
Real-World Deployment and Evaluation
of Synchronous Programming in
Reactive Embedded Systems
Matthias Terber

Department of Computer Science
Technical Report

Aachener Informatik-Berichte (AIB) | ISSN 0935-3232 | AIB-2018-05
RWTH Aachen University | Department of Computer Science | November 2018

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

http://aib.informatik.rwth-aachen.de/

Real-World Deployment and Evaluation of
Synchronous Programming in Reactive

Embedded Systems

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der
RWTH Aachen University zur Erlangung des akademischen Grades
eines Doktors der Ingenieurwissenschaften genehmigte Dissertation

vorgelegt von

Matthias Terber, M. Sc.
aus Gießen

Berichter: Universitätsprofessor Dr.-Ing. Stefan Kowalewski
Universitätsprofessor Dr. rer. nat. Bernhard Rumpe

Tag der mündlichen Prüfung: 29. Oktober 2018

Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online verfügbar.

Matthias Terber
Lehrstuhl Informatik 11
terber@embedded.rwth-aachen.de

Aachener Informatik Bericht AIB-2018-05

Herausgeber: Fachgruppe Informatik
RWTH Aachen University
Ahornstr. 55
52074 Aachen
GERMANY

ISSN 0935-3232

Abstract
Pervasive smart devices link embedded concerns to information technology in a single,
resource-constrained system. Both domains have quite opposite computation character-
istics – reactive versus transformational. Due to C’s dominance in industry, the reactive
part is usually based on conventional sequential programming which lacks domain-
specific support making the solution hard to program, comprehend and maintain.
Synchronous languages might be a promising solution in order to facilitate software
engineering and improve software quality. However, to date, they are restricted to very
specific industrial niches; real-world deployments and evaluations are rarely reported
in literature.
This thesis conducts a case study that examines the feasibility and suitability

of the synchronous approach based on a real-life smart device. Focusing on its
reactive concerns, it elaborates the engineering challenges and quality issues of the
existing production code. By taking advantage of the synchronous language Céu,
it outlines a synchronous reimplementation, thereby illustrating the deployment of
synchronous programming and how to reconcile it with the transformational part of
the system. Architectural considerations and best practices are provided for developers
in order to effectively apply the synchronous language concepts. Furthermore, it shows
the applicability of established object-oriented software design patterns and how to
implement reproducible unit tests for reactive code.
Several qualitative discussions treat the software engineering and quality benefits

gained by the synchronous reimplementation compared to the existing production code.
A code analysis uses the separation of concerns, the scattering of interfaces and the
code size as performance indicators in order to quantitatively substantiate the results.
A user study confirms that reactive behavior is easier to implement and comprehend
using the synchronous approach.
This thesis represents a proof of concept which demonstrates the feasibility and

suitability of synchronous programming in resource-constrained, real-life industrial
embedded applications that are exposed to reactive and transformational concerns
likewise. By using synchronous programming, we were able to recover fundamental
software engineering principles while, at the same time, fulfill the strong resource
limitations – a combination that is known to be hard to achieve. Finally, we believe
that our work generally suggests a practicable way of improving embedded software
quality in industrial applications.

i

Zusammenfassung
Allgegenwärtige Smart Devices verbinden den eingebetteten Anwendungsbereich mit
Informationstechnologie in einem einzigen System unter Einsatz begrenzter Ressourcen.
Beiden Domänen liegen dabei ganz unterschiedliche Berechnungscharakteristiken zu
Grunde – reaktiv versus transformierend. Durch die große Dominanz der Program-
miersprache C im industriellen Bereich, werden die Probleme der reaktiven Domäne
üblicherweise mit konventioneller, sequentieller Programmierung adressiert. Diese bietet
jedoch keine spezifische Unterstützung für die Beschreibung von reaktivem Verhalten,
wodurch Entwicklung, Verständlichkeit und Wartbarkeit der Software erschwert werden.
Synchrone Programmiersprachen könnten eine vielversprechende Lösung darstellen, um
den Entstehungsprozess von Software zu vereinfachen und deren Qualität zu verbessern.
Bis heute ist der Einsatz von synchroner Programmierung jedoch nur auf sehr spezielle
industrielle Anwendungsfälle beschränkt; ihre praktische Anwendung und deren Nutzen
werden in existierender Literatur kaum behandelt.

In dieser Arbeit wird eine Fallstudie durchgeführt, welche die Anwendbarkeit und
Eignung des synchronen Programmierparadigmas anhand eines konkreten, existieren-
den Smart Devices aus der Industrie untersucht. Mit Fokus auf die reaktive Domäne
werden die technischen Herausforderungen für die Entwicklung sowie die Qualitätspro-
bleme der bestehenden Softwarelösung herausgearbeitet. Basierend auf der synchronen
Sprache Céu wird eine synchrone Neuimplementierung skizziert. Diese veranschau-
licht den Einsatz von synchroner Programmierung und zeigt deren Integration in den
transformierenden Teil des Gesamtsystems. Dem Entwickler werden architektonische
Überlegungen und bewährte Vorgehensweisen an die Hand gegeben, um die synchronen
Sprachkonzepte effektiv zu nutzen. Außerdem wird die Anwendbarkeit von etablierten
objekt-orientierten Softwareentwurfsmustern demonstriert und aufgezeigt, wie sich
reproduzierbare Tests für reaktiven Code implementieren lassen.
Mehrere qualitative Diskussionen behandeln die Vorteile für Softwareentwicklung

und -qualität, welche sich durch die synchrone Neuimplementierung im Vergleich zur
existierenden Lösung ergeben. Eine Codeanalyse verwendet die Trennung der Belange
(separation of concerns), die Verteilung der Komponentenschnittstellen (scattering
of interfaces) sowie die Codegröße (code size) als Indikatoren, um die qualitativen
Ergebnisse quantitativ zu belegen. Weiterhin bestätigt eine Nutzerstudie, dass reaktives
Verhalten mit dem synchronen Ansatz einfacher zu implementieren und zu verstehen
ist.

Diese Arbeit ist ein Konzeptnachweis für die Umsetzbarkeit und Eignung von synchro-
ner Programmierung in ressourcenbegrenzten, eingebetteten Systemen im industriellen
Kontext, die sowohl mit reaktiven als auch transformierenden Berechnungen konfrontiert
sind. Durch den Einsatz des synchronen Paradigmas wurden grundlegende Prinzipien
der Softwareentwicklung wieder anwendbar ohne dabei die starken Ressourcenanfor-
derungen zu verletzen – eine Kombination, die bekanntermaßen schwer zu erreichen
ist. Schließlich glauben wir, dass diese Arbeit grundsätzlich einen praktikablen Weg
aufzeigt, wie sich die Qualität eingebetteter Software in industriellen Anwendungen
verbessern lässt.

iii

Acknowledgments
I would like to thank the Bosch Thermotechnik GmbH, particularly Dr.-Ing. Jürgen
Hötzel, for the opportunity to perform this industry-related research.

I would like to express my sincere gratitude to my supervisor Prof. Dr.-Ing. Stefan
Kowalewski for accepting me as a doctoral candidate, the trust in me, the freedom
given to my work, the helpful and constructive participation and the close cooperation
during the entire doctorate period. My thanks also go to my advisor Dr. rer. nat.
Mark Hönig from Bosch Group for proof reading this thesis and the fruitful discussions.
Also, I would like to thank Prof. Dr. rer. nat. Bernhard Rumpe for accepting to be a
co-referee of my doctorate thesis and the interest in my work.

Furthermore, I would like to express my deepest thanks to Franz-Josef Grosch and Dr.
rer. nat. Friedrich Gretz from Bosch Corporate Research for their considerable guidance,
helpful advices, valuable information and constant support during the development of
this thesis. Also, I thank Prof. Dr.-Ing. Jens Brandt for his suggestions and useful
hints during the first phase of my work.

Moreover, I would like to thank Dr. Francisco Sant’Anna for answering my countless
questions when I familiarized myself with the semantics and the deployment of the
programming language Céu. My thanks also go to Prof. Dr. Berthold Franzen for the
opportunity to conduct the user study at the University of Applied Sciences in Gießen.
Many thanks go to all my dear colleagues from Bosch Thermotechnik GmbH in

Lollar, in particular Christian Berger, Marc Immel, Frank Schäfer and Harald Klinkel,
for their support with all problems related to soft- and hardware development and
providing a pleasant working atmosphere.

Last but not least, I am very thankful to my parents and my brother for their steady
encouragement and support during the entire period of my studies.

Thank you very much!

Matthias Terber
18th November, 2018, Lollar

v

Contents
1 Introduction 1

1.1 Objectives . 3
1.2 Contributions . 3
1.3 Thesis Outline . 5
1.4 Bibliographic Notes . 5
1.5 Related Work . 5

2 Preliminaries 7
2.1 Heating System Remote Control . 7
2.2 Synchronous Model of Computation . 9
2.3 The Programming Language Céu . 12

3 Identification of Reactive Concerns 17
3.1 Exposed Problem Domains . 17
3.2 Domain-Specific Computation Characteristics 18
3.3 Conclusion . 21

4 Analysis of the Existing Asynchronous Implementation 23
4.1 Overview . 23

4.1.1 Reactive Functionalities . 23
4.1.2 Underlying Technologies . 25

4.2 Control and Handling of Events . 28
4.2.1 Fundamental Strategy . 29
4.2.2 Implementation Outline . 31
4.2.3 Discussion . 32

4.3 Concurrency . 36
4.3.1 Synchronization without Operating System Support 37
4.3.2 Synchronization with Operating System Support 41

4.4 Temporal Behavior . 45
4.4.1 Delays . 46
4.4.2 Timeouts . 47

4.5 Conclusion . 49

5 Deployment and Qualitative Evaluation of Synchronous Programming 51
5.1 Architectural Considerations . 53

5.1.1 Domain-Oriented System Architecture 54
5.1.2 Interfacing Synchronous Code 57

vii

Contents

5.1.3 Fieldbus Driver Architecture . 59
5.2 Function-Oriented Design . 64

5.2.1 Basic Functions . 64
5.2.2 Composite Functions . 71

5.3 Object-Based Design . 78
5.3.1 Adoption of Command Pattern 79
5.3.2 Adoption of Facade Pattern . 82
5.3.3 Adoption of State Pattern . 84
5.3.4 Adoption of Observer Pattern 87
5.3.5 Adoption of Chain of Responsibility Pattern 89

5.4 Testing Capabilities . 92
5.4.1 Program Simulation . 93
5.4.2 Unit Testing . 94
5.4.3 Discussion . 97

5.5 Important Points to Consider . 98

6 Quantitative Evaluation of Synchronous Programming 103
6.1 Code Analysis . 103

6.1.1 Separation of Concerns . 103
6.1.2 Interface Scattering . 105
6.1.3 Code Size . 106

6.2 User Study . 107
6.2.1 Design . 107
6.2.2 Procedure . 108
6.2.3 Analysis and Conclusion . 110

7 Conclusion 113
7.1 Summary . 113
7.2 Future Work . 114

A User Study Exercises and Questionnaire 117

viii

List of Tables
2.1 Timing constraints for fieldbus communication 9
2.2 Concurrency models comparison . 11

4.1 Combination possibilities for event handling 29
4.2 Possible preemption scenarios and their prevention strategy 44

6.1 Quantitative distribution of communication concerns 104
6.2 Number of interaction points between byte and frame layer 105
6.3 Code size of byte and frame layer implementation 106
6.4 Quantitative distribution of manual state and timer management in the

byte layer in C . 107
6.5 Mapping of investigated software quality aspect to exercise 108
6.6 Survey results: average vote . 111

ix

List of Figures
2.1 Basic fieldbus frame structure . 7
2.2 Fieldbus communication time intervals of a slave in Active Mode 8
2.3 Two common synchronous execution schemes 10
2.4 A sequence of reactions for the program in Listing 2.1 15
2.5 System integration of Céu code . 16

3.1 Top-level view of the gateway’s system architecture 17
3.2 Computations for Internet communication 19
3.3 Computations for fieldbus communication 20

4.1 Overview of the fieldbus driver software architecture in C 24
4.2 OSEK task state model . 27
4.3 Underlying technologies provided by C and OSEK 28
4.4 Locations awaiting an event . 29
4.5 Programming scheme of the single entry point model 30
4.6 Outline of the byte layer implementation featuring ReceiveBL and

TransmitBL . 32
4.7 Mapping of C’s abstraction ladder to the adopted event processing . . . 33
4.8 Orthogonal encapsulation approaches 34
4.9 Interaction between byte and frame layer 35
4.10 Order of accesses to buffer required for ReceiveBL 38
4.11 Synchronization without operating system support in C 39
4.12 Synchronization with OS support in C 42
4.13 Outline of a delay implementation in C 46
4.14 Outline of a timeout implementation in C 48
4.15 Dependency between application code and execution environment . . . 50

5.1 Graphical representation of the byte layer state machine 52
5.2 Domain-oriented, layered software architecture with Céu and Rust . 55
5.3 Best practice for choosing and deploying abstraction entities in Céu . 62
5.4 Layered architecture of the fieldbus driver in Céu 63
5.5 Programming scheme of the multiple entry points model in Céu . . . 69
5.6 Hierarchical timing constraints for fieldbus communication 77
5.7 Structure of the Command pattern . 79
5.8 Structure of the Facade pattern . 82
5.9 Structure of the State pattern . 85
5.10 Structure of the Observer pattern . 87
5.11 Structure of the Chain of Responsibility pattern 90

xi

List of Figures

5.12 Test classes for the gateway application 92
5.13 Classification of organisms . 95

6.1 Mapping between routine RxChar code line and communication concern
in the C implementation . 104

6.2 Survey results: relative vote frequency 111

xii

Listings
2.1 A Céu program to illustrate program execution 15

5.1 Declaration of the event-based interface to Céu code 57
5.2 Execution of Céu’s state machine . 58
5.3 Declaration of functions and organisms 60
5.4 Possible deployments of code abstraction entities 61
5.5 Implementation of organism FrameReceiver 65
5.6 Implementation of organism FrameTransmitter 67
5.7 Implementation of organism PassiveHandler 72
5.8 Implementation of organism WriteAccess 73
5.9 Implementation of organism ActiveHandler 74
5.10 Hard timeout in Céu . 76
5.11 Limited soft timeout in Céu . 77
5.12 Adoption of the Command pattern . 81
5.13 Adoption of the Facade pattern . 84
5.14 Adoption of the State pattern . 86
5.15 Adoption of the Observer pattern . 88
5.16 Adoption of the Chain of Responsibility pattern 91
5.17 Fundamental program simulation in Céu 94
5.18 An exemplary black-box test case for FrameTransmitter. 96

xiii

List of Abbreviations

API Application Programming Interface
ASCII American Standard Code for Information Inter-

change

CAN Controller Area Network
CFS Completely Fair Scheduler
CRC Cyclic Redundancy Check

EMS Energy Management System

FIFO First-In, First-Out

GALS Globally Asynchronous, Locally Synchronous

HIL Hardware-In-the-Loop
HMI Human Machine Interface
HTTP Hypertext Transfer Protocol

I/O Input/Output
IDE Integrated Development Environment

LED Light-Emitting Diode
LIFO Last-In, First-Out
LOC Lines of Code

M-Bus Meter-Bus

OSEK Offene Systeme und deren Schnittstellen für die Elek-
tronik in Kraftfahrzeugen

POSIX Portable Operating System Interface

RAM Random Access Memory
REST REpresentational State Transfer
ROM Read Only Memory
RTS Real-Time Scheduler

xv

List of Abbreviations

SIL Software-In-the-Loop

UUT Unit Under Test

VDX Vehicle Distributed eXecutive

WCET Worst-Case Execution Time

xvi

1 Introduction
The past decades have seen a steady and world-wide increasing dissemination of em-
bedded computer systems in virtually all areas of everyday life. Popular slogans such
as Internet of Things, Cloud Computing, Augmented Reality, Ambient Intelligence,
Big Data and Industry 4.0 are just some of today’s drivers towards this unstoppable
trend. Usually, these efforts produce so called smart devices in various fields, for exam-
ple consumer electronics, automotive and aviation solutions, industrial applications,
telecommunication services and medical devices. All these embedded systems have in
common that they link traditional embedded concerns to conventional information
technology in a single device. However, these problem domains appear to have quite
different computation characteristics. On the one hand, the traditional embedded
domain typically realizes the control part. Control-intensive tasks are periodically or
sporadically prompted by the environment and have to respond in a timely manner.
Conventional information technology, on the other hand, mostly focuses on data pro-
cessing which is usually not time-critical but demands computation-intensive tasks.
Following Harel and Pnueli [HP85], we use the terms reactive and transformational in
order to distinguish these two types of systems. It seems reasonable that this diversity
requires domain-specific hard- and software support in order to promote simple and
concise solutions.
Looking back, it becomes apparent that embedded hardware made substantial

progress in terms of computation power and storage capacity. Due to mass production,
microcontrollers have become cheaper ever since and at the same time provide a widely
extended range of domain-specific functionalities. Today’s low-cost 32-bit devices, for
instance, may be equipped with dedicated cryptographic acceleration, real-time co-
processors, floating point units and various communication interfaces. When it comes
to embedded software, in contrast, it appears that distinctive changes have been less
frequent within the last decades.

“Regardless of how advanced our [embedded] products may be, our methods
for designing them are almost medieval.” [Tur12, p. 24]

The introduction of the programming language C [KR78] in the 1970s – one of the most
fundamental advances – replaced unstructured, hardware-dependent assembler code.
Having appeared almost half a century ago, C intends to provide a lightweight, easy
to learn and relatively low-level system programming language based on imperative,
sequential, single-threaded control flow. While in the following years a number of
higher-level alternatives have popped up, for example C++ or Real-Time Java, to date
they have not conquered the embedded systems domain. Due to a number of practical

1

1 Introduction

advantages [NM12] C has become the de facto standard for industrial, embedded appli-
cations world-wide [BM06; EJ09; Sak12; EE15]. However, C’s conventional sequential
programming generally does not contribute any domain-specific language support.
Together with the rapid increase of system complexity many companies nowadays
have run into software quality problems [LT09]. In particular, this becomes apparent
when considering the smart devices mentioned above. While C’s sequential style seems
reasonably suitable for the transformational part, reactive control behavior sets a
different significantly challenge.
Reactive concerns require continuous event- and time-based interaction with the

system’s physical environment [HP85]. The conventional sequential model of compu-
tation, however, does not contribute any language-level support facilitating this kind
of cooperation. Workarounds in C usually deploy callbacks for event handling which
force embedded system developers to deal with manual stack [Ady+02; Kas07] and
state [Kas07] management. By this, implementing reactive behavior in C becomes a
challenging and error-prone task [Bai+13]. Actually, these workarounds are known to
encourage the violation of fundamental software engineering principles, for example
information hiding, separation of concerns and modularization, making the solution
hard to program, comprehend and maintain [MO12]. On this account, the reactive
programming paradigm [Bai+13] has been proposed as a general solution. Reactive
languages and frameworks provide proper computing abstractions which integrally
take care of event handling logic and state management, thereby considerably reducing
the burden faced by developers. However, it appears that, for industrial real-world
embedded applications, the vast majority of approaches is not applicable since they
cannot keep up with C’s practical advantages.
An exception are synchronous languages [Ben+03] which have been specifically

designed for modeling, specifying, validating and implementing reactive real-time
embedded systems. They provide promising features such as deterministic concurrency
as well as bounded memory and bounded reaction time. While some visual notations
for synchronous languages have found their way in successful industrial use, the
SCADE [Est14] tool for instance, their deployments are limited to the fringe group
of highly safety-critical systems. Apart from that, synchronous programming might
be generally a suitable and useful solution to provide domain-specific support for
the implementation of reactive concerns in broad industrial embedded applications.
This points to a potential improvement of the overall embedded software quality in
systems such as smart devices that cover reactive and transformational concerns at the
same time. However, existing literature introduces the synchronous paradigm but does
rarely report and evaluate its deployment in a real-world application. In particular,
current research does not consider the applicability and integration of the synchronous
technology in an industrial use case and lacks a detailed investigation of its effect on
software engineering and software quality.

2

1.1 Objectives

1.1 Objectives
The main objective of this thesis is to study whether synchronous programming is a
feasible and suitable approach in order to simplify software engineering and improve
software quality of resource-constrained, real-world industrial embedded applications
that are exposed to transformational and reactive concerns at the same time.
In the scope of this thesis we conduct a case study that examines an existing

industrial smart device – a heating gateway [Bos17] – developed and marketed by
Bosch Thermotechnik GmbH. The gateway is subject to strong resource limitations as
well as soft real-time requirements and is completely based on conventional sequential
programming. For synchronous programming, we take advantage of the third-party,
C-based, synchronous, imperative, reactive programming language Céu [San+13].

In particular, we have to examine the gateway’s existing production code with respect
to engineering challenges and quality issues in order to illustrate today’s actual state
and establish a baseline for our comparison. We must identify the reactive concerns in
order to have a suitable basis for deploying and evaluating the synchronous paradigm.
We have to demonstrate the actual deployment of synchronous programming to

• show its feasibility in a real-world industrial use case

• illustrate the reconciliation of reactive, synchronous code and transformational,
asynchronous code

• help developers through general considerations, guidelines and best practices for
effectively applying synchronous language constructs

We have to perform a comparison that evaluates the effect of the domain-specific
language support of synchronous programming with respect to software engineering
and quality.

Note on Intellectual Property The gateway implementation comprises intellectual
property of Bosch Group. Thus, we can neither publish complete communication
protocols nor the original code base. However, presented code chunks are derived from
production code as close as possible and explicitly retain the core issue on focus. Time
specifications and numerical values are distorted but retain their order of magnitude.

1.2 Contributions
The main contributions of this thesis are as follows:

Analysis of existing production code We provide a software engineering analysis of
an existing resource-constrained, real-life industrial smart device which completely
relies on conventional sequential programming.

3

1 Introduction

• We identify the transformational and reactive concerns of the industrial use
case and work out their computation characteristics in detail. We consider
how to reconcile both domains.
• We reveal how the lack of domain-specific language support for reactive

concerns actually manifests in production code. The analysis covers reactive
key concerns such as event handling, concurrency and temporal behavior.

Synchronous reimplementation We outline a corresponding reimplementation in
Céu that aids as a proof of concept for synchronous programming in a real-world
industrial use case.
• We provide architectural considerations and practical demonstrations on

how to reconcile the reactive, synchronous and the transformational, asyn-
chronous part of the system.
• We present a guideline for developers on how to suitably choose and deploy

synchronous abstraction entities in Céu depending on the functionality to
be realized. Further, we illustrate how they can be used in order to apply
a divide-and-conquer strategy to the architectural design of synchronous
code.
• We demonstrate the applicability of established object-oriented design pat-

terns in resource-constrained embedded applications by taking advantage of
Céu’s abstraction entities.
• We illustrate a best practice for specifying and performing reproducible

unit tests for reactive concerns that allow black-box and white-box testing
likewise. In this context, we provide a classification of different possible
deployment approaches of Céu’s abstraction entities with respect to their
testability.
• We provide some general hints that developers should be aware of when

deploying synchronous code in Céu.

Comparative evaluation We provide a qualitative and quantitative evaluation that
compares the new synchronous re-implementation to the existing production
code with respect to software engineering and software quality.
• We provide several qualitative discussions that comparatively consider

software engineering aspects and software quality.
• We provide a code analysis that extracts different quantitative performance

indicators from both implementation approaches in order to allow an objec-
tive comparison, too.
• For an evaluation of the synchronous paradigm based on practical experiences
from embedded software developers, we conduct a user study targeting
undergraduate students of Computer Science for Engineers. We consider
them to be the next generation embedded software developers which might
be potential users of synchronous programming.

4

1.3 Thesis Outline

1.3 Thesis Outline
The rest of this thesis is organized as follows: In Chapter 2, we describe preliminaries
of this work, including basic information about the industrial use case, the synchronous
model of execution and the programming language Céu. In Chapter 3, we work out the
transformational and reactive concerns of the industrial use case. In Chapter 4, we ana-
lyze the existing production code and elaborate the engineering challenges and quality
issues that emerge if reactive concerns are implemented using conventional sequential
programming. In Chapter 5, we present a corresponding synchronous reimplementation
of the reactive concerns and discuss its effect on software engineering and quality.
In Chapter 6, we substantiate our qualitative comparison from Chapters 4 and 5 in
quantitative terms. In Chapter 7, we summarize this thesis and outline possible issues
for future work.

1.4 Bibliographic Notes
Some parts of this thesis are based on work already presented in earlier publications.
The identification of the gateway’s problem domains and their respective computation
characteristics as well as the domain-oriented software architecture based on Céu
and Rust have been published in [Ter16]. A qualitative and quantitative comparison
of the existing byte layer state machine and its reimplementation in Céu as well as
considerations for the choice and integration of Céu have been published in [Ter17].

1.5 Related Work
Most of the existing literature about synchronous programming either introduces one
of the three main synchronous languages Esterel [BS91], Signal [Le +91] and Lustre
[Hal+91] or presents an overview of the synchronous paradigm in general [BB91;
Hal93; Ben+03; STP05; CRT07]. However, related work focuses on language features,
compilation and program verification rather than software engineering and software
quality. Also, the adoption in a concrete industrial application is never examined.

Some research takes advantage of synchronous programming in order to develop new
reactive libraries and frameworks. Poigne et al. [Poi+98] present a workbench that
allows to mix different synchronous languages for a single application. Motika and
Hanxleden [MH15] develop a synchronous extension for the programming language
Java. Furthermore, there are some synchronous language deployments for specific use
cases such as control applications [SG01], device drivers [BMM11] and audio processing
[BJ13]. However, above work only relies on non-industrial sample applications.
It appears that the deployment and engineering-related evaluation of synchronous

programming in real-life industrial applications has only superficially been considered
by existing research papers. Murakami and Sethi [MS92] use Esterel to reimplement
a telecommunication application. Their explanations focus on introducing selected
language constructs. Also, they compare C and Esterel implementations with respect

5

1 Introduction

to source and object code size. Code structuring capabilities are incidentally mentioned
but not investigated in detail. Andre and Peraldi [AP93] generally reveal potential
industrial applications for synchronous languages but do not examine a concrete use
case. Jagadeesan et al. [JPV95] present a case study on the adoption of Esterel for a
switching system which provides telecommunication services. Amongst others, they
mention advantages of Esterel for software development with respect to abstraction and
structuring capabilities. However, those explanations are not concretely exemplified nor
are they compared to the existing industrial implementation. Benveniste et al. [Ben+03]
and Halbwachs [Hal05] generally highlight the successful adoption of synchronous
languages in industry but do not consider any concrete use case.
Finally, the synchronous programming language Céu appears in several scientific

papers [SIR12; San+13; San13; SIR15; San+16]. The existing literature indicates some
engineering benefits but does not consider a concrete deployment and evaluation in a
real-word industrial system.

6

2 Preliminaries
In this chapter we introduce some preliminaries for this research. While the first section
outlines the industrial use case under investigation, the following ones introduce the
basic concepts of the synchronous model of execution and the synchronous programming
language Céu.

2.1 Heating System Remote Control
The heating gateway [Bos17] is an embedded, real-world industrial smart device mar-
keted by Bosch Thermotechnik GmbH. It provides remote control and monitoring of
heating appliances via the Internet. Among others, it allows to extend the traditional
Human Machine Interface (HMI) by feature-rich apps and service software, send no-
tifications about malfunctions of the heating appliance and log history data to keep
track of temperatures, operating states and error messages for instance. While Internet
connectivity relies on the Hypertext Transfer Protocol (HTTP), Bosch’s Energy Man-
agement System (EMS) fieldbus interfaces local heating devices using a proprietary
communication protocol. By this, the gateway acts as a bridge between the heating
domain and internet-ready devices such as smartphones, tablet PCs, notebooks and so
on.

The EMS Fieldbus Heating appliances are interconnected via the EMS fieldbus for
in-house communication purpose. Physically, the fieldbus is a two-wire connection that
supports half-duplex communication. The group of bus members is composed of a
single, designated master device and multiple slaves – the gateway is one of the slaves.
Participants follow a request-response communication discipline based on frames in
order to exchange information. A frame is a structured sequence of bytes terminated
by a special end-of-frame character. Essentially, it is composed of address fields for
the unique hardware address of the source and destination device, the actual payload
data and a Cyclic Redundancy Check (CRC) sum. Figure 2.1 provides a corresponding
illustration.

Address Fields Payload Data CRC EOF

Figure 2.1: Basic fieldbus frame structure

Fieldbus access is controlled by the master using a time-slicing policy based on
token passing. Therefore, each slave has two different operation modes. In Passive

7

2 Preliminaries

Mode – the default – the device only responds to incoming requests from other fieldbus
members. In contrast, during Active Mode, the device sends requests itself. Thus, only
a device in Active Mode can initiate a request-response cycle on the fieldbus. In order
to avoid collisions, only one participant is allowed to be in Active Mode at the same
time. To achieve this, a token is passed by the master in sequence. As soon as a slave
device receives the token it switches from Passive to Active Mode. By this, the master
logically grants fieldbus access to the corresponding slave. The slave device switches
back to Passive Mode and returns the token if it has no more requests to send or
its communication time slot – denoted as token time (see below) – has expired. Due
to the physical transmission method, each byte sent by a slave device is mirrored by
the master. With respect to timing, the fieldbus communication protocol specifies the
following time intervals (see Figure 2.2):

• tm (mirror time): The time gap between a byte transmission and the reception
of its corresponding mirror.

• ti (idle time): The time gap between two consecutive, incoming frame bytes.

• tr (response time): The time gap between the transmission of a request frame
and the reception of a response frame.

• tt (token time): The duration of a slave remaining in Active Mode.

• tta (token active time): The first time interval of tt. During this period, the slave
may transmit new requests.

• ttp (token passive time): The second time interval of tt. During this period, the
slave is only allowed to wait for pending responses.

tm tm tm ti ti
tr

tta ttp
tt

request frame 1 response frame 1 req. fr. 2 res. fr. 2 req. fr. 3 res. fr. 3

tr tr

TX:
RX:

TOKEN

t

TOKEN

Figure 2.2: Fieldbus communication time intervals of a slave in Active Mode
(TX: outgoing bytes, RX: incoming bytes)

Above time intervals are bounded by the maximum values presented in Table 2.1.

8

2.2 Synchronous Model of Computation

Time interval Maximum value
tm 42 ms
ti 350 ms
tr 225 ms
tta 800 ms
ttp 200 ms
tt tta + ttp

Table 2.1: Timing constraints for fieldbus communication

2.2 Synchronous Model of Computation
The fundamental model of computation for software is given by the pure, sequential
execution of instructions [Neu93]. A concrete sequence of instructions aids in solving
a certain problem. Following Sant’Anna et al. [San+13], we use the term trail to
generally denote such a single line of execution. Due to their inherent concurrency
[HP85], reactive embedded applications often require to run several trails concurrently
in order to handle different, simultaneous concerns. Concurrent trail execution may be
performed in an asynchronous or a synchronous manner [San09].

Asynchronous Concurrency In the prevailing asynchronous model, the trails are
the leader of execution – they are in charge of their control flow. Conceptually, trails
are blind to the surrounding system. They just keep running, independently of what
happens outside. Thus, in order to cooperate, they have to explicitly synchronize their
data and control flow occasionally. The decision if, when and how synchronization
with the surrounding system takes place is not enforced by the environment but taken
internally by each individual trail. For this reason, the asynchronous model is considered
trail-centric [San09].

In this approach, the asynchronism leads to inherent non-deterministic behavior
since it is impossible to predict the order in which concurrent trails interleave their
execution [Lee06]. After each system restart, for example, a different scheduling may
be performed depending on the current system state [San09].
Inter-trail communication is usually realized by shared-memory access or message

passing. Both approaches take time and hence introduce a delay between data trans-
mission and reception. Consequently, data obtained by the receiver may reflect a past
state of the sender. This makes it difficult to achieve a global consensus about the
system state. Thus, trails generally have a divergent vision of their environment and of
each other. Also, race conditions must be manually avoided by explicit synchronization
which entails the risk of concurrency bugs such as deadlocks for instance [Lee06; Lu+08;
San09].

Synchronous Concurrency The synchronous model aims to overcome above limita-
tions by combining synchrony with deterministic concurrency. In this approach, control

9

2 Preliminaries

is inverted making the environment the leader of execution – trails must run at its
pace and in permanent synchrony [San09]. Therefore, it relies on the synchronous
hypothesis [STP05] which divides time and system behavior into a discrete sequence of
non-overlapping computation steps that are commonly denoted as reactions [Ben+03;
CRT07]. Essentially, the hypothesis makes three major assumptions [BB91; BG92]:

1. “Output is synchronous with input.” [BB91, p. 1277] A reaction is instantaneous
and hence takes no time with respect to the external environment. Thus, it is
atomic in any possible sense and the environment remains invariant during it.

2. “Internal actions are instantaneous.” [BB91, p. 1277] A trail takes no time with
respect to other trails. They react instantly to each other.

3. “Communications are performed via instantaneous broadcasting.” [BB91, p. 1277]
The propagation of data takes no time and is always visible to all trails.

Following this approach, trails run in a lock-step manner and are continuously in sync
with each other and the environment. Thus, they have a global consensus about the
system state.
Inside each reaction, the instantaneous property prohibits any side-effects that

are visible across concurrent trails. The status of every signal or variable must be
established and defined before they are read. By this, all concurrent trails use the
same consistent data making the outcome independent from their execution order.
Consequently, the behavioral propagation inside each reaction is deterministic – in
particular for concurrent concerns [STP05].

<initialize-memory>
foreach event do
 <compute-outputs>
 <update-memory>
end

<initialize-memory>
foreach period do
 <read-inputs>
 <compute-outputs>
 <update-memory>
end

a) event-driven b) sample-driven

Figure 2.3: Two common synchronous execution schemes [Ben+03, p. 65]

Reactions are triggered by changes in the system’s environment. There are two
common synchronous execution schemes for this. In the event-driven scheme (see
Figure 2.3a), each change manifests in an input event which triggers a reaction. This
means that there is one reaction for each change. In the sample-driven scheme (see
Figure 2.3b), a predefined (physical) time interval causes the system to cyclically execute
a reaction, thereby polling the environment for changes [San09]. In this approach, several
changes may be processed in a single reaction.

“In an event-driven system, at least one input event is required to produce
a reaction; in a sample-driven system, reactions are triggered by the clock
ticks.” [Ben+03, p. 69]

10

2.2 Synchronous Model of Computation

Irrespective of the adopted scheme, trails are idle by default. Once a reaction is required,
they awake, perform their computations and return to idle. Thus, computations take
place only at discrete points in (physical) time. Since the environment enforces syn-
chronization and determines the operating speed, the synchronous model is considered
environment-centric [San09]. Finally, Table 2.2 highlights the main differences between
the synchronous and the asynchronous approach.

Synchronous Asynchronous
Control environment trail
Synchronization implicit

permanent
explicit
occasional

Communication instantaneous
broadcast

delayed
side effects (in shared memory)
addressed (in message passing)

Determinism deterministic non-deterministic

Table 2.2: Concurrency models comparison [San09, p. 18]

Motivation of the Synchronous Approach Program correctness and efficiency are
of outermost importance in safety-critical, resource-constraint embedded real-time
systems. Meeting these requirements demands appropriate, domain-specific language
support based on solid mathematical foundations. This provides the ability to reason
formally about the system operation which facilitates formal verification and allows
to prove certain aspects of the system’s runtime behavior [Ben+03]. Note that in this
context determinism is an indispensable feature since it allows to predict and reason
about the system’s runtime behavior at development time.

The synchronous model of execution is based on a common mathematical framework
that combines synchrony with deterministic concurrency. In particular, it divides time
and system behavior into a sequence of discrete instants (synchrony) whereby in
each instant the behavior of concurrent computations is well-defined (deterministic).
This approach is pervasive in mathematics and engineering, for example in automata
theory, discrete-time dynamical systems and synchronous digital hardware logic. Those
disciplines give access to a large corpus of universally recognized mathematical models
such as the Mealy machines and the digital circuits. These models provide supporting
foundations for efficient optimization, compilation, and formal verification techniques
[Ben+03; STP05]. Timing analysis for instance – an important tool with respect to
real-time constraints – is significantly easier in the synchronous approach. It only
requires to check that the Worst-Case Execution Time (WCET) of a single reaction is
smaller than the minimal time distance between two consecutive reactions [CRT07].

Adoption on Language-Level Historically, first implementation schemes of the syn-
chronous model in embedded programming have emerged from programming practices
of control and electronic engineers [CRT07]. Digital microprocessors have seen a rapid

11

2 Preliminaries

adoption in the early eighties, thereby replacing the usual analog devices. Within a
relatively short period of time, embedded system engineers were faced with a new tech-
nology that required to deal with instruction sets and system programming – concepts
to which they were not accustomed. As a consequence, early embedded software usually
followed the very simple program structures presented in Figure 2.3 which resemble the
low-level main-loop approach for event-driven programming in conventional languages
[CRT07; San09].
In the following years, two different high-level programming styles for synchronous

systems have evolved [Ben+03]. In the declarative data flow style, supported by Lustre
[Hal+91] and Signal [Le +91] for instance, data is represented by time-varying values
which are linked by operators, thereby forming a dependency graph. On each clock
tick, changes to values are automatically propagated throughout the network without
explicitly programming. This style focuses on declaring dependencies between data,
thereby making control flow implicit. In the imperative control flow style, supported
by Esterel [BS91] for instance, synchronous code is organized by traditional basic
control structures such as sequence, branch and iteration as well as parallelism. In this
approach, the control flow is reflected by the program structure.
The above mentioned high-level languages are considered as the three main syn-

chronous languages [Ben+03]. Their development has focused on the specification and
verification of reactive embedded real-time hard- and software. Some of them have
found their successful way into industrial use, for example in form of the SCADE
(ANSYS) and Sildex (TNI- Valiosys) tools in case of Lustre and Signal respectively.
However, their deployments are generally restricted to very specific industrial niches
[San09].

2.3 The Programming Language Céu
The synchronous programming language Céu1 [San+13] aims to offer a high-level and
better suited alternative to C for the development of reactive, concurrent programs.
Therefore, it provides structured synchronous reactive programming which augments
classical structured programming with continuous environment interaction, thereby
assuming the synchronous hypothesis (see Section 2.2). Céu targets the domain
of control-intensive, resource-constrained, reactive embedded real-time systems in
particular [San+13; SIR15]. In the following, we introduce its fundamental concepts.

