
IC3 Software Model Checking
Tim Felix Lange

Department of Computer Science
Technical Report

Aachener Informatik-Berichte (AIB) | ISSN 0935-3232 | AIB-2019-02

RWTH Aachen University | Department of Computer Science | February 2019

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

http://aib.informatik.rwth-aachen.de/

IC3 Software Model Checking

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der
RWTH Aachen University zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Tim Felix Lange, M.Sc. RWTH
aus Viersen

Berichter: Universitätsprofessor Dr. Ir. Dr. h. c. Joost-Pieter Katoen
Universitätsprofessor DPhil (Oxon) Georg Weissenbacher
Dr. rer. nat. Martin R. Neuhäußer

Tag der mündlichen Prüfung: 5. Oktober 2018

Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online verfügbar.

i

Abstract

In times where computers become ever smaller and more powerful and soft-
ware becomes more complex and advances even deeper into every aspect of our
lives, the risk of software misbehaviour and the resulting damage grows dramat-
ically. In order to prevent such erroneous behaviour model checking, a formal
verification technique for determining functional properties of information and
communication systems, has proven to be highly useful.

For proving mathematical properties, one of the first methods to be taught
in schools is induction. With the concept of proving a concrete induction base
and a general induction step it is considered a very simple and intuitive, yet
powerful proof method. However, for difficult properties finding an inductive
formulation can be an extremely hard task. When humans try to solve this
problem, they naturally produce a set of smaller, simple lemmas that together
imply the desired property. Each of these lemmas holds relative to some subset
of previously established lemmas by invoking the knowledge to prove the new
lemma.

This incremental approach to proving complex properties using sets of small
inductive lemmas was first applied to model checking of hardware systems in the
IC3 algorithm and has proven to outperform all known approaches to hardware
model checking.

This thesis aims at applying the principles of incremental, inductive verifica-
tion laid by the IC3 algorithm to software model checking for industrial control
software with special attention to the control-flow induced by the program under
consideration. For this purpose, basic concepts are introduced and an in-depth
explanation of the IC3 algorithm and its different building blocks (search phase,
generalization and propagation) is given. Based on these prerequisites the novel
IC3CFA algorithm is presented. In this algorithm, the control-flow of the pro-
gram is explicitly modelled as an automaton, while the variable valuations are
handled symbolically, thus using the best of both worlds. Following the search
phase of IC3CFA, solutions for applying generalization to IC3CFA are presented
and problems arising with propagation are discussed. Finally, the performance
of the IC3CFA algorithm and all proposed improvements is extensively evalu-
ated on a set of well-recognised benchmarks. To set these results into a relation,
a comparison with other available IC3 software model checking implementations
concludes this thesis and underlines the strong potential of the IC3CFA model
checking algorithm.

iii

Zusammenfassung

In einer Zeit, in der Computer immer kleiner und leistungsfähiger und ihre Soft-
ware immer komplexer wird und tiefer denn je unser tägliches Leben durchzieht,
wachsen auch die Risiken von Fehlverhalten und die daraus resultierenden Schä-
den drastisch. Um solch ein unspezifiziertes Verhalten zu verhindern, hat sich das
Model Checking, eine formale Verifikationstechnik zur Bestimmung funktionaler
Eigenschaften von Informations- und Kommunikationssystemen, als besonders
nützlich herausgestellt.

Zum Beweis mathematischer Eigenschaften ist eine der ersten in den Schu-
len unterrichteten Methoden die Induktion. Mit ihrem Konzept, zunächst eine
konkrete Induktionsbasis und anschließend einen abstrakten Induktionsschritt
als Stellvertreter für beliebige Schritte zu beweisen, ist sie eine sehr einfache
und intuitive, nichts desto trotz aber mächtige Beweistechnik. Dennoch kann es
sehr schwierig sein eine induktive Formulierung für eine komplexe Eigenschaft
zu finden. Wenn Menschen ein solches Problem zu lösen versuchen, erstellen sie
intuitiv eine Menge kleinerer, einfacher Lemmata, welche zusammengenommen
die gewünschte Eigenschaft implizieren. Jedes dieser Lemmata gilt relativ zu
einer Teilmenge der vorher aufgestellten Lemmata und nutzt deren Wissen, um
das neue Lemma zu beweisen.

Dieser inkrementelle Ansatz, komplexe Eigenschaften mit Hilfe einer Menge
kleiner, induktiver Lemmata zu beweisen, wurde für das Model Checking von
Hardwaresystemen erstmals im IC3 Algorithmus angewendet und hat seitdem
sämtliche existierenden Techniken zur Verifikation von Hardware geschlagen.

Die vorliegende Arbeit zielt darauf ab, die von IC3 benutzen Methoden auf
die Verifikation von Software für industrielle Steuerungsanlagen anzuwenden.
Hierbei wird besonderes Augenmerk auf die Ausnutzung des vom Programm
vorgegebenen Kontrollflusses gelegt. Zu diesem Zweck werden zunächst grund-
legende Konzepte eingeführt und der IC3 Algorithmus mit seinen verschiedenen
Phasen (Suchphase, Generalisierung und Propagation) im Detail erläutert. Auf
dieser Grundlage wird der neue IC3CFA Algorithmus vorgestellt, welcher den
Kontrollfluss explizit als Automaten modelliert, während die Variablenbelegun-
gen symbolisch dargestellt werden, sodass die Vorteile aus beiden Welten vereint
werden können. Nachfolgend wird die Leistungsfähigkeit des Algorithmus, sowie
aller vorgestellten Verbesserungen ausführlich anhand eines anerkannten Satzes
von Referenzprogrammen evaluiert. Um die erzielten Ergebnisse in einen Kon-
text zu setzen und die Leistungsfähigkeit des vorgestellten IC3CFA Algorithmus
zu unterstreichen, schließt ein Vergleich zu anderen, bestehenden Implementie-
rungen von IC3 Verifikationsalgorithmen für Software diese Arbeit ab.

v

Acknowledgements

Being a Ph.D. student and writing a dissertation takes several years in which
you get in contact with many different people that provide insights, help, ideas,
feedback and other ways which have helped shape this thesis. While being
grateful to all of them, I like to dedicate a few lines to the most important of
these people:

First of all I thank the Siemens AG for making this work possible in the first
place. In particular, I thank Martin Neuhäußer, who has been a continuous
source of help, guidance and inspiration from the first day I worked in the
project to the very last days of writing my dissertation. Whenever there were
any uncertainties or problems ranging from the most theoretical proofs to the
most practical compiler tweaks, Martin has been there to provide help regardless
of time and place.

I also want to express my deep gratitude to Joost-Pieter Katoen and Thomas
Noll for all their guidance and feedback to papers and in particular this thesis,
many of which came back so in-depth and fast that it often seemed somewhat
superhuman. Thank you Joost-Pieter for being the kind of boss that many,
many people would wish for, but only few have the luck to experience.

But even with a great boss, work life is nothing without excellent colleagues.
Thankfully, I was lucky enough to find both, so thank you Christina, Matthias,
Tim, Souy, Chris, Benni, Jip, Federico, Friedrich, Gereon, Stef, Johanna, Mar-
cel, Jera for all the great time and many awesome discussions, thanks to Elke,
Birgit and Arnd for all the organizational help, and thanks to Sabrina, Nils and
Flo for our amazing conference trips. But, in particular, I would like to thank
Christoph for countless meetings at the breakfast club and my office mates
Harold, Philipp and Sebastian for all the laughs we’ve shared over the years.

Of course, designing something like IC3 Software Model Checking is not a
one-man show and so besides the great help from the people at Siemens, I’d like
to thank all students who have shared parts of my journey.

And because no journey is possible without a start, I’d like to thank my
parents who have always supported me to go my own way, regardless of the
direction life would take me. Thank you mum and dad for all the love and
support over the past 30 years.

Last but not least, I’d like to thank my wife Sina, possibly the only one
who has experienced every single up and down over the past years and who has
always been there to support me.

Contents

1 Introduction 1
1.1 Programmable Logic Controllers 2
1.2 Approach . 3
1.3 Outline . 3
1.4 Prior Publications . 4
1.5 Contributions . 5

2 Preliminaries 7
2.1 Logic . 9

2.1.1 Propositional Logic . 9
2.1.2 First-order Logic . 16

2.2 Satisfiability . 23
2.2.1 Boolean Satisfiability . 23
2.2.2 Satisfiability Modulo Theories 27

2.3 Model-based Verification . 31
2.3.1 Model-Checking . 32
2.3.2 Properties . 36
2.3.3 Symbolic Model-Checking 40

2.4 Programs . 42
2.4.1 Guarded Command Language 42
2.4.2 Predicate Transformers 44
2.4.3 Control Flow . 46

3 Inductive Hardware Verification 51
3.1 Finite-State Inductive Strengthening 54
3.2 Incremental Inductive Strengthening 59
3.3 Generalization . 71
3.4 Propagation . 79

viii CONTENTS

4 Software Verification with IC3 83
4.1 Previous approaches . 84
4.2 IC3CFA . 94

4.2.1 Preliminaries . 94
4.2.2 The IC3CFA algorithm 103
4.2.3 Correctness . 109
4.2.4 Discussion . 111

4.3 Generalization . 115
4.3.1 Generalization of a cube 115
4.3.2 Generalization on multiple edges 116
4.3.3 Interaction with weakest preconditions 123
4.3.4 Efficient handling of generalizations 137
4.3.5 On other generalization techniques 143

4.4 Propagation . 145
4.5 Comparison . 147

5 Experimental Results 151
5.1 Implementation . 152

5.1.1 Architecture . 152
5.1.2 Preprocessing . 153
5.1.3 Implementation details . 154

5.2 Evaluation . 158
5.2.1 Setup . 158
5.2.2 Results . 160
5.2.3 Industrial experience . 174

6 Conclusion 179

Chapter 1

Introduction

A loud crashing noise from shattering aluminium echoed through the car factory
building and startled up the workers for a short moment, before they returned
back to work. What had happened was that the robot arm picking up a wheel
to mount it to the car had lifted the wheel, moved it towards the car, but half
way smashed the wheel into the ground with full power. While this accident
might sound frightful, it did not draw much attention, since this situation had
occured multiple times in the previous weeks, but up to now no one was able to
find the cause, partially due to the fact that these incidents only occurred very
sporadically and never at the same production line twice.

It was only after this fifth incident over a time of more than three months,
that an investigator noticed the connection between all these incidents: Each
incident happened shortly after one specific control engineer had serviced the
controller of the respective production line that was about to fail. A deeper
investigation revealed that this control engineer had modified the control soft-
ware on his computer because he thought some variable initializations would be
unnecessary and therefore deleted the respective part of the control software.

Whenever the engineer would then connect his computer to the controller, it
would detect a modified version of the control software and would automatically
upload the new and faulty software to the controller. However, as it turned out,
the missing variable initializations caused a misbehaviour in certain border-line
cases that made the robot arm drive the wheel unit into the ground. Interest-
ingly, a large test suite for the control software existed and all regression tests
passed successfully. Thankfully, nobody was injured, the error was found and
only some dents in the floor remind of these incidents.

2 CHAPTER 1. INTRODUCTION

1.1 Programmable Logic Controllers

While the out-of-control robot arms only caused a small damage, it is not hard to
see that these incidents could have ended totally different if a worker had stood
under the robot arm. And just like this robot arm, many other machines in
various scenarios are able to cause danger for life and limb of people interacting
with these machines.

However, with a certain level of safety required, the question is how this can
be ensured. Historically, testing has been a popular approach to test software
systems for errors under certain inputs. But while testing can reveal errors,
it is never able to guarantee the absence of errors, because testing all possible
combinations of input values for any meaningful program is infeasible: Consider
a program with 5 integer inputs, each 16 bits in size, the number of input
combinations is

�
216
�5

= 655365.
In order to fill this gap, formal verification aims at inspecting all possible

executions, without actually executing the program. Together with a given
formal specification, verification is able to determine for all possible behaviour
of the system, whether this behaviour is according to specification or not. This
way unintended behaviour can be reported to the user in terms of a concrete
example where the software under inspection does not behave as specified, i.e. a
counterexample to the specification. But even more important, most verification
algorithms are able to indicate that there does not exist any behaviour in the
system that violates the specification and therefore unintended behaviour, with
respect to the given specification, can be ruled out.

As such, formal verification is a very useful tool in order to ensure safety
under all possible scenarios and has already been successfully employed in many
domains, such as the Maeslantkering storm surge barrier [Kars, 1996] protecting
the city of Rotterdam from flooding. However, often the verification approach in
these scenarios is tailored specifically towards this specific project and can not
be applied to other projects. This is obviously very cost-intensive and prevents
the application of formal verification to small and medium scale projects.

Let us reconsider the setting of the out-of-control robot arm. Apart from
such industrial production lines, many other applications, such as traffic lights,
elevators, escalators, waterworks, chemical plants and millions of other indus-
trial applications that need to be controlled by software use Programmable Logic
Controllers (PLC), which are special computers that are custom-tailored for
control engineering applications. As such, the application of verification to PLC
code would allow it to be used in a variety of domains, which are more likely to

1.2. APPROACH 3

expose dangers to safety than other systems, such as personal computers.

1.2 Approach

While programs for personal computers are designed to execute a set of in-
structions and terminate, the execution model of PLCs is different. Because
controlling e.g. a chemical plant is no task that should terminate, but rather
a continuous reaction to sensor inputs using actuators, a PLC program is exe-
cuted in a cyclic manner, i.e. inputs are read, the program computes the new
values of the actuators and writes the output. Typical cycle times, depending
on the computing power of the PLC and the program length, can be as fast as
a few milliseconds.

A verification framework for PLC code would have to consider arbitrarily
many cycles, but checking this arbitrarily long sequence is not feasible. As such,
the verification framework uses abstraction on the input values to restrict the
inputs as little as possible and only consider a single execution of the program.
By abstracting the inputs, it is able to not only find counterexamples in the first
cycle, but in any arbitrary cycle. In addition, considering only one execution of
the PLC program brings the program closer to software for personal computers
and enables the use of existing approaches for the verification of software for
personal computers, as well as much larger sets of benchmarks to evaluate the
performance of the verification framework.

For this reason, the thesis focuses on a novel verification framework for
software verification of general programs, such as e.g. C programs, and is im-
plemented and evaluated on a set of benchmarks from the international software
verification competition. Only for some minor details the differences between
C and PLC programs will be highlighted and the resulting decisions will be
influenced by the peculiarities of PLC programs.

1.3 Outline

The remaining chapters of this thesis are structured as follows:

• Chapter 2 starts with an introduction to logics and satisfiability, in par-
ticular propositional logic and Boolean satisfiability, which are needed for
Chapter 3, as well as first-order logic and satisfiability modulo theories,
which is required for Chapter 4. Furthermore it covers an overview of
model-checking, and different types of properties, which leads to symbolic

4 CHAPTER 1. INTRODUCTION

model-checking. The chapter concludes with basics about the PLC pro-
grams that are considered in the remainder of the thesis.

• Chapter 3 focuses on the incremental, inductive verification algorithm IC3
and starts with a description of a prior version of inductive verification,
called finite-state inductive strengthening, which illustrates the idea of in-
ductive verification, followed by the incremental extension IC3. The IC3
algorithm consists of a main search phase and two important extensions,
namely generalization and propagation, which are considered separately.

• Chapter 4 presents the lifting of IC3 (Chapter 3) to software and is struc-
tured analogously to Chapter 3. It starts with previous approaches and
the remainder of the chapter presents the lifting of IC3 to control-flow au-
tomata (IC3CFA), representing input programs. The presentation of the
main search phase is followed by adaptations and improvements of gener-
alization and a discussion about propagation. The chapter concludes with
a comparison to other IC3-style verification algorithms.

• In Chapter 5 an implementation of IC3CFA is explained and used to eval-
uate the results of all ideas presented in Chapter 4. The chapter concludes
with a short overview of some industrial experiences with the application
of the presented implementation to the verification of PLC code.

1.4 Prior Publications

Parts of this thesis have been published in prior work. The following gives an
overview where the work in this has been published.

The theoretical aspects of Section 4.2, related to the IC3CFA algorithm without
generalization, are the result of fruitful discussions with Martin Neuhäußer and
Thomas Noll and I implemented these on top of a framework developed by
Martin Neuhäußer and his colleagues. The results were published in:

T. Lange, M. R. Neuhäußer, and T. Noll (2015). “IC3 Software Model
Checking on Control Flow Automata”. In: FMCAD. IEEE, pp. 97–104.

The subsequent work on generalization in IC3CFA is mainly the result of the
master thesis

F. Prinz (2016). “Generalisation methods for control-flow oriented IC3 al-
gorithms”. Master thesis. RWTH Aachen University

1.5. CONTRIBUTIONS 5

which I supervised and assisted to implement. Some of these results, in
particular split, predecessor cubes, WEP-based inducttvity and generalization
and generalization caching have subsequently been published in:

T. Lange, F. Prinz, M. R. Neuhäußer, T. Noll, and J.-P. Katoen (2018).
“Improving Generalization in Software IC3”. In: SPIN. LNCS. To be published.
Springer.

The core work of investigating propagation in IC3CFA, as presented in Sec-
tion 4.4 is based on the master thesis of

T. Mertens (2016). “Efficient reuse of learnt information for control-flow
oriented IC3 algorithms”. Master thesis. RWTH Aachen University

which I supervised and assisted to implement. While not related to propa-
gation, the obligation reuse as presented on page 112, has also been a result of
this master thesis.

Some earlier work published in: T. Lange, M. R. Neuhäußer, and T. Noll (2013).
“Speeding Up the Safety Verification of Programmable Logic Controller Code”.
In: Haifa Verification Conference. Vol. 8244. Lecture Notes in Computer Sci-
ence. Springer, pp. 44–60

contains aspects of the static program minimizations that are subject of
Section 5.1.1.

1.5 Contributions

This thesis contributes to the state-of-the-art in IC3-style software verification
theoretically, as well as practically. Our main contributions are the following:

• We present the IC3CFA algorithm, in particular the main search phase,
which lifts the way IC3 works on hardware systems to control-flow au-
tomata, a very common encoding for programs, in the most straight-
forward way. We prove the correctness of the algorithm and highlight
the equivalences between IC3 and IC3CFA.

• Based on the IC3CFA search phase, we present a number of optimizations
to the search phase that go beyond the simple lifting of IC3.

• We introduce a simple generalization for IC3CFA and present the chal-
lenges to be tackled when applying generalization. Again, we start with a
basic approach that tries to mimic the technique employed in IC3 as close

6 CHAPTER 1. INTRODUCTION

as possible and highlight the main differences that have to be considered,
especially with respect to multiple explicit predecessors state sets.

• Following standard generalization, we introduce improvements enabled by
the exact predecessor computations that has to applied in IC3CFA and
how it is used to modify the generalization of cubes.

• In addition, we present novel ways of handling generalizations in efficient
ways, most notably the caching of generalizations in varying contexts and
how we can use cached results, even though they appeared in a different
situation, thus exceeding the spectrum of standard caching.

• Apart from our novel techniques for generalization in IC3CFA, we also
consider known generalization approaches such as unsatisfiable cores and
interpolation, and discuss their application to IC3CFA.

• The propagation phase, a vital part of the IC3 algorithm, apart from the
search phase and generalization, is considered and we discuss the problems
that arise when trying to lift propagation to IC3CFA.

• In addition to these theoretical contributions, we implemented a prototypi-
cal verification framework with all presented algorithms and improvements
and evaluated the performance of all proposed methods in an isolated fash-
ion on a large set of benchmarks.

Chapter 2

Preliminaries

In a world where information and communication systems have become ubiq-
uitous, and software interacts with multiple aspects of our daily live, software
failures pose problems more than ever. As a result, many of such systems need
a reliable way to ensure the absence of errors, such as formal verification of
software. In order to advance the state-of-the-art in that direction, this thesis
presents a way to apply the so-called IC3 algorithm, as explained in Chapter 3
to the domain of software systems, presented in Chapter 4. In order to agree
on a common understanding, we define the basic theoretical concepts of model-
checking and our notion of software, necessary for our presentation in Chapter 4,
in the remainder of this chapter. In order to pave the way towards efficient,
state-of-the-art model-checking, we start with defining logic in Section 2.1, in
particular propositional logic, first-order logic and first-order theories, which will
be used later as our basic units of reasoning. We continue in Section 2.2 with
the satisfiability of formulas in these logics and presenting ways of automated
decision procedures for the satisfiability of formulas in propositional logic and
first-order theories. These tools, called satisfiability (SAT) solvers, will allow us
to formulate questions in terms of logical formulas and determine the answer.
There exists a variety of such solvers that all have strengths and weaknesses
for particular problem domains, such that we can reuse existing software and
choose a solver depending on our needs. Building on top of logics and their
satisfiability, we give a brief outline of formal verification with model-checking.
This technique verifies a system by abstracting it to a theoretical model that
can be checked for violations of the requirements, given as a property of the
model. We conclude this chapter by defining a modelling formalism for software

8 CHAPTER 2. PRELIMINARIES

programs that is tailored towards facilitating our software model-checking algo-
rithm presented in Chapter 4. The presented formalism is of specific use due to
its succinctness, that allows us to define small sets of rules for verification. Fur-
thermore, we define our formalism using different layers that distinguish control
and data flow. This separation of concerns will later allow us to simplify our
reasoning about those programs by ignoring irrelevant parts.

2.1. LOGIC 9

2.1 Logic

The origins of logic in its modern perception stem from the ancient greek, where
the word logos meant thought or reason. In its general interpretation, logic
considers the systematic study of the form of valid inference. This contains
three important aspects of logic: The central concept of the logical form says
that the validity of some abstract argument is determined by the logical form
of the argument, not its content. In particular, the validity of the argument
is determined by the meaning, the semantics, of the sentences of which the
argument consists. Lastly, an inference consists of two propositions p and q that
are asserted individually, in the form p therefore q. One of the most prominent
inferences in common parlance may be cogito ergo sum, I think; therefore, I am
by the French philosopher René Descartes.

In the course of history, logic has been studied in philosophy since the ancient
times, later, since the mid of the 19th century, in mathematics and in its most
recent forms in (theoretical) computer science. In this sense, logics such as
propositional logic, outlined later in this section, that are main foundations for
modern computer science are as old as the 3rd century BC.

We will, however, omit the wide field of logics and rather focus on a few,
specific aspects and logics that will be of use for subsequent theoretical and prac-
tical application. We will start in Section 2.1.1 with propositional logic, which
offers basic understanding and reasoning about binary systems. We extend
these concepts in Section 2.1.2 with quantifiers, and functions over arbitrary
domains to first-order logic. Section 2.1.2 completes this section with a number
of first-order theories that can be considered instantiations of first-order logic
over concrete domains.

2.1.1 Propositional Logic
As the name indicates, propositional logic, the oldest of the presented logics,
studies formal systems over propositions, i.e. statements that are either true

or false. In its modern interpretation in theoretical computer science, these
propositions can be related directly to bits that have states 1 and 0. In [Boole,
1853], the British mathematician and philosopher, George Boole published a
systematization and foundation to the principles of Aristotle’s logic, which later
became the modern propositional logic, sometimes also referred to as Boolean
logic. In the remainder of this section we will outline the main aspects of propo-
sitional logic, starting with its syntax, i.e. the logical form of propositional
arguments. We continue, giving the syntactic constructs a meaning by defining

10 CHAPTER 2. PRELIMINARIES

its semantics and conclude by ways to normalize propositional formulas with
some widely used normal forms.

Definition 2.1 (Syntax propositional logic [Bradley and Manna, 2007b]).
The syntax of propositional logic (PL, shortly) is defined by the following
grammar:

p := true | false | x | ¬p | p1 _ p2 | p1 ^ p2 | p1) p2 | p1 , p2

Given Definition 2.1, we can identify three terminal symbols, also called
atoms, which are the truth symbols true and false and propositional variables
denoted by symbols like x, y, z, of which a countably infinite set is assumed to
exist. Apart from these terminal symbols, PL is defined over unary negation
operator ¬ and the binary connectives conjunction ^, disjunction _, implica-
tion) and iff ,. The left argument of the implication is called the antecedent
and the right the consequent. A literal is defined as an atom ↵ or its nega-
tion ¬↵. A formula is a literal or the application of a connective. Whenever
operator precedence is clear from the context, we will avoid unnecessary paren-
theses. To simplify chains of conjunction or disjunction operators, we define
n-ary conjunction and disjunction later.

Example 2.1. Consider the natural statement ”the sun is shining”. De-
pending on place, time and weather, this statement might be true or false,
i.e. we say that ”the sun is shining” is a variable, called sun. If we now
want to express a condition when we can leave the house without a jacket,
we could say that ”the sun is shining” and ”it is warm outside” (warm),
i.e. sun ^ warm. Furthermore, we could express that ”the sun is shining”
implies that it is not raining, i.e. sun) ¬rain. The most noticeable
difference between natural language and the connectives in propositional
logic is that or in natural language is usually meant exclusive, e.g. ”the
sun is shining” or ”it is raining”, i.e. sun _ rain. While we would usually
interpret this statement as true iff one of the state sub-statements holds,
propositional logic allows both to hold at the same time and the connective
still being true.

The syntactic structure as defined in Definition 2.1 does not yet have any
meaning, e.g. we don’t know when sun ^ warm of Example 2.1 evaluates to
true. Therefore we need to define the semantics of propositional logic. To do

2.1. LOGIC 11

so, we start by defining a way of evaluating the truth value of a propositional
variable, which is given by a so-called interpretation I. An interpretation I

assigns to each propositional variable a truth value. If not all variables are
assigned, we call I a partial interpretation and otherwise a full assignment.
Given an interpretation I, the evaluation of propositional atoms is simple. The
unary operator ¬ defines the negation of the evaluation of its argument, i.e.
¬true = false and ¬false = true. To determine the evaluation of the remaining
propositional connectives, we can use the following truth table [Bradley and
Manna, 2007b]:

' ' ^ ' _ ') ',

0 0 0 0 1 1
0 1 0 1 1 0
1 0 0 1 0 0
1 1 1 1 1 1

Given an interpretation I we can use this truth table to recursively determine
the evaluation of any formula by the evaluation of its respective subformulas.
While the use of truth tables can be convenient, it is not always suitable, which is
why we introduce an inductive definition of the semantics of propositional logic
using the model operator |=. Again, we start our definition with the semantics
of propositional variables:

I |= x iff I[x] = true

I 6|= x iff I[x] = false

This means that the variable x has value true iff the interpretation I assigns
true to x. Based on the propositional atoms, we can now inductively define
connectives as:

I |= ¬' iff I 6|= '

I |= '1 ^ '2 iff I |= '1 and I |= '2

I |= '1 _ '2 iff I |= '1 or I |= '2

I |= '1) '2 iff, I 6|= '1 or (I |= '1 and I |= '2)

I |= '1 , '2 iff I |= '1 and I |= '2, or I 6|= '1 and I 6|= '2

12 CHAPTER 2. PRELIMINARIES

Example 2.2. Let us assume some given interpretation I = {sun 7!
true,warm 7! true, rain 7! false}, then

I |= sun ^ warm

I 6|= rain

I |= sun) ¬rain
I |= sun _ rain

As we can see from the semantics of the implication operator, not all connec-
tives are necessary for the full expressiveness of propositional logic. Accordingly,
there are a number of rewrite rules that preserve the semantics of the formula
and can be applied to the operators in propositional logic, some of which shall
be explained in the following [Bradley and Manna, 2007b]. We start with the
rewrite rules for the negation operator.

¬¬ ()

 1) 2 () ¬ 1 _ 2

 1 , 2 () (1) 2) ^ (2) 1)

A second set of equivalences that rewrites conjunction and disjunction under
negation is known as De Morgan’s Law :

¬ (1 ^ 2) () ¬ 1 _ ¬ 2

¬ (1 _ 2) () ¬ 1 ^ ¬ 2

The distributive law of propositional logic is defined as:

' ^ (_ #) () (' ^) _ (' ^ #)
' _ (^ #) () (' _) ^ (' _ #)

Another important equivalence, that will be used extensively in later chap-
ters is the equivalence of implication:

) '

() ¬ _ '
() ¬ (^ ¬')
() ¬') ¬

2.1. LOGIC 13

Example 2.3. Consider some abstract formula:

¬ (x ^ z)) ¬ (y , ¬z)

Equivalent formulas are for example:

() (¬x _ ¬z)) ¬ (y , ¬z)
() (¬x _ ¬z)) ¬ ((y) ¬z) ^ (¬z) y))

In the standard notion of propositional logic, connectives such as conjunction
and disjunction are binary, i.e. we can only apply it to two subformulas. In order
to allow a conjunction of three atoms, e.g. sun and warm and rain, we have
to nest those binary connectives, such as (sun ^ (warm ^ rain)). In order to
improve readability and simplify subsequent definitions, we lift those binary
connectives to n-ary connectives, which is enabled by the associativity of the
operators.

Definition 2.2 (n-ary con-/disjunction). Given a set of literals P with
|P | = n, we define the n-ary conjunction as

^
P :=

^

li2P

li := l1 ^ l2 ^ · · · ^ ln

and analogously, we define the n-ary disjunction as
_

P :=
_

li2P

li := l1 _ l2 _ · · · _ ln.

Corollary 2.1. The semantics of
V

and
W

is given as:
^

li2P

li |= true iff 8li 2 P . I |= li

_

li2P

li |= true iff 9li 2 P . I |= li

The semantics of these n-ary operators are defined analogous to their binary
counterparts. Using this n-ary conjunctions and disjunctions, we can define
constructs and normal forms on the syntax of the formula.

14 CHAPTER 2. PRELIMINARIES

Definition 2.3 (Cube [Bradley, 2011]). A cube is defined as a conjunction
of literals.

Definition 2.4 (Clause [Bradley, 2011]). A clause is defined as a disjunc-
tion of literals.

Since a clause is defined as disjunction over literals and a cube is a conjunc-
tion over literals, there exists a duality between both, in the form that one is
the negation of the other.

In order to reason about formulas, there exists a variety of normal forms.
The most popular three, negation normal form, disjunctive normal form and
conjunctive normal form shall be defined in the following.

Definition 2.5 (Negation normal form [Bradley and Manna, 2007b]). A
formula ' in propositional logic is defined to be in negation normal form
(NNF) if it contains only the connectives ¬,^,_ and negations only appear
in literals.

An arbitrary formula can be transformed into NNF using the equivalence
transformations on page 12.

Example 2.4. Consider the formula that we rewrote in Example 2.3. We
can transform it into the following NNF formula using the given equiva-
lences:

(¬x _ ¬z)) ¬ ((y) ¬z) ^ (¬z) y))

() (¬x _ ¬z)) ¬ ((¬y _ ¬z) ^ (z _ y))

() (¬x _ ¬z)) (¬ (¬y _ ¬z) _ ¬ (z _ y))

() (¬x _ ¬z)) ((y ^ z) _ (¬z ^ ¬y))
() ¬ (¬x _ ¬z) _ ((y ^ z) _ (¬z ^ ¬y))
() (x ^ z) _ (y ^ z) _ (¬z ^ ¬y)

While negation normal form only forbids negations to occur in non-atomic
levels of the formula structure, other normal forms pose much harder restrictions
on the structure of the formula.

2.1. LOGIC 15

Definition 2.6 (Disjunctive Normal Form [Bradley and Manna, 2007b]).
A formula ' is defined to be in disjunctive normal form (DNF) if it is a
disjunction of cubes, i.e.

_

i

^

j

li,j for literals li,j

Similar to cubes and clauses, we can define an analogy to the disjunctive
normal form that has a top-level conjunction instead of disjunction.

Definition 2.7 (Conjunctive Normal Form [Bradley and Manna, 2007b]).
A formula ' is defined to be in conjunctive normal form (CNF) if it is a
conjunction of clauses, i.e.

^

i

_

j

li,j for literals li,j

While the last formula considered in Example 2.4 happens to also be in
DNF, this is not necessarily the case for all formulas. However, there do exists
equivalent CNF/DNF formulas for arbitrary formulas in propositional logic.

Example 2.5. Considering the formula of Example 2.4, we can transform
it into CNF using the equivalence transformations as shown on page 12,
especially the distributive law.

(x ^ z) _ (y ^ z) _ (¬z ^ ¬y)
() (((x ^ z) _ y) ^ ((x ^ z) _ z)) _ (¬z ^ ¬y)
() ((x _ y) ^ (z _ y) ^ (x _ z) ^ (z _ z)) _ (¬z ^ ¬y)
() . . .

() (x _ ¬z) ^ (y _ ¬z) ^ (x _ ¬y) ^ (y _ ¬y)^
(z _ ¬z) ^ (y _ ¬z) ^ (z _ ¬y) ^ (y _ y)^
(x _ ¬z) ^ (z _ ¬z) ^ (x _ ¬y) ^ (z _ y)^
(z _ ¬z) ^ (z _ ¬z) ^ (z _ ¬y) ^ (z _ y)

As we can see from Example 2.5, while there exists an equivalent CNF and
DNF for every formula, some of these transformations may lead to formulas

16 CHAPTER 2. PRELIMINARIES

exponential in the size of the original formula. To tackle this problem, there
exist other techniques that do not create equivalent formulas, but formulas
that are equisatisfiable, i.e. formulas that are equivalent with respect to their
satisfiability, such as Tseitin transformation [Tseitin, 1968].

2.1.2 First-order Logic
Let us consider the basic logic over the propositions true and false that was
established in the previous section. This Boolean logic is perfectly suited for
reasoning about Boolean systems, such as finite-state machines, a very common
modelling formalism for real-world applications like hardware circuits. However,
if we want to model a system that reasons about computations, the expressive
power of propositional logic does not always suffice. We therefore extend the
concepts introduced in the last section with functions, quantifiers and predicates,
which gave name to the predicate logic or first-order logic (FO) [Bradley and
Manna, 2007b]. Like in the last section, we will start by introducing the syntax
of first-order logic and afterwards define the semantics of the syntactic elements.

Definition 2.8 (Syntax of first-order logic [Bradley and Manna, 2007b]).
The syntax of first-order logic is defined by the following grammar:

t := a | x | f(t1, . . . , tn)
fo := 9x. fo | 8x. fo | ¬fo | fo1 _ fo2 | fo1 ^ fo2 |

fo1) fo2 | fo1 , fo2 | p(t1, . . . , tn)

As we can see from Definition 2.8, the syntax of first-order logic splits up
in two main aspects, namely terms t and formulas fo. While formulas, just
like for the propositional case evaluate to a Boolean, terms will evaluate to a
value in their domain. A more detailed explanation on instantiations of concrete
domains will be given in Section 2.1.2. Apart from the known concepts of PL,
such as negation, conjunction, and so on, FO-formulas can contain three new
syntactic elements: First of all, predicate symbols p(t1, . . . , tn) take n terms
as input and map them to a Boolean. Furthermore FO adds the concept of
existential quantifiers 9 and universal quantifiers 8. In 8x. fo and 9x. fo, we
call x the quantified variable and fo the scope of the quantifier 8x. The variable
x is called bound in fo by the quantifier. All variables that occur in fo and are
not bound by some quantifier are called free variables. Formulas that do not
contain free variables are called closed formulas. Sometimes a predicate is also
considered as a generalized propositional variable [Bradley and Manna, 2007b].

2.1. LOGIC 17

Terms on the other hand can consist of a first-order variable x over some
abstract domain D, a constant value a, or a function f(t1, . . . , tn) that evaluates
to a value in the domain under n terms. The constant value a can be considered
a 0-ary function.

Analogously to PL, we call a truth value or an n-ary predicate an atom. An
atom or its negation is considered a literal.

Given the formal syntax of first-order logic, we define FO as the set of all
possible words that can be derived from fo in the given grammar with a formula
' 2 FO being a word of FO .

After defining the syntactic elements of FO, we still need to define the se-
mantics, giving a meaning to each concept. For the Boolean fragment of FO
we can use the semantics of PL. However, this does not cover terms that evalu-
ate to values other than truth values. In order to do so, we need to extend the
known definition of interpretation I, whose domain DI is now a nonempty set of
values or objects. Given an interpretation I, an assignment ↵I maps constants
and variables to elements of DI , functions to functions over DI and predicate
symbols to predicates over DI . Together, the interpretation I = (DI ,↵I) is a
pair, consisting of domain DI and assignment ↵I .

To determine whether a formula ' evaluates to true or false under a certain
interpretation I, we define the semantics inductively:

↵I [f (t1, . . . , tn)] = ↵I [f] (↵I [t1], . . . ,↵I [tn]) and
↵I [p (t1, . . . , tn)] = ↵I [p] (↵I [t1], . . . ,↵I [tn])

for functions f , arbitrary predicates p and terms t1, . . . , tn. Using the assignment
↵I we define

I |= f (t1, . . . , tn) iff ↵I [f (t1, . . . , tn)] and
I |= p (t1, . . . , tn) iff ↵I [p (t1, . . . , tn)].

For the semantics of quantifiers, we need to modify interpretation I slightly.
We say that for a bound variable x an interpretation J : (DJ ,↵J) is an x-variant
of I : (DI ,↵I) if DI = DJ and ↵I [y] = ↵J [y] for all symbols y except x. In
other words, J and I are identical, except for the value of variable x. For some
v 2 DI we call J : I / {x 7! v} the x-variant of I where ↵J [x] = v. Using
x-variants, we define the semantics of quantifiers as:

I |= 8x.' iff for all v 2 DI , I / {x 7! v} |= '

I |= 9x.' iff there exists a v 2 DI , I / {x 7! v} |= '

18 CHAPTER 2. PRELIMINARIES

Example 2.6. Consider the interpretation I = (DI ,↵I) over the infite
domain of integers DI = Z and the assignment ↵I = {+ 7! +Z, · 7! ·Z, =
7! =Z,
x 7! 1, y 7! 2, z 7! 3}, then the formula

x · z = x+ y

evaluates to true under interpretation I, while

x+ y + z = x · y

evaluates to false under I.

In order to allow transformations of FO-formulas into the known normal
forms of propositional logic, we need to define a few missing equivalence trans-
formations. In particular, we can transform an arbitrary FO-formula into NNF
using the following equivalences:

¬8x.'[x] () 9x.¬'[x]
¬9x.'[x] () 8x.¬'[x]

With the advent of quantifiers in FO-formulas, we can also define a normal form
that considers the quantifiers in a FO-formula, which is called prenex normal
form.

Definition 2.9 (Prenex normal form [Bradley and Manna, 2007b]). A
FO-formula is in prenex normal form (PNF, short) if all quantifiers in
 appear at the beginning:

Q1x1 . . . Qnxn.'[x1, . . . ,xn]

with quantifiers Qi 2 {8, 9} and quantifier-free '.

Any arbitrary FO-formula can be transformed into PNF by first converting
 into NNF-formula 0, renaming all quantified variable symbols in 0 to prevent
conflicts with other quantified or free variable symbols, resulting in formula 00

and shifting all quantifiers in 00 to the beginning of the formula.

2.1. LOGIC 19

Example 2.7. Consider the FO-formula

' = 8x. (x+ 1 > 0 _ 9y. (�1 · y = x ^ ¬8z. (z = y) z > 0))) .

We start by transforming ' into NNF, resulting in

 = 8x.x+ 1 > 0 _ 9y. � 1 · y = x ^ 9z.¬ (z = y) z > 0)

() 8x.x+ 1 > 0 _ 9y. � 1 · y = x ^ 9z. z = y ^ z > 0.

Given , we can now shift quantifiers, resulting in the PNF formula

8x, 9y, 9z.x+ 1 > 0 _ �1 · y = x ^ z = y ^ z > 0.

First-order Theories
In the last section, we defined FO with interpretations over arbitrary domains.
In other words, we built an abstract framework that we now want to instantiate.
To do so, we will define so-called first-order theories that allow us to reason
about application domains, such as programs.

Definition 2.10 (Theories [Kroening and Strichman, 2008]). A first-order
theory T : (⌃,A) is defined as a pair consisting of a set ⌃ = C [F [P of
constant, function and predicate symbols, called signature and a set A of
closed FO-formulas in which only symbols of ⌃ appear, called axioms.

In the following chapters, we will use a number of concrete theories, that
we will shortly sketch in the following. We will give the signature of the used
theories, but the axiomatization, while mostly intuitive, can become very com-
plex. For this reason we only give an informal description of the axiomatization
or omit it completely, where obvious. For more details about the concrete ax-
iomatization of the used theories, the reader is referred to the literature [Biere,
Heule, et al., 2009; Bradley and Manna, 2007b; Kroening and Strichman, 2008].

Bitvector Theory (BV)

The Bitvector Theory (BV) is a theory that is highly relevant when reasoning
about any sort of program. Regardless of the size and the type of a program
variable, it will always have a finite representation consisting of n bits. A bitvec-
tor, as the name suggests, consists of a finite vector of Boolean entries, or bits,

20 CHAPTER 2. PRELIMINARIES

and is therefore ideal to model program variables. Furthermore, the used bitvec-
tor arithmetic allows to model not only the finite value of a program variable,
but also enables us to determine its precise behaviour, such as underflows and
overflows. The signature of the bitvector theory is given as follows :

⌃ = {+,�, ·, /,
<<,>>, &, |,�,⇠, t[c1 : c2], �
<, =

^,_,¬}
[Kroening and Strichman, 2008]

We can identify the following classes and elements of signature ⌃:

• Arithmetic operators, such as addition +, subtraction �, multiplication
� and division / with respect to bitvector logic, such as overflow and
underflow,

• bit-level operators, such as shift << and >>, bit-level AND & and OR |,
XOR � and bit-level negation ⇠, extraction of a subvector from position
c1 to c2 from some term t and concatenation �,

• relational operators, such as < and =, and

• Boolean connectives, such as conjunction, disjunction and negation.

While there exist certain variable types that we cannot directly model using
bitvectors, such as arrays or pointers, bitvectors offer a convenient way to model
basic variable types.

Example 2.8. Using the bitvector theory we can reason about formulas
such as

(((x << 0010) | ⇠ (y � z)) + x) = w ^ w[0100 : 0011] � w[0100 : 0011] = y

which evaluates to true under e.g. ↵I = {w 7! 0100,x 7! 1101, y 7!

2.1. LOGIC 21

0101, z 7! 1001, . . . }:

(((1101 << 0010) | ⇠ (0101� 1001)) + 1101) = 0100 ^
0100[0100 : 0011] � 0100[0100 : 0011] = 0101

() ((0100 | ⇠ 1100) + 1101) = 0100 ^
01 � 01 = 0101

() ((0100 | 0011) + 1101) = 0100 ^
0101 = 0101

() (0111 + 1101) = 0100 ^
0101 = 0101

() 0100 = 0100 ^
0101 = 0101

Undefined Functions (UF)

When reasoning about programs, input variables or nondeterministically deter-
mined values are usually of special interest. Without those, any program would
only consist of computations about constants defined somewhere in the program,
such that the model-checking problem for those programs could be solved by
simulating the program or using a simple static program analysis. In real-world
applications however, one is interested in how a program behaves under a certain
set, interval or even arbitrary input values. To do so, we can employ so-called
undefined functions. For undefined function symbols an interpretation need not
satisfy any axioms for that function apart from it being consistent, i.e. given the
same input, it produces the same output. The signature of the theory of unde-
fined functions or, more precisely, the theory of equality and undefined functions
(EUF) is simply given by the standard Boolean connectives, equality operator
= and the function symbols, usually denoted by capital letters [Kroening and
Strichman, 2008].

Arrays

The concept of Arrays is widely used in various programming languages and
allows iteration over consecutive memory arrays. The previously defined theories
however do not allow this, since they abstract from concrete memory. In other

22 CHAPTER 2. PRELIMINARIES

words, a variable in BV does not occupy a specific memory region and thus there
is no knowledge about the order in which they are allocated. To model arrays
we thus use the dedicated array theory. Since arrays can also be considered as a
mapping from an index to an element, the array theory combines an index theory
and an element theory [Kroening and Strichman, 2008]. The signature of the
array theory contains, apart from the Boolean fragment and quantifiers, just two
operators: One for writing an element to an index, denoted by termA{termI
termE} and reading from an index, denoted by termA[termI]. Those operations
distinguish between terms of array theory termA, terms of index theory termI

and terms of element theory termE [Kroening and Strichman, 2008].

Linear Arithmetic

While BV theory allows us to verify bit-precise behaviour of software, such as
overflows and bit-level operations like shifts, XOR and so on, we may add a lot
of computational overhead for cases where this is not necessary. For example,
we might either encounter a system in a language that does not allow bit-
level operations or we may be able to statically detect intervals for all relevant
variables that do not exceed the variables’ sizes. In those cases we might as well
reason about natural, unbounded integers which allows the solver to work more
efficiently. For reasoning about programs two suitable theories are the theory of
Linear Integer Arithmetic (LIA) and Linear Real Arithmetic (LRA) for integer
and rational variables. As the name suggests, both theories only allow Linear
equations and inequations. This means that LIA and LRA formulas can only
be derived from the following grammar:

formula : formula ^ formula | (formula) | atom
atom : sum op sum

op : = | | <
sum : term | sum + term

term : identifier | constant | constant identifier

[Kroening and Strichman, 2008]

In other words, terms can be variables, constants or the product of both; terms
can be summed and be subject to a relational operator which forms an atom.
Such atoms or the conjunction of them is an LIA/LRA formula. Both theories
share the same grammar, only that in LIA constants and variable valuations
can only be integers, while for LRA they can be any real number.

2.2. SATISFIABILITY 23

2.2 Satisfiability

In the previous section we always assumed a given interpretation I for the
presented logics. However, if we want to use logics to model a given problem,
we do not know whether such I exists and if so how exactly it looks. Given
a formula ', if such I exists, we say that I satisfies ' or simply that ' is
satisfiable, written as |= '.

The problem whether a propositional formula ' has a satisfying interpre-
tation I, called the Boolean satisfiability problem (SAT) is decidable but its
complexity has been proven to be NP-complete [Cook, 1971], since we can non-
deterministically guess the correct interpretation and check whether it satisfies
' in polynomial time. Despite its complexity there exist multiple SAT solvers
[Audemard et al., 2013; Biere, 2014; Eén and Sörensson, 2003] that try to solve
the satisfiability problem using various heuristics. During the last decade these
tools have improved significantly and for many real-world problems they show
impressive performance.

