blackbox Algorithmic Differentiation
	Reduction of Memory Requirements

	Conclusion and Outlook

