
S-CREAM — Semi-automatic CREAtion of Metadata
Siegfried Handschuh

�
and Steffen Staab

�
and Fabio Ciravegna

�

Abstract. Richly interlinked, machine-understandable data consti-
tute the basis for the Semantic Web. We provide a framework, S-
CREAM, that allows for creation of metadata and is trainable for
a specific domain. Annotating web documents is one of the major
techniques for creating metadata on the web. The implementation of
S-CREAM, OntoMat supports now the semi-automatic annotation of
web pages. This semi-automatic annotation is based on the informa-
tion extraction component Amilcare. OntoMat extract with the help
of Amilcare knowledge structure from web pages through the use of
knowledge extraction rules. These rules are the result of a learning-
cycle based on already annotated pages.

1 Introduction
The Semantic Web builds on metadata describing the contents of
Web pages. In particular, the Semantic Web requires relational meta-
data, i.e. metadata that describe how resource descriptions instantiate
class definitions and how they are semantically interlinked by prop-
erties. To support the construction of relational metadata, we have
provided an annotation [15] and authoring [16] framework (CREAM
— manually CREAting Metadata) and a tool (OntoMat) that imple-
ments this framework. Nevertheless, providing plenty of relational
metadata by annotation, i.e. conceptual mark-up of text passages, re-
mained a laborious task.

Though there existed the high-level idea that wrappers and infor-
mation extraction components could be used to facilitate the work
[8, 15], a full-fledged integration that dealt with all the concep-
tual difficulties was still lacking. Therefore, we have developed S-
CREAM (Semi-automatic CREAtion of Metadata), an annotation
framework that integrates a learnable information extraction com-
ponent (viz. Amilcare [1]).

Amilcare is a system that learns information extraction rules from
manually marked-up input. S-CREAM aligns conceptual markup,
which defines relational metadata, (such as provided through On-
toMat) with semantic and indicative tagging (such as produced by
Amilcare).

There are two major type of problems that we had to solve for this
purpose:

1. When comparing the desired relational metadata from manual
markup and the semantic tagging provided by information extrac-
tion systems, one recognizes that the output of this type of systems
is underspecified for the purpose of the Semantic Web. In partic-
ular, the nesting of relationships between different types of con-
cept instances is undefined and, hence, more comprehensive graph
structures may not be produced (further elaboration in Section 4).
In order to overcome this problem, we introduce a new processing
component, viz. a lightweight module for discourse representation
(Section 5).

�
AIFB, University of Karlsruhe, email: � sha,sst � @aifb.uni-karlsruhe.de�
Department of Computer Science, University of Sheffield, email:

F.Ciravegna@dcs.shef.ac.uk

2. Semantic tags do not correspond one-to-one to the conceptual de-
scription (Section 5 and 6).
� Semantic tags may have to be turned into various conceptual

markup, e.g., as concept instances, attribute instances, or rela-
tionship instances.

� For successful learning, Amilcare sometimes needs further in-
dicative tags (e.g., syntactic tags) that do not correspond to any
entity in a given ontology, but that may only be exploited within
the learning cycle.

In the remainder of the paper, we will first describe the existing
frameworks, viz. CREAM (Section 2) and Amilcare (3). Second, we
will focus on the integration problems (Section 4–5). Third, we will
describe a usage scenario (Section 6). Eventually, we will discuss
related works and conclude.

2 CREAM/OntoMat
CREAM is an annotation and authoring framework suited for the
easy and comfortable creation of relational metadata. OntoMat is its
concrete implementation. Before we sketch some of the capabilities
of CREAM/OntoMat, we first describe its assumptions on its output
representation and some terminology we use subsequently.