In certain situations however we might also be interested in whether ' eval-
uates to true not only under one I but rather under all possible interpretations.
This is specifically the case if we consider an implication: Every interpretation
that does violate the premise will automatically satisfy '. However in those
cases we are actually more interested whether ' evaluates to true under all
interpretations I. If this is the case, we say that ' is valid. Due to the dual-
ity between validity and satisfiability we can reduce any validity problem to a
satisfiability problem, such that we can use a SAT solver to check validity. In
particular a formula ' is valid iff its negation ¬' is unsatisfiable.

For the remainder of this section we will introduce the basic concepts of the
satisfiability problem, first for propositional logic and afterwards for first-order
theories.

2.2.1 Boolean Satisfiability
Over the last decade the theoretical, as well as practical importance of the
Boolean satisfiability problem has grown significantly and thus led to a large
amount of research in the field. This in turn improved the performance and
therefore the visibility of SAT solving.

While the problem itself is decidable, but NP-complete, two major heuristics
for solving SAT problems exist. The first of those heuristics is stochastic search
and, as the name suggests, it searches the space of all possible interpretations for
a formula ' in a stochastic way, by guessing full interpretations I. If I does not

24 CHAPTER 2. PRELIMINARIES

satisfy ', stochastic search starts flipping variable valuations with some greedy
heuristic [Kroening and Strichman, 2008]. While stochastic search clearly has
its advantages for randomly generated SAT instances, formulas modelling real-
world problems usually have some degree of structure. Therefore heuristics
that are able to exploit and learn from that structure seem to have a general
advantage for practical applications. The most prominent heuristics in that re-
gard is the Davis-Putnam-Loveland-Logemann (DPLL) framework. In contrast
to stochastic search, DPLL traverses and backtracks over a binary tree [Biere,
Heule, et al., 2009; Kroening and Strichman, 2008] and thus solves the problem
in a more structured way. Due to this advantage for practical application, we
will focus the remainder of this section on DPLL solvers exclusively.

From a very high-level point of view, the DPLL framework can be considered
as follows: It makes a decision about a variable valuation, propagates the ef-
fects of this change to all applicable positions and in case this leads to a conflict
it backtracks the decision. If we consider each of the resulting partial inter-
pretations as a node, deciding to give a variable a positive or negative value
creates two separate branches with transitions to new partial interpretations
until ultimately reaching a full interpretation or a conflict. These interpreta-
tions terminate the search on this branch and can therefore be considered leaves
in a binary tree, while all other partial interpretations are inner nodes with the
empty interpretation being the root node [Kroening and Strichman, 2008].

In analogy to the decision tree where each node can be associated with a
level, each decision can be associated with a decision level that is its depth in
the binary search tree, starting at level 0 for the root node. Given an inner node
n of the binary tree, we can reconstruct the partial interpretation I describing
this node from the path leading from n to the root node. By partially evaluating
the formula ' under I we can simplify ' to a smaller formula . This partial
evaluation is sometimes also referred to as conditioning. For formula ' and
decisions x0,¬x1, . . . ,xn we write '|x0,¬x1, . . . ,xn [Kroening and Strichman,
2008]. In order to simplify the DPLL algorithm from an algorithmic point of
view it assumes an input formula in CNF. Since there exists an equivalent CNF
for every propositional formula, as shown before, we can simply preprocess an
input formula and run DPLL on the resulting CNF. Rather than always writing
the full CNF, we will represent it as a set of sets of clauses in the following, where
(x1 _ x2) ^ (x3 _ x4 _ x5) ^ . . . is represented by {{x1,x2}, {x3,x4,x5}, . . . }.
Consequently the empty CNF {} corresponds to true and the CNF containing
the empty clause corresponds to false. Exploiting the CNF structure, we can
say that a formula has a conflict if there exists at least one clause where all
literals are assigned, but the clause is not satisfied.

2.2. SATISFIABILITY 25

For some arbitrary decision level i, DPLL can find itself in one of three
different situations: First, the conditioning of ' with the decisions made so far
results in a conflict, in which case we can stop exploring the current node and
backtrack, since all subsequent decisions will also not satisfy '. Second, we are
at decision level i where i is the number of variables in ', which means we have
a full interpretation I such that ' conditioned under all decisions is empty. Or
third, we are at some inner node with the conditioned ' neither containing the
empty clause, nor being empty, in which case DPLL has to make more decisions.

However, if the conditioning of ' does not result in the empty CNF or
contain the empty clause, we might still be able to terminate early due to so-
called unit clauses. A unit clause is a clause containing only a single literal,
such that the decision on this literal is easy: For unit clause {x} we have to
map x to true and for unit clause {¬x} we map x to false. The unit resolution
technique, also referred to as unit propagation allows to simplify CNF ' by
collecting the set � of unit clauses in ', assuming their implied decisions and
conditioning ' under these decisions. Since the result may again contain unit
clauses, DPLL repeats unit propagation until it reaches a fixpoint, i.e. there
are no more unit clauses. For ' with strong connection between the individual
clauses this can obviously result in a significant reduction of the number of
decisions needed. In particular, the result may be the empty CNF, such that,
using unit propagation, DPLL can terminate early, avoiding many, possibly
bad decisions and subsequent backtracking. Note that using unit propagation
implies that variables are not examined in the same order on all branches of the
decision tree, since variables in unit clauses are preferred over other variables.

Example 2.9. Consider some example formula that has been converted
to the following

' =(¬a _ b _ ¬c) ^ (¬c _ d) ^ (¬d _ ¬e) ^ (¬a _ ¬b) or
{{¬a, b,¬c}, {¬c, d}, {¬d,¬e}, {¬a,¬b}}

When we invoke the DPLL algorithm (cf. Algorithm 1) with ', the initial
unit propagation fails, since there are no unit clauses in '. Since ' is also
neither empty nor contains the empty clause, we choose a literal, in this
case c. We recursively call DPLL with the conditioning of ' under c which
yields

{{¬a, b}, {d}, {¬d,¬e}, {¬a,¬b}}.

26 CHAPTER 2. PRELIMINARIES

Algorithm 1 DPLL framework for SAT solving [Biere, Heule, et al., 2009]
function DPLL(')
Input: PL Formula ' in CNF
Output: SAT iff ' is satisfiable
(�,') unit-propagation(')
if ' = {} then

return �
else if {} 2 ' then

return UNSAT
else

choose variable l in '
if ⇥ = DPLL('|l) 6= UNSAT then

return ⇥ [� [{l}
else if ⇥ = DPLL('|¬l) 6= UNSAT then

return ⇥ [� [{¬l}
else

return UNSAT

Unit propagation will collect the unit clause {d}. Conditioning ' under d

yields the unit clause {¬e}, such that unit propagation ultimately returns
� = {d,¬e} and ' = {{¬a, b}, {¬a,¬b}}. Next, we pick variable a and
condition ' under a, yielding {{b}, {¬b}}. Unit clause propagation will
pick up the unit clause {b}, returning � = {b} and ' = {{}}. Since '
contains the empty clause, DPLL returns UNSAT. Since DPLL recursively
calls itself, we backtrack to the last call context, which was the call of DPLL
('|a) that returned UNSAT. Therefore the condition of the if is violated,
so we try conditioning with ¬a. This conditioning yields ' = {}, such that
the call of DPLL returns an empty �. Since we have found a satisfying
assignment, we ascend back up the call stack, collecting all decisions and
unit propagations along the way. In our case, the top-level call of DPLL
returns the set {c, d,¬e,¬a} which represents the (partial) interpretation
I = {a 7! false, c 7! true, d 7! true, e 7! false}. We notice that I is missing
an assignment for variable b which means that I satisfies ' regardless of
the value of b. In our example this is the case because I assigns a to false,
which satisfies all clauses where b occurs. A decision tree for the presented
formula is given in Figure 2.1.

While Algorithm 1 sketches the main idea of the DPLL framework we left

2.2. SATISFIABILITY 27

c

a

UNSAT

true

SAT

false

true

d = true, e = false
false

Figure 2.1: Decision tree from Example 2.9

some topics untouched. For example why did we choose variable c in Exam-
ple 2.9. The strategy for this is called decision heuristics and determines a
variable and its value for the decision. From the whole research field of SAT
solving, there are various, more advanced techniques that improve the DPLL al-
gorithm, but which are out of the scope of this thesis, some of which are covered
in [Biere, Heule, et al., 2009].

2.2.2 Satisfiability Modulo Theories
While the presented techniques for solving the SAT problem allow us to reason
about systems modeled in propositional logic, more complex systems require
more complex logics, such as first-order theories. In the remainder of this section
we will present the basic constructs for solving the satisfiability problem for first-
order theories. We will however omit detailed descriptions of specific decision
procedures, since each theory more or less has its own decision procedure. For
a more detailed view into this matter the reader is referred to the literature
[Bradley and Manna, 2007b; Kroening and Strichman, 2008].

To distinguish between the Boolean satisfiability problem (SAT) and the
satisfiability problem for first-order logic, we adhere to the literature and call
the latter problem satisfiability modulo theories (SMT) [Biere, Heule, et al.,
2009; Bradley and Manna, 2007b; Kroening and Strichman, 2008]. Just like for
propositional logic, SMT tries to solve the question whether for some formula
' there exists an assignment ↵I , such that ' evaluates to true under ↵I . By
the definition of first-order formulas, the top-level connective, i.e. the root
node of the syntax tree, must be a Boolean connective or a predicate. More
precisely the predicate always maps from domain values to Boolean, but there
exist no relevant operators that map from Boolean to theory. Therefore for

28 CHAPTER 2. PRELIMINARIES

some arbitrary first-order theory formula ' we know that either ' contains
only Boolean connectives, variables and constants or that it contains theory
operators, variables or constants and at least one predicate. If we look at the
tree structure of ' in the latter case, we will find on each path through the tree
a predicate that connects the underlying theory formula with the above Boolean
formula. In other words, if we replace each predicate symbol with a Boolean
variable, we obtain a Boolean formula, which we call the Boolean skeleton of '.
Since we already have a decision procedure for this Boolean skeleton, the high-
level idea of lifting to SMT becomes very obvious: We replace each predicate
symbol of ' by a propositional variable and start the SAT solving using the
DPLL algorithm. Now we have to distinguish between two approaches called
fully lazy SMT solving and less lazy SMT solving.

Algorithm 2 Fully lazy SMT solving [Kroening and Strichman, 2008]
function T-DPLL(')
Input: Formula '
Output: SAT iff ' is satisfiable
 Boolean skeleton of '
while not UNSAT do

I DPLL()
if T-Solver(I) = SAT then

return SAT
else

 ^ ¬I

For fully lazy SMT solving, as shown in Algorithm 2 we first execute the
SAT solving to achieve a full interpretation I. As we saw in Example 2.9,
the resulting interpretation must not always be full, in which case we can just
choose valuations for the missing variables, as long as we don’t pick the same full
interpretation twice during the SMT solving process. Given that full I we only
now start the theory solver and check whether this assignment to the predicate
symbols is actually feasible in the theory. If this succeeds, we have successfully
found an assignment ↵I for formula ' and if it fails, we have to exclude this
specific I by adding the negation of its corresponding cube to ' and restarting
the SAT solving. This process converges either in an assignment from the theory
solver or in the SAT solver returning UNSAT because all satisfying assignments
have been shown to be infeasible in the theory and thus have been excluded
from '.

2.2. SATISFIABILITY 29

Algorithm 3 Less lazy SMT solving [Kroening and Strichman, 2008]
function T-DPLL(',⇥)
Input: FO-formula ' in CNF, initially empty set of decisions ⇥
Output: SAT iff ' is satisfiable
(�,') unit-propagation(')
if T-Solver(� [⇥) = UNSAT then

return UNSAT
else if ' = {} then

return �
else if {} 2 ' then

return UNSAT
else

choose variable l in '
if DPLL('|l,⇥ [� [{l}) 6= UNSAT then

return ⇥ [� [{l}
else if DPLL('|¬l,⇥ [� [{¬l}) 6= UNSAT then

return ⇥ [� [{¬l}
else

return UNSAT

The alternative approach called less lazy SMT solving [Sebastiani, 2007], de-
picted in Algorithm 3, breaks up the strict top-down approach of fully lazy SMT
solving and changes it to a more integrated interplay between the SAT solver
and the theory solver. Whenever the SAT solver makes a decision, the partial I
including this decision and the result of the subsequent unit propagation is given
to the theory solver, which checks whether the partial assignment is feasible in
the theory. If this is the case, the SAT solver can proceed its search. However,
if the partial assignment is not feasible, we know that all subsequent decisions
on that subtree are irrelevant, such that the SAT solver will backtrack. In order
to avoid running into the same partial assignment again, the SAT solver learns
the negation of the conflicting decision by adding it to '.

Because SMT solving combines the DPLL algorithm with a theory solver,
the general algorithm is often referred to as DPLL(T) or T-DPLL.

Example 2.10. Given a formula ' = (x > 0 _ x < 0)^ (2x = 4 _ 2x = 0)
in the first-order theory of Linear Integer Arithmetic, we want to check
whether ' is satisfiable, using the less lazy SMT solving approach. The

30 CHAPTER 2. PRELIMINARIES

corresponding Boolean skeleton is (a _ b) ^ (c _ d)
Since unit propagation fails and we cannot decide SAT/UNSAT yet,

we start by picking a variable in the Boolean skeleton of ', in this case
we pick a and decide that its value should be false. The subsequent unit
propagation will detect b to be a unit clause and thus assigns it to true. We
now invoke the theory solver with the partial assignment {a 7! false, b 7!
true} which corresponds to the theory formulas x 0 and x < 0 which
is satisfiable in T. We therefore proceed by picking the next variable, say
d to be true. Again, we call the theory solver and check whether the
formulas x 0, x < 0 and 2x = 0 are feasible, which is not the case. As a
result we notice that d is never satisfiable and we therefore learn the unit
clause ¬d, i.e. ' ' ^ (¬2x = 0). As a result the DPLL algorithm will
backtrack to the previous decision level and unit propagation will result
in the assignment {a 7! false, b 7! true, c 7! true, d 7! false}, which is
feasible in T for x = 2.

Having gotten an intuition about the mechanics of SAT and SMT solvers,
for the remainder of this thesis we will treat them as black-boxes that take
a propositional or first-order formula and decide whether it is satisfiable or
unsatisfiable. In case of satisfiability it also gives an assignment to the variables
which might be either a full assignment or a partial assignment. This assignment
can help to understand why a formula is satisfiable. For unsatisfiability however,
understanding the cause is a bit harder, since there exists no concrete example
where unsatisfiability appears.

There does however exist a concept that can simplify the process of under-
standing why a formula ' is not satisfiable. The so-called unsatisfiable core or
unsatisfiable subset of ' is a subset U ✓ X of all literals that appear in ',
such that for any valuation of the remaining literals, ' will still be unsatisfiable.
This way, using unsat cores, we can pin down the cause for unsatisfiability to a
possibly much smaller subformula. Especially for propositional formulas which
can contain up to tens of thousands of variables, using unsat cores can have a
strong impact on understanding the cause for unsatisfiability.

2.3. MODEL-BASED VERIFICATION 31

2.3 Model-based Verification

Over the last decades information and communication technology has become
more and more important. At the end of the last millenium those systems
mainly occured in the form of large and expensive personal computers or were
only capable of simple tasks, such as calculators and early mobile phones. Since
then advances in production and design have lead to increasingly powerful inte-
grated circuits which at the same time have become smaller and smaller, down
to several nanometers between individual signal lines. These improvements in
performance and size have opened up a vast variety of new application scenar-
ios for ubiquitous computing, such as smartphones, automated factories, smart
homes or autonomously driving vehicles, just to name a few. While the de-
creasing size of computing systems has physically allowed adoption in more
application scenarios, especially the growth in computing power has led to more
and more complex applications and thus more complex software. But despite
the rapid development of hardware, software development processes have not
changed much in the same time: A requirements document defines the expected
behaviour of the system. This document is handed over to the software devel-
oper that will write the software. Finally a number of test cases is generated
that cover a non-representative number of program executions that resemble a
specific class of executions paths. However, since the software is still designed
by humans, in more complex systems errors become more likely. But in order to
keep development costs low, software is often shipped to the customer without
thoroughly eradicating all errors. While this approach may only cause minor
problems such as a damaged customer satisfaction, e.g. in multimedia and en-
tertainment systems, in other domains such behaviour might cause worse effects.
A prominent example was a vulnerability called Heartbleed that was discovered
in the OpenSSL cryptography library used for secure website communication.
This security breach allowed attackers to access encrypted data, such as login
credentials, transfered to up to 50% of all websites [Durumeric et al., 2014].
Such vulnerabilities can easily cause severe economical damage, as well as vio-
lations of privacy. However, there is still one category of software defects that
is more critical than security vulnerabilities. When software systems operate
in safety-critical environments, defects can easily cause injuries and death to
those people that get in contact with the system. A tragic example of such a
safety violation was the Therac-25 radiation therapy machine, produced in 1982
[Baier and Katoen, 2008]. The machine was built to treat cancer patients with
ionizing radiation. In the Therac-25 however, a bug in the concurrent program-

32 CHAPTER 2. PRELIMINARIES

requirements

formalizing

property

model-checking

system model

modeling

system

satisfied violated
+ CEX

Figure 2.2: Model-checking process [Baier and Katoen, 2008]

ming caused the machine to output massive radiation overdoses that exceeded
the normal doses by more than a hundred times. This radiation overdose killed
three people and caused injuries for three more.

These experiences underline that the growing likelihood of software defects
and the increasing number of applications for software systems pose a large
problem for software developers. A promising approach to not only find bugs,
but rather guarantee their absence is the verification of the system. In the fol-
lowing, we will describe a prominent verification method called model-checking
that utilizes a model of the system in order to verify the absence of malfunction
according to a given specification.

2.3.1 Model-Checking
For formal verification we require two inputs: First, a system in some arbitrary
description format, such as a programming language like e.g. C++ or Java, a
hardware description format such as e.g. Verilog or VHDL, or some abstract
formalism like deterministic finite automata (DFA) or Kripke structures. Sec-
ond, a description of the requirements of the system. Since the latter one results
from the requirement engineers’ description of what the system is expected to
do, it is often given in some natural language that we cannot directly use for
formal verification. We therefore need to formalize the human-readable require-
ments into a machine-readable property specification. While this formalization
sometimes needs to be done by hand by a verification engineer, there has been

2.3. MODEL-BASED VERIFICATION 33

some research in how to automate this formalization step, such as structured
english grammar [Autili et al., 2015], which can be seen as a collection of fill-in-
the-blank sentences that can be filled with actual names and values and allow
parsing the requirements to transform them into a property specification. While
the requirements specify what the system is expected to do, the system descrip-
tion itself addresses how the system behaves. While the system description is
usually more precise than the requirements, we still need to transform it into a
common system model that allows efficient verification of the system’s behaviour
against the property.

Given such a model of a system, a verification technique that aims to explore
all possible states of the system in a systematic way is called model-checking. Us-
ing this systematic approach, model-checking can ensure that a model satisfies
the property under all conditions. This contrasts techniques such as emulation,
simulation and testing, which can only cover some pre-defined runs through the
program and are therefore unable to reveal subtle errors, that can only be found
using the systematic approach of model-checking. Just like the model, the spec-
ification must give precise and unambiguous statements about the properties of
the system.

The result of the model-checking process can be either of the following:
satisfied indicates that model-checking was able to prove that all possible states
in the system model satisfy the property and therefore the system behaves
exactly as demanded by the requirements. The second possible output of model-
checking is violated, which indicates that there is some behaviour of the system
model that violates the property specification. To help identify which behaviour
exactly led to the violation, model-checking will give a counterexample (CEX)
which helps to identify how the violation happened.

Apart from those two explicit outcomes, the model checker may also be
incapable of producing a concrete result, because the model may be too large
to fit into the memory of the computer, which we call Out of Memory or just
MemOut. One reason for a model that is too large to fit into the memory
is a combinatorial blow-up of the state-space, called the state-space explosion
problem. This blow-up happens in particular with binary encodings.

Example 2.11. Consider a simple program with 3 16bit integer variables.
The state space generated by those variables contains

�
216
�3

= 281, 474, 976, 710, 656 states.

34 CHAPTER 2. PRELIMINARIES

In addition, each line in the program, also called location, can have indi-
vidual variable valuations. Assume the program has 5 lines of code, the
entire state space generated by this program can have

5 ·
�
216
�3

= 1, 407, 374, 883, 553, 280 states.

One way to prevent this exponential blowup will be considered in more detail
in Section 2.3.3.

While there exist various types and definitions of models that are suitable
for model-checking, we will start with labeled transition systems that also have
a nice graphical representation.

Definition 2.11 (Labeled transition system [Baier and Katoen, 2008]). A
labeled transition system (LTS) M = (S,!, I,AP ,L) is a tuple consisting
of

• a set of states S

• a transition relation !✓ S ⇥ S

• a set of initial states I ✓ S

• a set of atomic propositions AP

• a labeling function L : S 7! 2AP .

In the following we will only consider finite labeled transition systems, i.e.
where S and AP are finite.

Given such an LTS M, the behaviour of M will only be revealed over a
certain, possibly infinite, number of steps. Note that even though M is finite,
we can observe infinite progress on M, due to cycles in M. To reason about
the behaviour of an LTS M over time, we define paths through M.

Definition 2.12 (LTS path [Baier and Katoen, 2008]). A finite path in
LTS M is a sequence of states ⇡ = s0, . . . , sn, such that ⇡ is initial, i.e.
si+1 2 Post(si), 0 i < n, s0 2 I.

An infinite path in M is an initial, infinite sequence of states s0, s1,

Furthermore, let Paths(M) denote the set of all paths, finite and infinite, in
M and Paths

fin(M) the set of all finite paths in M. Also, let Paths(s) be the
set of all maximal paths ⇡ starting in state s. Analogously Paths

fin(s) is the set
of all finite paths starting in s. Note that the definition of path only considers

2.3. MODEL-BASED VERIFICATION 35

the states of M and not atomic propositions with which those states are labeled.
However, states s in the transition system M are not observable, but only their
atomic propositions. In order to incorporate those atomic propositions, we
define so-called traces in M.

Definition 2.13 (LTS trace [Baier and Katoen, 2008]). Given LTS M,
the trace of a finite path ⇡ = s0, . . . , sn 2 Paths

fin(M) is defined as
trace(⇡) = L(s0) . . .L(sn). Analogously the trace of an infinite path ⇡ =
s0, s1, · · · 2 Paths(M) is defined as trace(⇡) = L(s0)L(s1)

Let the traces of a set of paths be defined as trace(⇧) = {trace(⇡) | ⇡ 2
⇧} and the set of traces starting in state s be Traces(s) = trace(Paths(s)).
Then Traces(M) =

S
s2I

trace (Paths (s)) denotes the set of all traces in M.

In other words, the trace of a path ⇡ is the word over alphabet 2AP that is
induced by the atomic propositions along ⇡.

Example 2.12. Consider a simplified snack machine that provides cookies
or chocolate bars after inserting money and selecting the product. For
simplicity we assume that both snacks have the same price and we can
only throw a single type of coin in the machine, which matches the price
of the products. An LTS M modeling this snack machine is depicted in
Figure 2.3. We identify four states of the snack machine: (0) we need to
insert a coin, (1) we need to select a product and (2/3) the snack machine
dispenses cookies or chocolate bar, depending on our choice in (1). To
observe these four states, we define the set of atomic propositions AP =
{pay, select, cookies, chocolate}. The corresponding labeling function L
for states s 2 {0, 1, 2, 3} is according to our description. Examples of path
fragments for M are

⇡1 = 0 1 2 0 1 2 . . .

⇡2 = 0 1 3 0 1 3 . . .

⇡3 = 0 1 2 0 1 3 . . .

36 CHAPTER 2. PRELIMINARIES

0

12 3

pay

selectcookies chocolate

Figure 2.3: Example transition system for simplified snack machine

The corresponding traces for those path fragments are

traces (⇡1) = pay select cookies pay select cookies . . .

traces (⇡2) = pay select chocolote pay select chocolote . . .

traces (⇡3) = pay select cookies pay select chocolote . . .

Having defined a modelling formalism as well as a way to formally reason
about the observable behaviour of the model, we still need to formalize a way
to express properties, in order to check whether the traces of an LTS M satisfy
the desired property.

2.3.2 Properties

A common formalism for properties are so-called linear-time (LT) properties
that specify the admissible behaviour of the system as a set of infinite words
over AP.

Definition 2.14 (Linear-time properties [Baier and Katoen, 2008]). A
linear-time property P over the set of atomic propositions AP is a subset
of
�
2AP

�!.

If the property P is given as a set of infinite words that describe accepted
system behaviour and the system behaviour is given in terms of possible exe-
cution traces Traces(M) of the system model M, then the property is satisfied

2.3. MODEL-BASED VERIFICATION 37

Liveness

Neither Safety
nor Livenesss

Safety & Liveness
�
2AP

�!

Safety

Invariants

Figure 2.4: Dividing the space of all LT properties [Baier and Katoen, 2008]

by M iff Traces(M) ✓ P . Note that this definition also means that traces that
run into a deadlock will never satisfy a property.

For verification of systems, we are interested in two categories of properties.
The first category of properties is the one that states that nothing bad will
happen, which is called safety properties. This category can be characterized
by a bad prefix, i.e. a finite path that leads to a state where something bad
has happened. The most liberal properties of this category is the property that
allows every possible behaviour, i.e. P =

�
2AP

�!. This property is the only
intersection to the otherwise disjunct category of liveness properties that specify
that eventually something good will happen in the system, i.e. an AP occurs
infinitely often on any infinite path. While safety and liveness properties are
disjunct with the exception of P =

�
2AP

�!, they do not fully partition the
whole space of all possible LT properties, but rather leave out some properties
that are neither safety nor liveness properties.

For many industrial applications, progress is a desirable property, i.e. that
the production does not come to a halt at some point in time. However, avoiding
injuries and death is a much more crucial property that needs to be ensured
under all circumstances. Especially for those application domains with a close
interaction between heavy machinery and the workforce, such as for example
car manufacturing or mining, safety is an important aspect in developing and
maintaining a system. In those fields, malfunctions of machines can easily cause

38 CHAPTER 2. PRELIMINARIES

injuries and deaths. In some areas, such as transportation there even exist strict
laws that require a certain, standardized level of safety. While there exist various
mentioned techniques such as testing, simulation or emulation that might be
lucky and find some errors, they can never fully ensure safety due to their lack
of completeness, i.e. they can never cover all possible executions of the system.
However, with model-checking we can ensure that each possible execution trace
satisfies the given safety property and thus guarantee safety. Due to this strong
need for safety verification in the industrial context, we will focus the remainder
of this thesis on safety properties.

As mentioned before, a safety property P is violated by a finite path ⇡ that
leads to a bad state s. Since every possible continuation of ⇡ violates P , we call
⇡ a bad prefix.

Definition 2.15 (Safety property [Baier and Katoen, 2008]). An LT prop-
erty P is called safety property if for all � 2

�
2AP

�! \P there exists a finite
prefix �̂ of � such that

P \ {�0 2
�
2AP

�! | �̂ is a finite prefix of �0} = ;.

Each such �̂ is a bad prefix and the set of bad prefixes is denoted by
BadPref (P). We can check whether an LTS M satisfies such a safety prop-
erty P by checking whether Traces(M) \BadPref(P) = ;.

A subclass of safety properties are invariants, which are properties that must
hold in every reachable state of an LTS M.

Definition 2.16 (Invariants [Baier and Katoen, 2008]). An LT property
P over AP is called invariant if there exists a Boolean formula ' over AP
such that

P = {A0A1 · · · 2
�
2AP

�! | 8j � 0.Aj |= '}.

The Boolean formula ' is called the invariant condition or state condition
of P . The satisfaction for invariants can be checked in different ways:

M |= P () trace(⇡) 2 P , 8⇡ 2 Paths(M)

() L(s) |= ', 8s, p. s 2 p, p 2 Paths(M)

() L(s) |= ', 8s 2 Reach(M)

2.3. MODEL-BASED VERIFICATION 39

where Reach(M) denotes the set of all reachable states in M.
Hence we can also say that P is violated by M, iff there exists a reachable

state that does not satisfy ', i.e.

M 6|= P () 9s 2 Reach(M).L(s) 6|= '

Since we can determine all states that do not satisfy ' upfront, checking
whether P is an invariant can be reduced to a reachability problem of ¬'-states.

Example 2.13. Let us reconsider the snack machine from Example 2.12.
Assume we run this snack machine and want to make sure that we are
not giving out free snacks. We can do so by checking the benign safety
property that the number of snacks dispensed is always less or equal to the
number of coins inserted. We can formalize this property as the set of all
infinite words A0A1A2 . . . such that for all n � 0

P =

|{0 i n | pay 2 Ai}| � |{0 i n | {cookies, chocolate} \Ai 6= ;}|

Examples of bad prefixes of P are

; {pay} {cookies} {chocolate} or
; {pay} {cookies} {pay} {cookies} {chocolate}

From the labeled transition system M in Figure 2.3 on page 36 we see that
Traces(M)\BadPref (P) = ; because every state s 2 {cookies, chocolate}
must be pre- and succeeded immediately by a pay-state. Therefore M
satisfies the safety property M and we will never give out free snacks.

Since most of the aforementioned industrial use cases aim at avoiding poten-
tial safety risks at any time, the large majority of safety properties in those fields
can be formulated as invariants that have to hold in every state of the system.
For the remainder of this thesis we will hence sharpen our focus on invariants
and consider verification of invariant properties whenever we talk about verifica-
tion and model-checking. Furthermore we will use the reduction from invariant
properties to reachability of violating states since this more general problem
allows us to use a wider variety of approaches for verification of invariants.

40 CHAPTER 2. PRELIMINARIES

2.3.3 Symbolic Model-Checking

As mentioned before the presented model-checking approach requires a gigantic
amount of memory in the worst case due to the fact that every possible system
state is considered as a distinct state in memory and has to be distinguishable
from other states. For this explicit handling of states, the model-checking ap-
proach presented in the previous section is called explicit (state) model-checking.
As seen in Example 2.11, explicit model-checking is almost infeasible for any
meaningful real-world program due to its double-exponential growth in the size
and number of variables. To avoid this exponential blowup, there exist a num-
ber of approaches that share the common feature of a symbolic representation of
the state space in form of sets of states, thus giving it the name symbolic model-
checking. In the following, we will briefly sketch two very popular symbolic
model-checking approaches: binary decision diagram (BDD) and SAT-based
model-checking.

As the name indicates, a binary decision diagram uses binary encodings of
states and state sets. In particular, every state s 2 S is assigned an encoding
enc(s) = {0, 1}n in form of a bit-vector of length n. In order to characterize sets
of states, we define a function that takes an arbitrary state encoding and decides
its membership in the set. We call this the characteristic function � : {0, 1}n !
{0, 1}. Since we reason about binary encodings rather than states, we need to
modify the definition of the transition relation !✓ S ⇥ S and initial set I to
reflect this change. We therefore define a Boolean function � : {0, 1}2n ! {0, 1}
that takes two binary encodings and decides whether they are in transition
relation ! or not. In order to simplify BDDs we can remove decisions that
are not essential for the BDD, e.g. those decisions where both results lead to
isomorphic subtrees [Baier and Katoen, 2008]. Using these BDDs for initial
states I, transition relation � and arbitrary other state sets, we can use BDD
operations such as AND ^ to determine e.g. the set of one-step reachable states
as I ^�.

A more recent alternative to BDD-based model-checking is the somewhat
similar SAT-based model-checking. Both approaches encode single states in
terms of a set of Boolean variables xi 2 X and operate on collections of these
variables that encode sets of states. The main difference here is that one uses
the switching function implicitly by representing it as a BDD with the out-
come in the leaves, while switching functions in SAT-based model-checking are
explicit propositional formulas. This way, the transition relation becomes a
propositional formula, e.g. a DNF where each cube characterizes a state set. In
order to check the satisfiability for BDDs we must determine it ”manually” on

2.3. MODEL-BASED VERIFICATION 41

the BDD, while for SAT-based model-checking we can hand the formula over
to a SAT-solver that determines satisfiability for us. While SAT-based model-
checking in the purely SAT-based approach allows us to work with propositional
formulas, we can also lift this to SMT which enables us to encode even infinite
state sets, such as unbounded integers, as well as more expressive domains like
floating points and arrays, in finite memory.

Example 2.14. Reconsider the snack machine from Example 2.12 with
LTS M as depicted in Figure 2.3. We can encode states 0 � 3 by their
boolean encoding 00 to 11 and define characteristic variables x1 and x2, e.g.
the interpretation I = {x1 7! true,x2 7! false} represents the state 10 =
2. To encode the symbolic transition relation� for M we use propositional
formulas over X = {x1,x2} for the source state and a copy of the target
state encoding that we create by priming the variables in X. The transition
relation for M would look as follows:

� =¬x1 ^ ¬x2 ^ ¬x0
1 ^ x

0
2 _

¬x1 ^ x2 ^ x
0
1 ^ ¬x0

2 _
¬x1 ^ x2 ^ x

0
1 ^ x

0
2 _

x1 ^ ¬x0
1 ^ ¬x0

2

Instead of ¬x1 ^ x2 we also write x̄1 ^ x2 or simply x̄1x2. In � we can see
two important aspects of symbolic encoding using propositional formulas.
First, we model the nondeterminism in state 2 by simply giving both tran-
sitions. Due to the disjunction, both interpretations are allowed. Second,
we modelled the transitions from states 2 and 3 back to 0 by the symbolic
encoding x1 for the state set {10, 11}.

While both approaches have some pros and cons, SAT-based model-checking
seems to be the more promising approach at the time of writing this thesis:
SAT- and SMT-solvers solve more general problems and therefore allow higher
expressive powers than BDDs. Furthermore, even though there exist paralleliza-
tion approaches for BDDs [Dijk and Pol, 2017], parallelization of SAT-solvers is
straightforward, thus simplifying the use of modern multi-core hardware archi-
tectures.

42 CHAPTER 2. PRELIMINARIES

2.4 Programs

For all software development projects reusability and modularity are highly
important aspects of the development cycle. Their goal is to avoid code dupli-
cation, such that source code will be written a single time and called whenever
its functionality is needed [Witt et al., 1993]. This in turn has many positive
effects, like lower development costs and better maintainability, because changes
in the functionality need to be implemented only once. Another important qual-
ity attribute is extensibility which anticipates future changes of the software’s
functionality and takes them into account in the software architecture.

As described in Section 2.3, the system under consideration is not suitable
for verification without transforming it into a system model first. To improve
maintainability and extensibility of the model-checking code we require suc-
cinctness of the system model, while still offering enough expressive power to
match all possible input systems.

2.4.1 Guarded Command Language
For loop-free code, i.e. code without loops or jumps, a guarded command lan-
guage (GCL) as first described by Dijkstra [Dijkstra, 1975, 1976] is a canonical
candidate. It is a language skeleton that matches the previous listed require-
ments and contains only four basic derivation rules for high-level commands.

Definition 2.17 (GCL commands [Dijkstra, 1976]).

cmd ::= x := e | assume b | cmd1; cmd2 | cmd1⇤ cmd2,

where x is a left-hand side expression, e is a right-hand side expression and
b is a boolean expression.

Commands can be one of the four follwing types: An assignment x := e

changes the value of x to the evaluation of the expression e. The assume state-
ment assume b, that is equipped with a boolean guard b, acts like a skip (or:
noop) if b evaluates to true, but blocks further execution in case the guard evalu-
ates to false. While this concept is hard to grasp when thinking about executing
a program it is of great help in model-checking as an unsatisfiable guard indi-
cates that this program path need not be further explored and the path cannot
be a prefix of any counterexample path. To compose a program out of multiple
commands, the sequence command cmd1; cmd2 can be equipped with any two

2.4. PROGRAMS 43

commands including recursively nested sequences of commands. In order to
allow branching as well as nondeterminism, GCL contains the choice command
cmd1⇤ cmd2 that takes two arbitrary commands and nondeterministically ex-
ecutes one of them. However we can also model deterministic branching as in
standard if-then-else constructs with the choice command by adding an assume
command in the beginning of every branch. If the conjunction of both guards
is unsatisfiable while their disjunction is a tautology, i.e. their predicates cover
the whole state space but they are disjunct, then for every variable assignment
there is exactly one branch that can be executed, while the other branch is
blocked by the assume statement. A formal description is given by the follow-
ing operational semantics. Note that we keep the GCL as succinct as possible in
order to model only high-level program behaviour such as data-flow by allowing
assignments and control-flow with assume, sequence and choice statements. In
order to model actual program behaviour we can instantiate this abstract frame-
work with any applicable first-order theory later. This gives us the freedom to
dynamically configure our verification with first-order theories on demand. For
example for programs with integers only, we use bit-vector theory for bit-precise
verification or linear integer arithmetic if bit-precision is not necessary.

Definition 2.18 (GCL Semantics [Dijkstra, 1976]).
Let �,�0 be two concrete (program) states. The semantics of a GCL com-
mand cmd are specified by the execution relation !, where hcmd,�i ! �

0

is a notation for the state � evolves to �0 under command cmd. The exe-
cution relation ! is inductively defined by:

(assign) hx := a,�i ! �[x 7! a(�)]

(assume)
b(�) = true

hassume b,�i ! �

(seq)
hcmd1,�i ! �

0 ^ hcmd2,�0i ! �
00

hcmd1; cmd2,�i ! �
00

(choice1)
hcmd1,�i ! �

0

hcmd1⇤ cmd2,�i ! �
0

(choice2)
hcmd2,�i ! �

0

hcmd1⇤ cmd2,�i ! �
0

44 CHAPTER 2. PRELIMINARIES

2.4.2 Predicate Transformers
Given the operational semantics of the GCL, we can now also define the effect
of GCL commands on arbitrary FO predicates [Dijkstra, 1976]. To start with,
we will define the strongest postcondition (SP) which takes a GCL command
cmd and a predicate ' representing a symbolic state set, called precondition,
and gives us the resulting symbolic state set after applying cmd, called a post-
condition.

Definition 2.19 (Strongest Postcondition [Bradley and Manna, 2007b]).
Let cmd be a GCL command and ' an FO predicate, the strongest post-
condition sp(cmd,') is defined as the smallest FO predicate satisfying:

9�.�0 |= sp(cmd,') =) � |= ' for some hcmd,�i ! �
0

While the strongest postcondition takes a predicate ' and results in its
successor predicate after execution of cmd, we might also be interested in the
reverse direction: Which states can end in ' after execution of cmd?

Definition 2.20 (Weakest Precondition [Bradley and Manna, 2007b]). Let
cmd be a GCL command and ' a FO predicate, the weakest precondition
wp(cmd,') is defined as the largest predicate satisfying:

8�.� |= wp(cmd,') =) �
0 |= ' for all hcmd,�i ! �

0

At first sight, one might think that weakest precondition and strongest post-
condition are dual and thus their relation would be symmetric. This however is
not the case as

sp(cmd,wp(cmd,')) =) ' =) wp(cmd, sp(cmd,')). (2.1)
[Bradley and Manna, 2007b]

The definition of weakest preconditions as in Definition 2.20 that can be
found in the literature [Dijkstra, 1976] has a very strong constraint. It contains
every state that reaches ' on all possible executions of command cmd. This also
means that a state � that can reach ' only via one branch will not be considered
in the WP. While this might be helpful in other scenarios, it has a dramatic
drawback for verification because states that might lead to a violation in certain
scenarios will not be discovered. As this is not acceptable, we define a variant of
the weakest precondition, called weakest existential precondition (WEP) that
takes every state that might lead to ' under any possible execution into account.

2.4. PROGRAMS 45

Definition 2.21 (Weakest Existential Precondition). Let cmd be a GCL
command and ' a FO-formula, the weakest existential precondition of '
along cmd, denoted wep(cmd,') is defined as the largest predicate satisfy-
ing:

8�.� |= wep(cmd,') =) �
0 |= ' for some hcmd,�i ! �

0

Given the semantics of GCL, we can formulate partial mappings of the WEP
function for some arbitrary FO postcondition '. Considering the GCL command
assume b, we know that in order to terminate in ', the precondition must have
also satisfied b, i.e. the precondition must have been ' ^ b. For an assignment
x := a, any previous evaluation of x becomes meaningless as it is overwritten by
the assignment. In fact, x might even be undefined previous to the assignment.
Thus we can remove x from ' and replace its free occurrences by a to maintain
the correctness of the remaining parts of '.

Given those applications of WEP to elementary GCL commands, we can
define the wep semantics of non-elementary commands. For the GCL sequence
command cmd1; cmd2, we have to apply the WEP twice, but as WEP is com-
puted backwards, we first have to apply WEP to cmd2 before applying it to
cmd1. While the previous three results can be applied for WP analogously, the
choice command cmd1⇤ cmd2 makes the difference between WP and WEP. For
the WP every execution has to end in ' and thus the wp consists only of the
intersection of the two individual WPs. For the WEP however, every state that
ends in ' on any possible execution is part of the WEP, so we have to consider
the disjunction of the individual WEPs for choice. Therefore the result of the
weakest existential precondition can be derived as follows:

Definition 2.22 (Weakest Existential Precondition transformers). The
weakest existential precondition of a predicate ' is inductively defined as

wep(assume b,') = ' ^ b

wep(x := a,') = '[x 7! a]

wep(cmd1; cmd2,') = wep(cmd1,wep(cmd2,'))

wep(cmd1⇤ cmd2,') = wep(cmd1,') _ wep(cmd2,')

In general, handling nondeterminism in the context of predicate transformers
introduces additional problems, e.g. assigning a nondeterministic value to a

46 CHAPTER 2. PRELIMINARIES

program variable in the command of a WP application yields a formula with
an all-quantifier over possible values. Such additional quantifiers can cause
serious problems with the subsequent SAT solvers. However, in our context
we don’t have any nondeterminism on the abstraction level of the GCL, since
we replace every expression which yields a nondeterministic value by two SMT
terms: First, the nondeterministic value is ”generated” by reading an array at an
uninitialized index and second, incrementing the used index variable. This way,
we allow nondeterministic/arbitrary values without explicit nondeterminism on
the GCL level, thus not introducing problematic additional quantifiers.

While predicate transformers offer a simple and elegant way to map a pre-
/post-condition to its successor/predecessor state according to the semantics
of an instruction, it does include a large drawback. Under certain worst-case
conditions the size of the resulting predicate can be exponential in the size of
the original predicate. As the size of a query can influence the runtime of the
SMT solver, this blow-up has theoretically the potential to foil all efforts spent
in the actual verification algorithm. Thankfully this phenomenon occurs very
rarely in practice.

Example 2.15. Consider the example program

x := x · x; x := x · x; x := x · x

that calculates x
8. Given a postcondition '0 = (x = 256), we get the

following sequence of WEPs:

'0 = (x = 256)

'1 = wep(x := x · x,'0) = (x · x = 256)

'2 = wep(x := x · x,'1) = (x · x · x · x = 256)

'3 = wep(x := x · x,'2) = (x · x · x · x · x · x · x · x = 256)

We can see that in certain worst cases the size of the resulting wep can be
exponential in the size of the input formula.

2.4.3 Control Flow
After establishing a simple, yet powerful guarded command language to express
loop-free code, we are still unable to represent most basic programs. In par-

2.4. PROGRAMS 47

ticular, our modelling formalism lacks a way to represent full control flow, e.g.
loops. To fix this, we leverage the expressiveness by wrapping our GCL with a
so-called control-flow automaton (CFA) [Clarke, Grumberg, and Peled, 2001].

Definition 2.23 (Control-flow automaton). A control-flow automaton
(CFA) is a tuple A = (L,G, `0, `E) consisting of a finite set of locations
L = {`0, . . . , `n} and edges G ✓ L ⇥ GCL ⇥ L labeled with GCL com-
mands, an initial location `0 2 L and an error location `E 2 L, for which
(`E , cmd, `) 62 G, 8cmd, `.

Like a regular nondeterministic finite automaton (NFA), a CFA consists of
a finite set of states (locations), as well as a number of transitions, which are
represented as a relation: (`, cmd, `0) 2 G iff the location ` has an outgoing edge
labeled with cmd that has `’ as target. Furthermore, a CFA contains an initial
location `0 and an error location `E that correspond to initial and accepting
states of a NFA. In contrast to the standard definition of an NFA, we ignore
the infinite set of commands as input alphabet and we define a CFA to contain
only a single error location rather than a set of accepting states.

Consider the alternative definition of a CFA Ā = (L,G, `0,LE) with a set
of error locations. As an error location has by definition no successors, we can
translate a CFA Ā with multiple error locations into a CFA Ā

0 with a singleton
set of error locations by simply merging all error locations of Ā into a single
error location:

Definition 2.24 (Simple path equivalence). The CFAs A = (L,G, `0,LE)
and B = (L,G, `0,LE) are path equivalent iff

9`E 2 LE .(`, cmd, `E) 2 G () 9`E 2 LE .(`, cmd, `E) 2 G and
8`, `0 2 L \

�
LE [LE

�
.(`, cmd, `0) 2 G () (`, cmd, `0) 2 G

We define the transition system semantics of a control-flow automaton in
analogy to Definition 2.15 in [Baier and Katoen, 2008] and omit the details
here. We define two CFAs to be trace-equivalent iff the underlying transition
systems are trace-equivalent.

Corollary 2.2. Given CFAs Ā = (L,G, `0,LE) and Ā
0 = (L,G0, `0, {`0E}) that

are path equivalent, Ā and Ā
0 satisfy trace equivalence.

To allow operations on the structure of the CFA, we define a few standard
auxiliary functions for locations and edges.

48 CHAPTER 2. PRELIMINARIES

Definition 2.25 (Edges/Locations). Let out : L! 2G be the function of
outgoing edges of a location ` 2 L, such that

out(`) = {g | g = (`, cmd, `0) 2 G}

Let in : L! 2G be the function of incoming edges of a location ` 2 L,
such that

in(`) = {g | g = (`0, cmd, `) 2 G}

Let succ : L ! 2L be the function of successor locations of a location
` 2 L, such that

succ(`) = {`0 | (`, cmd, `0) 2 G}

Let pred : L! 2L be the function of predecessor locations of a location
` 2 L, such that

pred(`) = {`0 | (`0, cmd, `) 2 G}

Given a CFA representation of a program, we might be interested in the set
of variables that is used throughout the CFA, e.g. some operation might be
bounded in the number of variables. To determine the set of variables in the
whole CFA, lets first define the set of variables that are used in a single GCL
command.