Operation Purpose Primarily, Céu’s language design focuses on expressiveness for
reactive concerns and static safety guarantees while meeting runtime and memory
requirements imposed by the embedded context [San13]. Event handling, physical time
and concurrency – key concerns of the reactive domain – are integral parts of Céu
and hence can be described in a very concise and readable way. In order to ensure
responsiveness, the language constructs explicitly bound the execution time for each

1We used version 0.12b for our work (https://github.com/fsantanna/ceu/tree/v0.12b).

12

https://github.com/fsantanna/ceu/tree/v0.12b

2.3 The Programming Language Céu

reaction; the same applies to the total amount of memory required during runtime.
Thus, infinitely running reactions and memory overflows are prevented at compile time
by language design instead of coding conventions. This constitutes an essential aspect
of Céu’s safety concept. Also, note that finite memory and time is required to preserve
the synchronous hypothesis.

The intention of Céu is not to replace the industry standard C for embedded systems.
Instead, it aims to seamlessly integrate into an existing C environment in order to
facilitate the implementation of its reactive concerns. Actually, every Céu program
is compiled into a single-threaded state machine in C. To simplify system integration
and allow reuse of existing software, the execution of native C code is supported on
language level.

Language Design Céu is a text-based, imperative programming language which is
strongly influenced by Esterel [San13]. Compared to conventional sequential program-
ming, it provides three major language extensions [San+13; SIR15]:

1. Synchronous control statements: For event handling, an (a) await-statement
allows to suspend the currently running trail until the specified event occurs. For
concurrency, a (b) par-block (parallel block) provides a structured composition of
several concurrent trails. Along with this, an (c) orthogonal abortion mechanism
is introduced to determine how concurrent trails rejoin. An or-abortion (par/or)
terminates the whole par-block as soon as at least one of the covered trails has
run to completion. In contrast, an and-abortion (par/and) requires all included
trails to complete. Finally, a single par never rejoins.

2. Adoption of physical time: For specifying temporal behavior, physical time is
adopted by the notion of wall-clock time. That is, “the passage of time from the
real world, measured in hours, minutes, etc.” [San13, p. 36] This allows to express
time as a physical quantity in the code. For example, await 10ms suspends the
current trail for ten milliseconds.

3. Object-like abstraction entities: In order to abstract sequences of synchronous
control statements, Céu provides the notion of organisms that encapsulate
synchronous code with an object-like interface.

With respect to event handling, Céu distinguishes between two types of events. External
events are used to interact with the environment respectively the surrounding host
system (see System Integration below). External input events, for example input void

EIN, are emitted by the environment and handled by the program in form of reactions.
External output events, for example output u8 EOUT, are emitted by the program and
handled by the environment. Internal events, for example event void notify, are emitted
and handled by the program internally. They can be used for coordinating computations
of concurrent trails inside the same reaction. While a First-In, First-Out (FIFO) policy
(queue-like) is used for processing external input events, internal ones follow a Last-In,

13

2 Preliminaries

First-Out (LIFO) policy (stack-like) instead. By this, emitting an internal event behaves
similar to calling a subroutine.
Furthermore, Céu relies on an efficient memory layout. In particular, it does not

allocate a stack per trail but manages data in one fixed memory slot. The basic idea is
that memory for concurrent trails must coexist whereas statements in sequence can
reuse it. Mapping this concept to C is done by packing memory for blocks in parallel
in a struct while blocks in sequence reside in a union. This allows to switch between
different data interpretations during runtime, not depending on garbage collection
[San13].

Program Execution Program execution in Céu is entirely event-driven and hence
follows the scheme depicted in Figure 2.3a where input events map to reactions in a
one-to-one relationship. The adoption of physical time is realized by event handling,
too. Therefore, Céu internally implements its own wall clock that accounts for the
passage of time. Occasionally, it is advanced by the environment through special wall
clock input events which provide the amount of elapsed physical time as payload. Based
on this, each Céu program behaves as follows [San13]:

1. On system start, the program performs the boot reaction in a single trail.
2. Active trails execute until they await an event or terminate. This step is always

bounded in time and memory. The usage of par-blocks may spawn new trails.
3. The program goes idle; the environment takes control.
4. The occurrence of a new input event causes all trails awaiting that event to awake.

Then, it goes to step 2.
Due to the synchronous hypothesis, a program conceptually takes no time on step 2
and is always idle on step 3. In practice, if a new input event arrives while a reaction
is currently running (step 2), Céu demands to enqueue it to run in the next reaction.
This relaxes the rigorous semantics of the synchronous hypothesis (see Section 2.2)
where all computations are entirely performed before the next event occurs.

Whenever multiple trails are active in the same reaction, for example they have
awaited the same event, Céu schedules them in the order they appear in the program
text – at most one trail is running at any time. Also, Céu allows side-effects on shared
variables across concurrent trails in the same reaction. Note that this implementation of
the synchronous hypothesis is very Céu-specific and clearly deviates from the classical
synchronous model. In Section 5.5, we will come back to this issue.

In order to illustrate Céu’s scheduling strategy, the execution of the example code in
Listing 2.1 is depicted in Figure 2.4 [San13]. The program performs the boot reaction
and forks into three trails. Following the lexical order of their declarations, they execute
as follows (t0 in Figure 2.4):

1. Trail 1 runs up to the await A (line 4).
2. Trail 2 runs up to the await B (line 8).
3. Trail 3 runs up to the await A (line 12).

14

2.3 The Programming Language Céu

1 input void A, B, C; // three external input events
2 par/and do // trail 1
3 <...> // <...> represents non-awaiting code
4 await A;
5 <...>
6 with // trail 2
7 <...>
8 await B;
9 <...>
10 with // trail 3
11 <...>
12 await A;
13 <...>
14 await B;
15 par/and do // trail 3
16 <...>
17 with // trail 4
18 <...>
19 end
20 end

Listing 2.1: A Céu program to illustrate program execution [San13, p. 27]
Chapter III. The design of Céu 28

Figure III.3: A sequence of reaction chains for the program in Figure III.2.

(a) Bounded execution

Reaction chains should run in bounded time to guarantee that programs

are responsive and can handle upcoming input events from the environment.

Similarly to Esterel [10], Céu requires that each possible path in a loop body

contains at least one await or break statement, thus ensuring that loops never

run in unbounded time. Consider the examples that follow:

loop do

if <cond> then

break;

end

end

loop do

if <cond> then

break;

else

await A;

end

end

The �rst example is refused at compile time, because the if true branch

may never execute, resulting in a tight loop (i.e., an in�nite loop that does not

await). The second variation is accepted, because for every iteration, the loop

either breaks or awaits.

Enforcing bounded execution makes Céu inappropriate for algorithmic-

intensive applications that require unrestricted loops (e.g., cryptography, image

processing). However, Céu is designed for control-intensive applications and

we believe this is a reasonable price to pay in order to achieve higher reliability.

(b) Parallel compositions and abortion

The use of trails in parallel allows that programs wait for multiple

events at the same time. Furthermore, trails await without loosing context

information, such as locals and the program counter, what is a desired behavior

in concurrent applications. [1]

Céu supports three kinds of parallel constructs regarding how they rejoin

Figure 2.4: A sequence of reactions for the program in Listing 2.1 [San13, p. 28]

Since there are no other trails pending, the reaction terminates and the program
remains idle until the input event A occurs (t1 in Figure 2.4):

1. Trail 1 awakes, runs and terminates (line 5).
2. Trail 2 remains suspended, as it is not awaiting A.
3. Trail 3 runs up to await B (line 14).

During the reaction t1, new occurrences of events A, B and C happen and are enqueued
to be handled sequentially in the next reactions. Since A happened first, it is used in
the next reaction. However, since no trail is awaiting it, an empty reaction is performed
(t2 in Figure 2.4). The next reaction dequeues the event B (t3 in Figure 2.4):

1. Trail 2 awakes, runs and terminates.
2. Trail 3 forks in two and they both terminate immediately.

Finally, the par/and rejoins causing the whole program to terminate too. The pending
occurrence of event C is discarded and does not trigger a reaction.

System Integration Céu depends on a host platform which emits the external
input events and accepts the external output events. Independent of how Céu code
is organized across source files, the Céu compiler always generates a single state

15

2 Preliminaries

1 3

2

Hardware

Operating System

Platform Interface Layer

Non-reactive application part

Reactive application part
_ceu_app.h

_ceu_app.c

ceu_sys_go() ceu_sys_out_EOUT1()

 ceu_sys_out_EOUT2()

Queue

/** @file main.ceu */

input u8 EIN1;

input void EIN2;

input void EIN3;

output u8 EOUT1;

output void EOUT2;

#include "someOtherFile.ceu"

loop do

 await EIN1;

 emit EOUT1 => 5;

 par/or do

 await EIN2;

 with

 await EIN3;

<...> compiles to

Céu C

Figure 2.5: System integration of Céu code

machine implementation in C which must interface the host platform. Therefore, as
depicted in Figure 2.5, the state machine provides an interface function ceu_sys_go for
all input events, for example EIN1, and a handler function for each output event, for
example ceu_sys_output_EOUT1 in case of EOUT1. To actually realize the event handshakes
with the host platform, Céu requires a thin platform interface layer in C– a one-time
implementation overhead. If the business logic complexity grows, the platform interface
code keeps constant.

Input events are triggered by the host platform and buffered into a queue (1). They
are dequeued sequentially and passed to ceu_sys_go. This performs the reaction and
gradually advances the state machine (2). An output event causes the state machine to
execute the corresponding handler function holding the assigned C platform interface
code (3).

16

3 Identification of Reactive Concerns
The deployment of synchronous programming is a fundamental design decision which
must be considered at the very first beginning of software development. This is due to
the fact that it determines the fundamental model of computation. An inappropriate
computation model can considerably complicate software engineering (see Chapter 4)
and hence should be carefully selected according to the domain-specific problems to
solve. In this chapter, we consider the gateway’s different problem domains and the
characteristics of their respective computations. We aim to identify those parts of the
entire application that are exposed to reactive concerns and hence are suitable for
deploying the synchronous paradigm.

3.1 Exposed Problem Domains
Figure 3.1 presents a top-level view of the gateway’s system architecture. Services and
parameters of the heating domain are mapped to resources of a REpresentational State
Transfer (REST)ful application programming interface. One resource, for example,
is the set point for the room temperature. An embedded web server accepts GET
and PUT requests via HTTP in order to perform read and write accesses on that
resources. By this, the gateway actually allows the user to interact with his local

Web Serverwww

Internet Connectivity Domain Traditional Embedded Domain

HTTP

request

GATEWAY

HTTP

response

EMS

request

EMS

response

frame

frame
EMS Driver EMS

fieldbus

Figure 3.1: Top-level view of the gateway’s system architecture

heating appliance by remote. He may use any internet-ready mobile device world-wide
to send, for example, a PUT request which increases the set point, thereby adapting
the current room temperature at home. Resources that cover services provided by the
gateway itself, for example the current values of its analogue inputs, the firmware
version or the logged history data, are called internal resources. They are stored in the
gateway’s internal Random Access Memory (RAM), Read Only Memory (ROM) or

17

3 Identification of Reactive Concerns

flash memory. In contrast, configuration parameters or monitor values of the heating
appliance, for example the current room temperature, are provided by the surrounding
heating ecosystem and denoted as external resources. While internal resources can be
directly read or written by the gateway itself, external ones must be indirectly accessed
using the EMS fieldbus (see Section 2.1). A dedicated fieldbus driver software is used by
the web server to actually communicate with the heating appliance. Incoming HTTP
requests are translated by the web server into EMS requests which are delegated to the
fieldbus driver. The latter finally exchanges frames with the fieldbus in order to process
them. Above functionality requires the gateway to deal with Internet and fieldbus
communication at the same time. It appears that both belong to very different problem
domains that generally place different demands on software development.
The Internet communication is part of the information technology domain. It typi-

cally comprises a high level of abstraction based on client-server architectures where
data modeling and processing is paramount. Safety is usually associated to data rather
than functions. This leads to the notion of (data) security which covers, for instance,
approaches for cryptography, authentication and authorization. Due to short product
life cycles and newly emerging technologies, the environment of Internet applications
is highly dynamic and hence requires recurring updates. Software development usually
favors high reuse of existing standard solutions, for example network stacks, cryptogra-
phy libraries or web frameworks. Generally, the Internet connectivity domain relies
on massively parallel computations which are not time-critical and do not require
deterministic execution.

The fieldbus communication belongs to the embedded domain. In contrast, it imposes
a low level of abstraction that requires to deal with hardware architectures and physics.
Functional safety is mandatory, particularly in safety-critical systems. Data is usually
transferred in clear text. The environment of embedded applications is often static for
a longer period of time. A heating appliance, for example, typically runs for at least 10
to 15 years without any modifications. Embedded applications almost always require
customized and special software solutions which rely on company-specific intellectual
property. The embedded domain is typically based on time-critical computations that
demand deterministic execution.

3.2 Domain-Specific Computation Characteristics
In the following, we consider the requirements of the domain-specific computations in
more detail.

Internet Communication (Information Technology Domain) Every incoming GET
or PUT request is handled by the web server for processing. In particular, the following
steps are required: The request has to be (1) received, (2) decrypted, (3) parsed, (4) in-
terpreted and (5) executed. Subsequently, the response must be (6) built, (7) encrypted
and finally (8) transmitted. Internet connectivity is highly concurrent. Several client
devices may be connected to the gateway simultaneously. As a consequence, the web

18

3.2 Domain-Specific Computation Characteristics

A

Responses:

Requests:

(1-8)
t

Computations:

A

A

B

B B

B

C

C

C

(1-5) (1-8) (6-8)

B waits for fieldbus data

Figure 3.2: Computations for Internet communication

server may have to accept and deal with several requests concurrently. Due to HTTP,
the individual requests are inherently independent. They do not share any global data
or state nor do they demand any communication or synchronization among them.
Processing of steps 1 to 8 does never induce any direct side effects across requests. A
single request is completely isolated from the others.
Figure 3.2 illustrates the processing of three requests A to C. Some requests, for

instance A, can be answered instantaneously, in negligible time, that is. For example,
this is true for internal resources that are located in the gateway’s RAM and ROM
memory. Requests for external resources, for instance B, in contrast, involve fieldbus
communication. This adds delays due to the medium access protocol and response times
of other bus participants. Moreover, de- and encryption are computation-intensive tasks.
Depending on the size of response data, the required processing time can additionally
increase. Thus, depending on the concrete resource, answering a GET or PUT request
may generally last from just a few milliseconds up to several seconds. However, in case
of several concurrent requests, for example B and C, long-lasting ones such as (B) must
not block those that can be served quickly (C). Otherwise requests from one device
can considerably delay responses to another device, thereby introducing a time-related
dependency. Strict sequential request processing is consequently not possible. Instead,
a concurrent execution is required in order to allow requests to overtake each other.
For example, B cannot proceed because it is waiting for fieldbus data. Thus, C is
answered meanwhile. Once the data are available, processing of B continues. In favor of
short response times this approach is not deterministic. The order in which concurrent
requests interleave their processing depends on several parameters such as the inquired
resource, the current internal state of the web sever and the underlying scheduling
policy.

Furthermore, an individual HTTP request is not subject to any real-time requirements.
The response is transmitted by the web server as soon as the data are ready. Client
devices and the user respectively have to wait for the feedback accordingly. By this,
the processing unit – the web server– determines the operating speed.

Fieldbus Communication (Embedded Domain) Fieldbus participants follow a re-
quest-response communication discipline based on frames in order to exchange in-
formation (see Section 2.1). For frame processing the fieldbus driver performs the
following steps: An incoming frame has to be (1) received, (2) parsed (3) interpreted

19

3 Identification of Reactive Concerns

A1 A2 A3 EOF

B1

B1

B2

B2

B3

B3

EOF

EOFA4

Fieldbus-TX:

Fieldbus-RX:

(1) (5)
t

B
Y
T
E

Computations:

B
R
E
A
K

B
Y
T
E

B
Y
T
E

B
Y
T
E

B
Y
T
E

B
Y
T
E

B
Y
T
E

B
R
E
A
K

(2-4)

tmti

Figure 3.3: Computations for fieldbus communication

and (4) executed. Depending on whether the gateway is currently in Passive or Active
Mode, execution requires to either store the provided data or build a response frame.
In the latter case, the response needs to be (5) transmitted. Fieldbus communication
does not use any cryptography. Due to the static, predefined frame structure parsing
and interpreting rely on simple comparisons and conditional code execution. Storing
payload data and building the response frame involve only access to local gateway
memory and do not require any computation-intensive algorithms. Thus, steps 2 and 3
can be seen as instantaneous. Due the baud rate of the fieldbus, frame reception and
frame transmission, in contrast, last up to several hundred milliseconds depending on
the frame length.

Figure 3.3 illustrates a request-response communication scenario where request frame
A is answered by response frame B. Frame reception (1) requires to merge the stream
of incoming single bytes into a complete frame. Each byte is checked for content and
time accuracy. The content may be erroneous due to collisions or disturbing signals on
the fieldbus. In addition, the idle time ti between two consecutive bytes belonging to
the same frame must not exceed the upper limit of 350 ms. Content and time valid
bytes are stored, invalid ones are discarded. Once the end-of-frame character has been
received, the capture completes and the stored frame is interpreted (2). Subsequently,
it is executed (3) and may trigger a frame transmission in response, for example
because another device requested a gateway-internal resource. In contrast to Internet
communication, the inquiring device demands a response within 225 ms. If the limit is
exceeded the current request-response cycle will fail. Frame transmission (4) requires to
send a single frame byte-wise onto the bus. Due to the physical transmission method,
each byte is mirrored by the master device. Before proceeding with the next byte
transmission, the content and time accuracy of the mirror byte is checked too. The
mirror time tm must not exceed an upper limit of 42 ms. If the mirror is invalid the
transmission fails and is aborted immediately.
As depicted in Figure 3.3, the long-lasting actions of frame reception (1) and

transmission (4) are composed of simple reactions to the incoming bytes. For each one,
the fieldbus driver only has to decide whether to store or discard it. For a complete frame,
the fieldbus driver decides whether a transmission is required in response or not. All
those reactions as well as steps 2 and 3 rely on simple comparisons and conditional code
execution without any computation-intensive tasks. Thus, all computations involved
in fieldbus communication can be seen as instantaneous. However, in contrast to

20

3.3 Conclusion

GET and PUT requests, the reaction to the current byte may influence reactions to
future bytes. For example, a malformed frame byte causes the remaining, future frame
bytes to be discarded since the whole frame is already known to be invalid. Thus,
there is a dependency across byte reactions which requires a global state. Also, bytes
must be deterministically processed in the same sequential order they are received.
Furthermore, note that above time limits impose soft real-time requirements on fieldbus
communication. If a communication cycle fails this does never cause any harm. It
leads to a corresponding retry in future. However, in order to provide a high quality of
service fieldbus access should usually succeed. Thus, timeliness is important.

To sum it up, fieldbus communication is characterized by simple switching behavior.
That means that instantaneous reactions successively advance the fieldbus driver’s
internal state depending on the incoming characters. There are no computation-intensive
tasks involved. Each character receipt can be seen as an external fieldbus event (see
Figure 3.3). In particular, fieldbus communication is based on the following reception
events:

(1) BYTE, indicates a frame byte with valid content.

(2) BREAK, indicates an end-of-frame character.

(3) ERROR, indicates a character with malformed content.

Note that information on timing accuracy is not provided on event basis and requires
additional care.

3.3 Conclusion
Although Internet and fieldbus communication both rely on a request-response disci-
pline, they place very different demands on the underlying model of computation. In the
Internet connectivity domain, computations are inherently independent and stateless.
Concurrent computations interleave their execution in a non-deterministic order. Fur-
thermore, they may last for a longer period of time and are never subject to hard timing
constraints. In contrast, the fieldbus communication requires to perform reactions on
event occurrence. These reactions comprise a high interdependency and hence require
global state. Reactions have to be provided in a strict sequential, deterministic order.
Due to their negligible processing time, they can be seen as instantaneous computations
which are subject to real-time requirements.

Harel and Pnueli [HP85] introduce a wording for this kind of dichotomy: transforma-
tional and reactive systems. An Internet communication application has a transforma-
tional character. It accepts plain text in the HTTP request format as input, transforms
it, for example into a binary representation that can be handled by the fieldbus driver
and vice versa, and produces plain text in the HTTP response format as output. The
fieldbus driver software, on the contrary, is repeatedly prompted by the fieldbus and
has to continuously react to the external, incoming characters. By this, it maintains an

21

3 Identification of Reactive Concerns

ongoing interaction with its physical environment based on events. With respect to
Section 2.2, the following becomes apparent:

First, thread-based, sequential programming which relies on asynchronous execution
seems to be particularly suitable for the transformational Internet communication. In
the traditional multi-threaded approach each incoming HTTP request is processed by
a dedicated worker thread typically taken from a thread pool. Second, event-based,
reactive programming which relies on synchronous execution seems to fit the reactive
fieldbus communication. Third, deploying synchronous programming for Internet com-
munication too is not expected to provide any software engineering benefits. On the
contrary, it seems reasonable, that, in an approach that relies on a single model of
computation, only part of the domain-specific problems is easy to solve. The remainder
must be tackled using a technology that lacks appropriate support. In Chapter 4, we
elaborate the corresponding engineering and quality implications in more detail. Fourth,
it seems that, in a perfect world, an uncomplicated implementation that tackles such
oppositional problem domains relies on several, appropriate models of computation.
However, this is generally impossible in today’s C-dominated, monolingual approaches.
On this account, we propose a multilingual software architecture in Section 5.1.1.
Finally, our work deliberately deploys and evaluates the synchronous paradigm for

the reactive fieldbus driver only.

Note on State-of-the-art Internet Technology Some of today’s Internet connectiv-
ity applications escape from the traditional multi-threaded approach due to its poor
efficiency and scalability when dealing with thousands of concurrent requests at the
same time. Instead, they favor event-driven alternatives, for example node.js [TV10],
where a single thread handles all incoming requests simultaneously by taking advantage
of non-blocking, asynchronous Input/Output (I/O) operations. This introduces the
ambiguous term reactivity to the information technology domain and hence generally
relativizes its transformational character. However, reactive web solutions are typically
not applicable and also not needed in resource-constrained embedded systems. Em-
bedded Internet applications are usually not exposed to massive parallelism – they
hardly have to deal with more than a handful of concurrent requests at the same
time. The gateway application, for instance, supports a maximum of three concurrent
requests only and hence favors the simplicity of the traditional multi-threaded model.
For this reason, in the embedded domain, we still consider Internet communication to
be transformational rather than reactive.

22

4 Analysis of the Existing
Asynchronous Implementation

The existing gateway software is entirely written in C. This is true for Internet and
fieldbus communication likewise. Features of an embedded operating system expand
C’s conventional sequential tool set by thread-like, concurrent, asynchronous execution.
However, in Chapter 3, we considered this model of computation to be particularly
inappropriate for implementing inherently reactive concerns such as the fieldbus driver.
In this chapter, we justify our considerations by elaborating the induced software

engineering challenges and drawbacks as well as their manifestation in the existing
fieldbus driver code base. Our results serve as the baseline for the comparative evaluation
of the event-based, reactive, synchronous paradigm in Chapters 5 and 6 respectively.

First, in Section 4.1, we provide an overview about the fieldbus driver’s fundamental
architecture, functionalities and underlying technologies. Second, in Sections 4.2 to 4.4,
we investigate its implementation, thereby focusing on the following aspects: (a) control
and handling of events, (b) concurrency and (c) temporal behavior. Those concerns
are intrinsic to reactive, physical systems [HP85; Lee05] and constitute key issues in
software design [BF14, ch. 2]. Finally, in Section 4.5, we conclude our results.

4.1 Overview
Figure 4.1 illustrates the architectural design of the fieldbus driver. It is composed of
three layers – byte, frame and data – that handle different concerns with respect to
the EMS communication protocol. We assume, for simplicity, that each layer resides
in a single source file, for example ems_byte_layer.c, although this is usually not the
case. For event processing, the byte and the frame layer are centered around the state
machines blState and flState respectively. In addition, they interact with a set of timers
in order to realize temporal behavior. Data exchange between layers relies on shared
memory represented by the flat array buffer and the queue requests. Byte layer code is
mainly executed in the interrupt service routines RxChar and TxChar, frame layer code in
cyclic, high frequency task TaskHigh (TH) and data layer in cyclic, low and medium
frequency tasks TaskLow (TL) and TaskMedium (TM).

4.1.1 Reactive Functionalities
Physically interfacing the fieldbus is done by a serial communication device in hardware.
It independently manages the bit-wise reception and transmission of bytes from and to

23

4 Analysis of the Existing Asynchronous Implementation

Task /Low TaskMedium

EMS Fieldbus Driver

Byte Layer (BL)
"ems_byte_layer.c"

TIMER_MIRRORTIMER_IDLE

buffer

TIMER_CALLBACK

Frame Layer (FL)
"ems_frame_layer.c"

Data Layer (DL)
"ems_data_layer.c"

requests

EMS
fieldbus

web
server

blStateflState

RxChar / TxCharTaskHigh

Figure 4.1: Overview of the fieldbus driver software architecture in C

the fieldbus respectively. In this context, it also provides the three fundamental, external
reception events BYTE, BREAK and ERROR described in Section 3.2. By this, the serial
communication device actually realizes the reactive interface to the fieldbus driver’s
physical environment. The three software layers implement a set of functionalities that
process above events. In general, we will refer to functionalities that involve event
handling as reactive functionalities.

Byte Layer (BL) This layer manages the byte-wise reception and transmission of
frames. Therefore, it implements the reactive functionalities single frame reception
(ReceiveBL) and single frame transmission (TransmitBL). Both are always mutually
exclusive and can be divided into consecutive reactions to above events. ReceiveBL– the
default operation – merges the stream of incoming single bytes into a complete frame.
TransmitBL decomposes a given frame into single bytes and triggers their transmission.
The byte layer does not interpret frame content in any way. The essential steps for
ReceiveBL and TransmitBL are:

ReceiveBL TransmitBL

1. Capture frame start 1. Transmit frame bytes
2. Capture remaining frame bytes 2. Transmit end-of-frame character

Frame Layer (FL) This layer determines whether the device currently operates in
Passive or Active Mode (see Section 2.1) and implements the respective behavior.
Therefore, it realizes the reactive functionalities respond to request frame (RespondFL)
and send request frame (RequestFL). Both take advantage of above byte layer function-
alities. RespondFL– the default operation – is performed in Passive Mode. It accepts an
incoming request frame from another device and provides a proper acknowledgment.
RequestFL is performed in Active Mode. It sends a request frame to another device and
awaits the corresponding feedback. Both functionalities interpret the frame content
to distinguish between read request, read response, write request and write response
frames. The essential steps for RespondFL and RequestFL are:

24

4.1 Overview

RespondFL RequestFL

1. Receive request frame 1. Get next request frame from queue requests

2. Process request frame 2. Transmit request frame
3. Build response frame 3. Wait for response frame
4. Transmit response frame 4. Receive response frame

5. Process response frame

Data Layer (DL) This layer interfaces between the fieldbus and the remaining
application. It accepts EMS requests from the web server, for instance, and translates
them into corresponding request frames. A single EMS request may lead to several
request frames. Request frames can only be transmitted during Active Mode (by
RequestFL). Thus, the data layer buffers them into the dedicated queue requests. Also,
it provides EMS responses back to the web server.

4.1.2 Underlying Technologies
In the domain of embedded systems a number of practical reasons [Tan12] leads to
the choice for the programming language C [KR78]. It provides imperative, sequential
programming which relies on a single-threaded control flow. Its basic set of flow control
mechanisms covers the sequential, branch and iteration structures [Hoa+87]. Reactive
concerns, however, require additional support for control and handling of events,
concurrency and temporal behavior. Those features are not provided by sequential
programming. On this account, the sequential tool set is extended by usage of an “Offene
Systeme und deren Schnittstellen für die Elektronik in Kraftfahrzeugen (OSEK)/Vehicle
Distributed eXecutive (VDX)” [ISO05] compliant operating system. The deliberate
choice for OSEK responds to the strong resource limitations (512 KB ROM, 124 KB
RAM, 48 MHz) imposed by the gateway’s hardware platform.

Operation Purpose and Requirements The OSEK/VDX operating system stan-
dard [ISO05] defines a single-core operating system that aims to provide a uniform
environment for automotive control unit software. Accordingly, its design responds
to demands emerging from the automotive domain. Those applications require to
handle several independent concerns simultaneously. Most of them are characterized by
computation-intensive control tasks. That is, a set of control parameters is continuously
adapted over time according to changes in the system’s physical environment. There-
fore, several differential equations are periodically recalculated. A single calculation
cycle requires negligible processor time since there are no long-lasting and complex
algorithms involved. However, due to the high update frequency, for example 500
recalculations per second, control tasks finally lead to high processing load. As a
consequence, automotive applications typically favor a time-triggered execution policy
based on fixed periods. While mimicking the computation behavior of control tasks
this also improves timing predictability. Due to the safety-critical context, the latter
is mandatory to meet hard real-time requirements and achieve reliability. In order to
tackle cost sensitivity, automotive implementations are additionally subject to stringent

25

4 Analysis of the Existing Asynchronous Implementation

resource requirements. Thus, the OSEK system design consistently aims at a minimum
utilization of RAM, ROM and processor time making it feasible even for low-end 8-bit
microprocessors at a code footprint of 1 to 10 kilobytes [Mar11, p. 191]. With respect
to reactive concerns, the OSEK standard contributes features to the following service
groups: (1) task management, (2) synchronization, (3) interrupt management and
(4) alarms.

Support for Control and Handling of Events OSEK promotes an efficient, event-
driven model of execution based on the notion of tasks and interrupt service routines.
Both entities allow to perform application code on event occurrence. A task holds a
sequence of event handling instructions which can be activated for execution one or
several times during run-time. Each activation spawns a new execution instance which
obtains a new run-time context at the beginning of execution time and discards it on
completion. Activation can be done by calling a system service or by alarm expiration
(see below). A task’s life cycle is generally determined by the state model depicted
in Figure 4.2. While being suspended a task is deactivated and cannot run. A ready
task has been activated and waits for allocation of the processor. During running state,
the task’s instructions are actually performed. Finally, an event mechanism provides
an additional waiting state. The latter causes a task’s control flow to block until a
predefined event occurs.
However, management of tasks with waiting states is, in principle, more complex

and hence requires more system resources [ISO05, p. 16]. In particular, waiting tasks
do not drop their run-time context since they have not yet run to completion. Unable
to continue execution, they remain in the system stack for a potentially considerable
amount of time [Mar11, p. 192]. Thus, separate stack space is mandatory for each task
which increases RAM usage. On this account, OSEK distinguishes between full-featured
extended tasks and limited, resource-saving basic tasks. As illustrated in Figure 4.2,
basic tasks share the same life cycle except the waiting state. Specifically, they cannot
block their control flow for awaiting events. Thus, the event mechanism is not available
for basic tasks. This deliberate limitation reduces RAM utilization by enabling stack
sharing across tasks [Mar11, p. 192]. In order to allow a high reuse of system resources
and meet real time requirements, basic tasks demand a run-to-completion semantic.
That is, after activation they are intended to terminate and release their resources as
fast as possible – long-lasting tasks are generally discouraged.

“In this way, the [basic] task behaves like a function, which allocates a
frame on the stack, runs, and then cleans the frame.” [Mar11, p. 193]

With respect to their event handling semantics, interrupt service routines behave similar
to basic tasks. However, since interrupts are reserved for highly time-critical reactions,
the need for negligible execution time is of great importance. While basic tasks are
generally intended for recurring events and cyclic polling or updating, interrupt service
routines particularly address sporadic reactions.

Due to the gateway’s strong resource limitations, the memory overhead of extended
tasks is not tolerable. Thus, the implementation is restricted to efficient basic tasks

26

4.1 Overview

Figure 4.2: OSEK task state model [ISO05, p. 17–18]

and interrupt service routines. To sum it up, their execution instances conceptually
spawn a new trail (see Section 2.3) which is subject to the following constraints:

Constraint 1: It obtains a new run time context at start of execution time and discards
it on completion.

Constraint 2: It must run to completion as fast as possible; long-lasting computations
are forbidden.

Constraint 3: It cannot block its control flow waiting for an event to occur (as a
consequence of Constraint 2).

We will further denote this provided model of execution by one-shot trails.

Support for Concurrency In OSEK, tasks and interrupt service routines are concur-
rent units of execution. The OSEK operating system allows several execution instances
of tasks or interrupt service routines to coexist during runtime. If multiple tasks are in
the ready state at the same time, they are competing for processor time. In this case,
the OSEK operating system software performs asynchronous, preemptive scheduling.
That is, the scheduler organizes the sequence in which concurrent tasks interleave
their execution. Related preemption decisions are based on static, user assigned task
priorities.

Inter-task synchronization is explicit and provided by two means. On the one hand,
resource management takes advantage of semaphores in order to coordinate access to
shared resources. A priority ceiling protocol avoids priority inversion. On the other
hand, event control enables a task to suspend execution until an event occurs. This
mechanism can be effectively used to synchronize the control flow between multiple
concurrent tasks. However, as mentioned above, event-based synchronization is reserved
to extended tasks only. Consequently, except for semaphores, basic tasks only comprise
synchronization points at the beginning and end of each execution instance.

27

4 Analysis of the Existing Asynchronous Implementation

imperative, sequential,
single-threaded programming

event-driven,
one-shot trails

asynchronous,
concurrent execution

alarms

language-level
support by C
(baseline)

execution environment
support by OSEK
(extensions)

Figure 4.3: Underlying technologies provided by C and OSEK

Interrupt service routines have priority over tasks. Their scheduling is performed by
hardware and not covered by the OSEK specification.

Support for Temporal Behavior Interfacing with physical time is provided by the
notion of alarms in OSEK. Alarm management is a service for processing recurring
events. The basic idea is to count the occurrences of a certain event and automatically
trigger a notification – called alarm – as soon as a predefined counter value is reached.
This approach is based on an implementation-specific counter, managed by the operating
system, that is successively incremented on each event occurrence. Event source may
be, in principle, any application-specific trigger, for example an interrupt of a serial
communication device in order to notify about received messages. However, to interface
with the time domain, OSEK demands at least one counter that is sourced by a timer.
The latter is configured to generate an event at regular time intervals depending on
the required resolution. Based on this master clock, the counter measures the passage
of time according to the timer’s frequency.
Alarms can be defined to expire once (single alarm) or periodically (cyclic alarm).

Their expiration may cause the operating system to (1) activate a task, (2) execute a
callback function or (3) set an event. Option 3, however, is only provided for extended
tasks. The notion of alarms essentially maps the passage of physical time to events.
By this, it provides an effective link between the physical time domain and OSEK’s
event-driven execution model. The combination of cyclic alarms which periodically
activate basic tasks particularly responds to the time-triggered execution policy of
short-lived computation tasks.

Summary To sum it up, Figure 4.3 illustrates the underlying technologies in use. C
provides (1) imperative, sequential, single-threaded programming on language-level.
OSEK extends this baseline by (2) event-driven, one-shot trails, (3) asynchronous,
concurrent execution and (4) alarms.

4.2 Control and Handling of Events
Events indicate that something notable has happened in the system’s physical envi-
ronment. Some of them require a proper response. Performing such kind of system

28

4.2 Control and Handling of Events

(s)eq./(c)onc. s s s s s s s s c c c c c c c c
(o)ne/(m) loc. o o o o m m m m o o o o m m m m
(p)ass./(a)ct. a a p p a a p p a a p p a a p p
(b)l./(n)on-bl. b n b n b n b n b n b n b n b n
Strategy 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Table 4.1: Combination possibilities for event handling

reaction is known as event handling. In order to do that, two essential steps are required.
First, the system must observe the event. This is done by awaiting its occurrence
somewhere in the application code. Second, once the event has been detected, the
proper reaction code must be executed. This basic procedure is common for all reactive
applications independent of their concrete hard- and software circumstances. However,
corresponding implementations may follow quite different strategies and hence impose
different implications on software engineering and quality.
In the following, we explain the fundamental event handling strategy adopted by

the existing fieldbus driver software and how it manifests in the code. Subsequently,
we provide a qualitative discussion.

4.2.1 Fundamental Strategy
Based on the technologies presented in Section 4.1.2, we explore the solution space for
implementing event handling. Different strategies are generally imaginable. First, an
event can be processed sequentially in a single trail or concurrently in several trails
(see Section 2.2). Second, as depicted in Figure 4.4, in each trail it can be awaited at
one or multiple code locations. Third, checking for an event occurrence can be done
using either a polling (active) or an inversion of control (passive) approach. Fourth,
the control flow of the corresponding trail may or may not block until the event occurs.
Table 4.1 presents the resulting set of all 16 possible combinations. However, due to
the technologies in use, only a subset is usefully applicable.

Strategies 9 to 16 Handling a certain event in several trails considerably increases
implementation complexity. In particular, due to the asynchronous, independent
execution model, the developer is faced with the burden to globally coordinate
event processing across trails. On the one hand, trails require to have a common
understanding of when the event has occurred in the system and is ready to

b)a) c) d)

trail

await event

Figure 4.4: Locations awaiting an event: a) One trail, one location. b) One trail, several
locations. c) Several trails, one location. d) Several trails, several locations

29

4 Analysis of the Existing Asynchronous Implementation

get handled (start of reaction). On the other hand, there has to be a common
understanding of when processing has been completed by all trails involved (end
of reaction). Thus, at least two synchronization points are mandatory to realize an
event reaction. However, due to asynchronous trail execution, additional effort is
required in order to explicitly implement such kind of inter-trail synchronization.
Actually, an application specific event handling management logic is required for
global coordination. Moreover, the developer has to define the order in which
involved trails execute, for example in an interleaving or sequential fashion. Apart
from event handling management logic, the developer has to take care of access to
shared resources in order to prevent race conditions. Therefore, synchronization
mechanisms with all their disadvantages (see Section 4.3) have to be used.

Strategies 6, 8 We consider waiting at multiple code locations within a trail to be
useful only if a sequential event processing is intended. That is, at a certain
location we wait for a specific event to occur, then execute the code below for
realizing the corresponding reaction. Subsequently, we wait at the next location
and so on. Obviously, this approach requires to block the control flow of the
corresponding trail. This is in contradiction to Constraint 2 and 3 of one-shot
trails. Consequently, we consider strategies 6 and 8 to be not usefully applicable
in practice.

Strategies 1, 3, 5, 7 Blocking approaches are in contradiction to Constraint 2 and 3
of one-shot trails and hence have to be discarded.