2.1 Relational Metadata
We elaborate the terminology here because many of the terms that are
used with regard to metadata creation tools carry several, ambiguous
connotations that imply conceptually important differences:
� Ontology: An ontology is a formal, explicit specification of a

shared conceptualization of a domain of interest [13]. In our case it
is constituted by statements expressing definitions of DAML+OIL
classes and properties [11].� Annotations: An annotation in our context is a set of instantia-
tions attached to an HTML document. We distinguish (i) instanti-
ations of DAML+OIL classes, (ii) instantiated properties from one
class instance to a datatype instance — henceforth called attribute
instance (of the class instance), and (iii) instantiated properties
from one class instance to another class instance — henceforth
called relationship instance.
Class instances have unique URIs, e.g. like
’urn:rdf:936694d5ca907974ea16565de20c997a-0’.3

They frequently come with attribute instances, such as a
human-readable label like ‘Dobbertin’.� Metadata: Metadata are data about data. In our context the anno-
tations are metadata about the HTML documents.� Relational Metadata: We use the term relational metadata to de-
note the annotations that contain relationship instances.

�
In the OntoMat implementation we create the URIs with the createUni-
queResource method of the RDF-API

Often, the term “annotation” is used to mean something like “pri-
vate or shared note”, “comment” or “Dublin Core metadata”. This
alternative meaning of annotation may be emulated in our ap-
proach by modelling these notes with attribute instances. For in-
stance, a comment note “I like this paper” would be related to the
URL of the paper via an attribute instance ‘hasComment’.
In contrast, relational metadata also contain statements like: The
hotel “Zwei Linden” is located in the city “Dobbertin”., i.e. re-
lational metadata contain relationships between class instances
rather than only textual notes.

s = rdfs:subClassOf

t = rdf:type

r = rdfs:range

d = rdfs:domain

L = rdfs:Literal
Zwei Linden

Zwei Lindensingle room1double room1

Dobbertin 038736/42472
rate1

rate2

25,66 EUR46,02 EUR43,46

namehas_roomhas_room

located_at phonehas_rate
has_rate

price currency
currency

price price

t

Ontology

Metadata

Document

Thing

accommodation
Region

CityHotel

Room

SingleRoom

DoubleRooms

s

s s

s
s

s

has_room

price currency

located_at

named
L

L L

d
r

d

r

Rate

has_rate

r

d

d
d

Figure 1. Annotation example

Figure 1 illustrates our use of the terms “ontology”, “annota-
tion” and “relational metadata”. It depicts some part of a tourism
ontology.4 Furthermore it shows the homepage of the Hotel ”Zwei
Linden”(http://www.all-in-all.de/ english/1142.htm)
annotated in RDF. For the hotel there is a instances de-
noted by corresponding URI (urn:rdf:947794d5ca907974-
ea16565de21c998a-0). In addition, there is a relationship instance
between the hotel and the city.

�
currently only available in German at
http://ontobroker.semanticweb.org/ontos/compontos/tourism I1.daml

2.2 Modes of Interaction

The objective of CREAM is to allow for the easy generation of tar-
get representations such as just illustrated. This objective should be
achieved irrespective of the mode of interaction. In the latest version
of CREAM [16] there existed three major modes:

1. Annotation by typing statements involves working almost ex-
clusively with the ontology browser and fact templates.

2. Annotation by markup involves reuse of data from the document
editor in the ontology browser by first marking document parts and
drag’n’dropping them onto the ontology.

3. Annotation by authoring web pages involves the reuse of data
from the ontology and fact browser in the document editor by
drag’n’drop.

OntoMat usually embeds the resulting annotation into the HTML
document, but it can also be stored in a separate file or database.

3 Amilcare

Amilcare is a tool for adaptive Information Extraction from text (IE)
designed for supporting active annotation of documents for Knowl-
edge Management (KM). It performs IE by enriching texts with
XML annotations, i.e. the system marks the extracted information
with XML annotations. The only knowledge required for porting
Amilcare to new applications or domains is the ability of manually
annotating the information to be extracted in a training corpus. No
knowledge of Human Language technology is necessary. Adaptation
starts with the definition of a tagset for annotation. Then users have
to manually annotate a corpus for training the learner. As will be later
explained in detail, OntoMat may be also used as the annotation in-
terface to annotate texts in a user friendly manner. OntoMat provides
user annotations as XML tags to train the learner. Amilcare’s learner
induces rules that are able to reproduce the text annotation.