Definition 2.26 (GCL variables). Given a GCL command cmd, we define
the set Var of variables of cmd as

Var(x := a) :={x} [Var(a)

Var(assume b) :=Var(b)

Var(cmd1; cmd2) :=Var(cmd1) [Var(cmd2)

Var(cmd1⇤ cmd2) :=Var(cmd1) [Var(cmd2)

and Var of expressions, for variables x and values v of the considered

2.4. PROGRAMS 49

0

1 2

3 4

5

6

78

9

assume x ≥ 0

assume y ≥ 0

sum := 0

z := y

assume y > 0

assume y ≤ 0

y := y − 1

sum := sum + x

assume sum = x · z

assume sum ∕= x · z

Figure 2.5: Example control flow automaton for multiplication

domain, as:

Var(v) = Var(true) = Var(false) :=;
Var(x) :={x}

Var(a1 ⇧ a2) :=Var(a1) [Var(a2)

Var(a1 � a2) :=Var(a1) [Var(a2)

Var(b1 ^ b2) :=Var(b1) [Var(b2)

Using Definition 2.26, we can now define the set of variables used in the
entire CFA.

Definition 2.27 (CFA Variables). We define the set VarA of CFA A as

VarA = {x | 9 (`, cmd, `0) 2 G. x 2 Var(cmd)}

With the use a control-flow automata, the guarded command language and
first-order theory (SMT) formulas, we have established three different layers of

50 CHAPTER 2. PRELIMINARIES

separation of concerns to abstract different aspects of the concrete input pro-
gram. On the top-most level, the CFA resembles the control-flow structure of
the input program, i.e. which abstract program paths can be chosen during exe-
cution. The guarded commands with which the CFA edges are labeled form the
central tier and distinguishes whether the concrete instruction along the edges
changes a variable assignment or may conditionally manipulate the control-flow
based on the current variable assignment, in particular assume statements. This
way the guarded command language connects the top-level control-flow automa-
ton with the low-level SMT formula that gives the semantics of the expressions
used in the guarded commands.

Example 2.16. Consider a simple program that takes two input variables
and multiplies them using addition. We can model this using the following
control flow automaton A = ({0, . . . , 9},G, {0}, {9}) with G as depicted in
Figure 2.5. We label the edges g 2 G by GCL commands with terms in
Linear Integer Arithmetic. For simplicity of the figure we use multiplication
in out-going edges of location 7 which is not part of the signature of LIA.
Our program first ensures that the input variables x and y are positive,
non-zero integers. Afterwards it initializes the result variable sum to 0 and
copies the value of y to z. Afterwards we enter a loop that decrements y

and adds x to the sum as long as y is larger than 0. After leaving the loop,
we verify the correctness of our computation by branching on whether sum
is the product of x and y. Since we modified y in the run of our program,
we use the copy z of y in order to verify our computation of the product. If
the value in sum is not the product of x and z, we enter the error location
9.

Chapter 3

Inductive Hardware Verification

After its first publication in 2011, the inductive, incremental verification algo-
rithm called IC3 [Bradley, 2011] had a major impact on the community due to
its success for bit-level circuit verification. The key factor for its success has
been the large performance advantage compared to other existing verification
algorithms. Only months after its initial publication, [Eén, Mishchenko, et al.,
2011] showed that with a small number of improvements, the new algorithm was
able to beat state-of-the-art bit-level verification frameworks whose performance
had been optimized for up-to a decade. This success generated a lot of inter-
est and inspired many subsequent improvements to the original IC3 algorithm
[Birgmeier et al., 2014; Cimatti and Griggio, 2012; Cimatti, Griggio, Mover,
et al., 2014; Eén, Mishchenko, et al., 2011; Gurfinkel and Ivrii, 2015; Hassan
et al., 2013; Hoder and Bjørner, 2012; Itzhaky et al., 2014; Lee and Sakallah,
2014; Suda, 2013; Vizel and Gurfinkel, 2014]. Nowadays variants of the IC3
algorithm are employed in many competitive bit-level verification frameworks
[Griggio and Roveri, 2016].

Despite its recent success, the key idea of IC3 is based on the well-known
concept of inductive invariants:

Definition 3.1 (Inductive invariant [Manna and Pnueli, 1995]). A safety
property P for a Kripke structure M = (S, I,R,L) is called inductive, if

52 CHAPTER 3. INDUCTIVE HARDWARE VERIFICATION

both:

s 2 I) s |= P (Initiation)
s |= P ^R(s, s0)) s

0 |= P (Consecution)

Given an arbitrary safety property P , if P is inductive, it is also an invariant.
This can be easily proven: By initiation, all initial states are covered by P . By
consecution, the set of states covered by P is closed under the transition relation
R and thus all reachable states are covered by P , i.e. P is an invariant. However
the reverse implication does not hold: Not every invariant is inductive, as an
invariant may contain unreachable states which have non-invariant successor
states and thus violate consecution. But if P is an invariant and it is not
inductive, there exists a so-called inductive strengthening F of P , such that
P ^F is inductive. If M is finite, the trivial strengthening F is the enumeration
of all reachable states, which however is not desirable due to its size. This
way given any arbitrary safety property P , proving P to be an M -invariant
can be reduced to finding an inductive strengthening F for P . Finding such a
strengthening for a safety property on finite-state bit-level systems is the goal
of Finite-State Inductive Strengthening (FSIS) [Bradley and Manna, 2007a].

Example 3.1. Consider the example Kripke structure in Figure 3.1. In
this Kripke structure we encode states by their variable valuations and
order them from most- to least-significant bit, i.e. 1100 ⌘ x1x2x̄3x̄4. In
addition, we keep the conjunctions implicit for the sake of readability.

Initial states are marked with blue boxes, while bad states, i.e. non-P
states are marked with a red box.

Figure 3.1 shows that the safety property P that a state is ’not red ’
is invariant, as all reachable states satisfy ’not red ’. However, while P

is invariant, it is not inductive, as for example state 1100 is a ’not red ’-
state that has a red successor. However, for a strengthening F such as
x̄2x̄3 _ x̄1x̄4, we can show that P ^ F is inductive and thus it follows that
P is an M -invariant.

53

0000 0010 0100 0110

0001 0011 0101 0111

1000 1010 1100 1110

1001 1011 1101 1111

Figure 3.1: Example transition system

54 CHAPTER 3. INDUCTIVE HARDWARE VERIFICATION

3.1 Finite-State Inductive Strengthening

While the concept of inductive invariants holds for general Kripke structures,
the remainder of this chapter will consider a specific instantiation that is of
particular interest when analyzing hardware circuits on a bit level. For this set-
ting, Boolean transition systems are a common modeling formalism. A Boolean
transition system S = (X, I,T) consists of a finite set X of variables, a proposi-
tional formula I over X describing the initial states and a propositional formula
T over X [X

0 characterizing the transition relation.
The algorithm Finite-State Inductive Strengthening (FSIS) [Bradley and

Manna, 2007a] attempts to solve the model-checking problem for a safety prop-
erty P on S by either showing that there exists a counterexample path leading
from a state in I to a state in ¬P , or by proving P to be S-invariant by con-
structing an inductive strengthening F for P . As FSIS changes P during the
execution, we use a copy P̂ which is initially equal to P . In order to prove or
disprove P on S, FSIS analyses the cause for a violated consecution, i.e. a pair
of states (s, s0) satisfying the query P̂ ^ F ^ T ^ ¬P̂ 0. Such a state s is called
Counterexample to Induction (CTI). As s is an assignment of truth values to
variables, it can be represented as a cube c over the assigned variables. Assume
for now that s is unreachable, then excluding it will be a step in strengthen-
ing P̂ to become inductive. In order to exclude s from P̂ , FSIS could simply
conjoin ¬c to the strengthening F , but this would in the worst case result in
enumerating all CTIs, which is exponential in the size of X.

Therefore FSIS tries to deduce a so-called minimal inductive subclause d̄

of ¬c, which blocks many more states apart from s, using the function MIC
which will be considered in detail later. Given such a d̄, FSIS will update
the strengthening F to include the partial strengthening d̄ by updating it: F :=
F^d̄. If on the other hand a predecessor of s exists such that ¬c is not inductive,
the search for a minimal inductive subclause of ¬c relative to the property P̂

fails and MIC returns >.
In contrast to other model-checking algorithms, such as Bounded Model-

Checking (BMC) [Biere, Cimatti, et al., 1999; Copty et al., 2001; Strichman,
2000] and Counterexample-Guided Abstraction Refinement (CEGAR) [Clarke,
Grumberg, and Long, 1994], FSIS will not unroll the transition relation until
it finds some state to be inductive or initial, but rather proceeds in a step-wise
manner: By updating P̂ := P̂ ^ d̄ to exclude state s, proving the unreachability
of s becomes a subgoal of proving the invariance of the original property P , as
all predecessors of s will be a CTI in the next iteration. FSIS will proceed in

3.1. FINITE-STATE INDUCTIVE STRENGTHENING 55

this way until either P̂ ^ F is shown to be inductive and hence P is proven to
be an invariant or no initial state is part of the refined property P̂ any more. In
this case there must exist a finite path s0, . . . , sn,n � 0 such that s0 |= I and
sn |= ¬P .

Minimal Inductive Subclause
As outlined above, the function MIC is FSIS’ main instrument to analyze CTIs
and possibly deduces a subclause d̄ v ¬c for which the following must hold:
d̄ must be minimal w.r.t. subset inclusion on clauses v and the implications
I) d̄ and P̂ ^ d̄ ^ T) d̄

0, called d̄ is inductive relative to P̂ . Note that d̄ may
not be of minimal size, i.e. there may exist other clauses f that are inductive
relative to P̂ , such that |d̄| � |f | and neither is a subclause of the other. In
order to do so, MIC uses auxiliary functions that operate on the subclause lattice
Lc : (2c,u,t,>,?,v) that is induced by clause c and consists of

• 2c : the subclauses of c

• u : the join operator, defined as disjunction

• t : the meet operator, defined as disjunction of all common literals

• > : c

• ? : false

• v : the subclause relation with c1 v c2 iff c1 ✓ c2.

The first of these functions is DOWN which computes the unique largest
(w.r.t. v) subclause d of ¬c which satisfies P̂ ^ d ^ T) ¬c0, if there ex-
ists one. While iteratively computing weakest preconditions would yield the
greatest fixpoint of DOWN (see Algorithm 4), its complexity ⌦(|c|2) prohibits
scaling of FSIS to large problems, due to the large amount of calls to MIC.
Therefore, [Bradley and Manna, 2007a] presents a linear approach to compute
underapproximations of the weakest precondition, leaving some predecessors to
be subject of subsequent iterations: DOWN checks whether d satisfies consecu-
tion relative to P̂ . If this is the case and d also satisfies initiation, then it has
reached a fixpoint and returns d. If however d does not satisfy consecution rel-
ative to P̂ , then there must exist some pair (s, s0) that violates P̂ ^ d^ T) d

0.
For the cube c corresponding to s, it constructs an overapproximation ¬t of
¬c, updates d := d u ¬t and recurses on the new d. In other words, DOWN
iteratively removes literals from d that cause a violated consecution. If it suc-
ceeds to do so without violating initiation, then it returns the largest inductive

56 CHAPTER 3. INDUCTIVE HARDWARE VERIFICATION

subclause of ¬c. In the case that it discovers a clause that satisfies consecution,
but violates initiation, it indicates a failure to find a largest inductive subclause.
Algorithm 4 resembles a pseudo code sketch of the function DOWN.

Algorithm 4 Largest inductive subclause
function DOWN(S, P̂ , Lc, d)
Input: transition system S = (X, I,T), safety property P̂ , sub-clause

lattice Lc, clause d

Output: largest d̂ v d such that P̂ ^ d̂^T) ¬c0, or > if no such d̂ exists
if unsat (I ^ ¬d)? then

return >
else

if unsat

⇣
P̂ ^ d ^ T ^ ¬d0

⌘
? then

return d

else
extract model (s, s0) from solver
ŝ

V
s . Cube ŝ representing model s

¬t̂ overapproximate ¬ŝ in Lc

d̂ d u ¬t̂
down(S, P̂ , Lc, d̂)

Besides the function DOWN, FSIS computes a so-called prime implicate us-
ing the function IMPLICATE that, given a formula ⇢ and a clause d returns a
minimal subclause d̂ v d such that ⇢) d̂ if such a d̂ exists and > otherwise.
FSIS suggests two possible implementations of IMPLICATE: One is by a linear
search over the literals in clause d whether their elimination in d preserves the
validity of the implication. A recursive pseudocode for IMPLICATE using linear
search is given in Algorithm 5.

The alternative to this linear search is as follows: If d contains only a single
literal, it returns this literal, otherwise the clause d is split into two disjunct
subclauses dl, dr. Function IMPLICATE then checks whether ⇢) dl. If this
is valid, then all literals in dr can be dropped and IMPLICATE recurses on
dl. The same holds for dr. If however both implications are not valid, then
there exist literals in both subclauses that are necessary for the validity of the
implication. In this case IMPLICATE first takes dr as is and recurses on dl

with dr as support, i.e. it splits dl into dll, dlr and checks ⇢) dll _ sup and
⇢) dlr _ sup where sup = dr. If IMPLICATE succeeds in finding a minimal
subclause d̂l that validates the implication relative to the support clause sup, it

3.1. FINITE-STATE INDUCTIVE STRENGTHENING 57

Algorithm 5 Linear search for prime implicates
function IMPLICATE(⇢, d, res)
Input: formula ⇢, clause d, clause res (empty in initial call)
Output: prime implicate res
if d = ; (= ?) then

return res
else

hd head(d); d tail(d)
if unsat (⇢ ^ ¬d)? then . Is d prime implicate?

implicate(⇢, d, res) . drop hd
else

implicate(⇢, d, res [hd) . keep hd

uses d̂l as support clause and recurses on dr to return the final d̂. A recursive
pseudocode for this binary search is given in Algorithm 6.

Function MIC computes a largest inductive subclause using DOWN if such
exists and based on this computes the smallest inductive subclause using IM-
PLICATE as shown in Algorithm 7.

FSIS’ way of proving a property differs a lot from other model-checking al-
gorithms such as CEGAR or BMC. Most noticeable is the renunciation of an
unrolling of the transition relation and rather only computing step-wise overap-
proximations to bad-state predecessors. This approach in particular saves FSIS
from computing long paths represented by large formulas that are hard to check
for modern SAT-solvers. In addition, the way FSIS generalizes from a single
CTI to a set of bad or unreachable states allows for a faster convergence in prac-
tice. However, the downside of FSIS is that the search process is not guided
in any way because it may find CTIs that are one step away from violating
the original property or it may find CTIs to states that have been considered
before and were excluded in the process. Thus the search for CTIs is neither a
breadth-first search nor a depth-first search, but completely ad-hoc instead.

58 CHAPTER 3. INDUCTIVE HARDWARE VERIFICATION

Algorithm 6 Binary search for prime implicates
function IMPLICATE(⇢, d, sup)
Input: formula ⇢, clause d, support clause sup (empty in initial call)
Output: prime implicate of d
if |d| = 1 then

return d

else
dl, dr split(d);
if unsat (⇢ ^ ¬ (d0l _ sup0))? then

implicate(⇢, dl, sup)
else if unsat (⇢ ^ ¬ (d0r _ sup0))? then

implicate(⇢, dr, sup)
else

l implicate(⇢, dl, sup [dr)
r implicate(⇢, dr, sup [l)
return l [r

Algorithm 7 Pseudocode for Minimal Inductive Subclause
function MIC(S, P̂ , d)
Input: transition system S = (X, I,T), property P̂ , clause d

Output: minimal d̂ v d such that P̂ ^ d̂ ^ T) ¬c0

d̄ down(S, P̂ , d)
if d̄ = > then

return >
else

d̄ implicate(P̂ ^ d ^ T , d̄, ;)
return d̄

3.2. INCREMENTAL INDUCTIVE STRENGTHENING 59

3.2 Incremental Inductive Strengthening

As seen in the previous section, the FSIS algorithm published in [Bradley and
Manna, 2007a] in 2007, suffers from an unguided search and, in worst case,
may do a full breadth first search of the state space before finding a counterex-
ample. However, to efficiently find a counterexample in as few iterations as
possible, a depth-first-search is generally preferable. In addition, FSIS might
not even be able to find a suitable strengthening in reasonable time, as find-
ing a single strengthening is generally hard: While a conjunction of assertions
may be inductive, they may not be inductive on their own [Bradley, 2012]. In
order to tackle those problems, the 2011 successor of FSIS aims at finding an
incremental strengthening using previously computed invariants by construct-
ing step-wise reachability information. The algorithm, called Incremental Con-
struction of Inductive Clauses for Indubitable Correctness (IC3) [Bradley, 2011],
breaks down the global strengthening F into a sequence of smaller strengthen-
ings F0, . . . ,Fk, k � 1, where each so-called frame Fi is an overapproximation
of the states reachable in at most i steps from some initial state in I.

In order to include this reachability information, we modify the inductivity
to a so-called relative inductivity : A clause ¬c is inductive relative to the states
reachable in i� 1 steps, iff

I) ¬c, and (3.1)
Fi�1 ^ ¬c ^ T) ¬c0 (3.2)

are valid implications. However, since we want to use a SAT-solver to check
whether ¬c is inductive relative to Fi�1, we reformulate these implications to
satisfiability queries: The implication (3.2) is valid, iff

Fi�1 ^ ¬c ^ T ^ c
0 (3.3)

is unsatisfiable and (3.1) analogously. In order to break the global strengthen-
ing F up into step-wise strengthenings, we also need to maintain a number of
invariants.

In particular, breaking up the F into F0, . . . ,Fk implies that every initial
state must be in frame F0 as every initial state is 0-step reachable. Furthermore,
as frame Fi covers all states that are reachable in at most i steps, the states in
any frame Fi are a superset of the previous frame Fi�1. While a strengthening
F could potentially represent arbitrary states in ¬P , those states do not add
any relevant information, so IC3 starts each new frame by strengthening it to

60 CHAPTER 3. INDUCTIVE HARDWARE VERIFICATION

P . Lastly, each frame Fi represents i-step reachable states. This means that
the successor of an Fi-state must be an Fi+1-state. Those invariants for the IC3
algorithm are formally given as:

I) F0 (3.4)
Fi) Fi+1, 80 i < k (3.5)
Fi) P , 80 i k (3.6)

Fi ^ T) F
0
i+1, 80 i < k (3.7)

By constructing this sequence of frames, IC3 gains control over the search
process, which was not possible for FSIS. By limiting the search depth using the
”frontier” Fk, IC3 executes a breadth-first search to find the shortest counterex-
ample path. If no such counterexample is found, k is incremented until either
a counterexample of length k is found or the learned clauses form a sufficient
strengthening to the property P .

Equations (3.6) and (3.7) imply that Counterexamples to Induction (CTI)
can only occur in the last frame Fk, i.e.

Fk ^ T) P
0 (3.8)

is not a valid implication by construction. Like in FSIS, the implication of Equa-
tion (3.8) can be reformulated to a satisfiability query as follows: Equation (3.8)
is valid iff

Fk ^ T ^ ¬P 0 (3.9)

is unsatisfiable.
If Equation (3.9) is unsatisfiable, then there does not exist any state in Fk

that is one step away from violating P . More specifically, there cannot exist
any counterexample of length up to k. After finalizing iteration k, IC3 will
check whether the computed frames F0, . . . ,Fk form a sufficient strengthening
to prove the invariance of property P . To do so, IC3 searches for an inductive
frame, i.e. a frame Fi, such that Fi ^ T) Fi’. By Equation (3.7) this is
the case exactly if Fi ⌘ Fi+1 for some 0 i < k. If such Fi exists, IC3 has
found a sufficient strengthening for P and can return SAFE. If IC3 fails to find
such Fi, then the learned information is not a sufficient strengthening yet. But
there does not exist a k-step counterexample, so there must either exist a longer
counterexample or a more complex strengthening. Thus IC3 proceeds to the

3.2. INCREMENTAL INDUCTIVE STRENGTHENING 61

next iteration by incrementing k, similar to k-induction [Sheeran et al., 2000].
Following Equation (3.6), the new frame at level k + 1 will be initiated by IC3
to P , i.e. Fk+1 := P . While IC3 could start the new iteration immediately,
it first executes a search whether some learned information can be propagated
to a subsequent frame, i.e. it looks for some ¬c 2 Fi that also holds for Fi+1.
This search is sometimes referred to as propagation phase and will be subject
of Section 3.4.

Considering the case where the query Equation (3.9) is satisfiable. This
means that there exists a CTI state, a state in Fk that has a transition to a
¬P successor state. While there exist various approaches to compute predeces-
sors, such as Weakest Preconditions [Dijkstra, 1976; Flanagan and Saxe, 2001;
Leino, 2005], Quantifier Elimination [Biere, Heule, et al., 2009; Kroening and
Strichman, 2008] or Interpolation [McMillan, 2003; Vizel, Weissenbacher, et al.,
2015], IC3 refrains from specific predecessor computations and rather uses infor-
mation that is provided by the SAT-solver at almost no cost: Given a satisfiable
query, the solver will provide a satisfying model for all variables together with
the result. By projecting this model on the non-primed state variables, IC3,
like FSIS, can extract a set of state variables, that conjoined together form a
cube over an underapproximation of the ¬P -predecessors in Fk. Depending on
whether the solver returns a full model or an incomplete model, the resulting
cube symbolically covers either a single state or a set of states. For more in-
formation on model generation see Section 2.2. A pseudocode of the top-level
structure of IC3 is shown in Algorithm 8.

Given such a CTI cube c, IC3 will start a depth-first search for a counterex-
ample path ending in a state described by c, bounded by length k. In order to
keep track of the current search path, IC3 maintains a priority queue of tuples
consisting of an index i and a cube c. As a tuple (i, c) represents the open proof,
whether c is in Fi, this tuple is called a proof obligation1. In the following, we
will use the inductivity relative to Fi�1 for the obligation (i, c). Given a CTI
cube c, IC3 initializes a new obligation queue Q with the obligation (k, c) to see
whether c is inductive relative to Fk�1. The obligation queue is implemented
as a priority queue, such that it returns obligations with the lowest index first,
thus forming a depth-first search. Note that the obligation queue was not part
of the initial presentation of IC3 in [Bradley, 2011], but was published in [Eén,
Mishchenko, et al., 2011] shortly after and has been a vital part of IC3 ever since.
While the obligation queue is non-empty, IC3 will pop the obligation (i, c) with

1Note that the index used in a proof obligation is shifted in the literature [Bradley, 2011;
Eén, Mishchenko, et al., 2011] with one approach using the notion whether c is inductive
relative to Fi while another approach is to check inductivity relative to Fi�1.

62 CHAPTER 3. INDUCTIVE HARDWARE VERIFICATION

Algorithm 8 IC3 main function [Bradley, 2011; Eén, Mishchenko, et al., 2011]
function MAIN(S, P)
Input: transition system S = (X, I,T), property P

Output: SAFE if P is S-invariant, UNSAFE otherwise
if sat (I ^ ¬P)? or sat (I ^ T ^ ¬P 0)? then

return UNSAFE
F0 I

F1 P

for k := 1 to . . . do
while sat (Fk ^ T ^ ¬P 0)? do

c SAT model
F0, . . . ,Fk RecBlockCube(c, F0, . . . ,Fk)

if Fi = Fi+1 for some i < k then
return SAFE

Fk+1 P

F0, . . . ,Fk+1 propagate(F0, . . . ,Fk+1)

the lowest index i to check whether the negation of c is inductive relative to
Fi�1. In other words, if the states in c are excluded from Fi, one stays outside
of c-states after one transition. This implies that there is no state which is in
Fi�1 and ¬c that can reach a c-state under the given transition relation, i.e.
c-states are unreachable from Fi�1-states and can be excluded from all frames
up to Fi.

If this is not the case, i.e. c is not inductive relative to Fi�1, then there
exists some state in Fi�1 but not in c that can reach a c-state. Therefore the
reachability of c at level i depends on whether these predecessors are reachable
in at most i� 1 steps. To check this, we have to create a new proof obligation
(i�1, cpre) where cpre is deduced from the solver model of the inductivity query.
In addition, we have to put the current obligation (i, c) back in to the queue,
to reconsider it after investigating the reachability of cpre in order to check for
other predecessors not covered by cpre.

If on the other hand, the cube ¬c is inductive relative to Fi�1 and does
not intersect with the initial states I, we can exclude c from Fj , 8j i � 1
by Equations (3.1), (3.2) and (3.5), but we can also exclude it from Fi, as we
have shown that c is unreachable from Fi�1, such that by Equation (3.7) it
is not reachable in Fi. To exclude c, we simply conjoin ¬c to all frames Fj ,
j i : Fj Fj ^ ¬c.

3.2. INCREMENTAL INDUCTIVE STRENGTHENING 63

However, there might be other unreachable states apart from those in c that
can be excluded as well. More specifically, we are interested in a superset of the
states in c, i.e. some cube g, such that 8s.s |= c =) s |= g. Such a larger
cube g is called Generalization and will be subject of closer consideration in
Section 3.3. In the remainder of this chapter we will see different approaches
that deduce such a generalization from c either syntactically, by searching for
a subcube, i.e. a cube g with a subset of the literals of c, or also semantically.
While IC3 is sound and complete without generalization by enumerating models
violating Equation (3.8) and Equation (3.2), the use of generalizations instead
of concrete solver models obviously improves the performance of the algorithm,
since it speeds up the convergence towards inductive frames.

Algorithm 9 IC3 blocking function [Bradley, 2011; Eén, Mishchenko, et al.,
2011]

function RECBLOCKCUBE(c, F0, . . . ,Fk)
Input: transition system S = (X, I,T), cube c, frames F0, . . . ,Fk

Output: frames F0, . . . ,Fk

Queue Q (c, k)
while Q is non-empty do

s Q.pop . Obligation with smallest index
if s.frame = 0 then

return UNSAFE . Counterexample found
if sat (Fs.frame�1 ^ ¬s.cube ^ T ^ s.cube0)? then

p SAT model
Q.add (p, s.frame�1)
Q.add s

else
g Generalize(s.cube)
Fs.frame Fs.frame ^ ¬g

After blocking such a generalization g of some c at level i, IC3 can drop the
current proof obligation (i, c) because it successfully proved that c is unreachable
at level i, i.e. within i steps. It will therefore continue with the next proof
obligation in the obligation queue Q, which, in the original version of the IC3
algorithm [Bradley, 2011], will mean continuing with the proof obligation (i +
1, c̄) that was responsible for creating the obligation (i, c). In other words, IC3
will now backtrack and reconsider obligation (i + 1, c̄) again, to check whether
there exist other predecessors to c̄ at level i+ 1, i.e. other Fi-states apart from

64 CHAPTER 3. INDUCTIVE HARDWARE VERIFICATION

c that have not been blocked by g.
IC3 will continue this backtracking and descending until it meets one of the

following conditions:

1. The IC3 algorithm has descended down to an obligation at level 0 and
not visited any initial states on the way, i.e. in any previous obligation
at level i > 0, thus if there exists a counterexample path, it exceeds the
current bound k;

2. it descended down to some level j where the current cube c intersects the
initial states, therefore finding a feasible counterexample path, or

3. it backtracked until the obligation queue Q is empty, i.e. until it has shown
that the considered CTI is unreachable on any path, at which point it will
start looking for another CTI at level k. If no more CTIs exist at level
k, the IC3 algorithm will check whether it has created some frame that
is inductive, i.e. Fi = Fi+1 and otherwise continue with the next major
iteration, i.e. increment the bound k.

0000 0010 0100 0110

0001 0011 0101 0111

1000 1010 1100 1110

1001 1011 1101 1111

F0

F1

F2

(a) IC3 frames at start of iteration k = 2

0000 0010 0100 0110

0001 0011 0101 0111

1000 1010 1100 1110

1001 1011 1101 1111

F0

F1

F2 F3

(b) IC3 frames at start of iteration k = 3

Figure 3.2: Frames of Example 3.2

Example 3.2. Consider the example transition system S of Figure 3.1 on

3.2. INCREMENTAL INDUCTIVE STRENGTHENING 65

0000 0010 0100 0110

0001 0011 0101 0111

1000 1010 1100 1110

1001 1011 1101 1111

F0

F1

F2 F3

F4

(a) IC3 frames at start of iteration k = 4

0000 0010 0100 0110

0001 0011 0101 0111

1000 1010 1100 1110

1001 1011 1101 1111

F0

F1 F2

F3

F4

F5

(b) IC3 frames at start of iteration k = 5

Figure 3.3: Frames of Example 3.2

page 53. First, let us construct the symbolic encoding of S:

I := x̄2x̄3x4

P := ¬ x1x2x4

T := x̄2x̄3x4 ^ x̄
0
2x̄

0
3x̄

0
4 _

x̄1x̄3x̄4 ^ x̄
0
1x

0
3x̄

0
4 _

x̄1x3x̄4 ^ x̄
0
1x

0
2x̄

0
3x̄

0
4 _

x̄1x̄2x3x4 ^ x̄
0
1x

0
2x̄

0
3x

0
4 _

x̄1x2x̄3x4 ^ x
0
1x

0
2x

0
3x̄

0
4 _

x1x̄2x̄3x̄4 ^ x
0
1x̄

0
2x̄

0
3x

0
4 _

x1x2x̄4 ^ x
0
1x

0
2x

0
4

Following Algorithm 8, we will start IC3 by looking for no- and single-step
violations of property P . As no state in S is an initial and bad state at
the same time, sat (I ^ ¬P)? is not satisfied. In addition, no initial state
has a bad-state successor, thus sat (I ^ T ^ ¬P 0)? is also not satisfied.

After initializing frame F0 to I we start the main loop with k = 1
and initialize F1 to P . At the beginning of every main loop, we check,

66 CHAPTER 3. INDUCTIVE HARDWARE VERIFICATION

whether there exists a CTI state in Fk. As this is the case, the query
sat (P ^ T ^ ¬P 0)? is satisfied and we assume the solver to identify state
1110 as the conflicting predecessor. Cube c will thus be assigned x1x2x3x̄4.
With c we will enter the blocking function, checking whether we can block
c or whether there exists a path leading to state 1110. Inside the blocking
function we will initialize the priority queue Q with the obligation (c, 1).
As this is the only obligation for now, we will immediately pop it, to
check whether c is inductive relative to F0. The queries sat (I ^ c)? and
sat (F0 ^ ¬c ^ T ^ c

0)? are both unsatisfied, as 1110 is not an initial state
and the only predecessor to 1110 is 0101, which is not in I. Since we
have determined that ¬c is inductive relative to F0, we are able to block
c in F1, i.e. we know that 1110 is not 1-step reachable from I. However,
using generalization we can block many more states than just 1110. For
the moment we treat generalization as a blackbox and assume that the
result of the generalization is the cube g = x2. A more detailed look
at generalization will follow in the next section. Given the cube x2, we
block it by updating F1 := F1 ^ ¬x2. As cube c of obligation (c, 1) was
shown to be inductive relative to F0, (c, 1) can be dropped after blocking
g. Since Q is now empty, we will return from the blocking function to
IC3’s main where we check whether there exists another CTI by querying
sat (F1 ^ T ^ ¬P 0)?

This query is satisfiable with the model x1x̄2x3x4 for state 1011. We
will again enter the blocking function, where we block state 1011, because
it is obviously inductive due to missing predecessors. Thus it will return
the modified F1 = ¬x2^¬x1x̄2x3x4 and we will check for additional CTIs.

This query is now unsatisfiable, because the third CTI 1100 was already
blocked by the generalization x2. Since there is no CTI left, we can check
termination, i.e. whether there exists a frame Fi that is equal to its suc-
cessor frame Fi+1. Since we have F0 = I and F1 = P ^ x2, this condition
is not met yet and we will continue initializing frame F2 and propagating
lemmas. Like generalization, we treat propagation as a black box, which
returns frame F2 = P ^ ¬x1x̄2x3x4. A more detailed look at why we were
able to block state 1011 in frame F2 will be taken later in this chapter.

We then advance to the next major iteration k = 2 with frames F0 - F2

as depicted in Figure 3.2a. Assume the SAT-solver chooses state 1110 as
CTI again, we will determine that 1110 is inductive relative to F1. Assume
our generalization will now be g = x1x2, we update F2 := F2 ^ ¬x1x2.
Since state 1011 was already blocked by pushing the clause ¬x1x̄2x3x4

3.2. INCREMENTAL INDUCTIVE STRENGTHENING 67

from frame F1 forward, there is no CTI left, so we initialize frame F3 and
check whether we can propagate clauses, which again results in pushing
¬x1x̄2x3x4 to frame F3.

In iteration k = 3 we start with frames as depicted in Figure 3.2b. We
again find the state 1110 as a CTI, such that we enter the blocking phase
with obligation (3,x1x2x3x̄4). But this time, the SMT inductivity query
sat (P ^ ¬x1x2 ^ ¬x1x̄2x3x4 ^ ¬x1x2x3x̄4 ^ T ^ x

0
1x

0
2x

0
3x̄

0
4)? is satisfied by

state 0101. We will therefore add obligation (2, x̄1x2x̄3x4), as well as the
’old’ obligation (3,x1x2x3x̄4) to Q. In the next iteration of the while-loop,
we will pop (2, x̄1x2x̄3x4) from Q, since it has the smallest index. We will
now check, whether state 0101 is inductive relative to frame F1, i.e. check
if sat (P ^ ¬x2 ^ ¬x1x2 ^ ¬x1x̄2x3x4 ^ ¬x̄1x2x̄3x4 ^ T ^ x̄

0
1x

0
2x̄

0
3x

0
4)?. The

formula is satisfied with state 0011, which means that we add the obliga-
tions (x̄1x̄2x3x4, 1) and (x̄1x2x̄3x4, 2) to Q. Finally checking inductivity
of x̄1x2x̄3x4 relative to F0 fails. The corresponding generalization of cube
x̄1x2x̄3x4 may return g = x3, thus we update F1 = F1 ^ ¬x3. Next, the
obligation with the smallest index is (x̄1x2x̄3x4, 2) is popped, i.e. we recon-
sider state 0101 at level 2. But since we excluded state 0011 from frame F1,
0101 now has no more F1-predecessor and thus is inductive relative to F1

which means we can generalize 0101, which may result in the cube x2 that
we block in frame F2. Afterwards we reconsider obligation (x1x2x3x̄4, 3)
and determine that 1110 is inductive relative to F2, blocking the general-
ization x1x2. The resulting frames F0 - F4 after finishing iteration k = 3
and going over to k = 4 are shown in Figure 3.3a.

As we have seen all basic concepts of the search and blocking phase
of the IC3 algorithm, we will skip iterations k 2 {4, 5, 6} and rather have
a look at how the abstractions of reachable states in the frame sequence
evolves in those iterations. From Figures 3.3b and 3.6b we can see that
IC3 was not able to generalize state 0011 to cube x3, as it has been in
iteration k = 3, but rather has been generalized to the cube x3x4, which
in turn triggered that state 0101 could not be generalized to x2, but only
to x2x4. This blocking repeats in iteration k = 5 (Figure 3.4a) and k = 6
(Figure 3.4b) with iteration k = 6 satisfying the termination criterion,
that two consecutive frames are identical. Remember that the idea of the
frame sequence was to break up the complex task of finding an inductive
strengthening into a simpler, stepwise approach. Finding two identical,
consecutive frames in iteration k = 6 as depicted in Figure 3.4a, means,
that all states in F3 are inductive, as their successors are still in the set

68 CHAPTER 3. INDUCTIVE HARDWARE VERIFICATION

of states of F3. This implies that F3 is an inductive strengthening to the
property P . The final strengthening is depicted in Figure 3.5.

Looking at Figure 3.5 we can see that even though F3 describes states
that are reachable in at most three steps, IC3 does not compute exact
reachability sets, but overapproximations to those reachability sets. We
can see the effect of this in two aspects: First, state 0110 in the top right
corner is a reachable state, but it is not reachable in 3, but at least in 4
steps. Nevertheless it is part of F3 due to the overapproximation. Sec-
ondly, the state 1010 is completely isolated and is still in F3 due to the
overapproximation.

0000 0010 0100 0110

0001 0011 0101 0111

1000 1010 1100 1110

1001 1011 1101 1111

F0

F1 F2

F3

F4

F5

F6

(a) IC3 frames at start of iteration k = 6

0000 0010 0100 0110

0001 0011 0101 0111

1000 1010 1100 1110

1001 1011 1101 1111

F0

F1 F2

F3 = F4

F5

F6

F7

(b) IC3 frames at end of iteration k = 6

Figure 3.4: Frames of Example 3.2

As we have seen in Example 3.2, the presented IC3 algorithm will need n

steps, for a backward reachable path of length n. To improve this, [Bradley,
2011] proposes to add a new obligation (c, i + 1), whenever a proof obligation
(c, i) is shown to be inductive relative to Fi�1 and c is being blocked at level i.
This allows IC3 to explore deep, backward reachable states with fewer iterations.

One weakness of the implementation of the original IC3 was in the way
it handles frames. [Bradley, 2011] proposes to implement a frame Fi as a
set of clauses clauses(Fi), such that the formula for Fi is the conjunctionV
clauses(Fi). However, to satisfy invariant (3.5) IC3 will add a cube that

has to be blocked at frame Fi to all frames Fj for j i. This obviously cre-
ates a huge amount of redundant data. To avoid this redundancy, PDR [Eén,

3.2. INCREMENTAL INDUCTIVE STRENGTHENING 69

0000 0010 0100 0110

0001 0011 0101 0111

1000 1010 1100 1110

1001 1011 1101 1111

Figure 3.5: IC3 inductive strengthening for transition system of Figure 3.1

Mishchenko, et al., 2011] implements a so-called delta trace that just stores the
clauses that are valid up to Fi, i.e. clauses(Fi) \ clauses(Fi+1). This way a
clause is added only once, while the formula for frame Fi is the conjunctionV

Fj , i j k.

70 CHAPTER 3. INDUCTIVE HARDWARE VERIFICATION

F0 := I ^¬x1x̄2x3x4 ^¬x1x2 ^¬x2 ^¬x3

F1 := P ^¬x1x̄2x3x4 ^¬x1x2 ^¬x2 ^¬x3

F2 := P ^¬x1x̄2x3x4 ^¬x1x2 ^¬x2

F3 := P ^¬x1x̄2x3x4 ^¬x1x2

F4 := P ^¬x1x̄2x3x4

(a) Frames after iteration k = 3

F0 := I ^¬x1x̄2x3x4 ^¬x1x2 ^¬x2x4 ^¬x2 ^¬x3x4 ^¬x3

F1 := P ^¬x1x̄2x3x4 ^¬x1x2 ^¬x2x4 ^¬x2 ^¬x3x4 ^¬x3

F2 := P ^¬x1x̄2x3x4 ^¬x1x2 ^¬x2x4 ^¬x2 ^¬x3x4

F3 := P ^¬x1x̄2x3x4 ^¬x1x2 ^¬x2x4

F4 := P ^¬x1x̄2x3x4 ^¬x1x2

F5 := P ^¬x1x̄2x3x4

(b) Frames after iteration k = 4

F0 := I ^¬x1x̄2x3x4 ^¬x1x2 ^¬x2x4 ^¬x3x4 ^¬x2 ^¬x3

F1 := P ^¬x1x̄2x3x4 ^¬x1x2 ^¬x2x4 ^¬x3x4 ^¬x2 ^¬x3

F2 := P ^¬x1x̄2x3x4 ^¬x1x2 ^¬x2x4 ^¬x3x4 ^¬x2

F3 := P ^¬x1x̄2x3x4 ^¬x1x2 ^¬x2x4 ^¬x3x4

F4 := P ^¬x1x̄2x3x4 ^¬x1x2 ^¬x2x4

F5 := P ^¬x1x̄2x3x4 ^¬x1x2

F6 := P ^¬x1x̄2x3x4

(c) Frames after iteration k = 5

F0 := I ^¬x1x̄2x3x4 ^¬x1x2 ^¬x2x4 ^¬x3x4 ^¬x2 ^¬x3

F1 := P ^¬x1x̄2x3x4 ^¬x1x2 ^¬x2x4 ^¬x3x4 ^¬x2 ^¬x3

F2 := P ^¬x1x̄2x3x4 ^¬x1x2 ^¬x2x4 ^¬x3x4 ^¬x2

F3 := P ^¬x1x̄2x3x4 ^¬x1x2 ^¬x2x4 ^¬x3x4

F4 := P ^¬x1x̄2x3x4 ^¬x1x2 ^¬x2x4 ^¬x3x4

F5 := P ^¬x1x̄2x3x4 ^¬x1x2 ^¬x2x4

F6 := P ^¬x1x̄2x3x4 ^¬x1x2

F7 := P ^¬x1x̄2x3x4

(d) Frames after iteration k = 6

Figure 3.6: Iterations 3 to 6 of IC3 example

3.3. GENERALIZATION 71

3.3 Generalization

As seen in Section 3.2, generalizing a cube c to some larger cube g can allow
the IC3 algorithm to exclude more states in one iteration, resulting in a faster
convergence of the algorithm. For a cube g to be a suitable generalization of
cube c, it must satisfy two important properties: (1) blocking g must block at
least all states that would be blocked by c and (2) as c is inductive relative to
Fi�1, g must also be inductive relative to Fi�1. In other words, g can only add
new states to c but only unreachable states can be part of the generalization g.
These properties maintain the correctness of the overall algorithm, by ensuring
that a generalized cube g neither leaves unreachable states unblocked and to be
reconsidered again, nor considers any reachable states due to incorrect blocking,
thus violating completeness of the algorithm.

As long as it satisfies these two requirements, the generalization procedure
can be chosen without any further restrictions. This naturally means that there
exists a broad set of possible methods to find the generalization procedure that
suits the desired setting best. In this section, we will sketch a handful of ap-
proaches to apply generalization for a bit-level IC3 algorithm.

Algorithm 10 Pseudocode for Syntactic Generalization
function DROP(S, Fi�1, c)
Input: transition system S = (X, I,T), frame Fi�1, cube c

Output: minimal cube c̄ that is inductive relative to Fi�1

c̄ c

for all lit 2 literals (c) do
c̄ (c̄ \ lit)
if sat (I ^ c̄)? or sat (Fi�1 ^ ¬c̄ ^ T ^ c̄

0)? then
c̄ (c̄ [lit)

return c̄

Syntactic Generalization
The most prominent generalization procedure is the one presented in [Bradley,
2011], a modified version of the search for minimal inductive subclauses of FSIS.
The procedure aims to find a subcube g ✓ c such that ¬g is still inductive relative
to Fi�1. As g is a subcube of c, i.e. it contains a subset of the literals, blocking
g will block at least as many states as blocking c would do. While checking all

72 CHAPTER 3. INDUCTIVE HARDWARE VERIFICATION

exponentially many subcubes of c is obviously highly inefficient, we can find a
smallest subcube by iterating over the literals of c and trying to exclude them
one by one, resulting in a linear algorithm to find a smallest subcube g. A
pseudo-code for this linear search can be found in Algorithm 10.

The presented syntactical generalization tries to find a suitable generaliza-
tion of the cube by changing the cube c based on its syntactical structure by
probing which literal is necessary in order to stay inductive relative to Fi�1.
This procedure has the advantage that it can compute a generalization in linear
time that is considerably smaller than the original cube c.

Example 3.3. Recall Example 3.2 on page 64. In iteration k = 2, we
determined that the negation of state 1110 of S is inductive relative to F1 =
P ^¬x2, which means that sat (P ^ ¬x2 ^ ¬x1x2x3x̄4 ^ T ^ x

0
1x

0
2x

0
3x̄

0
4)? is

unsatisfiable. In order to generalize the clause ¬x1x2x3x̄4, we pick literal
x4, drop it and see whether the clause ¬x1x2x3 is still inductive relative
to F1. Since x1x2x3 is the cube that covers states 1110 and 1111, none of
these has a ¬x2-state predecessor, which means that it is inductive relative
to F1 and we do not have to readopt x4. Next, we try to drop x3, excluding
states 1100, 1101, 1110 and 1111 with clause ¬x1x2. Since these states have
only two predecessors, namely 1011 and 0101, but both are blocked in F1,
x1x2 is inductive relative to F1 as well. Next, we try to block x2, which
fails, since ¬x1 excludes the initial state 1001 and thus is not inductive
relative to any frame, i.e. we have to keep x2. Last, we try to drop x1 and
check whether ¬x2 is inductive relative to F1. This fails too, since F1-state
0011 has x2-successor 0101. We thus have to keep x2 as well and therefore
return ¬x1x2 as the final generalization.

However, this procedure can have several pitfalls. In particular the linear
search may traverse the subclause lattice in a worst possible way: If there exists
any generalization that is a strict subclause of c the linear search may return
a cube that contains only one literal less than c. In addition, the search may
interfere with efficient implementations of cube data structures: In order to find
the smallest possible subcube, a randomized order of literals is preferable. This
contradicts efficient data structures that use canonical representations of e.g.
set data structures in order to offer efficient comparison operators. Especially
for cases where a majority of the literals can be dropped, the syntactic general-
ization can be improved even further by replacing the linear by a binary search.
In this approach, the cube is partitioned into two subcubes. By definition at
most one of these can be inductive relative to Fi�1. If a cube is relative induc-

3.3. GENERALIZATION 73

Algorithm 11 Pseudocode for syntactic generalization with binary search
function BINARY(S, Fi�1, c)
BinSearch(S, Fi�1, c, ;)
Input: transition system S = (X, I,T), frame Fi�1, cube c

Output: minimal cube c̄ that is inductive relative to Fi�1

function BINSEARCH(S, Fi�1, c, sup)
if kck then

return c

left, right split(c)
if unsat

�
Fi�1 ^ ¬left ^ T ^ left

0�? then
BinSearch(S, Fi�1, left, sup)

else if unsat
�
Fi�1 ^ ¬right ^ T ^ right

0�? then
BinSearch(S, Fi�1, right, sup)

else
left BinSearch(S, Fi�1, left, (sup [right))
right BinSearch(S, Fi�1, right, (sup [left))
return left [right

tive we can proceed by recursing on this cube and splitting it further. However
in certain cases none of the two subcubes may be inductive relative to Fi�1 be-
cause both subcubes contain literals that are necessary to maintain inductivity.
In this case we can split the first subcube, while keeping the second as a sup-
port. Once we have computed the smallest inductive subcube of the first split
subcube, we can take this result as a support for finding the smallest inductive
subcube of the second half. A pseudocode for this binary search process can be
found in Algorithm 11 accompanied by an example in Example 3.4.