1: loop do
2: await BYTE;
3: <reaction>
4: end

BYTE

BYTE

BYTE

BYTE

t

Figure 4.5: Programming scheme of the single entry point model

Finally, it appears that only strategies 2 and 4 remain. Figure 4.5 illustrates their
common programming scheme. In the entire application there is solely one trail and
code location awaiting BYTE in a non-blocking fashion (line 2). Irrespective of which
strategy (active or passive) is eventually adopted, the assigned reaction code is executed
subsequently (line 3). Once the reaction has been completed the procedure is repeated.
Consequently, all occurrences of BYTE enter the same code location for getting processed.
Thus, hereinafter we refer to this as the single entry point model. In fact, this is the
usual approach adopted in resource-constrained embedded systems.

30

4.2 Control and Handling of Events

The single entry point model demands to map an event reaction to a trail in a
one-to-one relationship. This leads to the traditional callback approach adopting
the popular observer pattern [Gam+95]. However, callbacks are known to induce
implementation effort on top of business logic. First, due to Constraint 2 and 3, each
instance can only handle a single event occurrence. All occurrences enter application
code at the same location. In order to individualize event reactions, for example treat
the first occurrence of BYTE in a different way than the second one, manual state
management [Kas07] is required. Second, Constraint 1 eliminates any event history
across reactions. Consequently, application data and progress must be retained by
manual stack management [Ady+02; Kas07].

4.2.2 Implementation Outline
In Figure 4.6, we provide an outline of today’s byte layer implementation featuring
ReceiveBL and TransmitBL. It takes advantage of OSEK’s interrupt service routines,
thereby relying on the single entry point model. Arrows 1 to 8 illustrate the logical
control flow performed for one run of RespondFL. That is, the fieldbus driver first
executes ReceiveBL to receive a frame and then TransmitBL to transmit the response.
We assume the “good case” without any communication errors.

External fieldbus events BYTE, BREAK and ERROR enter application code via the
common interrupt service routine RxChar (lines 4 to 50). In addition, interrupt ser-
vice routine TxChar (lines 52 to 62) provides an internal event triggered on character
transmission. Manual state and stack management are addressed by deploying a flat,
handwritten state machine and global variables respectively. In particular, buffer (line
1) retains the last frame received or the next frame to send across event reactions while
blState (line 2) stores the state machine’s current state. In order to advance the state
machine, RxChar first selects the current event (lines 6, 35 and 48), then the current
state (lines 7 and 36) and finally the transition to take. Variable notify (line 3) aids as
a flag to synchronize byte and frame layer control flow. In Section 4.3.1, we return to
that in more detail. Note that notify actually resides in the frame layer but is made
accessible using extern.

RespondFL starts with ReceiveBL and waits for the start of frame in IDLE (1). On
arrival (line 8), the byte is stored (line 9) and the state is set to RECEIVING (line 10).
The latter encodes that the frame start has been captures successfully. Control flow
advances (2) to collect the remaining bytes (line 14). The receipt of the end-of-frame
character causes the control flow to move (3) and state is changed to COMPLETE (line 38),
thereby indicating that ReceiveBL has been successfully finalized. notify is set (line 39)
to signal the completed frame capture to the frame layer.
Concurrently (not depicted in Figure 4.6), frame layer task TH (see Section 4.1)

monitors notify and executes in response. It parses the captured frame, builds the
response and stores it to buffer (see Section 4.3.1). To start TransmitBL, TH triggers
the transmission of the first response frame byte and forces blState into TX_BYTE. By
this, control flow implicitly moves from RxChar to TxChar (4). This triggers a ping-pong
procedure between both interrupt service routines. Once byte transmission completed,

31

4 Analysis of the Existing Asynchronous Implementation

01:uint8_t buffer[MAX_FRAME];
02:uint8_t blState = IDLE;
03:extern uint8_t notify;

04:ISR(RxChar) {
05: <...>
06: if(<BYTE>) { // BYTE
07: switch(blState) {
08: case IDLE:
09: buffer[0] = <byte>;
10 blState = RECEIVING;
11: break;
12: case RECEIVING:
13: if(<buffer-not-full>) {
14: buffer[<...>] = <byte>;
15 } else { <...> }
16: break;
17: case MIRR_BYTE:
18: <...>
20: else if(<more-to-send>) {
21: blState = TX_BYTE;
22: sendByte(buffer[<...>]);
23: } else {
24: blState = TX_BREAK;
25: sendBreak();
26: }
27: break;
28: case MIRR_BREAK:
29: <...>
30: break;
31: default:
32: blReset();
33: break;
34: }}

35: else if(<BREAK>) { // BREAK
36: switch(blState) {
37: case RECEIVING:
38: blState = COMPLETE;
39: notify = 1;
40: break;
41: case MIRR_BREAK:
42: <...>
43: else {
44: blState = IDLE;
45: }
46: break;
47: <handle-remaining-states>
48: }} else { // ERROR
49: blReset();
50: }}
51:
52:ISR(TxChar) {
53: switch(blState) {
54: case TX_BYTE:
55: blState = MIRR_BYTE;
57: break;
58: case TX_BREAK:
59: blState = MIRR_BREAK;
61: break;
62:}}

63:void blReset(void) {
64: <reset-global-variables>
65: blState = IDLE;
66:}

1

2

3 4

5

6a

6b

8

"ems_byte_layer.c"

7

Figure 4.6: Outline of the byte layer implementation featuring ReceiveBL and
TransmitBL (arrows 1 to 8 depict the logical control flow performed for one run

of RespondFL)

TxChar advances blState to MIRR_BYTE (line 55) to await the mirror, thereby returning
control flow to RxChar (5). If the response frame has not been transmitted completely
yet (line 20) blState changes to TX_BYTE again (line 21) and the next byte is sent (line 22).
This moves control flow back to TxChar (6a). If all frame bytes have been transmitted
(line 23), the state is set to TX_BRK (line 24) instead and the end-of-frame character is
transmitted (line 25). Control flow advances to TxChar (6b) causing blState to switch to
MIRR_BRK (line 59). Control flow returns to RxChar awaiting the end-of-frame character
mirror (7). On reception (line 41), TransmitBL and consequently RespondFL complete.
Finally, the state machine returns to ReceiveBL (line 44) waiting for the next frame to
arrive (8).

4.2.3 Discussion
Above state machine approach “generally leads to excellent and measurable perfor-
mances; a reaction is a ‘linear’ piece of code (neither loop nor recursivity, no interrupt,
no overhead due to process management), whose maximal execution time can be
accurately bounded.” [Hal93, p. 3] However, while automata are indispensable for many
application areas, they seem to sacrifice software engineering principles in favor of
addressing embedded constraints.
Sequential programming in C provides three layers of abstraction given by instruc-

tions, functions and source files. Figure 4.7 illustrates their adoption in above state

32

4.2 Control and Handling of Events

instruction:

function: Rx
Ch
ar

ems_byte_layer.c

BY
TE

t

level of
abstraction

source file:

event
reaction

[gap]

Rx
Ch
ar

Rx
Ch
ar

Rx
Ch
ar

Rx
Ch
ar

BY
TE

BR
EA
K

BY
TE

ER
RO
R

[Receive] BL [Transmit] BL

Figure 4.7: Mapping of C’s abstraction ladder to the adopted event processing

machine approach. RxChar behaves like a function and abstracts over single event re-
actions while source file ems_byte_layer.c abstracts over all reactions performed for
fieldbus communication. Reactive functionalities ReceiveBL and TransmitBL cover a
respective subset of event reactions – more than one but less than all. However, it
seems that sequential programming comprises an abstraction gap for event sequences.
In particular, ReceiveBL and TransmitBL cannot be mapped to functions. Note that
functions provide function-oriented software decomposition by design. This supports
the deployment of most important software design principles, for example modulariza-
tion, separation of concerns and encapsulation [BF14, ch. 2], on language level. Their
inapplicability causes the loss of any above language-level support for implementing
ReceiveBL and TransmitBL respectively. It appears, that this leads to a number of
implications.

Torn and Convoluted Control Flow The logical control flow is inevitably torn across
several function calls. This demands global variables and global state. The usage of
global variables entails a well-known line-up of engineering disadvantages on its own
[SK13]. Global buffer, for example, is not thread-safe but shared between byte and frame
layer. In Section 4.3.1, we elaborate the implementation and mental effort required for
synchronizing access to buffer. Furthermore, only detailed knowledge about the byte
and frame layer state machine’s switching logic reveals whether buffer is currently in
use and, if so, whether it is used for a read or write operation. This makes it difficult
to reason about its current state which is used and modified by a certain function,
thereby generally complicating debugging and testing.
Apart from that, sequential programming lacks language-level support for imple-

menting automata. The adopted workaround relies on arbitrary complex combinations
of conditional code execution to successively filter for the transition to take. The
original code of RxChar encompasses up to seven deep levels of nesting. Also, due to the
sequential arrangement of conditional code blocks, the logical control flow seems to
“jump” between branches across reactions (see arrows in Figure 4.6). Consequently, it
appears that the workaround just relaunched low-level GOTO-like execution semantics
into the high-level programming language C. The combination of a tangling control
flow, deep nesting and global variables requires a great deal of mental effort to establish

33

4 Analysis of the Existing Asynchronous Implementation

the cognitive link between the technical EMS communication protocol specification,
which favors timing diagrams, and its manifestation in the code. For example, mutual
exclusion of ReceiveBL and TransmitBL is not obvious. Each functionality manifests in
several states. State switches may, in principle, appear in any arbitrary order allowing
ReceiveBL and TransmitBL to interleave.

Unsuitable Encapsulation In general, a single reactive functionality may rely on
different events to fulfill its task while a single event may contribute to different reactive
functionalities. Aspiring a function-oriented software design [BF14, ch. 2] reasonably
requires code encapsulation per functionality as depicted in Figure 4.8. This abstracts
all the code responsible for processing any event according to the current functionality
to be performed. However, due to the single entry point model, functions in C only
allow encapsulation per event which appears to be the orthogonal approach. This
abstracts all the code responsible for processing a certain event depending on the
current functionality to be performed.

BYTE BREAK ERROR

ReceiveBL
Transmit

BL

per functionality

x = "uses" respectively "contributes to"
desired encapsulation

available
encapsulation

p
e
r

e
v
e
n

t

Figure 4.8: Orthogonal encapsulation approaches

Encapsulation on a per-event basis is generally a suitable approach in order to
separate the complexity of a single event reaction into smaller auxiliary functions such
as blReset (lines 63 to 66). This allows to shrink the overall size of the state machine
implementation in RxChar, thereby improving readability and avoiding code redundancy,
for example for default transitions. However, note that this scatters, at the same time,
the state machine’s switching logic across several functions making the effect and
traceability of involved state transitions hard to understand.
Furthermore, it inevitably merges the concerns of different reactive functionali-

ties. Thus, we cannot usefully break the complexity of fieldbus communication into
separated, smaller entities. Eventually, this leads to a monolithic software design
centered around a complex state machine in RxChar which features ReceiveBL and
TransmitBL likewise. The lack of separation of concerns prevents functional isolation.
This eliminates any option for independent and parallel programming of ReceiveBL and
TransmitBL by different developers. Any change to ReceiveBL may potentially interfere
with TransmitBL and vice versa. Note that this also affects testing. If one functionality
is slightly modified, regression tests require to re-test the whole automaton. Also, an
observed phenomenon cannot be easily assigned to either ReceiveBL or TransmitBL

which complicates debugging.

34

4.2 Control and Handling of Events

Lack of Hierarchical Composition Conceptually, RespondFL and RequestFL are com-
posed reactive functionalities that rely on the byte layer. They determine execution
start and termination of ReceiveBL and TransmitBL in order to fulfill their task. The
latter both, in their turn, just provide a basic service without knowing anything about
either RespondFL or RequestFL. This unidirectional dependency allows to structure
software in a hierarchical fashion, thereby reducing the complexity on each abstraction
level and promoting modularity. For non-reactive concerns, this is trivial to implement
in C. Sequential programming allows to simply call a (sub-)function within another
function, thereby supporting the unidirectional coupling between caller (for example
frame layer) and called (for example byte layer) on language-level. This instantiates
the called, passes the parameters, starts the called, waits for its termination and
provides the return value to the caller. Also, if the caller terminates the called is
automatically aborted too. However, due to the lack of a suitable encapsulation entity,
this language-level feature is lost in the reactive domain.

notify

buffer

blReset()

startTransmission()

readFrame()

writeFrame()

flReset()

blState

flState

"ems_frame_layer.c" "ems_byte_layer.c"

"interfaces"

Figure 4.9: Interaction between byte and frame layer

As a result, Figure 4.9 reveals that the fieldbus driver implementation comprises
a rather flat architecture. Instead of a hierarchical structuring, the byte and frame
layers conceptually act on the same level. Their corresponding state machines run
concurrently so that any hierarchical dependency must be implemented manually. This
includes parameter passing, synchronization of control flows, reinitialization, execution
of default transitions and propagation of termination. Therefore, both layers provide
an “interface” based on a loose collection of functions which perform side effects on
global variables. For example, there is no language support for letting a sequence of
RxChar executions provide a return value, in order to notify about a successful frame
capture. With respect to the byte layer, readFrame and writeFrame access buffer in order
to exchange frames between the layers. startTransmission triggers TransmitBL by setting
blState to TX_BYTE. blReset is used to reset the byte layer state machine in case of errors
or termination of RespondFL and RequestFL respectively. With respect to the frame
layer, notify is used as a synchronization flag while flReset allows to reset the frame
layer state machine in case of communication errors.
The lack of a well-defined, non-scattered interface makes it hard to delimit the

layer implementations against each other. Due to the state machines mutual influences,
ReceiveBL and TransmitBL seem to be intertwined with RespondFL and RequestFL. This
generally complicates reuse and makes reasoning about how layers actually interact

35

4 Analysis of the Existing Asynchronous Implementation

during runtime a challenge. For example, it is not clear in which order function calls
and accesses to global variables must be performed in order to make the approach
work. There is no local, smooth, compiler-checked call which allows to hide all the
complexity involved in layer interaction. Instead, each involved step, in principle, must
be verbosely recorded, for example based on prose text or diagrams, making source code
documentation a time-consuming and daunting task. However, it appears that – if at all
– this is often not thoroughly done and hence may lead to a lack of understanding and
incorrect usage. In Section 4.3.1, we exemplarily elaborate the required implementation
and mental effort in more detail.

4.3 Concurrency
Concurrency is concerned with decomposing software into separated units of execution
that run concurrently. As presented in Section 4.1.2, OSEK provides the notion of
basic tasks and interrupt service routines on this purpose. The design for concurrency
is usually motivated by two reasons [Hal93]. First, physical concurrency allows to
increase performance or reliability by executing code on parallel or distributed hardware
architectures. Second, logical concurrency provides a convenient and natural way to
compose a system as a set of parallel, cooperating components. Logical and physical
concurrency are not necessarily the same. Remember that OSEK is designed as a
single-core operating system and that the gateway’s hardware platform relies on a
single-core processor. Thus, our application comprises only logical concurrency.

Specifically, the fieldbus driver is composed of the byte, frame and data layers which
run concurrently. In order to fulfill their task, interaction between the layers is required.
However, due to OSEK’s asynchronous scheduling, their execution may interleave, in
principle, in any non-deterministic order. Thus, the key challenge in asynchronous,
concurrent programming is to guarantee correct interaction for all possible interleavings.
Any order that is not explicitly ruled out is allowed. The developer is faced with the
burden of pruning away the non-determinism. Therefore, points of synchronization
between the concurrent execution entities must be introduced explicitly. Since most
developers think sequentially, synchronizing concurrent code is difficult and error-prone
[Lee05; Lee06; Lu+08]. Lu et al. [Lu+08] classify related concurrency issues in two
main categories: deadlock and non-deadlock bugs. In our application, the only locking
mechanism in use are OSEK’s semaphores for resource management. They adopt the
priority ceiling protocol [ISO05, p. 31] which prevents priority inversion and deadlocks
by design. However, this deals with only part of the synchronization problem – issues
not related to deadlocks still remain. According to Lu et al. [Lu+08], non-deadlock
bugs usually manifest in two simple bug patterns:

Atomicity Violation “The desired serializability among multiple memory accesses is
violated. (i.e. a code region is intended to be atomic, but the atomicity is not
enforced during execution.)” [Lu+08, p. 332]

36

4.3 Concurrency

Order Violation “The desired order between two (groups of) memory accesses is
flipped. (i.e. A should always be executed before B, but the order is not enforced
during execution.)” [Lu+08, p. 332]

In the following, we present the strategies adopted in the fieldbus driver implementation
to ensure the required atomicity and execution order. Subsequently, we provide a
qualitative discussion. Therefore, we consider two different approaches. The first relies
on manual synchronization without any OSEK support. The second takes advantage
of OSEK’s semaphores.

4.3.1 Synchronization without Operating System Support
While the byte layer code is executed sporadically in interrupt service routine RxChar,
the frame layer code runs repeatedly in a cyclic high frequency basic task TH . Both
concurrent units of execution perform cooperative interaction. This means that they
voluntarily pass control among each other according to a common execution policy.
RespondFL accepts a request frame captured by ReceiveBL and provides a response
frame to be sent by TransmitBL. RequestFL, in its turn, provides a request frame to
be sent by TransmitBL and accepts a response frame captured by ReceiveBL. Thus,
for RespondFL the frame layer executes in response to the byte layer; for RequestFL

it is vice versa. Due to the strong resource limitations, data exchange is based on
shared memory communication. The dedicated byte array buffer is used for passing
a single frame up and down the layers. Byte and frame layer require to synchronize
their control flow – RespondFL, for example, must wait for ReceiveBL to complete –
and access to the shared memory in order to avoid data races. In OSEK, semaphores
prevent a task or interrupt service routine to enter the running state if the required
resource, for example buffer, is currently locked. Thus, the fieldbus driver deliberately
abstains from locking mechanisms in RxChar in order to keep it responsive.

Required Atomicity and Execution Order A frame read or write operation per-
formed on buffer is composed of a sequence of single byte accesses. Each byte access
is intrinsically atomic due to the microcontrollers hardware architecture. However, in
between any two byte accesses frame read and write operations may interleave in any
arbitrary order.
For ReceiveBL and TransmitBL, a single frame read or write operation is spread

across several execution instances of RxChar. For writing, this is due to the fact that
bytes arrive successively over time and hence are stored through separated reactions
(see Section 4.2.2). The same applies for reading due to the mirroring mechanism (see
Section 2.1). Interrupt service routines have priority over tasks. However, in between
any two consecutive runs of RxChar, frame layer code may access buffer and hence
interleave the current read or write operation.

For RespondFL and RequestFL, a single frame read or write operation is performed in
a single execution instance of TH using a loop. However, due to the higher priority of
byte layer code, access to buffer in the frame layer may be interleaved at any time too.

37

4 Analysis of the Existing Asynchronous Implementation

In order to ensure data consistency, frame read and write operations must be atomic.
This means that once an operation on buffer has been started it must not interleave
with another one. If frame reading and writing interleave, the read operation will return
an incomplete, corrupted frame. If two writing operations interleave, the content of
buffer depends on their execution order but generally leads to data loss and corruption.
The only harmless interleaving is between two reading operations since they do not
perform any side effects on the buffer. Finally, for atomicity, they have to follow a
single-writer-multiple-readers policy [CHP71]. Note that any other code that does not
access buffer may interleave without any implications.

Byte Layer

buffer

Frame Layer

1. write2. read

3. write 4. read

RespondFL

Figure 4.10: Order of accesses to buffer required for ReceiveBL

Figure 4.10 illustrates the required execution order of read and write operations
for RespondFL. First, the byte layer performs a write operation to store the captured
request frame (1). Second, the frame layer processes the frame, thereby performing a
read operation (2). Third, the frame layer builds the response frame and performs a
write operation to store it to buffer (3). Forth, the byte layer performs a read operation
to transmit the response (4). For RequestFL, the order is essentially inverted. Thus, the
application imposes an alternating, sequential execution semantic for read and write
operations across byte and frame layer. This cooperative access policy automatically
ensures atomicity.

Implementation Outline Synchronization for RespondFL and RequestFL follows a
similar approach. Thus, for simplicity, we exemplify RespondFL only. Figure 4.11 illus-
trates how above requirements manifest in the code. Accesses to buffer are highlighted
bold.
At start of RespondFL, the byte layer logically has access control for buffer and

executes ReceiveBL. Task TH cyclically executes callback taskHighCallback (lines 4 to 8).
The actual frame layer code which handles a captured frame is located in handleFrame

(lines 10 to 19). The latter is only executed once the flag notify is set to 1 (line 5). Since
notify is 0 by default (line 1), frame layer code is inactive and waits for ReceiveBL to
complete.
The byte layer initiates the first write operation (1) in state IDLE by storing the

frame start (line 28). Writing continues in RECEIVING by storing the remaining frame
bytes (line 33). On end-of-frame character (line 46), the first write operation completes.
Subsequently, the byte layer state machine switches to COMPLETE (line 49). In COMPLETE,
any incoming byte is discarded (line 43). The byte layer cannot leave this state on its

38

4.3 Concurrency

20:uint8_t buffer[MAX_FRAME];
21:uint8_t blState = IDLE;
22:
23:ISR(RxChar) {
24: <...>
25: if(<BYTE>) {
26: switch(blState) {
27: case IDLE:
28: buffer[0] = <byte>;
29 blState = RECEIVING;
30: break;
31: case RECEIVING:
32: if(<buffer-not-full>) {
33: buffer[<...>] = <byte>;
34 } <...>
35: break;
36: case MIRR_BYTE:
37: <...>
38: else if(<more-to-send>) {
39: blState = TX_BYTE;
40: sendByte(buffer[<...>]);
41: } <...>
42: break;
43: case COMPLETE: /* discard */ break;
44: <...>
45: }}

01:uint8_t notify = 0;
02:uint8_t flState = PASSIVE;
03:
04:void taskHighCallback(void) {
05: if(notify == 1) {
06: handleFrame();
07: notify = 0;
08:}}
09:
10:void handleFrame(void) {
11: readFrame();
12: <process-frame>
13: switch(flState) {
14: case PASSIVE:
15: <build-response>
16: writeFrame();
17: startTransmission();
18: <...>
19:}}

TaskHigh

1

3

4

2

pass access control

return access

control

Interrupt Service Routine

"ems_byte_layer.c""ems_frame_layer.c"

46:else if(<BREAK>) {
47: switch(blState) {
48: case RECEIVING:
49: blState = COMPLETE;
50: notify = 1;
51: break;
52: <...>
53:else {
54: blState = IDLE;
55:}}
56:
57:void startTransmission(void) {
58: blState = TX_BYTE;
59: sendByte(buffer[0]);
60:}
61:
62:void readFrame(<...>) {
63: for(<...>) {
64: <...> = buffer[<...>];
65:}}
66:
67:void writeFrame(<...>) {
68: for(<...>) {
67: buffer[<...>] = <...>;
68:}}

Figure 4.11: Synchronization without operating system support in C

own account. Instead, it requires the frame layer to switch the byte layers state. By
this, the byte layer deactivates itself in order to prevent any accidental access to buffer

while the frame layer code is running. At the same time, it sets notify in order to pass
access control to the frame layer and activate it for frame processing (line 50).
The Frame layer, in its turn, actually executes handleFrame (line 6). In handleFrame,

function readFrame (line 11) performs the first read operation (2) in order to copy the
frame to a local buffer. Subsequently, the copied frame is processed (line 12) and the
response frame built (line 15). Then, function writeFrame copies the response frame to
buffer (line 16), thereby performing the second write operation (3). Finally, the frame
layer calls startTransmission (line 17), thereby forcing the byte layer into TX_BYTE (line
58) and transmitting the first byte of buffer (line 59). This reactivates the byte layer
state machine and initiates TransmitBL, thereby returning access control back to the
byte layer. Once handleFrame terminates, flag notify is reset (line 7). By this, the frame
layer deactivates itself again. The byte layer performs the second read operation (4)
to transmit the frame byte-wise onto the bus (line 40). On completion, the byte layer
returns to IDLE respectively ReceiveBL, thereby restarting the procedure.

Discussion Reasoning about synchronization in the manual approach generally re-
quires a considerable amount of mental effort. This is due to the fact that synchroniza-
tion does not manifest in a single code location. There is no concise language primitive,
for example like synchronized in Java, that explicitly indicates a certain variable being
thread-safe. Instead, the manual approach highly relies on implicit knowledge and is
scattered across functions and source files:

1. The switching logic of the byte layer state machine ensures sequence (1,4).

39

4 Analysis of the Existing Asynchronous Implementation

2. The sequential execution of readFrame (line 11) and writeFrame (line 16) in TH as
well as the switching logic of flState ensure the sequence (2,3).

3. notify aids as a synchronization variable for the handshake between byte and
frame layer (line 5), thereby ensuring the sequence (1,2).

4. blState aids as a synchronization variable for the handshake between frame and
byte layer (line 17 respectively 58), thereby ensuring the sequence (3,4).

This makes it hard to identify and localize points of synchronization in the code and
to grasp how they actually work. Solely reviewing the code of handleFrame, for example,
does not reveal that calling readFrame (line 11) in that particular situation is safe. Quite
the contrary, since the byte layer executes in RxChar which has priority over the frame
layer’s TH , it appears reasonable to assume that readFrame may be interrupted at any
time. Only because we know that the byte layer’s state machine is inactive – so to
speak – while frame layer code executes, we do not have to care about any further
synchronization. This means that while developing handleFrame, assumptions about the
implementation of RxChar are made. This induces two major drawbacks:

First, synchronization takes advantage of implicit knowledge that does not directly
manifest in the code but on a higher level of abstraction such as the state machine
logic respectively the EMS communication protocol. This makes reasoning about the
correctness of synchronization a challenge. The following cognitive interlude should
make this apparent:
If we consider, for example, the access to the global synchronization variables we

might question whether it is possible that a transmission initiation (line 17) gets lost if
the frame and byte layers try to set blState at the same time. Is simultaneous access
to blState even possible? As argued above, the byte layer code is usually inactive in
COMPLETE while startTransmission executes. However, in case of ERROR (line 53), it returns
to IDLE (line 54), thereby getting reactivated. Since blState is an 8-bit variable, access
is intrinsically atomic due to the microcontrollers hardware architecture. RxChar has
priority over TH . Thus, it may happen that startTransmission sets blState to TX_BYTE (line
58) and subsequently gets preempted by RxChar due to the receipt of ERROR. RxChar, in its
turn, resets blState to IDLE (line 54) and terminates. Then, startTransmission continues to
send the first byte of the response frame (line 59) and terminates too. In this scenario,
the remaining frame bytes are never transmitted because in IDLE the incoming mirror
bytes do not trigger the next byte transmissions. Consequently, TransmitBL fails. It
seems as if synchronization is not correct. However, due to the EMS communication
protocol, the following holds true. If we are in the situation that we want to transmit a
frame, we either own the fieldbus (in case of RequestFL) or another device is currently
waiting for our reply (in case of RespondFL). In both cases, the protocol ensures that
there is no communication meanwhile and hence no erroneous byte can be received.
Thus, this case should never happen. Nevertheless, in the unlikely event it happens,
for example because of an interfering signal on the bus, the byte layer state machine
resets to IDLE and waits for a new transmission trigger by the frame layer. The frame
layer, in its turn, implements a timeout in order to notice that the transmission has

40

4.3 Concurrency

not been successful. The timeout causes a retransmission of the same response frame
in future. Finally, simultaneous access, in principle, may appear but will not cause
any harm. This exemplary consideration should make apparent the imposed cognitive
challenge required for reasoning about the correctness of interleavings between byte
and frame layer code – it appears to be a very daunting and error-prone task.

“[...] humans are quickly overwhelmed by concurrency and find it much
more difficult to reason about concurrent than sequential code. Even careful
people miss possible interleavings among simple collections of partially
ordered operations.” [SL05, p. 56]

Second, the assumptions about the implementation of RxChar clearly introduce interde-
pendencies between the byte and the frame layer code. This makes the synchronization
approach fragile since it only works by correct correspondence of all involved features.
Calling readFrame and writeFrame is not thread-safe in general – only under a specific
set of preconditions. The behavior of both state machines must perfectly match, for
example with respect to self-deactivation. Consequently, they can not be easily devel-
oped independently and the slightest modification of their switching logic may cause
the entire synchronization to fail. Thus, we cannot easily use readFrame in another
execution context, for example in a concurrent logging service that creates a protocol
of all received frames for debugging purpose. This would require to manually extend
synchronization to the logging task or to hook the logging function into TH at the
correct location. Moreover, the approach of mutual state machine activation requires
to take great care. The scenario in which both state machines are inactive at the same
time must be explicitly ruled out when designing the state transitions. Otherwise the
fieldbus driver might become inoperative. Finally, note that synchronization variables
notify and blState have global scope. Their deployment causes operations in the byte
layer to affect the behavior in the frame layer and vice versa. This creates additional
mutual dependencies and untracked interactions between the separated software layers.
In software engineering, this is generally considered an irregularity, called “action at a
distance” [SK13].

4.3.2 Synchronization with Operating System Support
While the frame layer code is executed in a cyclic high frequency basic task TH , data
layer code runs in a cyclic medium frequency basic task TM as well as in a cyclic low
frequency basic task TL. All three concurrent units of execution perform competing
interaction. Specifically, they compete for access to a shared memory given by a frame
queue requests. The queue aids as a buffer for storing request frames that have to be send
by future runs of RequestFL. Competing means that each execution unit tries to obtain
access on demand without coordinating with the others. RequestFL consumes request
frames from the queue and performs their transmission. The data layer produces request
frames by two means. First, TM processes HTTP requests from the web server and
uses the data layer to sporadically create and enqueue corresponding request frames

41

4 Analysis of the Existing Asynchronous Implementation

on demand (event-triggered). Second, TL runs an update service that periodically
creates and enqueues request frames for fieldbus data which require regular updates
(time-triggered). The frame and the data layers require to synchronize their access to
the shared memory in order to avoid data races. Synchronization is implemented using
the semaphore locking mechanism provided by the OSEK operating system.

Desired Atomicity and Execution Order The queue requests is implemented as a
circular buffer. Enqueue and dequeue operations require multiple steps in order to
modify the involved data fields as well as the read and write indices. In contrast to
Section 4.3.1, both operations perform side effects on requests. If any two operations
interleave this generally leads to data loss as well as invalid read and write pointers.
Thus, at any time, there is only a single task execution instance allowed to work on
the queue. This requires enqueue and dequeue operations to be atomic.
Accesses to requests may appear in any arbitrary order as long as they are atomic.
TM and TL– the producers – enqueue new request frames on demand. TH– the consumer
– dequeues frames during RequestFL. If the queue is empty, there is nothing to do for
RequestFL and it will terminate immediately. If the queue is full, the oldest request is
overwritten.

Implementation Outline Figure 4.12 illustrates how above considerations manifest
in the code. The callback functions taskHighCallback (lines 35 to 39), taskMediumCallback
(lines 1 to 7) and taskLowCallback (lines 8 to 14) are cyclically executed by TH , TM and
TL respectively. Accesses to requests are highlighted bold. The data layer holds the
queue (line 15) and its related indices (lines 16 and 17).

33:uint8_t flState = PASSIVE;
34:
35:void taskHighCallback(void) {
36: if(notify == 1) {
37: handleFrame();
38: notify = 0;
39:}}
40:
41:void handleFrame(void) {
42: processFrame();
43: switch(flState) {
44: case ACTIVE:
45: <...>
46: dequeueFrame();
47: <...>
48:}}

TaskHigh

"ems_data_layer.c"

15:tst_Frame requests[MAX_QUEUE];
16:uint8_t readIndex;
17:uint8_t writeIndex;
18.
19:void enqueueFrame(<...>) {
20: <...>
21: GetResource(LOCK_QUEUE);
22: requests[writeIndex] = <...>;
23: writeIndex++;
24: <...>
25: ReleaseResource(LOCK_QUEUE);
26:}
27:
28:void dequeueFrame(<...>) {
29: <...> = requests[readIndex];
30: readIndex++;
31: <...>
32:}

01:void taskMediumCallback(void) {
02: <...>
03: if(<HTTP-inquires-EMS-data>) {
04: enqueueFrame(<...>);
05: }
06: <...>
07:}

08:void taskLowCallback(void) {
09: <...>
10: if(<update-required>) {
11: enqueueFrame(<...>);
12: }
13: <...>
14:}

TaskMedium + TaskLow

"ems_frame_layer.c"

"web_server.c"

"update_service.c"

Figure 4.12: Synchronization with OS support in C

The web server and update service may enqueue frames at any time on demand
(line 4 and 11). Enqueuing is implemented by enqueueRequestFrame (lines 19 to 26). The
implementation takes advantage of the semaphore feature provided by OSEK for

42

4.3 Concurrency

resource management. First, it performs a system call in order to acquire the lock for
requests (line 21). On success, OSEK guarantees that the calling task has exclusive
access. Second, the new frame is stored (line 22). Third, the write pointer is adapted
accordingly (line 23). Forth, the lock is released in order to provide access to other
tasks (line 25).

The frame layer may dequeue frames at any time on demand too (line 46). Dequeuing
is implemented by dequeueRequestFrame (lines 28 to 32). First, it reads the next frame
from the queue (line 29). Second, it adapts the read index accordingly, thereby deleting
the previously read frame from queue. Note that no lock acquisition is performed. This
asymmetric locking approach needs some explanation.
Task TH , TM and TL have different execution priorities. The higher the execution

rate the higher the priority. Thus, TH has priority over TM and TL while TM has priority
over TL. Without semaphores, this leads to the following possible preemption scenarios:
(1) TM preempts TL, (2) TH preempts TL and (3) TH preempts TM . TH can never be
preempted. The enqueue operation is semaphore protected. Thus, TL and TM compete
for the same lock. Once TL has successfully acquired the lock, it cannot be preempted by
TM anymore, thereby preventing (1). However, the dequeue operation is not semaphore
protected. Thus, it seems as if scenarios (2) and (3) are still possible – which is in fact
not the case. As mentioned in Section 4.1.2, semaphore handling in OSEK relies on a
priority ceiling protocol. In our application the ceiling priority is statically configured
to the one of TH . Once a task successfully acquired the semaphore it inherits the ceiling
priority. This means that if TL or TM managed to obtain the lock they temporarily
have the same priority as TH until they release the lock. As a consequence, TH can no
longer preempt TL and TM , thereby eliminating (b) and (c). Calls to I_OS_SemaLock in
dequeueRequestFrame would be unnecessary and lead to additional runtime. Finally, this
approach guarantees atomicity for en- and dequeuing operations.

Discussion Compared to the manual approach in Section 4.3.1, taking advantage
of OSEK’s semaphore feature considerably reduces the implementation complexity
required for synchronization. GetResource and ReleaseResource allow to explicitly identify
the critical section (lines 21 to 25), thereby making it automatically thread-safe.
However, it appears that synchronization still does not manifest locally. While the code
seems to be more concise and readable, there is still a line-up of conditions that must
hold true in order to obtain correctness for all possible interleavings of TH , TM and TL.
Table 4.2 presents all possible preemption scenarios P1 to P6 and their corresponding
preventions strategies in above implementation. The related conditions that make these
prevention strategies actually work essentially fell in two groups:

The first group is composed of OSEK-related configuration parameters involving the
scheduling policy, the assignment of task priorities and the priority ceiling protocol.
These configurations are not locally tied to the code but reside in external, independent
files, thereby inducing a cognitive distance. In particular, we identify the following
conditions:

43

4 Analysis of the Existing Asynchronous Implementation

1. Preemption decisions are based on static task priorities. This is a fundamental
requirement.

2. TM always has priority over TL. This is required for P1.
3. TH always has priority over TM . This is required for P2 and P4.
4. Occupation of requests leads to inheritance of the ceiling priority according to

[ISO05, p. 31]. The ceiling priority is set to that of TH . This is required for P5
and P6.

5. TH , TM and TL do not enter the running state if requests is currently occupied.
This is to avoid deadlocks.

The second group is composed of constraints imposed to the application code for correct
semaphore handling. In particular, we identify the following conditions:

6. TM and TL acquire the semaphore before access to requests has been started
and release the semaphore after access to requests has been completed. This is
required for P3, P5 and P6.

7. TM and TL release the semaphore before task termination. Otherwise the behavior
is unspecified according to OSEK. In the worst case, requests might be locked
forever [ISO05, p. 73] making the driver software inoperative.

8. dequeueFrame is only called in TH . This is to guarantee that dequeueFrame can never
be preempted.

Further, the OSEK specification provides an own section [ISO05, p. 72] about design
hints for usage of GetResource and ReleaseResource system calls. In particular, they should
follow the following guidelines in order to guarantee correct resource handling:

9. Calls to GetResource and ReleaseResource should be placed in the same functional
level.

10. Calls to GetResource and ReleaseResource should directly encapsulate the access to
the resource in a pairwise fashion.

11. Nested resource occupation must follow a LIFO policy. That is they have to be
released in reversed order of their occupation.

It becomes apparent that both, the operating system configuration and the application
code, must perfectly match in order to make access to requests thread-safe. Basically,
its like a contract between the developer and the system wherein the system guarantees
synchronization if the developer follows the rules. Similar to the manual synchronization

Scenario Prevention Strategy
P1 TL → TM TM has priority over TL.
P2 TL → TH TH has priority over TL.
P3 TM → TL TL is lock-protected.
P4 TM → TH TH has priority over TM .
P5 TH → TL TL inherits ceiling priority.
P6 TH → TM TM inherits ceiling priority.

Table 4.2: Possible preemption scenarios and their prevention strategy
(A→ B: A tries to preempt B)

44

4.4 Temporal Behavior

approach it comprises a high fragility since the slightest deviation causes the whole
approach to fail. Thus, it is not robust towards changes. For example, if task priorities
are modified in the external configuration files, the application code might be no
longer synchronized. Note that the application code does not even detect that change.
Consequently, the solution is very specialized for that particular constellation of system
and application code. This rigidity makes it difficult to port onto another platform.
Last but not least it is worth to mention that the whole synchronization approach is
only valid on a single-core processor (as supposed by OSEK). If two or more tasks are
exposed to physical concurrency, for example on a multi-core system, mutual exclusion
is no longer guaranteed.

4.4 Temporal Behavior
Temporal behavior is intrinsic to physical systems. Essentially, it requires to perform
computations, for example calculations or decisions, depending on the passage of time.
According to Burns and Wellings [BW90] interfacing physical time must be generally
possible in the context of specifying (a) delays, (b) timeouts and measuring (c) elapsed
time. The conventional sequential model of computation, however, does not account
for time in any way. Imperative languages such as C only allow to define the order of
actions but not their timing [Lee05].

“No widely used programming language integrates a way to specify timing
requirements or constraints.” [Lee05, p. 85]

Time passes in the system’s physical environment while application code is executed.
Due to the lack of proper computing abstractions, time appears to elapse independently
and asynchronously from the program’s point of view. Thus, in order to interface
physical time, the key challenge is to (temporarily) synchronize the code and the time
domain on demand. On this account, two typical strategies can be distinguished:

First, in the passive approach (inversion of control) a code chunk is executed once a
specified amount of time has been elapsed. By this, the time information is provided
implicitly. This strategy is directly supported by OSEK’s alarm mechanism. Second, in
the active approach (polling) the running code retrieves a counter value that represents
the amount of elapsed time. By this, the information is provided explicitly on inquiry.
However, OSEK does not provide a standardized Application Programming Interface
(API) to access counters directly [ISO05, p. 36]. Thus, active time interfacing requires
an indirect application-specific implementation. The fieldbus driver uses software timers
for that purpose. Those timers belong to the application software and take advantage
of OSEK’s periodic system tick interrupt that triggers each millisecond. For measuring
the elapsed time in milliseconds it increments a variable on each call, thereby enabling
(c). The variable’s current value can be read by the fieldbus driver. Multiple software
timers may be registered and started concurrently.

45

4 Analysis of the Existing Asynchronous Implementation

In the following, we investigate how above strategies manifest in the fieldbus driver
implementation. Therefore, we consider the implementation of delays (a) and timeouts
(b) which adopt the passive and active approach respectively.

4.4.1 Delays
Sometimes it is necessary to deliberately suspend code execution until a certain amount
of time has been passed. This artificial slowdown is usually required in order to account
for speed differences between the embedded system and its physical environment.
In contrast to timeouts (see Section 4.4.2), the delay interval must elapse. Thus, a
delay is conceptually in sequence to the program’s control flow. In the following, we
investigate the delay implementation of the fieldbus driver which adopts the passive
synchronization strategy.

Implementation Outline Write broadcast requests are not acknowledged. After trans-
mission, the fieldbus driver may, in principle, immediately proceed with the next request
without waiting for a response. However, in order to give other bus participants enough
time for reception and processing, the fieldbus driver has to delay the next transmission
for 250 ms. Figure 4.13 outlines the corresponding implementation approach. Accesses
to OSEK’s alarm feature are highlighted bold.

01:#define TIMER_CALLBACK 3

1

"ems_frame_layer.c"

27:void flReset(void) {
28: <...>
29: CancelAlarm(TIMER_CALLBACK);
30: <...>
31:}
32:
33:ISR(RxChar) {
34: <...>
35:}} else if(<BREAK>) {
36: switch(blState) {
37: <...>
38: case MIRR_BREAK:
39: if(<was-broadcast>) {
40: SetAlarm(TIMER_CALLBACK, &timer_callback, 250);
41: }
42: <...>
43: case OVERFLOW:
44: <...>
45: flReset();
46: <...>
47:}}
48:
49:void timer_callback(void) { // executed by OSEK
50: notify = 2;
51:}

02:void taskHighCallback(void) {
03: if(notify == 1) {
04: handleFrame();
05: elseif(notify == 2) {
06: handleTime();
07: }
08: notify = 0;
09:}}
10:
11:void handleFrame(void) {
12: <...>
13: case ACTIVE:
14: <build-broadcast-request>
15: writeFrame();
16: startTransmission();
17: flState = ACTIVE_BC;
18: <...>
19:}
20:
21:void handleTime(void) {
22: <...>
23: case ACTIVE_BC:
24: <transmit-next-request>
25: <...>
26:}}

2

3

4

5

"ems_byte_layer.c"

Figure 4.13: Outline of a delay implementation in C

First (1), the frame layer builds the broadcast request, copies it down to the byte
layer and triggers its transmission (lines 14 to 16). flState is set to ACTIVE_BC which
indicates the broadcast transmission (line 17). Once the transmission completes (2),
the byte layer executes SetAlarm (line 40) in order to setup an OSEK alarm that triggers
in 250 ms. Thereby, callback function timer_callback is passed and executed by OSEK
once TIMER_CALLBACK expires (3). It sets notify to 2 (line 50) which notifies the frame
layer code (4), thereby causing the execution of handleTime (line 21 to 26) (5). This
finally leads to the transmission of the next request (line 24).

46

4.4 Temporal Behavior

Discussion The expiration of TIMER_CALLBACK conceptually triggers an internal event
which manifests in the assignment to notify (line 50). The corresponding processing
is performed by TH in (callback function) handleTime (lines 21 to 26). Consequently,
the latter requires to introduce manual stack and state management for the same
reason as discussed in Section 4.2. At the same time, it demands to reason about
synchronization. Global variable notify is asynchronously accessed by three concurrent
contexts of execution. TH performs read and write access for event processing (line 3, 5
and 8), RxChar performs write access for notifying about a received frame (notify = 1,
see Section 4.3.1) and finally an OSEK interrupt service routine executes timer_callback

(lines 49 to 51), thereby performing a write access to notify (line 50) about the expiration.
Thus, it appears that the passive approach, to a certain extend, introduces the problems
of event handling (see Section 4.2) and synchronization (see Section 4.3.1) at the same
time. As Figure 4.13 reveals this is particularly true for the convoluted control flow
and the scattering of delay logic. Note that the delay is initiated by RxChar (line 40),
triggered by OSEK (line 50) and finally processed by TH (line 6). The behavior of
all involved components must match in order to make the entire approach work. In
addition, this also makes it hard to establish the cognitive link between the code
locations that indicate the start and end of the time interval.

Furthermore, due to the single entry point model, we cannot block the control flow
of a one-shot trail in order to await the passage of time. Consequently, delays must be
implemented using a concurrent approach although they are conceptually in sequence
with the program’s control flow. This seems to be in contradiction to the intuitive
notion of a delay and additionally makes it difficult to understand how it actually
manifests in the code.
Moreover, correctly canceling a started alarm is of great importance. For example,

if the frame layer state machine is reset in flReset due to a communication error (see
Section 4.2.3) without canceling the alarm, the time event will be triggered at some
future point in time, thereby causing handleTime to run. In the best case, the frame
layer state machine just ignores the time event in its current state. In the worst case,
it performs a reaction that most probably does not fit to the current communication
progress, thereby unnecessarily causing an error.

4.4.2 Timeouts
Specifying a timeout means to intend a certain event or event sequence to occur within
a specified time interval. In contrast to delays (see Section 4.4.1), a timeout interval
should usually not elapse. Thus, a timeout is conceptually concurrent to the program’s
control flow and used for monitoring purpose. In the following, we investigate the
timeout implementation of the fieldbus driver which adopts the active synchronization
strategy.

Implementation Outline In Figure 4.14, we outline how timeout specifications for
the idle time ti and the mirror time tm manifest in the code. The two software timers

47

4 Analysis of the Existing Asynchronous Implementation

TIMER_IDLE (line 1) and TIMER_MIRROR (line 2) measure ti and tm respectively. Access to
the timers are highlighted bold.

01:#define TIMER_IDLE 0
02:#define TIMER_MIRROR 1

25:ISR(TxChar) {
26: stop(TIMER_MIRROR);
27: switch(blState) {
28: case TX_BYTE:
29: blState = MIRR_BYTE;
30: start(TIMER_MIRROR, 42);
31: break;
32: case TX_BREAK:
33: blState = MIRR_BREAK;
34 start(TIMER_MIRROR, 42);
35: break;
36:}}

37:void blReset(void) {
38: <...>
39: stop(TIMER_IDLE);
40: stop(TIMER_MIRROR);
41: <...>
42:}

"ems_byte_layer.c"

03:ISR(RxChar) {
04: if(getCount(TIMER_IDLE)==ELAPSED) {
05: blReset();
06: }
07: start(TIMER_IDLE, 350);
08: if(<BYTE>) {
09: switch(blState) {
10: <...>
11: case MIRR_BYTE:
12: if(getCount(TIMER_MIRROR)==ELAPSED) {
13: blReset();
14: }
15: <...>
16: }} else if(<BREAK>) {
17: switch(blState) {
18: <...>
19: case MIRR_BREAK:
20: if(getCount(TIMER_MIRROR)==ELAPSED) {
21: blReset();
22: }
23: <...>
24: }}

Figure 4.14: Outline of a timeout implementation in C

On the receipt of the first frame byte, getCount retrieves the current counter value of
TIMER_IDLE (line 4). Since this is the first run of RxChar TIMER_IDLE has not been started
yet. Consequently, it is not elapsed and blReset (line 5) is skipped. In line 7, TIMER_IDLE
is actually started with the corresponding time interval of 350 ms. In the following runs
of RxChar, line 4 always checks whether the timeout occurred in between two received
characters. If this is the case, blReset stops TIMER_IDLE (line 39) and resets the state
machine.

Once the transmission of the first frame byte has been completed, TxChar first stops
TIMER_MIRROR (line 26). Then, it is started with the corresponding time interval of 42 ms
(lines 30 and 34). If the mirror is received (lines 11 and 19), TIMER_MIRROR is checked for
expiration (lines 12 and 20). If this is the case, blReset stops TIMER_MIRROR (line 40) and
resets the state machine.

Discussion In the active approach, each timeout interval is assigned to a dedicated
timer which demands manual management. This requires to have an explicit identity, for
example TIMER_IDLE and TIMER_MIRROR, which allows separated interfacing. The developer
must determine the maximum number of different time intervals at development
time and deal with allocation and registering according operating system resources.
Timer management is performed through a loose collection of functions, for example
start, getCount and stop, which may be called, in principle, in any arbitrary order. The
developer must coordinate accesses to the corresponding timer across reactions in order
to guarantee their correct execution order. For example, if stop is accidentally called
in between start and getCount the check for timing accuracy will fail and hence leads
to wrong behavior. A single timeout specification, however, does not manifest locally

48

4.5 Conclusion

in the code. According timer accesses are scattered across different code locations
in interrupt service routines and functions. This may easily lead to unintentional
interleaving of different timeout intervals. Also, their lexical order within the code does
not correspond to their intended order of execution. Thus, it appears that manual
timer management is similar to accessing a global variable and hence comprises the
same line-up of disadvantages [SK13] making it a daunting and error-prone task.
Furthermore, there is no obvious coupling between the timeout interval and the

associated action. In particular, due to the scattered interface, it is hard to comprehend
which lines of code are actually protected by a certain interval. Actually, the contained
action is torn across different functions too. TIMER_MIRROR, for example, comprises several
start- (lines 30 and 34) and endpoints (lines 26 and 40). In between any consecutive
calls of start and stop an arbitrary amount of byte layer and non-byte layer code may
run. Also, the processing of a timeout is not enforced. If getCount is not evaluated in the
correct reaction at the correct code location, a timeout may silently appear without
any impact on the behavior. Abortion must be manually taken care of. For example, if
ERROR causes abortion of the current run of TransmitBL, the current mirror timeout
interval must be aborted too (line 40).

Moreover, the specified time intervals (lines 7, 30 and 34) have no unit since time is
not supported as a physical quantity. This means that the defined values depend on the
timer’s frequency and hence the operating system configuration. If the configuration
changes, timeout handling will no longer work. Consequently, the application code
must be adapted accordingly.
Finally, timers cannot be nested. Thus, it is not possible to describe hierarchical

dependencies between time intervals. For example, the response timeout tr conceptually
contains several instances of ti and tm respectively. If tr expires, the current instances
of ti and tm have to be automatically aborted too since they have become irrelevant
and require restart on the next run of TransmitBL or ReceiveBL respectively. However,
this hierarchical nesting is not mappable to timers and must be implemented manually,
for example by correctly calling the reset functions of the corresponding state machine
as indicated in Section 4.3.1.

4.5 Conclusion
Traditional sequential programming does not provide any language-level support for
the implementation of event handling, concurrency and temporal behavior which are
intrinsic to reactive, physical systems. This inevitably demands an underlying execution
platform that adds the required capabilities. In order to facilitate development, non-
trivial embedded applications usually escape from programming on the bare metal by
taking advantage of an operating system. Its features particularly respond to the strong
resource limitations of the embedded domain. By the common notion of tasks, interrupt
service routines and alarms, the OSEK operating system, for example, provides a
framework that allows to hook up several application code chunks for event- and

49

4 Analysis of the Existing Asynchronous Implementation

R
x
C
h
a
r

T
x
C
h
a
r

t
i
m
e
r
_
c
a
l
l
b
a
c
k

t
a
s
k
H
i
g
h
C
a
l
l
b
a
c
k

t
a
s
k
M
e
d
i
u
m
C
a
l
l
b
a
c
k

t
a
s
k
L
o
w
C
a
l
l
b
a
c
k

OSEK
features + configuration

application
code chunks

"business logic"

execution
environment

must meet the
needs of

must be
compatible with

determined

by

Figure 4.15: Dependency between application code and execution environment

time-triggered, asynchronous, concurrent execution (see Figure 4.15). As a whole, these
interacting units realize the fieldbus communication.

By this, the business logic conceptually disintegrates into several loose fragments tied
together by the surrounding execution environment. Based on a line up of configurations,
for example scheduling policy, task priorities, priority ceiling protocol and timer intervals,
the OSEK scheduler determines how these entities actually execute and interleave
at runtime. Also, OSEK imposes clear guidelines and restrictions for the usage of
operating system and application functions throughout the code. Thus, in order to
ensure correctness for all possible interleavings and make the application work, on the
one hand, the implementation must be compatible to the framework’s features and
their respective configuration. On the other hand, the features and their configuration
must meet the needs of the application. It appears that this makes the application code
and the execution environment firmly intertwined. In particular, note that the logic of
how concurrent application components correctly execute and cooperate in order to
fulfill their supreme aim mostly does not manifest in the application’s business logic
itself but is scattered across a set of external conditions. This non-locality requires
to navigate back and forth between multiple places in a source file (or even between
multiple source files) in order to see and comprehend everything the code actually does.
With respect to software engineering, this approach appears to give rise to two major
drawbacks:
First, it makes software development particularly difficult since those application

code chunks are generally hard to program, comprehend and maintain. This is mainly
due to the torn and convoluted control flow, the loss of function-oriented decomposition
and hierarchical composability as well as the need for explicit synchronization and
manual timer management.
Second, the final software product is fragile. If the configuration changes the code

will no longer work as expected. As a consequence, it cannot be easily ported or reused
without either adapting the application code accordingly or ensuring that the entire
complexity of application-external conditions is preserved.

50

5 Deployment and Qualitative
Evaluation of Synchronous
Programming

Fieldbus communication is the major reactive concern of the gateway system. In
Chapter 3, we considered event-based, synchronous-reactive programming a suitable
approach which is expected to lead to a simple and concise solution. In this chapter, we
justify our considerations by actually deploying the synchronous paradigm for fieldbus
communication. Therefore, we reimplement the fieldbus driver using the synchronous-
reactive programming language Céu and elaborate its qualitative, engineering-related
benefits compared to the asynchronous approach outlined in Chapter 4.

First, in Section 5.1, we provide architectural considerations about the system inte-
gration of the synchronous paradigm and the internal structure of our synchronous
reimplementation. Second, in Sections 5.2 and 5.3, we demonstrate how Céu enables
function- and object-oriented software designs in the reactive domain. Third, in Sec-
tion 5.4, we consider Céu’s additional language-level support for testing. Finally, in
Section 5.5, we retrospectively discuss important points to consider when deploying
the synchronous paradigm.

Choice of Céu The reactive paradigm [Bai+13] proposes a number of solutions which
address the problems with callbacks and inversion of control: (1) data flow languages,
(2) functional reactive programming – a modernized data flow style – , (3) reactive
extensions to general-purpose languages and (4) synchronous languages. The data flow
style has been adopted in prominent industry tools, namely Matlab/Simulink, LabView
and SCADE which promote visual, model-driven development. They particularly
address the subdomain of highly safety-critical, hard real-time systems, for example
automotive, avionics, railways or nuclear power plants. Those applications mostly rely
on computation-intensive control tasks known from control theory (see Section 4.1.2)
and hence excellently map the declarative, data-centric style.
Switching behavior (see Section 3.2), however, focuses on control flow rather than

data flow. Above approaches provide graphical state machines for developing control-
centric concerns. For illustration purpose, in Figure 5.1, we manually derived a graphical
automaton based on the implementation of RespondFL outlined in Section 4.2.2. It
appears, that even such a simple functionality leads to a quite complex graphical
representation which manifests in 8 states and 32 transitions. We are aware that features
like hierarchy, default- and history states significantly help to reduce the complexity

51

5 Deployment and Qualitative Evaluation of Synchronous Programming

induced by flat automata. Nonetheless, the fundamental components of state machines
– states, transitions and events – focus on the specification and visualization of single
event reactions rather than their linear flow. This makes state explicit while control
flow remains implicit. In Figure 5.1, the gray highlighted transitions, for instance,
illustrate the hidden control flow for one error-free run of RespondFL. We believe that
this approach is hardly better to understand than the textual switch-case adoption.

“[...] the human design and maintenance of automata turns out to be very
difficult and error-prone. Nontrivial automata are difficult to draw and
impossible to understand when not drawn.” [BG92, p. 90]

For this reason, in accordance with Sant’Anna et al. [SIR15], we believe that the
text-based, sequential, imperative programming style is more suitable for switching
behavior and hence more intuitive to developers. Also, state machines are not robust
towards changes – “the slightest modification in the system specifications may involve
a complete modification and rewriting of the automaton.” [Hal93, p. 3]

IDLE

TX_BYTE

COMPLETE

TX_BREAK

OVERFLOW

MIRR_BYTEMIRR_BREAK

RX

frame
buffer full?

mirror ok?

more bytes
to send?

frame ok?
[BYTE]

[BYTE]

[no][tx]

[BYTE]

[tx]

[BYTE]

[no]

[BYTE]

[tx]

[yes][tx]

[tx]

[BYTE]

[yes]

[tx]

[yes]

[BREAK]

[yes]

[no]

[BYTE]

[tx]

[ERROR || BREAK]

[BYT E || tx]

[no]

[ERROR]

Figure 5.1: Graphical representation of the byte layer state machine

Furthermore, the vast majority of reactive extensions is based on general-purpose
languages [Bai+13] which are generally unsuitable for embedded systems. A number of
embedded-oriented technologies emerged in the context of wireless sensor networks.
Examples include Céu [San+13], nesC [Gay+03], Protothreads [Dun+06] and others.
Sant’Anna et al. [San+13; San13] provide an extended list as well as a qualitative com-
parison. Céu outperforms existing approaches with respect to language features which
reduce code complexity and increase safety. Above all, this is due to its synchronous
model of execution which provides deterministic, bounded execution and safe shared
memory access. Also, to our knowledge, Céu seems to be the only representative
of the synchronous language family [Ben+03] that provides a text-based, imperative
programming style as well as an up-to-date and freely accessible compiler. Moreover, it
only imposes a small memory overhead compared to hand-crafted event-driven code

52

5.1 Architectural Considerations

and its performance is comparable to nesC – an event-driven extension for C– making
it suitable even for constrained devices [San+13].

Hard- and Software Platform For our deployment, we pick a BeagleBone Black
development board1 running a Linux operating system. It provides a 1 GHz processor,
512 MB RAM and 4 GB flash memory. This platform is more powerful than the existing
embedded microcontroller which executes an OSEK operating system. However, this
does not invalidate any of our considerations below. Exemplified Céu code will run
on the existing gateway platform likewise. Only the thin platform interface layer (see
Section 2.3) needs to be adapted accordingly. For example, OSEK’s recurring basic
tasks can be used to advance Céu’s generated state machine. Each task execution
instance performs a single reaction which is bounded in time and memory. Our choice
is deliberately done for two reasons:
First, Linux provides a feature-rich and stable software playground for experimen-

tation which enables rapid prototyping. In particular, this involves operating system
support for process management and inter-process communication as well as diagnosis
tools for monitoring purposes.
Second, Bosch Group considers a platform switch towards a Linux-based gateway

system in order to take advantage of existing software solutions and simplify develop-
ment. We aim to take this as a chance to actually integrate our exploratory work into
future production code.

Functional Tests In order to actually show the operability of our synchronous reimple-
mentation we perform functional tests. Therefore, we connect our development platform
running the fieldbus driver in Céu to a real heating appliance which is composed of an
EMS master and two slave devices. At the same time, an EMS diagnostic device from
Bosch Group is connected to the fieldbus, too. This allows to independently monitor
and check the fieldbus communication performed by our synchronous reimplementation.
We log the traffic on the fieldbus for about 14 hours. The synchronous code behaves
correctly for the whole duration of the test.

5.1 Architectural Considerations
Asynchronous execution seems inherent in embedded software. Considering development
on the bare metal, microcontroller hardware provides interrupt service routines which
asynchronously execute to the main program. Operating systems additionally promote
the notion of asynchronous tasks or threads. Thus, it seems reasonable to generally con-
sider an embedded application being asynchronous by default. Deploying a synchronous
language in that globally asynchronous context consequently requires to locally prune
away asynchronism. Every Céu application constitutes a synchronous island within
the entire asynchronous system. The synchronous hypothesis (see Section 2.2) does

1http://beagleboard.org/black

53

http://beagleboard.org/black

5 Deployment and Qualitative Evaluation of Synchronous Programming

only hold within those synchronous components. This approach is also known as the
Globally Asynchronous, Locally Synchronous (GALS) model of computation [SIR12].
All operations within a Céu program are performed synchronously while the remainder
execute asynchronously. The GALS execution must be reflected in the architectural
application design in order to allow seamless integration. Actually, this requires to
consider two different architectures:
First, the global architecture of the entire system which enables to combine the

sequential, asynchronous and the reactive, synchronous domain in a single application.
Second, the local architecture which internally structures the synchronous subsystem.
In our work, we address both concerns. Following a top-down approach, we first

present our domain-oriented system architecture in Section 5.1.1 which links the
synchronous fieldbus driver and the asynchronous web server. Although our work
focuses on the synchronous paradigm, we deliberately provide a short outline of the
web server’s implementation too in order to illustrate how the diversity of both domains
manifests in the architectural design. Subsequently, in Section 5.1.2, we illustrate
how the synchronous fieldbus driver code is actually interfaced by its surrounding C
environment. Finally, in Section 5.1.3, we demonstrate and explain the fieldbus driver’s
internal design.

5.1.1 Domain-Oriented System Architecture
In the course of designing a software architecture the entire system is generally de-
composed into individual components. An architectural style [BF14, ch. 2] is applied
in order to define relations and constraints among them. Typically, this leads to a
pure logical structuring of source code without taking the domain-specific computation
requirements (see Section 3.2) into account. The resulting system design relies on a
single programming language respectively model of computation and hence is flat. If
different problem domains are involved, only part of the domain-specific problems are
easy to solve (see Chapter 4). On this account, we propose a domain-oriented software
architecture. It allows the deployment of different programming languages based on
appropriate computation models and domain-specific features in order to provide best
implementation support.
Internet and fieldbus communication are disjoint concerns to the greatest possible

extend. While the web server answers HTTP requests, the independent fieldbus driver
reacts to the received characters. Only in case of an HTTP request for an external
resource, a handshake is required to exchange the corresponding EMS request and
EMS response respectively. In order to manifest this separation of concerns in the
software architecture, we organize its high-level into layers – a major architectural
style [BF14, ch. 2]. As illustrated in Figure 5.2, Internet communication is assigned to
Layer 1, fieldbus communication to Layer 2. Our layered design takes advantage of two
independent Linux processes PL1 and PL2 for the following reasons:
First, it enables usage of different programming languages as demanded above.

Second, it allows selective scheduling prioritization. For example, in order to address
domain-specific timing requirements, we assign the fieldbus driver process PL2 to

54

5.1 Architectural Considerations

fieldbus

ASYNCHRONOUS, thread-based

SYNCHRONOUS, event-based

(e)

(f)(g)

(h)

(i)(j)

(k)

R

wwwProcess PL1

Process PL2

Glue Code
(Software Interface)

Layer 2: Traditional
Embedded Domain
(Fieldbus Driver)

Layer 1: Internet
Connectivity Domain
(Web Server)

(a)

(b)

(c) (d)

TR1

QIn
QOut

TR2 TR3

TD

TCeu

thread pool

Rust

Céu

C

Figure 5.2: Domain-oriented, layered software architecture with Céu and Rust

the Linux Real-Time Scheduler (RTS) while the web server process PL1 runs in the
conventional Completely Fair Scheduler (CFS). Third, Linux processes independently
run in distinct memory spaces. Thus, their execution may never interfere and they can
be easily restarted for error recovery which increases robustness. This also complicates
a compromised web server to attack the fieldbus driver, thereby becoming an important
security aspect. Forth, it allows execution on different processor cores to fulfill real-time
requirements (not necessary in our application). Fifth, the web server and the fieldbus
driver can be independently developed, tested and evaluated.

Finally, a glue code serves as a lean software interface between web server and fieldbus
driver. Essentially, it manages the inter-layer handshake based on two thread-safe Linux
message queues QIn and QOut provided for inter-process communication.

Layer 1: Web Server in Rust With respect to the web server, we aim for a pro-
gramming language that allows a more comfortable and safe implementation approach
than C. String handling, for instance, is a major task for Internet connectivity but
poorly supported and hence error-prone in C. At the same time, the language should
be efficient and low-level enough to run on a resource-constrained, embedded device.
We consider Rust2 a feasible candidate for the following reasons. Rust is a system
programming language focusing on safety, speed and concurrency [Rus]. It intrinsically
supports thread-based, sequential programming and asynchronous execution by design –

2https://www.rust-lang.org/

55

5 Deployment and Qualitative Evaluation of Synchronous Programming

remember that C is only single-threaded. Thus, Rust’s fundamental computation model
fully matches the requirements for Internet communication elaborated in Section 3.2.
Furthermore, Rust aims to achieve efficient, low-level hardware accesses and high-level
programming features at the same time by so called “zero-cost abstractions”. This
combination makes it generally attractive for Internet applications. Mozilla Research,
for example, uses Rust for developing the new web browser engine Servo [And+15]. In
addition, several existing Rust-frameworks support the development of web servers. In
[Ter16], we exemplarily illustrate how we use the web framework Iron3 on that purpose.
Our Rust web server comprises a fixed-size thread pool, for example TR1−3 (see

Figure 5.2). Each incoming HTTP request (a) is automatically received, decrypted,
parsed and assigned to one of the non-busy threads (b) for further processing, for
example TR1. Subsequently, TR1 executes all the code required to interpret, execute and
build the corresponding HTTP response. For execution of an external resource request,
it calls the glue code in order to enqueue the EMS request into QIn (c). By this, TR1
maps the EMS request to an input event for the fieldbus driver. Finally, TR1 registers
the submitted request and itself with the glue code (further explanation below) and
suspends until the response is ready (d). Once the data are ready, TR1 resumes and
builds the HTTP response. The web server takes care of encryption and transmission.
Threads naturally provide interleaved request processing. Long-lasting ones that

inquiry EMS data, are suspended and resumed once the data are ready. Thus, they do
not consume any processing time while waiting and can be easily overtaken by quicker
ones.

Layer 2: Fieldbus Driver in Céu We use the programming language Céu in order
to deploy the synchronous paradigm for the driver. The auto-generated Céu state
machine code runs in a single, dedicated thread TCeu. It successively reads the EMS
requests from its input event queue QIn (e), performs event-based processing (f), (g)
and returns the corresponding EMS responses as output events back to output queue
QOut (h). Its implementation is exemplified in the following sections in more detail.

Glue Code in C Code in Rust cannot directly interface Céu code and vice versa.
However, both languages have the ability to execute native C code. Also, the Linux
Portable Operating System Interface (POSIX) standard enables to perform system
calls in C. For this reason, we use C as the lowest common denominator between web
server, fieldbus driver and operating system.

An HTTP request for an external resource, for example in TR1, causes the web server
to call the glue code for enqueuing the request in QIn. TR1 subsequently blocks until the
data is provided by the fieldbus driver. A dedicated dispatcher thread TD in the web
server retrieves the EMS response from QOut (i) and forwards it to the waiting TR1 (j).
On the one hand, the web server may create several concurrent EMS requests limited
by the size of the thread pool. On the other hand, there is a single fieldbus driver for
processing. All EMS requests are buffered in QIn and all EMS responses are returned

3https://docs.rs/iron/0.5.1/iron/

56

5.1 Architectural Considerations

in QOut. In order to enable the correct assignment of response to thread, the glue code
uses a register list R. The glue code generates a unique numerical identifier for each
request and passes it to the fieldbus driver. Also, the identifier is stored in R together
with the thread identification number. The fieldbus driver returns the request identifier
in the response. The glue code looks up the corresponding thread in R, resumes it and
forwards the reply. Once TR1 gets resumed, it finally reads the EMS response from R
(k).

5.1.2 Interfacing Synchronous Code
As indicated above, Céu’s synchronous code – represented by the auto-generated state
machine in C– is executed by the C environment in thread TCeu. In order to make
this possible, Céu code must define an event-based interface first. In this section, we
illustrate the interface declaration in Céu and its actual execution in C.

Declaration of the Céu Code Interface The Céu application defines the event-based
interface used for interacting with its C environment. The declaration, as presented in
Listing 5.1, is done at the beginning of the top-level fieldbus driver implementation.
First, we link to the fieldbus by declaring the input events BYTE (line 2), BREAK (line 3)
and ERROR (line 4) as identified in Section 3.2. Also, we need to specify the output events
TX_BYTE (line 5) and TX_BREAK (line 6) which allow Céu to pass a transmission request
for a single byte or end-of-frame character to the Linux operating system. The payload
of BYTE and TX_BYTE provides the byte value received and to be sent respectively. Second,
we link to the web server by declaring the input event EMS_REQUEST (line 8) and output
event EMS_RESPONSE (line 9). While the former indicates an incoming EMS request from
the web server, the latter is used to return the corresponding EMS response. Their
payload carries user-defined structures which contain all the required information for
the associated request and response respectively.

1 // Interface to Fieldbus
2 input u8 BYTE; // received frame byte with valid content
3 input void BREAK; // received end-of-frame character
4 input void ERROR; // received character with malformed content
5 output u8 TX_BYTE; // trigger frame byte transmission
6 output void TX_BREAK; // trigger end-of-frame character transmission
7 // Interface to Web Server
8 input _data_request EMS_REQUEST; // incoming EMS request
9 output _data_response EMS_RESPONSE; // outgoing EMS resqonse

Listing 5.1: Declaration of the event-based interface to Céu code

Execution in C The dedicated fieldbus driver thread TCeu executes the simplified code
illustrated in Listing 5.2. We import Céu’s auto-generated state machine code (line 2).
In main (lines 3 to 29) variable app (line 4) stores the entire state machine runtime

57

5 Deployment and Qualitative Evaluation of Synchronous Programming

context including the required working memory. Line 7 indicates the initialization of
the state machine as well as the platform interface code. The while-loop (lines 9 to 26)
successively advances the state machine in three steps:

1 #define ceu_out_wclock_set(us) wclock_next = us;
2 #include "_ceu_app.c"
3 int main(<...>) {
4 tceu_app app; // holds the generated state machine
5 byte CEU_DATA[sizeof(CEU_Main)];
6 app.data = (tceu_org*) &CEU_DATA;
7 <initialization>
8 /* Successively advance the state machine. */
9 while (app.isAlive) {
10 // Step 1: Block until next event or timeout.
11 dequeue(<input-queue>, <event-id-and-payload>, wclock_next);
12 // Step 2: Perform time-triggered reaction chain.
13 ceu_sys_go(&app, CEU_IN__WCLOCK, &delta_time);
14 // Step 3: Perform event-triggered reaction chain.
15 switch (<event-id>) {
16 case CEU_IN_BYTE:
17 ceu_sys_go(&app, CEU_IN_BYTE, <received-byte>); break;
18 case CEU_IN_BREAK:
19 ceu_sys_go(&app, CEU_IN_BREAK, NULL); break;
20 case CEU_IN_ERROR:
21 ceu_sys_go(&app, CEU_IN_ERROR, NULL); break;
22 case CEU_IN_EMS_REQUEST:
23 ceu_sys_go(&app, CEU_IN_EMS_REQUEST, <request-data>); break;
24 default: /* nothing */ break;
25 }
26 }
27 <de-initialization>
28 return 0;
29 }
30 // Handler functions for output events.
31 int ceu_sys_output_TX_BYTE(<the-byte-to-send>) {
32 <...> aio_write(<byte-to-send>); <...>
33 }
34 int ceu_sys_output_TX_BREAK(void) {
35 <...> aio_write(<end-of-frame>); <...>
36 }
37 int ceu_sys_output_EMS_RESPONSE(<...>) {
38 <enqueue-response-in-output-queue>
39 }

Listing 5.2: Execution of Céu’s state machine

First, we call dequeue (line 11) in order to retrieve the next event from the input
queue QIn. If QIn is empty, dequeue blocks and suspends TCeu until at least one event
has been enqueued. This releases the processor if no event is ready for processing. In
addition, dequeue also returns once the timeout interval specified by wclock_next has
been expired. By this, dequeue provides event- and time-triggered execution of Céu
code. At the end of each reaction the state machine notifies when the next reaction
must be performed in future due to the passage of physical time. Therefore, it calls
the C macro ceu_out_wclock_set (line 1), thereby setting wclock_next to the according
number of microseconds. Thus, either an event occurs meanwhile or the passage of
physical time causes a new reaction to run on timeout at the latest. This approach

58

5.1 Architectural Considerations

wakes up TCeu only on demand and not, for example, in a periodic fashion which saves
processor time.

Second, we perform a time-triggered reaction (line 13). Therefore, we call ceu_sys_go
and provide the event id CEU_IN__WCLOCK. This indicates to the Céu state machine that
physical time has been passed while delta_time provides the number of microseconds
that have been passed since the last reaction. On the one hand, this updates Céu’s
internal wall clock (see Section 2.3) by the amount of delta_time. On the other hand,
it executes any time-dependent transitions which got triggered due to the passage
of delta_time. This is how Céu actually interfaces physical time. In order to retrieve
delta_time, we take advantage of Linux’ system clocks.
Third, we perform an event-triggered reaction depending on the retrieved event –

if any (lines 15 to 25). In case of BYTE (line 16), for example, we execute ceu_sys_go,
thereby providing the corresponding event id CEU_IN_BYTE and the received byte value
as payload (line 17). The similar approach is adopted for the remaining fieldbus events
(lines 19 and 21) as well as for the EMS request event indicated by id CEU_IN_EMS_REQUEST

(line 22).
Above steps are repeated as long as the state machine respectively the fieldbus driver

is active (app.isAlive == 1). Otherwise, the loop exits the state machine, the platform
interface code is deinitialized (line 27) and main returns, thereby finally terminating
TCeu.
Output events cause the state machine to call one of the corresponding handler

functions of the platform interface code (lines 37 to 39). In order to preserve the
synchronous hypothesis, they must not contain any blocking or long-lasting code.
However, taking the example of TX_BYTE, the actual byte transmission requires more
than one millisecond. This is due to the baud rate of the fieldbus. Consequently, if we
use a blocking Linux system call such as write for transmission, the entire Céu code
remains blocked for that amount of time too. In general, this requires to introduce
an additional output queue to decouple the long-lasting byte transmission from the
reactive code. On this account, we take advantage of Linux’s asynchronous I/O system
calls. Function aio_write (line 32) only enqueues the write request into a Linux-internal
driver queue and returns immediately, thereby keeping the state machine reactive. We
apply the same approach for TX_BREAK (line 35).
Finally, it is worth to mention that the worst-case amount of memory required for

executing the Céu state machine is determined at compile time in line 5. CEU_Main holds
a complex, auto-generated structure that contains the maximum of variables, trails,
organisms, pools and so on that may exist in parallel during runtime (see Section 2.3).
The statically allocated memory is subsequently assigned to the state machine app

(line 6).

5.1.3 Fieldbus Driver Architecture
As mentioned in Section 5.1.1, designing a software architecture is about decomposing
the entire system into individual components. Those components typically rely on
abstraction entities provided by the programming language in use. In order to explore

59

5 Deployment and Qualitative Evaluation of Synchronous Programming

the solution space, we first consider the available entities of abstraction in Céu as well
as their general usage strategies. Furthermore, we provide a best practice on how to
chose the suitable deployment strategy depending on the intended use case. Finally,
we present and explain our adoption for designing the fieldbus driver architecture.

Available Abstraction Entities In the synchronous domain, Céu’s language design
consistently distinguishes between code abstraction within and across reactions (see
Listing 5.3). For organizing and structuring code within a single reaction, Céu provides
functions which are equivalent to their C counterparts (lines 2 to 4). A function starts
execution and runs to completion in the same reaction. In particular, it cannot be
used for event processing. For this reason, it must not contain any synchronous control
statements (see Section 2.3).

1 // Function Declaration
2 function (<list-of-parameters>)=><return-value> <function-name> do
3 <implementation>
4 end
5 // Organism Declaration
6 class <organism-name> with
7 <interface-declaration>
8 do
9 <execution-body>
10 end

Listing 5.3: Declaration of functions and organisms

In order to hide implementation details across reactions, Céu additionally introduces
the concept of organisms, thereby providing a new object-like level of abstraction which
encapsulates data and associated control flow (lines 6 to 10). A class of organisms
describes a public interface for correct and smooth calls (line 7) and an execution body
defining its runtime behavior (line 9). Variables (knowledge), functions (skills) and
internal events (stimuli) may be encapsulated within the execution body or published
by the interface. In contrast to functions, an organism is a concurrent unit of execution.
Once instantiated, its execution body runs concurrently to the remaining program.
Thus, organism instantiations are non-blocking. An organism can provide an integer
return value on termination or by references through its interface like in C. The
execution body can hold any valid Céu code particularly including synchronous control
statements. By this, an organism can suspend its execution until a future event occurs
and resumes subsequently. This enables organisms to outlive several events and hence to
encapsulate their reactions within a single abstraction entity. Consequently, organisms
effectively close the abstraction gap discussed in Section 4.2.

General Deployment Approaches In Listing 5.4, we illustrate the fundamental
usage of functions and organisms. Using functions in Céu is similar to C and hence
straightforward (1). We call function add in order to abstract the code responsible for

60

5.1 Architectural Considerations

adding two integer values and returning the result (line 2). In addition, we identify
three possible approaches on how to deploy organisms.