Example 3.4. Recall Example 3.2 (page 64), in k = 1, we encountered
CTI 1110 which is inductive relative to F0 and generalized it to x2. We
can generalize the clause ¬x1x2x3x̄4 representing state 1110 using binary
generalization by splitting up ¬x1x2x3x̄4 into left subcube ¬x1x2 and right
subcube ¬x3x̄4. We start by checking whether ¬x1x2 is inductive relative
to F0 = I. This query is unsatisfiable, since no initial state has a x1x2-
state successor, thus ¬x1x2 is inductive relative to F0. As a consequence,
we drop the right subcube and continue splitting up ¬x1x2. ¬x1 is not
inductive relative to F0 since it intersects with the initial states, but ¬x2

is inductive relative to F0. We thus generalize to ¬x2 after three queries.

74 CHAPTER 3. INDUCTIVE HARDWARE VERIFICATION

As we can see in Example 3.4, the binary search for the generalization can
be up to exponentially better, compared to the linear search. On the other hand
the worst-case complexity of the binary search can be exponentially worse: For
a cube of size n where no literal can be dropped at all, the binary search will
do 2n SAT-queries, recursively splitting up smaller and smaller portions of the
cube.

Another approach to syntactic generalization of cubes was presented in [Eén,
Mishchenko, et al., 2011] and uses ternary simulation, which extends the domain
from Boolean values to a domain with three values: true, false and X, where
X is referred to as don’t-care. As the name suggests, ternary simulation uses
a term, which is the minterm extracted from the satisfiable model of the SAT-
solver, and simulates it over one step in the transition relation T . In particular,
it successively replaces each literal’s evaluation in the minterm by X, simulates
this term over one step of the transition relation T and checks whether X

appears in the result. If X appears, the replaced value will be reverted. But
if not, the corresponding position does not influence the result and thus can be
removed.

Semantic Generalization
While the syntactic generalization presented in the last section is clearly one
of the most prominent generalization methods, it does have some downsides,
some of them illustrated above. Another drawback that has not been discussed
is the fact that the presented method only works on the syntactic structure.
It merely probes whether a smaller cube would still be inductive relative to
Fi�1 and constructs the generalizations based on the SAT-solver as an oracle
for relativity. In other words, it is more or less blind in the sense that it does
not construct a generalization based on the actual structure of the cube c and
its interaction with the transition relation T . We therefore emphasize another
category of generalization methods that we call semantic generalization as they
are based on other information apart from only the structure of the cube.

A prominent example for a semantic generalization is Craig interpolation,
based on Craig’s Interpolation theorem from 1957 [Clarke, Grumberg, and
Peled, 2001].

Theorem 3.1 (Craig’s Interpolation Theorem [Clarke, Grumberg, and
Peled, 2001]). If |= �) , then there exists a ' such that |= �) ' and
|= ') with var (') ✓ var (�) \ var ().

3.3. GENERALIZATION 75

Theorem 3.1 implies that for a pair of formulas (A,B) with unsat (A ^B)?,
an interpolant ' is a formula, with A) ', unsat (' ^B)? and ' only refers to
common variables of A and B [McMillan, 2003].

Theorem 3.2 (Generalization via Craig Interpolation). Given a frame
Fi�1, a cube c and a transition relation T , with unsat (Fi�1 ^ ¬c ^ T ^ c

0)?,
an interpolant '0 of pair (A = c

0,B = Fi�1 ^ ¬c ^ T) provides a valid
generalization of c’ iff it does not intersect with the initial states, i.e. I)
¬' is preserved.

Note that by construction '0 will reason about primed state variables, so in
order to block the generalization, one has to use the unprimed '.

Proof. Since ¬c is inductive relative to Fi�1 by construction, it holds that
unsat (Fi�1 ^ ¬c ^ T ^ c

0)?. For the pair (A = c
0,B = Fi�1 ^ ¬c ^ T) it follows

that

1. c
0) '

0, thus blocking an unprimed ' will exclude more states than block-
ing c, and

2. unsat ('0 ^ Fi�1 ^ ¬c ^ T)? ⌘ unsat (Fi�1 ^ ¬c ^ T ^ '0)?, thus preserv-
ing inductivity relative to Fi�1 if I) ¬'.

As shown in [Huang, 1995; Krajícek, 1997; McMillan, 2003; Pudlák, 1997],
such a Craig interpolant ' can be derived by the SAT-solver from a proof of
unsatisfiability. Therefore ' will represent a more complete set of states that
caused unsatisfiability of the query, i.e. more states that are inductive relative
to Fi�1. But apart from reasoning about the same variables, there will be no
syntactic relation between ' and ¬c. We call ' a semantic generalization, as
it generalizes ¬c in a semantic way, without any constraints on the syntactic
structure of the resulting generalization.

There is however one aspect that we have to work around. As mentioned,
the derived interpolant ' has no syntactic relation to ¬c. However, the IC3
algorithm requires a generalization to be a cube, but ' will be a FO predicate
with arbitrary structure. In order to fix this, we need to transform ' into
a cube. While conversion to a single cube is not possible in general, we can
always convert ' into Disjunctive Normal Form (DNF), i.e. a disjunction of
cubes.

76 CHAPTER 3. INDUCTIVE HARDWARE VERIFICATION

Hybrid Generalization
So far we identified two generalization approaches: syntactic generalization that
operates solely on the syntactic structure of the cube and tries to drop literals,
and semantic generalization that derives interpolants based on the proof of
unsatisfiability from the SAT-solver. There is however a third approach that
incorporates aspects from both approaches: As presented in [Bradley, 2011],
the unsatisfiable core [Biere, Heule, et al., 2009; Kroening and Strichman, 2008]
obtained from the SAT-solver indicates which literals in the cube are causing
the unsatisfiability of the SAT-query and thus cause the cube to be inductive
relative to Fi�1. This generalization obviously takes the form of a semantic
generalization as it is guided by the SAT-solver’s resolution refutations. On the
other hand, it can only result in a subcube of the original cube c, giving it some
characteristics of a syntactic generalization. We therefore identify unsatisfiable
cores for generalization by a hybrid mixture of syntactic generalization and
semantic generalization.

Example 3.5. Recall Example 3.2 on page 64. In iteration k = 1, we find
CTI state 1110 and the corresponding clause ¬x1x2x3x̄4 is inductive rela-
tive to frame F0, since the query sat (F0 ^ ¬x1x2x3x̄4 ^ T ^ x

0
1x

0
2x

0
3x̄

0
4)? is

unsatisfiable, To ease readability, we will strip down the transition relation
T to only those transitions that are actually useful in this example: Since
F0 only contains initial states, we just need to consider those transitions
that start in any of the two initial states. The SAT-query for inductivity
of ¬x1x2x3x̄4 relative to F0 therefore looks like:

sat(x̄2x̄3x4 ^
¬x1x2x3x̄4 ^
(x̄1x̄2x̄3x4x̄

0
1x̄

0
2x̄

0
3x̄

0
4 _ x1x̄2x̄3x4x

0
1x̄

0
2x̄

0
3x̄

0
4) ^

x
0
1x

0
2x

0
3x̄

0
4)?

Here we can see that the query is unsatisfied as neither transition satisfies
the postcondition x

0
1x

0
2x

0
3x̄

0
4. Considering the second transition, the SAT-

solver might return an unsat core whose projection on our cube x1x2x3x̄4

indicates a conflict in the literals x2 and x3. We could therefore generalize
x1x2x3x̄4 to x2x3.

As we see from Example 3.5, an unsatisfiable core can significantly reduce
the size of the cube with almost no additional costs. How to obtain a minimal

3.3. GENERALIZATION 77

unsatisfiable core has been studied extensively [Davydov et al., 1998; Fleischner
et al., 2002; Kleine Büning, 2000; Papadimitriou and Wolfe, 1988].

Improving Generalization
As presented in [Hassan et al., 2013], the IC3 algorithm can be improved by
considering causes for a failed generalization. Following the notion of CTIs, such
states are referred to as a Counterexample to Generalization (CTG). Whenever
dropping a literal lit fails, Fi�1 ^ ¬c ^ T ^ c

0 becomes satisfiable, meaning that
some s exists that corresponds to the minterm of the model of the SAT-query.
This s will reach ¬c with one step in T and thus causes c to be generalized.
However, s may not be reachable and is very likely to be farther away, but
still backwards reachable from a bad state. As such, pausing the generalization
of c and investigating the reachability of s may allow IC3 to drop lit from c.
In addition, blocking s may preempt the backwards search of some other CTI.
However, an unbounded inspection of a CTG will most likely diverge. To avoid
this, [Hassan et al., 2013] proposes two bounds for the CTG procedure: First,
the search-depth is limited by some maxDepth, usually very low. Experimental
results in [Hassan et al., 2013] have shown best performance with maxDepth =
1, i.e. whenever a CTG is not inductive, the search is aborted immediately.
Apart from maxDepth, a limitation is in the number of CTGs that get inspected.
If this number exceeds the bound maxCTG, it will also abort to avoid discovering
too many CTGs. For maxCTG, the experiments of [Hassan et al., 2013] have
shown that 3-5 works best.

Example 3.6. Again, consider the transition system S from Figure 3.1
on page 53. Suppose that 1100 is the first CTI to be found. Its negation is
inductive since it has no predecessors. Assume that for generalization we
try to drop the third literal yielding the cube c = x1x2x̄4. The negation
of c however is not inductive, due to 1110’s predecessor 0101. Thus any
generalization containing 1100 and 1110 must contain 0101 and 0101’s
predecessor 0011 must also be in this generalization. But the smallest
cube containing 1100 and 0011 is true, which does also include all initial
states and is thus not a valid generalization. Similar situations apply to
all other literals. Thus IC3 would only be able to block the CTI. However,
[Hassan et al., 2013] proposes to drop x3 and investigate why it fails, i.e.
due to the CTG 0101. Given a maxDepth of 2, we would determine that
0101 is not inductive, too, and descent into CTG 0011. After blocking
0011, CTG 0101 becomes inductive, such that x3 can be dropped.

78 CHAPTER 3. INDUCTIVE HARDWARE VERIFICATION

Example 3.6 illustrates that Counterexamples to Generalization can help
to discover deep, backward reachable states early and thus allow for better
generalizations that speeds up the convergence. On the other hand choosing
suitable bounds for the maximal depth and the maximal number of CTGs is
a hard task, since choosing too large bounds will lead to additional, possibly
worthless overhead, whereas choosing too small bounds will prevent noticeable
impact of the proposed improvements.

3.4. PROPAGATION 79

3.4 Propagation

The presented generalization procedure for reducing cubes in their size and thus
excluding larger state sets is a key factor for the scalability and the impact of
IC3. However, as mentioned in Section 3.2, another key aspect of IC3 is the so-
called propagation phase, sometimes also referred to as pushing. In this phase,
that takes place after extending the frontier k, IC3 tries to extend the learned
lemmas to subsequent frames. In order to do so, it iterates over all frames and
all clauses, and checks whether for frame Fi and clause d 2 Fi

Fi ^ T) d
0 (3.10)

is a valid implication. In other words, it checks whether d would also hold
after one step. If this is the case, then by invariant (3.7) of the IC3 algorithm
d 2 Fi+1 and thus IC3 will push d forward to Fi+1. This procedure has proven
to be especially useful in two aspects. First, IC3 can learn information about the
new frame at k+1 without searching CTIs and executing the backward-search.
Second, by pushing clauses forward, IC3 accelerates the convergence of frames
and thus potentially terminates faster.

Example 3.7. Reconsider Example 3.2 on page 64. After iteration k = 1,
IC3 maintains the following frames:

F0 := I ^ ¬x2 ^ ¬x1x̄2x3x4

F1 := P ^ ¬x2 ^ ¬x1x̄2x3x4

F2 := P

To push a clause forward, we will check for each clause d in the last frame
they appear in, whether it holds in the next frame, too. In our case we
consider the clauses ¬x2 and ¬x1x̄2x3x4 in frame F1:

sat (F1 ^ T ^ x
0
2)? is satisfiable, e.g. 0010

sat (F1 ^ T ^ x
0
1x̄

0
2x

0
3x

0
4)? is unsatisfiable

This means, that pushing ¬x2 failed, because of the F1-state 0010 and its
x2-successor state 0100, but ¬x1x̄2x3x4 can successfully be pushed forward
to F2.

However, a big downside of this approach to pushing clauses is that after
every iteration IC3 will check every clause d in every frame Fi for pushing. This

80 CHAPTER 3. INDUCTIVE HARDWARE VERIFICATION

naturally creates a large overhead, as many clauses cannot be pushed to Fi+1.
To solve this problem, [Suda, 2013] proposes a technique called triggered clause
pushing. From an abstract point of view, triggered clause pushing has some
similarities to Counterexamples to Generalization: it takes a closer look at the
reason for a pushing attempt to fail.

If pushing fails, the query Fi ^ T ^ ¬d0 is satisfied by some model. [Suda,
2013] classifies the state s extracted from the SAT-solver model as a witness to
why (3.10) is not valid. As long as this witness is contained in Fi, (3.10) will be
satisfied for clause d. In order to detect when s will get blocked in Fi, [Suda,
2013] uses subsumption on every newly added clause d̂ to check whether the cube
c representing state s is blocked by d̂. If d̂ ✓ ¬c, i.e. d̂ is subsumed by ¬c, then s

is blocked from Fi by d̂. This means that the witness for pushing clause d does
not prevent pushing of d anymore. While checking subsumption after every
blocking also adds some overhead to the IC3 algorithm, [Suda, 2013] argues
that subsumption checks already happen in IC3 routinely in order to remove
subsumed clauses to keep the memory footprint low: [Bradley, 2011] does so
during pushing, while [Eén, Mishchenko, et al., 2011] removes subsumed clauses
during each blocking. In addition, syntactic subsumption checks are typically
much faster than semantic checks of the form (3.10) that involve a SAT-solver.

Apart from saving SAT-queries, the authors of [Suda, 2013] also propose
not to postpone pushing until the end of the iteration, but to check pushing
of d early. They implement this early check by adding additional objects to
the obligation queue, so-called push requests. Such a push request indicates
that clause d can be pushed from frame Fi to Fi+1. It will be enqueued in the
priority queue at level i and in case proof obligations and push requests occur
at the same level, proof obligations will always be preferred. With this partial
order, push requests will always be handled during backtracking the search from
level i to i + 1: Every proof obligation (i, c) at level i will be popped from the
queue Q before some push request. If however, a proof obligation shows its
respective cube not to be inductive, the search procedure continues with the
obligation (i � 1, ĉ) and push requests at level i will only be popped when the
search returns back to level i.

An interesting approach that is also proposed in [Suda, 2013] is to use sub-
sumption checks in order to delay proof obligations: Given an obligation (i, c)
in queue Q and blocking some clause d at level i, such that ¬c ✓ d. As ¬c is
subsumed by d, this means that c is not part of Fi any more and thus checking
inductivity becomes redundant. Thus, any such proof obligation will be shifted
to level i+ 1.

3.4. PROPAGATION 81

Example 3.8. Let us reconsider the failed pushing attempt in Example 3.7
on page 79. We tried to check whether the clause ¬x2 can be pushed from
F1 to F2, but this failed due to the F1-state 0010 and its x2-successor
0100. Using triggered clause pushing, we detect 0010 as a witness to why
the clause ¬x2 cannot be pushed. We therefore store 0010 as witness for
¬x2 and whenever we add a new clause to F1, we check via subsumption,
whether 0010 is still contained. The first time this subsumption fails is
in iteration k = 3, where we added the clause ¬x3 to F1, such that 0010
is removed from F1. Since ¬x3 also blocks state 0011, we can now suc-
cessfully push ¬x2 forward to frame F2. However, if we would stick to
the original IC3, we would push ¬x2 only after successfully blocking all
CTIs. This however makes pushing ¬x2 redundant, since we would have
already blocked x2 as the generalization of 0101 at frame F2 in the next
iteration of the blocking function. Thus we can see that the introduction
of push requests to the obligation queue Q is essential for the impact of
triggered clause pushing, since it prepones the pushing of ¬x2 to F2 to
happen directly after blocking ¬x3 in F1. In turn, pushing ¬x2 to F2, the
obligation (x̄1x2x̄3x4, 2) to prove inductivity of 0101 at level 2 becomes
obsolete, since 0101 has been blocked by ¬x2, which means that it will be
shifted to a later iteration.

Example 3.8 shows that IC3 can largely benefit from preferring pushing al-
ready learned lemmas over learning new ones and more tightly integrating the
interactions between blocking and pushing into the main search phase. Another
recent improvement that emphasizes the important role of pushing for IC3 is
called Quip, short for Quest for Inductive Proofs [Gurfinkel and Ivrii, 2015].
Quip offers a number of improvements to different parts of IC3, many of which
are motivated by the fact that propagation of already learned lemmas is cheaper
than learning new lemmas. However, propagating too many lemmas in an un-
guided way will just flood the frame sequence with often unnecessary clauses,
causing another performance drop. Therefore Quip aims at finding lemmas that
are advantageous to propagate while ignoring those that are not advantageous.

The first modification introduced by Quip is the addition of a second type
of proof obligation. Standard proof obligations as used in IC3 are called must-
obligations in Quip, as they must be proven in order to prove the property P safe.
The respective counterpart are may-obligations, that could be helpful, but P

might also be safe without them. While must-obligations originate from failed
inductivity queries, may-obligations have a strong analogy to push requests:

82 CHAPTER 3. INDUCTIVE HARDWARE VERIFICATION

Given a clause d 2 Fi, Quip produces a may-proof obligation of c (= ¬d) at
level i + 1 that will be checked for inductivity relative to Fi. If this check
succeeds, then c will be blocked in Fi+1, which means that clause d will be
added to Fi+1, i.e. d is pushed from Fi to Fi+1. If on the other hand the
inductivity check fails, then IC3 finds a witness trace showing why d cannot
be pushed to Fi+1. Such a witness trace will indicate a concrete state s that
is forward reachable, but excluded by d. While s stems from a may-proof
obligation, it must not necessarily lead to a violation of the property P . But
it does explain why d is not inductive and thus that d will not be part of the
inductive invariant. Therefore Quip classifies d as a bad lemma. Apart from
classifying d as a bad lemma, s can also be used to invalidate other may-proof
obligations or to discover a real counterexample with less transitions. Therefore
s will be stored in a set of reachable states. Like push requests, may-proof
obligations will be preferred over must-proof obligations of the same level.

In contrast to bad lemmas, Quip periodically determines the maximal in-
ductive subset of all lemmas that have been learned and stores this subset in a
separate frame called F1. All lemmas in F1 are considered good lemmas that
will always remain in the system. The idea of a separate frame F1 storing the
maximal inductive subset was presented in [Eén, Mishchenko, et al., 2011], but
the authors concluded that determining the maximal inductive subset was too
expensive and thus outbalanced possible, but small improvements.

However, by combining good and bad lemmas, Quip is able to guide the
pushing process in order to only push clauses that are advantageous and prune
clauses that are not, such that determining maximal inductive subsets offers
more potential for optimizations.

Following the spirit of preferring pushing over learning new lemmas, Quip
also lifts the restriction of other IC3 algorithms that push only up to the current
bound k.

Chapter 4

Software Verification with IC3

In the previous section, we have seen the IC3 algorithm for verifying safety prop-
erties on Boolean transition systems. The publication of IC3 generated a lot of
attention, not only in hardware verification, but also in other, related domains,
and many subsequent publications took up the ideas of IC3, improved and re-
fined them and also adapted them to many other problems. The main reason
for this huge success of IC3 is most likely its striking performance compared to
other tools. In its original version, as published in [Bradley, 2011], IC3 scored
third in UNSAT category, i.e. only cases where no bad state is reachable, of the
Hardware Model-Checking Competition (HWMCC) 2010. However, within less
than a year after IC3’s publication, [Eén, Mishchenko, et al., 2011] presented
a small number of improvements to the IC3 algorithm and showed that their
improved IC3 variant, called Property-Directed Reachability, would have allowed
IC3 to win HWMCC’10. With this amazing result and competitors that fine-
tuned their tools for many years, questions arose why this new algorithm was
so much faster. In [Bradley, 2012], the authors identify three main aspects for
the success of IC3. First, it tries to prove inductivity, rather than reachability,
such as an early attempt on linear inequality invariants in [Colón et al., 2003;
Sankaranarayanan et al., 2005]. This approach however suffered from enumer-
ating instantiations of the parameters of the inequalities and thus generated the
strongest possible over-approximation. Second, to avoid enumeration, [Bradley
and Manna, 2006, 2007a] take a property-guided approach to guide the search
for inductivity towards CTIs. The third important aspect of IC3 is given by its
incrementality. Rather than taking a monolithical approach and trying to come
up with a strengthening at once, IC3 creates its incremental frame sequence.

84 CHAPTER 4. SOFTWARE VERIFICATION WITH IC3

4.1 Previous approaches

After its impressive performance for hardware model-checking, the question was
how to apply IC3 to software model-checking. But even though the domains of
hardware and software model-checking share some common ground, IC3 cannot
be applied directly, due to a number of differences in both settings. Maybe the
biggest difference between both settings is the state space that they operate
on. Boolean transition systems consist of a number of Boolean variables x 2 X

that span the state space, i.e. for |X| = n the state space contains 2n states.
For software systems however, variable valuations map to much more expressive
domains than Boolean, such as integers of various or infinite size and floating
point numbers, which also contain values such as ±1 or not-a-number NaN.
These values can change from one program line to the other, such that for a
variable space of size n and j program lines, the state space contains n · j states.

Furthermore we might also encounter nondeterminism, depending on our in-
put model, which is not possible in standard hardware model-checking [Griggio
and Roveri, 2016]. Possible forms of nondeterminism would be either data non-
determinsm, i.e. the programs reads input values from the user or the current
timestamp, or control-flow nondeterminsm, i.e. a program can nondeterministi-
cally branch or loop. While constructs for non-deterministic control-flow are not
present in most programming languages, from a program-analysis point-of-view,
we can easily construct such nondeterminism by comparison of values with non-
deterministic data, such as user input, in the guards of if- or while-statemens.
In addition, simple probabilistic programs that can branch based on the result
of throwing a fair coin, can be translated into non-deterministic branching, if
one is only interested in reachability of a certain state.

IC3-SMT The problem of more expressive variables can easily be solved by
replacing propositional logic with first-order theories, replacing a SAT-solver
with an SMT-solver. With this modification, an intuitive lifting [Cimatti and
Griggio, 2012] is to model all variables in first-order theory and add an additional
variable pc that models the program counter, i.e. the respective position in the
program.

However, even this simple approach, called IC3-SMT, reveals a problem
inherent to all IC3 liftings: The termination of IC3 relies on the finiteness of
the state space and a progress assumption, i.e. in each step at least one new
state has to be discovered. More concretely, IC3 uses the solver’s model for
satisfied formulas to extract the violating predecessor and later generalizes this

4.1. PREVIOUS APPROACHES 85

state to a set of states by the procedures explained in Section 3.3. This however
is not straightforward in such a lifting since the generalizations of Section 3.3
can only yield finite sets, while the state space for the SMT case can be infinite
for theories like LRA/LIA (see Section 2.1.2). The consequence is that only
finite subparts of the infinite state space are excluded, thus termination cannot
be guaranteed.

To circumvent this, [Cimatti and Griggio, 2012] recommends to use exact
preimages of bad states. To do so, the authors use weakest preconditions (WP)
using quantified formulas, i.e. a formula which existentially quantifies the vari-
ables after the transition, and solve the formula using quantifier elimination.
This however is not always possible, but only for those SMT theories that admit
quantifier elimination. This is not the case for all theories, but for the remain-
der we assume only theories containing quantifier elimination algorithms. For
more information on quantifier elimination see [Kroening and Strichman, 2008].
Note that while quantifier elimination can solve the problem of diverging into
blocking single-state predecessors, the elimination is usually computationally
expensive.

Example 4.1. We will sketch the idea of IC3-SMT on the SV-COMP
benchmark gcd_2_true-unreach-call from the bitvector category. For sim-
plicity, Listing 1 shows the inlined C code. We will not exercise a full
run of IC3-SMT, but rather show a small excerpt that illustrates the way
IC3-SMT behaves.

We start by translating the C program from Listing 1 into the global
transition relation T :

T := . . .

((pc = 4)) =) ((pc0 = 5) ^ (y0 = b)) ^
((pc = 5) ^ (a < 0)) =) (pc0 = 6) ^
((pc = 5) ^ ¬(a < 0)) =) (pc0 = 7) ^
. . .

((pc = 9) ^ (b 6= 0)) =) (pc0 = 10) ^
((pc = 9) ^ ¬(b 6= 0)) =) (pc0 = 13) ^
. . .

((pc = 12)) =) (pc0 = 9) ^ a
0 = t

. . .

86 CHAPTER 4. SOFTWARE VERIFICATION WITH IC3

1 #include "assert.h"
2

3 int main() {

4 signed char a = __VERIFIER_nondet_char();

5 signed char b = __VERIFIER_nondet_char();

6 signed char y, t;

7 y = b;

8 if (a < (signed char)0) {

9 a = -a; }

10 if (b < (signed char)0) {

11 b = -b; }

12 while (b != (signed char)0) {

13 t = b;

14 b = a % b;

15 a = t; }

16 if (y > (signed char)0) {

17 assert(y >= a); }

18 return a; }

Listing 1: C program computing the GCD (from SV-COMP bit-vector set)

Note that we start the program counter value in the first line of the main,
such that line numbers in Listing 1 and pc values are offset by three.
Such a T looks very similar to what we have seen from IC3 in Chapter 3,
except that we now take the control flow of the program into account by
the program counter pc. We can see that T matches the if in line 8 of
Listing 1 by two distinct transitions from (pc = 5) with different premises
and implications. Furthermore, we represent the loop condition of the
while loop in line 12 by an increment of the pc if the guard is satisfied and
a jump to line 16 when the guard is not valid. At the end of the loop, we
jump back to evaluate the guard again.

Given T , we identify P = ¬(pc = 14 ^ y < a). We now start IC3
as presented in Section 3.2, by checking for zero-step counterexamples,
i.e. sat (pc = 1 ^ pc = 14 ^ y < a)?, and one-step counterexamples, i.e.
sat (pc = 1 ^ T ^ pc

0 = 14 ^ y
0
< a

0)?, which are both unsatisfiable. Af-
ter these initial checks, we initialize the frame sequence to F0 = pc = 1
and F1 = P . As a first CTI we will find a partial assignment ' like

4.1. PREVIOUS APPROACHES 87

pc = 13, y = 1, a = 0 with c = (pc = 13) ^ (y = 1) ^ (a = 0). Given this
CTI cube c, we check whether c is inductive relative to F0. Therefore we
check (pc = 1) ^ ¬((pc = 13) ^ (y = 1) ^ (a = 0)) ^ T ^ ((pc0 = 13) ^ (y0 =
1) ^ (a0 = 0)). This query is not satisfied, since T does not contain a
transition from (pc = 1) to (pc0 = 13). We therefore want to block c and
thus generalize it. To do so, we start by dropping the literal pc = 13 from
c and check whether the remaining cube is still inductive relative to F0.
The query (pc = 1) ^ ¬((y = 1) ^ (a = 0)) ^ T ^ ((y0 = 1) ^ (a0 = 0)) is
satisfied by the assignment pc = 1, y = 1, a = 1, y0 = 1, a0 = 0 and thus
dropping (pc = 13) fails. This is a very characteristic outcome of IC3-SMT
when trying to drop the literal containing the program counter variable pc

from c. Due to the linear behaviour of programs, dropping this clause will
fail in almost all cases, leading to a large amount of unnecessary SMT
queries. We omit further details on the flow of IC3 and refer the reader to
Example 3.2 for a more detailed example on IC3.

While IC3-SMT offers a very intuitive and simple way to adapt IC3 to soft-
ware model-checking, the evaluation of [Cimatti and Griggio, 2012] shows that
in practice, the performance of IC3-SMT is very limited. While [Cimatti and
Griggio, 2012] does not offer any explanation why IC3-SMT performs bad in
practice, we believe that one of the reasons is that IC3-SMT attempts to mix
control- and dataflow by modelling control-flow as just another program vari-
able. While this approach is sound, it seems that control- and dataflow are
just too different to be mixed this way. In particular modelling the program
counter as a simple program variable will lead IC3 in many failing attempts to
generalize parts of the binary representation of the program counter. By trying
to drop some of the Boolean variables representing the program counter, IC3
will create a cube that distributes over multiple, non-adjacent program counter
evaluations, such that inductivity of such cube fails most likely.

Tree-IC3 Therefore [Cimatti and Griggio, 2012] propose another, more ad-
vanced approach to software model-checking via IC3. The method called Tree-
IC3 tries to compensate the shortcomings of IC3-SMT by exploiting the control-
flow structure of the program. To do so, Tree-IC3 takes the control-flow graph
of a program and, just like CEGAR, unrolls it into an abstract reachability tree
(ART). This way, control-flow is represented in an explicit way, while data is
still kept symbolic. [Cimatti and Griggio, 2012] describe their method as ”an
explicit-symbolic approach, similar to the lazy abstraction approach of [Hen-
zinger et al., 2002]”.

88 CHAPTER 4. SOFTWARE VERIFICATION WITH IC3

The ART, that is unwound using a DFS strategy, associates each node n

with a tuple (`,D) consisting of a program location ` and a set of clauses D =
{d0, . . . , dn}, where location `i characterizes the program counter value pc = i

control-flow representation. Like [Henzinger et al., 2002], Tree-IC3 unrolls the
ART until it unrolls to a node ne that is associated with an error location `E .
Given such a node ne, the path ⇡ = ni, . . . ,ne from ni to ne corresponds to a
sequence of program locations `0, `1, . . . , `E that lead from an initial location `0
to an error location `E . As such ⇡ could be a counterexample path indicating
a violation of the property. However, ⇡ is only based on the control-flow of
the program and we don’t know yet, whether the path is feasible, i.e. there
exists an execution of the program along ⇡. We therefore call ⇡ an abstract
counterexample path. While both procedures, Tree-IC3 and the lazy abstraction
from [Henzinger et al., 2002], are identical up to this point, Tree-IC3 diverges
from [Henzinger et al., 2002] by applying a procedure that mimics the blocking
procedure of IC3 to ⇡. While [Henzinger et al., 2002] analyzes the abstract
counterexample in a monolithic way by considering all transitions at once, Tree-
IC3 uses the characteristic single-step approach of IC3. Since the analysis is
limited to ⇡ only, Tree-IC3 can ignore the control-flow aspect and more or less
apply the standard IC3 approach, except for a few differences:

1. since clauses of a node are implicitly conditioned to a control-flow location
a clause such as ¬ (pc = pci) _ d in IC3-SMT becomes just d in node
n = (pci, . . .). As a consequence the clause expressing the unreachability
of the error location ¬ (pc = pce) becomes the empty clause

W
; = false.

2. given a transition formula Ti from node ni to node ni+1, Tree-IC3 encode
only the dataflow of the transition into Ti since the control-flow part is
expressed explicitly in the ART.

3. consider an abstract counterexample path ⇡ = ni,n1, . . . ,nk,ne on which
an IC3-style blocking phase is to be applied. Whenever a CTI state in
De associated to node ne is found to not be inductive, its predecessors
have to be determined. However, due to the explicit-symbolic setting, the
control-flow is to be respected and transitioning is only allowed to the
location `k associated to node nk. This implies that in every step in ⇡

different transitions Ti are to be considered.

[Cimatti and Griggio, 2012] also note that the original inductivity check (3.2)
cannot be applied to Tree-IC3, but rather needs to be changed to

Fi�1 ^ Ti�1) ¬c0 (4.1)

4.1. PREVIOUS APPROACHES 89

in order to stay sound. While [Cimatti and Griggio, 2012] explain this with
the different transition formulas Ti, we will have a more in-depth look at the
reasons for this modification and when to relax (4.1) in Section 4.2.

Due to the explicit handling of control-flow it is no longer possible to use
IC3’s termination criterion directly, but rather we have to reformulate it in the
spirit of the explicit-symbolic state space representation. On Boolean transition
systems, IC3 will terminate when it encounters an inductive frame, i.e. a frame
Fi for which it holds that Fi = Fi+1. For IC3-SMT we were able to apply this
criterion as well, since the program counter became part of the symbolic state
space. However, for explicit control-flow, we must reconsider what inductivity
means in this context. On a very abstract level, inductivity means that given
a set of states S and a transition relation T , S is closed under T , i.e. 8s 2
S.(s, s0) 2 T) s

0 2 S. When we lift this interpretation to ARTs, this means
that all reachable states must have been visited. Such an ART is called complete.
Formally, no node exists that has successor nodes with associated tuples (`,D),
such that there exists another node associated with (`0,D0) where ` = `

0 and
D

0) D. In other words, we must forbid visiting nodes that are associated to a
location that we have visited before and this previously visited node is associated
with a larger state set. Thankfully this criterion, called node coverage, has been
studied extensively in the context of ART-based algorithms such as CEGAR,
e.g. [Henzinger et al., 2002]. Tree-IC3 therefore adopts the standard coverage
check and terminates when all nodes are covered.

While Tree-IC3 noticeably differs from IC3-SMT, three key aspects of IC3
are recognizeable in Tree-IC3:

1. By unrolling the ART and refining clause sets according to IC3’s invariants
(3.4) to (3.7)1 until all nodes are covered, it aims at finding a sufficient
strengthening for all nodes that results in an inductive ART.

2. Furthermore, Tree-IC3 constructs its strengthening for ART nodes in
an incremental way by checking inductivity on abstract counterexample
paths in a step-wise fashion, which contrasts the monolithic approaches
usually found in ART-based CEGAR algorithms.

3. Finally, by using the IC3-style blocking procedure on abstract counterex-
ample paths, it can be considered as property guided. More specifically,
an error node corresponds to a ¬P -state in standard IC3 with the last
non-error node being the CTI state.

1Note that due to the extraction of the pc variable, (3.5) is satisfied by construction and
thus not considered any further.

90 CHAPTER 4. SOFTWARE VERIFICATION WITH IC3

[a =?]1

[b =?]2

[y = 0, t = 0]3

[y = b]4

[a < 0]5

[a = �a]6

[b < 0]7

[b = �b]8

[b 6= 0]9

[t = b]10

[b = a%b]11

[a = t]12

[y > 0]13

[y � a]14Error

>

?

>

?

>

?

>

?

?
>

Figure 4.1: Control-flow graph corresponding to Listing 1

4.1. PREVIOUS APPROACHES 91

Example 4.2. Recall the example C program from Listing 1 on page 86.
We start Tree-IC3 by building the control-flow graph G of the program as
depicted in Figure 4.1. We unroll G into an ART like any other stan-
dard ART-based model checker until we find an error location in the
ART. A sketch of such an ART is shown in Figure 4.2a with the ab-
stract counterexample path marked in red. For this abstract counterex-
ample, Tree-IC3 has to check whether it is spurious or not. It does so
by starting the IC3 search phase as usual: We determine the CTI cube
c = (y � a) and check whether this is inductive relative to Fj�1 where
j is the depth of the counterexample trace, in this case 10. Using the
known IC3 search phase, we find that the abstract counterexample path
is backwards feasible until we reach location `5 where the cube c of proof
obligation (5, c = (y < a ^ y > 0 ^ b = 0 ^ b � 0 ^ a � 0) is inductive
relative to F4. This is due to the transition y = b that conflicts with c. We
can use the unsatisfiable core of the query to generalize c to y > 0^ b = 0.

We omit the remainder of the blocking phase and instead give the
resulting ART (depicted in Figure 4.2b) after blocking all CTIs. Thus the
abstract counterexample path was spurious. Since there exist uncovered
nodes, we continue the ART unrolling.

[Cimatti and Griggio, 2012] compare their implementations of IC3-SMT and
Tree-IC3, together with another variant using Craig interpolation, that will be
considered later, and other model-checking tools that use lazy abstraction. The
experimental results reveal that Tree-IC3 cannot only solve a significantly larger
portion of the chosen benchmark set, but also does so much faster. For some
benchmarks, the performance differs up to three orders of magnitude.

The results from [Cimatti and Griggio, 2012] motivate the extraction of
control-flow in the form of explicit-symbolic representations that simplify the
handling of the different aspects of control- and dataflow. However, we found
that unrolling the control-flow into the tree-structured ART, as well as the nec-
essary coverage checks that come associated with this, introduce an additional
overhead while at the same time diverge from the original spirit of the IC3
algorithm.

To solve this discrepancy we aimed to design an algorithm that more closely
resembles IC3 while at the same time exploiting the advantages offered by ex-
tracting the control-flow from the symbolic representation. In the remainder of
this chapter, we start with a detailed description of our algorithm called IC3CFA
for IC3 software model-checking. In Section 4.2 we adapt the search/blocking

92 CHAPTER 4. SOFTWARE VERIFICATION WITH IC3

(`1, true)

(`2, true)

(`3, true)

(`4, true)

(`5, true)

(`7, true)

(`9, true)

(`13, true)

(`14, true)

Error ...

...

...

a =?

b =?

y = 0, t = 0

y = b

a � 0

b � 0

b = 0

y > 0

y < a

(a) Abstract reachability tree un-
rolled from CFG of Figure 4.1

(`1, true)

(`2, true)

(`3, true)

(`4, true)

(`5,¬(y > 0 ^ b = 0))

(`7,¬(y > 0 ^ b = 0))

(`9,¬(y > 0 ^ b = 0))

(`13,¬(y > 0))

(`14,¬true)

Error ...

...

...

a =?

b =?

y = 0, t = 0

y = b

a � 0

b � 0

b = 0

y > 0

y < a

(b) Abstract reachability tree after IC3
search/blocking phase

Figure 4.2: Example ART unrolling of CFG from Figure 4.1

4.1. PREVIOUS APPROACHES 93

phase of IC3 to the new control-flow structure. Section 4.3 presents how gen-
eralization can be applied to our algorithm and which consequences this has.
In Section 4.4 we will take a closer look at the pushing/propagation phase of
IC3CFA and discuss issues and solutions. The chapter concludes with a com-
parison to other methods for IC3-style software model-checking in Section 4.5.

94 CHAPTER 4. SOFTWARE VERIFICATION WITH IC3

4.2 IC3CFA

In this section, we present the search phase of our algorithm for IC3-style soft-
ware model-checking that is applied to a control-flow automaton (CFA) without
unrolling the transition relation, called IC3CFA. We will start by introducing
the main idea underlying IC3CFA and later give a pseudocode sketch of IC3CFA
with annotated pre- and postconditions. We will present the algorithm in a way
that is similar to the presentation of IC3 in [Bradley, 2011] and show that the
proof of correctness is mostly analogously. Afterwards we will review the relative
inductivity query (4.1) presented in [Cimatti and Griggio, 2012] and present a
relaxation. We will conclude this section by a detailed evaluation of the IC3CFA
algorithm with comparison to other control-flow oriented IC3 algorithms, such
as Tree-IC3.

4.2.1 Preliminaries
In the previous section, we saw the Tree-IC3 algorithm of [Cimatti and Griggio,
2012], one of the first liftings of IC3 to software model-checking. In the com-
parison to IC3-SMT [Cimatti and Griggio, 2012], we saw that the extraction
of control-flow has a large beneficial effect on the overall algorithm. However,
unrolling the control-flow graph (CFG) into an ART and doing all the coverage
checks for all nodes adds some tedious overhead to the algorithm. So in order to
avoid this overhead our aim is to apply IC3 in a more direct way. In particular,
our objective is to avoid the unrolling, since monolithic unrolling also diverges
from the incremental nature of IC3.

For our algorithm, we use a slightly different form of control-flow representa-
tion than [Cimatti and Griggio, 2012]. The most common definition of control-
flow graphs (CFG) in the sense of [Nielson et al., 1999] considers control-flow
graphs to be graphs where nodes are labeled with program instructions and
edges indicate successor instructions. However, for our setting of lifting IC3 to
control-flow, we found the notion of program instructions as transitions between
variable valuations (states), used in control-flow automata (CFA) as defined in
other software model-checking environments [Beyer, Cimatti, et al., 2009], more
appropriate. A more detailed explanation and a formal definition of a CFA is
given on page 47. In such CFA, the nodes are simply abstract states before
execution of an instruction and edges are labeled with program instructions.
From a semantic point of view, an edge transforms a pre-state to a post-state
by the predicate transformer that is defined by the edge label.

In order to apply IC3 to a CFA, let us reconsider IC3-SMT. While not

4.2. IC3CFA 95

the best performing, its simple design makes it easy to reason about and its
correctness is obvious from the correctness of IC3. Given the state space of
IC3-SMT, extracting the control-flow variable pc into a CFA with n locations
yields a partitioning of n equally large, disjunct state spaces Si that are induced
by the program variables v 2 Var , where each such Si is implicitly conditioned
by pc = i. If we define the program counter value to start with 0 before the first
program instruction and to be incremented after each instruction, we associate
each pc = i with location `i and thus also Si is associated with `i.

In order to formalize this splitting, we define data regions and regions along
the lines of [Henzinger et al., 2002].

Definition 4.1 (Data region). A data region is represented by a quantifier-
free FO-formula ' over Var and consists of all variable assignments �
satisfying ', i.e., {� | � |= '}.

Following Definition 4.1, we can now reason about sets of states in the state
space that are defined only by program variables. In order to incorporate the
program location in the spirit of one location implicitly being conditioned to
a data region, we define what we call regions, in [Henzinger et al., 2002] also
referred to as atomic region.

Definition 4.2 (Region). We define a region r = (`,') as a pair consisting
of location ` 2 L and data region '. The corresponding formula of region
r = (`i,') is defined as (pc = pci ^ '). Analogously, the corresponding
formula for ¬r is defined as ¬ (pc = pci ^ ').

Assume an IC3-SMT-transition pc = i ^ ^ pc
0 = j with some predicate

transformer (V ar,V ar
0) transforming variable assignment � to primed succes-

sor assignment �0. The transformer will be the label of CFA A = (L,G, `0, `E)
along the edge from location `i to `j , i.e. (`i, , `j) 2 G

2. For convenience,
we define local transition formulas that map to the corresponding transition
formula whenever such an edge exists.

2Note that, while CFA edges are defined over L ⇥ GCL ⇥ L, the edge label cmd and its
corresponding formula representation (V ar,V ar0) will be used where appropriate, i.e. for
analogy to IC3-SMT, (V ar,V ar0) is more appropriate, whereas for WP computations we
have to use cmd.

96 CHAPTER 4. SOFTWARE VERIFICATION WITH IC3

Definition 4.3 (Local transition formula). Given two locations `1, `2 2 L,
we define the transition formula between `1 and `2 as

T`1!`2 =
_
 i, for all (`1, i, `2) 2 G (4.2)

(4.3)

We define the global transition formula as follows.

Definition 4.4 (Global transition formula). Given a CFA A, we define
the global transition relation as

T =
_

(`1,t,`2)2G

T`1!`2 . (4.4)

Example 4.3. Reconsider our example C program from Listing 1 on
page 86. A corresponding CFA A according to Definition 2.23 is depicted
in Figure 4.3. This CFA A induces local transition formulas like

T`3!`4 = (y0 = b),

T`5!`6 = (a < 0), or
T`3!`5 = false.

The extraction of control-flow has some noticeable effect on two important
state sets of IC3, namely the initial states I and the property states P :

For the verification of safety properties, we can add a dedicated error state,
as suggested by [Cimatti and Griggio, 2012] with pcE . This error state indicates
that the property P of the system is violated and as such the pure reachability
of pcE suffices for the verification engine to return UNSAFE as a result. Using
pcE , the property formulation is as simple as P = (pc 6= pcE). In analogy our
CFA A, as defined in Section 2.4, consists of a dedicated error location `E . When
extracting the control flow, P becomes the empty set of clauses

V
; = true for

all regions with locations ` 6= `E . In other words, every state is a P -state, if it
is not associated with `E .

A similar behaviour occurs for the initial states: In software model-checking,
an initial state can only occur at pc = 0, but depending on the semantics of the
programming language we encounter different assumptions about uninitialized

4.2. IC3CFA 97

`0start

`1

`2

`3

`4

`5

`6

`7

`8

`9

`10

`11

`14 `12

`13

`E

a :=?

b :=?

y := 0; t := 0

y := b

assume a < 0

assume a � 0

a
:=
�a as

su
m
e
b
<
0

as
su
m
e
b
�
0

b
:=
�
b

assum
e
b 6=

0

assum
e
b
=

0

t :=
b

b :=
a%
b

a
:=

t

assume y > 0

assume y 0

ass
um

e y
� a

assume y < a

Figure 4.3: Control-flow automaton corresponding to Listing 1

98 CHAPTER 4. SOFTWARE VERIFICATION WITH IC3

variables3. For the remainder of this thesis, we assume the most general setting
which is the one where an uninitialized variable can have any arbitrary value
from their respective domain. We therefore formulate an IC3-SMT initial state
representation as I = (pc = 0). Just like for the error location, the extraction of
control flow yields the symbolic representation

V
; = true for the initial location

`0 of CFA A and false for all other locations ` 2 L \ {`0}.
Establishing the partitioning of the state space, we also have to split the

frame sequence F0, . . . ,Fk into a family of frame sequences {F(0,`0), . . . ,F(k,`0);
. . . ;F(0,`n), . . . ,F(k,`n)}, one for each CFA location `i 2 L. According to this
partitioning, for a clause d 2 Fi it holds that d|pc 2 F(i,`j) iff d[pc] |= binary(j),
i.e. the binary encoding of j is one possible model of the pc-variables of d.
This means that d reasons at least about regions in program location `j , but it
might also reason about regions in many more program locations. With such
a splitting into a family of frame sequences, each entry F(i,`) characterizes the
states in the variable’s state space that are reachable in location ` in at most i

steps. Note that we follow IC3 by not creating frames for the error location `E ,
just like IC3 does not include ¬P -states in any Fi according to (3.6).

As a consequence of location-local frames, we have to adapt the invariants
(3.4) to (3.7) slightly: Given a CFA A, for all ` 2 L \ {`E} it holds that:

true) F(0,`0) (4.5)
F(i,`)) F(i+1,`), 8 0 i < k (4.6)
F(i,`)) true, 8 0 i k (4.7)

F(i,`) ^ T`!`0) F
0
(i+1,`0), 8 0 i < k. (4.8)

As we can see, the invariants (4.5) and (4.7) become fairly simple for IC3CFA,
due to the explicit handling of control-flow locations. For the construction of
our algorithm, we will thus make sure that F(0,`0) is initialized to true and all
other F(0,`) are initialized to false to cover (4.5). Similarly, we will initialize
every frame F(i,`) to true for i � 1 to satisfy (4.7).