1 //---(1) Function
2 var u16 sum = add(1, 7);

4 //---(2) Organism: function-like
5 // verbose call with explicit identity
6 var Org o with
7 <...>
8 end;
9 await o;
10 // concise, anonymous call
11 do Org with
12 <...>
13 end;

15 //---(3) Organism: object-like, static
16 var Org o with
17 <...>
18 end;
19 <...>
20 <...> = o.x;

22 //---(4) Organism: object-like, dynamic
23 pool Org[10] orgs;
24 spawn Org in orgs with
25 <...>
26 end;

Listing 5.4: Possible deployments of code abstraction entities

First, they can be used in a function-like fashion (2). Therefore, we first create an
instance o of organism Org (lines 6 to 8). Then, await o (line 9) blocks the calling trail
until o has run to completion. This prunes away o’s inherent concurrency and hence
imposes sequential execution. If we do not need an explicit identity for further reference,
for example for accessing the organism’s interface variables after its termination, we
can also use the concise do-instantiation (lines 11 to 13). This creates an anonymous
organism and waits for its termination automatically. By this, an organism behaves
like a “reactive subroutine” [SIR15, p. 36] devised for continuous input.
Second, they can be used in an object-like, static fashion (3). Therefore, we apply

the same approach as above in order to create an instance o of organism Org (lines 16
to 18). However, we do not await its termination. Instead, o runs concurrently to any
code of the calling trail (line 19). Since the organism is statically bound to variable
o, we can easily refer to it in the future – independent of whether o is still alive or
has already run to completion (line 20). By this, the static assignment allows future
interaction and to keep control over the organism’s lifetime. For example, if o goes out
of scope, the corresponding organism immediately terminates.
Third, they can be used in an object-like, dynamic fashion (4). In contrast to the

static approach, dynamic organisms are, in principle, not distinguishable – they have no
explicit identity. Instead, they are aggregated and live in a common pool. A pool aids as
a container for organisms of the same class and is declared using Céu’s pool-keyword.

61

5 Deployment and Qualitative Evaluation of Synchronous Programming

Figure 5.3: Best practice for choosing and deploying abstraction entities in Céu

Since dynamic organisms are not statically assigned to an individual variable, their
lifetime is bound to the pool instead. In general, this enables dynamic organisms to
outlive their scope of instantiation. We first declare a pool orgs which may hold up
to 10 organisms of class Org (line 23). Then, we use Céu’s spawn-statement in order to
create a new, anonymous instance of Org in orgs (lines 24 to 26). All organisms in a
pool execute concurrently.

Best Practice for Choosing a Suitable Deployment Approach In order to imple-
ment a certain functionality, one has to choose the suitable of the four approaches above.
On this account, we provide a general best practice in Figure 5.3. The first decision
that has to be taken is whether the functionality involves event handling or not. If not,
we refer to this as instantaneous code which starts and terminates in the same reaction.
In this case, use a function (1). Else, we denote this as reactive code which suggests
the deployment of an organism. The second decision is whether the reactive code shall
run concurrently to the calling trail or not. If sequential (non-concurrent) execution is
intended, use an organism in a function-like fashion (2). Else, the concurrent execution
may follow a fire-and-forget discipline or not. Fire-and-forget means that, after the
code has started execution, we never need to explicitly refer to it again. If future
referencing is required, use an organism in an object-like, static fashion (3). Else, apply
an object-like, dynamic approach (4).

Adoption for Designing the Fieldbus Driver Architecture In Chapter 3, we con-
sidered the environment of traditional embedded applications static while Internet
connectivity exposes a dynamic nature. The requirements for the fieldbus driver show
this dichotomy too since it must serve the web server and the fieldbus at the same time.
On the one hand, the fieldbus is a physical piece of hardware that outlives any execution
instance of the fieldbus driver software. The number of connected fieldbuses is fixed and
known at development time. Thus, we consider the fieldbus a real entity. On the other
hand, EMS requests do not map to any physical resource. They spawn and disappear
during execution of the fieldbus driver. The number of concurrent EMS requests may

62

5.1 Architectural Considerations

Processor

EmsReadRequest

PassiveHandler

f(x)

ActiveHandler

f(x)

FrameTransmitter

f(x)

FrameReceiver

f(x)

EmsReadRequest EmsWriteRequest

f(x) = function-like= object-like, static= object-like, dynamic = mutual exclusive A B = A uses B= concurrent

B
y
te

L
a
y
e
r

...

F
ra
m
e

L
a
y
e
r

fieldbus

ReadAccess

f(x)

WriteAccess

f(x)

parse() build()

Céu

Layer 2.2:
Dynamic Domain
(EMS Requests)

Layer 2.1:
Static Domain
(Fieldbus)

Layer 2: Traditional Embedded Domain
(Fieldbus Driver)

Layer 1: Internet Connectivity Domain
(Web Server)

D
a
ta

L
a
y
e
r

Figure 5.4: Layered architecture of the fieldbus driver in Céu

vary during runtime. Thus, we consider them virtual entities. Consequently, the fieldbus
driver must deal with real and virtual entities at the same time in a reactive fashion.

As mentioned by Sant’Anna et al. [SIR15], it is a usual approach in embedded software
design to map real entities to a static piece of code in a one-to-one relationship. Virtual
entities, in contrast, usually require dynamic allocation on demand in order to handle
their individual life cycles. As depicted in Figure 5.4, we consistently separate these
different concerns into a static and a dynamic layer in our fieldbus driver architecture.

In the static Layer 2.1, we aim to hide all the complexity involved in fieldbus commu-
nication in a single abstraction entity on top-level. Since communication requires event
handling, we implement an organism Processor on that purpose. Fieldbus interaction
has to be performed continuously, independent of whether there are any EMS requests
or not. Thus, Processor and the management of EMS requests must run concurrently.
Processor represents the fieldbus in software. Thus, for realizing EMS requests, recurring
referencing is mandatory. For these reasons, we choose an object-like, static approach
(3) which bounds an instance of Processor to a dedicated variable that has application
lifetime. Furthermore, we decompose the complexity of Processor into six organisms
which all adopt a function-like approach (2). PassiveHandler and ActiveHandler implement
RespondFL and RequestFL respectively, thereby realizing Passive and Active Mode. Both
are mutually exclusive and hence must run in sequence within Processor. PassiveHandler
uses FrameReceiver and FrameTransmitter in order to perform ReceiveBL and TransmitBL.

63

5 Deployment and Qualitative Evaluation of Synchronous Programming

Again, both are mutually exclusive and must run in sequence within PassiveHandler.
Internally, FrameReceiver takes advantage of function (1) parse in order to hide the com-
plexity of parsing a received frame. FrameTransmitter takes the same approach by using
function build to create the frame’s raw byte sequence for transmission. ActiveHandler
might perform a read or write access on the fieldbus which manifests in dedicated
organisms ReadAccess and WriteAccess respectively. For the same reason as above, they
require sequential execution. Both take advantage of FrameReceiver and FrameTransmitter

to fulfill their task. On the lowest level, FrameReceiver and FrameTransmitter implement
ReceiveBL and TransmitBL for single frame reception and transmission.
In the dynamic Layer 2.2, we aim to assign a single abstraction entity to each

individual EMS request. Since EMS requests rely on event handling too, we take
advantage of two organisms EmsReadRequest and EmsWriteRequest which distinguish between
read and write EMS requests respectively. However, in contrast to the fieldbus, EMS
requests are subject to a fire-and-forget policy. Once an organism is instantiated and
assigned, it behaves like an independent unit of execution which is responsible for
processing the request. It should execute concurrently to the remaining program and
automatically disappear once the corresponding EMS request has been processed
completely. For these reasons, we adopt an object-like, dynamic approach (4) in this
case.
We outline the implementation of above organisms in the following sections.

5.2 Function-Oriented Design
Function-oriented design is a classical method of software engineering. It aids in
breaking a complex problem into smaller parts that are easier to comprehend, program
and maintain. Therefore, it focuses on identifying the major software functionalities
and performs their stepwise refinement in a hierarchical top-down manner [BF14, ch. 2].
In this section, we consider how Céu’s language-support addresses the drawbacks
elaborated in Chapter 4 and particularly recovers function-oriented decomposition in
the reactive domain.

5.2.1 Basic Functions
Basic functions do not rely on any other function. If we consider the entire function-
oriented system as a tree, basic functions are the leafs. With respect to our fieldbus
driver architecture in Section 5.1.3, FrameReceiver and FrameTransmitter are basic functions
that contain the fundamental knowledge on how to react on the external fieldbus events
BYTE, BREAK and ERROR. In this section, we outline the implementation of these
organisms and demonstrate how they introduce encapsulation to the reactive domain,
thereby recovering from GOTO-like code execution.

Implementation of ReceiveBL In Listing 5.5, we exemplify organism FrameReceiver

featuring ReceiveBL. Through its public interface it provides the captured and parsed

64

5.2 Function-Oriented Design

frame fRx (line 7) to the caller. The execution body (lines 8 to 49) contains the
implementation of the private function parse (lines 9 to 22) and the actual, reactive
behavior of FrameReceiver (lines 25 to 48).

1 /**
2 * Captures and parses a single frame.
3 * \param[out] fRx high-level description of the received and parsed frame
4 * \return 0 success, -1 buffer overflow, -2 idle timeout, -3 malformed byte
5 */
6 class FrameReceiver with
7 var Frame& fRx;
8 do
9 function (u8[MAX_FRAME]& fRaw, Frame& fParsed)=>void parse do
10 var u8 crcOk = checkCRC(&fRaw);
11 <...>
12 if crcOk then
13 if <is-read> then
14 fParsed = Frame.MESSAGE_READ();
15 <...>
16 else/if <is-write> then
17 fParsed = Frame.MESSAGE_WRITE();
18 <...>
19 else
20 fParsed = Frame.INVALID();
21 end
22 end

24 // Step 1.1: Capture start of frame.
25 var u8[MAX_FRAME] fRaw;
26 var u8 bRx = await BYTE;
27 fRaw = [] .. fRaw .. [bRx];
28 // Step 1.2: Capture remaining bytes.
29 loop do
30 par/or do // Trail A
31 var u8 bRx = await BYTE;
32 if $fRaw == MAX_FRAME then
33 escape -1;
34 end
35 fRaw = [] .. fRaw .. [bRx];
36 with // Trail B
37 await BREAK;
38 break;
39 with // Trail C
40 await ERROR;
41 escape -3;
42 with // Trail D
43 await 350ms;
44 escape -2;
45 end
46 end
47 parse(&fRaw, &this.fRx);
48 escape 0;
49 end

Listing 5.5: Implementation of organism FrameReceiver

We use a Céu vector fRaw to store the frame bytes (line 25). A vector is an array aug-
mented by automatic and runtime-checked length management which provides detailed
information about invalid memory accesses. This increases safety and considerably
simplifies debugging. The vector’s capacity is equal to the maximum frame length
and statically defined by the pre-processor macro MAX_FRAME at compile time. By taking

65

5 Deployment and Qualitative Evaluation of Synchronous Programming

advantage of Céu’s await-statement we wait for the start of the next frame (line 26).
A frame start needs to be a valid byte. Thus, await BYTE explicitly awaits BYTE only.
Any other occurrence of BREAK and ERROR is automatically discarded. On BYTE, the
trail resumes and await returns the received byte value which is temporarily stored in
bRx. Then, we append the first frame byte to fRaw (line 27).

In contrast to the first, the remaining frame bytes must be checked for content and
time accuracy. The approach is similar for every byte. Thus, it is reasonable to use
Céu’s loop (lines 29 to 46) in order to iterate over all further bytes. Since fieldbus
frames do not contain any length information, we do not know the length of the
current frame in advance. On this account, we deploy an infinite loop which exits
once the end-of-frame character is hit. In the loop, we have to consider all possible
communication scenarios for each incoming character. Therefore, we take advantage of
Céu’s par-block (lines 30 to 45) which splits the original main trail into four concurrent
trails. This allows to await and handle the related fieldbus events concurrently.

The first trail (lines 31 to 35) handles a valid byte. We await BYTE and temporarily
store the byte value in bRx (line 31). If fRaw is already full (line 32), this indicates
a communication error and causes ReceiveBL to fail. In this case, we use escape to
immediately terminate the entire FrameReceiver and return a proper error code (line 33).
Else, the byte is appended to the vector (line 35). Due to the orthogonal or-abortion
mechanism, all concurrent trails subsequently rejoin and the next loop iteration starts.
This respawns all concurrent trails.

The second trail (lines 37 to 38) handles an end-of-frame character. We await BREAK
(line 37) and execute break (Line 38). The latter immediately terminates all trails of
the surrounding par-block and regularly exits the loop – the frame capture has been
successfully completed. Consequently, the control flow advances to line 47.

The third trail (lines 40 to 41) handles an erroneous byte. We await ERROR (line 40).
Since a malformed byte invalidates the whole frame ReceiveBL fails. Thus, we immedi-
ately terminate FrameReceiver using escape, thereby returning an error code (line 41).

The fourth trail (lines 43 to 44) finally checks for correct inter-byte timing. We take
advantage of Céu’s adoption of physical time in order to await the passage of the idle
time ti (line 43). If none of BYTE, BREAK and ERROR occur within 350 ms, await 350ms

will return and escape (line 44) immediately terminates FrameReceiver due to the timing
error.

To sum it up, the infinite loop (lines 29 to 46) keeps running as long as the fieldbus
driver receives valid bytes and the vector fRaw is not full. While a communication error –
buffer overflow (line 32), malformed byte (line 40) or timing error (line 43) – terminates
the entire FrameReceiver, an end-of-frame character (line 37) leads to a regular loop exit
only.
After a successful capture, execution continues in line 47. We call function parse in

order to parse the raw byte sequence in fRaw. Lines 9 to 22 illustrate its implementation
which relies on simple comparisons and conditional code execution. Note that parse calls
another function checkCRC for verifying the frame content (line 10). Subsequently, parse
populates the interface variable fRx of FrameReceiver through fParsed with the parsed
frame data (lines 12 to 21). Finally, escape 0 regularly terminates FrameReceiver (line 48).

66

5.2 Function-Oriented Design

Implementation of TransmitBL In Listing 5.6, we exemplify organism FrameTransmitter

featuring TransmitBL. Through its public interface it obtains a high-level, structured
description fTx (line 7) of the frame to send from the caller. The execution body (lines 8
to 47) contains an implementation of the private function build (lines 9 to 17) and the
actual, reactive behavior of FrameTransmitter (lines 20 to 47).

1 /**
2 * Builds and transmits a single frame.
3 * \param[in] fTx high-level description of the frame to send
4 * \return 0 success, -1 transmission error, -2 mirror timeout, -3 malformed mirror
5 */
6 class FrameTransmitter with
7 var Frame& fTx;
8 do
9 function (Frame& fToBuild, u8[MAX_FRAME]& fBuilt)=>void build do
10 if fToBuild.ACK_OK then
11 fBuilt = [] .. fBuilt .. [ACK_OK];
12 else/if fToBuild.MESSAGE_READ then
13 <...>
14 else/if fToBuild.MESSAGE_WRITE then
15 <...>
16 end
17 end

19 // Step 4.1: Transmit frame bytes.
20 var u8[MAX_FRAME] fRaw;
21 build(&fTx, &fRaw);
22 loop/MAX_FRAME i in $fRaw do
23 var int r = emit TX_BYTE => fRaw[i];
24 if r != 0 then
25 escape -1;
26 end
27 par/or do
28 var u8 mirror = await BYTE;
29 if mirror != fRaw[i] then
30 escape -3;
31 end
32 with
33 await BREAK;
34 escape -3;
35 with
36 await ERROR;
37 escape -3;
38 with
39 await 42ms;
40 escape -2;
41 end
42 end
43 // Step 4.2: Transmit end-of-frame.
44 var int r = emit TX_BREAK;
45 <handle-BREAK-mirror-likewise>
46 escape 0;
47 end

Listing 5.6: Implementation of organism FrameTransmitter

First, we transmit the frame bytes. Vector fRaw is used to store the byte sequence to
be sent (line 20). Before transmission, the high-level description fTx must be serialized
to a raw byte sequence. Therefore, we call function build (line 21). Lines 9 to 17
illustrate the corresponding conversion. Subsequently, the byte sequence in fRaw is

67

5 Deployment and Qualitative Evaluation of Synchronous Programming

ready for transmission. Transmitting a single byte onto the fieldbus requires the same
approach for each byte. Thus, we take advantage of Céu’s loop (lines 22 to 42) in
order to perform the same procedure for all bytes in fRaw. Since the number of loop
iterations is equal to the number of bytes in fRaw, we deploy a finite loop in this case.
It keeps running until its control variable i reaches $fRaw which is the current frame
length. In order to guarantee bounded execution, Céu’s safety concept requires to
statically define a maximum limit for loop iterations at compile time. Since i might be
modified within loop iterations, the loop might never exit otherwise. Once MAX_FRAME

loop iterations have been performed, the loop exits independent of the value of i.
Next, we take advantage of Céu’s emit-statement in order to transmit a single byte

(line 23). emit triggers the external output event TX_BYTE. This causes a handshake
with the fieldbus driver’s system environment, thereby executing output handler
function ceu_sys_output_TX_BYTE of the platform interface code. It passes the request for
byte transmission to the Linux operating system. Note that => fRaw[i] attaches the
corresponding byte value as payload to TX_BYTE. In its return value r, emit notifies about
whether the handshake has been successful or not. If the transmission request cannot
be forwarded to the operating system (line 24), TransmitBL fails. escape consequently
terminates the entire FrameTransmitter, thereby returning a proper error code (line 25). On
success, we use a par-block (lines 27 to 41) in order to handle the different communication
scenarios with respect to the mirror byte.

The first trail (lines 28 to 31) handles a valid mirror. We await BYTE and temporarily
store it in mirror (line 28). Then, we compare it to fRaw[i] which is the byte previously
sent (line 29). If they do not match, the mirror’s content is erroneous and hence
TransmitBL fails. Thus, escape immediately terminates FrameTransmitter (line 30). Else,
the concurrent trails rejoin and the next loop iteration starts.
The second (lines 33 to 34) and the third (lines 36 to 37) trail handle content

errors similarly. During byte transmission, an end-of-frame character (line 33) is always
an invalid mirror and causes TransmitBL to fail. The same applies for a malformed
character (line 36). Both cause FrameTransmitter to terminate (lines 34 and 37).

The fourth trail (lines 39 to 40) finally checks the mirror time. We await the passage
of mirror time tm (line 39). If none of BYTE, BREAK and ERROR occur within 42 ms,
await 42ms will return and escape (line 39) immediately terminates FrameTransmitter due
to the timing error.

Once all bytes in fRaw have been transmitted successfully, the same approach is applied
in order to finally transmit the end-of-frame character (line 44 and the following).

Linear Control Flow With respect to our considerations in Chapter 4, the single
entry point model turns out to be inappropriate for reactive applications from a
software engineering point of view. Céu takes a fundamentally different event handling
approach. Conceptually, each call to await comprises an entry point for the specified
event into the code. On the one hand, await-statements can be used in sequence such
as presented in Listing 5.5, lines 26 and 31. On the other hand, by taking advantage of
parallel composition, the same or different events can be awaited concurrently such

68

5.2 Function-Oriented Design

as in Listing 5.5, lines 31, 40 and 43. Thus, Céu’s event handling relies on a multiple
entry points model which realizes a passive and blocking waiting strategy at multiple
code locations in one or several trails. This corresponds to our considered strategies 7
and 15 in Section 4.2.1. Figure 5.5 illustrates the common programming scheme. In
the sequential fashion (a), the first BYTE is awaited in line 1 and causes execution of
reaction code in line 2. The second one is awaited in line 3 and causes execution of
code in line 4 and so on. In the concurrent fashion (b), a single BYTE is awaited in line
2 and 5 at the same time. On occurrence, it causes execution of reaction code in line 3,
then in line 6 (see Section 2.3).

1: await BYTE;
2: <reaction-1>
3: await BYTE;
4: <reaction-2>
5: await BYTE;
6: <reaction-3>
7: await BYTE;
8: <...>

1: par/and do
2: await BYTE;
3: <reaction-1.1>
4: with
5: await BYTE;
6: <reaction-1.2>
7: end
8: <...>

BYTE

BYTE

BYTE

BYTE

t

BYTE

t

a) Sequential b) Concurrent

Figure 5.5: Programming scheme of the multiple entry points model in Céu

Due to the multiple entry points model, each event can be easily distinguished in the
code. In particular, it allows to assign individual reaction code to single events and, by
taking advantage of Céu’s loop, also to groups of events. In FrameReceiver (Listing 5.5),
for example, we specify a different behavior for the first received valid frame byte than
for the remainder. While the first one is stored without checking for an overflow of
fRaw (line 27), the group of remaining bytes requires the sanity check (line 32). Due
to its prior initialization in line 25, it is obvious that fRaw is guaranteed to be empty
when the first byte arrives in line 26. Note that this obviousness is only provided by
the fact that await retains the current execution context across reactions. On the one
hand, this eliminates any need for manual stack management and global variables.
fRaw is local to FrameReceiver but its content is not discarded across reactions to BYTE.
On the other hand, it makes manual state management and complex state machine
logic obsolete. When we reach the loop in line 29 for example, it is obvious that the
frame start already has been captured successfully. There is no need to encode that
piece of information into a state such as RECEIVING. The internal state of FrameReceiver is
determined by the current progress of its control flow. Thus, when considering a certain
line of code, for example for debugging purposes, one can easily track the history of
previous actions and decisions since they directly manifest in the prior sequence of
statements. In Céu, state is implicit and control flow is explicit.
As it turns out, Céu’s await-statement effectively slices control flow into event

reactions while retaining its linear nature. Since software developers naturally think in

69

5 Deployment and Qualitative Evaluation of Synchronous Programming

sequences, we believe that the recovery of a sequential, non-torn control flow is key
towards improved comprehensibility.

Decomposition and Encapsulation By taking advantage of Céu’s organisms, we
are able to break today’s monolithic state machine design into smaller, separated and
independent functionalities. FrameReceiver and FrameTransmitter encapsulate all required
data and switching logic locally. This eliminates any code scattering and separates
communication concerns. We believe that the provided encapsulation and interfacing
capabilities effectively reduce the implementation and cognitive complexity involved.
In particular, we encounter the following benefits:
First, although FrameReceiver and FrameTransmitter share the same input events, they

can be implemented and modified without affecting each other – local changes only have
local impacts. Thus, they are consistently isolated. This allows parallel programming
by different developers and independent testing (see Section 5.4) which simplifies
debugging. This is not true for the state machine approach. Adapting a single state or
transition potentially changes the overall behavior and hence may lead to side effects
across different functionalities which are hard to track.
Second, FrameReceiver and FrameTransmitter can be implemented once and reused

multiple times throughout the code. This avoids code redundancy and allows to change
code in one place, recompile and everything is consistently updated. For example, we
use the same implementation of FrameReceiver and FrameTransmitter within PassiveHandler,
ReadAccess and WriteAccess. Also, we only need to test an organism’s implementation
once and can be sure that this particular piece of software behaves correct independent
of the location it is called.
Third, local variables are contained and in scope only as needed. For example, the

raw frame buffer fRaw is only required for actually capturing or transmitting a frame. All
subsequent functionalities in the fieldbus driver work on higher-level, parsed frames only.
For this reason, fRaw locally resides in FrameReceiver and FrameTransmitter respectively.
On organism termination, its corresponding memory is automatically freed from stack
and can be reused. The local scope effectively rules out any harmful side-effects across
organisms on language-level. For example, it is obvious that the same frame buffer
memory can never be used for ReceiveBL and TransmitBL at the same time.
Fourth, due to their non-scattered language-level interface, the manifestation of

FrameReceiver and FrameTransmitter is naturally delimited against the remaining code
base. This makes it simple to grasp the overall architecture and gives a better idea
of how the program actually works. Its concise definition of input and output values
considerably simplifies to comprehend how the remaining program performs interaction
with FrameReceiver and FrameTransmitter respectively. The ability to automatically provide
a return value on completion is a comfortable way to indicate whether a sequence of
event reactions in the past has been successful or not. For example, in FrameReceiver and
FrameTransmitter we return proper error codes depending on the communication error
scenario. This also eliminates any need for performing side-effects on global memory in

70

5.2 Function-Oriented Design

order to transfer data across organisms. Finally, it enables to easily outsource them in
a dedicated software module such as byteProcessing.ceu.

Fifth, as presented in Listings 5.5 and 5.6, lines 1 to 5, in Céu it is trivial to document
each reactive functionality separately. We can independently specify the behavior of
FrameReceiver and FrameTransmitter solely based on their input and output parameters as
well as their return values. This generally leads to concise and readable documentations.
In the course of testing, we can use this prose text specification in order to derive and
perform proper black-box tests (see Section 5.4). Furthermore, the local language-level
interface promotes the deployment of a structured documentation style that may be
used for state-of-the-art, automatic source code documentation generation such as
provided by the Doxygen [Hee16] tool4.

5.2.2 Composite Functions
Composite functions take advantage of other composite or basic functions in order to
implement more complex behavior. With respect to our fieldbus driver architecture
in Section 5.1.3, PassiveHandler, ActiveHandler, ReadAccess and WriteAccess are composite
functions. In this section, we outline the implementation of these organisms and
demonstrate how they introduce composability to the reactive domain.

Implementation of RespondFL In Listing 5.7, we outline PassiveHandler where each
loop iteration (lines 5 to 24) performs one run of RespondFL. First, we use FrameReceiver

in a function-like fashion in order to capture a frame. Therefore, we create an anonymous
instance and wait for it running to completion using the do-instantiation (lines 8 to 10).
Thereby, we provide a buffer fRx for storing the captured and parsed frame (line 9).
On termination, we use its return value ret to decide whether the capture has been
successful or not (line 11). If not, we take advantage of Céu’s continue keyword which
immediately causes a new loop iteration to start (line 12). By this, the malformed
frame is discarded and further processing (lines 15 to 24) skipped. Second, a valid
frame is checked for its type (line 15) and subsequently processed (line 16). In case of a
read request frame, we just retrieve the corresponding data from the gateway’s internal
memory. Next, we take the same approach by using FrameTransmitter for building and
transmitting the response frame (lines 19 to 21). On its instantiation we pass the frame
data to be sent via fTx in its interface (line 20). Other frame types are handled similar
(line 22). Finally, the next loop iteration starts a new run of RespondFL.

Implementation of RequestFL Organism ActiveHandler implements RequestFL and
takes advantage of ReadAccess and WriteAccess. ReadAccess retrieves the data whereas
WriteAccess updates the data of another fieldbus participant. Both take a similar
implementation approach. For this reason, we only outline WriteAccess in Listing 5.8.
First, we use FrameTransmitter for sending a write request frame (lines 6 to 8). After

4Note that Doxygen does not yet support the language Céu.

71

5 Deployment and Qualitative Evaluation of Synchronous Programming

1 /* @file frameLayer.ceu */
2 class PassiveHandler with
3 <...>
4 do
5 loop do
6 // Step 1: Receive frame.
7 var Frame fRx = <...>;
8 var int ret = do FrameReceiver with
9 this.fRx = &fRx;
10 end;
11 if ret != 0 then
12 continue;
13 end
14 // Step 2: Process frame.
15 if fRx.MESSAGE_READ then
16 <process-message>
17 // Step 3+4: Build and transmit response frame.
18 var Frame fTx = <...>;
19 var int ret = do FrameTransmitter with
20 this.fTx = &fTx;
21 end;
22 <handle-other-frame-types>
23 end
24 end
25 end

Listing 5.7: Implementation of organism PassiveHandler

successful transmission, the further behavior depends on whether it was a uni- or
broadcast request (line 10). In contrast to a unicast, broadcasts are not acknowledged.
However, before proceeding, the sender must provide some time for other devices to
receive and process the broadcast message. To achieve this, we use await 250ms in order
to realize a corresponding delay (line 11). After the passage of 250 ms, WriteAccess

immediately terminates (line 12) – there is no further action required in case of a
broadcast. Else, we use FrameReceiver to receive the response frame (lines 20 to 22). In
the concurrent trail we await 225 ms which is the maximum response time allowed
(line 17). If no response is received within that time, the write access fails and hence
WriteAccess terminates (line 26). Finally, if a response is received in time, we check
its type (line 25). If it is not a positive acknowledgment, something went wrong and
WriteAccess terminates with an error code, too (line 26).

In Listing 5.9, we outline ActiveHandler which spawns two concurrent trails. In the first
trail (lines 9 to 32) each loop iteration (lines 10 to 31) performs one run of RequestFL.
Therefore, we call the proper access organism depending on the current type of request.
In case of a read request frame (lines 14 to 21), we call ReadAccess (lines 15 to 18). Once
completed, we emit response (line 20) in order to notify the caller of ActiveHandler about
the successfully received response frame. In case of a write request frame (lines 22
to 25), we call WriteAccess (lines 23 to 25) instead. Note that in this case we do not
emit response since a write request is only acknowledged but does not return any data
to the caller of ActiveHandler.

72

5.2 Function-Oriented Design

1 /* @file frameLayer.ceu */
2 class WriteAccess with
3 var Frame& fReq;
4 do
5 // Step 1: Transmit write request frame
6 var int ret = do FrameTransmitter with
7 this.fTx = &outer.fReq;
8 end;
9 <...>
10 if <is-broadcast> then
11 await 250ms; // delay
12 escape 0;
13 end
14 // Step 2: Receive response frame
15 var Frame fRes = <...>;
16 par/or do
17 await 225ms;
18 escape -2;
19 with
20 ret = do FrameReceiver with
21 this.fRx = &fRes;
22 end;
23 <...>
24 end
25 if not fRes.ACK_OK then
26 escape -3;
27 end
28 escape 0;
29 end

Listing 5.8: Implementation of organism WriteAccess

Remember that RequestFL is only allowed to execute during token time (see Sec-
tion 2.1). The fieldbus driver must not send any new request frames once the token
active time tta (800 ms) has been exceeded. On this account, the second trail (lines 32
to 36) is responsible for controlling the time-dependent behavior of the first trail. In
contrast to our previous approaches, we must not abort the first trail immediately once
800 ms are exceeded. This would cause ReadAccess respectively WriteAccess to completely
terminate too, thereby stopping to await and process the possibly pending response
frame. Instead, we need a different approach that implements a rather soft interruption
than a hard abortion. Therefore, we use the flag variable tx_active which is shared
between both trails. At start-up, tx_active is set to true which indicates that 800 ms
have not been exceeded yet. (line 8). In the second trail, we first await 800 ms (line 33)
and change tx_active to false once tta has been elapsed (line 34). Note that we must
not yet terminate the second trail since this would cause the first trail to terminate too
due to the or-abortion (line 9). Instead, we await the token passive time ttp (200 ms)
(line 35). This gives the fieldbus driver the chance to capture the pending response
frame. If both, tta and ttp, are exceeded, the complete token time tt is over and we are
forced to return to Passive Mode. Thus, the second trail finally causes both trails to
rejoin and ActiveHandler terminates.
Concurrently, the first trail monitors tx_active. Setting tx_active to false does not

cause the first trail to terminate immediately. Instead, the current execution instance
of ReadAccess respectively WriteAccess can run to completion unimpeded. Then, in the
next iteration, we use tx_active to decide whether we are allowed to start a new

73

5 Deployment and Qualitative Evaluation of Synchronous Programming

1 /* @file frameLayer.ceu */
2 class ActiveHandler with
3 var Frame& fReq;
4 var Frame& fRes;
5 event void response;
6 <...>
7 do
8 var bool tx_active = true;
9 par/or do
10 loop do
11 if tx_active <...> then
12 <...>
13 var int ret = -1;
14 if fReq.MESSAGE_READ then
15 ret = do ReadAccess with
16 this.fReq = &outer.fReq;
17 this.fRes = &outer.fRes;
18 end;
19 if ret == 0 then
20 emit this.response;
21 end
22 else/if fReq.MESSAGE_WRITE then
23 ret = do WriteAccess with
24 this.fReq = &outer.fReq;
25 end;
26 end
27 <...>
28 else
29 break;
30 end
31 end
32 with
33 await 500ms;
34 tx_active = false;
35 await 298ms;
36 end
37 <...>
38 end

Listing 5.9: Implementation of organism ActiveHandler

request-response cycle in our loop (line 11). If not, break exits the loop (line 29) which
terminates the first trail, the par-block and finally ActiveHandler.

Hierarchical Composition As demonstrated above, function-like usage of organisms
in Céu allows to compose reactive behavior in a hierarchical fashion. This enables
to apply a top-down divide-and-conquer strategy to our reimplementation, thereby
generally reducing implementation effort and cognitive complexity likewise. In particular,
we encounter the following benefits:

First, organisms reduce the complexity on each level of abstraction by providing
a declarative label which allows smooth, compiler-checked calls. For example, for
PassiveHandler in Listing 5.7 we take advantage of FrameTransmitter in order to hide
all the details of triggering TransmitBL in the byte layer, performing TransmitBL

subsequently and finally passing the captured frame up to the frame layer (lines 19
to 21). This allows to express the request-response scenario on a top level in a very
concise and readable way. Reasoning about mutual exclusion between ReceiveBL and
TransmitBL, for example, becomes trivial due to the linear control flow in PassiveHandler.

74

5.2 Function-Oriented Design

Because FrameReceiver and FrameTransmitter are used in a sequential fashion (lines 8
and 19), Céu guarantees that they are never alive and hence never react at the same
time.
Second, it is easy to define hierarchical dependencies among reactive functional-

ities. For example, PassiveHandler is superior and has control over FrameReceiver and
FrameTransmitter. This implies that if PassiveHandler terminates the current instance
of FrameReceiver or FrameTransmitter aborts too. Thus, the termination of a composite
functionality is automatically propagated down the hierarchy to any sub-functionalities
in use. Note that in the asynchronous approach concurrent state machines are re-
quired to manipulate each other in order to synchronize their states accordingly.
Also, if FrameReceiver and FrameTransmitter are respawned in the next loop iteration of
PassiveHandler (lines 5 to 24) they are automatically reinitialized and restarted. This
effectively reduces code verbosity since there is no need for any additional code in order
to reinitialize states or perform default transitions. Those operations are automatically
performed by Céu on organism instantiation and termination respectively.

Third, the hierarchical dependency allows to apply a unidirectional coupling between
organisms. Only the PassiveHandler (the caller) knows FrameReceiver and FrameTransmitter

(the called) and hence can use them. FrameReceiver and FrameTransmitter, in their turn,
do neither know PassiveHandler nor about each other. As presented in Section 5.1.3, this
enables to divide the fieldbus driver into different layers where each layer serves the
layer above it and is served by the layer below it. Each layer deals only with one aspect
of the communication, for example byte, frame and data processing. This approach
is typically adopted in network protocols in order to facilitate easier communication
and better structure [BF14, ch. 13]. Moreover, changes in one layer do not affect other
layers since they are independent. They promote modularity and make the software
easier to comprehend and maintain. Also, note that code of ActiveHandler, PassiveHandler,
ReadAccess and WriteAccess is independent of the way ReceiveBL and TransmitBL are
actually performed on the fieldbus. This means it can be easily reused for other
applications that rely on a similar request-response discipline. Thus, in Céu it is simple
to separate environment-dependent code into a dedicated environment abstraction
layer given by FrameReceiver and FrameTransmitter in our application.
Fourth, there is no manual synchronization for inter-layer data exchange required

anymore. For example, in Section 4.3.1, we elaborate the effort required for program-
ming interaction between the byte and frame layers when performing RespondFL and
RequestFL respectively. Taking the example of RequestFL, WriteAccess in Listing 5.8
simply calls FrameTransmitter (line 6) in order to pass the frame to be sent (line 7) and
automatically triggers its transmission at the same time. Calling an organism comprises
a handshake on language-level which is intrinsically in sync with the control flow of
the caller. This reduces implementation effort and makes code less error-prone.

Temporal Behavior Above organisms implement temporal behavior at different
locations. This includes delays as well as timeouts. Due to Céu’s language-level support

75

5 Deployment and Qualitative Evaluation of Synchronous Programming

for interfacing physical time, their adoption appears to be a simple, straightforward
approach.

In Céu, delays are language primitives. By taking advantage of await <time-interval>

it is trivial to artificially suspend the calling trail until the specified amount of time has
passed. In Listing 5.8 line 11, we use that feature in order to postpone the termination
of WriteAccess. This prevents the calling ActiveHandler to instantaneously continue with
the next request and hence to overstrain the remaining fieldbus participants. In contrast
to the sequential asynchronous approach in Section 4.4, note that we do not have to
perform any manual timer management. We even do not have to care about allocating
a dedicated timer for that particular delay.
In combination with parallel composition, Céu’s delays turn out to be a powerful

language feature that allow to easily adopt timeouts too. In particular, we encounter
two general types of timeouts: a hard timeout immediately aborts the assigned action
while a soft timeout just notifies about the timeout, thereby giving the chance to
properly complete the current operation. Hard timeouts are intrinsic to FrameReceiver,
FrameTransmitter, ReadAccess and WriteAccess in order to monitor the timing correctness
of fieldbus communication. In Céu, they can be easily implemented using the pattern
in Listing 5.10. While the first trail executes the intended action (line 2), the second
trail monitors the passage of time (line 4). Due to the or-abortion (line 1) the first trail
is forced to rejoin once the assigned timeout interval has been exceeded. This approach
is denoted as “watchdog pattern” by Sant’Anna et al. [SIR12].

1 par/or do // The action trail
2 <action>
3 with // The timing trail
4 await <timeout-interval>;
5 end

Listing 5.10: Hard timeout in Céu

Due to our use case in ActiveHandler, we extend that pattern by a prior soft timeout in
Listing 5.11 which allows the assigned action to proceed until the actual hard timeout
exceeds. The flag softTimeout (line 1) aids as an inter-trail signal and indicates whether
the soft timeout interval has been elapsed. The first trail executes the intended action
(lines 3 to 5) which occasionally monitors softTimeout (line 4). The second trail first
awaits the soft timeout interval (line 7). Once exceeded, it sets softTimeout to true

(line 8). The first trail, in its turn, can take the necessary steps to regularly run to
completion. Concurrently, the second trail awaits the hard timeout interval (line 9).
Once exceeded, it finally behaves like the watchdog pattern above and terminates the
first trail. Consequently, this approach adopts a soft timeout that is finally limited by
a hard timeout.

For the sake of completeness, it is also possible to implement unlimited soft timeouts
that only provide notification but do never force abortion. Therefore, we replace the

76

5.2 Function-Oriented Design

1 var bool softTimeout = false;
2 par/or do // The action trail
3 <...>
4 <check-for-softTimeout>
5 <...>
6 with // The timing trail
7 await <soft-timeout-interval>;
8 softTimeout = true;
9 await <hard-timeout-interval>;
10 end

Listing 5.11: Limited soft timeout in Céu

hard timeout interval with Céu’s FOREVER-keyword (line 9). Since await FOREVER never
returns the second trail will never run to completion and hence never forces the first
trail to rejoin. The action trail may also ignore softTimeout and run forever.