One of the main differences in the construction of Tree-IC3 and IC3CFA is
IC3CFA’s ability to represent loops as such. Tree-IC3’s approach of unrolling
control-flow into an ART enables it to reason about simple, linear paths. How-
ever, the advantage of simplicity also brings the disadvantage of making it hard
to detect loops in the program as such. In addition, as far as [Cimatti and

3For pc = 0 we have not executed any program instruction and thus every variable is
uninitialized.

4.2. IC3CFA 99

Griggio, 2012] goes, Tree-IC3 is not able to use already learnt lemmas about the
state space of a control-flow location. For IC3CFA however, we abandon the
monolithic unrolling and determine reachability information from single steps
in the CFA’s transition relation. Furthermore the explicit presence of loops,
allows us to establish (4.6) in order to detect inductivity almost like IC3. More
specifically, we can detect that IC3CFA has reached a fixpoint iff there exists
some i, such that F(i,`) = F(i+1,`) for every ` 2 L \ {`E}.

Lemma 4.1. If for some 0 i < k it holds that F(i,`) = F(i+1,`) for all ` 2
L \ {`E} then the conjunction

V
`2L\{`E}

F(i,`) forms an inductive strengthening.

Proof. In order to prove Lemma 4.1, we show the equivalence of termination
of IC3CFA and IC3-SMT. The termination of IC3-SMT has a trivial correspon-
dence to termination in IC3, such that we omit this extra step here.

Assume that for some i in IC3-SMT, Fi = Fi+1. Let C be the set of all
possible states of the input system. We can partition C into j disjoint sets Cj ,
such that c 2 Cj , (pc = j ^ c 2 C). The termination condition is symbolically
encoded by:

9Fi,Fi+1 ✓ C. Fi = Fi+1

(3.7)() 9Fi,Fi+1 ✓ C. Fi = Fi+1 ^ (8f 2 Fi. succ(f) 2 Fi+1)

() 8pcj 2 PC 9F(i,pcj),F(i+1,pcj) ✓ Cj .

F(i,pcj) = F(i+1,pcj) ^

0

@8f 2 F(i,pcj). succ(f) 2
[

pcs2succ(pcj)

F(i+1,pcs)

1

A

() 8` 2 L \ {`E} 9F(i,`),F(i+1,`) ✓ Cj .

F(i,`) = F(i+1,`) ^

0

@8f 2 F(i,`). succ(f) 2
[

`s2succ(`)

F(i+1,`s)

1

A

(4.8)() 8` 2 L \ {`E} 9F(i,`),F(i+1,`) ✓ Cj .F(i,`) = F(i+1,`).

In order to show the equivalence of both termination methods, we start by con-
sidering the termination of IC3-SMT, where we terminate iff there exists two
consecutive frames Fi and Fi+1 that are identical. In order to prove the equiva-
lence we also need to take into account the invariant (3.7), since both conditions
are required for inductivity. Given the IC3-SMT formulation of inductivity, we
partition the state space as explained above into a set of disjoint state sets, each

100 CHAPTER 4. SOFTWARE VERIFICATION WITH IC3

indicating a different pc value. The partitioning of the state space obviously
implies that frames, which can reason about many different pc values, have to
be split, too. By definition, a pc location can only have a fixed set of succes-
sor locations, such that we don’t have to consider F(i+1,pch) for all pch 2 PC ,
but only for the subset {F(i+1,pcs) | pcs 2 succ(pcj)} of successor locations of
pcj . Using the analogy between the program counter value and the location
` 2 L \ {`E} of CFA A we can replace every occurence of pci by `i. In the
last step, we can remove the successor condition, since it is ensured by invariant
(4.8).

Having considered in Lemma 4.1 what inductivity in the presence of a CFA
means, the next step is to define a notion of inductivity relative to some state
set. Just like for inductivity, the extraction of control-flow allows us to exploit
the control structure of the program in order to consider only small parts of
arbitrarily large and complex programs for a single step of the transition relation.
We therefore refer to inductivity relative to some state set along a specific edge
T`1!`2 as edge-relative inductivity.

Definition 4.5 (Edge-relative inductivity). Given a CFA A and locations
`1, `2 2 L, a formula ' is edge-relative inductive to another formula ⇢ if

⇢ ^ ' ^ T`1!`2 =) '
0 (4.9)

is valid.

Note that edge-relative inductivity does also hold if (`1,', `2) /2 G for any
'. In this case, T`1!`2 = false, which makes (4.9) hold trivially, i.e. if A is in
a state satisfying ' and cannot leave it via the considered edge, it remains in a
state satisfying '. However, as already hinted at earlier and also mentioned in
[Cimatti and Griggio, 2012], we have to modify relative inductivity somewhat.
In order to do so, we only consider the case that is at the heart of the IC3 algo-
rithm: Inductivity of a negated formula ¬' relative to a non-negated formula
⇢. In analogy, we will reason about inductivity of a negated region r1 relative
to a non-negated region r2.

Lemma 4.2 (Relative inductive regions). Assuming two regions r1 = (`1,'1),
¬r2 = ¬ (`2,'2), the edge-relative inductivity of ¬r2 to r1 equals

'1 ^ T`1!`2) ¬'0
2 , if `2 6= `1 (4.10)

'1 ^ ¬'2 ^ T`1!`2) ¬'0
2 , if `2 = `1 (4.11)

4.2. IC3CFA 101

Proof. To prove Lemma 4.2, we first define an extended transition formula

T̂`1!`2 := pc = `1 ^ T`1!`2 ^ pc
0 = `2

and replace all occurrences of T`1!`2 in Lemma 4.2 with T̂`1!`2 . This is a valid
substitution, since it preserves validity of Lemma 4.2 and only adds additional,
explicit assignments of pc and pc’. Given two regions r1 = (`1,'1) and r2 =
(`2,'2) with corresponding formulas 1 and 2, we have:

 1 ⌘ (pc = `1 ^ '1) ¬ 2 ⌘ ¬(pc = `2 ^ '2).

Definition 4.5 yields:

(pc = `1 ^ '1) ^ ¬(pc = `2 ^ '2) ^ T̂`1!`2) ¬(pc0 = `2 ^ '0
2)

⌘ (pc = `1 ^ '1) ^ (pc 6= `2 _ ¬'2) ^ T̂`1!`2) (pc0 6= `2 _ ¬'0
2).

If `1 6= `2, this is equisatisfiable to

(true ^ '1) ^ (true _ ¬'2) ^ T̂`1!`2) (false _ ¬'0
2)

⌘ '1 ^ T̂`1!`2) ¬'0
2

⌘ '1 ^ T`1!`2) ¬'0
2.

Otherwise, we obtain

(true ^ '1) ^ (false _ ¬'2) ^ T̂`1!`2) (false _ ¬'0
2)

⌘ '1 ^ ¬'2 ^ T̂`1!`2) ¬'0
2

⌘ '1 ^ ¬'2 ^ T`1!`2) ¬'0
2.

Applying Lemma 4.2 to edge-reglative inductivity for frames yields the re-
fined definition of edge-relative inductivity formalized in Definition 4.6.

Definition 4.6 (Edge-relative inductivity). Given a CFA A and two lo-
cations `1, `2 2 L, a clause ¬c is inductive relative to frame F(i,`1) if

F(i,`1) ^ T`1!`2) ¬c0 , if `2 6= `1 (4.12)
F(i,`1) ^ ¬c ^ T`1!`2) ¬c0 , if `2 = `1. (4.13)

102 CHAPTER 4. SOFTWARE VERIFICATION WITH IC3

Example 4.4. Reconsider the CFA A from Figure 4.3 on page 97. We
will use this example CFA to illustrate how relative inductivity works for
IC3CFA. Consider the cube c = (y � a), the transition from `12 to `13 and
frame F(5,`12) = ¬ (y > 0). Then ¬c is inductive relative to F(5,`12) along
e = (`12, assume y > 0, `13) 2 G iff

unsat (¬ (y > 0) ^ (y > 0) ^ (y � a))?

This query is unsatisfiable due to the conflict between ¬ (y > 0) and (y > 0)
and therefore c is inductive relative to F5 along e. Note that neither y nor
a appear primed in c

0, since T`12!`13 does not assign these variables.

Having presented the previous liftings of IC3’s main concepts of the search
phase to the presence of a CFA A for software verification, we are still missing
one important link: Given a clause ¬c at some level i that is not inductive
relative to Fi�1, IC3 needs a predecessor s to continue the search by checking
inductivity of s relative to Fi�2. Determining a predecessor in IC3 is fairly
simple and comes at almost no cost, since it takes the model of the SAT-solver
which gives a satisfying assignment for a ¬c-state spre that has a primed c-
successor spost, which is the reason for the violation of inductivity relative to
Fi�1. Projecting the satisfying model on non-primed variables only yields a
cube that is an underapproximation of the predecessors of c. For IC3 picking
such s is a very convenient choice, since s will be generalized afterwards, in
order to speed up convergence, and with finitely many iterations IC3 can check
all predecessor states in the finite Boolean transition system.

But, as already mentioned earlier in the context of Tree-IC3 [Cimatti and
Griggio, 2012], picking a solver model is not suitable for IC3-style software verifi-
cation, since there may be infinitely many predecessor states. A possible solution
is to use theory-aware generalizations. We try to avoid this in order to allow
a modular design of the underlying structure, i.e. exchange theories as neces-
sary depending on the input model, and to avoid implementing a generalization
procedure for every theory (combination). The alternative, which is also used
by [Cimatti and Griggio, 2012], is to use weakest preconditions (WP) in order
to compute an exact preimage of c. While WP allows us to remove repeated
computations of underapproximations, it does come at a high price: While on
average the costs for WP computations are mostly linear, for some instances,
also in practical applications, it exhibits its worst-case exponential behaviour.
A somewhat more involved method is to lazily compute underapproximations

4.2. IC3CFA 103

using model-based projection [Bjørner and Janota, 2015; Komuravelli, Bjørner,
et al., 2015; Komuravelli, Gurfinkel, et al., 2014], but this again requires dedi-
cated theory-aware projections for each theory. We therefore omit model-based
projection in the remainder and use the mentioned WP construction. Later in
this chapter we will present and evaluate a method that can help to reduce the
impact of the WP computation by efficiently caching parts of the WP construc-
tion that lead to the exponential blow-up.

As a last step, we have to modify proof obligations: In order to correctly
create an inductivity query from a proof obligation, we need to store not only
the level i and the cube c, but also the CFA location ` to associate it with a
frame F(i,`) to check inductivity of c relative to F(i,`).

4.2.2 The IC3CFA algorithm
With the presented adaptations of all important aspects of IC3’s search phase
to CFAs, we will now present the basic IC3CFA algorithm. We will focus the
remainder of this section on the search phase of IC3CFA, present the IC3CFA
algorithm, and prove its correctness. In Sections 4.3 and 4.4, we will have a
closer look at how we can apply generalization and propagation to IC3CFA and
which peculiarities we have to consider in that case.

In order to stress the similarities between IC3 and IC3CFA and to simplify
the presentation, we will follow the presentation of [Bradley, 2011] and highlight
our modifications if they are more than just notational changes, e.g. we don’t
highlight all changes from Fi to F(i,`), but we will mark how ` is determined.
Considering the proof of correctness of the algorithm, we will use annotated code
with pre-/postconditions like [Bradley, 2011] which allows us to construct the
proof more easily. We begin with the top-level function PROVE which includes
the top-level loop over iterations 1, . . . , k.

Except for a few small modifications, the PROVE function of Algorithm 12
works more or less like the original of [Bradley, 2011]. Apart from the modified
termination that was subject of Lemma 4.1, we only have to adapt the initial
checks for zero- and one-step counterexamples that cannot be detected in the
main loop of IC3. Zero-step counterexamples in IC3 are considered those where
an initial state already violates the property. For our CFA-based approach this
is exactly the case when the initial location `0 is also the error location `E .
For one-step counterexamples, i.e. I ^ T ^ ¬P 0 in [Bradley, 2011], we have
to detect whether a) there exists a transition from `0 and `E and b) whether
this transition is actually feasible. Since the initial region as well as the error
region is unconstrained in the data region, we just have to check whether there

104 CHAPTER 4. SOFTWARE VERIFICATION WITH IC3

Algorithm 12 Outer loop [Lange et al., 2015]
Ensure: return false iff `E is reachable

function PROVE(A)
Input: CFA A
Output: true () SAFE
if `0 = `E or ((`0, , `E) 2 G and sat ()?) then

return false

initialize frames
for k = 1 to . . . do

if not strengthen(k) then
return false

propagateClauses(k)
if clauses(F(i,`))=clauses(F(i+1,`)) for some 0 i < k, all ` 2 L then

return true

exists any assignment that satisfies the transition formula . If these checks
succeed, we proceed as in [Bradley, 2011] by initializing frames at level i = 0
and i = 1. We do so as described above by initializing F(0,`) to false for all ` 2 L

except for F(0,`0) which we set to true. This corresponds to F0 = I. All frames
F(1,`) are being initialized to true for all ` 2 L which conforms to F1 = P .
In the remainder we iterate over the ”frontier” k, starting with k = 1. After
entering this loop, we try to strengthen the frames at level k. If the function
STRENGTHEN fails, we have found a counterexample trace and we can return
false which corresponds to UNSAFE. Note that in Algorithm 12 we do not
consider counterexamples, but we will later present a simple way to determine
counterexample traces that can be enabled with only minor modifications. On
the other hand a successful strengthening means that no CTI is reachable any
more and we can propagate clauses. Before advancing to the next iteration k+1
we check whether we have constructed a sufficient strengthening according to
Lemma 4.1. If this is the case, then we can return true which corresponds to
SAFE; otherwise we have to increment k.

Whether a strengthening for some k exists is determined by the function
STRENGTHEN presented in Algorithm 13. Just like in the design of the IC3
algorithm in [Bradley, 2011], the function PROVE loops as long as there exist
CTI states. For IC3 this means that as long as there exists a satisfying model
for the formula Fk ^ T ^ ¬P 0 it will extract the predecessor s from the solver
model and explore the path leading to s. Due to the fact that we use WP to

4.2. IC3CFA 105

Algorithm 13 Strengthening [Lange et al., 2015]
Require: (a) k � 1
Require: (b) 80 i < k, ` 2 L,F(i,`)) F(i+1,`)

Require: (c) 80 i < k, `, `0 2 L, s.t. (`, , `0) 2 G, F(i,`) ^ T`!`0) F
0
(i+1,`0)

Ensure: 80 i < k, ` 2 L,F(i,`)) F(i+1,`)

Ensure: if ret. value then 80 i < k, `, `0 2 L, s.t.(`, , `0) 2 G, F(i,`)^T`!`0)
F

0
(i+1,`0)

Ensure: if ¬ret. value, there exists a counterexample path
function STRENGTHEN(k)
Input: Max level k
Output: true () strengthening at k exists
while 9`, s.t. sat

�
F(k,`) ^ T`!`E

�
? do

@assert (b),(c)
' := predecessor data region
if not backwardblock(k, (`,')) then

return false

@assert ' 6|= F(k,`)

return true

extract an exact preimage of ¬P we only have to consider a single data region
per location, such that this loop degrades to looping as long as there exists a
location ` for which a state in F(k,`) can take a transition to the error location
`E . If such ` with e = (`, cmd, `E) 2 G exists, we compute the CTI data region
' as wep (cmd, true) and call BACKWARDBLOCK with k and the region (`,').
If this returns false, it means that the backward search hit the initial location
`0, i.e. we found a feasible counterexample path, such that we update false

upwards the call stack to PROVE. On the other hand, if BACKWARDBLOCK
succeeds to block the path up to ', we can continue to the next iteration of
the loop and see whether there exists another CTI region to be considered.
If the loop terminates and there are no more CTI regions available we have
constructed a strengthening for level k and can return to PROVE. Note that
in the search for CTI regions, according to Definition 4.4, we don’t have to
specifically handle locations ` which do not have a transition to `E , since for
those locations T`!`E = false by definition, such that F(k,`) ^ T`!`E is not
satisfiable.

While Algorithms 12 and 13 follow [Bradley, 2011], we found their presen-
tation of the backward search for paths leading to CTI (`,') to be unneces-

106 CHAPTER 4. SOFTWARE VERIFICATION WITH IC3

Algorithm 14 Inner loop [Lange et al., 2015]
Require: (b),(c)
Require: sat

⇣
F(̂i, ˆ̀0) ^ '̂ ^ Tˆ̀0!`E

⌘
?

Ensure: if ret. value, then ¬'̂ is inductive relative to F(̂i�1,`), 8`, (`, t, ˆ̀0) 2 G

Ensure: if ret. value, then (b),(c)
Ensure: if ¬ret. value, there exists a feasible path `0 ˆ̀0

function BACKWARDBLOCK(̂i, (ˆ̀0, '̂))
Input: CTI level î, CTI location ˆ̀0, CTI data region '̂
Output: true () CTI is unreachable
Q.add(̂i, ˆ̀0, '̂)
while |Q| > 0 do

@assert 8(i, `0,') 2 Q. 0 i k

@assert 8(i, `0,') 2 Q. 9 path (`0,') (`E , true)
(i, `0,') = Q.pop
if i = 0 then

return false

else
@assert (`0,¬') is inductive rel. to F(j,`), 80 j < i, ` 2 L \ {`E}
for each `, s.t. (`, t, `0) 2 G do

if ` = `
0 and sat

�
F(i�1,`) ^ ¬' ^ T`!`0 ^ '0�? OR ` 6= `

0 and
sat
�
F(i�1,`) ^ T`!`0 ^ '0�? then

generate predecessor of '
@assert 8(i, `0,') 2 Q, 6= '

add (i� 1, `,) and (i, `0,') to Q

else
generalizeClause(')
block ' in frames F(j,`0) for 0 j i

return true

sarily complex and instead we chose the more appealing presentation of [Eén,
Mishchenko, et al., 2011] for the function BACKWARDBLOCK in Algorithm 14.
Calling BACKWARDBLOCK with the CTI’s level î, location ˆ̀ and data region
'̂, we start by pushing this triplet as the initial proof obligation into the obli-
gation queue Q. Like [Eén, Mishchenko, et al., 2011] the remainder of BACK-
WARDBLOCK consists of a loop that lasts as long as the obligation queue is
non-empty. Having entered the loop, we take the first proof obligation out of

4.2. IC3CFA 107

Q. If this obligation has level 0 we can return false without further investiga-
tion since the obligation must intersect the initial states; we will later see why.
Assume that the obligation has level i 6= 0, then we have to check inductivity,
like IC3 [Bradley, 2011] and PDR [Eén, Mishchenko, et al., 2011]. But due to
our explicit control-flow structure, we have to add another loop to Algorithm 14
which is not present in [Bradley, 2011; Eén, Mishchenko, et al., 2011]: IC3
checks whether ¬' is inductive relative to Fi�1, but since we split Fi�1 into
{F(i�1,`1), . . . ,F(i�1,`n)} we have to check inductivity of ' relative to F(i�1,`)

for every ` of incoming edge (`,', `0) 2 G.
However, the indegree of CFAs derived from real programs is commonly

very small, often less or equal three, such that the additional loop does not
add much overhead, given an efficient data structure for storing predecessor
locations. Since we know from Lemma 4.2 that we can use different inductivity
formulations depending on pre- and post-locations of the edge that we consider,
we find a three-fold branching inside the loop in Algorithm 14: Given that pre-
and post-location are identical and ' is not inductive relative to F(i�1,`), we
determine , the predecessor of ', using WP and add the new proof obligation
(i� 1, `,) to the obligation queue Q and put the current proof obligation back
into Q. For the case where ` 6= `

0, we do the same thing, but consider the
simpler relative inductivity that resembles reachability of ' from F(i�1,`). If
both conditions fail, i.e. if ' is inductive relative to F(i�1,`), we block ' in all
F(j,`0) for 0 j i.

Example 4.5. Let us illustrate the way IC3CFA proves a property by an
example run, using the GCD computation of Listing 1.

We start IC3CFA by checking the CFA A (see Figure 4.3 on page 97)
for 0-step counterexamples, but, since A has disjunct initial and error
states, none exists. For 1-step counterexamples, we have a similar situ-
ation, since no direct edge between initial and error location exists. We
therefore proceed to the initialization of frames. Here we set the frame
at level 0 for the initial location `0 to true and for all other locations to
false, i.e. F(0,`0) = true and F(0,`) = false, 8` 2 LP \{`0}. Note that for
convenience we define an auxiliary location set LP = L\{`E} which con-
tains all locations, except the error location. Furthermore, we initialize
all frames at level 1 to true, i.e. F(1,`) = true, 8` 2 LP . Afterwards, we
enter the strengthening procedure (see Algorithm 13) with k = 1. Since
location `13 is a predecessor to `E and the query sat

�
F(1,`13) ^ T`13!`E

�
?,

i.e. sat (true ^ y � a)?, is satisfied, we compute the CTI data region

108 CHAPTER 4. SOFTWARE VERIFICATION WITH IC3

' = (y � a) using the WEP according to Definition 2.21. We enter BACK-
WARDBLOCK with the parameters (1, (`13, y � a)) and add the corre-
sponding proof obligation (1, (`13, y � a)) to the queue Q. After entering
the while loop, we immediately pop this obligation back off the queue.
Since i is not equal to 0, we check for each predecessor location, in our
case just `12, whether ' is inductive relative to F(0,`12) along edge e =
(`12, assume y > 0, `13), i.e. whether sat

�
F(0,`12) ^ T`12!`13 ^ y

0 � a
0�? is

satisfied or in our case sat (false ^ y > 0 ^ y � a)?, which is obviously un-
satisfiable. We therefore block ' = (y � a) in F(1,`13), i.e. F(1,`13)
¬(y � a). Note that we effectively block ' in F(i,`) due to the use of delta
encoding, as presented in the context of IC3 on page 69. Since Q is empty,
we return from BACKWARDBLOCK to STRENGTHEN and find no remain-
ing CTI region, since for location `13, the query sat

�
F(1,`13) ^ T`13!`E

�
?

is unsatisfiable and no other predecessor location to `E exists. We have
thus found a strengthening for level k = 1 and can check whether for some
0 i k and all ` 2 LP the clauses of F(i,`) and F(i+1,`) are identical.
In our case, i = 0 is the only applicable level to check and the equivalence
check already fails for `1, where F(0,`2) = false 6= true = F(1,`2). We there-
fore proceed to the next iteration k = 2. There we again, find the CTI
data region ' = (y � a) and enter BACKWARDBLOCK with 2, (`13, y � a),
which is not inductive relative to F(1,`12) along e, in this case. We thus
determine the predecessor data region = (y � a)^ (y > 0) via WEP, add
the new obligation o2 = (1, (`12,)) to the queue and also put the original
obligation o1 = (2, (`13,')) back into the queue. In the next iteration of
the while-loop we will pop o2, since it has the lowest index. However, o2
is not inductive relative to F(0,`8) along e2 = (`8, assume b = 0, `12) be-
cause of F(0,`8) being false. We therefore block in F(1,`12) and continue
with o1, which has become inductive by blocking in F(1,`12) and can
therefore be blocked in F(2,`13), such that no CTI exists, any more. In the
termination check, we now have two indices to check: For i = 0, it fails,
due to F(0,`2) = false 6= true = F(0,`2), while for i = 1 it fails because of
F(1,`12) = ¬ 6= true = F(2,`12). We omit further iterations here. Our im-
plementation of the IC3CFA algorithm according to Algorithms 12 to 14
is able to prove the correctness of the C program as shown in Listing 1
(without any minimizations and optimizations on the C code) after 101
iterations, which takes a total verification time of 177.8 seconds, of which
151.6 seconds are spent for 15602 solver calls.

4.2. IC3CFA 109

4.2.3 Correctness
Having established the IC3CFA algorithm composed of Algorithms 12 to 14
in a similar fashion as the original IC3 algorithm presented in [Bradley, 2011]
with some borrowing of [Eén, Mishchenko, et al., 2011], we still have to show
the correctness of our algorithm. In order to simplify the proof, we have al-
ready annotated Algorithms 12 to 14 with a set of pre- and postconditions and
assertions.

In the remainder we will show the correctness of our IC3CFA algorithm by
proving the correctness of the postconditions given the respective preconditions
of Algorithms 12 to 14. Since the correctness of a function relies on the correct-
ness of each function it calls, we build our proof in a bottom-up fashion, starting
with the correctness of Algorithm 14, followed by Algorithm 13 and finally the
correctness of the main function PROVE in Algorithm 12.

Lemma 4.3. Function BACKWARDBLOCK of Algorithm 14 returns true iff
¬b' is inductive relative to F(bi�1,`) for all locations ` 2 pred(b̀0).

Proof. Function BACKWARDBLOCK starts the while loop by examining the
proof obligation in the queue that has the lowest frame index i. If i = 0, then
ˆ̀0 must be `0, because F(0,`0) is the only region with index i = 0 to which any
other region may be inductive relative to, by construction. This way, there must
exist a feasible path from `0 to ˆ̀0.

If there exists no such feasible path from `0 to ˆ̀0 given F(0,`), ...,F(k,`) for
all ` 2 L \ {`E}, then every path of length j ending in ˆ̀0 starts in a location
`s, s.t. the region (`s,¬') is inductive relative to F(k�j�1,`x) for all `x, s.t.
(`x, ⇢, `s) 2 G. This means that every proof obligation added to the obligation
queue Q is ultimately inductive relative to its predecessors and thus also ¬'̂ is
inductive relative to F(̂i�1,`x).

With the correctness of BACKWARDBLOCK, we can continue with Algo-
rithm 13 which calls BACKWARDBLOCK. We can guarantee termination of
Algorithm 13 for the same reason as for BACKWARDBLOCK: Given the exact
predecessor computation using WP, we only have to search for at most nE CTIs,
where nE = |pred(`E)|.

Lemma 4.4. Function STRENGTHEN of Algorithm 13 terminates with true iff
there exists an inductive strengthening for F(k,`) in all ` 2 L \ {`E}.

Proof. Assume a call of function STRENGTHEN returns false, then there must
have been a call to BACKWARDBLOCK with some (k, `,'), such that BACK-
WARDBLOCK returned false. From Lemma 4.3 we know that in this case, there

110 CHAPTER 4. SOFTWARE VERIFICATION WITH IC3

0

1

2`E

x := 10

x++;
x 6= 9x = 9

Figure 4.4: Example for non-termination of Algorithm 12 [Lange et al., 2015]

exists a feasible path of length k from `0 to ` that ends up in data region '.
Because ' is a predecessor of `E and ' is a precondition under T`!`E , there
exists a counterexample path of length k + 1. Otherwise every call of BACK-
WARDBLOCK returned true, which means that every predecessor location (and
data region) of `E is unreachable in the current frame sequence. Thus every
predecessor of `E was excluded from their frames at level k which yields an
inductive strengthening for F(k,`x) for all `x 2 L \ {`E}.

Given the correctness of Algorithms 13 and 14 as stated in Lemmas 4.3
and 4.4 it would be desirable to show the same for Algorithm 12. However, we
cannot guarantee correctness, since the search phase might diverge over some
domains. We will disprove termination by a simple counterexample.

Lemma 4.5. Algorithm 12 does not terminate under all possible inputs.

Proof by Contradiction. Assume that Algorithm 12 would terminate un-
der all possible inputs. Then it should also terminate given the CFA A from
Figure 4.4 with unbounded integers in the LIA theory. Given A, IC3CFA will
compute the CTI region (1,x = 9) in every iteration and loop in location 1,
computing ever smaller valuations for x in every step of the search phase. For
theories such as BV, that are finite, we would eventually terminate, but for
unbounded theories such as LIA, IC3CFA will enumerate predecessors down to
x = (9�k) for all bounds k, i.e. it will enumerate all paths leading to (1,x = 9)
for any length k of which there exist infinitely many. Therefore IC3CFA will
not terminate on A.

Since we have shown that IC3CFA may not terminate under all inputs, we
can still prove partial correctness of Algorithm 12, i.e. answering the question
whether, if it terminates, PROVE outputs the correct result.

4.2. IC3CFA 111

Lemma 4.6 [Lange et al., 2015]. In case function PROVE of Algorithm 12
terminates, it returns true iff there exists an inductive strengthening F for P ,
s.t. F ^ P is inductive.

Proof. Assume PROVE terminates and returns true, then every call to function
STRENGTHEN for every j < k must have returned true and there must exist a
frame with index i < k, s.t. F(i,`) = F(i+1,`) for all ` 2 L \ {`E}, i.e. alls frames
F(i,`) are inductive, because F(i,`) ^ T`!`0 =) F(i,`0) for all `, `0 2 L \ {`E}.
Therefore there cannot exist a counterexample path of length k (more precise
of length i) or less and there cannot exist one of length greater than k, because
F(i,`) is inductive for all ` 2 L \ {`E}.

Now assume that PROVE returns false: Then there must exist a k, s.t. for
no i < k, F(i,`) is inductive for all ` 2 L\{`E} and STRENGTHEN for k returns
false, i.e. there exists a path of length k from the initial to the error state.

As mentioned earlier, one of the, if not the, biggest problem in lifting IC3
to software model-checking is the question how predecessors are computed. Ac-
cordingly our choice of using weakest preconditions has noticeable impact in
almost every aspect of our IC3CFA algorithm. While we already saw that
we can simplify the while-loop of STRENGTHEN in Algorithm 13 to con-
sider every predecessor location only once, we can reduce the CTI compu-
tation even further. If we take a closer look at Algorithm 13, we observe
that the predecessor data region ' of every ` 2 pred(`E) is determined as
' := wp (cmd, true) for (`, cmd, `E). Since by definition every data region of `E
is a ¬P -state, the respective predecessor data region ' does not depend on any
information learnt by IC3CFA. While this dependency is not explicit in IC3,
the decisions made in the SAT-solver may lead to different models in different
iterations and therefore lead to different predecessor states depending on infor-
mation learnt in the SAT-solver. But since in IC3CFA the set of CTI regions
{(`,') | ` 2 pred(`E),' = wp (cmd, true)} can be statically determined up front,
we can compute this set once, before starting the main for-loop in PROVE of Al-
gorithm 12 and in STRENGTHEN of Algorithm 13 call BACKWARDBLOCK with
the items of the set of CTI regions {(`,') | ` 2 pred(`E),' = wp (cmd, true)}
and varying k.

4.2.4 Discussion
Using this approach we can statically determine all CTI regions upfront, rather
than recomputing the same region in every iteration. However, we can go even
further: In practice the WP computation leads to a situation where IC3CFA

112 CHAPTER 4. SOFTWARE VERIFICATION WITH IC3

will compute the same set of obligations in every iteration, which becomes very
obvious for IC3CFA without generalization as presented in Algorithms 12 to 14.
How this situation changes in the presence of generalization will be considered
in Section 4.3. Assume a CFA A and some iteration k where a path of length k

exists in A, but there exists no counterexample path of length at most k. Then
the set of all proof obligations created in the k

th iteration

O�!
k
= Ok]O��!

k�1
= {(`,') | (i, `,') 2 Q at some point in iteration k}

is the disjoint union of the set of newly explored obligations of the k
th iteration

Ok = {(`,') | (0, `,') 2 Q at some point in iteration k}

and the set of obligations created in the k � 1st iteration

O��!
k�1

= {(`,') | (i, `,') 2 Q at some point in iteration k � 1}.

The reason for this observation in our deterministic IC3CFA algorithm is
easy to understand: The search phase of IC3CFA will explore all maximal,
reachable path fragments of length up to k that can reach a CTI state. In other
words, it implicitly creates a tree of regions that are backwards reachable from
CTI regions and implicitly encodes the nodes of this tree as proof obligations.
After proceeding to iteration k + 1, IC3CFA may be able to explore direct pre-
decessors of all those regions that are leafs in the implicit backward reachability
tree. However, in order to explore these states, we force IC3CFA to explore the
whole backward reachability tree of iteration k.

After having observed this connection between obligations of different iter-
ations, we aim to reuse obligations of iteration k in iteration k + 1, just like
Tree-IC3 continues to unroll the ART rather than deleting and re-unrolling it
after every iteration [Mertens, 2016]. To do so we only have to modify the inter-
nal behaviour of our obligation queue Q: Rather than taking obligation (i, (`, c))
out of the queue in the standard way, we propose to keep (i, (`, c)) in Q and just
mask the obligation such that it will not be reconsidered in the next iteration.
In case we attempt to put a previously popped obligation (i, (`, c)) back into the
queue, i.e. when IC3CFA detected a non-inductive region and needs to create
a predecessor obligation, we remove the masking of (i, (`, c)) in Q. If Q only
contains masked obligations, we consider Q empty. After checking inductivity
on the frame sequences we can then recover the obligations computed during
this iteration by removing all maskings from obligations in Q. But in order to
reuse these obligations in the next iteration, we first have to modify them: Due

4.2. IC3CFA 113

to the backward search approach of IC3 that starts at the iteration count k,
new obligations in k+1 are created one level after the ones created in iteration
k. Therefore we have to increment the level entry i of every obligation (i, (`, c))
in Q. The resulting obligation queue allows us to start our backward search at
those regions that we were not able to explore any further due to the iteration’s
bounded search length k.

Another aspect that arises with the use of exact preimages due to WP pre-
decessor computation can be observed when a region has been shown to be
inductive relative to all predecessor locations’ frames. In the case that a proof
obligation (i, (`, c)) succeeds, the cube c is blocked in F(i,`) and we can distin-
guish two possible situations afterwards: Either there exists another obligation
(i, (`0, c0)) at level i or (i, (`, c)) was the last obligation at level i and the next
obligation appears at level i + 1. In the first case there exist other locations `0
that are predecessor to some ¯̀ that appears in a proof obligation at level i+ 1
and we have to check whether these obligations (i, (`0, c0)) are inductive relative
to their respective predecessor frames. But in the latter case, that no other
obligation at level i exists, we will return back to obligation (i + 1, (¯̀, c̄)) after
exploring all paths leading up to ¯̀ of length up to i. While for standard IC3 we
might encounter new predecessor states, the use of WP guarantees that no pre-
decessor region can reach the region (¯̀, c̄) which implies that (¯̀, c̄) is inductive
and the proof obligation (i+1, (¯̀, c̄)) succeeds. As a result of this observation we
can immediately block each obligation that has already been considered before
and which has been put back into the obligation queue Q.

The last adjustment that we have to make to our obligation queue Q concerns
an aspect that is often not considered in detail, but has immense value for any
verification tool. While most algorithmic descriptions such as the ones given in
[Bradley, 2011; Eén, Mishchenko, et al., 2011] only consider the main algorithm
for determining whether an input system satisfies the given property or violates
it, a concrete counterexample is of large value for practical applications. For the
representation of such a counterexample two common approaches exist: We can
either just provide an initial variable assignment that can then be simulated to
provide a concrete run of the program that violates the property. Depending
on the structure of the program this approach can be sufficient and offers the
advantage that simulation is very efficient and on the other hand allows the
user to see the violating run directly on the input program. For IC3CFA such
an initial assignment can be efficiently extracted from the computed informa-
tion: If we encounter a violation in BACKWARDBLOCK of Algorithm 14 we
have popped an obligation of the form (0, (`, c)) from Q. Furthermore, by con-
struction, ` = `0 must hold and the cube c represents the data region that has

114 CHAPTER 4. SOFTWARE VERIFICATION WITH IC3

successors leading to the error location `E . So in order to extract a violating
initial variable assignment, we just have to take one state from the violating set
of states represented by c, i.e. we query the SMT-solver with sat (c)?, which
returns SAT by construction, and extract the model which represents one pos-
sible variable assignment of the data region c. However, simulating an initial
assignment may fail if there occur nondeterministic assignments or return val-
ues of unknown, external functions that cannot be covered by simulation. In
this case the simulator has to decide on a value which can lead to simulating
program runs that do not violate the property.

The second, more involved approach for counterexample generation is to
construct a full counterexample trace directly in the model checker. In order
to achieve this with IC3CFA, or in fact even with the algorithms presented
in [Bradley, 2011; Eén, Mishchenko, et al., 2011], we have to store some sort
of relationship between obligations in Q, e.g. parent pointers that indicate
based on which other obligation an obligation has been created. Such rela-
tion between obligations allows us to trace paths through the, previously men-
tioned, implicit backward reachability tree that is given by the proof obliga-
tions in Q. Tracing the dependencies of obligations allows us to extract a set
of obligations (0, (`0, c0)), . . . , (k, (`k, ck)). After ordering the obligations based
on their level i in ascending order, the list of obligations implies a full path
⇡ := `0 = `0, `1, . . . , `k, `E through the CFA A with annotated data regions
c0, . . . , ck except for `E that can be used to extract concrete variable assign-
ments for each location in A. This approach does compensate for much of the
shortcomings of simulating initial variable assignments by not relying on a sim-
ulation and being able to handle nondeterministic assignments through the data
regions learnt during exploration. But it does also have a large disadvantage,
especially in practical application: Without additional overhead, the counterex-
ample trace can only be mapped back to the input CFA A. However, many
verification tools, such as our implementation presented in Section 5.1, heavily
preprocess the input program in order to reduce the complexity of the model
which allows to scale verification to much larger inputs. This on the other hand
breaks a clear mapping between CFA and input program, such that the coun-
terexample path on the CFA cannot easily be traced back to a concrete error
path on the program, which on the other hand is crucial for the user who does
not know about the internals of the model checker.

4.3. GENERALIZATION 115

4.3 Generalization

In the previous section we introduced the basic search phase of the IC3CFA
algorithm in analogy to the IC3 [Bradley, 2011] and PDR [Eén, Mishchenko, et
al., 2011] algorithms. However, in our presentation of IC3CFA in Algorithms 12
to 14 we did omit a crucial part of the IC3 algorithm, which is generalization.
As explained in Sections 3.2 and 3.3, IC3 is sound and complete without the
presence of generalization, but is hardly scalable. As such, generalization is
not strictly necessary but the success of the IC3 algorithm is mainly due to its
ability to efficiently prune the state space using generalization. For IC3CFA
however, we need to answer three main questions:

1. how can we generalize a cube of some first-order theory, rather than pure
Boolean logic;

2. how do we handle generalization in the presence of multiple incoming edges
and multiple predecessor frames;

3. what are the effects of weakest predecessor computation on the general-
ization?

We will consider and answer these three questions in the next three subsections.

4.3.1 Generalization of a cube
When considering the generalization of a first-order cube, we can distinguish be-
tween two approaches: theory-specific generalization and theory-unaware gener-
alizations. For the first category, there exist many different approaches, learning
linear invariants for LIA using learning frameworks such as [Garg et al., 2014;
Löding et al., 2016] or bitvector generalizations for BV [Welp and Kuehlmann,
2013]. However, all those generalizations can only be applied to their respective
theory and thus contradict our previously established goals for a modular ver-
ification algorithm with interchangeable backend theories. For this reason we
take a closer look at theory-unaware generalizations of first-order cubes in the
remainder of this section.

In order to find a theory-unaware generalization we draw inspiration from
SMT solvers. Just like an SMT solver starts by abstracting away all theory
terms, we abstract all theory aspects from our cube, resulting in the Boolean
skeleton of the first-order cube. Due to the strict definition of the first-order
cube, the abstraction of predicate symbols results in a Boolean skeleton which

116 CHAPTER 4. SOFTWARE VERIFICATION WITH IC3

has the form of a propositional cube. Based on this skeleton, we can execute
the standard IC3 generalization, which in our case results in dropping predicate
symbols from the first-order cube. This lifting of the syntactic generalization of
IC3 offers a simple way to generalize first-order cubes in IC3CFA using linear
or binary search as presented in Section 3.3.

However, apart from this lifting of syntactic dropping generalization, we
can also apply other generalization approaches to the Boolean skeleton of the
first-order cube, such as the methods that were presented in Section 3.3. In
particular, unsatisfiable cores can be applied to the Boolean skeleton just like
in IC3.

Apart from syntactic generalization, we can also utilize the semantic general-
ization given by interpolation. While interpolation in general must be considered
as a theory-aware procedure, many SMT solvers offer interpolation engines that
completely encapsulate the theory-specific aspects and just offer an interface to
call the interpolation engine. As such, we can try to extract an interpolation
from the solver. If it succeeds, we obtain a valid generalization and if the solver
indicates that interpolation is not supported for the theory (combination) we
must fall back to syntactic generalization. However, trying to find an inter-
polant should always be preferred, since for some theories, such as LRA, there
exist very efficient interpolation algorithms which yield semantic generalizations
of high quality.

Up to now we only considered the set of presented generalization techniques
in the context of a single edge, which we call a edge-local generalization. How-
ever, in order to apply generalization to the IC3CFA algorithm, we must apply
generalization in the context of explicit control-flow: For IC3CFA as shown in
the previous section, we do not consider a single, global transition relation, but
rather small parts of the global transition relation that represent the isolated
effect of a single edge between two locations in the CFA. The difference between
IC3 and IC3CFA in this aspect becomes most obvious when a location ` has
more than one predecessor, i.e. |pred(`)| > 1. A way to determine a general-
ization that is valid with respect to inductivity relative to all predecessor edges
and frames will be presented in the following.

4.3.2 Generalization on multiple edges
In order to generalize a cube c at some location `0 at index i, we need to consider
a generalization of c that is inductive relative to F(i�1,`0) along all incoming
edges T`!`0 for ` 2 pred(`0). To represent this n-dimensional inductivity for
n = |pred(`0)|, we must construct an SMT query of the form

4.3. GENERALIZATION 117

��
F(i�1,`1) ^ T`1!`0

�
_ · · · _

�
F(i�1,`n) ^ T`n!`0

��
^ c

0. (4.14)

Note that we only use query (4.10) from Lemma 4.2 on page 100. A more
detailed explanation why weakening the inductivity query is necessary will be
given later in this section. This query allows us to check inductivity of c relative
to all predecessor frames along all incoming edges and thus to determine a valid
generalization of c for `.

Lemma 4.7. Cube c satisfies (4.14) iff c satisfies (4.9) for all T`j!`0 , 1 j n.

Proof. We prove Lemma 4.7 using the satisfiability of queries (4.14) and (4.9).
We can reformulate (4.14) to

�
F(i�1,`1) ^ T`1!`0 ^ c

0� _ · · · _
�
F(i�1,`n) ^ T`n!`0 ^ c

0� (4.15)

using the distributivity law. Let us now define qj = F(i�1,`j) ^ ¬c ^ T`j!`0 ^ c
0

for each `j instance of (4.9), then (4.15) is equivalent to

q1 _ · · · _ qn. (4.16)

This means that (4.16) and thus also (4.14) is unsatisfiable iff every qj is unsat-
isfiable.

However, query (4.14) combines the inductivity of all incoming edges into a
single, monolithic query and thus contradicts IC3’s principle of avoiding mono-
lithic approaches. We therefore strive to find a method that determines gener-
alizations over multiple incoming edges in a more incremental fashion. To do
so, we will start by breaking the monolithic approach above down into isolated
generalizations of each incoming edge of ` and presenting a way to combine
these into a valid generalization for c at `.

Given a location `0 and a set of predecessor locations pred(`0) = {`1, . . . , `n},
the set of incoming edges into `0 is in(`0) = {ej | (`j , cmdj , `0) 2 G}. For an index
i and cube c, we can determine a generalization gj of c that is inductive relative
to F(i�1,`j) for each incoming edge ej and its respective transition relation Tej .
Given such a set of edge-local generalizations {g1, . . . , gn}, a generalization for c
along all incoming edges can only drop literal lit 2 c iff it can be dropped along
each edge ej individually, a consequence of Lemma 4.7. Using the set notion of
cubes, this means that the union of literals of all edge-local generalizations is a
valid generalization for location `0.

118 CHAPTER 4. SOFTWARE VERIFICATION WITH IC3

Corollary 4.1. Given a set Gen of generalizations gj 2 Gen of cube c along

edge ej 2 in(`0), g =
nS

j=1
gj is a valid generalization for c at `0 along all ej.

Corollary 4.1 offers a way to determine a safe and valid generalization based
on a number of edge-local generalization and as such breaks down the complex-
ity of a large SMT query into a number of small queries, an approach that has
shown positive effects on performance [Bradley, 2011] and will prove to improve
performance in our evaluation (see Chapter 5). However, our current interpreta-
tion of first determining the set of edge-local generalizations and then combining
those is still a rather monolithic approach that determines edge-local general-
izations in an isolated fashion without using information of other edge-local
generalizations.

Example 4.6. Reconsider our example program from Listing 1 (page 86)
and corresponding CFA A from Figure 4.3 (page 97) and assume frames
F(2,`4) = ¬ (y > 0 ^ b = 0) and F(2,`5) = ¬true. We check the proof obliga-
tion (3, (`6, y � a^ y > 0^ b = 0^ b � 0)) and find it to be inductive rela-
tive to F(2,`4) along e4 = (`4, assume a � 0, `6), as well as to F(2,`5) along
e5 = (`5, a := �a, `6). We can thus generalize the cube with respect to both
edges e4 and e5. We start by generalizing c = y � a^ y > 0^ b = 0^ b � 0
along e4, which results in g4 = y > 0^b = 0. For edge e5 we can generalize
c relative to F(2,`5) to g5 = true. As a result, we join the two results to
g = g4 [g5 = (y > 0 ^ b = 0) and block this g in F(3,`6).

Using the standard IC3 generalization with the lifting to CFAs, we are
able to prove the property in the example benchmark, shown in Listing 1,
after 56 iterations in 9.3 seconds, of which 8.6 seconds are spent for 14583
SMT calls.

To improve on this aspect, we take another close look at Corollary 4.1:
Consider an edge-local generalization gh = c \ � with � containing all literals

that gh dropped from c. Since g =
nS

j=1
gj , we can deduce that gh ✓ g and hence

for g = c \ � it follows that � ✓ �. In other words, if we know that on some
edge eh we can drop the literals litj 2 � and while obtaining the valid edge-local
generalization gh then the final generalization will drop at most the literals in
�. This allows us to execute the full syntactic generalization only on the first
incoming edge and then check whether gh is inductive along the other edges
as well. If it is not inductive on some other edge em, we have to backtrack

4.3. GENERALIZATION 119

c

Figure 4.5: Example transition system

based on �. Note that here it does not suffice to iteratively shift literals back
from � into gm (which is initially identical to gj) and probe inductivity on
the new gm since we might introduce many unnecessary literals this way. A
more formal perception can be given in terms of the induced subclause lattice
introduced in [Bradley and Manna, 2007a]. When dropping literals from clause
d = ¬c, we traverse this lattice downwards towards the empty clause ?. In
case that dj = ¬gj is not inductive along em we find ourselves at some place
inside the subclause lattice that is not inductive. From [Bradley, 2011; Bradley
and Manna, 2007a] and the restriction given in Corollary 4.1, we know that
there must exist at least one clause dm that is a valid generlization along em

and for which it holds that dj ⇢ dm, i.e. dm is reachable from dj by traversing
the subclause lattice upwards. However, since there exist exponentially many
subclauses dm for which dj ⇢ dm holds, precisely 2n with n = |c\gj |, of which not
many are inductive due to dependencies in the theory valuations of the literals.
As such it is very likely that we will end up with a subclause that is not minimal.
In order to obtain a minimal subclause we could traverse the subclause lattice
back down from dm, similar to the procedure given in [Bradley and Manna,
2007a], but we might also just give up minimality as done in other places and
content with dm. A third approach would be to refrain from traversing the
subclause lattice upwards in the first place and rather restart generalization of
c but only check the literals of � for dropping. In practice the question which of
these three methods performs best will depend heavily on the input model and
vary from case to case. For the remainder we will choose the third approach for
its simplicity.

Having obtained an insight into the generalization of IC3CFA, we can take a
closer look at why the stronger inductivity query of Lemma 4.2 can no longer be
applied in the presence of generalization. We start by motivating the problem
with a graphical example and afterwards give a formal proof that Lemma 4.2

120 CHAPTER 4. SOFTWARE VERIFICATION WITH IC3

c1

(a) Transitions and frames for e1

c2

(b) Transitions and frames for e2

Figure 4.6: Isolated generalizations for Figure 4.5

c[

e

Figure 4.7: Result of merging generalizations of Figure 4.6

does in fact not hold for generalizations. Let (i, (`, c)) be an obligation consisting
of cube c and location ` at index i, with ` having two incoming edges e1 and e2,
where e2 is a self-loop.

Example 4.7. To simplify things we sketch a simplified state space for
unprimed state variables without extracting control-flow, like in IC3-SMT
[Cimatti and Griggio, 2012]. The example transition system that we use
here is depicted in Figure 4.5. For simplicity, arrows depict a transition
from an unprimed source state towards a primed target state in direction
of the arrow. Blue arrows represent transitions according to edge e1 and
green arrows stand for the self-loop edge e2. Red boxes give a graphical
representation of the states symbolically encoded by the annotated cube.
As proven in [Lange et al., 2015] we can use the original inductivity query

F(i,`) ^ ¬c ^ Te) ¬c0 (4.17)

for IC3CFA without generalization as it is presented in Section 4.2.

4.3. GENERALIZATION 121

However, by the use of ¬c in the premise of the implication, we exclude
all states in c from considering their successors. We now isolate edge e1 and
e2 as depicted in Figure 4.6a for e1 and in Figure 4.6b for e2. We construct
generalizations g1 = ¬c1 and g2 = ¬c2 that are inductive relative to the
corresponding frames, where a state, depicted by a dot, is in F(i�1,`pre)

iff the dot is filled in Figure 4.6 for source location `pre of the respective
edge. Both generalizations g1 and g2 represent an overapproximation of
c and gi is still inductive relative to the predecessor frame along edge ei.
To block a safe superset of states of c, we must block only those states
that are not reachable on both edges, i.e. the intersection of both state
sets which is g = g1 [g2. However as depicted in Figure 4.7 we might
have not considered reachability of g2 via transitions that originate from
states in g2, in Figure 4.6a depicted by arrows inside of g2. By uniting both
generalizations g1 and g2, i.e. taking the intersection of the respective state
sets, the result may cut exactly those transitions that were not considered
in the inductivity query of g2, due to the use of ¬c in the premise of (4.17),
leading to a violation of the inductivity query for g.

Formally, the problem that was motivated in Example 4.7 is given as follows:

Theorem 4.1. Generalization does not preserve (4.17):

(F1 ^ T1) ¬g01) ^ (F2 ^ ¬g2 ^ T2) ¬g02)
6=) ((F1 ^ T1) _ (F2 ^ ¬ (g1 ^ g2) ^ T2)) ¬ (g01 ^ g

0
2))

Proof. Given the premises

a) F1 ^ T1 ^ g
0
1 unsatisfiable

b) F2 ^ ¬g2 ^ T2 ^ g
0
2 unsatisfiable

the conclusion must be invalid, i.e. there must be a satisfying assignment to

(F1 ^ T1 ^ g
0
1 ^ g

0
2) _ (F2 ^ ¬ (g1 ^ g2) ^ T2 ^ g

0
1 ^ g

0
2)

a)() F2 ^ ¬ (g1 ^ g2) ^ T2 ^ g
0
1 ^ g

0
2

() F2 ^ (¬g1 _ ¬g2) ^ T2 ^ g
0
1 ^ g

0
2

() (F2 ^ ¬g1 ^ T2 ^ g
0
1 ^ g

0
2) _ (F2 ^ ¬g2 ^ T2 ^ g

0
1 ^ g

0
2)

b)() F2 ^ ¬g1 ^ T2 ^ g
0
1 ^ g

0
2.

122 CHAPTER 4. SOFTWARE VERIFICATION WITH IC3

This formula obviously has a satisfying assignment, thus generalization does not
preserve inductivity as given in (4.17).

To fix the problem that we formalized in Theorem 4.1, we must permanently
strenghten the inductivity query by weakening the premise and removing ¬c
from (4.17).

Theorem 4.2. Generalization preserves (4.12):

(F1 ^ T1) ¬g01) ^ (F2 ^ T2) ¬g02)
=) ((F1 ^ T1) _ (F2 ^ T2)) ¬ (g01 ^ g

0
2))

Proof by Contradiction.

Assume (((F1 ^ T1) _ (F2 ^ T2)) ^ g
0
1 ^ g

0
2) is satisfiable.

() 9s.s |=(((F1 ^ T1) _ (F2 ^ T2)) ^ g
0
1 ^ g

0
2)

() 9s.s |=(F1 ^ T1 ^ g
0
1 ^ g

0
2) _ (F2 ^ T2 ^ g

0
1 ^ g

0
2)

=) 9s.s |=(F1 ^ T1 ^ g
0
1) _ (F2 ^ T2 ^ g

0
2)

This contradicts validity of (F1 ^ T1) ¬g01) and (F2 ^ T2) ¬g02).

Definition 4.7 (Valid generalization). Given a cube c at index i and
location `0, an edge e = (`, cmd, `0) and a frame F(i�1,`), then

g 2 gen(F(i�1,`), e, c)

() g is a valid generalization of c relative to F(i�1,`) and e.

A first, simple improvement that we can make to the generalization in order
to save calls to the SMT solver is to statically check for duplicate literals in
the formula, especially those that appear in the cube c and in the frame. This
optimization is enabled by the structure of the inductivity query, as a large
conjunction which contains the cube, which is a conjunction itself. As such, if
the frame formula contains a clause ¬lit which also appears as ¬lit 2 c, then
the satisfiability of the formula does not change when we remove ¬lit from
c. Therefore we can statically drop literals which saves additional solver calls.
Since these literals have no importance for the satisfiability of the query, we
call them don’t care literals, and analogously the approach of removing those
based on the static check of membership in the frame formula is called don’t
care generalization.

4.3. GENERALIZATION 123

4.3.3 Interaction with weakest preconditions
As seen in Section 4.2, the use of weakest existential preconditions (WEP) allows
us to efficiently compute the exact set of predecessor states for a cube that is
not inductive relative to its predecessor frame along some edge. Due to the
significance of the predecessor computation it does have various effects also for
generalization. Thus we will take a closer look at various implications of WEP to
generalization [Prinz, 2016]. For the remainder of this section we will assume all
edges to contain straight-line code, i.e. no GCL choice command ⇤. An edge
with arbitrary GCL command according to Definition 2.17 can be translated
into a set of edges with choice-free commands using the split function.

Definition 4.8. Let (L,G, `0, `E) be a CFA and cmd be a GCL command.
We define a function split(cmd), which translates cmd into a set of choice-
free GCL commands as follows:

split(cmd) =
8
><

>:

split(cmd1) [split(cmd2) if cmd = cmd1⇤ cmd2
{c1; c2 | i 2 {1, 2}, ci 2 split(cmdi)} if cmd = cmd1; cmd2
{cmd} otherwise

Using split as given in Definition 4.8, we transform edges e = (`, cmd, `0) 2 G

to a set G0 of choice-free edges e0 = (`, cmd0, `0) 2 G
0, for cmd0 2 split(cmd). For

the remainder of this section we assume edges to be choice-free. Furthermore we
restrict all Boolean guards b of assume b and assert b commands to not contain
the or connective _. The restriction on Boolean guards and choice-free edges
simplifies the subsequent techniques, since all CTIs will be cubes and the WEP
of a cube will again yield a cube.

Using WEP for inductivity queries Given Theorems 4.1 and 4.2 what we
call inductive is in fact more precisely characterized as reachability given some
pre-image. The query

unsat
�
F(i�1,`) ^ T`!`0 ^ c

0�?

asks whether some state in a set of states characterized by F(i�1,`) can reach
a state in c via T`!`0 . A semantically equivalent formulation is whether there
exists some state that is in the pre-image of c under T`!`0 and in F(i�1,`). Since

124 CHAPTER 4. SOFTWARE VERIFICATION WITH IC3

the first part corresponds to the weakest existential precondition (WEP), as
defined in Definition 2.21 on page 45, this corresponds to the query

unsat
�
F(i�1,`) ^ wep(Ti�1!`, c)

�
?

Definition 4.9 (Alternative Relative Inductivity). Let i 2 N and CFA
A = (L,G, `0, `E) with edge e = (`, cmd, `0) 2 G. Given the frame F(i�1,`)

and a cube c, we define two functions:

relInd(F(i�1,`), e, c) () unsat
�
F(i�1,`) ^ T`!`0 ^ c

0�?
relIndAlt(F(i�1,`), e, c) () unsat

�
F(i�1,`) ^ wep(cmd, c)

�
?

The cube c is called relative inductive to the frame F(i�1,`) and the edge
e, iff the function relInd(F(i�1,`), e, c) evaluates to true; analogously for
relIndAlt(F(i�1,`), e, c).

Given the functions from Definition 4.9 we can show that both are equivalent.

Theorem 4.3. Let i 2 N and (L,G, `0, `E) be a CFA with edge e =
(`, cmd, `0) 2 G. Furthermore, let c be a cube and F(i�1,`) be a frame.
It holds that

relIndAlt(F(i�1,`), e, c) () relInd(F(i�1,`), e, c)

Proof.

relIndAlt(F(i�1,`), e, c)

() unsat(F(i�1,`) ^ wep(cmd, c))

() unsat(F(i�1,`) ^ T`!`0 ^ c
0) (Def. 2.21)

() relInd(F(i�1,`), e, c)

While both formulations are equivalent, as shown in the above proof, and at
first sight, both seem more or less identical, their execution time in the SMT-
solver may vary heavily for two reasons. First, relInd reasons about primed
and unprimed variables, while relIndAlt only reasons about unprimed variables.

4.3. GENERALIZATION 125

This means that the SMT query of relInd may, in worst-case, contain twice
as many variables as the one for relIndAlt. As we know [Biere, Heule, et al.,
2009; Bradley and Manna, 2007b; Kroening and Strichman, 2008], the number
of variables is not a precise metric for the complexity of a formula and the
execution time of the SMT-solver, but in general behaves proportional to these.
And second, using relIndAlt can be beneficial for SMT solvers with caching,
since for different edges with different GCL commands cmd and cmd’ that yield
the same WEP, i.e. cmd 6= cmd0 and wep(cmd, c) = wep(cmd0, c), the queries
relInd are different, but the ones for relIndAlt are identical and can thus benefit
from caching. On the other hand, even though we store the computed WEP to
create new obligations if c is not inductive relative to F(i�1,`), it does introduce
some additional overhead: For relIndAlt we have to compute the WEP for
every inductivity query whereas for relInd we only have to compute it if c is not
inductive relative to F(i�1,`) and as we know from Section 2.4 the computation
of weakest preconditions has exponential worst-case complexity. So in general
it is uncertain whether the use of relIndAlt has benefits over relInd and this
depends on the structure of the problem. We will give a detailed evaluation of
the effects of relIndAlt on real-world benchmarks in Chapter 5.

Assumed literals As seen in Section 2.4, GCL contains a so-called assume
command, which is a liberal version of the more strict assert command4. While
an assert command should never evaluate to false in a correct program, assume
can evaluate to false without any consequence apart from terminating control-
flow on this execution branch. As mentioned in Section 2.4, combining the
assume command and the choice command ⇤ allows us to model deterministic
branching in the control-flow. As such, we can consider assume statements as
a guard for the edge, which means that for an edge e = (`, assume b, `0) 2 G

every state in ` that terminates in `0 must satisfy the guard b and every ¬b-state
in ` has no successor along e and thus especially no ¬c-successor. This means
that for a literal lit 2 c of a cube c that is inductive relative to F(i�1,`) along
e, then c \ {lit} is still inductive relative to F(i�1,`) along e and as such, we can
statically check whether such literals are contained in the cube in order to use
it as generalization.

4Though being part of our implementation and the original GCL [Dijkstra, 1975, 1976],
we omitted the assert command from Definition 2.17 since we transform all edges with assert
commands into one edge that assumes the assert to be valid and one that assumes it to be
false, where the former one maintains the original source and target location and the latter
leading to the error location. This transformation is done as part of the pre-processing that
is out of the scope of this thesis.

126 CHAPTER 4. SOFTWARE VERIFICATION WITH IC3

In order to formalize this generalization based on literals that are contained
in assume , we first need to show that the WEP is distributive over conjunction
of cubes.

Lemma 4.8. Let cmd be a choice-free GCL command. Given two cubes c1, c2,
it holds that

wep(cmd, c1 ^ c2) () wep(cmd, c1) ^ wep(cmd, c2)

Proof. We prove Lemma 4.8 by structural induction over GCL command cmd
without choice.

• cmd = assume b:

wep(assume b, c1 ^ c2)

= (c1 ^ c2) ^ b

() (c1 ^ b) ^ (c2 ^ b)

= wep(assume b, c1) ^ wep(assume b, c2)

• cmd = x := a:

wep(x := a, c1 ^ c2)

= (c1 ^ c2)[x 7! a]

= c1[x 7! a] ^ c2[x 7! a]

= wep(x := a, c1) ^ wep(x := a, c2)

• cmd = cmd1; cmd2:

wep(cmd1; cmd2, c1 ^ c2)

= wep(cmd1,wep(cmd2, c1 ^ c2))

= wep(cmd1,wep(cmd2, c1) ^ wep(cmd2, c2)) (by hypothesis)
= wep(cmd1,wep(cmd2, c1)) ^ wep(cmd1,wep(cmd2, c2))

(by hypothesis)
= wep(cmd1; cmd2, c1) ^ wep(cmd1; cmd2, c2)

Considering the definition of WEP from Definition 2.21, we can see that for
a choice-free GCL command cmd, for all literals lit that are assumed in cmd, lit
can be removed from c without any additional SMT query.

4.3. GENERALIZATION 127

Theorem 4.4. Let g be the generalization of a cube c at index i 2 N
and location `

0 2 L with respect to the edge e = (`, cmd, `0) 2 G. Given
a literal lit 2 g it holds that for all cmd0 2 split(cmd) and ’virtual’ edges
e
0 = (`, cmd0, `0)

wep(cmd0, lit) ✓ wep(cmd0, true) =) relInd(F(i�1,`), e
0, c \ {lit}).

Proof. Let bc = c \ {lit} be the reduced cube. We prove the relative inductivity
of bc with respect to every ’virtual’ edge e

0 = (`, cmd0, `0), that results from
splitting cmd into cmd0 2 split(cmd).

relInd(F(i�1,`), e
0, c)

() relInd(F(i�1,`), e
0,bc ^ lit)

() relIndAlt(F(i�1,`), e
0,bc ^ lit) (Theorem 4.3)

() unsat(F(i�1,`) ^ wep(cmd0,bc ^ lit))

() unsat(F(i�1,`) ^ wep(cmd0,bc) ^ wep(cmd0, lit)) (Lemma 4.8)
Since wep(cmd0, lit) ✓ (cmd0, true),

we get wep(cmd0, lit)) wep(cmd0, true).

=) unsat(F(i�1,`) ^ wep(cmd0,bc) ^ wep(cmd0, true))

() unsat(F(i�1,`) ^ wep(cmd0,bc ^ true)) (Lemma 4.8)
=) unsat(F(i�1,`) ^ wep(cmd0,bc))
() relIndAlt(F(i�1,`), e

0,bc)
() relInd(F(i�1,`), e

0,bc) (Theorem 4.3)
() bc 2 gen(F(i�1,`), e

0, c)

Since edge e has been split into a set of ’virtual’ e0 edges, we can treat the results
of the set of virtual edges, as if they were regular edges, in order to obtain a
generalization for e.

Example 4.8. Consider the following situation: We want to check whether
a cube c = x > y ^ y > 0 along edge e = (`, assume y > 0, `0) is relative to
F(i,`). The above theorem allows us to generalize c to g = (x > y) without
any SMT checks.

Dropping a literal based on the GCL assumptions is a very simple, yet
efficient enhancement of verification. Checking whether an edge contains assume

128 CHAPTER 4. SOFTWARE VERIFICATION WITH IC3

statements is linear in the size of the GCL command. Furthermore since we only
consider choice-free edges some of the exponential blowup is avoided, with only
some blowup possible in the pathological case that was shown in Example 2.15
on page 46. For real-world applications the computation will be almost linear
in the size of the GCL command.

Static inductivity checks and generalization using WEP As shown,
we can use the WEP to replace the transition part of the inductivity query to
the SMT solver thus reducing the size and the complexity of the solver query.
However, we can also use the WEP to statically detect that a cube c must be
inductive. As we will see, the static check is only able to show that a cube c

is inductive, but if the check fails, we cannot derive that c is not inductive, so
we have to fall back to a semantic check using the SMT solver. Nevertheless,
the presented static check is favourable, since it is cheap to execute and can
save expensive solver calls, and, in addition, allows us to statically deduce a
generalization of good quality, without any additional solver queries. The key
idea can be sketched as follows:

Given that c is inductive relative to F(i�1,`) along e = (`, cmd, `0), then the
formula F(i�1,`) ^ wep(cmd, c) is unsatisfiable by Theorem 4.3. In other words,
no state in wep(cmd, c) is contained in F(i�1,`). Due to the exclusion of dis-
junctions in Boolean guards and the restriction to choice-free GCL commands,
wep(cmd, c) will yield a cube cpre and all states s 2 cpre are blocked in F(i�1,`).
Possibly all s 2 cpre will be blocked by a single cube cF 2 F(i�1,`) with cF ✓ cpre ,
i.e. cF blocks a superset of the states in cpre . We formalize this static check in
Theorem 4.5.

Theorem 4.5. Let i 2 N, (L,G, `0, `E) be a CFA and e = (`, cmd, `0) 2 G.
Consider cube c at location `0 and index i with corresponding frame F(i�1,`),
then

9cF .¬cF 2 F(i�1,`) ^ cF ✓ wep(cmd, c) =) relInd(F(i�1,`), e, c)

4.3. GENERALIZATION 129

c wep(cmd, c)

cFcg

wep

✓

wep
�1

✓

Figure 4.8: Deducing a generalization from a static wep check

Proof.

9cF .¬cF 2 F(i�1,`) ^ cF ✓ wep(cmd, c)

=) 9cF . unsat(F(i�1,`) ^ cF) ^ cF ✓ wep(cmd, c)

=) unsat(F(i�1,`) ^ wep(cmd, c))

=) relIndAlt(F(i�1,`), e, c) (Definition 4.9)
=) relInd(F(i�1,`), e, c) (Theorem 4.3)

As we can see from Theorem 4.5, if we are able to find a cube cF that
appears negated in F(i�1,`) and whose literals are also a subset of the literals in
wep(cmd, c), then c must be inductive relative to F(i�1,`) along edge e. However,
if this check fails, we cannot deduce that c is not inductive relative F(i�1,`) along
edge e, since c may still be blocked in F(i�1,`), but by a set of cubes each of
which blocks a certain subset of the states of c. However, for IC3CFA frames
don’t grow as big as they use to for standard IC3 and thus the cost of statically
checking whether such c exists in F(i�1,`) is negligible.

Example 4.9. Reconsider the CFA A from Figure 4.3 on page 97 and
assume the obligation (3, (`6, (y � a ^ y > 0 ^ b = 0 ^ b � 0)) from
Example 4.6. For cube c = y � a ^ y > 0 ^ b = 0 ^ b � 0 along e4 =
(`4, assume a � 0, `6), the WEP of c is wep(assume a � 0, c) = y � a^ y >

0 ^ b = 0 ^ b � 0 ^ a � 0. Since F(2,`4) = ¬ (y � 0 ^ b = 0), the clause
¬cF = ¬(y � 0 ^ b = 0) is contained in F(2,`4) and cF ✓ wep(assume a �
0, c), such that c is inductive relative to F(2,`4) along e4. From another
point of view, wep(assume a � 0, c) contains all states that can possibly go
to c via e4. These are only states where y is larger than 0 and b equals 0.

130 CHAPTER 4. SOFTWARE VERIFICATION WITH IC3

But from previously learnt information, we know that reachable states in
F(2,`4) are those that satisfy y 0 or b 6= 0 and thus conflict all states in
wep(assume a � 0, c).

Apart from checking for inductivity, the existence of ¬cF 2 F(i�1,`) has even
more implications. In fact, it also implies that every cube cpost with cF ✓
wep(cmd, cpost) is inductive relative to F(i�1,`). Thus, if we are able to find
the cube cg with cF = wep(cmd, cg), then cg is the best generalization that
we can deduce from the presence of cF in F(i�1,`). Starting from the cube cF

that we have identified earlier during the inductivity search, cg is the strongest
postcondition sp(cmd, cF) from a semantic point of view. However, syntactically
sp(cmd, cF) ✓ c does generally not hold and thus does not qualify as a valid
generalization. We therefore have to search for a slightly different function
that inverts the wep and preserves the syntactical subset relation as sketched in
Figure 4.8.

In order to construct such a function wep
�1, we again exploit the fact that

wep is distributive for conjunctions. When we partition the cube c into its liter-
als c = {lit1, . . . , litn}, we can determine the wep of each literal lit i individually.
However we may take special care of assumed literals, since their behaviour has
some interesting side effects, as shown (in another context) on page 125.

Lemma 4.9. Given a choice-free GCL command cmd and cube c, then

wep(cmd, c) =
^

lit2c

wep(cmdassume, lit) ^ wep(cmd, true)

where cmdassume is the command cmd with all assume statements removed.

Proof. We prove this via structural induction over the GCL command cmd (✏
for the empty command):

• assume b

wep(assume b, c)

= c ^ b

=

^

lit2c

lit

!
^ b

=
^

lit2c

wep(✏, lit) ^ wep(assume b, true)

4.3. GENERALIZATION 131

• x := a

wep(x := a, c)

= c[x 7! a]

=

^

lit2c

lit [x 7! a]

!
^ true

=

^

lit2c

lit [x 7! a]

!
^ true[x 7! a]

=

^

lit2c

wep(x := a, lit)

!
^ wep(x := a, true)

• cmd1; cmd2

wep(cmd, c)

= wep(cmd1; cmd2, c)

= wep(cmd1,wep(cmd2, c))

= wep(cmd1,
V

lit2c
wep(cmdassume

2 , lit) ^ wep(cmd2, true)) (Ind. Hyp.)

= wep(cmd1,
V

lit2c
wep(cmdassume

2 , lit)) ^ wep(cmd1,wep(cmd2, true))

= wep(cmdassume
1 ,

V
lit2c

wep(cmdassume
2 , lit))^

wep(cmd1, true) ^ wep(cmd1,wep(cmd2, true)) (Ind. Hyp)

=
V

lit2c
wep(cmdassume

1 ,wep(cmdassume
2 , lit))^

wep(cmd1, true ^ wep(cmd2, true))

=
V

lit2c
wep(cmdassume, lit) ^ wep(cmd1,wep(cmd2, true))

=
V

lit2c
wep(cmdassume, lit) ^ wep(cmd, true)

132 CHAPTER 4. SOFTWARE VERIFICATION WITH IC3

This way we preserve the semantics as well as the syntactic structure of
the wep. While this decomposition into n wep applications does not alter the
complexity or semantics, it allows us to store a mapping g : Literal 799K Literal
from ' = wep(cmdassume, lit i) to lit i of the assume-free GCL command.

Corollary 4.2. If a cube cF 2 F(i�1,`) with cF ✓ wep(cmd, c) exists, then

cF ✓
^

lit2c

wep(cmdassume, lit) ^ wep(cmd, true).

Using Corollary 4.2, we apply the mapping g to the set of literals {'j | 'j 2
(cF\wep(cmd, true))}, i.e.

g('j) = litj ^ 'j 2 cF =) litj 2 cg

Definition 4.10. Given cubes c1 = {lit1, . . . , litn} and c2 ✓ c1, choice-free
GCL command cmd and partial mapping g : Literal 799K Literal with

g('i) = lit i () wep(cmdassume, lit i) = 'i

we define the function wep
�1
c1 : GCL⇥ Cube 7! Cube as

wep
�1
c1 (cmd, c2) =

^
{litj | g('j) = litj ^ 'j 2 c2 \ wep(cmdassume, c1)}

Example 4.10. Reconsider Example 4.9. After identifying cF = (y �
0 ^ b = 0) 2 F(2,`4), we can deduce the generalization of c along edge
e4 = (`4, assume a � 0, `6) from cF . In this case, the mapping g is very
simple: Since the GCL command of e4 does not contain any assignments,
it is the identity of the literals of c. Thus we first remove the literals in
wep(assume a � 0, true) = (a � 0) from cF , i.e.

{'j | ' 2 (cF \wep(assume a � 0, true))}
= {y � 0, b = 0}.

Given that g = id, we obtain the result

wep
�1
c1 (cmd, c2) =

^
{y � 0, b = 0}.

4.3. GENERALIZATION 133

This result is identical to the result that we would have obtained using
linear IC3-style generalization, but without the use of a solver.

Note that we define individual functions wep�1
c1 based on the cube c1 that is

used to construct the mapping g .

Corollary 4.3. Let cmd be a choice-free GCL command. Given three cubes
c1 ✓ c, c2 ✓ c, it holds that

wep
�1
c (cmd, c1 ^ c2) () wep

�1
c (cmd, c1) ^ wep

�1
c (cmd, c2)

Given Definition 4.10 we can see that Corollary 4.3 obviously holds. Apart
from distributivity, we must ensure that our newly constructed wep

�1
c is a mono-

tonic function, too.

Lemma 4.10. For cubes c, c1 ✓ c and c2 ✓ c and choice-free GCL command
cmd, wep�1

c is a monotonic function, i.e.

c1 ✓ c2 =) wep
�1
c (cmd, c1) ✓ wep

�1
c (cmd, c2)

Proof. Given premise c1 ✓ c2, we can partition c2 as c2 = c1 [c�, such that

wep
�1
c (cmd, c2) =

V
{litj | g(litj) = 'j ^ 'j 2 c2} (Def. 4.10)

() wep
�1
c (cmd, c2) =

V
{litj | g(litj) = 'j ^ 'j 2 (c1 [c�)} (Premise)

() wep
�1
c (cmd, c2) =

V
{litj | g(litj) = 'j ^ ('j 2 c1 _ 'j 2 c�)}

() wep
�1
c (cmd, c2) =

V
{litj | (g(litj) = 'j ^ 'j 2 c1)_

(g(litj) = 'j ^ 'j 2 c�)}

() wep
�1
c (cmd, c2) =

V
{litj | g(litj) = 'j ^ 'j 2 c1}[

{litj | g(litj) = 'j ^ 'j 2 c�}

() wep
�1
c (cmd, c2) =

V
{litj | g(litj) = 'j ^ 'j 2 c1}^

V
{litj | g(litj) = 'j ^ 'j 2 c�}

() wep
�1
c (cmd, c2) = wep

�1
c (cmd, c1)^

V
{litj | g(litj) = 'j ^ 'j 2 c�} (Def. 4.10)

=) wep
�1
c (cmd, c1) ✓ wep

�1
c (cmd, c2)

134 CHAPTER 4. SOFTWARE VERIFICATION WITH IC3

Given that wep�1
c is monotonic, we need to show that it is in fact an inverse

of wep, as the name already suggests. To do so, we start with the more intuitive
application, that wep

�1
c is a left inverse of wep, i.e. applying wep

�1
c to the

result of wep yields the identity.

Lemma 4.11. Given cube c and GCL command cmd, wep�1
c is a left inverse

of wep:

wep
�1
c (cmd,wep(cmd, c)) = c

Proof.

wep
�1
c (cmd,wep(cmd, c))

= wep
�1
c (cmd,

^

lit2c

wep(cmdassume, lit) ^ wep(cmd, true)) (Lemma 4.9)

=
^

lit2c

wep
�1
c (cmd,wep(cmdassume, lit)) ^ wep

�1
c (cmd,wep(cmd, true))

(Corollary 4.3)

=
^

lit2c

lit ^
^
; (Definition 4.10)

= c

Applying Definition 4.10, we see that there exists no entry in mapping g

for literals in wep(cmd, true) such that wep
�1
c returns the conjunction over the

empty set, which is equivalent to true. By definition, g contains a mapping
' 7! lit for ' = wep(cmdassume, lit) for each lit 2 c. As such wep

�1
c will map '

back to lit .

Lemma 4.12. Given GCL command cmd, cubes c and c̄ = wep(cmd, c) then

wep(cmd,wep�1
c (cmd, c̄)) = c̄

4.3. GENERALIZATION 135

Proof.

wep(cmd,wep�1
c (cmd, c̄))

= wep(cmd,
^

{lit | g(') = lit ^ ' 2 c̄ \ wep(cmdassume, c)}) (Definition 4.10)

= wep(cmd,
^

{lit | g(') = lit ^ ' 2 wep(cmdassume, c)})

= wep(cmd, c)

= c̄ (Premise)

In the last step of the proof we can use the premise that c̄ is the wep(cmd, c).
Together with Lemma 4.9 this means that c̄ ◆ wep(cmdassume, c) and therefore
the intersection c̄ \ wep(cmdassume, c) is exactly wep(cmdassume, c). As a conse-
quence, each literal ' of the wep(cmdassume, c) is mapped back to the original
literal lit 2 c, such that the conjunction over the set of literals is exactly c.

Using the previous results we can show that if there exists a clause ¬cF in
F(i�1,`), and the corresponding cube cF is a subset of the wep(cmd, c), then
appyling wep

�1
c to cF yields a subset of the original cube c.

Lemma 4.13. Given cube c is inductive relative to F(i�1,`) along e = (`, cmd, `0)
then

9cF .¬cF 2 F(i�1,`) ^ cF ✓ wep(cmd, c) =) wep
�1
c (cmd, cF) ✓ c

Proof.

9cF .¬cF 2 F(i�1,`) ^ cF ✓ wep(cmd, c)

=) 9cF .¬cF 2 F(i�1,`) ^ wep
�1
c (cmd, cF) ✓ wep

�1
c (cmd,wep(cmd, c))

(Lemma 4.10)
=) wep

�1
c (cmd, cF) ✓ c (Lemma 4.11)

Having shown that wep
�1
c (cmd, cF) is a subset of the original cube c, we

now show that if c is inductive relative to F(i�1,`), then wep
�1
c (cmd, cF) is also

inductive relative to F(i�1,`).

136 CHAPTER 4. SOFTWARE VERIFICATION WITH IC3

Lemma 4.14. Given cube c is inductive relative to F(i�1,`) along e = (`, cmd, `0)
then

9cF .¬cF 2 F(i�1,`) ^ cF ✓ wep(cmd, c) =) relInd(F(i�1,`), e,wep
�1
c (cmd, cF))

Proof by Contraposition.

¬relInd(F(i�1,`), e,wep
�1
c (cmd, cF))

=) ¬relIndAlt(F(i�1,`), e,wep
�1
c (cmd, cF))

() ¬unsat(F(i�1,`) ^ wep
�1
c (cmd, cF))

() sat(F(i�1,`) ^ wep
�1
c (cmd, cF))

() sat(F(i�1,`) ^ cF)

=) ¬
�
9cF 2 F(i�1,`)

�

=) ¬
�
9cF 2 F(i�1,`). cF ✓ wep(cmd, c)

�

Using the previously established results, we can now prove that under the
given premises that c is inductive relative to F(i�1,`) and there exists a clause
¬cF in F(i�1,`), and the corresponding cube cF is a subset of the wep(cmd, c),
then appyling wep

�1
c to cF in fact yields a valid generalization of c.

Theorem 4.6. Given that cube c is inductive relative to F(i�1,`) along
e = (`, cmd, `0) then

9cF .¬cF 2 F(i�1,`) ^ cF ✓ wep(cmd, c)

=) wep
�1(cmd, cF) 2 gen(F(i�1,`), e, c).

Proof. For wep
�1(cmd, cF) to be a valid generalization of c, it must satisfy

a) wep
�1(cmd, cF) ✓ c

b) relInd(F(i�1,`), e,wep
�1
c (cmd, cF))

Where a) has been shown in Lemma 4.13 and b) in Lemma 4.14.

Using the result from Theorem 4.6, we can enhance our search for predecessor
cubes from Theorem 4.5 to construct the wep

�1
c of such a cF in order obtain a

generalization for cube c without any solver queries.

4.3. GENERALIZATION 137

4.3.4 Efficient handling of generalizations
Let us reconsider the split operation from Definition 4.8. Given an edge e =
(`, cmd, `0) where cmd contains at least one choice command ⇤. The function
split will return a set of GCL commands that can also be considered as parallel
edges in the CFA. Whenever we encounter such an edge e and cube c is not
inductive relative to F(i�1,`), then we obtain a set of n parallel GCL commands
{cmd1, . . . , cmdn} for each of which we apply wep resulting in a set of predecessor
cubes {c1, . . . , cn} of c which are all one-step predecessors of states in c. We
therefore have to create proof obligations for each of these cubes in IC3CFA. This
however immediately raises the question whether the order in which obligations
for the same index are handled matters and if so, which order is optimal or at
least best overall.

Since the created obligations only differ in the cube that they contain, we
have to find some order based on a metric for the ”quality” of the cube. Like in
standard IC3, we aim to find generalizations that block large regions of states,
i.e. those that contain the fewest literals. For that reason we propose to prefer
cubes with less literals over cubes with many literals, since cubes with less literals
are more likely to produce small generalizations than cubes with many literals.
As such, we change the priority queue of our obligation queue to order cubes
based on ascending index and for obligations with the same index sort them in
ascending order of their cube’s size. Other possible orderings include descending
cube size or a random order, but neither of them are convincing theoretically, nor
experimentally (see Chapter 5). Our result that ordering obligations according
to their cube’s size in ascending order performs well has also been confirmed
in [Gurfinkel and Ivrii, 2015] in another context. In [Gurfinkel and Ivrii, 2015],
proof obligations are not only created when cubes are not inductive relative to
their respective predecessor frame, but also for cubes that may be helpful to
be proven inductive in order to block larger regions of the state space and thus
improving convergence. Since multiple of these so-called may-obligations can be
created for the same index, the problem of ordering obligations also arose and
was solved by ordering obligations based on the cube size in ascending order.

Caching generalizations As seen in this section, IC3CFA makes heavy use
of the WEP for predecessor computation, which enables multiple optimizations
to the generalization procedure of IC3CFA. Apart from exploiting the presence
of exact predecessors as seen above, we will now focus on a different aspect:
When looking at the process of how IC3CFA searches the state space for coun-
terexamples and how it creates stepwise reachability information in the frame

138 CHAPTER 4. SOFTWARE VERIFICATION WITH IC3

sequence, we can see that due to the deterministic search on the CFA, as well
as the precise predecessor computation, we determine the same cubes over and
over again, but at different indices, leading to repeated generalizations of the
same cube. While arguably generalizing a cube again in a randomized proce-
dure, resulting in different cubes will help IC3CFA to not get stuck with cubes
of bad quality, it may also slow down the convergence since different cubes pre-
vent the syntactic termination criterion that IC3CFA and other IC3 algorithms
use [Bradley, 2011; Eén, Mishchenko, et al., 2011]. Here we assume that an in-
ductive frame has been reached if two consecutive frames have identical clauses,
which is harder to achieve if many different cubes are generalized and blocked.
To achieve this we would need to make the generalization procedure even more
deterministic.

Since we find ourselves in the situation that the same cubes have to be gener-
alized multiple times and we strive to find a deterministic result in each of these
generalizations, caching the results of the generalization procedure becomes de-
sirable. However, it is not directly obvious how such a cache may look like,
because the obvious mapping cache : Cube 7! Cube from input cube c to gener-
alized cube g is not valid, since the generalization also depends on other factors,
such as the predecessor frame F(i�1,`) and the edge formula Te representing the
GCL command cmd of the edge e = (`, cmd, `0) along which we generalize c.

To store the correct setting in which a cube was generalized and to map it to
the generalized cube, we introduce so-called generalization contexts that store
exactly this context of frame and edge of the generalization.

Definition 4.11 (Generalization Context).
The generalization context GCi is defined as

GCi ✓ 2Cube⇥G⇥Frame⇥Cube

containing entries of the form (c, e,F , g) where g ✓ c is a generalization of
input cube c.

Given such a generalization context, we can store the exact setting in which
a cube c was generalized to cube g. Similar to frames, we make generalizations
happening at index j available in each generalization contexts GCi for i � j.
As a first step, we can now use this cached information if we have to generalize
cube c at index i and (c, e,F , g) 2 GCi relative to the same frame F = F(i�1,`)

and edge e to the generalized cube g.
This however will not produce many cache hits, since frames evolve and

4.3. GENERALIZATION 139

change over time. Here, however, we can exploit the fact that a frame F can
only monotonically grow, i.e. we just conjoin clauses to F , but never remove
them. This also means that the set of states represented by frame F only
decreases. Therefore, if at some point we have a set of states represented by
cube c and we find that no state in F has a successor state in c and that it
does not even have a successor state in the generalized cube g, then for some
other frame F

0 v F that contains less states than F , F 0 also does not have any
successor state in g.

Theorem 4.7. Given index i, edge e = (`, cmd, `0) and let c be a cube to
be generalized at i and `0 relative to F(i�1,`) and e, then

(c, e,F , g) 2 GCi ^ F ✓ F(i�1,`) =) g 2 gen(F(i�1,`), e, c)

Proof.

(c, e,F , g) 2 GCi ^ F ✓ F(i�1,`)

=) 9 j i. g 2 gen(F(j�1,`), e, c) ^ F = F(j�1,`) ^ F(j�1,`) ✓ F(i�1,`)

=) relInd(F(j�1,`), e, g) ^ F(j�1,`) ✓ F(i�1,`)

=) unsat(F(j�1,`) ^ Te ^ g
0) ^ F(j�1,`) ✓ F(i�1,`)

=) unsat(F(j�1,`) ^ F� ^ Te ^ g
0) ^ F(j�1,`) ✓ F(i�1,`)

=) unsat(F(i�1,`) ^ Te ^ g
0)

=) relInd(F(i�1,`), e, g)

=) g 2 gen(F(i�1,`), e, c)

Using Theorem 4.7, we can now use the stored information (c, e,F , g) of the
generalization context GCi not only for situations where we have the exact same
setting, but also for situations where we have to generalize the same cube c along
edge e but relative to a stronger frame F(i�1,`) ◆ F , too. While this improves
the number of cache hits dramatically, we should not immediately block g as
the generalization of c. Even though g satisfies as a valid generalization, since
it is a subset g ✓ c and is relative inductive to F(i�1,`), it may not be optimal
and in practice it rarely is. The reason for this is that due to the stronger frame
F(i�1,`) ◆ F , there are now many more states blocked in F(i�1,`) than there
were in F , such that even larger cubes ḡ ✓ g are now one-step unreachable from
F(i�1,`). In other words, all literals lit 2 c\g can definitely be dropped without

140 CHAPTER 4. SOFTWARE VERIFICATION WITH IC3

any solver checks, but there might also be others that we may be able to drop,
so we have to check the remaining literals. We therefore call the cube g obtained
from GCi as a result of Theorem 4.7 an upper bound of the final generalization
of c.

Example 4.11. Assume that the generalization from Example 4.10 has
already happened and has been cached. Furthermore, assume that in the
meantime F(2,`4) has grown from F(2,`4) = ¬(y � 0 ^ b = 0) to F(2,`4) =
¬(y � 0 ^ b = 0) ^ ¬(a%b = 0 ^ b 6= 0) (with the new lemma stemming
from one iteration of the loop) and we want to generalize c = y � a ^ y >

0 ^ b = 0 ^ b � 0 along e4 = (`4, assume a � 0, `6) relative to this new,
larger F(2,`4). Then we can automatically deduce that we only need to
check whether we can drop the literals (y � 0) or (b = 0). This means
that we can save two SMT queries. However, we can also see that it is in
fact advisable to check the remaining literals, since we can drop the literal
(b = 0), too, after blocking (a%b = 0 ^ b 6= 0).

We can however improve the upper bound for the generalization of cube c

even further by using additional cache hits. So far, we have only used entries
(c, e,F , g) 2 GCi for identical matches of cube c. We can however also use
(c̄, e,F , g) 2 GCi for cubes g ✓ c and frames F ✓ F(i�1,`) to increase the level
of information reuse even further.

Theorem 4.8. Given index i, edge e = (`, cmd, `0) and let c be a cube to
be generalized at i and l

0 relative to F(i�1,`) and e, then
�
(c̄, e,F , g) 2 GCi ^ F ✓ F(i�1,`) ^ g ✓ c

�
=) g 2 gen(F(i�1,`), e, c)

Proof.

(c̄, e,F , g) 2 GCi ^ F ✓ F(i�1,`) ^ g ✓ c

=) g 2 gen(F(i�1,`), e, c̄) ^ g ✓ c (Theorem 4.7)
=) relInd(F(i�1,`), g, e) ^ g ✓ c (Definition 4.7)
=) g 2 gen(F(i�1,`), e, c)

Since the generalizations resulting from Theorem 4.8 are larger and thus of
worse quality than the ones obtained using Theorem 4.7, we make the search

4.3. GENERALIZATION 141

in our cache staged and start by searching for entries that satisfy Theorem 4.7
and only if that does succeed, we search for entries satisfying Theorem 4.8 in a
second step.

Example 4.12. Consider a similar situation as in Example 4.11, but now
we want to generalize the cube c = y � a ^ y > 0 ^ �b = 0 ^ b < 0
that originates from the backward trace `8 ! `7 ! `6 instead of `8 ! `6

along edge e4 = (`4, assume a � 0, `6). We also assume the current frame
F(2,`4) = ¬(y � 0 ^ b = 0) ^ ¬(a%b = 0 ^ b 6= 0) and the cache to contain
the generalization from Example 4.10. This means, that

(c̄,e,F , g) 2 GCi, with
c̄ = y � a ^ y > 0 ^ b = 0 ^ b � 0,

e = (`4, assume a � 0, `6),

F = ¬(y � 0 ^ b = 0), and
g = y � 0 ^ b = 0.

Since this entry satisfies F ✓ F(2,`4) and g ✓ c, the previous generalization
g gives an upper bound on the literals for the current generalization.

Apart from the upper bounds on the literals for the final generalization of
cube c, we can however also use the information stored in the generalization
context GCi to derive a lower bound on the literals. Intuitively, these are the
literals of which we know that they definitely cannot be dropped from c.

The intuition behind such lower bounds is that if we encounter a general-
ization context (c, e,F , g) with frame F(i�1,`) ✓ F , then we assume that each
bg ✓ g was not a valid generalization relative to F . Since F(i�1,`) ✓ F such bg will
then also not be a valid generalization relative to F(i�1,`) and thus all literals in
g cannot be dropped from c.

Theorem 4.9. Given index i, edge e = (`, cmd, `0) and let c be a cube to
be generalized at i and l

0 relative to F(i�1,`) and e, then

(c, e,F , g) 2 GCi ^ F(i�1,`) ✓ F ^ bg ⇢ g

=) bg 62 gen(F(i�1,`,,)e, c)

=) g ✓ gfin ✓ c, 8gfin 2 gen(F(i�1,`), e, c)

142 CHAPTER 4. SOFTWARE VERIFICATION WITH IC3

Proof.

(c, e,F , g) 2 GCi ^ F(i�1,`) ✓ F ^ bg ⇢ g

=) 9j i. g 2 gen(F(j�1,`), e, c) ^ F = F(j�1,`)

=) 9j i. bg 62 gen(F(j�1,`), e, c) ^ F = F(j�1,`)

=) ¬relInd(F(j�1,`), e, bg)
Since F(i�1,`) ✓ F(j�1,`) = F , let F(j�1,`) := F(i�1,`) [F�.

=) ¬relInd(F(i�1,`) [F�, e, bg)
=) ¬relInd(F(i�1,`), e, bg)
=) bg 62 gen(F(i�1,`), e, c)

Example 4.13. Consider an inverse situation as the one in Example 4.11.
We approach `6 with c = y � a ^ y > 0 ^ b = 0 ^ b � 0 that we want to
generalize relative to F(2,`4) = ¬(y � 0^ b = 0) along e4 = (`4, assume a �
0, `6) and there exists some cached generalization for c such that

(c,e,F , g) 2 GCi, with
e = (`4, assume a � 0, `6),

F = ¬(y � 0 ^ b = 0) ^ ¬(a%b = 0 ^ b 6= 0), and
g = y � 0.

Since all premises from Theorem 4.9 are satisfied, we can deduce that
(y � 0) must be part of the final generalization of c and we don’t have to
check whether it can be dropped. If we are lucky and additionally an entry
exists that gives us an upper bound like (y � 0^ b = 0), we effectively only
have to check a single literal for dropping, reducing the number of SMT
checks in this case by 75%.