FrameTransmitter

T
X
_
B
Y
T
E

B
Y
T
E

tm

T
X
_
B
Y
T
E

B
Y
T
E

tm

T
X
_
B
Y
T
E

B
Y
T
E

tm

B
Y
T
E

B
Y
T
E

ti

B
Y
T
E

ti

B
Y
T
E

ti

B
Y
T
E

ti

FrameReceiver

tr

WriteAccess

FrameTransmitter

T
X
_
B
Y
T
E

B
Y
T
E

tm

T
X
_
B
Y
T
E

B
Y
T
E

tm

T
X
_
B
Y
T
E

B
Y
T
E

tm
B
Y
T
E

B
Y
T
E

ti

B
Y
T
E

ti

B
Y
T
E

ti

B
Y
T
E

ti

FrameReceiver

tr

WriteAccess

ta tp

ActiveHandler

t

force
abortion

Figure 5.6: Hierarchical timing constraints for fieldbus communication

Furthermore, Céu’s hierarchical usage of organisms expands composability from
the functional to the time domain too. This allows to easily specify complex, nested
timing dependencies in a structured and readable way. Figure 5.6 illustrates an example
on that purpose. Due to the sequential usage of FrameTransmitter and FrameReceiver in
WriteAccess, it is obvious that timeout intervals tm and ti are mutually exclusive. Also,
due to their sequential adoption in FrameTransmitter and FrameReceiver only one timeout
interval – tm or ti – can be active at the same time. In contrast, timeout interval tr

is superordinate in WriteAccess and exists across several instances of ti. This creates a
hierarchical dependency among tr and ti which gives tr precedence over ti. For example,
if tr elapses the current ti must be aborted too. In its turn, tr is subordinate to the
sum of ta and tp in ActiveHandler. As soon as ta + tp elapses, the current tr and also the
current ti have to be aborted. Note that this abortion is automatically propagated from
ActiveHandler through WriteAccess down to FrameReceiver. Moreover, hierarchical timing
constraints reduce complexity since, on each abstraction level, we only have to deal with
those timing constraints that are relevant for the functionality of the current level. For
example, in FrameReceiver we only care about ti whereas in WriteAccess we only account
for tr. The coupling between ti and tr emerges implicitly by calling FrameReceiver within
WriteAccess. Finally, in Céu, relations between several timing constraints can be layered

77

5 Deployment and Qualitative Evaluation of Synchronous Programming

in a hierarchical fashion which promotes abstraction and automatic abortion. This
reduces the implementation and cognitive effort.

5.3 Object-Based Design
Object-oriented programming can aid as an effective tool towards good software quality.
On this account, Gamma et al. [Gam+95] elaborate a number of world-wide recognized,
object-oriented design patterns which aim to provide solutions to common problems
that developers encounter when designing software. In traditional object-oriented
programming, inheritance and polymorphism play a key role [BF14, ch. 2]. However,
those concepts require highly dynamic memory usage which entails the risk of memory
overflows. The lack of guaranteed bounded memory makes it generally incompatible
with resource-constrained, embedded systems. Additionally, depending on its concrete
adoption, it may affect real-time capabilities due to automatic, non-deterministic
garbage collection, for example in Java Standard Edition, or lead to memory leaks due
to manual memory allocation and deallocation, for example in C++. As a consequence,
embedded software typically cannot take advantage of above patterns.
Note that object-oriented programming is generally possible in C, too. Structures

and function pointers can be used to tie together data and functions. Nested structures
and type casts allow to mimic inheritance and polymorphism. However, all these steps
rely on manual implementation from scratch and are not compiler-checked. Schreiner
[Sch94] illustrates that this is a very daunting and error-prone task which takes a lot
of discipline.

Céu’s organisms, in contrast, solely focus on the key idea of encapsulating data and
associated functions into a single unit of abstraction – no inheritance or polymorphism.
Any dynamic memory usage is deliberately omitted in order to prevent the violation
of Céu’s fundamental concepts of bounded execution time and memory. By this,
Céu supports object-like abstractions on language-level but without the dynamics
of an object-oriented language. We refer to this as object-based design. Despite these
limitations, it appears that organisms are a powerful language feature. Due to Céu’s
efficient memory layout (see Section 2.3), they introduce object-based programming to
the domain of resource-constraint embedded systems. In particular, in the following
sections, we will exemplify how Céu’s organisms enable to take advantage of the
Command, Facade, State, Observer and Chain of Responsibility design patterns in
order to improve the quality of embedded software. For each pattern, we first provide
a short introduction. Second, we present the motivation for applying it in our use case.
Third, we exemplarily illustrate its adoption in Céu. Fourth, we compare our adoption
to the pattern, thereby discussing commonalities and differences. Fifth, we consider
the gained software-engineering benefits for our application use case.

Reasoning About Concurrency Taking the example of the Observer pattern, Lee
[Lee06] illustrates the difficulties and pitfalls that arise – even with language-level
support such as the synchronized keyword in Java – when object-oriented programming

78

5.3 Object-Based Design

is exposed to asynchronous, thread-based concurrency. Data inconsistencies and non-
determinism have to be pruned away by the developer in order to make code thread-safe,
thereby incidentally inducing deadlock scenarios. Due to the synchronous model of
execution, shared-memory access and hence all object-based programming, particularly
the below adoption of design patterns, is intrinsically thread-safe in Céu without any
additional implementation effort and risk of deadlocks [San+13].

5.3.1 Adoption of Command Pattern
“Encapsulate a request as an object, thereby letting you parameterize
clients with different requests, queue or log requests, and support undoable
operations.” [Gam+95]

Command

Execute()

Invoker

ConcreteCommand

Execute()

state

receiver->Action();

receiver

Client

Receiver

Action()

Figure 5.7: Structure of the Command pattern [Gam+95]

Figure 5.7 illustrates the structure: “Command declares an interface for executing
an operation. ConcreteCommand [...] defines a binding between a Receiver object and
an action [and] implements Execute by invoking the corresponding operation(s) on
Receiver. Client [...] creates a ConcreteCommand object and sets its receiver. Invoker
[...] asks the command to carry out the request. Receiver [...] knows how to perform the
operations associated with carrying out a request. Any class may serve as a Receiver.”
[Gam+95]

Motivation The fieldbus driver accepts EMS requests by the external input event
EMS_REQUEST. In general, those requests cannot be answered instantaneously. They
require one or more executions of RequestFL in order to get physically performed on
the fieldbus. Due the fieldbus’ medium access policy, RequestFL can be only performed
in Active Mode (see Section 2.1). Thus, EMS requests have to be enqueued and their
actual execution postponed until the next communication time slot. As a consequence,
specifying, queuing and executing EMS requests happens at different times. In particular,
an EMS request must have a lifetime independent of the original EMS_REQUEST event.
Also, the group of EMS requests is composed of read and write requests which require
different implementations but should be stored in the same queue for processing. This
suggests the adoption of the Command pattern.

79

5 Deployment and Qualitative Evaluation of Synchronous Programming

Adoption In Listing 5.12, we declare input event EMS_REQUEST for accepting an EMS
request from the web server (line 1) and output event EMS_RESPONSE for returning the
corresponding EMS response (line 2). Their payload data types are user-defined struc-
tures which contain all the required information for the associated request and response
respectively. Processor (lines 4 to 6) actually manages the requests on the fieldbus as
exemplified in Section 5.3.2. In order to declare a common interface IEmsRequest for all
incoming read and write EMS requests, we take advantage of Céu’s interface feature
for organisms (lines 8 to 10). Note how line 9 requires all EMS requests to obtain a
reference to an instance of Processor. Further, we provide two concrete request imple-
mentations EmsReadRequest (lines 12 to 21) and EmsWriteRequest (lines 23 to 25). Lines 13
and 24 apply the interface to them. Essentially, EmsReadRequest uses the instance p of
Processor from its interface to perform the request. First, it writes the request frame to
p (line 16). Second, it awaits the response (line 17). Third, it reads the response from
p (line 18). Finally, it emits EMS_RESPONSE, thereby returning the response to the web
server (line 20). EmsWriteRequest behaves similar but handles frame content differently.

The actual application code starts in line 27. Here, we first instantiate a pool requests
which is a container for dynamic organisms of type IEmsRequest. Due to the common
interface, it allows to store up to 20 instances of EmsReadRequest and EmsWriteRequest in
total. Second, we instantiate a single instance p of Processor which should be used by all
request organisms for interfacing the fieldbus (line 28). Third, we use the infinite loop
in lines 29 to 40 in order to continuously accept an incoming EMS request from the web
server. Therefore, we await EMS_REQUEST (line 30). In case of a read request (line 31),
we use Céu’s spawn in order to create a new EmsReadRequest in the pool (line 32). Note
how the reference to p gets injected into each newly created organism (line 33). In case
of a write request (line 35), we take the same approach to create a new EmsWriteRequest

(line 36). By this, we map each incoming EMS request to a proper request organism
for processing and enqueuing it in requests.

Comparison In our adoption, IEmsRequest corresponds to the common Command
interface while EmsReadRequest and EmsWriteRequest provide two ConcreteCommand im-
plementations. The actual command execution is delegated to Processor (line 16) which
aids as the Receiver. Since there is only one fieldbus physically available, the same
Receiver is used for all commands. The top-level fieldbus driver is the Client which
creates new commands during runtime (lines 32 and 36). In contrast to the pattern,
the Céu adoption does not require an explicit Invoker. This is due to the fact that
in Céu (dynamic) organisms allow to separately encapsulate data and control flow
for each individual ConcreteCommand. While commands in the pattern are rather
passive entities that require to get invoked by an execution context, commands in
the Céu adoption are active entities that concurrently execute their code themselves.
Thus, in our approach, commands can be best compared to the notion of jobs which
tie together a set of data and an assigned working progress that advances concurrently
during runtime. Although EmsReadRequest and EmsWriteRequest immediately start running

80

5.3 Object-Based Design

1 input _data_request EMS_REQUEST;
2 output _data_response EMS_RESPONSE;
3 // Receiver
4 class Processor with
5 var Frame& fReq; var Frame& fRes; event void response; <...>
6 do <...> end
7 // Command
8 interface IEmsRequest with
9 var Processor& p; <...>
10 end
11 // ConcreteCommand A
12 class EmsReadRequest with
13 interface IEmsRequest;
14 do
15 <build-read-request-frame>
16 p.fReq = <read-request-frame>; // delegate to Receiver
17 await this.p.response;
18 <read-response-frame> = this.p.fRes;
19 <process-response>
20 emit EMS_RESPONSE => <response-data>;
21 end
22 // ConcreteCommand B
23 class EmsWriteRequest with
24 interface IEmsRequest;
25 do <...> end
26 // Client
27 pool IEmsRequest[20] requests;
28 var Processor p with <...> end;
29 loop do
30 <...> = await EMS_REQUEST;
31 if <is-read-request> then
32 <...> = spawn EmsReadRequest in requests with // create and invoke
33 this.p = &p; // inject Receiver
34 end;
35 else/if <is-write-request> then
36 <...> = spawn EmsWriteRequest in requests with // create and invoke
37 this.p = &p; // inject Receiver
38 end;
39 end
40 end

Listing 5.12: Adoption of the Command pattern

after instantiation, the injected Processor internally takes care of postponing the actual
command execution until the next instance of Active Mode (see Section 5.3.3). This
becomes apparent due to the fact that EmsReadRequest respectively EmsWriteRequest have
to wait for the corresponding reply (line 17).

Benefit In our adoption, new types of requests can be easily added without changing
existing code. It only requires to provide additional organism classes that implement
IEmsRequest. For example, the fieldbus provides additional meta requests which allow to
retrieve information about which services are actually available in the concrete heating
appliance setup. They also follow a request-response frame discipline – this means
they can use Processor likewise – but require completely different data handling and
interpretation. We can easily add a new organism, for example EmsMetaRequest, which
encapsulates the required knowledge and store it in the same pool.

81

5 Deployment and Qualitative Evaluation of Synchronous Programming

IEmsRequest decouples the organism that invokes the operation (the top-level fieldbus
driver) from the one that knows how to perform it (Processor). This allows the top-level
fieldbus driver to accept and enqueue any type of existing or potential future EMS
requests in the same way. This is only possible because the top-level fieldbus driver
only needs to know how to issue the request and not how it will be carried out. By
taking advantage of dependency injection (lines 32 and 36), it is also possible to
inject different Receivers for different fieldbus systems. For example, the gateway must
generally serve different bus systems apart from EMS such as Controller Area Network
(CAN), Meter-Bus (M-Bus), Modbus, etc. Our approach allows to inject a reference to a
bus-specific Processor implementation for each individual incoming request. This enables
to distinguish between different gateway product lines at compile time (statically) or
at runtime if multiple buses must be served simultaneously (dynamically).
Finally, EmsReadRequest and EmsWriteRequest are first-class organisms that can be ma-

nipulated and extended like any other organism. For example, they can be extended by
an internal event mechanism which emits events on each bus access or communication
error for logging or debugging purposes (see Section 5.3.4).

5.3.2 Adoption of Facade Pattern
“Provide a unified interface to a set of interfaces in a subsystem. Facade
defines a higher-level interface that makes the subsystem easier to use.”
[Gam+95]

Facade

subsystem classes

Figure 5.8: Structure of the Facade pattern [Gam+95]

Figure 5.8 illustrates the structure: “Facade [...] knows which subsystem classes
are responsible for a request [and] delegates client requests to appropriate subsystem
objects. Subsystem classes [...] implement subsystem functionality [and] handle work
assigned by the Facade object. [They] have no knowledge of the facade; that is, they
keep no references to it.” [Gam+95]

Motivation In our fieldbus driver architecture the static layer is responsible for
actually interfacing the fieldbus. Thus, organisms EmsReadRequest and EmsWriteRequest

(see Section 5.3.1) from the dynamic layer must use the static layer in order to fulfill
their task. However, as presented in Sections 5.1.3 and 5.2, we structured the static layer
into several smaller organisms: FrameReceiver, FrameTransmitter, ReadAccess, WriteAccess,

82

5.3 Object-Based Design

PassiveHandler and ActiveHandler. On the one hand, this helps reduce complexity and
makes the static subsystem more reusable and easier to customize. On the other hand,
it becomes harder to use for the clients EmsReadRequest and EmsWriteRequest since they
have to deal with a comparatively large number of organisms with specialized interfaces.
Consequently, we aim for a single, simplified interface to the static subsystem which
minimizes communication and dependencies between dynamic and static layer. This
suggests the adoption of the structural Facade pattern.

Adoption In Listing 5.13, we implement Processor (lines 2 to 21) which acts as the
Facade for the static subsystem. As illustrated in Section 5.3.1, it is injected into
and used by the clients EmsReadRequest and EmsWriteRequest likewise. Processor knows
which organisms of the static fieldbus driver layer are actually responsible for request
processing during runtime and how to access them. For the dynamic layer, it provides
a simple fieldbus communication interface (lines 4 to 7) based on a frame transmit
(line 4) and receive (line 5) buffer as well as event response (line 6). The latter notifies
when a new response in fRes is ready to be read out. In its implementation Processor

essentially delegates the requests from EmsReadRequest and EmsWriteRequest to the appro-
priate organism during runtime. Usually, EMS requests are realized by ActiveHandler

in Active Mode. That is, the fieldbus driver explicitly requests the data from the
heating appliance. Therefore, Processor creates an instance ah of ActiveHandler (lines 14
to 18) and forwards the request frame by passing a reference to fReq (line 15). The
response frame is returned similarly (line 16). This way, EmsReadRequest, for example,
can send a request frame fReq to ah trough Processor and await the response fRes using
response. Apart from that, some data is regularly published by broadcasts without
explicit request. Broadcast messages are processed by PassiveHandler in Passive Mode.
Consequently, EMS requests can be implicitly fulfilled by PassiveHandler too. Therefore,
Processor creates an instance ph of PassiveHandler (lines 10 to 12) and passes a reference
to fRes (line 11). This allows ph to forward incoming broadcast messages to instances
of EmsReadRequest and EmsWriteRequest respectively.

Comparison Processor corresponds to the Facade while PassiveHandler and ActiveHandler

are two subsystem classes. EmsReadRequest and EmsWriteRequest are the clients that use
the Facade. The adoption of the Facade pattern in Céu is straightforward. There are
no notable differences.

Benefit Processor provides a single, simplified interface to the static fieldbus driver
subsystem which hides all the complexity of instantiating and interacting with the
contained set of organisms. Also, it comprises an entry point to the static fieldbus
driver layer making the dynamic and the static layer solely communicate through
Processor. This reduces the number of organisms EmsReadRequest and EmsWriteRequest

have to deal with and hence makes the static layer easier to use. For example, they
do not have to care about whether the fieldbus driver currently runs in Passive or

83

5 Deployment and Qualitative Evaluation of Synchronous Programming

1 // Facade
2 class Processor with
3 // simple interface
4 var Frame& fReq;
5 var Frame& fRes;
6 event void response;
7 <...>
8 do
9 loop do
10 var PassiveHandler ph with
11 this.fRes = &outer.fRes;
12 end;
13 <...>
14 var ActiveHandler ah with
15 this.fReq = &outer.fReq;
16 this.fRes = &outer.fRes;
17 <...>
18 end;
19 <...>
20 end
21 end
22 // Subsystem class A
23 class PassiveHandler with
24 var Frame& fRes;
25 do <...> end
26 // Subsystem class B
27 class ActiveHandler with
28 var Frame& fReq; var Frame& fRes; <...>
29 do <...> end

Listing 5.13: Adoption of the Facade pattern

Active Mode. Furthermore, Processor decouples PassiveHandler and ActiveHandler from
EmsReadRequest and EmsWriteRequest. As a consequence, organisms of the static subsystem
can be modified or even exchanged without affecting EmsReadRequest and EmsWriteRequest,
thereby promoting independence and portability. For example, we can easily implement
new organism classes that realize another fieldbus communication protocol such as CAN.
In this case, EmsReadRequest and EmsWriteRequest only require adaptation with respect
to payload handling. Also, it allows to implement the dynamic and static fieldbus
driver layers independently and in parallel by several developers. Nonetheless, it is still
possible to access static subsystem organisms directly. For example, we can implement
a concurrent logging organism which continuously runs FrameReceiver in a loop, thereby
capturing all received frames for debugging purposes.

5.3.3 Adoption of State Pattern
“Allow an object to alter its behavior when its internal state changes. The
object will appear to change its class.” [Gam+95]

Figure 5.9 illustrates the structure: “Context [...] defines the interface of interest to
clients [and] maintains an instance of a ConcreteState subclass that defines the current
state. State [...] defines an interface for encapsulating the behavior associated with a
particular state of the Context. Each [ConcreteState] subclass implements a behavior
associated with a state of the Context.” [Gam+95]

84

5.3 Object-Based Design

Context

Request()

ConcreteStateA

Handle()

state

state->Handle()

State

Handle()

ConcreteStateB

Handle()

Figure 5.9: Structure of the State pattern [Gam+95]

Motivation As presented in Section 5.3.2, Processor acts as the actual software inter-
face to the fieldbus. However, it reacts to incoming characters differently depending
on its current state respectively operation mode. Thus, the behavior of Processor has
to change at runtime depending on that state. Due to the drawbacks discussed in
Section 4.2, we particularly aim to avoid any state machine-like implementation that
relies on large, conditional code blocks for selecting the proper actions to take. This
suggests the adoption of the State pattern.

Adoption In Listing 5.14, we implement Processor (lines 2 to 16) as the Context that
has to change its behavior. PassiveHandler (lines 18 to 28) implements the behavior in
Passive Mode while ActiveHandler (lines 30 to 41) realizes the behavior in Active Mode.
The loop in Processor (lines 4 to 15) is used to toggle between the different behaviors
during runtime. By default, Processor is in Passive Mode. Therefore, it creates an
instance ph of PassiveHandler (line 5) and awaits its termination (line 7). In its internal
loop (lines 20 to 27), PassiveHandler repeatedly receives a frame (line 22) and processes
it subsequently. If the frame is of type Token (line 24), Processor must switch to Active
Mode (see Section 2.1). Therefore, PassiveHandler exits its loop using break (line 25)
and terminates. This causes await ph (line 7) to return. Processor proceeds, creates
an instance ah of ActiveHandler (line 10) and awaits its termination (line 12), thereby
switching to Active Mode. In its internal loop (lines 33 to 39), ActiveHandler performs
EMS requests (line 35) assigned from EmsReadRequest and EmsWriteRequest respectively. If
the communication time slot expired or there are no more requests to send (line 34)
it exits its loop (line 37) and terminates. This causes await ah (line 12) to return and
the current loop iteration in Processor to complete. The next iteration automatically
creates a new instance of PassiveHandler (line 5), thereby returning to Passive Mode.

Comparison Processor corresponds to the Context while PassiveHandler and ActiveHandler

represent two ConreteStates. In the reactive domain, the functionality that must differ
depending on the current state is how the external input events, for example BYTE,
BREAK and ERROR, are processed. In Céu, those events have global scope and hence
can be awaited and processed by any organism. Thus, we do not have to implement
a common State interface for PassiveHandler and ActiveHandler since it is intrinsically

85

5 Deployment and Qualitative Evaluation of Synchronous Programming

1 // Context
2 class Processor with <...>
3 do
4 loop do
5 var PassiveHandler ph with <...> end;
6 par/or do
7 await ph;
8 <...>
9 // State switch: Passive to Active
10 var ActiveHandler ah with <...> end;
11 par/or do
12 await ah;
13 <...>
14 // State switch: Active to Passive
15 end
16 end
17 // ConcreteState A
18 class PassiveHandler with <...>
19 do
20 loop do
21 <...>
22 <...> = do FrameReceiver with this.fRx = &fRx; end;
23 <...>
24 else/if fRx.TOKEN then
25 break;
26 <...>
27 end
28 end
29 // ConcreteState B
30 class ActiveHandler with <...>
31 do
32 <...>
33 loop do
34 if <enough-time> and <more-to-send> then
35 <perform-next-ems-request>
36 else
37 break;
38 end
39 end
40 <...>
41 end

Listing 5.14: Adoption of the State pattern

given by language design. During runtime, we just need to exchange the organisms
that contain the event handling code presented in Section 5.2.
Furthermore, the State pattern does not specify who – Context or ConcreteState –

defines the state transitions. Essentially, a transition requires two decisions: First, the
circumstances in which the current state is left. Second, the successor state. Gamma
et al. [Gam+95] generally consider transitions in the ConcreteState subclasses more
flexible and appropriate. However, they also note that this introduces implementation
dependencies between those subclasses. In our adoption, we separate both decisions.
PassiveHandler and ActiveHandler terminate themselves when their time is over. This is
reasonable since they have the required knowledge. On the one hand, PassiveHandler
knows the type of the current frame and that a token indicates the end of Passive
Mode. On the other hand, ActiveHandler knows how much communication time is
left and whether there are still more requests to send. Processor, in its turn, knows
that ActiveHandler must succeed PassiveHandler and vice versa. As a consequence, our

86

5.3 Object-Based Design

ConcreteStates determine under which circumstances a state must be left while the
Context determines the successor state. This separation of responsibilities avoids
unnecessary dependencies across organisms and hence allows to keep the required
knowledge local and encapsulated. PassiveHandler and ActiveHandler do not know Processor

nor do they know each other. This allows to easily add new transitions without changing
the existing ConcreteStates.
Finally, we believe that organisms in Céu better support the intuitive notion of

“behavior”. In [Gam+95], the user of the Context actually executes the behavior by
calling the corresponding state function. Thus, behavior as such is only a one-step
action. In contrast, organisms really “live” – so to speak – and execute their behavioral
code themselves. Thus, they really have an independent existence over a longer period
of time.

Benefit PassiveHandler and ActiveHandler partition the state-specific behavior and en-
capsulate it locally in dedicated organisms. This allows to easily add new states and
transitions by implementing new organism classes. Since the transition logic does not
reside in a monolithic if or switch statement but is structured into state-specific code
that runs in a linear control flow, we consider it easier to comprehend. In particular,
note how the loop in Processor supports the intuitive notion on how Passive and Active
Mode alternate during runtime.

5.3.4 Adoption of Observer Pattern
“Define a one-to-many dependency between objects so that when one object
changes state, all its dependents are notified and updated automatically.”
[Gam+95]

Subject

Attach(Observer)
Detach(Observer)
Notify()

Observer

Update()

ConcreteSubject

GetState()
SetState()

subjectState

ConcreteObserver

Update()

observerState

observerState =
 subject->GetState()

return subjectState

for all o in observers {
 o->Update()
}

subject

observers

Figure 5.10: Structure of the Observer pattern [Gam+95]

Figure 5.10 illustrates the structure: “Subject knows its observers. Any number of
Observer objects may observe a subject. [It] provides an interface for attaching and
detaching Observer objects. Observer defines an updating interface for objects that
should be notified of changes in a subject. ConcreteSubject stores state of interest to
ConcreteObserver objects [and] sends a notification to its observers when its state
changes. ConcreteObserver maintains a reference to a ConcreteSubject object. [It] stores

87

5 Deployment and Qualitative Evaluation of Synchronous Programming

state that should stay consistent with the subject’s [and] implements the Observer
updating interface to keep its state consistent with the subject’s.” [Gam+95]

Motivation As presented in Section 5.3.1, all EmsReadRequest and EmsWriteRequest or-
ganisms in pool requests use the same injected instance of Processor for accessing the
fieldbus, thereby using the interface described in Section 5.3.2. In particular, they send
request frames to Processor for transmission. Once Processor changes its state due to
the reception of a response frame, the request organisms require notification in order
to synchronize their internal receive buffer with the one of Processor. That means that
we have two aspects of abstraction – the dynamic requests and the static fieldbus
interface – that are encapsulated in separate organisms. An arbitrary number of request
organisms, which is not known at development time, depends on a single Processor. In
order to achieve independency and design for reuse, we do not want these organisms
tightly coupled. However, they should behave as tough they are. This suggests the
adoption of the Observer pattern.

Adoption In Listing 5.15, we implement Processor (lines 2 to 8) which promotes the
internal event response (line 3) in order to notify about the successful reception of a
response frame. By taking advantage of Céu’s await-statement, EmsReadRequest (lines 10
to 16) and EmsWriteRequest (lines 18 to 24) observe the injected instance p of Processor for
an incoming response (lines 13 and 21). On receipt, p triggers response (line 6), thereby
waking up all observing organisms. Subsequently, EmsReadRequest and EmsWriteRequest

process the response (lines 14 and 22), thereby reading out p’s receive buffer.

1 // ConcreteSubject
2 class Processor with
3 event void response; <...>
4 do
5 <...>
6 emit response; // notify
7 <...>
8 end
9 // ConcreteObserver A
10 class EmsReadRequest with <...>
11 do
12 <...>
13 await p.response; // observe p
14 <process-response>
15 <...>
16 end
17 // ConcreteObserver B
18 class EmsWriteRequest with <...>
19 do
20 <...>
21 await p.response; // observe p
22 <process-response>
23 <...>
24 end

Listing 5.15: Adoption of the Observer pattern

88

5.3 Object-Based Design

Comparison Processor corresponds to the ConcreteSubject while EmsReadRequest and
EmsWriteRequest provide two implementations for a ConcreteObserver. In the pattern,
subjects and observers have to implement a common Subject and Observer interface
respectively. The former enables a group of objects – the subjects – to attach and detach
Observer objects. The latter, in its turn, enables a group of objects – the observers –
to get notified about changes in a Subject. Both interfaces are not required in Céu.
This is due to the fact that “observing”, means awaiting a certain event triggered by
another organism, is a first-class feature in Céu and hence intrinsically supported by
any organism. Thus, there is no need for interfacing and generalization.

In Céu, we naturally have loose coupling between subject and observer. Due to Céu’s
built-in internal event mechanism, observers do not have to register. Consequently,
the subject does not know anything about its observers. It does not have to maintain
a list of its observers and does not make any assumptions, for example it does not
force a common interface. This allows any arbitrary organism to observe the subject.
Furthermore, the subject is not forced to call subject-foreign code. In [Gam+95], the
update code of an observer is actually executed by the subject by traversing through
its list of registered observers. In Céu, control is inverted. The subject does not talk
to each observer explicitly. Instead, the linkage between observers and the subject is
implicitly created by Céu– observers really “listen”. Moreover, there is no need for
un-registration which is a major risk for memory leaks [DF10] in conventional observer
implementations. The latter is avoided in Céu by language design.

Benefit Our adoption allows to vary Processor and request organisms independently.
Due to the loose coupling, the Subject Processor and the ConcreteObservers EmsReadRequest
and EmsWriteRequest can belong to different abstraction layers – static and dynamic – in
our fieldbus driver architecture (see Section 5.1.3). Although the lower-level Processor
communicates with the higher-level request organisms, the fieldbus driver’s layering is
still intact. Note that a tight coupling would require the involved organisms to belong
to both layers, thereby violating the layering, or to forcibly reside in one layer – static
or dynamic – , thereby compromising the layering abstraction. Furthermore, it provides
a natural way for implementing broadcasts since we do not need to specify the receiver
of an internal event in Céu. response is automatically sent to all request organisms
that observe the injected instance p of Processor. Also, this allows to easily add new
observing organisms, for example for logging or debugging purposes. Finally, received
frames, that do not require further processing because requests is currently empty, are
automatically ignored since no organism is observing Processor.

5.3.5 Adoption of Chain of Responsibility Pattern
“Avoid coupling the sender of a request to its receiver by giving more than
one object a chance to handle the request. Chain the receiving objects and
pass the request along the chain until an object handles it.” [Gam+95]

89

5 Deployment and Qualitative Evaluation of Synchronous Programming

Client Handler

HandleRequest()

ConcreteHandler1

HandleRequest()

successor

ConcreteHandler2

HandleRequest()

Figure 5.11: Structure of the Chain of Responsibility pattern [Gam+95]

Figure 5.11 illustrates the structure: “Handler [...] defines an interface for handling
requests [and optionally] implements the successor link. ConcreteHandler [...] handles
requests it is responsible for [and] can access its successor. If the ConcreteHandler can
handle the request, it does so; otherwise it forwards the request to its successor. Client
initiates the request to a ConcreteHandler object on the chain.” [Gam+95]

Motivation As presented in Sections 5.3.2 and 5.3.3, ActiveHandler is used by Processor

for explicitly realizing EMS requests on the fieldbus. If a response frame has been
received, ActiveHandler triggers its corresponding processing. However, response frames
are not handled by the caller of ActiveHandler, which is Processor, but by one of the
organisms in pool requests. Which specific instance of EmsReadRequest or EmsWriteRequest is
actually responsible for processing a certain frame it not known a priori at development
time. Thus, the organism that ultimately handles the response frame is not known
explicitly to the organism that initiates the processing request – each response frame
has an implicit receiver. The set of organisms that can handle the frame is spawned
dynamically during runtime (see Section 5.3.1). Also, organisms in requests can outlive
several instances of ActiveHandler, for example if a certain EmsReadRequest requires the
transmission of multiple request frames that do not fit in a single communication time
slice. Thus, the concrete instance of ActiveHandler changes during runtime. Consequently,
we aim to decouple sender ActiveHandler and receivers EmsReadRequest and EmsWriteRequest

respectively by giving multiple organisms a chance to handle a response frame. This
suggests the adoption of the Chain of Responsibility pattern.

Adoption In Listing 5.16, ActiveHandler (lines 2 to 8) triggers event response (line 6)
through its interface (line 3) in order to request the processing of the currently received
response frame. Processor (lines 10 to 26) creates an instance ah of ActiveHandler (line 15)
and awaits its termination (line 17). While ah is running, Processor uses a loop (lines 19
to 22) in order to concurrently wait for every response triggered by ah (line 20), thereby
adopting the Observer pattern from Section 5.3.4. On occurrence, Processor forwards the
event by emitting response through its own interface (line 21). EmsReadRequest (lines 28
to 34), for example, waits for its injected instance p of Processor to trigger response

90

5.3 Object-Based Design

(line 31) and finally processes the received response frame (line 32). Note that the last
step takes advantage of the Observer pattern too.

1 // Client
2 class ActiveHandler with
3 event void response; <...>
4 do
5 <...>
6 emit response;
7 <...>
8 end
9 // ConcreteHandler A
10 class Processor with
11 event void response; <...>
12 do
13 loop do
14 <...>
15 var ActiveHandler ah with <...> end;
16 par/or do
17 await ah;
18 with
19 loop do
20 await ah.response;
21 emit response;
22 end
23 <...>
24 end
25 end
26 end
27 // ConcreteHandler B
28 class EmsReadRequest with <...>
29 do
30 <...>
31 await p.response;
32 <process-response>
33 <...>
34 end

Listing 5.16: Adoption of the Chain of Responsibility pattern

Comparison ActiveHandler corresponds to the Client while Processor and EmsReadRequest

implement two ConcreteHandlers. In Céu, the Chain of Responsibility is a straight-
forward approach which relies on two nested adoptions of the Observer pattern.
EmsReadRequest observes Processor while Processor, in its turn, observes ActiveHandler.
Thus, for the same reason as described in Section 5.3.4, a common Handler interface is
not required. Also note that ConcreteHandlers does not know their successor. Using
internal event response, Processor performs a delegation by broadcast. This allows, in
principle, to implement a branched chain where multiple receivers for the same request
are thinkable. For example, Processor might forward a response frame for processing to
EmsReadRequest and a concurrent organism for logging purposes.

Benefit By taking advantage of Céu’s internal events, we can easily implement
a delegation chain across an arbitrary number of organisms. This allows to com-
pletely decouple the initial event sender from the final receiver. ActiveHandler does not

91

5 Deployment and Qualitative Evaluation of Synchronous Programming

know anything about the existence of EmsReadRequest and EmsWriteRequest. The same is
true vice versa. This allows to independently create new instances of EmsReadRequest,
EmsWriteRequest and ActiveHandler during runtime – they are implicitly linked by the
single, static instance p of Processor. Also, organisms in the chain do not have to know
about the chain’s structure. This generally increases flexibility in assigning responsi-
bilities to organisms. Note that this approach can be effectively applied to exception
handling too. ActiveHandler, for example, might encounter an exception while performing
fieldbus interaction and throw a corresponding exception event to Processor. Processor,
in its turn, might not be aware of the exception’s consequences and hence delegate it
up the chain to the currently active request organism. The latter, finally, might know
that this specific kind of exception causes the request to completely fail – without any
need for retry – and hence terminates immediately.

5.4 Testing Capabilities
“Software is tested to establish its ‘quality, performance or reliability’.”
[OK13, p. 443]

In contrast to static validation techniques such as code reviews or theorem proving,
software testing is a dynamic approach where code is actually executed. Usually, this
involves unit, integration and system tests. They all compile, link, build and run code
chunks on specified test data and check the outcome against the expectations. Following
a bottom-up strategy, basic functionalities are first unit-tested and then, for integration
testing, composed into subsystems. The tested subsystems are finally brought together
to perform system tests. [OK13, ch. 15] With respect to our gateway system, we assign
these test classes as follows (see Figure 5.12):

EMS DriverWeb Serverwww

unit testing

GATEWAY

mobile
device

heating
appliance

integration testingsystem testing

Figure 5.12: Test classes for the gateway application

Unit Testing deals with testing the software entities of the fieldbus driver. For example,
we check whether our organism implementations correctly react to BYTE, BREAK
and ERROR.

Integration Testing deals with testing the interaction between the two subsystems
web server and fieldbus driver. For example, we check if a certain EMS request

92

5.4 Testing Capabilities

submitted by the web server is acknowledged with the correct EMS response by
the fieldbus driver within a specified period of time.

System Testing deals with testing the entire system chain including the mobile device,
the Internet, the web server, the fieldbus driver, the fieldbus and the heating
appliance. For example, if a user configures a certain room temperature using
its smart phone we check whether the value set actually reaches the heating
appliance.

During the course of development, testing should be started as soon as possible. The
sooner a defect is detected, the lower are the costs to fix it. Thus, early unit testing is
an important step towards reducing effort for rectification. [OK13, ch. 15]
In this chapter, we consider Céu’s support for dynamic testing. Therefore, we first

present its ability to simulate Céu code in the language itself. Then, we demonstrate
how this language-feature can be used to implement and run unit tests.

5.4.1 Program Simulation
Based on a concrete, minimal example, Sant’Anna et al. [SIR12] fundamentally demon-
strate Céu’s ability to simulate programs in the language itself. The concept of
simulation is centered around the notion of explicit asynchronous execution. Céu’s
async-block (asynchronous block) locally relaxes the rigorous synchronous model and
allows execution under a different scheduling policy. In particular, asynchronous blocks
interleave execution with the synchronous part of the Céu program as follows:

1. They start respectively resume whenever the synchronous side is idle.
2. They suspend after each loop iteration.
3. They suspend on every emit.
4. They execute automatically and run to completion unless (2) and (3) apply.

As a consequence, asynchronous blocks never execute with real parallelism with the
synchronous side, thereby preserving determinism in the program.

“Asynchronous blocks are allowed to emit input events and also events
that represent the passage of wall-clock time towards the synchronous side
of the program. This way, it is easy to simulate and test the execution
of programs with total control and accuracy with regard to the order of
input events – all is done with the same language and inside the programs
themselves.” [SIR12, p. 14]

Based on this, program simulation in Céu generally relies on the simple pattern
presented in Listing 5.17. Simulation requires two concurrent trails. In the first trail
(line 2), we run the Céu code which should be simulated. In the second trail (lines 4
to 7), we simulate the environment given by the sequence of input events. In particular,
async (lines 4 to 6) aids as the source for the external input stimuli that drive the code
in the first trail.

On simulation start, the code trail executes first. This runs the code under simulation

93

5 Deployment and Qualitative Evaluation of Synchronous Programming

1 par do // Trail 1: Code to simulate
2 <...> // run the code under simulation
3 with // Trail 2: Environment
4 async do
5 <event-sequence> // emit the external input stimuli
6 end
7 escape 0;
8 end

Listing 5.17: Fundamental program simulation in Céu

which, right after start-up, suspends waiting for an input event. Thus, the environment
trail executes subsequently. This causes async to emit the first input event to the code
and immediately suspend afterwards. Control returns to the code trail which performs
the corresponding event reaction and finally suspends again. The environment trail
continues triggering the next input event and so on. This alternating execution proceeds
until the entire event sequence in async has been processed, thereby indicating the
end of simulation. Note that the par-block in line 1 deliberately abstains any abortion
mechanism. This is to ensure that the entire input event sequence is completely
performed even if the code under simulation terminates previously. In case it never
terminates, for example due to an infinite loop, escape (line 7) finally forces the
simulation to end at the latest. By this, it is possible to simulate terminating and
non-terminating Céu code likewise.

5.4.2 Unit Testing
As presented in Sections 5.2 and 5.3, the software design in Céu is centered around
organisms for hierarchical structuring and modularization. For this reason, it seems
reasonable to consider an organism as a Unit Under Test (UUT) when testing reactive
Céu code.