Note that we assume the generalized cube g to be minimal. While minimality
is obviously desirable, it may come at a very high price. Therefore many modern
implementations of IC3 dismiss minimality in the generalization in order to
speed up the generalization process. This however does not mean that the
proposed method becomes invalid, but rather that we may keep literals that
could have been dropped otherwise, i.e. the generalized cube will not be minimal
again, which in this setting is acceptable.

4.3. GENERALIZATION 143

When we combine the caching of generalization contexts and the presented
methods to derive lower bounds and upper bounds on the literals to be general-
ized, we can save a significant amount of effort in generalization. Given a cube
c to be generalized, for a set of literals cb c obtained as lower bound from The-
orem 4.9 and a set of literals cd e obtained as upper bound from Theorems 4.7
and 4.8, we only have to check which literals from cd e\cb c can be dropped.

4.3.5 On other generalization techniques
Having presented a set of new and improved techniques for the generalization
of cubes in IC3CFA, we will also have a short look at some other generalization
methods that have been considered in the literature, in particular unsatisfiable
cores and nterpolation.

Unsatisfiable Cores The first use of unsatisfiable cores (short unsat cores)
for IC3 generalization was already published as a side note to the IC3 algorithm
in [Bradley, 2011]. Here the author states that the unsatisfiable core of a suc-
cessful query for inductivity of cube c relative to Fi�1 ”can be used to reduce
s, often significantly, before applying inductive generalization” [Bradley, 2011].
This in fact enables a significant improvement for bit-level IC3, as well as for
IC3CFA. The problem however is, that unsatisfiable cores that can be extracted
from the solver are not minimal in any sense, but can be extracted with almost
no costs. Therefore unsatisfiable cores are a good starting point for inductive
generalization as stated in [Bradley, 2011], but should not be considered final
generalizations. From a SAT/SMT solving point of view, we may think about
further minimizing unsatisfiable cores, which has been subject to various publi-
cations [Bruni, 2003; Gershman et al., 2008; Marques-Silva et al., 2013; Nadel,
2010; Nadel et al., 2013; Oh et al., 2004; Zhang et al., 2006]. However, we will see
that the minimization techniques of unsatisfiable cores and IC3’s generalization
are very closely related to each other.

To demonstrate this, we use the minimization technique from [Guthmann
et al., 2016]. The algorithm proceeds as follows: Given a formula ' in CNF,
remove an unmarked clause d 2 ' from ' and check whether the resulting
formula is still unsatisfiable. If it is, we keep ' without d and otherwise we
mark d and put it back into '. Afterwards, we check whether all clauses are
marked and proceed by either picking another unmarked clause or return ' as
minimal unsatisfiable core.

We can easily see that, if we start with a CNF ' = F(i�1,`) ^ Te ^ c
0 and

already mark all clauses in F(i�1,`) and Te, then we are only left with the

144 CHAPTER 4. SOFTWARE VERIFICATION WITH IC3

”clauses”, i.e. literal, of c to check. As a result we will linearly iterate over
the literals of c and check which can be removed. This exactly resembles the
standard linear generalization of IC3.

As such, using simple minimization of unsatisfiable cores is not advisable,
since it is not able to fully exploit the structure of our queries, as the methods
presented in this section are.

Interpolation Another interesting approach to generalization is the use of
interpolation for generalization. As mentioned on page 74 in the context of
IC3, interpolation is able to deduce generalizations that block a superset of
the states of cube c, but are not a subset of c. Thus, we are able to block
states on a semantic level, which may speed up convergence considerably and in
some cases can be the key to solving the problem at all. One popular example
where interpolation can make the difference between running out of resources
and terminating successfully is for programs that check loop invariants or loop
nondeterministically and check a relation between certain variables after the
loop has terminated. For such cases, standard IC3CFA will not converge, since
it will enumerate possible runs through the program. With interpolation how-
ever, the generalization is able to establish e.g. linear inequalities that enable
termination after very few iterations. Such an approach has been published in
[Birgmeier et al., 2014] for a different IC3 software model-checking algorithm,
but the experimental evaluation of the authors has revealed an overall negative
effect of using interpolation on the used benchmark set. We implemented the
same approach in our verification framework for the IC3CFA algorithm and
were able to reproduce these results. After investigating the reason for the neg-
ative impact, we found out that interpolation in general can take a considerable
amount of computation time and sometimes will not even terminate within a
time frame of 30 minutes. However, this dramatic increase in interpolation time
was mostly due to interpolating large formulas, while for small formulas the
interpolation time was negligible, but was able to solve some instances that
cannot be solved without interpolation. In addition we realised that after the
input CFA has been minimized by our static preprocessing, many loops have
been minimized into a self-loop in the CFA. We therefore added a check that
disables interpolation on non-loop edges, such that we save interpolation calls
where they are not as helpful. Using these restricted interpolations, we were
able to solve more instances, while at the same time preserving the performance
on instances that don’t benefit from interpolation. An experimental evaluation
of this approach will be subject of Chapter 5.

4.4. PROPAGATION 145

4.4 Propagation

The propagation of learnt clauses into subsequent frames is an important aspect
of the performance of IC3, as illustrated in Section 3.4. It allows IC3 to learn
clause d for frame Fi, based on d’s existence in frame Fi�1 for all 1 i k

and thus saves the backward-search that may have otherwise led to learn d after
many search steps. In Section 3.4 we saw that this pushing of clause d into
frame Fi is not necessary for the correctness of IC3, but largely benefits the
performance since it accelerates the convergence of frames.

Because of this beneficial effect of propagation to IC3, we tried to apply
it to IC3CFA as well. In the remainder of this section we will illustrate the
challenges and problems that arise with propagation in the IC3CFA setting. To
start with, let us shortly reconsider how pushing works in IC3: After checking
termination and incrementing the step bound k, we check for each clause d 2 Fi

at each index 0 i k� 1 whether the implication Fi ^ T) d
0 is valid ((3.10)

on page 79). If this is the case, then we can push d forward into Fi+1, since it
also holds in the next frame. Since we iterate over all frames starting with F0,
we will consider d in Fi+1 again, therefore pushing d forward as far as possible.
This in turn results in a faster convergence of frames and faster termination.

If we now apply this idea to IC3CFA, we first have to consider the explicit
handling of control-flow locations, which splits our step-wise reachability frames
Fi into a set of frames F(i,`) for each location ` in the CFA. Our implication
(3.10) then corresponds to the implication

F(i,`) ^ T`!`0 ^ d
0 for all `0 2 succ(`). (4.18)

If the implication (4.18) is valid, then we can add d to F(i+1,`0). However,
this query in practice often fails, since the edge e = (`, cmd, `0) often modifies
the variable valuations, especially after model minimizations have taken place5.
A more successful approach to propagating learnt knowledge into subsequent
frames is the use of strongest postconditions, which give exact reachability in-
formation for F(i+1,`0) based on the blocked cubes in F(i,`). Note that propa-
gating clauses from F(i,`) into F(i+1,`0) using strongest postconditions does not
require additional SMT checks since it is always valid to add these. Neverthe-
less, this approach is also not useful in IC3CFA, since strongest postconditions
will change the syntactic structure of the clause, such that our syntactic termi-
nation check does not benefit from these. On the contrary, it even slows down
termination, since we now have to wait until we can push such a clause from

5More on model minimizations in Section 5.1.2.

146 CHAPTER 4. SOFTWARE VERIFICATION WITH IC3

F(i+1,`) into F(i+2,`0) in order to satisfy the termination criterion again. Chang-
ing the termination check into a semantic check is also not advisable, since such
a check requires a solver query for each F(i,`), for all 0 i k � 1 and ` 2 G.

Another problem with propagation in IC3CFA, is that pushing in general
does not properly support termination, since they work somewhat orthogonal:
For termination, we check whether for all ` there exists a frame F(i,`) that is
equal to F(i+1,`). However, using (4.18) we propagate d from F(i,`) into F(i+1,`0).
Note the difference between termination checking on the same location and
propagation pushing clauses into successor locations. As such, (4.18) does not
really push d to Fi+1 and (with delta encoding, see page 69) remove d from
Fi, as in standard IC3, but it rather duplicates d into F(i+1,`0) of the successor
location.

Due to these reasons, we refrained from using propagation in IC3CFA. Even
using more involved optimization strategies for the propagation of clauses, such
as [Gurfinkel and Ivrii, 2015; Suda, 2013], we were not able to improve the
performance of IC3CFA compared to a configuration without any form of prop-
agation.

Changing the overall handling of frames in IC3CFA may lead to a better
performance of propagation, however it is questionable whether this outweighs
possible performance drawbacks in the search phase of the algorithm: For exam-
ple, one might change the current representation of frames for each location and
merge them for each index, such that again, we obtain a set of frames F0, . . . ,Fk

and inside these frames we store clauses annotated with their reachability infor-
mation in the CFA, e.g. (`, d) 2 Fi, which could also be lifted to store clauses
for arbitrary sets of control-flow locations, such as ({`1, . . . , `n}, d) 2 Fi. While
this representation of frames would also closely resemble the information that
the original IC3 stores and improve the application of propagation, it would
largely complicate the handling of the search phase. Since the search phase is
to be considered the most crucial phase of each IC3 algorithm, this change of
the frame structure does not seem promising.

4.5. COMPARISON 147

4.5 Comparison

We started this chapter by illustrating the process of lifting the IC3 algorithm
to software model-checking on the example of IC3-SMT and Tree-IC3 [Cimatti
and Griggio, 2012]. To complete the presentation of our IC3CFA algorithm, we
will have a brief look at a selection of other algorithms for IC3-style software
model-checking.

We start with the IC3+IA algorithm of [Cimatti, Griggio, Mover, et al.,
2014] which builds upon the work of [Cimatti and Griggio, 2012]. The main
motivation of IC3+IA is to integrate IC3 with (predicate) abstraction, in this
case Implicit Abstraction (IA) as presented in [Tonetta, 2009]. In the interaction
between IC3 and IA, IC3 operates purely on the Boolean level of the abstracted
state space and discovers inductive clauses over the abstraction predicates. Like
IC3CFA, IC3+IA is able to handle a variety of background theories because it
does not rely on ad-hoc extensions like quantifier elimination or theory-aware
generalization procedures. But in contrast to IC3CFA, the IC3+IA algorithm
does not explicitly represent the transition relation but keeps this symbolic. In
addition, the use of IA allows IC3+IA to abandon the explicit computation
of the abstract system. The algorithm proceeds as follows: Given some set of
predicates P, we consider the Boolean state space that is spun by P and apply
standard IC3 on it, with the exception that the transition relation is given in
terms of IA in order to avoid quantifier elimination. To check inductivity of a
P-cube in this state space relative to a P-frame, [Cimatti, Griggio, Mover, et al.,
2014] introduces a modified check that includes the lifting to IA. Due to the use
of predicate abstraction, a counterexample found in the search phase of IC3 may
be spurious, i.e. it may not be a counterexample on the concrete state space.
This situation common to predicate abstraction is resolved by simulating the
given abstract counterexample path on the concrete system. If the counterexam-
ple also exists in the concrete system, IC3+IA detected a real counterexample.
If however the counterexample does not exist on the concrete system, the set
of predicates must be refined, just like in other predicate abstraction settings.
Based on this new set of predicates the IC3 is executed again. A distinct feature
of IC3+IA is that it only adds new predicates to P, such that P monotonically
increases, which allows IC3+IA to keep all learnt clauses and rather than restart
IC3, it can just be continued. In [Cimatti, Griggio, Mover, et al., 2014] the au-
thors also evaluated a combination of Tree-IC3 and IA, but while being more
efficient than Tree-IC3 with interpolation (the best configuration from [Cimatti
and Griggio, 2012]) it is outperformed by IC3+IA.

148 CHAPTER 4. SOFTWARE VERIFICATION WITH IC3

Another abstraction based approach for IC3 software model-checking called
Counterexample to Induction-Guided Abstraction-Refinement (CTIGAR) is pre-
sented in [Birgmeier et al., 2014]. The CTIGAR algorithm also maintains a set
of predicates P that abstract the concrete state space. But where IC3+IA only
refines P whenever a spurious counterexample trace has been found in the ab-
stract state space, CTIGAR triggers refinement of P over single-step queries in
two situations: A so-called lifting failure occurs whenever an abstract cube c is
not inductive, i.e. (3.2) (see page 59) fails. When this happens, IC3 extracts the
state s from the solver model, as well as an assignment z to the primary inputs,
and tries to lift the full assignment s to a partial assignment. The corresponding
query s^z^T ^¬c0 [Chockler et al., 2011] is satisfied by default in IC3, however,
for the abstracted version bs of s, it may fail, due to states in bs that have ¬bc-
successor states. The second situation in which predicate refinement must take
place in CTIGAR is when the abstract cube bc is not inductive relative to some
frame Fi, i.e. the abstract consecution fails, but the corresponding concrete con-
secution succeeds. Such a situation is called consecution failure and is triggered
when the concrete cube c does not have Fi-predecessors, but by abstracting it
to bc, the abstraction includes a successor to some Fi-state. Like other predi-
cate abstraction algorithms, CTIGAR uses interpolants for refinement if they
are available in the respective theory. However, when a consecution or lifting
failure occurs, CTIGAR may not eagerly refine whenever an abstraction failure
occurs, but may choose a lazy approach and only refine later. In fact, the ex-
perimental evaluation in [Birgmeier et al., 2014] revealed that a lazy refinement
approach is in practice the best performing in terms of solved benchmarks, as
well as in cumulative time (except for one configuration which solves 6 instances
less).

There also exist other approaches to software model-checking with IC3 that
are not theory-independent like IC3+IA or CTIGAR. Such an approach, called
Generalized Property Directed Reachability (GPDR), is presented in the epony-
mous paper [Hoder and Bjørner, 2012]. The main focus of GPDR is the lifting
of IC3/PDR to nonlinear fixed-points that become important when considering
procedure calls. Such nonlinear predicate transformers can be represented as
general Horn clauses, which are clauses where at most one literal is unnegated.
Additionally, in [Hoder and Bjørner, 2012] GPDR is lifted to use Linear Real
Arithmetic (LRA, see Section 2.1.2). This restrictive representation is tailored
towards timed push-down systems where it is shown to perform much better
than competing approaches.

A second approach that is tailored towards a specific representation and
class of programs is [Welp and Kuehlmann, 2013] which applies IC3/PDR to

4.5. COMPARISON 149

the domain of quantifier-free bit-vectors (QFBV, see Section 2.1.2). This allows
the algorithm to reproduce the exact bitprecise program behaviour including
over-/underflows of variables. In addition, since all variables are bit-vectors,
they can also be expanded to a purely Boolean representation, which is a known
technique called bit-blasting. As such, [Welp and Kuehlmann, 2013] are basically
able to use the standard IC3 algorithm for all bit-blasted variables.

Chapter 5

Experimental Results

Following the presentation of the IC3CFA algorithm and the generalization, as
well as our improvements to the generalization in Chapter 4, we have imple-
mented all presented techniques on top of an existing, proprietary verification
framework. The remainder of this chapter is structured into two parts: The
implementation of IC3CFA in Section 5.1 and the evaluation in Section 5.2. We
will start Section 5.1 with a more detailed description of the architecture of the
framework in Section 5.1.1 to illustrate the way that our verification framework
is constructed and which components interact in order to efficiently verify differ-
ent input programs. Section 5.1.2 will illustrate some of the employed prepro-
cessing methods that can have a large effect on the performance of IC3CFA, in
particular static analyses and the corresponding model minimizations to reduce
the size of the CFA that we use as input for the actual verification algorithm. In
Section 5.1.3 we will give some more insight on specific implementation details
of the individual techniques that were presented in Chapter 4. Section 5.2 starts
with a presentation of the setup and configurations under which the benchmarks
have been executed (in Section 5.2.1). In Section 5.2.2 we will discuss the results
of executing our IC3CFA implementation and evaluate benefits and drawbacks
of the respective techniques. We conclude this chapter with some industrial
experiences in Section 5.2.3.

152 CHAPTER 5. EXPERIMENTAL RESULTS

5.1 Implementation

In Chapter 4, we have introduced multiple new concepts for the verification of
software using the IC3CFA algorithm, including a detailed look at how to lift
the generalization of IC3 to software and how to improve it in the presence
of explicit control-flow and exact pre-images. While this part focussed on the
theoretical aspects of these methods, we will now consider the implementation
aspects of IC3CFA and illustrate important details when implementing IC3CFA
whenever they are not obvious from the descriptions in Chapter 4.

5.1.1 Architecture

As mentioned before, we implemented all contributions on top of an existing
proprietary framework for software verification (in the remainder: the verifier).
Since we cannot publish any source code of the verifier and its IC3CFA im-
plementation, we will sketch the architecture and flow of the verifier and its
respective parts. Figure 5.1 shows an architecture diagram for the verifier.
As usual for model checkers (see Section 2.3.1), we take requirements in form
of assertions and initial conditions as input and combine them into a formal
specification. We also take an input program, in form of a C file and parse it
to translate it into our custom intermediate verification language (short, IVL).
Using a custom intermediate language enables us to implement a modular front-
end for input languages, such that we can easily adapt the verifier to new input
languages without the necessity to change any code in the back-end. Because
our IVL is Turing-complete, we are able to translate arbitrary languages into
IVL. Based on such IVL code and the given specification, we first apply a model
minimization (see Section 5.1.2) and, based on the minimized model, construct
the CFA of the resulting program. Afterwards, we minimize the CFA using
Large-Block Encoding [Beyer, Cimatti, et al., 2009]. The resulting, minimized
CFA will be the input to the verification algorithms, which can be chosen at
run-time via command line arguments. Besides the IC3CFA algorithm, which
was the topic of Chapter 4, the verifier also contains a bounded model-checking
(BMC) and a Counterexample-guided abstraction refinement (CEGAR) engine.
Independent of the choice, all verification engines will access the same solver
interfaces, which decouples the different solvers, in our case we offer Z3 [Moura
and Bjørner, 2008], CVC4 [Barrett et al., 2011] and MathSat5 [Cimatti, Griggio,
Schaafsma, et al., 2013].

5.1. IMPLEMENTATION 153

assertions initial conditions C subset

C parser

IVLspecification

. . .

model minimization

CFA construction

CFA minimization

Bounded
Model

Checking
IC3CFA

Counterexample-
guided abstraction

refinement

solver interface

Z3 MathSat5CVC4

Figure 5.1: Architecture diagram of the information flow through our verifica-
tion framework

5.1.2 Preprocessing

As seen in Figure 5.1, the input model given in IVL is subject to some pre-
processing, in order to minimize the model, before it is given to the verification
engine. This preprocessing consists of two different phases: The static mini-
mizations on IVL code and the CFA minimization. The first minimizations,
that are executed on the IVL code consist of a number of static program analy-
ses, such as initialized variables, needed variables or reaching definitions analysis
[Nielson et al., 1999], Steensgaard’s pointer analysis or partition refinement (on
the locations of the CFA), and the corresponding program transformations, like
forward propagation [Lange et al., 2013], program slicing, pointer resolution
and bisimulation minimization. These optimizations allow us to handle simple
pointer programs, simplify expressions and slice away unnecessary parts of the
program. However, these transformations are very likely to influence the results
of some analyses, such that we have to execute the analyses and transformation
again, until we reach a fixed-point.

154 CHAPTER 5. EXPERIMENTAL RESULTS

For the CFA minimization we use the so-called Large-Block Encoding (LBE)
[Beyer, Cimatti, et al., 2009]. The LBE algorithm applies three simple rules of
which two are again applied in a fixed-point approach: (1) the error sink rule
removes all outgoing edges of the error location `E . Since this rule can only
be applied once, it can be considered as a pre-processing rule for the following
two rules. (2) the sequence rule merges consecutive edges into a single edge,
such that edges e1 = (`1, cmd1, `01) and e2 = (`2, cmd2, `02) with `

0
1 = `2 are

replaced by a new edge e = (`1, cmd1; cmd2, `02). (3) the choice rule merges
parallel edges, i.e. e1 = (`1, cmd1, `01) and e2 = (`1, cmd2, `01) are replaced by a
single edge e = (`1, cmd1⇤ cmd2, `01) where the nondeterministic choice of the
CFA between e1 and e2 is represented by the choice operator ⇤ on GCL level.
Rules (2) and (3) are executed in a loop until the CFA reaches a fixed-point.
However, our experiments have shown similar results as in [Beyer, Keremoglu, et
al., 2010], i.e. minimizing the CFA until it reaches a fixed-point may sometimes
not be optimal for the performance of subsequent verification engines. In our
approach we implemented thresholds on the size of the formula representing the
semantics of the command and stop modifying an edge whenever it cannot be
modified using rules (2) and (3) or when the threshold is exceeded. We then
terminate whenever no edge can be modified any more. This approach yields
the best performance for IC3CFA, as well as for the CEGAR engine.

5.1.3 Implementation details

In the remainder we will consider some details that are not relevant for the the-
oretical considerations of Chapter 4, but become important when implementing
IC3CFA.

All core parts of the verifier are written in the functional OCaml language.
On the one hand writing the verifier in a functional language comes in handy
in many cases, where the theory is naturally recursive, e.g. the fixed-point ap-
proaches described in Section 5.1.2. On the other hand, when we adhere to write
tail-recursive functions, the OCaml compiler is able to translate the code into
efficient machine code that can keep up with other native code implementations.

Cubes and frames As we already discussed in Section 4.2, the encoding of
frames in the original IC3 algorithm [Bradley, 2011] is not very efficient and
the delta-encoding of PDR [Eén, Mishchenko, et al., 2011] leads to a dramatic
performance improvement. Since we store not a single frame sequence but |LP |
sequences, with LP = L\{`E}, the effect of delta-encoding is even more crucial.

5.1. IMPLEMENTATION 155

One of the main differences between the theoretical aspect of IC3CFA and
the implementation is in the main data structure: While on a theoretical level
cubes and clauses are dual and one results from negating the other, an im-
plementation representing this duality will struggle with circular dependencies,
i.e. negation of a cube will return a clause and vice versa. However, we do
not have to offer explicit implementations for both of them. Instead, we keep
clauses implicit as long as possible by using their dual cube. As such, a frame
is implemented as a set of cubes that implicitly represents the conjunctions of
the clauses that arise from negating the cubes. Whenever we have to solve a
query that involves the frame formula, we have to determine it anyway, due
to delta-encoding. Assume we want to determine the frame formula for F(i,`),
we have to iterate over all entries j with i j k and collect the cubes in
R(j,`). During these iterations, we can easily add the negation to all collected
cubes and in the end conjoin all negated clauses to create the correct frame for-
mula. Note the difference between the entries R(i,`) and the frame F(i,`), where
F(i,`) =

V
R(j,`), i j k according to delta-encoding [Eén, Mishchenko, et

al., 2011]. In contrast to the standard IC3, which stores a vector of such F/R,
the lifting to IC3CFA introduced a second dimension of frames with respect to
the locations ` 2 LP . As a consequence, we do not have to store a vector of
size k, but rather a matrix of size k ⇥ |LP |. While an imperative programming
language may offer the possibility to implement this matrix directly, allowing
random access to all entries, we are not able to properly implement this in
OCaml. The solution here is to use a nested map, which naturally leads to the
question which dimension to use in the inner/outer map, because once we have
mapped the outer dimension, we can easily iterate over entries in the inner map.
However, for IC3CFA we iterate over the index, e.g. for collecting frame en-
tries in delta-encoding, as well as over the location, e.g. the termination check
where we check whether for some i whether F(i,`) = F(i+1,`) for all ` 2 LP .
Because frame formulas will be created much more often than the termination
check happens, we implemented frames as a nested map mapidx �maploc with
mapidx : N 7!Maploc and maploc : LP 7! R.

Apart from avoiding a tedious circular data structure, we can easily check for
predecessor cubes as presented in Theorem 4.6 on page 136, as a set membership
of the corresponding frame entries.

SMT solvers As seen in Figure 5.1, the verifier uses a modular approach
that allows easy extension to other solvers by using a solver interface that en-
capsulates the actual solver. While this allows us to determine the used solver

156 CHAPTER 5. EXPERIMENTAL RESULTS

during runtime and also allows the verification algorithms to hotswap solvers
in case one does not offer the specific functionality, e.g. interpolation, it also
requires a custom formula representation to decouple from the different formula
representations of each solver. Using efficient techniques, such as hashconsing,
we are able to store formulas in our own formula implementation and translate
them to the solver API without too much overhead.

In Chapter 4 we often discussed that the exact predecessor computation
using WEP leads to many redundant cubes. While these do not introduce
any overhead in the formula representation, we might execute many redundant
SMT checks with these repeating cubes. In order to save computation time,
our IC3CFA implementation adds another layer on top of the solver interface,
which internally caches the formulas that we assert and stores the result from
the solver. Since we allow the verifier to dynamically set the solver timeouts,
depending on whether it is a critical or non-critical query, we have to consider
the timeout in caching. A typical example for a critical query is an inductivity
query in the search phase, i.e. if we do not know whether predecessors exist
or not, we cannot continue the search phase, while inductivity queries in the
generalization are generally considered non-critical and a timeout can be con-
sidered as failed dropping attempt, i.e. we just keep the literal, which may lead
to a slightly less general result, but does not compromise the correctness of the
result. An instance of such a so-called CachedSolver will offer all functionality
of a standard solver, but internally cache the result for this formula and time-
out. Whenever the same formula is checked with a timeout less or equal to the
stored timeout, it will return the cached result and for longer timeouts, it will
check the formula again. Apart from caching SMT queries, a CachedSolver will
also cache interpolation calls.

Caching For caching, our implementation uses Least-Recently-Used (LRU)
caches in almost all situations. For all presented caches, such as generalization
contexts or CachedSolvers, the number of keys in the map is infinite, such that
caching all results ever seen will quickly pollute the memory and will exceed the
allocated resources, such that execution is terminated with a Memout error. To
prevent the verifier from quickly wasting its resources, the LRU caches allow
to limit the memory used for the cache and at the same time only keep the
least recently used entries, which are the ones that are most likely to reappear
anyway.

5.1. IMPLEMENTATION 157

Counterexamples An important aspect that is not considered in [Bradley,
2011] or [Eén, Mishchenko, et al., 2011] is the extraction of counterexamples,
whenever the property is proven to be violated. To do so, we extended proof
obligations o with an id and a parent id that stores the id of the obligation
op that caused the creation of o. Using these entries we can reconstruct the
counterexample path from the CTI down to the obligation at level 0. To check
that no id is assigned twice, we use the obligation queue as a singleton that
stores and hands out new ids. This combination of id and parent is of course
due to the limitations given by OCaml, where an imperative implementation
would simply store pointers to the corresponding parent obligation.

Inductivity queries over multiple edges Section 4.3 illustrates how we
can generalize a cube with respect to multiple edges. The situation is slightly
easier for relative inductivity, as shown in Algorithm 13 on page 105: A cube c

at location `
0 is inductive relative to its predecessors, iff it is inductive relative

to F(i�1,`) for all ` 2 pred(`0). In Algorithm 13, we omit this general check
and rather check each edge individually. However, for our implementation we
encapsulated inductivity queries in a separate module which offers a number of
similar but slightly differing implementations for inductivity queries. (1) The
most atomic function that is also used by many of the subsequent functions,
called check_single_edge is the one that represents the check in Algorithm 13
and checks inductivity with respect to a single edge. (2) The function check
represents the opposite extreme, i.e. it uses a single query to check inductivity
with respect to all incoming edges at once. Whenever a cube is inductive with
respect to all edges, this query is preferable. However, for the search phase of
IC3CFA, the simple result non-inductive is not helpful since we need to know
which edges violate the inductivity and have to be considered in more detail with
new proof obligations. (3) The function check_by_filter solves this problem by
encapsulating the approach of Algorithm 13: It checks each edge individually
using function (1) and return just those edges that violate inductivity, i.e. it
filters all edges to which cube c is inductive. (4) To find a balance between (2)
and (3), the function check_and_filter tries to take the best from both worlds:
It starts with the check of (2) and if that fails it uses (3) to find those edges that
violate inductivity. All these functions serve slightly different purposes and are
applied in different parts of the IC3CFA algorithm.

158 CHAPTER 5. EXPERIMENTAL RESULTS

5.2 Evaluation

After presenting our IC3CFA algorithm in Chapter 4 and its implementation
details in Section 5.1.1, we will evaluate the performance of IC3CFA and the
proposed improvements in detail.

To ensure a fair comparison, we will use a tool called benchexec which is
developed by the organizers of the Competition of Software Verification (SV-
COMP) [Vojnar and Beyer, 2018]. The main reason why we use benchexec
is that is enables truly reproducible results due to exhaustive resource man-
agement, such as allocation of processor cores and memory to prevent other
applications, even operating system service from interfering with the allocated
resources for benchmarking. Furthermore it monitors and logs the consumed
memory and CPU time and can even compare the output of the verification
tool with the expected result for the respective input file. All these information,
as well as all output of the verification tool can be processed with a small tool
called table-generator that is shipped with benchexec yielding an html file with
a customizable table of all results and corresponding plots.

5.2.1 Setup
For executing our benchmarks, we use a host system with Intel R� Xeon E5-2670
CPUs with a frequency of 2.3Ghz and a total memory of 64GB running Debian
version 9.4 64bit with Linux kernel version 4.9.0 release 5 and using benchexec
version 1.17-dev. All configurations that we executed were allowed to use one
core per instance for a time of 3600 seconds with a maximum memory of 3000MB
before being aborted with a time-out or memory-out (MemOut), respectively.

To properly evaluate the effect of all our proposed techniques, we have im-
plemented a number of command line options that allow us to enable, disable
or modify each technique individually. The following options are available:

Generalize: Possible values are {None(N), Old(O), New(W)}, where gen-
eralization is disabled by None; Old uses the standard generalization of [Bradley,
2011] lifted to SMT atoms as literals and New uses our improved generalization
procedure with all techniques that are activated (and don’t care generalization
as presented on page 122 activated by default).

Edge approach: Possible values are {Multi(M), Single(S), Incremen-
tal(I)}, where Multi generalizes a cube with respect to all edges at once, Single

5.2. EVALUATION 159

breaks it down into separate generalizations with respect to each edge and unites
the results and Incremental is similar to Single, but incrementally refines a set
of necessary literals while computing generalization along all edges individually.

Obligation order: Possible values are {Smallest(S), Largest(L), Ran-
dom(R)}, where Smallest sorts the cubes ascending based on their cardinality,
Largest sorts descending and Random sorts them in an explicitly randomized
order.

Reuse: This bool option enables the reuse of obligations after IC3CFA pro-
ceeds to the next iteration of k when set to true and disables it when set to
false. For more information on obligation reuse see page 112.

RelIndAlt: This bool option enables the alternative relative inductivity ap-
proach as described in Theorem 4.3 when set to true and disables it when set
to false.

PreCubes: This bool option enables the static generalization based on subset
of the wep if a subcube is contained in the respective frame when set to true

and disables it when set to false.

Generalization Caching: This bool option enables the caching of general-
ization in generalization contexts and uses them for upper bounds on the literals
of the final generalization when set to true and disables it when set to false.

Lower Bounds: This bool option enables the additional use of generalization
context for lower bounds on the literals of the final generalization when set to
true and disables it when set to false.

Extended Context: This bool option enables the additional search for sub-
cubes in the generalization context if no direct hit can be found when set to
true and disables it when set to false.

Interpolation: This bool option enables the additional interpolation of the
cube during generalization when set to true and disables it when set to false.

160 CHAPTER 5. EXPERIMENTAL RESULTS

Semantic Blocking: This bool option enables an additional, semantic check
whether the cube to be blocked is already subsumed by the frame it is blocked
in when set to true and disables it when set to false.

Based on these configurations, we created a set of different configurations
that aim to evaluate the effects of different techniques. An overview of all
configurations is given in Table 5.1.

All listed configurations have been evaluated on a benchmark set consist-
ing of a total of 406 C files. For this benchmark set, we chose the following
subsets: We took 99 C files from the benchmark set used for evaluation in
[Cimatti and Griggio, 2012]. We chose this set because the contained pro-
grams represent interesting properties that challenge the verification engine,
rather than just the static minimizations or the SMT solver. We removed
some programs from the set used in [Cimatti and Griggio, 2012] to avoid du-
plicates with other chosen benchmark sets. In addition, we used the ample
set of benchmarks from SV-Comp [Vojnar and Beyer, 2018] that are freely
available from the SV-Comp homepage. Since these sets aim for many dif-
ferent verification goals, such as safety, memory safety, concurrency or ter-
mination, we focus on the ReachSafety category, which contains only bench-
marks that check reachability of bad states. From this category, we selected the
sub-categories ReachSafety-BitVectors, ReachSafety-ControlFlow, ReachSafety-
Floats and ReachSafety-Loops. This excludes the sub-categories ReachSafety-
ECA, ReachSafety-ProductLines and ReachSafety-Sequentialized, because the
structure of these programs can not easily be represented and processed by our
front-end leading to timeouts that are not caused by the verification. Further-
more our selection excludes the category ReachSafety-Heap which aims at the
verification of dynamic data-structures on the heap, which can not be expressed
in our IVL. A similar situation leads to the exclusion of the programs from
the ReachSafety-Recursive sub-category, since we do not support verification of
recursive functions and inline all function calls, the inlining in the preproces-
sor will diverge without ever starting the verification engine. According to the
specifications of SV-Comp, all programs are verified against reachability of the
error location and all programs are verified against a 32-bit architecture.

5.2.2 Results
In the remainder of this section, we will present a detailed evaluation of all
techniques presented in Chapter 4, as well as implementation tweaks presented
in Section 5.1. For this purpose we will mainly use two types of plots: Scatter
plots, like the one in Figure 5.2b, give a detailed comparison of the distribution

5.2. EVALUATION 161

G
en

er
al

iz
e

E
dg

e
ap

pr
oa

ch

O
bl

ig
at

io
n

or
de

r

R
eu

se

R
el

In
dA

lt

P
re

C
ub

es

G
en

er
al

iz
at

io
n

C
ac

hi
ng

L
ow

er
B

ou
nd

s

E
xt

en
de

d
C

on
te

xt

In
te

rp
ol

at
io

n

Se
m

an
ti

c
B

lo
ck

in
g

A N S F F F F F F F F
B O M S F F F F F F F F
C O S S F F F F F F F F
D O I S F F F F F F F F
E O I L F F F F F F F F
F O I R F F F F F F F F
G O I S T F F F F F F F
H W S T F F F F F F F
I W S T T F F F F F F
J W S T F T F F F F F
K W S T F F T F F F F
L W S T F F T T F F F

M W S T F F T T T F F
N W S T F F F F F T F
O W S T T T T T F F F
P W S T T T T T F T F
Q W S T T T T T F F T

A = IC3CFA | B = IC3-Gen Multi | C = IC3-Gen Single | D = IC3-Gen
Incremental | E = IC3-Gen Order Largest | F = IC3-Gen Order Random | G
= IC3-Gen Reuse | H = New-Gen Don’t care | I = New-Gen RelIndAlt | J =

New-Gen PreCubes | K = New-Gen Upper Bounds | L = New-Gen Lower
Bounds | M = New-Gen Extended Context | N = New-Gen Interpolation | O
= New-Gen All | P = New-Gen All Interpolation | Q = New-Gen All Semantic

Blocking

Table 5.1: Benchmark configurations

162 CHAPTER 5. EXPERIMENTAL RESULTS

0.001

0.01

0.1

1 10 100

1
000

0.001

0.01

0.1

1

10

100

1 000

T
O

M
O

TO
MO

IC3CFA (A)

M
ul

ti
-E

dg
e

G
en

er
al

iz
at

io
n

(B
)

(a) Verification time

1 10 100

1

10

100

IC3CFA (A)
M

ul
ti
-E

dg
e

G
en

er
al

iz
at

io
n

(B
)

(b) Iterations

Figure 5.2: IC3CFA vs. Multi-Edge Generalization

of individual results from one configuration against another. Each mark in the
plot resembles one input program and is positioned on the x-axis based on the
result from the respective x-configuration and on the y-axis based on the result
from the y-configuration. As a result, scatter plots can be read as follows:
marks in the upper left half are in favor of the x-configuration, and vice versa
for the lower right half. For scatter plots representing verification times, we
introduce three additional components: dashed lines indicate a factor of 10 on
the logarithmic axes and dedicated TO/MO lines reveal timeouts and memory-
outs, respectively. The second type of plot that we use is called quantile plot
or sometimes also referred to as cactus plot because of their similarity to the
branches of large, treelike cacti. While less precise in the details, quantile plots
can offer a good impression of the performance of multiple tool executions in
one plot, in contrast to scatter plots which only allow comparing exactly two
executions. As such, quantile plots are widely used to visualize the results of
the SV-Comp [Vojnar and Beyer, 2018].

Generalization Since a detailed evaluation of the performance of IC3CFA
against comparable implementations was given in [Lange et al., 2015], we start
with the evaluation of the naive generalization approach over multiple edges,
as presented in Lemma 4.7, against the IC3CFA approach of [Lange et al.,

5.2. EVALUATION 163

0.001

0.01

0.1

1 10 100

1
000

0.001

0.01

0.1

1

10

100

1 000

T
O

M
O

TO
MO

Multi-Edge (B)

Si
ng

le
-E

dg
e

(C
)

(a) Single-Edge Generalization

0.001

0.01

0.1

1 10 100

1
000

0.001

0.01

0.1

1

10

100

1 000

T
O

M
O

TO
MO

Single-Edge (C)

In
cr

em
en

ta
lS

in
gl

e-
E

dg
e

(D
)

(b) Incr. Single-Edge Generalization

Figure 5.3: Verification times of different generalization approaches

2015] which does not contain any generalization. The comparison of verifica-
tion times depicted in Figure 5.2a shows an indefinite situation. While there
is a large number of instances for which IC3CFA runs into a timeout, for the
majority of cases that can be solved by both configurations, IC3CFA is slower
with generalization than without. To investigate the details for this drop in
performance, we can have a look at Figure 5.2b, which depicts the number of
iterations for instances that can be solved by both configurations. Here we see
that the number of iterations rises for almost all instances, which is caused by
the exact predecessor computation using WEP. Without generalization, IC3CFA
constructs an exact, symbolic representation of the backwards reachable states.
However, when using generalization, IC3CFA will start with a very coarse over-
approximation and iteratively refines it until finally reaching the exact state
set. This clearly contrasts standard IC3, which is able to include other reach-
able states in the over-approximation and therefore saves subsequent iterations.
While Figure 5.2b gives the impression that generalization in IC3CFA is self-
defeating, the combination with Figure 5.2a should rather show that general-
ization has large potential to solve additional benchmarks, but the used form of
generalization does not fit well with IC3CFA.

To improve the generalization, we presented Corollary 4.1 on page 118, which
breaks the large inductivity query down into smaller parts for single edges. The

164 CHAPTER 5. EXPERIMENTAL RESULTS

0.001

0.01

0.1

1 10 100

1
000

0.001

0.01

0.1

1

10

100

1 000

T
O

M
O

TO
MO

No Generalization (A)

M
ul

ti
-E

dg
e

(B
)

(a) Multi-Edge Generalization

0.001

0.01

0.1

1 10 100

1
000

0.001

0.01

0.1

1

10

100

1 000

T
O

M
O

TO
MO

No Generalization (A)
In

cr
em

en
ta

lS
in

gl
e-

E
dg

e
(D

)

(b) Incr. Single-Edge Generalization

Figure 5.4: Comparison of generalization approaches

results depicted in the scatter plot in Figure 5.3a support our idea that breaking
down large inductivity queries into a number of smaller queries improves the
performance noticeably, with the exception of some outliers with very long ver-
ification time. However, we also presented an approach that implements IC3’s
principle of breaking large monolithic methods into smaller, incremental steps,
by using the results of the previous generalizations along incoming edges of the
same location to minimize the number of literals that have to be checked for
dropping. This approach sketched on page 118 shows another performance im-
provement for the generalization of IC3CFA, as depicted in Figure 5.3b. The
scatter plot shows that for all instances of reasonable size (verification time
larger than 0.1 seconds), the verification time drops by a factor of up to one
order of magnitude.

Note that all presented approaches just differ in the way that edges in the
CFA are handled inside the generalization. The core generalization approach
in all of these configurations is still just lifting of IC3-style generalization to
theories. To re-evaluate the performance of generalization, we show the scatter
plots of IC3CFA without generalization vs. multi-edge generalization (copy of
Figure 5.2a) and IC3CFA without generalization vs. incremental single-edge
generalization next to each other in Figure 5.4. While Figure 5.4a shows three
timeouts introduced with generalization and a tendency towards worse verifica-

5.2. EVALUATION 165

0.001

0.01

0.1

1 10 100

1
000

0.001

0.01

0.1

1

10

100

1 000

T
O

M
O

TO
MO

Largest (E)

Sm
al

le
st

(D
)

(a) Sorting cubes based on cardinality

0.001

0.01

0.1

1 10 100

1
000

0.001

0.01

0.1

1

10

100

1 000

T
O

M
O

TO
MO

Random (F)

Sm
al

le
st

(D
)

(b) Cardinality-based and random cube
order

Figure 5.5: Comparison of different obligation orders

tion time for commonly solved instances, the number of new timeouts can be
reduced to one with incremental single-edge generalization and the performance
for commonly solved benchmarks is now more equally spread around the diag-
onal. Since incremental single-edge generalization has proven to be the most
efficient approach for lifting generalization to CFAs, all subsequent results will
use the incremental single-edge approach.

Obligation ordering and reuse Next, we want to evaluate another tech-
nique that became necessary when lifting IC3 to CFAs. As illustrated on
page 137 the order in which multiple cubes at one location are considered arises
with the introduction of DNF splitting of WEP formulas. To evaluate which or-
der works best, we implemented three different strategies: largest orders cubes
based on their cardinality in descending order, i.e. the largest cube is consid-
ered first, while smallest also sorts cubes based on cardinality, but in ascending
order. For comparison, we also implemented the strategy random, which shuf-
fles the cubes. The results are depicted in Figure 5.5 and confirm the results
of [Gurfinkel and Ivrii, 2015] that ordering obligations in ascending cardinality
of their cubes yields the overall best results. While the performance gain is
obviously not big, the implementation effort is neither. Since for most data

166 CHAPTER 5. EXPERIMENTAL RESULTS

0.001

0.01

0.1

1 10 100

1
000

0.001

0.01

0.1

1

10

100

1 000

T
O

M
O

TO
MO

With Reuse (G)

W
it
ho

ut
R

eu
se

(D
)

(a) Verification time

1 10 100

1
000

10
000

100
000

1

10

100

1 000

10 000

100 000

With Reuse (G)
W

it
ho

ut
R

eu
se

(s
)

(b) #SMT queries

Figure 5.6: Evaluation of obligation reuse

structures sorting is already implemented in the standard interface, this usually
introduces at most a single line of new code.

Let us now evaluate the isolated performance effect of obligation reuse, which
keeps obligations of previous iterations and reuses them to proceed the backward
search where the previous iteration was capped due to the depth bound k. In
Figure 5.6a, we can see that, except for three outliers, the verification time is not
only improved throughout the whole spectrum, but the advantage of enabling
obligation reuse grows proportional with the verification time, the reason being
that with the size of the search depth k, the amount of obligations that are
recomputed without obligation reuse grows, too. Thus for long counterexamples
or hard properties, the amount of SMT calls, that can be saved due to obligation
reuse is large, as we can see from Figure 5.6b, which depicts a scatter plot of
the total number of SMT calls for each instance.

Don’t care detection Just like the obligation ordering, the don’t care detec-
tion as presented on page 122 does not cause a massive performance gain, but
is also not much of an implementational and computational overhead. While
hard to see in the scatter plot in Figure 5.7a, the use of don’t care detection has
a marginally positive effect on almost all benchmarks, except for a few negative
outliers with execution time below 0.01 seconds, therefore negligible and one

5.2. EVALUATION 167

0.001

0.01

0.1

1 10 100

1
000

0.001

0.01

0.1

1

10

100

1 000

T
O

M
O

TO
MO

With Don’t-care gen. (H)

W
it
ho

ut
D

on
’t
-c

ar
e

ge
n.

(G
)

(a) Don’t care Generalization

0.001

0.01

0.1

1 10 100

1
000

0.001

0.01

0.1

1

10

100

1 000

T
O

M
O

TO
MO

With WEP-Inductivity (I)

B
as

el
in

e
(H

)

(b) WEP-based inductivity

Figure 5.7: Evaluation of Don’t-care detection and WEP-based inductivity

strong positive outlier with execution time above 100 seconds. For this reason,
we consider don’t-care generalization a small, but useful optimization. To en-
sure a fair evaluation of each of the presented improvements in Section 4.3, we
will use this configuration, i.e. incremental single-step generalization, smallest
cube obligations first, obligation reuse and don’t-care generalization enabled.
We will use this configuration (H in Table 5.1) as Baseline for the subsequent
evaluation.

WEP-based inductivity Figure 5.7b depicts the evaluation of the WEP-
based inductivity query as shown in Theorem 4.3 on page 124. As we can see, the
results are not equally good for all inputs. In fact, Figure 5.7b shows that WEP-
based inductivity is favorable for small and medium hard inputs with verification
times up to around 100 seconds, where the results start to become indefinite with
many instances performing slightly worse with WEP-based inductivity, but also
some instances performing much better and one instance being almost one order
of magnitude faster with WEP-based inductivity. In addition we can see from
Figure 5.7b that WEP-based inductivity is able to solve one instance shortly
before the timeout that ran into a timeout without WEP-based inductivity. Due
to the large performance gains for many instances and the marginal performance
deterioration for some, we consider WEP-based inductivity in total as a helpful

168 CHAPTER 5. EXPERIMENTAL RESULTS

0.001

0.01

0.1

1 10 100

1
000

0.001

0.01

0.1

1

10

100

1 000

T
O

M
O

TO
MO

With PreCubes (J)

B
as

el
in

e
(H

)

(a) Predecessor Cubes for Generalization

0.001

0.01

0.1

1 10 100

1
000

0.001

0.01

0.1

1

10

100

1 000

T
O

M
O

TO
MO

With upper bounds (K)
B

as
el

in
e

(H
)

(b) Generalization Context (upper
bounds)

Figure 5.8: Evaluation of Predecessor cubes and Generalization Contexts for
upper bounds

technique.

Predecessor cubes Next, we evaluate the isolated effect of predecessor cubes
as presented on page 136, by comparing the Baseline configuration with one that
is identical except that the static predecessor cube generalization is enabled. The
resulting scatter plot is depicted in Figure 5.8a and nicely illustrates how much
performance can be gained by static improvements. Except for one noticeable
outlier, almost all other instances can be verified faster with two instances even
more than one order of magnitude faster with predecessor than Baseline. Fur-
thermore we can see that using predecessor cubes, IC3CFA is able to solve four
instances that run into a timeout in Baseline.

Generalization context As presented in Section 4.3, the generalization con-
text (Definition 4.11 on page 138) can be used in several ways. We start with
the simple version as shown in Theorem 4.7 where we just check whether a
subset of the current frame has been stored in the context and use the result
as upper bound on the literals of the new generalization. As we can see from
the corresponding scatter plot in Figure 5.8b, the effect is negligible for easy

5.2. EVALUATION 169

0.001

0.01

0.1

1 10 100

1
000

0.001

0.01

0.1

1

10

100

1 000

T
O

M
O

TO
MO

Upper+Lower bounds (L)

U
pp

er
bo

un
ds

(K
)

(a) Isolated

0.001

0.01

0.1

1 10 100

1
000

0.001

0.01

0.1

1

10

100

1 000

T
O

M
O

TO
MO

Upper+Lower bounds (L)

B
as

el
in

e
(H

)

(b) Upper + Lower Bounds

Figure 5.9: Evaluation of generalization contexts with lower bounds isolated
and in combination with upper bounds

instances and the curve gets a slight bump for harder benchmarks but con-
verges to the diagonal near the timeout. This effect is justified by the overhead
introduced by managing and filling the cache and searching all the cache en-
tries. For small/easy instances, the overhead of filling and managing the cache
compensates the benefits given by the few cache hits. The larger/harder the
instances get, the more cache hits occur and outweigh the costs of managing the
cache. However, when the cache gets full and especially when the generalization
contexts contain very large frames, the subset search becomes more and more
costly until it at some point again outweighs the positive effects.

Figure 5.9a depicts the scatter plot with the results of the comparison be-
tween the configurations K and L (see Table 5.1), which allows us to evaluate
the isolated effect of lower bounds from the generalization context as they were
presented in Theorem 4.9. We can see that the configuration with lower bounds
is better in every single instance, which is due to the fact that lower bounds
use the same caches as upper bounds, such that the overhead of managing the
cache is not necessary a second time and therefore each cache hit improves the
performance. In addition there are some instances that can be solved with lower
bounds, that would have otherwise run into a timeout.

To set the isolated results of lower and upper bounds into a context, Fig-

170 CHAPTER 5. EXPERIMENTAL RESULTS

0.001

0.01

0.1

1 10 100

1
000

0.001

0.01

0.1

1

10

100

1 000

T
O

M
O

TO
MO

Two-stage search (M)

O
ne

-s
ta

ge
se

ar
ch

(L
)

(a) Verification time

1 10 100

1
000

10
000

100
000

1

10

100

1 000

10 000

100 000

Two-stage Search (M)
O

ne
-s

ta
ge

Se
ar

ch
(L

)

(b) Number of cache hits

Figure 5.10: Evaluation of two-stage search in generalization contexts

ure 5.9b compares Baseline to a configuration with both, upper and lower
bounds enabled. Here we can see that the marginal performance gain of upper
bounds, which is mainly due to the overhead of managing the cache, is heavily
boosted by adding lower bound extraction, such that all instances benefit from
generalization caching with many instances almost reaching one order of magni-
tude improvement and additionally many new instances can be solved compared
to Baseline.

In Section 4.3 we proposed an additional search stage for the generalization
contexts that would search for generalizations that are a subset of the cube under
consideration, which is evaluated in Figure 5.10. Figure 5.10a indicates that the
second search stage does not change the verification time for almost all instances
except for a few where the performance deteriorates noticeably. Interestingly,
if we take Figure 5.10b into account, we can see that the number of cache hits
grows noticeably, considering the logarithmic scale, for a very large number of
instances. This indicates that the second search stage improves the number of
cache hits and therefore the degree of information reuse considerably, the search
is simply too costly and therefore outweighs the positive effects of the additional
cache hits. We therefore suggest to either refrain from using this additional
stage, or otherwise investigate how to improve the search considerably.

5.2. EVALUATION 171

0.001

0.01

0.1

1 10 100

1
000

0.001

0.01

0.1

1

10

100

1 000

T
O

M
O

TO
MO

All (O)

B
as

el
in

e
(H

)

(a) All proposed improvements

0.001

0.01

0.1

1 10 100

1
000

0.001

0.01

0.1

1

10

100

1 000

T
O

M
O

TO
MO

Interpolation (N)

B
as

el
in

e
(H

)

(b) Interpolation

Figure 5.11: Evaluation of all new improvements and interpolation

Combining the optimizations After evaluating our optimizations to the
generalization of IC3CFA, namely WEP-based inductivity, predecessor cubes
and generalization caching for lower and upper bounds, in an isolated way,
by comparing a Baseline configuration to configurations with each approach
enabled individually, we want to see how all improvements perform together.
To do so, we provide a configuration which differs from Baseline in that it
enables all previously mentioned optimizations. The scatter plot comparing
the results of this All configuration (O in Table 5.1) with Baseline is depicted
in Figure 5.11a. As we can see, the performance of almost all instances is
improved with many instances being solved up to or even more than one order
of magnitude faster.

In contrast to this strong performance gain, the results of evaluating inter-
polation are not as convincing. Independently of whether we add interpolation
to Baseline or to All, as shown in the scatter plots in Figures 5.11 and 5.12a
enabling interpolation deteriorates the performance by up to one order of mag-
nitude. In addition, while interpolation is able to solve two instances that run
into a timeout otherwise, it is also not able to solve four instances that can be
solved in Baseline and All, respectively. As such, while theoretically appealing
for generalization, in a practical implementation the performance can not keep
up with our other techniques.

172 CHAPTER 5. EXPERIMENTAL RESULTS

0.001

0.01

0.1

1 10 100

1
000

0.001

0.01

0.1

1

10

100

1 000

T
O

M
O

TO
MO

All+Interpolation (P)

A
ll

(O
)

(a) ’All’ plus interpolation

0.001

0.01

0.1

1 10 100

1
000

0.001

0.01

0.1

1

10

100

1 000

T
O

M
O

TO
MO

With Semantic Blocking (Q)
W

it
ho

ut
Se

m
an

ti
c

B
lo

ck
in

g
(O

)

(b) Semantic subsumption check during
blocking of cubes

Figure 5.12: Evaluation of interpolation with all improvements and semantic
subsumption check

Figure 5.12b shows the scatter plot comparing the results of All (O in Ta-
ble 5.1) against a configuration that just enables the semantic check in addition
(Q in Table 5.1). As we can see in Figure 5.12b, enabling the semantic check for
subsumption in blocking performs better in exactly one instance and deterio-
rates the performance in all other instances. While theoretically the additional
check promises a less polluted frame set and therefore more efficient search in
frames, as well as smaller formulas to the SMT solver, the practical results are
again not convincing.

Comparison with other software model checkers All results presented
so far have been comparisons between different configurations of our IC3CFA
algorithm. To set the overall performance into the context of other tools, we
will evaluate the performance of our best configuration against other tools that
implement IC3 algorithms for software model checking. However, since the
number of freely available tools with IC3 software model checking is very low,
the only tools used for comparison are the Vienna Verification Tool (VVT,
[Günther et al., 2016]), which implements the CTIGAR approach and SeaHorn
[Gurfinkel, Kahsai, et al., 2015] with Spacer/Z3PDR. For the evaluation with

5.2. EVALUATION 173

both tools, we used the last version that took part in the SV-Comp(’16) with
the same configuration as used in SV-Comp. All tools were executed on the
same benchmark set, on the same machine, with the same timeout and memory
limit as described above.

To graphically illustrate the comparison between the different tools, we use
a score-based quantile plot. The score in the sense of SV-Comp is determined as
follows: A correct result reporting a violation of the property (correct FALSE)
gives a score of 1 point, while a correct result reporting no property violation
(correct TRUE) scores 2 points. This is supposed to balance the hardness of the
verification task, i.e. finding an error is generally considered easier than proving
the absence of errors, which requires completeness. If however, the results given
by the verification tool are incorrect, an incorrect FALSE result gives a penalty
of -16 points, while for an incorrect TRUE result 32 points are deducted. Again,
an incomplete analysis that finds an error where no error is will just cause some
additional work of the developer to find out that it was a false alarm, where a
missed bug due to an unsound analysis will give a dangerous confidence that
everything is safe and thus has to be punished harder.

The score-based quantile plots is computed as follows: The graph itself de-
picts only correct results, which are ordered based on their runtime and for each
of these results, the score is added up. In other words, each point (x, y) on the
graph means that all verification runs up to y seconds achieve a total score of x
points. To incorporate the penalties for incorrect results, it doesn’t matter how
fast they were at producing the incorrect result, such that we can ignore the
time and just take the sum of all penalties collected. This summed penalties
determine the value by which the graph is shifted along the x-axis.1

As we can see from Figure 5.13, the curve of SeaHorn is less steep than the
one from VVT, which means that it can solve more instances in a short time.
In addition, the graph itself is wider, which indicates that SeaHorn is able to
solve more instances than VVT. But we can also see that the graph of SeaHorn
is shifted much more to the left: SeaHorn collected 1024 penalty points for 48
incorrect FALSE and eight incorrect TRUE. This extreme amount of penalties
impairs the general trust in the results that SeaHorn outputs.

In contrast, VVT only gives two incorrect TRUE and no incorrect FALSE,
resulting in 64 penalty points. We can also see that in contrast to the other
verification tools, the Verifier only outputs correct results, hence starts at a

1Note that since SV-Comp 2017 the rules of the competition require witnesses for both
verification results to gain the mentioned score points, which was implemented to prevent
guessing the result. However, since none of the tools that we compare with is able to give
such a witness, we omit witnesses and assign the score just based on the output of the tool.

174 CHAPTER 5. EXPERIMENTAL RESULTS

�1 000�800�600�400�200 0 200 400
0.01

0.1

1

10

100

1 000

Accumulated score

C
P

U
ti

m
e

(s
)

VVT
SeaHorn
Verifier

Figure 5.13: Score-based comparison of VVT, SeaHorn and our Verifier

score of 0 and achieves the highest score of all, ending at 410 points for 161
correct TRUE and 88 correct FALSE.

5.2.3 Industrial experience

In the previous section we evaluated the performance of all presented approaches
to inductive incremental verification for software individually. However, while
the SV-Comp offers large sets of benchmarks to evaluate the performance of
tools on a broad variety of inputs, many of these benchmarks are either hand-
crafted, auto-generated and/or tuned to work best with a specific technique.
Therefore they barely reflect verification tasks that arise in real-world, industrial
scenarios. On the other hand, these industrial settings are the ones, where
safety verification is needed the most and can have the biggest impact. In the
remainder of this section we will present some programs from our industrial
partner Siemens to give an impression which sort of programs can be subject
to safety verification. Furthermore, we will illustrate the peculiarities of the
programs with respect to the programming language and the constructs used
for these programs, as well as our results of verifying these programs.

At the heart of almost all industrial control systems, we will find Pro-

5.2. EVALUATION 175

grammable Logic Controllers (PLC), which are ruggedized processing units that
are adapted for control engineering. As special features, PLC are very modular
and easy to install in a DIN rail rack and can be extended by different com-
ponents such as interface modules, power supplies, communication processors
and input/output (I/O) modules that can handle up to thousands of digital
I/Os. However, maybe the most striking difference between PLCs and other
controllers is in the way they execute their firmware: Because PLCs are mostly
deployed in control engineering, their main task is to control sensor values and
determine the appropriate state of the connected actuators to keep the system
in the desired state. To support this task, PLCs have a cyclic execution model,
which means that they start a cycle by reading the input values of the connected
sensors, execute the firmware to determine the outputs and then only at the end
of the cycle write the output values to the physical outputs synchronously. If
timing is crucial, the PLC can then wait until it starts the next cycle to keep a
consistent cycle interval, or otherwise it will directly start the next cycle. Due
to the difference in the execution model between PLCs and regular CPUs for
PCs, the code also differs structurally. While regular (e.g. C) programs without
loops are hard to find at all, loops are rarely found in PLC code, due to the
native cycling in the execution model. However, together with our industrial
partner we analysed the code base of safety-critical applications from multiple
large customers and found that data types such as arrays and composite data
types, also called record or struct are much more common in real-world PLC
code than they are in common C-code. Thus the requirements for our verifica-
tion slightly differ, especially with respect to handling these data types, whose
support enables us to verify these programs in the first place. To this aim the in-
terchangeable support of multiple background theories, such as array theory for
efficient handling of arrays, floating points to support trigonometric functions,
common with motor control, or bitvector theory to enable bitprecise analysis of
the machine code becomes even more important. This in turn proves theory-
unaware verification algorithms, as we have presented in Chapter 4, to be of
great significance. In the remainder of this section we will illustrate the appli-
cation of our verification framework to a real-world industrial PLC application
that is offered by our partner to customers for education purposes.

The program we consider is at the core of many control engineering appli-
cations. Whether we are considering scenarios like robot arms in an assembly
line at a car manufacturer or cranes on a construction site or in a harbor, large
and powerful electric motors are at the heart of many industrial applications
and move heavy goods. But in most of these cases movement goes along with
danger, especially when either a desired position can not be reached or a dan-

176 CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.14: Failsafe position encoder (c� Siemens AG, [Siemens AG, 2018a])

gerous position is reached. These dangers can ultimately range from financial
damage to danger of life. Consider for example a harbor crane that discharges
a shipment from a modern containership. These ships can carry up over 7000
standardized 40-foot containers on their deck in stacks of up to 9 containers.
Now consider that due to a software error, the motor is not able to reach its
desired height position and the crane that unloads such a ship topples over the
whole stack and 8 other containers fall into the harbor basin, making the loaded
electronic components worthless and creating a large financial damage. On the
other hand, consider the same situation, but the container can be picked up
without problems, but while placing the container on a truck, the motor control
software reaches a forbidden horizontal position and the 40-foot container with
a maximal payload of over 30 tons is lowered onto the driver’s cab.

To avoid such dangers caused by the mis-positioning of motors, the manu-
facturers try to ensure that the control software satisfies all defined constraints
to ensure safety, for example by the use of failsafe position encoders that com-
municate over a failsafe bus protocol to a PLC.

The program code for such a failsafe position encoder is a perfect example
for the use of safety verification. Whenever the program computes the posi-
tion, speed, direction or standstill incorrectly, the connected motor control may
drive the motor into a dangerous position with the respective consequences. As
such, safety verification allows us to verify that the encoder software behaves as
specified and thus ensure that no dangerous situation may happen.

To detect a dangerous position of the motor, the function needs four parame-
ters as input: To define the beginning of a danger range, the variable beginMulti
defines the number of whole revolutions of the motor while beginSingle defines
the number of steps inside one revolution, i.e. the danger range starts at the

5.2. EVALUATION 177

Figure 5.15: Definition of a danger range (c� Siemens AG, [Siemens AG, 2018b])

beginSingleth steps after the beginMultith revolution. Analogously, the danger
range ends, after endMulti full revolutions and endSingle steps. Consequently,
the current position is encoded in the two variables posSingle and posMulti. A
graphical representation of the danger range is given in Figure 5.15. Whenever
the current position is detected to be inside these boundaries, the specification
requires a Boolean variable dangerrange to be set to true.

To simplify the presentation, we will not show the whole program, but rather
just the formula that determines the dangerrange flag, which is

((posMulti = endMulti ^ posSingle endSingle) _ posMulti < endMulti)
^ posMulti � beginMulti ^ posSingle � beginSingle. (5.1)

The property that we want to prove is that whenever the program is inside
the danger range, the flag is set to true. When verifying this property on the
program with our verifier, we get a counterexample with the following states:

endMulti= 2289
beginSingle= -32767
posSingle= -32768
beginMulti= -2289
posMulti= 2288

This counterexample contains two interesting pieces of information: (1) the
counterexample is incomplete, i.e. for the given values, every value of endSingle
will violate the property. (2) When closely inspecting the formula (5.1) we can

178 CHAPTER 5. EXPERIMENTAL RESULTS

see that the given counterexample is just one example of a whole class of values
that violate the property. By hand, we can extract that each variable assignment
that satisfies beginMulti posMulti < endMulti and posSingle < beginSingle
will violate the property. In other words, in each full revolution that is inside
the danger range, the dangerrange flag will only be set when it reaches the
beginSinglevalue. Therefore, if the position is before the danger range and motor
drives quickly, then depending on the cycle duration, the motor might do a full
revolution, now being inside the danger range, but because the number of steps
in this revolution is less than the number of steps that defines the beginning of
the danger range, the flag will not be set, thus violating the property that the
position must never be inside the danger range and the dangerrange flag not
being set.

Though just an example program for educational purposes, the example of
the failsafe position encoding software nicely demonstrates the importance of
formal verification for industrial control systems. Due to the high dangers to
life and limb that come from industrial systems, such as smelters, chemical
plants, cranes and trains, just to name a few, high safety standards, while
not always enforced by law, should be implemented to ensure safety under all
circumstances. A sufficient level of safety however can not be established by any
form of testing, but only by formal verification, which is complete and therefore
covers all possible execution scenarios.

Chapter 6

Conclusion

In this thesis, we presented IC3CFA (Section 4.2), an incremental, inductive ver-
ification algorithm for software model-checking that lifts the ideas of IC3 from
hardware to software. In contrast to other existing IC3-style software verifica-
tion algorithms it combines different features into a single algorithm to create
a unique way of verifying software systems. The use of control-flow automata
enables IC3CFA to observe the control-flow, an inherently important structure
to all software systems, in a very simple way. This in turn allows IC3CFA to
heavily prune the state space and improve the search performance drastically.
On the other hand, IC3CFA only uses the control-flow automaton statically
to split the frame sequences and determine predecessors and successors, rather
than dynamically unrolling the control-flow into an abstract reachability tree
(ART). Therefore IC3CFA can apply the equality-based inductivity check of
IC3 and does not require expensive coverage checks for ARTs.

Apart from the search phase of IC3CFA, we presented a lifting of the gen-
eralization procedure of IC3 to IC3CFA in Section 4.3. Based on this basic
generalization we introduced a variety of techniques to improve the generaliza-
tion procedure, some of which are also applicable to other IC3-style verification
algorithms. From the set of all improvements, in particular the generalization
based on subcubes of the weakest precondition in the predecessor frame and the
caching of generalizations with generalization contexts have proven to be highly
efficient as evaluated in Chapter 5.

Despite the already strong performance of IC3CFA, we believe that there is
still room for improvement in future work:

As presented in Section 5.1, the current implementation of IC3CFA relies on

180 CHAPTER 6. CONCLUSION

an inlining of function calls to create a single procedure without remaining func-
tion calls to execute the search phase. While this allows us to analyse programs
with simple function calls, it does exhibit a number of drawbacks. On the one
hand, the resulting inlined function can grow extremely large, due to pasting the
called function into the call side. Such a blow-up in turn disables modularity,
compared to an approach that would analyse each function on its own such as
e.g. procedure summaries, thus preventing scalability. On the other hand, the
approach of inlining functions in the call side can not be applied for functions
with recursive calls, since the inliner will enter an infinite loop. Recursion how-
ever is very uncommon for PLC software. For these reasons, an interprocedural
verification approach would be preferable over simple inlining, but is also much
more involved. Nevertheless, we see large potential to use the intraprocedural
IC3CFA algorithm in an interprocedural context, by augmenting it with a sort
of Meta-IC3 that handles the call structure: On a high level, each function in a
software system represents an information transformer from input parameters
to returned results - assuming side effect freedom. In a search phase similar to
IC3, the Meta-IC3 would consider each function call as an edge in a space of
global system states. In a backward search, Meta-IC3 would start with a con-
crete CTI of the system in some function f and compute the corresponding bad
inputs using IC3CFA on this function. The resulting hyper-CTI can only be
reached by functions that call f , such that all of these functions represent prede-
cessor hyper-states and have to be analyzed using the intraprocedural IC3CFA.
If on the other hand an application of IC3CFA shows that the hyper-CTI C

is not reachable, it constructs a strengthening F for all, but in particular the
initial location, resulting in a partial Hoare triple (F , f ,C) that can be stored,
therefore iteratively constructing partial Hoare triples that eventually suffice in
order to prove the correctness of the property, if no counterexample trace exists.

A similar approach could also be used for an adaptation of IC3CFA that
allows verifying PLC code over arbitrary cycle lengths and proving that a vio-
lation is not reachable over any number of executions. In fact, the procedure
would be a special case of the above, where we assume that there exists one
recursive function that calls itself at the end of each cycle. However, even this
approach is not fully complete for PLC code, since input values are dependent
on actions of previous cycles in a way that is determined by the physical envi-
ronment. As long as such environment models are not part of the system model,
PLC code verification will always expose only a limited precision.

Bibliography

Audemard, G., Lagniez, J., and Simon, L. (2013). “Improving Glucose for Incre-
mental SAT Solving with Assumptions: Application to MUS Extraction”. In:
SAT. Vol. 7962. Lecture Notes in Computer Science. Springer, pp. 309–317.

Autili, M., Grunske, L., Lumpe, M., Pelliccione, P., and Tang, A. (2015). “Align-
ing Qualitative, Real-Time, and Probabilistic Property Specification Pat-
terns Using a Structured English Grammar”. In: IEEE Trans. Software Eng.
41.7, pp. 620–638.

Baier, C. and Katoen, J. (2008). Principles of Model Checking. MIT Press.
Barrett, C., Conway, C. L., Deters, M., Hadarean, L., Jovanovic, D., King, T.,

Reynolds, A., and Tinelli, C. (2011). “CVC4”. In: CAV. Vol. 6806. Lecture
Notes in Computer Science. Springer, pp. 171–177.

Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M. E., and Sebastiani, R. (2009).
“Software model checking via large-block encoding”. In: FMCAD. IEEE,
pp. 25–32.

Beyer, D., Keremoglu, M. E., and Wendler, P. (2010). “Predicate abstraction
with adjustable-block encoding”. In: FMCAD. IEEE, pp. 189–197.

Biere, A. (2014). “Lingeling Essentials, A Tutorial on Design and Implemen-
tation Aspects of the SAT Solver Lingeling”. In: POS@SAT. Vol. 27. EPiC
Series in Computing. EasyChair, p. 88.

Biere, A., Cimatti, A., Clarke, E. M., and Zhu, Y. (1999). “Symbolic Model
Checking without BDDs”. In: TACAS. Vol. 1579. Lecture Notes in Computer
Science. Springer, pp. 193–207.

Biere, A., Heule, M., Maaren, H. van, and Walsh, T., eds. (2009). Handbook of
Satisfiability. Vol. 185. Frontiers in Artificial Intelligence and Applications.
IOS Press.

Birgmeier, J., Bradley, A. R., and Weissenbacher, G. (2014). “Counterexample to
Induction-Guided Abstraction-Refinement (CTIGAR)”. In: CAV. Vol. 8559.
Lecture Notes in Computer Science. Springer, pp. 831–848.

182 BIBLIOGRAPHY

Bjørner, N. and Janota, M. (2015). “Playing with Quantified Satisfaction”. In:
LPAR (short papers). Vol. 35. EPiC Series in Computing. EasyChair, pp. 15–
27.

Boole, G. (1853). Investigation of The Laws of Thought On Which Are Founded
the Mathematical Theories of Logic and Probabilities. George Boole’s col-
lected logical works. Walton and Maberly.

Bradley, A. R. (2011). “SAT-Based Model Checking without Unrolling”. In: VM-
CAI. Vol. 6538. Lecture Notes in Computer Science. Springer, pp. 70–87.

Bradley, A. R. (2012). “Understanding IC3”. In: SAT. Vol. 7317. Lecture Notes
in Computer Science. Springer, pp. 1–14.

Bradley, A. R. and Manna, Z. (2006). “Verification Constraint Problems with
Strengthening”. In: ICTAC. Vol. 4281. Lecture Notes in Computer Science.
Springer, pp. 35–49.

Bradley, A. R. and Manna, Z. (2007a). “Checking Safety by Inductive Gener-
alization of Counterexamples to Induction”. In: FMCAD. IEEE Computer
Society, pp. 173–180.

Bradley, A. R. and Manna, Z. (2007b). The Calculus of Computation - Decision
Procedures with Applications to Verification. Springer.

Bruni, R. (2003). “Approximating minimal unsatisfiable subformulae by means
of adaptive core search”. In: Discrete Applied Mathematics 130.2, pp. 85–100.

Chockler, H., Ivrii, A., Matsliah, A., Moran, S., and Nevo, Z. (2011). “Incremen-
tal formal verification of hardware”. In: FMCAD. FMCAD Inc., pp. 135–143.

Cimatti, A. and Griggio, A. (2012). “Software Model Checking via IC3”. In:
CAV. Vol. 7358. Lecture Notes in Computer Science. Springer, pp. 277–293.

Cimatti, A., Griggio, A., Mover, S., and Tonetta, S. (2014). “IC3 Modulo The-
ories via Implicit Predicate Abstraction”. In: TACAS. Vol. 8413. Lecture
Notes in Computer Science. Springer, pp. 46–61.

Cimatti, A., Griggio, A., Schaafsma, B., and Sebastiani, R. (2013). “The Math-
SAT5 SMT Solver”. In: TACAS. Vol. 7795. LNCS. Springer.

Clarke, E. M., Grumberg, O., and Long, D. E. (1994). “Model Checking and
Abstraction”. In: ACM Trans. Program. Lang. Syst. 16.5, pp. 1512–1542.

Clarke, E. M., Grumberg, O., and Peled, D. A. (2001). Model Checking. MIT
Press.

Colón, M., Sankaranarayanan, S., and Sipma, H. (2003). “Linear Invariant Gen-
eration Using Non-linear Constraint Solving”. In: CAV. Vol. 2725. Lecture
Notes in Computer Science. Springer, pp. 420–432.

Cook, S. A. (1971). “The Complexity of Theorem-Proving Procedures”. In:
STOC. ACM, pp. 151–158.

BIBLIOGRAPHY 183

Copty, F., Fix, L., Fraer, R., Giunchiglia, E., Kamhi, G., Tacchella, A., and
Vardi, M. Y. (2001). “Benefits of Bounded Model Checking at an Industrial
Setting”. In: CAV. Vol. 2102. Lecture Notes in Computer Science. Springer,
pp. 436–453.

Davydov, G., Davydova, I., and Kleine Büning, H. (1998). “An Efficient Algo-
rithm for the Minimal Unsatisfiability Problem for a Subclass of CNF”. In:
Ann. Math. Artif. Intell. 23.3-4, pp. 229–245.

Dijk, T. van and Pol, J. van de (2017). “Sylvan: multi-core framework for decision
diagrams”. In: STTT 19.6, pp. 675–696.

Dijkstra, E. W. (1975). “Guarded Commands, Nondeterminacy and Formal
Derivation of Programs”. In: Commun. ACM 18.8, pp. 453–457. doi: 10.
1145/360933.360975. url: http://doi.acm.org/10.1145/360933.

360975.
Dijkstra, E. W. (1976). A Discipline of Programming. Prentice-Hall. url: http:

//www.worldcat.org/oclc/01958445.
Durumeric, Z., Kasten, J., Adrian, D., Halderman, J. A., Bailey, M., Li, F.,

Weaver, N., Amann, J., Beekman, J., Payer, M., and Paxson, V. (2014).
“The Matter of Heartbleed”. In: Internet Measurement Conference. ACM,
pp. 475–488.

Eén, N., Mishchenko, A., and Brayton, R. K. (2011). “Efficient implementation
of property directed reachability”. In: FMCAD. FMCAD Inc., pp. 125–134.

Eén, N. and Sörensson, N. (2003). “An Extensible SAT-solver”. In: SAT. Vol. 2919.
Lecture Notes in Computer Science. Springer, pp. 502–518.

Flanagan, C. and Saxe, J. B. (2001). “Avoiding exponential explosion: generating
compact verification conditions”. In: POPL. ACM, pp. 193–205.

Fleischner, H., Kullmann, O., and Szeider, S. (2002). “Polynomial-time recogni-
tion of minimal unsatisfiable formulas with fixed clause-variable difference”.
In: Theor. Comput. Sci. 289.1, pp. 503–516.

Garg, P., Löding, C., Madhusudan, P., and Neider, D. (2014). “ICE: A Robust
Framework for Learning Invariants”. In: CAV. Vol. 8559. Lecture Notes in
Computer Science. Springer, pp. 69–87.

Gershman, R., Koifman, M., and Strichman, O. (2008). “An approach for ex-
tracting a small unsatisfiable core”. In: Formal Methods in System Design
33.1-3, pp. 1–27.

Griggio, A. and Roveri, M. (2016). “Comparing Different Variants of the IC3
Algorithm for Hardware Model Checking”. In: IEEE Trans. on CAD of In-
tegrated Circuits and Systems 35.6, pp. 1026–1039.

http://dx.doi.org/10.1145/360933.360975
http://dx.doi.org/10.1145/360933.360975
http://doi.acm.org/10.1145/360933.360975
http://doi.acm.org/10.1145/360933.360975
http://www.worldcat.org/oclc/01958445
http://www.worldcat.org/oclc/01958445

184 BIBLIOGRAPHY

Günther, H., Laarman, A., and Weissenbacher, G. (2016). “Vienna Verification
Tool: IC3 for Parallel Software - (Competition Contribution)”. In: TACAS.
Vol. 9636. Lecture Notes in Computer Science. Springer, pp. 954–957.

Gurfinkel, A. and Ivrii, A. (2015). “Pushing to the Top”. In: FMCAD. IEEE,
pp. 65–72.

Gurfinkel, A., Kahsai, T., Komuravelli, A., and Navas, J. A. (2015). “The Sea-
Horn Verification Framework”. In: CAV (1). Vol. 9206. Lecture Notes in
Computer Science. Springer, pp. 343–361.

Guthmann, O., Strichman, O., and Trostanetski, A. (2016). “Minimal unsatis-
fiable core extraction for SMT”. In: FMCAD. IEEE, pp. 57–64.

Hassan, Z., Bradley, A. R., and Somenzi, F. (2013). “Better generalization in
IC3”. In: FMCAD. IEEE, pp. 157–164.

Henzinger, T. A., Jhala, R., Majumdar, R., and Sutre, G. (2002). “Lazy ab-
straction”. In: POPL. ACM, pp. 58–70.

Hoder, K. and Bjørner, N. (2012). “Generalized Property Directed Reachability”.
In: SAT. Vol. 7317. Lecture Notes in Computer Science. Springer, pp. 157–
171.

Huang, G. (1995). “Constructing Craig Interpolation Formulas”. In: COCOON.
Vol. 959. Lecture Notes in Computer Science. Springer, pp. 181–190.

Itzhaky, S., Bjørner, N., Reps, T. W., Sagiv, M., and Thakur, A. V. (2014).
“Property-Directed Shape Analysis”. In: CAV. Vol. 8559. Lecture Notes in
Computer Science. Springer, pp. 35–51.

Kars, P. (1996). “Formal Methods in the Design of a Storm Surge Barrier Control
System”. In: European Educational Forum: School on Embedded Systems.
Vol. 1494. Lecture Notes in Computer Science. Springer, pp. 353–367.

Kleine Büning, H. (2000). “On subclasses of minimal unsatisfiable formulas”. In:
Discrete Applied Mathematics 107.1-3, pp. 83–98.

Komuravelli, A., Bjørner, N., Gurfinkel, A., and McMillan, K. L. (2015). “Com-
positional Verification of Procedural Programs using Horn Clauses over In-
tegers and Arrays”. In: FMCAD. IEEE, pp. 89–96.

Komuravelli, A., Gurfinkel, A., and Chaki, S. (2014). “SMT-Based Model Check-
ing for Recursive Programs”. In: CAV. Vol. 8559. Lecture Notes in Computer
Science. Springer, pp. 17–34.

Krajícek, J. (1997). “Interpolation Theorems, Lower Bounds for Proof Systems,
and Independence Results for Bounded Arithmetic”. In: J. Symb. Log. 62.2,
pp. 457–486.

Kroening, D. and Strichman, O. (2008). Decision Procedures - An Algorithmic
Point of View. Texts in Theoretical Computer Science. An EATCS Series.
Springer.

BIBLIOGRAPHY 185

Lee, S. and Sakallah, K. A. (2014). “Unbounded Scalable Verification Based on
Approximate Property-Directed Reachability and Datapath Abstraction”.
In: CAV. Vol. 8559. Lecture Notes in Computer Science. Springer, pp. 849–
865.

Leino, K. R. M. (2005). “Efficient weakest preconditions”. In: Inf. Process. Lett.
93.6, pp. 281–288.

Löding, C., Madhusudan, P., and Neider, D. (2016). “Abstract Learning Frame-
works for Synthesis”. In: TACAS. Vol. 9636. Lecture Notes in Computer
Science. Springer, pp. 167–185.

Manna, Z. and Pnueli, A. (1995). Temporal Verification of Reactive Systems -
Safety. Springer.

Marques-Silva, J., Heras, F., Janota, M., Previti, A., and Belov, A. (2013). “On
Computing Minimal Correction Subsets”. In: IJCAI. IJCAI/AAAI, pp. 615–
622.

McMillan, K. L. (2003). “Interpolation and SAT-Based Model Checking”. In:
CAV. Vol. 2725. Lecture Notes in Computer Science. Springer, pp. 1–13.

Mertens, T. (2016). “Efficient reuse of learnt information for control-flow ori-
ented IC3 algorithms”. Master thesis. RWTH Aachen University.

Moura, L. M. de and Bjørner, N. (2008). “Z3: An Efficient SMT Solver”. In:
TACAS. Vol. 4963. Lecture Notes in Computer Science. Springer, pp. 337–
340.

Nadel, A. (2010). “Boosting minimal unsatisfiable core extraction”. In: FMCAD.
IEEE, pp. 221–229.

Nadel, A., Ryvchin, V., and Strichman, O. (2013). “Efficient MUS extraction
with resolution”. In: FMCAD. IEEE, pp. 197–200.

Nielson, F., Nielson, H. R., and Hankin, C. (1999). Principles of Program Anal-
ysis. Springer.

Oh, Y., Mneimneh, M. N., Andraus, Z. S., Sakallah, K. A., and Markov, I. L.
(2004). “AMUSE: a minimally-unsatisfiable subformula extractor”. In: DAC.
ACM, pp. 518–523.

Papadimitriou, C. H. and Wolfe, D. (1988). “The Complexity of Facets Re-
solved”. In: J. Comput. Syst. Sci. 37.1, pp. 2–13.

Prinz, F. (2016). “Generalisation methods for control-flow oriented IC3 algo-
rithms”. Master thesis. RWTH Aachen University.

Pudlák, P. (1997). “Lower Bounds for Resolution and Cutting Plane Proofs and
Monotone Computations”. In: J. Symb. Log. 62.3, pp. 981–998.

Sankaranarayanan, S., Sipma, H. B., and Manna, Z. (2005). “Scalable Analysis of
Linear Systems Using Mathematical Programming”. In: VMCAI. Vol. 3385.
Lecture Notes in Computer Science. Springer, pp. 25–41.

186 BIBLIOGRAPHY

Sebastiani, R. (2007). “Lazy Satisability Modulo Theories”. In: JSAT 3.3-4,
pp. 141–224.

Sheeran, M., Singh, S., and Stålmarck, G. (2000). “Checking Safety Properties
Using Induction and a SAT-Solver”. In: FMCAD. Vol. 1954. Lecture Notes
in Computer Science. Springer, pp. 108–125.

Siemens AG (2018a). Safety position, standstill, direction and speed detection.
https://support.industry.siemens.com/cs/document/49221879/

safety-position-standstill-direction-and-speed-detection?dti=

0&lc=en-WW. [Online; accessed 3-May-2018].
Siemens AG (2018b). Safety position, standstill, direction and speed detection

(Documentation). https://cache.industry.siemens.com/dl/files/
879/49221879/att_870336/v3/49221879_F-Position_DOC_V20_en.pdf.
[Online; accessed 3-May-2018].

Strichman, O. (2000). “Tuning SAT Checkers for Bounded Model Checking”. In:
CAV. Vol. 1855. Lecture Notes in Computer Science. Springer, pp. 480–494.

Suda, M. (2013). “Triggered Clause Pushing for IC3”. In: CoRR abs/1307.4966.
Tonetta, S. (2009). “Abstract Model Checking without Computing the Ab-

straction”. In: FM. Vol. 5850. Lecture Notes in Computer Science. Springer,
pp. 89–105.

Tseitin, G. S. (1968). “On the complexity of derivation in propositional calculus”.
In: Studies in Constructive Mathematics and Mathematical Logic 2.115-125,
pp. 10–13.

Vizel, Y. and Gurfinkel, A. (2014). “Interpolating Property Directed Reacha-
bility”. In: CAV. Vol. 8559. Lecture Notes in Computer Science. Springer,
pp. 260–276.

Vizel, Y., Weissenbacher, G., and Malik, S. (2015). “Boolean Satisfiability Solvers
and Their Applications in Model Checking”. In: Proceedings of the IEEE
103.11, pp. 2021–2035.

Vojnar, T. and Beyer, D. (2018). Competition on Software Verification (SV-
COMP). https://sv-comp.sosy-lab.org/.

Welp, T. and Kuehlmann, A. (2013). “QF BV model checking with property
directed reachability”. In: DATE. EDA Consortium San Jose, CA, USA /
ACM DL, pp. 791–796.

Witt, B. I., Baker, F. T., and Merritt, E. W. (1993). Software Architecture and
Design: Principles, Models, and Methods. New York, NY, USA: John Wiley
& Sons, Inc.

Zhang, J., Li, S., and Shen, S. (2006). “Extracting Minimum Unsatisfiable Cores
with a Greedy Genetic Algorithm”. In: Australian Conference on Artifi-

https://support.industry.siemens.com/cs/document/49221879/safety-position-standstill-direction-and-speed-detection?dti=0&lc=en-WW
https://support.industry.siemens.com/cs/document/49221879/safety-position-standstill-direction-and-speed-detection?dti=0&lc=en-WW
https://support.industry.siemens.com/cs/document/49221879/safety-position-standstill-direction-and-speed-detection?dti=0&lc=en-WW
https://cache.industry.siemens.com/dl/files/879/49221879/att_870336/v3/49221879_F-Position_DOC_V20_en.pdf
https://cache.industry.siemens.com/dl/files/879/49221879/att_870336/v3/49221879_F-Position_DOC_V20_en.pdf

BIBLIOGRAPHY 187

cial Intelligence. Vol. 4304. Lecture Notes in Computer Science. Springer,
pp. 847–856.

Prior Publications

Lange, T. (2013). “Code-Based Model Minimization for PLC Code Verification”.
Master thesis. RWTH Aachen University.

Lange, T., Neuhäußer, M. R., and Noll, T. (2013). “Speeding Up the Safety
Verification of Programmable Logic Controller Code”. In: Haifa Verification
Conference. Vol. 8244. Lecture Notes in Computer Science. Springer, pp. 44–
60.

Lange, T., Neuhäußer, M. R., and Noll, T. (2015). “IC3 Software Model Check-
ing on Control Flow Automata”. In: FMCAD. IEEE, pp. 97–104.

Lange, T., Prinz, F., Neuhäußer, M. R., Noll, T., and Katoen, J.-P. (2018). “Im-
proving Generalization in Software IC3”. In: SPIN. LNCS. To be published.
Springer.

Schommer, J. F., Franke, D., Lange, T., and Kowalewski, S. (2012). “Load Bal-
ancing for Cross Layer Communication”. In: COMPSAC Workshops. IEEE
Computer Society, pp. 476–481.

Aachener Informatik-Berichte

This list contains all technical reports published during the past three

years. A complete list of reports dating back to 1987 is available from:

http://aib.informatik.rwth-aachen.de/

To obtain copies please consult the above URL or send your request

to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,

Email: biblio@informatik.rwth-aachen.de

2015-01 ⇤ Fachgruppe Informatik: Annual Report 2015
2015-02 Dominik Franke: Testing Life Cycle-related Properties of Mobile Appli-

cations
2015-05 Florian Frohn, Jürgen Giesl, Jera Hensel, Cornelius Aschermann, and

Thomas Ströder: Inferring Lower Bounds for Runtime Complexity
2015-06 Thomas Ströder and Wolfgang Thomas (Editors): Proceedings of the

Young Researchers’ Conference “Frontiers of Formal Methods”
2015-07 Hilal Diab: Experimental Validation and Mathematical Analysis of Co-

operative Vehicles in a Platoon
2015-08 Mathias Pelka, Jó Agila Bitsch, Horst Hellbrück, and Klaus Wehrle (Ed-

itors): Proceedings of the 1st KuVS Expert Talk on Localization
2015-09 Xin Chen: Reachability Analysis of Non-Linear Hybrid Systems Using

Taylor Models
2015-11 Stefan Wüller, Marián Kühnel, and Ulrike Meyer: Information Hiding

in the Public RSA Modulus
2015-12 Christoph Matheja, Christina Jansen, and Thomas Noll: Tree-like

Grammars and Separation Logic
2015-13 Andreas Polzer: Ansatz zur variantenreichen und modellbasierten En-

twicklung von eingebetteten Systemen unter Berücksichtigung regelungs-
und softwaretechnischer Anforderungen

2015-14 Niloofar Safiran and Uwe Naumann: Symbolic vs. Algorithmic Differ-
entiation of GSL Integration Routines

2016-01 ⇤ Fachgruppe Informatik: Annual Report 2016
2016-02 Ibtissem Ben Makhlouf: Comparative Evaluation and Improvement of

Computational Approaches to Reachability Analysis of Linear Hybrid
Systems

http://aib.informatik.rwth-aachen.de/

2016-03 Florian Frohn, Matthias Naaf, Jera Hensel, Marc Brockschmidt, and
Jürgen Giesl: Lower Runtime Bounds for Integer Programs

2016-04 Jera Hensel, Jürgen Giesl, Florian Frohn, and Thomas Ströder: Proving
Termination of Programs with Bitvector Arithmetic by Symbolic Exe-
cution

2016-05 Mathias Pelka, Grigori Goronzy, Jó Agila Bitsch, Horst Hellbrück, and
Klaus Wehrle (Editors): Proceedings of the 2nd KuVS Expert Talk on
Localization

2016-06 Martin Henze, René Hummen, Roman Matzutt, Klaus Wehrle: The
SensorCloud Protocol: Securely Outsourcing Sensor Data to the Cloud

2016-07 Sebastian Biallas : Verification of Programmable Logic Controller Code
using Model Checking and Static Analysis

2016-08 Klaus Leppkes, Johannes Lotz, and Uwe Naumann: Derivative Code by
Overloading in C++ (dco/c++): Introduction and Summary of Features

2016-09 Thomas Ströder, Jürgen Giesl, Marc Brockschmidt, Florian Frohn,
Carsten Fuhs, Jera Hensel, Peter Schneider-Kamp, and Cornelius As-
chermann: Automatically Proving Termination and Memory Safety for
Programs with Pointer Arithmetic

2016-10 Stefan Wüller, Ulrike Meyer, and Susanne Wetzel: Towards Privacy-
Preserving Multi-Party Bartering

2017-01 ⇤ Fachgruppe Informatik: Annual Report 2017
2017-02 Florian Frohn and Jürgen Giesl: Analyzing Runtime Complexity via

Innermost Runtime Complexity
2017-04 Florian Frohn and Jürgen Giesl: Complexity Analysis for Java with

AProVE
2017-05 Matthias Naaf, Florian Frohn, Marc Brockschmidt, Carsten Fuhs, and

Jürgen Giesl: Complexity Analysis for Term Rewriting by Integer Tran-
sition Systems

2017-06 Oliver Kautz, Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe:
CD2Alloy: A Translation of Class Diagrams to Alloy

2017-07 Klaus Leppkes, Johannes Lotz, Uwe Naumann, and Jacques du Toit:
Meta Adjoint Programming in C++

2017-08 Thomas Gerlitz: Incremental Integration and Static Analysis of Model-
Based Automotive Software Artifacts

2017-09 Muhammad Hamad Alizai, Jan Beutel, Jó Ágila Bitsch, Olaf Landsiedel,
Luca Mottola, Przemyslaw Pawelczak, Klaus Wehrle, and Kasim Sinan
Yildirim: Proc. IDEA League Doctoral School on Transiently Powered
Computing

2018-01 ⇤ Fachgruppe Informatik: Annual Report 2018
2018-02 Jens Deussen, Viktor Mosenkis, and Uwe Naumann: Ansatz zur vari-

antenreichen und modellbasierten Entwicklung von eingebetteten Sys-
temen unter Berücksichtigung regelungs- und softwaretechnischer An-
forderungen

2018-03 Igor Kalkov: A Real-time Capable, Open-Source-based Platform for Off-
the-Shelf Embedded Devices

2018-04 Andreas Ganser: Operation-Based Model Recommenders
2018-05 Matthias Terber: Real-World Deployment and Evaluation of Syn-

chronous Programming in Reactive Embedded Systems
2018-06 Christian Hensel: The Probabilistic Model Checker Storm - Symbolic

Methods for Probabilistic Model Checking

⇤ These reports are only available as a printed version.
Please contact biblio@informatik.rwth-aachen.de to obtain copies.

mailto:biblio@informatik.rwth-aachen.de

	Introduction
	Programmable Logic Controllers
	Approach
	Outline
	Prior Publications
	Contributions

	Preliminaries
	Logic
	Propositional Logic
	First-order Logic

	Satisfiability
	Boolean Satisfiability
	Satisfiability Modulo Theories

	Model-based Verification
	Model-Checking
	Properties
	Symbolic Model-Checking

	Programs
	Guarded Command Language
	Predicate Transformers
	Control Flow

	Inductive Hardware Verification
	Finite-State Inductive Strengthening
	Incremental Inductive Strengthening
	Generalization
	Propagation

	Software Verification with IC3
	Previous approaches
	IC3CFA
	Preliminaries
	The IC3CFA algorithm
	Correctness
	Discussion

	Generalization
	Generalization of a cube
	Generalization on multiple edges
	Interaction with weakest preconditions
	Efficient handling of generalizations
	On other generalization techniques

	Propagation
	Comparison

	Experimental Results
	Implementation
	Architecture
	Preprocessing
	Implementation details

	Evaluation
	Setup
	Results
	Industrial experience

	Conclusion