Testability of Organisms Our deployment of organisms in Sections 5.2 and 5.3 shows
that they may have different relationships among each other. In particular, we generally
distinguish between four different classes of organisms to test (see Figure 5.13):
First, if an organism does not rely on any other organism in its interface or execu-

tion body it is completely independent (Class 1). Second, dependent organisms may
instantiate required organisms in their execution body (Class 2) or take advantage
of existing instances. Third, the latter may be injected via the organism’s interface
(Class 3) or referenced from Céu’s top-level global interface (Class 4). The global
interface interface Global with <...> end allows to explicitly declare a set of variables
and organisms with global scope and application lifetime. Figure 5.13 shows how
our fieldbus driver organisms map to those classes. It appears, that its class has a
considerable impact on an organism’s testability.

Organisms of classes 1 and 2 are generally easy to test since they are self-contained.
Either they are completely isolated (Class 1) or they self-sufficiently manage instan-
tiation, initialization and interfacing of dependent organisms (Class 2). Accordingly,

94

5.4 Testing Capabilities

Figure 5.13: Classification of organisms

testing organisms of Class 2 requires testing the dependent organisms before, thereby
deploying a bottom-up strategy. In contrast, organisms of classes 3 and 4 comprise
external dependencies and hence decrease testability. In particular, Class 3 organisms
additionally require to create, initialize and inject the instances of the dependent
organisms for each test case. Note that this considerably increases test effort since the
behavior of the organism under test depends on the initial state of the injected organ-
isms. At least, due to the dependency injection, it becomes obvious on interface-level
which organisms are actually involved. In contrast, implementing organisms of Class 4
is like using global variables in order to affect the internal behavior of a function in
C. Only reviewing the organism’s execution body reveals which organism instances
are actually involved and must be provided. Due to a line up of software engineering
disadvantages [SK13], i.a. high testing complexity, this approach is generally discour-
aged. For this reason, we suggest to favor organisms of classes 1 and 2, use Class 3
organisms as rarely as possible and entirely avoid organisms of Class 4 in order to gain
good testability.

Unit Test Case Implementation It appears, that implementing unit test cases is a
straightforward approach in Céu. Therefore, we take advantage of its built-in program
simulation capabilities (see Section 5.4.1). In Listing 5.18, we exemplarily demonstrate
how a simple black-box test case for our FrameTransmitter (see Section 5.2.1, Listing 5.6) –
the UUT – may look like in Céu. Our aim is to check whether FrameTransmitter correctly
behaves in case of timing errors during frame transmission. For this, we provide a
predefined frame to send and simulate the incoming mirror bytes as well as the passage
of physical time in between them, thereby deliberately enforcing a mirror timeout.
Afterwards, we check the return value of FrameTransmitter which is expected to indicate
the timing error. In general, each test case requires the following steps:

1. Include the UUT code and, if necessary, dependent code.
2. Set up everything required to run the UUT.
3. Instantiate, initialize and start the UUT.
4. Perform the simulation.

95

5 Deployment and Qualitative Evaluation of Synchronous Programming

5. Check the assertions.

1 /* @file tests.ceu */
2 // Step 1: Include the UUT code and, if necessary, dependent code
3 #include "byteProcessing.ceu"
4 // Step 2: Set up everything required to run the UUT
5 var int ret = 1;
6 var Frame fTx = Frame.MESSAGE_READ(<...>); // e.g. 0x01 0x02 0x03
7 // Step 3: Instantiate, initialize and start the UUT
8 var FrameTransmitter tx with
9 this.fTx = &fTx;
10 end;
11 // Step 4: Perform the simulation
12 par do
13 ret = await tx;
14 with
15 async do
16 emit 25ms;
17 emit BYTE => 0x01;
18 emit 18ms;
19 emit BYTE => 0x02;
20 emit 50ms; // timing error: mirror time exceeded!
21 emit BYTE => 0x03;
22 emit 32ms;
23 emit BREAK;
24 end
25 // Step 5: Check the asserts
26 _assert(ret == -2);
27 escape 0;
28 end

Listing 5.18: An exemplary black-box test case for FrameTransmitter.

According to this, we implement our test case in a separated source file tests.ceu and
first include all the required byte layer code (line 3). Second, we set up ret (line 5) to
store the return value and fTx (line 6) to hold the frame that should be transmitted.
Note that in case of Class 3 and 4 organisms at this point the dependent organisms
must be set up too. Third, we create and start tx (lines 8 to 10), thereby passing the
predefined frame (line 9). Fourth, we simulate the transmission (lines 12 to 28) based
on the specified input event sequence (lines 16 to 23). In the code trail we just await
the termination of tx in order to retrieve its return value (line 13). In the environment
trail, we emit the input stimuli. When we run the test case, tx transmits the first
byte of fTx and awaits the corresponding mirror. async takes control and emits 25 ms
(line 16). tx processes the passage of time which has no effect since it is less than
the mirror timeout of 42 ms. Then, the first mirror byte is emitted (line 17) which
causes tx to transmit the next frame byte. Again, we simulate the passage of time
and the corresponding mirror (lines 18 and 19). In line 20, async emits 50 ms which
causes a mirror timeout to occur. Consequently, tx immediately terminates, thereby
providing a proper return value. The remaining events are emitted too but are never
processed since tx has already run to completion. Fifth, after termination of async, we
use assertions to automatically check whether tx worked correctly or not (line 26). A
mirror timeout should be indicated by a value of -2. Therefore, we expect that ret==-2

holds (line 26). If not, the test case fails and a corresponding warning is thrown.

96

5.4 Testing Capabilities

5.4.3 Discussion
In reactive embedded systems, code execution is entirely linked to the occurrence
of events. Both, sporadic and recurring events are eventually triggered by dedicated
hardware. Whether it is the serial communication device for interfacing the fieldbus or
a hardware timer that measures the passage of physical time and cyclically activates
OSEK tasks. Thus, executing a certain reactive functionality for testing purpose
usually requires to either deploy and run the code on the actual target platform or
execute it in a hard- or software emulator. Note that in those Hardware-In-the-Loop
(HIL) respectively Software-In-the-Loop (SIL) tests the system environment must be
simulated too. For this reason, dynamic testing of reactive embedded code is generally
a complex and tedious task.

“Traditionally, unit testing involves the development of a ‘harness’ to
provide an environment where the subset of code under test can be exposed
to the desired parameters in order for the tester to ensure that it behaves
as specified.” [OK13, p. 449]

In Céu, it is possible to escape from that rigorous fixture dependency due to the
fact that events are a language-feature and can be triggered in the language itself.
In particular, testing in Céu is completely independent from any external hard- or
software tool. It does not require any dedicated testing platform nor any additional
knowledge about how to configure and run test cases. This makes it possible to easily
test code on the feature-rich development system with full control over the sequence of
input events before deploying it on the constrained target platform [SIR12]. In the early
development phase, this also allows uncomplicated, rapid testing of different solutions.
Due to Céu’s synchronous-reactive model of execution, program behavior solely

depends on the order of input events. Their exact timings are irrelevant to the applica-
tion outcome [SIR12, p. 14]. Since async allows to deterministically specify the order of
environment events, several runs of the same test case always produce the same output.
Note that this guaranteed reproducibility particularly expands to temporal behavior as
well as concurrency. Remember that in the asynchronous model concurrent behavior
is inherently non-deterministic and hence not reproducible. This makes testing and
debugging a challenge since related failures only occasionally appear in the field [Lee05;
Lu+08].
Listing 5.18 makes apparent that test cases can be easily separated into dedicated

source files, thereby leaving the original production code untouched. Sant’Anna et al.
[SIR12] indicate that this allows to develop a test framework which retrieves the UUT
code as well as the related test event sequences from separated files and automatically
integrates and runs multiple test cases according to above approach. In combination
with reproducibility, this makes implementing regression testing a straightforward task
in Céu.
Furthermore, Céu’s simulation approach enables black-box and white-box testing

likewise. For black-box testing, also known as functional testing, we only consider
an organism’s public interface (including its return value) and test it against the

97

5 Deployment and Qualitative Evaluation of Synchronous Programming

specification. Listing 5.18 is an example for this. For white-box testing, also known
as coverage testing, we additionally take an organism’s execution body into account.
Taking the example of FrameTransmitter, we can derive particular sequences of input
events, that cover all possible classes of communication scenarios such as successful
transmission, unexpected end-of-frame character, malformed mirror, mirror timeout
and so on. By this, we can ensure that each trail in FrameTransmitter is executed once
at least. Note that the latter requires to deliberately insert errors into the test cases
in order to check the correctness of error handling. In Céu, error injection appears
to be a trivial task. In Listing 5.18, for instance, we easily simulate a timing error by
emitting a time interval greater than the mirror timeout interval (line 20).

5.5 Important Points to Consider
During our work, we encounter a number of important aspects to consider when
deploying the synchronous paradigm as provided by Céu. Some of them might influence
fundamental design decisions in the early development phase.

1. No physical concurrency: In Céu, par-blocks allow to compose an application as a
set of concurrent, cooperating trails. Remember that every Céu program compiles
to single-threaded, sequential code. Thus, concurrency in Céu is only logical.
This means that synchronous code cannot benefit from performance provided
by multi-core or distributed hardware architectures. However, the majority of
embedded systems still relies on a single processor [EE15] which lacks physical
concurrency anyway. Consequently, for most of today’s embedded projects Céu
is not expected to induce any drawback with respect to performance compared to
existing solutions. Quite the contrary, the deployment of Céu makes concurrency
on single-core architectures deterministic and reproducible.

2. Synchronization is still required: Even if the entire business logic is reactive and re-
lies on synchronous code, reasoning about synchronization is still required to some
extend. This is due to the fact that in an embedded system event sources – hard-
or software – are inherently asynchronous. Thus, events may be asynchronously
triggered by any concurrent context of execution, for example a task/thread or
an interrupt service routine. In order to make event processing synchronous and
deterministic, Céu demands serialization of the incoming events by entering
the single input event queue which is shared between those asynchronous units
of execution. As a consequence, the platform interface code and the operating
system, if any, have to make access to the queue thread-safe. However, note that
in Céu’s synchronous approach, dealing with mutual exclusion and deadlocks is
limited to the event-based interface between the asynchronous environment and
the synchronous code. By this, asynchronous concurrency issues are extracted
from the large and complex business logic (the Céu program) and concentrated
in a comparatively small and easy to manage part of the entire application (that

98

5.5 Important Points to Consider

part of the platform interface code that deals with enqueuing). This significantly
reduces synchronization efforts and makes the code less error-prone.

3. Concurrent behavior depends on the lexical order of trails: In Céu, concurrent
trails execute in the order they appear in the code and are allowed to perform
side effects on shared variables (see Section 2.3). As a consequence, reordering
trails may change the program behavior. Consider the following example code:

1 var u8 x = 5;
2 par/or // Trail A (read access on x)
3 var u8 y = x;
4 with // Trail B (write access on x)
5 x = 2;
6 end

Trail A executes before B in the same reaction. Thus, y is always set to 5 while
x is updated to 2. If the order of lines 3 and 5 is inverted, y is always set to 2

instead. Thus, the outcome depends on the lexical order of A and B. Due to this
fact, Céu is not truly synchronous according to the synchronous hypothesis (see
Section 2.2). Note that the FIFO-like execution policy applies to organisms too.
Static organisms and dynamic organisms of the same pool execute in their order
of instantiation. Dynamic organisms of different pools execute in the order in
which the respective pools are declared in the code. In general, this makes Céu
code less robust towards changes and requires careful consideration whenever
organisms are deployed and composed. For example, if we move a pool declaration
inside the code we have to consider its location relative to other pool declarations
since this might change the order in which the entire set of dynamic organisms is
scheduled. If the application’s business logic relies on that order, it might not
work as expected anymore.
In contrast, Esterel, for instance, is considered truly synchronous [Ben+03]. It
distinguishes between variables and signals. Variables are local to trails and
hence cannot be used in a read-write fashion among them. This prevents shared
memory concurrency. Signals are provided for inter-trail communication and have
global scope. Thus, they may be set or unset by several concurrent trails in the
same reaction. However, Esterel ensures that in each reaction, a signal can be
either absent or present but not both. Therefore, the Esterel compiler performs a
causality analysis which detects whether signal operations of concurrent trails
may interfere at run time. If this is the case, it tries to rearrange the concurrent
statements so that the signal’s value is well-established before any read access
is performed. If this is not possible, the code is rejected otherwise [Ber00].
Consequently, the program behavior is independent of the order in which trails
are scheduled for signal processing. This makes the code not only deterministic
but also robust towards changes – a significant benefit of Esterel.
However, while Céu’s implementation seems kind of arbitrary, it is a very simple
and pragmatic approach which statically assigns priorities to trails, allows thread-
safe shared memory access and ensures deterministic, reproducible execution for

99

5 Deployment and Qualitative Evaluation of Synchronous Programming

concurrent code too. Due to its consistent establishment throughout the entire
language design, it provides a transparent semantic that matches the common,
sequential execution style of software. Thus, we believe that this is a reasonable
approach for software development.

4. Dealing with blocking and computation-intensive tasks: Blocking and long-lasting
tasks do not belong to the reactive domain. Accordingly, the synchronous hypoth-
esis generally prohibits their deployment in Céu. Instead, they must be delegated
to the asynchronous environment. For dealing with computation-intensive tasks,
however, Céu provides two workarounds which allow to stay in the language:
First, the low-level approach distributes long-lasting computations across multiple
reactions using the async-block which simulates asynchronous execution (see
Section 5.4). The core idea is to let long-running loops only execute a single
iteration in each reaction, thereby keeping a single reaction short. However, this
scheduling is too simple for real-life applications exposed to real-time requirements.
In particular, remember that code in an async-block only runs if the synchronous
side is idle. Thus, it is not guaranteed to run at all. For this reason, we believe
that this approach is more suitable for testing purpose as presented in Section 5.4.
Second, Céu provides an async/thread-block which concurrently executes the
enclosed lines of code in a real, dedicated thread scheduled by the environment.
The block rejoins as soon as the corresponding thread runs to completion. By this,
the computation-intensive task is performed independently in the asynchronous
environment and only interferes on an event level with the synchronous code.
This approach seems better for real-life applications but shifts real-time problems
to the scheduler of the environment.

5. Limited real-time capability: Céu is not designed for meeting hard real-time
deadlines [San+13]. Due to its purely event-driven execution scheme (see Sec-
tion 2.3) – each event triggers a reaction – it is generally impossible to predict
the frequency of incoming events and the system may not be able to keep up
with them. While Céu’s input queue (see Section 5.1.2) prevents the loss of
events, it is still possible that event occurrences accumulate so that reactions to
(time-critical) events may be delayed and hence cannot complete in time.
Purely sample-driven synchronous languages, such as Esterel, make it easier to
reason about real-time behavior. The minimum inter-arrival time between any
two consecutive events is a fixed system design parameter given by the sample
rate of the clock that cyclically triggers the reactions. Furthermore, remind that,
in the sample-driven approach, multiple events (changes in the environment) can
be processed in a single reaction (see Section 2.2). This prevents the program
to be flooded by event occurrences. However, events can still get lost if there is
more than one occurrence of the same event between two clock ticks.
Finally, Céu’s synchronous language design generally establishes a solid basis
for real-time applications in which the required memory and execution time

100

5.5 Important Points to Consider

for each reaction is bounded on language level. Stringent timing-constraints are
principally achievable but they require additional knowledge and guarantees from
the program’s soft- and hardware environment which are out of scope of Céu.
For example, if the minimum inter-arrival of events is known at development time,
a WCET analysis can be applied in order to meet hard real-time requirements.

6. No debugging support for Céu code: To our knowledge, there is no tool available
that supports state-of-the-art debugging Céu code, for example in terms of
setting break points, inspecting memory locations or providing stack traces. This
appears to be a clear drawback compared to full-featured debugging support
for C which demands, for example, to fall back to extensive usage of the printf

output. The generated state machine in C comprises #line annotations that enable
traceability of the original Céu code. That is, we can cross-check which line of C
code has been generated in response to which line of Céu code. However, this
approach seems to be very low-level and tedious since it resembles debugging of
C code by inspecting the generated assembler code.

101

6 Quantitative Evaluation of
Synchronous Programming

In this chapter, we substantiate our investigations from Chapters 4 and 5 in quantita-
tive terms. First, we provide a static code analysis that extracts different quantitative
performance indicators from both, the asynchronous and the synchronous, implemen-
tations. This measurement allows an objective comparison of selected software quality
aspects. Second, we perform a user study that subjectively evaluates both approaches
by comparatively quantifying different software quality attributes.

6.1 Code Analysis
In our static code analysis we measure the separation of concerns, the scattering of
interfaces and the code size. We focus on the byte and frame layers since they contain
the actual control functionality and hence where fully reimplemented.

6.1.1 Separation of Concerns
With respect to Sections 4.2.3 and 5.2.1, we measure the separation of concerns and
the scattering of code for the implementation of ReceiveBL and TransmitBL. Therefore,
we assign each involved line of code to its related communication concern, thereby
distinguishing between sole ReceiveBL, sole TransmitBL, both and other. “Other”
contributes functionality to the frame layer. The results are presented in Table 6.1.
While reading the table from left to right reveals the separation of concerns, reading
from top to bottom indicates the code scattering.

In the existing C implementation, ReceiveBL and TransmitBL manifest in 41 + 77 +
48 = 166 Lines of Code (LOC) in total. While the 89 LOC of ReceiveBL are scattered
across one interrupt service routine and two functions, the 125 LOC of TransmitBL reside
in two interrupt service routines and three auxiliary functions. However, the majority
of both functionalities, 61 percent (102 LOC), is merged in RxChar whereby ReceiveBL

and TransmitBL have nearly the same proportion, 49 and 51 percent respectively. This
should make apparent that this approach is clearly centered around the RxChar monolith
which significantly contributes to both functionalities likewise. This becomes even more
apparent if we consider their lexical arrangement within RxChar in Figure 6.1. Both
functionalities are intertwined and hence cannot be usefully extracted and separated.
In contrast, in the Céu reimplementation, ReceiveBL and TransmitBL manifest in

72 LOC in total. Céu’s organisms eliminate any code scattering. While the 27 LOC

103

6 Quantitative Evaluation of Synchronous Programming

Communication Concern
Language Function ReceiveBL TransmitBL both other Σ

C

RxChar 34 33 35 108 210
TxChar 15 15
sendByte 7 7
sendBreak 6 6
blReset 13 13
readFrame 7 7
writeFrame 16 16
Σ 41 77 48 108 274

Céu FrameReceiver 27 27
FrameTransmitter 45 45
Σ 27 45 72

Table 6.1: Quantitative distribution of communication concerns (in lines of code)

0

1

2

3

1 21 41 61 81 101 121 141 161 181 201R
e

la
te

d
 C

o
n

ce
rn

Code Line Number

Figure 6.1: Mapping between routine RxChar code line and communication concern in
the C implementation: TransmitBL (3), ReceiveBL (2), both (1), other (0).

of ReceiveBL are entirely encapsulated in FrameReceiver, the 45 LOC of TransmitBL are
completely abstracted by FrameTransmitter. By this, both communication concerns are
perfectly separated and locally contained in a single abstraction entity. Both organisms
are completely isolated and do not share any code line or resource.
Finally, it is worth to mention that in the C implementation RxChar significantly

contributes to frame layer concerns (denoted as “other”). This is caused by the fact that
only the byte layer knows if a frame transmission has been successful or not and the exact
point in time where the transmission actually completed. Both pieces of information
are required by the frame layer in order to account for possible retransmissions and
the measurement of the response timeout interval tr. In order to reduce the burden
of passing this information up to the frame layer, in the C approach the according
retransmission and timer management code is directly interlaced into RxChar although it
conceptually belongs to the frame layer. As Table 6.1 reveals, in Céu this is not necessary
anymore. Due to the synchronous model of execution the termination of FrameTransmitter
intrinsically comprises the exact point in time of transmission completion. In addition,

104

6.1 Code Analysis

its return value indicates success or failure. Thus, the byte layer implementation in
Céu is free of foreign concerns.

6.1.2 Interface Scattering
With respect to Sections 4.2.3 and 5.2.2, we measure the scattering of the byte and
frame layer interfaces. Therefore, we count the points of interaction between the layers.
That is, all the different code locations in the byte layer that access the frame layer
interface and vice versa. By “access” we mean a call to one of the interface functions or
a read or write operation on shared variables. The less points of interaction the lower
the scattering. Low scattering promotes layer independency and makes interaction
easier to comprehend. The results are presented in Table 6.2.

in C in Céu
accesses frame to byte layer
blReset 9 FrameReceiver 3
readFrame 1 FrameTransmitter 3
writeFrame / startTransmission 17
Σ 27 6
accesses byte to frame layer
flReset 6
notify 3
Σ 9 0

Table 6.2: Number of interaction points between byte and frame layer

In the existing C implementation, the frame layer interfaces the byte layer by calling
the functions blReset, startTransmission, readFrame and writeFrame. Since calls to writeFrame

and startTransmission always appear pairwise we treat them as a single call, thereby
favoring the implementation in C to some extend. Table 6.2 reveals that this leads
to 27 points of interaction. The byte layer, in its turn, interfaces the frame layer by
calling flReset and performing write operations on flag variable notify. This leads to
9 points of interaction which is one-third of the frame layer. This imbalance seems
reasonable since the frame layer is conceptually superior to the byte layer and uses its
functionalities. In total, byte and frame layer interaction is scattered across 36 code
locations.

In contrast, in the Céu reimplementation, the frame layer interfaces the byte layer
solely through calls to FrameReceiver and FrameTransmitter respectively. Note that, due
to their function-like usage, the byte layer functionalities never need to explicitly
call frame layer code. Thus, there are no points of interaction in the byte layer code.
Reconsidering our architectural design in Section 5.1.3 it seems reasonable that there
are only a few points of interaction in the frame layer (see Table 6.2). FrameReceiver

is called once in PassiveHandler, ReadAccess and WriteAccess which makes 3 accesses in
total. The same applies to FrameTransmitter. Thus, there are 6 points of interaction in

105

6 Quantitative Evaluation of Synchronous Programming

total which is only one-sixth compared to the existing C approach. This should make
apparent that in the Céu implementation interactions between byte and frame layer
are considerably easier to localize and comprehend.

6.1.3 Code Size
We compare the code size of the byte and frame layer implementations. For this, we
use our reimplementation in Céu– not counting the platform interface code – as a
baseline and extract, in a best effort, all the code from the existing C implementation
that covers the same functionality. Since concerns in C are not that clearly separated
as in Céu, this is actually a challenging task and does not allow a 100 percent accuracy.
Nonetheless, we believe that our results at least provide an impression about how
programming effort compares in C and Céu. The results are presented in Table 6.3.

C Céu Céu vs. C
byte layer 166 72 -56.63%
frame layer 660 302 -54.24%
Σ 826 374 -54.72%

Table 6.3: Code size of byte and frame layer implementation (in LOC)

In the existing C implementation, the byte layer requires 166 LOC while the frame
layer manifests in 660 LOC. This leads to 826 LOC in total. In contrast, in the
Céu reimplementation, the byte and frame layer only cover 72 LOC and 302 LOC
respectively. This comprises a code reduction of about 56 respectively 54 percent.
In total, 374 lines of Céu code compare to 826 lines of C code which is an overall
reduction of more than 50 percent.

Céu eliminates any effort for manual stack, state and timer management as well as for
manual synchronization. For this reason, it seems reasonable that the reimplementation
is less verbose. In order to make this plausible, we examine the implementation effort
in C that is solely required for manual state and timer management in the byte layer.
Therefore, we count each code line that deals with manipulating and selecting the
current state or with interfacing timers. The results are presented in Table 6.4. It
reveals, that 55 LOC deal with state management and 15 LOC interface the time
domain. Thus, in total, 70 LOC of the entire byte layer implementation (166 LOC)
comprise effort for manual state and timer management. Since both is taken care in
Céu, this alone makes a code reduction of 42 percent. Note that in this investigation
we have not yet considered effort for control and handling of events, stack management
and so on.
Finally, it appears, that Céu’s language-level support effectively allows developers

to focus on the business logic, thereby producing concise and readable code. However,
reducing implementation effort can be generally achieved by any code generation tool
such as Matlab/Simulink or SCADE for example. We believe that the primary benefit of
Céu does not rely in reducing code verbosity but in re-enabling fundamental software
engineering principles.

106

6.2 User Study

Management
Function state timer Σ
RxChar 39 9 48
TxChar 11 4 15
sendByte 1 1
sendBreak 1 1
blReset 3 2 5
readFrame 0
writeFrame 0
Σ 55 15 70

Table 6.4: Quantitative distribution of manual state and timer management in the byte
layer in C (in LOC)

6.2 User Study
In our user study we intended to comparatively measure the software quality of the
synchronous-reactive approach versus the asynchronous-sequential implementation.
The aim was to validate our considerations in Chapter 5 by the experiences of other
software developers.

6.2.1 Design
Hypothesis Reactive software that relies on the synchronous-reactive paradigm (as
deployed in Chapter 5) is of higher quality – this means easier to program, comprehend
and maintain – than a corresponding implementation based on conventional, sequential
programming and asynchronous execution (as exemplified in Chapter 4).

Population The user study targeted 20 undergraduate students of “Computer Science
for Engineers” in the fourth semester. We consider them to be the next generation em-
bedded software developers which might be potential users for synchronous languages.
During their studies, they have already gained extended theoretical and practical expe-
rience in the programming language C via various courses such as System Programming
Concepts, Microprocessor Engineering, Operating Systems and an embedded-oriented
Software Engineering Project. However, they do not know anything about Céu nor
synchronous programming in general.

Metrics For the quantitative evaluation of software quality we considered four quality
attributes. (1) Comprehensibility measures the mental effort to understand a given
piece of code. (2) Changeability measures the effort for modifying existing source
code, for example due to changes in system specification or for maintenance purpose.
(3) Time need measures the time effort required for implementing a certain piece of
functionality. (4) Overall impression measures the tendency to favor the corresponding

107

6 Quantitative Evaluation of Synchronous Programming

programming language. Our measurement relied on a survey. Each student had to fill
out the comparative questionnaire below:

C Céu
Comprehensibility 2 1 0 1 2

Changeability 2 1 0 1 2
Time Need 2 1 0 1 2

Overall Impression 2 1 0 1 2

The students had to compare C and Céu with respect to each quality attribute. They
could chose between considerably better (2), tends to be better (1) and no difference
(0).

6.2.2 Procedure
The study was performed at the University of Applied Sciences in Gießen (Germany)
in summer semester 2016 and winter semester 2016/17. The students attended the
lecture Introduction to Embedded Systems. First, in order to allow a fair comparison,
we used two consecutive lectures (180 minutes in total) to teach Céu’s fundamental
language concepts. This included the synchronous model of execution, external and
internal events and the synchronous control statements. We deliberately abstained from
any high-level abstraction concepts such as organisms. We believed that the available
time was insufficient for teaching them in required detail. Thus, the study focused
on the qualities of a non-torn, linear control flow and the specification of temporal
behavior. Second, the students got a homework assignment which was composed of
three exercises exemplified below. They required to read and write C and Céu code with
comparable complexity. Each exercise addressed a subset of the investigated software
quality attributes (see Table 6.5). Third, after completion, the students filled out the
questionnaire. Fourth, the students submitted their work as well as the questionnaires
and we evaluated the results.

1a 1b 2 3a 3b
Comprehensibility x x x x

Changeability x
Time Need x x

Overall Impression x x x x x

Table 6.5: Mapping of investigated software quality aspect to exercise

Exercises We could not use the original fieldbus driver code base for comparison.
However, our aim was to compare general concepts rather than their concrete mani-
festation. Therefore, the exercises were based on a fictive, simple, embedded system
which mimicked the characteristics elaborated in Chapter 3. The fictive system was
connected to a computer mouse and keyboard for user interaction. Its behavior fully

108

6.2 User Study

relied on continuous event- and time-based user interaction. Mouse and keyboard
provided the following input events: (1) LEFT and (2) RIGHT mouse click as well as button
(3) DOWN and (4) UP. A payload was associated to button events indicating the American
Standard Code for Information Interchange (ASCII) of the pressed and released button
respectively. In addition, the system provided a red and a green Light-Emitting Diode
(LED) which could be switched on and off depending on user input. Above events
mimicked fieldbus events while the ASCII payload corresponded to the byte value that
was received in case of BYTE. The exercises increased in their difficulty level. To force
the students to examine both code chunks, their switching behavior varied in nuances
resulting in different results. The exercises as well as the questionnaire can be referred
to in Appendix A.

Exercise 1: Comprehension of Event-Controlled Flow Exercise 1 addressed the
comprehension of program control flow across reactions. Switching behavior was solely
determined by events. Reactive code was given in C and Céu. Code was comparable
in complexity. However, its switching logic varied in nuances.
In 1a), code executed the functions ledOn and ledOff in order to change the state

of the green and red LED. Given an event sequence, the students had to determine
the state of the red and green LED – on or off – after the last reaction. The students
had to comprehend in which order ledOn and ledOff were executed across events. Their
execution depended on the current software state and the event.

In 1b), the value of integer variable ret was modified. Given an event sequence with
associated ASCII payload, the students had to determine the value of ret after the
last reaction. The students had to track accesses to ret across several events. Access
depended on the current software state, the event, the payload and the payload that
had been processed in the past. Considering a (global) variable’s state across multiple
events is a common problem for developers. Another challenge was given by button
handling. Events DOWN and UP of a certain button were logically linked but did not have
to be consecutive. Thus, some kind of bookkeeping was required in order to remember
the current button state.

Exercise 2: Comprehension of Time-Controlled Flow Exercise 2 extended reactiv-
ity to the time domain. Switching behavior was determined by events and the passage
of physical time. Reactive code was given in C and Céu. Code was comparable in
complexity. However, its switching logic varied in nuances. Code executed the function
printf in order to output a sequence of letters. Given an event and time sequence, the
students had to determine the letter sequence which was generated as output. The
students had to comprehend how the passage of time changed the systems internal
state. This is especially difficult if nested timing behavior must be taken into account
such as discussed in Section 4.4. Also, temporal behavior in the C implementation
was not deterministic. If both timers elapsed at the same time, for example after
10 milliseconds, C code did not define the order in which interrupt service routines
executed. The actual order depended on the hardware configuration and was out of

109

6 Quantitative Evaluation of Synchronous Programming

scope of the programming language. This led to different possible output sequences
for the C implementation. Due to its synchronous execution semantics, Céu code,
in contrast, did not comprise this problem. Students should have encountered this
difference.

Exercise 3: Implementation of Synchronous Code Exercise 3 required to modify
and write synchronous code.
In 3a), a prose text specification on how mouse clicks should change the value of

integer variable ret over time was given. A corresponding implementation was given
in C and Céu too. In addition, a second specification defined a set of changes that
had to be applied in comparison to the former. The students had to modify the given
implementations according to the change set. They had to establish the cognitive link
between the switching scenario defined in prose text and its manifestation in the code.
In order to identify the correct code locations that required modification, they had
to comprehend which set of software-internal states was actually affected and how to
correctly change their transitions. While the C implementation required to globally
extend the state machine and apply changes to several service routines, Céu code only
required an additional trail in its parallel block. Students should have encountered this
difference.

In 3b), a prose text specification defined how mouse clicks should increment a counter
depending on button presses and releases. The result was outputted using the printf

function. The students had to implement the given specification in C and Céu from
scratch. They had to understand how to properly apply the synchronous language
concepts to program an application.

6.2.3 Analysis and Conclusion
In total, 20 questionnaires had been filled out. For our analysis, we first counted the
votes and calculated their relative frequencies. In order to allow the calculation of an
average vote for each quality attribute, we mapped the votes cast to numerical values
as follows:

Vote Value
Considerably better in C -2
Tends to be better in C -1
No difference 0
Tends to be better in Céu +1
Considerably better in Céu +2

Subsequently, we determined the average vote based on their relative frequencies. The
more positive the average value, the more did the student favor Céu with respect to
the corresponding software quality attribute. Negative values, in their turn, indicated
a favor for C. The results are presented in Figure 6.2 and Table 6.6.
It appears, that the results are entirely positive for Céu. The average vote reveals

that, in all software quality attributes, Céu outperforms C. In particular, this is

110

6.2 User Study

0 0 0 0

0,1 0,1
0,05

0,1
0,15

0,3 0,3

0,15

0,3

0,55

0,45

0,65

0,45

0,05

0,2

0,1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

comprehensibility changeability time need overall impression

re
la

ti
ve

 v
o

te
 f

re
q

u
en

cy

quality attributes

-2

-1

0

+1

+2

Figure 6.2: Survey results: relative vote frequency
(based on 20 questionnaires)

Quality Attribute Average Vote
Comprehensibility +1.10
Changeability +0.55
Time Need +0.80
Overall Impression +0.75

Table 6.6: Survey results: average vote
(based on 20 questionnaires)

true for comprehensibility. The performed exercises tackle only very small and simple
applications. Real-life automata, such as for fieldbus communication, are far more
complex and difficult to understand. However, even in this small example application
75% of the students agree that Céu’s sequential control flow is easier to understand;
45% even considerably. Votes for time need and overall impression are convincing too.
With a tendency for Céu, changeability seems to be comparable to C.

Furthermore, we investigated all votes in total. Every questionnaire provided four
votes, one for each quality attribute. This led to 4 · 20 = 80 votes in total. It appears
that 7 votes are less, 18 votes are equal and 54 votes are greater than zero. This means
that, in direct comparison, 8.75% of all votes favor C, 22.50% have not noticed any
difference, but the majority of 67.50% favors the synchronous approach in Céu.

Also, remember that students had been familiar with C in reading and writing for at
least one year. They were used to the low-level automata approach and asynchronous
execution from the context of microcontroller programming. Actually, they were not
even aware that there was an alternative to the asynchronous model. Nonetheless, 180
minutes appeared to be sufficient to comprehend the synchronous execution policy and
read and write simple Céu code.
Finally, we are aware that the number of survey participants is far to small to

be representative. However, we believe that the results support our argumentation

111

6 Quantitative Evaluation of Synchronous Programming

and indicate at least a trend towards an improved software quality provided by the
synchronous-reactive programming approach.

112

7 Conclusion
In this chapter, we draw conclusions from this research and outline some possible issues
for future work.

7.1 Summary
In this thesis, we presented a case study of a real-world industrial smart device that
investigated the feasibility and suitability of synchronous programming for simplifying
software engineering and improving software quality of resource-constrained embedded
applications that are exposed to transformational and reactive concerns at the same
time.
We examined the engineering challenges and quality issues of reactive concerns in

an existing production code. An embedded operating system extends C’s conventional
sequential tool set by support for event handling, concurrency and temporal behavior.
It appears that the provided technologies encourage a number of shortcomings and
typically make developing sound and transparent code a challenging task. In particular,
the logic required to make the application actually work is scattered and mainly
resides in the execution environment rather than in the application code. The induced
non-locality requires to navigate back and forth between multiple places in source and
configuration files in order to see and comprehend everything the code actually does.
Further, it leads to several engineering challenges such as a torn and convoluted control
flow, the loss of function-oriented decomposition and hierarchical composability as
well as explicit synchronization and manual timer management. Those issues make
application code generally hard to program, comprehend and maintain. The final
software solution is fragile and enhancing its quality is difficult to achieve due to the
technologies in use.
In comparison, we presented and examined a synchronous reimplementation of the

reactive part in Céu. In this context, we proposed a domain-oriented software architec-
ture that allows a seamless reconciliation of reactive, synchronous and transformational,
asynchronous code. Also, we provided some general considerations, guidelines and best
practices for effectively deploying Céu’s language constructs, for example in order to
apply a stepwise refinement strategy to the architectural design of synchronous code.
Based on several qualitative discussions, we demonstrated that Céu’s domain-specific
language support overcomes the engineering challenges and quality issues imposed
by callbacks and inversion of control. In particular, in Céu the intelligence required
to make the application work solely manifests on language level and hence is shifted
from the execution environment back into the application’s business logic. By this, the

113

7 Conclusion

developer has full control over how concurrent execution entities interact and how the
passage of physical time influences the system behavior. This makes the program com-
pletely independent from the operating system and regains locality. Céu’s synchronous
control statements and abstraction entities effectively recover a linear control flow,
function-oriented decomposition and hierarchical structuring. Its inherent, continuous
synchronization eliminates any burden of error-prone explicit synchronization. Also,
the adoption of time as a physical quantity in the language itself makes specifying and
understanding temporal behavior a comparably easy task.

Additionally, Céu’s efficient abstraction capabilities allow to deploy well-established
object-oriented software design patterns – which are known to improve software quality
– without violating embedded constraints. Furthermore, it enables to specify and run
deterministic, reproducible unit tests, covering event processing, concurrency and
temporal behavior, in the language itself, not depending on any external tool. This
allows to escape from the rigorous dependency on a suitable hard- and software fixture
in order to test reactive embedded code.
Our quantitative code analysis confirms that the synchronous approach enables a

clear separation of different reactive functionalities while keeping their interfaces local.
Further, it indicates a reduction in code size of more than 50 percent. The reduced
code verbosity allows developers to focus on business logic and to express the examined
use case in a concise and readable way.

In a user study we evaluated software quality aspects of the synchronous paradigm
based on practical experiences from embedded software developers. According to the
participants reactive behavior is easier to program and comprehend in Céu compared
to the conventional callback workaround.
To sum it up, our deployment and evaluation shows the feasibility and suitability

of synchronous programming in resource-constrained, real-world industrial embedded
applications. By using synchronous programming, we were able to recover fundamental
software engineering principles while, at the same time, fulfill the strong resource
limitations – a combination that is known to be hard to achieve.

7.2 Future Work
The research presented in this thesis points out some possible directions for future
work.

• The development of a general test framework is a desirable task in order to
simplify and automate regression testing. Test cases could be specified in a light-
weight scripting language that automatically generates and runs the required
Céu code for each test case according to the pattern presented in Section 5.4.2.
In this context, a state-of-the-art debugging tool for Céu code would be generally
of great help in order to inspect failed test cases for instance.

• Our quantitative evaluation does not compare the executables of the existing
productive code and the synchronous reimplementation with respect to resource

114

7.2 Future Work

consumption such as memory footprint and processing time. This was not possible
since the reimplementation is deliberately based on a different hard- and software
platform. Thus, it might be interesting to port the platform interface code
to the OSEK operating system in order to compile and run the synchronous
reimplementation on the existing microcontroller platform. This would also enable
the deployment on existing devices.

• Our user study could be extended in two ways: First, it could be made more
realistic and representative by increasing the number of participants and the scale
or style of the exercises. For example, we could imagine to have two developer
groups working for an extended period of time – several weeks – on the same
reactive embedded application. The first group uses C for implementation while
the second group uses Céu. Second, it should additionally take the synchronous
abstraction capabilities into account.

• In our work, we presented a general approach for implementing soft and hard
timeouts in Céu (see Section 5.2.2). Also, Sant’Anna et al. [SIR12] consider a
“sampling” and “watchdog” pattern. For this reason, we are confident that, if
Céu is deployed in more use cases, there might be a chance to identify and extract
a catalog of synchronous design patterns that generally solve a certain class of
problems in the reactive domain – similar to their object-oriented counterparts.

• In order to find its way into successful industrial use, economic aspects of
synchronous programming remain to be investigated. Examples are:
– The learning curve for synchronous programming. How much effort is re-

quired for language trainings (for students or employees)?
– The degree of maturity of the language and its tool chain. How likely

are changes to the formal syntax or semantic? How stable is the compiler
implementation?

– The development tool support. Is there any Integrated Development Environ-
ment (IDE) available that provides state-of-the-art programming support?1

Finally, we believe that our work generally suggests a practicable way of improving
embedded software quality in reactive industrial applications.

1A very first prototype for the Eclipse IDE has already been developed successfully [Lan16].

115

A User Study Exercises and
Questionnaire

117

A User Study Exercises and Questionnaire

For all exercises we assume that the program code is executed on the following system:

An embedded system is connected to a computer mouse and a computer keyboard. Its behavior is entirely
event- and time-triggered. The following external input events can be received and processed:
(1) LEFT - The left mouse key has been clicked.
(2) RIGHT - The right mouse key has been clicked.
(3) DOWN - A keyboard key has been pressed.
(4) UP - A keyboard key has been released.
The events DOWN and UP additionally provide the ASCII code of the corresponding key. In C, the ASCII code can
be read from the registers REG_KEY_DOWN and REG_KEY_UP respectively. In Céu, it is provided as the payload
of the respective event.

1. Exercise

(a) The following programs in C and Céu use a slightly different approach in order to switch a green and
a red LED on and off. At program start, both LEDs are off.

1 enum State {INIT, LEFT};
2 State state = INIT;

4 ISR(LEFT) {
5 if(state == INIT) {
6 ledOn(GREEN);
7 ledOff(RED);
8 state = LEFT;
9 } else if(state == LEFT) {

10 ledOff(GREEN);
11 state = INIT;
12 }
13 }

15 ISR(RIGHT) {
16 static u8 red_on = 0;
17 if(state == LEFT) {
18 if(red_on) {
19 ledOff(RED);
20 red_on = 0;
21 } else {
22 ledOn(RED);
23 red_on = 1;
24 }
25 }
26 }

1input void LEFT;
2input void RIGHT;

4loop do
5await LEFT;
6_ledOn(GREEN);

8par/or do
9await LEFT;
10_ledOff(GREEN);
11_ledOff(RED);
12with
13loop do
14await RIGHT;
15_ledOn(RED);
16await RIGHT;
17_ledOff(RED);
18end
19end
20end

For each of the following event sequences, determine the state of the green (G) and the red (R) LED
after the last event has been processed!

C Céu
Event Sequence G R G R

1 LEFT, LEFT, RIGHT, RIGHT on/off on/off on/off on/off
2 LEFT, RIGHT, RIGHT, RIGHT, LEFT on/off on/off on/off on/off
3 RIGHT, LEFT, RIGHT, RIGHT, RIGHT on/off on/off on/off on/off
4 RIGHT, LEFT, RIGHT, LEFT, RIGHT on/off on/off on/off on/off
5 LEFT, RIGHT, LEFT, LEFT, RIGHT on/off on/off on/off on/off

118

(b) The following implementations are given in C and Céu.

1 enum State {INIT, KDOWN, KUP, RIGHT};
2 State state = INIT;
3 int ret = 0;
4 uint8_t kd;

6 ISR(RIGHT) {
7 if(state == KDOWN) {
8 state = RIGHT;
9 } else if(state == KUP) {

10 state = INIT;
11 }
12 }

14 ISR(DOWN) {
15 if(state == INIT) {
16 kd = REG_KEY_DOWN;
17 state = KDOWN;
18 }
19 }

21 ISR(UP) {
22 uint8_t ku = REG_KEY_UP;
23 if(state == KDOWN) {
24 if(ku == kd) {
25 state = KUP;
26 } else {
27 ret = ret + 1;
28 }
29 } else if(state == RIGHT) {
30 if(ku == kd) {
31 state = INIT;
32 } else {
33 ret = ret + 1;
34 }
35 }
36 }

1input void RIGHT;
2input u8 DOWN;
3input u8 UP;

5loop do
6var u8 ret = 0;
7var u8 kd = await DOWN;
8par/and do
9loop do
10var u8 ku = await UP;
11if(ku == kd) then
12break;
13else
14ret = ret + 1;
15end
16end
17with
18await RIGHT;
19end
20end

For each of the following event sequences, determine the value of ret after the last event has been
processed!

Event Sequence C Céu
1 DOWN(0x20), RIGHT, RIGHT, UP(0x20)
2 DOWN(0x25), DOWN(0x20), UP(0x20), RIGHT, UP(0x25)
3 DOWN(0x20), DOWN(0x36), UP(0x36), UP(0x20), DOWN(0x36)
4 DOWN(0x20), DOWN(0x36), DOWN(0x15), UP(0x36), UP(0x15), RIGHT
5 RIGHT, DOWN(0x20), RIGHT, UP(0x20), DOWN(0x25), RIGHT

119

A User Study Exercises and Questionnaire

2. Exercise
The following implementations are given in C und Céu.

1 enum State {INIT, RIGHT};
2 State state = INIT;

4 ISR(LEFT) {
5 if(state == RIGHT) {
6 stopTimer(1);
7 stopTimer(2);
8 printf("C");
9 printf("F");
10 state = INIT;
11 }
12 }

14 ISR(RIGHT) {
15 if(state == INIT) {
16 startTimer(1, 10000);
17 startTimer(2, 2000);
18 printf("A");
19 state = RIGHT;
20 }
21 }

23 ISR(TIMER1) {
24 if(state == RIGHT) {
25 stopTimer(1);
26 stopTimer(2);
27 printf("B");
28 printf("F");
29 state = INIT;
30 }
31 }

33 ISR(TIMER2) {
34 if(state == RIGHT) {
35 stopTimer(2);
36 printf("D");
37 startTimer(2, 2000);
38 }
39 }

1input void LEFT;
2input void RIGHT;

4loop do
5await RIGHT;
6_printf("A");
7par/or do
8await 10s;
9_printf("B");
10with
11await LEFT;
12_printf("C");
13with
14loop do
15await 2s;
16_printf("D");
17end
18_printf("E");
19end
20_printf("F");
21end

For each of the following event sequences, check whether the behavior of the given implementations is
equivalent! Therefore, determine the corresponding printf()-output generated by the C and the Céu
code!

i) 10s, RIGHT, RIGHT, 1s, LEFT, 5s, LEFT
ii) LEFT, 3s, RIGHT, 8s, RIGHT, 2s, LEFT
iii) RIGHT, 7s, RIGHT, 1s, LEFT, RIGHT, 3s,LEFT
iv) LEFT, 10s, LEFT, LEFT, 4s, LEFT, 1s
v) RIGHT, 12s, RIGHT, LEFT, 10s

120

3. Exercise

(a) The following specification is given:
After system start, the program should terminate (1) as soon as any keyboard key is pressed
or (2) first the left, then the right mouse key is clicked. In case (1), the program should return
0, else 1.

Above specification has been implemented in C and Céu below.

1 enum State {INIT, LEFT, TERM};
2 State state = INIT;
3 int ret;

5 int main(void) {
6 while(state != TERM);
7 return ret;
8 }

10 ISR(LEFT) {
11 if(state == INIT) {
12 state = LEFT;
13 }
14 }

16 ISR(RIGHT) {
17 if(state == LEFT) {
18 ret = 1;
19 state = TERM;
20 }
21 }

23 ISR(KEY_DOWN) {
24 ret = 0;
25 state = TERM;
26 }

1input void LEFT;
2input void RIGHT;
3input u8 DOWN;

5var int ret = 0;

7par/or do
8await DOWN;
9ret = 0;
10with
11await LEFT;
12await RIGHT;
13ret = 1;
14end

16escape ret;

Now, the specification has been modified as follows:
In case (2), the order of left and right mouse clicks is now irrelevant. That is, if the left mouse
key is clicked followed by the right, then the program will terminate. The same applies if
the right mouse key is clicked first. If the program terminates due to a left mouse click, it
should return 1. If it is terminated by a right mouse click it should return 2 instead. If it is
terminated due to a keyboard key is should return 0.

Determine the required adaptations that must be applied to both implementations in order to account
for above changes!

(b) The following specification is given:
As soon as a keyboard key x is pressed, the left and right mouse clicks should be counted
independently from each other. As soon as x has been released, printf() should output the
ASCII code of x as well as the counter values. Subsequently, the procedure restarts.

Implement above specification in C and in Céu! You are encouraged to use the previous code examples
as templates.

121

A User Study Exercises and Questionnaire

The submission of this page is anonymous!

Compare the implementations in C and Céu with respect to the following aspects:

co
ns
id
er
ab

ly
be

tt
er

te
nd

s
to

be
be

tt
er

no
di
ffe

re
nc

e

te
nd

s
to

be
be

tt
er

co
ns
id
er
ab

ly
be

tt
er

C Céu
Readability/Comprehensibility 2 1 0 1 2

Changeability/Extendibility 2 1 0 1 2
Time Need 2 1 0 1 2

Overall Impression 2 1 0 1 2

122

Bibliography
[Ady+02] Atul Adya et al. “Cooperative Task Management Without Manual Stack

Management: or, Event-driven Programming is Not the Opposite of
Threaded Programming”. In: Proceedings of the General Track of the
annual conference on USENIX Annual Technical Conference. ATEC ’02.
Berkeley, CA, USA: USENIX Association, 2002, pp. 289–302. isbn: 1-
880446-00-6.

[And+15] Brian Anderson et al. Experience Report: Developing the Servo Web
Browser Engine using Rust. 2015. url: https://arxiv.org/abs/1505.07383
(visited on 06/28/2017).

[AP93] Charles Andre and Marie-Agnes Peraldi. “Synchronous programming:
introduction and application to industrial process control”. In: 1993 Com-
pEuro Proceedings. IEEE, 1993, pp. 461–470. doi: 10.1109/CMPEUR.
1993.289839.

[Bai+13] Engineer Bainomugisha et al. “A Survey on Reactive Programming”.
In: ACM Comput. Surv. 45.4 (2013), 52:1–52:34. issn: 0360-0300. doi:
10.1145/2501654.2501666.

[BJ13] Karim Barkati and Pierre Jouvelot. “Synchronous Programming in Audio
Processing: A Lookup Table Oscillator Case Study”. In: ACM Comput.
Surv. 46.2 (2013), 24:1–24:35. issn: 0360-0300. doi: 10.1145/2543581.
2543591.

[BM06] Michael Barr and Anthony J. Massa. Programming embedded systems:
With C and GNU development tools. 2nd ed. Sebastopol, Calif.: O’Reilly,
2006. isbn: 0596553285.

[BB91] Albert Benveniste and Gérard Berry. “The synchronous approach to
reactive and real-time systems”. In: Proceedings of the IEEE 79.9 (1991),
pp. 1270–1282. issn: 0018-9219. doi: 10.1109/5.97297.

[Ben+03] Albert Benveniste et al. “The synchronous languages 12 years later”. In:
Proc. IEEE. 2003, pp. 64–83.

[Ber00] Gérard Berry. The Esterel v5 Language Primer Version v5_91. Sophia-
Antipolis, France, 2000. url: https://cseweb.ucsd.edu/classes/wi17/
cse237A-a/handouts/Esterelv5Primer.pdf (visited on 06/28/2017).

123

https://arxiv.org/abs/1505.07383
https://doi.org/10.1109/CMPEUR.1993.289839
https://doi.org/10.1109/CMPEUR.1993.289839
https://doi.org/10.1145/2501654.2501666
https://doi.org/10.1145/2543581.2543591
https://doi.org/10.1145/2543581.2543591
https://doi.org/10.1109/5.97297
https://cseweb.ucsd.edu/classes/wi17/cse237A-a/handouts/Esterelv5Primer.pdf
https://cseweb.ucsd.edu/classes/wi17/cse237A-a/handouts/Esterelv5Primer.pdf

Bibliography

[BG92] Gérard Berry and Georges Gonthier. “The Esterel synchronous program-
ming language: design, semantics, implementation”. In: Science of Com-
puter Programming 19.2 (1992), pp. 87–152. issn: 0167-6423. doi: 10.
1016/0167-6423(92)90005-V.

[BMM11] Nicolas Berthier, Florence Maraninchi, and Laurent Mounier. “Syn-
chronous Programming of Device Drivers for Global Resource Control in
Embedded Operating Systems”. In: Proc. SIGPLAN/SIGBED Conference
on Languages, Compilers and Tools for Embedded Systems. LCTES ’11.
New York, NY, USA: ACM, 2011, pp. 81–90. isbn: 978-1-4503-0555-6.
doi: 10.1145/1967677.1967689.

[Bos17] Bosch Thermotechnik GmbH. Logamatic web KM300. 2017. url: https:
//webservices.buderus.at/download/pdf/file/8737803811.pdf (visited on
06/09/2017).

[BF14] Pierre Bourque and Richard E. Fairley, eds. Guide to the Software Engi-
neering Body of Knowledge (SWEBOK (R)): Version 3.0. IEEE Computer
Society Press, 2014. isbn: 978-0-7695-5166-1.

[BS91] Frederic Boussinot and Robert de Simone. “The ESTEREL language”. In:
Proceedings of the IEEE 79.9 (1991), pp. 1293–1304. issn: 00189219. doi:
10.1109/5.97299.

[BW90] Alan Burns and Andy J. Wellings. Real-time Systems and Their Program-
ming Languages. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc, 1990. isbn: 0-201-17529-0.

[CRT07] Paul Caspi, Pascal Raymond, and Stavros Tripakis. “Synchronous Pro-
gramming”. In: Handbook of Real-Time And Embedded Systems. Chapman
& Hall, 2007.

[CHP71] Pierre Jacques Courtois, F. Heymans, and David Lorge Parnas. “Concur-
rent Control with "Readers" and "Writers"”. In: Commun. ACM 14.10
(1971), pp. 667–668. issn: 0001-0782. doi: 10.1145/362759.362813.

[DF10] Dino Distefano and Ivana Filipović. “Memory Leaks Detection in Java by
Bi-abductive Inference”. In: Fundamental Approaches to Software Engi-
neering: 13th International Conference, FASE 2010, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS
2010, Paphos, Cyprus, March 20-28, 2010. Proceedings. Ed. by David S.
Rosenblum and Gabriele Taentzer. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 278–292. isbn: 978-3-642-12029-9. doi: 10.1007/978-
3-642-12029-9_20.

[Dun+06] Adam Dunkels et al. “Protothreads: Simplifying Event-driven Program-
ming of Memory-constrained Embedded Systems”. In: Proceedings of the
4th International Conference on Embedded Networked Sensor Systems. Sen-
Sys ’06. New York, NY, USA: ACM, 2006, pp. 29–42. isbn: 1-59593-343-3.
doi: 10.1145/1182807.1182811.

124

https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1145/1967677.1967689
https://webservices.buderus.at/download/pdf/file/8737803811.pdf
https://webservices.buderus.at/download/pdf/file/8737803811.pdf
https://doi.org/10.1109/5.97299
https://doi.org/10.1145/362759.362813
https://doi.org/10.1007/978-3-642-12029-9_20
https://doi.org/10.1007/978-3-642-12029-9_20
https://doi.org/10.1145/1182807.1182811

Bibliography

[EJ09] Christof Ebert and Capers Jones. “Embedded Software: Facts, Figures,
and Future”. In: Computer 42.4 (2009), pp. 42–52. issn: 0018-9162. doi:
10.1109/MC.2009.118.

[EE15] Embedded Systems Design magazine and Embedded Systems Confer-
ence. 2014 Embedded Market Study: Then, Now: What’s Next? 2015. url:
http://cms.edn.com/ContentEETimes/Documents/Embedded.com/
MarketStudy/2014-embedded-market-study-then-now-whats-next.pdf
(visited on 09/26/2016).

[Est14] Esterel Technologies. SCADE Suite: Control Software Design. 2014. url:
http://www.esterel-technologies.com/products/scade-suite/ (visited on
06/08/2017).

[Gam+95] Erich Gamma et al. Design Patterns: Elements of Reusable Object-oriented
Software. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc, 1995. isbn: 0-201-63361-2.

[Gay+03] David Gay et al. “The nesC Language: A Holistic Approach to Networked
Embedded Systems”. In: Proceedings of the ACM SIGPLAN 2003 Con-
ference on Programming Language Design and Implementation. PLDI ’03.
New York, NY, USA: ACM, 2003, pp. 1–11. isbn: 1-58113-662-5. doi:
10.1145/781131.781133.

[Hal+91] Nicholas Halbwachs et al. “The synchronous data flow programming
language Lustre”. In: Proceedings of the IEEE 79.9 (1991), pp. 1305–1320.
issn: 00189219. doi: 10.1109/5.97300.

[Hal93] Nicolas Halbwachs. Synchronous Programming of Reactive Systems. Boston,
MA: Springer US, 1993. isbn: 978-1-4419-5133-5. doi: 10.1007/978-1-
4757-2231-4.

[Hal05] Nicolas Halbwachs. “A synchronous language at work: the story of Lustre”.
In: Proc. Second ACM and IEEE International Conference on Formal
Methods and Models for Co-Design. MEMOCODE ’05. 2005, pp. 3–11.
doi: 10.1109/MEMCOD.2005.1487884.

[HP85] D. Harel and A. Pnueli. “On the Development of Reactive Systems”.
In: Logics and Models of Concurrent Systems. Ed. by Krzysztof R. Apt.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1985, pp. 477–498. isbn:
978-3-642-82453-1. doi: 10.1007/978-3-642-82453-1_17.

[Hee16] Dimitri van Heesch. Doxygen: Source code documentation generator tool.
2016. url: www.doxygen.org (visited on 05/28/2017).

[Hoa+87] C. A. R. Hoare et al. “Laws of Programming”. In: Commun. ACM 30.8
(1987), pp. 672–686. issn: 0001-0782. doi: 10.1145/27651.27653.

[ISO05] ISO. Road vehicles – Open interface for embedded automotive applications
– Part 3: OSEK/VDX Operating System (OS). 2005.

125

https://doi.org/10.1109/MC.2009.118
http://cms.edn.com/ContentEETimes/Documents/Embedded.com/MarketStudy/2014-embedded-market-study-then-now-whats-next.pdf
http://cms.edn.com/ContentEETimes/Documents/Embedded.com/MarketStudy/2014-embedded-market-study-then-now-whats-next.pdf
http://www.esterel-technologies.com/products/scade-suite/
https://doi.org/10.1145/781131.781133
https://doi.org/10.1109/5.97300
https://doi.org/10.1007/978-1-4757-2231-4
https://doi.org/10.1007/978-1-4757-2231-4
https://doi.org/10.1109/MEMCOD.2005.1487884
https://doi.org/10.1007/978-3-642-82453-1_17
www.doxygen.org
https://doi.org/10.1145/27651.27653

Bibliography

[JPV95] Lalita J. Jagadeesan, Carlos Puchol, and James E. Von Olnhausen. “A for-
mal approach to reactive systems software: a telecommunications applica-
tion in ESTEREL”. In: Proc. Workshop on Industrial-Strength Formal Spec-
ification Techniques. 1995, pp. 132–145. doi: 10.1109/WIFT.1995.515485.

[Kas07] Oliver Kasten. “A State-Based Programming Model for Wireless Sensor
Networks”. Phd. Zurich, Switzerland: ETH Zurich, 2007. url: https :
//www.vs.inf.ethz.ch/publ/papers/kasten-astate-2007.pdf (visited on
11/10/2016).

[KR78] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language.
Prentice Hall, 1978. isbn: 0131101633.

[Lan16] Jonathan Lange. “Integration domänenspezifischer Sprachen in Entwick-
lungsumgebungen: Konzepte und Realisierung”. Bachelor Thesis. Gießen,
Germany: University of Applied Sciences, 2016.

[Le +91] Paul Le Guernic et al. “Programming real-time applications with SIGNAL”.
In: Proceedings of the IEEE 79.9 (1991), pp. 1321–1336. issn: 00189219.
doi: 10.1109/5.97301.

[Lee05] Edward A. Lee. “Absolutely Positively on Time: What Would It Take?” In:
Computer 7 (2005), pp. 85–87. issn: 0018-9162. doi: 10.1109/MC.2005.211.

[Lee06] Edward A. Lee. “The Problem with Threads”. In: Computer 39.5 (2006),
pp. 33–42. issn: 0018-9162. doi: 10 .1109/MC.2006 .180. (Visited on
02/10/2016).

[LT09] P. Liggesmeyer and M. Trapp. “Trends in Embedded Software Engineering”.
In: IEEE Software 26.3 (2009), pp. 19–25. issn: 0740-7459. doi: 10.1109/
MS.2009.80.

[Lu+08] Shan Lu et al. “Learning from Mistakes: A Comprehensive Study on
Real World Concurrency Bug Characteristics”. In: Proceedings of the
13th International Conference on Architectural Support for Programming
Languages and Operating Systems. ASPLOS XIII. New York, NY, USA:
ACM, 2008, pp. 329–339. isbn: 978-1-59593-958-6. doi: 10.1145/1346281.
1346323.

[MO12] Ingo Maier and Martin Odersky. Deprecating the Observer Pattern with
Scala.React. 2012. url: https://infoscience.epfl.ch/record/176887/files/
DeprecatingObservers2012.pdf (visited on 11/09/2016).

[Mar11] Peter Marwedel. Embedded System Design: Embedded Systems Foundations
of Cyber-Physical Systems. Dordrecht: Springer Netherlands, 2011. isbn:
978-94-007-0256-1. doi: 10.1007/978-94-007-0257-8.

[MH15] Christian Motika and Reinhard von Hanxleden. “Light-weight Synchronous
Java (SJL): An approach for programming deterministic reactive systems
with Java”. In: Computing 97.3 (2015), pp. 281–307. issn: 1436-5057. doi:
10.1007/s00607-014-0416-7.

126

https://doi.org/10.1109/WIFT.1995.515485
https://www.vs.inf.ethz.ch/publ/papers/kasten-astate-2007.pdf
https://www.vs.inf.ethz.ch/publ/papers/kasten-astate-2007.pdf
https://doi.org/10.1109/5.97301
https://doi.org/10.1109/MC.2005.211
https://doi.org/10.1109/MC.2006.180
https://doi.org/10.1109/MS.2009.80
https://doi.org/10.1109/MS.2009.80
https://doi.org/10.1145/1346281.1346323
https://doi.org/10.1145/1346281.1346323
https://infoscience.epfl.ch/record/176887/files/DeprecatingObservers2012.pdf
https://infoscience.epfl.ch/record/176887/files/DeprecatingObservers2012.pdf
https://doi.org/10.1007/978-94-007-0257-8
https://doi.org/10.1007/s00607-014-0416-7

Bibliography

[MS92] Gary Murakami and Ravi Sethi. “Terminal Call Processing in Esterel”.
In: Proc. IFIP 92 World Computer Congress. Madrid, Spain, 1992.

[NM12] Mouaaz Nahas and Adi Maait. “Choosing Appropriate Programming
Language to Implement Software for Real-Time Resource-Constrained
Embedded Systems”. In: Embedded Systems - Theory and Design Method-
ology. Ed. by Kiyofumi Tanaka. InTech, 2012. isbn: 978-953-51-0167-3.
doi: 10.5772/38167.

[Neu93] John von Neumann. “First draft of a report on the EDVAC”. In: IEEE
Annals of the History of Computing 15.4 (1993), pp. 27–75. issn: 1058-6180.
doi: 10.1109/85.238389.

[OK13] Robert Oshana and Mark Kraeling. Software Engineering for Embedded
Systems: Methods, Practical Techniques, and Applications. 1st. Newton,
MA, USA: Newnes, 2013. isbn: 978-0-12-415917-4.

[Poi+98] Axel Poigné et al. “The Synchronous Approach to Designing Reactive
Systems”. In: Formal Methods in System Design 12.2 (1998), pp. 163–187.
issn: 1572-8102. doi: 10.1023/A:1008697810328.

[Rus] Rust Community. The Rust Programming Language: Documentation. url:
https://doc.rust-lang.org/book/ (visited on 04/19/2017).

[Sak12] Dan Saks. “Unexpected trends”. In: Embedded Systems Design 25.4 (2012),
pp. 31–34.

[SK13] Hemaiyer Sankaranarayanan and Prasad A. Kulkarni. “Source-to-Source
Refactoring and Elimination of Global Variables in C Programs”. In:
Journal of Software Engineering and Applications 06.05 (2013), pp. 264–
273. issn: 1945-3116. doi: 10.4236/jsea.2013.65033.

[San09] Francisco Sant’Anna. “A Synchronous Reactive Language based on Im-
plicit Invocation”. Master Thesis. Rio de Janeiro: Pontificia Universidade
Catolica Do Rio De Janeiro, 2009. url: http://www.ceu-lang.org/chico/
luagravity_msc.pdf (visited on 04/26/2016).

[San13] Francisco Sant’Anna. “Safe System-level Concurrency on Resource-
Constrained Nodes with Céu”. PhD. Rio de Janeiro: Pontificia Uni-
versidade Catolica Do Rio De Janeiro, 2013. url: http ://www.ceu -
lang.org/chico/ceu_phd.pdf (visited on 08/19/2016).

[SIR15] Francisco Sant’Anna, Roberto Ierusalimschy, and Noemi Rodriguez. “Struc-
tured synchronous reactive programming with Céu”. In: The 14th Inter-
national Conference on Modularity. Ed. by Robert B. France, Sudipto
Ghosh, and Gary T. Leavens. 2015, pp. 29–40. isbn: 978-1-4503-3249-1.
doi: 10.1145/2724525.2724571.

127

https://doi.org/10.5772/38167
https://doi.org/10.1109/85.238389
https://doi.org/10.1023/A:1008697810328
https://doc.rust-lang.org/book/
https://doi.org/10.4236/jsea.2013.65033
http://www.ceu-lang.org/chico/luagravity_msc.pdf
http://www.ceu-lang.org/chico/luagravity_msc.pdf
http://www.ceu-lang.org/chico/ceu_phd.pdf
http://www.ceu-lang.org/chico/ceu_phd.pdf
https://doi.org/10.1145/2724525.2724571

Bibliography

[SIR12] Francisco Sant’Anna, Roberto Ierusalimschy, and Noemi de La Roque
Rodriguez. Céu: Embedded, Safe, and Reactive Programming. 2012. url:
ftp://ftp.inf.puc-rio.br/pub/docs/techreports/12_12_santanna.pdf
(visited on 05/05/2017).

[San+13] Francisco Sant’Anna et al. “Safe system-level concurrency on resource-
constrained nodes”. In: The 11th ACM Conference on Embedded Networked
Sensor Systems. Ed. by Chiara Petrioli, Landon Cox, and Kamin White-
house. 2013, pp. 1–14. isbn: 978-1-4503-2027-6. doi: 10.1145/2517351.
2517360.

[San+16] Rodrigo C.M. Santos et al. “CÉU-MEDIA: Local Inter-Media Synchroniza-
tion Using CÉU”. In: Proc. 22Nd Brazilian Symposium on Multimedia and
the Web. Webmedia ’16. New York, NY, USA: ACM, 2016, pp. 143–150.
isbn: 978-1-4503-4512-5. doi: 10.1145/2976796.2976856.

[Sch94] Axel Tobias Schreiner. Object-oriented Programming with ANSI C.
München: Hanser, 1994. isbn: 3-446-17426-5.

[SG01] D. Simon and A. Girault. “Synchronous programming of automatic control
applications using ORCCAD and ESTEREL”. In: Decision and Control,
2001. Proceedings of the 40th IEEE Conference on. Vol. 4. 2001, 3290–3295
vol.4. doi: 10.1109/.2001.980329.

[STP05] Robert de Simone, Jean-Pierre Talpin, and Dumitru Potop-Butucaru.
“The Synchronous Hypothesis and Synchronous Languages”. In: Embedded
Systems Handbook. Ed. by Richard Zurawski. Vol. 6. Industrial Information
Technology. CRC Press, 2005, pp. 8-1–8-23. isbn: 978-0-8493-2824-4. doi:
10.1201/9781420038163.ch8.

[SL05] Herb Sutter and James Larus. “Software and the Concurrency Revolution”.
In: Queue 3.7 (2005), pp. 54–62. issn: 1542-7730. doi: 10.1145/1095408.
1095421.

[Tan12] Kiyofumi Tanaka, ed. Embedded Systems - Theory and Design Methodology.
InTech, 2012. isbn: 978-953-51-0167-3. doi: 10.5772/2339.

[Ter16] Matthias Terber. “Domänenorientierte Softwarearchitektur mit Céu und
Rust am Beispiel eines Heizungsgateways zur Fernüberwachung und Fern-
parametrisierung”. In: Internet der Dinge: Echtzeit 2016. Ed. by Wolfgang
A. Halang and Herwig Unger. Berlin, Heidelberg: Springer, 2016, pp. 117–
126. isbn: 978-3-662-53443-4. doi: 10.1007/978-3-662-53443-4_13.

[Ter17] Matthias Terber. “Function-Oriented Decomposition for Reactive Em-
bedded Software”. In: 2017 43rd Euromicro Conference on Software En-
gineering and Advanced Applications (SEAA). 2017, pp. 288–295. doi:
10.1109/SEAA.2017.42.

[TV10] Stefan Tilkov and Steve Vinoski. “Node.js: Using JavaScript to Build
High-Performance Network Programs”. In: IEEE Internet Computing 14.6
(2010), pp. 80–83. issn: 1089-7801. doi: 10.1109/MIC.2010.145.

128

ftp://ftp.inf.puc-rio.br/pub/docs/techreports/12_12_santanna.pdf
https://doi.org/10.1145/2517351.2517360
https://doi.org/10.1145/2517351.2517360
https://doi.org/10.1145/2976796.2976856
https://doi.org/10.1109/.2001.980329
https://doi.org/10.1201/9781420038163.ch8
https://doi.org/10.1145/1095408.1095421
https://doi.org/10.1145/1095408.1095421
https://doi.org/10.5772/2339
https://doi.org/10.1007/978-3-662-53443-4_13
https://doi.org/10.1109/SEAA.2017.42
https://doi.org/10.1109/MIC.2010.145

Bibliography

[Tur12] Jim Turley. “So this is progress”. In: Embedded Systems Design 25.3 (2012),
pp. 22–24.

129

Bibliography

Eidesstattliche Erklärung
Hiermit erkläre ich, dass ich diese Dissertation selbstständig verfasst und keine anderen
als die angegebenen Hilfsmittel genutzt habe. Alle wörtlich oder inhaltlich übernom-
menen Stellen habe ich als solche gekennzeichnet. Ich versichere außerdem, dass ich
die beigefügte Dissertation nur in diesem und keinem anderen Promotionsverfahren
eingereicht habe und, dass diesem Promotionsverfahren keine endgültig gescheiterten
Promotionsverfahren vorausgegangen sind.

18. November 2018, Lollar

Datum, Ort Unterschrift

131

Bibliography

Aachener Informatik-Berichte
This list contains all technical reports published during the past three years. A complete

list of reports dating back to 1987 is available from:

http://aib.informatik.rwth-aachen.de/

To obtain copies please consult the above URL or send your request to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,

Email: biblio@informatik.rwth-aachen.de

2015-01 ∗ Fachgruppe Informatik: Annual Report 2015
2015-02 Dominik Franke: Testing Life Cycle-related Properties of Mobile

Applications
2015-05 Florian Frohn, Jürgen Giesl, Jera Hensel, Cornelius Aschermann,

and Thomas Ströder: Inferring Lower Bounds for Runtime Com-
plexity

2015-06 Thomas Ströder and Wolfgang Thomas (Editors): Proceedings of
the Young Researchers’ Conference “Frontiers of Formal Methods”

2015-07 Hilal Diab: Experimental Validation and Mathematical Analysis
of Cooperative Vehicles in a Platoon

2015-08 Mathias Pelka, Jó Agila Bitsch, Horst Hellbrück, and Klaus Wehrle
(Editors): Proceedings of the 1st KuVS Expert Talk on Localization

2015-09 Xin Chen: Reachability Analysis of Non-Linear Hybrid Systems
Using Taylor Models

2015-11 Stefan Wüller, Marián Kühnel, and Ulrike Meyer: Information
Hiding in the Public RSA Modulus

2015-12 Christoph Matheja, Christina Jansen, and Thomas Noll: Tree-like
Grammars and Separation Logic

2015-13 Andreas Polzer: Ansatz zur variantenreichen und modellbasierten
Entwicklung von eingebetteten Systemen unter Berücksichtigung
regelungs- und softwaretechnischer Anforderungen

2015-14 Niloofar Safiran and Uwe Naumann: Symbolic vs. Algorithmic
Differentiation of GSL Integration Routines

2016-01 ∗ Fachgruppe Informatik: Annual Report 2016
2016-02 Ibtissem Ben Makhlouf: Comparative Evaluation and Improvement

of Computational Approaches to Reachability Analysis of Linear
Hybrid Systems

2016-03 Florian Frohn, Matthias Naaf, Jera Hensel, Marc Brockschmidt,
and Jürgen Giesl: Lower Runtime Bounds for Integer Programs

2016-04 Jera Hensel, Jürgen Giesl, Florian Frohn, and Thomas Ströder:
Proving Termination of Programs with Bitvector Arithmetic by
Symbolic Execution

2016-05 Mathias Pelka, Grigori Goronzy, Jó Agila Bitsch, Horst Hellbrück,
and Klaus Wehrle (Editors): Proceedings of the 2nd KuVS Expert
Talk on Localization

133

http://aib.informatik.rwth-aachen.de/

Bibliography

2016-06 Martin Henze, René Hummen, Roman Matzutt, Klaus Wehrle:
The SensorCloud Protocol: Securely Outsourcing Sensor Data to
the Cloud

2016-07 Sebastian Biallas : Verification of Programmable Logic Controller
Code using Model Checking and Static Analysis

2016-08 Klaus Leppkes, Johannes Lotz, and Uwe Naumann: Derivative
Code by Overloading in C++ (dco/c++): Introduction and Sum-
mary of Features

2016-09 Thomas Ströder, Jürgen Giesl, Marc Brockschmidt, Florian Frohn,
Carsten Fuhs, Jera Hensel, Peter Schneider-Kamp, and Cornelius
Aschermann: Automatically Proving Termination and Memory
Safety for Programs with Pointer Arithmetic

2016-10 Stefan Wüller, Ulrike Meyer, and Susanne Wetzel: Towards Privacy-
Preserving Multi-Party Bartering

2017-01 ∗ Fachgruppe Informatik: Annual Report 2017
2017-02 Florian Frohn and Jürgen Giesl: Analyzing Runtime Complexity

via Innermost Runtime Complexity
2017-04 Florian Frohn and Jürgen Giesl: Complexity Analysis for Java

with AProVE
2017-05 Matthias Naaf, Florian Frohn, Marc Brockschmidt, Carsten Fuhs,

and Jürgen Giesl: Complexity Analysis for Term Rewriting by
Integer Transition Systems

2017-06 Oliver Kautz, Shahar Maoz, Jan Oliver Ringert, and Bernhard
Rumpe: CD2Alloy: A Translation of Class Diagrams to Alloy

2017-07 Klaus Leppkes, Johannes Lotz, Uwe Naumann, and Jacques du
Toit: Meta Adjoint Programming in C++

2017-08 Thomas Gerlitz: Incremental Integration and Static Analysis of
Model-Based Automotive Software Artifacts

2017-09 Muhammad Hamad Alizai, Jan Beutel, Jó Ágila Bitsch, Olaf
Landsiedel, Luca Mottola, Przemyslaw Pawelczak, Klaus Wehrle,
and Kasim Sinan Yildirim: Proc. IDEA League Doctoral School
on Transiently Powered Computing

2018-01 ∗ Fachgruppe Informatik: Annual Report 2018
2018-02 Jens Deussen, Viktor Mosenkis, and Uwe Naumann: Ansatz zur

variantenreichen und modellbasierten Entwicklung von eingebet-
teten Systemen unter Berücksichtigung regelungs- und softwaretech-
nischer Anforderungen

2018-03 Igor Kalkov: A Real-time Capable, Open-Source-based Platform
for Off-the-Shelf Embedded Devices

2018-04 Andreas Ganser: Operation-Based Model Recommenders

∗ These reports are only available as a printed version.
Please contact biblio@informatik.rwth-aachen.de to obtain copies.

134

	1 Introduction
	1.1 Objectives
	1.2 Contributions
	1.3 Thesis Outline
	1.4 Bibliographic Notes
	1.5 Related Work

	2 Preliminaries
	2.1 Heating System Remote Control
	2.2 Synchronous Model of Computation
	2.3 The Programming Language Céu

	3 Identification of Reactive Concerns
	3.1 Exposed Problem Domains
	3.2 Domain-Specific Computation Characteristics
	3.3 Conclusion

	4 Analysis of the Existing Asynchronous Implementation
	4.1 Overview
	4.1.1 Reactive Functionalities
	4.1.2 Underlying Technologies

	4.2 Control and Handling of Events
	4.2.1 Fundamental Strategy
	4.2.2 Implementation Outline
	4.2.3 Discussion

	4.3 Concurrency
	4.3.1 Synchronization without Operating System Support
	4.3.2 Synchronization with Operating System Support

	4.4 Temporal Behavior
	4.4.1 Delays
	4.4.2 Timeouts

	4.5 Conclusion

	5 Deployment and Qualitative Evaluation of Synchronous Programming
	5.1 Architectural Considerations
	5.1.1 Domain-Oriented System Architecture
	5.1.2 Interfacing Synchronous Code
	5.1.3 Fieldbus Driver Architecture

	5.2 Function-Oriented Design
	5.2.1 Basic Functions
	5.2.2 Composite Functions

	5.3 Object-Based Design
	5.3.1 Adoption of Command Pattern
	5.3.2 Adoption of Facade Pattern
	5.3.3 Adoption of State Pattern
	5.3.4 Adoption of Observer Pattern
	5.3.5 Adoption of Chain of Responsibility Pattern

	5.4 Testing Capabilities
	5.4.1 Program Simulation
	5.4.2 Unit Testing
	5.4.3 Discussion

	5.5 Important Points to Consider

	6 Quantitative Evaluation of Synchronous Programming
	6.1 Code Analysis
	6.1.1 Separation of Concerns
	6.1.2 Interface Scattering
	6.1.3 Code Size

	6.2 User Study
	6.2.1 Design
	6.2.2 Procedure
	6.2.3 Analysis and Conclusion

	7 Conclusion
	7.1 Summary
	7.2 Future Work

	A User Study Exercises and Questionnaire