Amilcare can work in two modes: training, used to adapt to a new
application, and extraction, used to actually annotate texts.

In both modes, Amilcare first of all preprocesses texts using An-
nie, the shallow IE system included in the Gate package ([22],
www.gate.ac.uk). Annie performs text tokenization (segmenting
texts into words), sentence splitting (identifying sentences) part of
speech tagging (lexical disambiguation), gazetteer lookup (dictio-
nary lookup) and named entity recognition (recognition of people
and organization names, dates, etc.).

When operating in training mode, Amilcare induces rules for in-
formation extraction. The learner is based on 	�
��� � , a covering al-
gorithm for supervised learning of IE rules based on Lazy-NLP [1]
[3]. This is a wrapper induction methodology [19] that, unlike other
wrapper induction approaches, uses linguistic information in the rule
generalization process. The learner starts inducing wrapper-like rules
that make no use of linguistic information, where rules are sets of
conjunctive conditions on adjacent words. Then the linguistic infor-
mation provided by Annie is used in order to generalise rules: con-
ditions on words are substituted with conditions on the linguistic in-
formation (e.g. condition matching either the lexical category, or the
class provided by the gazetteer, etc. [3]). All the generalizations are
tested in parallel by using a variant of the AQ algorithm [23] and the
best k generalizations are kept for IE. The idea is that the linguistic-
based generalization is used only when the use of NLP information is
reliable or effective. The measure of reliability here is not linguistic
correctness (immeasurable by incompetent users), but effectiveness
in extracting information using linguistic information as opposed to
using shallower approaches. Lazy NLP-based learners learn which is

the best strategy for each information/context separately. For exam-
ple they may decide that using the result of a part of speech tagger
is the best strategy for recognising the location in holiday advertise-
ments, but not to spot the hotel address. This strategy is quite ef-
fective for analysing documents with mixed genres, quite a common
situation in web documents [2].

The learner induces two types of rules: tagging rules and correc-
tion rules. A tagging rule is composed of a left hand side, contain-
ing a pattern of conditions on a connected sequence of words, and a
right hand side that is an action inserting an XML tag in the texts.
Each rule inserts a single XML tag, e.g. � /hotel � . This makes the
approach different from many adaptive IE algorithms, whose rules
recognize whole pieces of information (i.e. they insert both � hotel �
and � /hotel � , or even multi slots. Correction rules shift misplaced
annotations (inserted by tagging rules) to the correct position. They
are learnt from the mistakes made in attempting to re-annotate the
training corpus using the induced tagging rules. Correction rules are
identical to tagging rules, but (1) their patterns match also the tags in-
serted by the tagging rules and (2) their actions shift misplaced tags
rather than adding new ones. The output of the training phase is a
collection of rules for IE that are associated to the specific scenario.

When working in extraction mode, Amilcare receives as input
a (collection of) text(s) with the associated scenario (including the
rules induced during the training phase). It preprocesses the text(s)
by using Annie and then it applies its rules and returns the original
text with the added annotations. The Gate annotation schema is used
for annotation [22].

Amilcare is designed to accommodate the needs of different user
types. While naive users can build new applications without delv-
ing into the complexity of Human Language Technology, IE experts
are provided with a number of facilities for tuning the final appli-
cation. Induced rules can be inspected, monitored and edited to ob-
tain some additional accuracy, if needed. The interface also allows
balancing precision (P) and recall (R). The system is run on an an-
notated unseen corpus and users are presented with statistics on ac-
curacy, together with details on correct matches and mistakes (using
the MUCscorer [7] and an internal tool). Retuning the P&R balance
does not generally require major retraining. Facilities for inspecting
the effect of different P&R balances are provided. Although the cur-
rent interface for balancing P&R is designed for IE experts, we have
plans for enabling also naive users [4].

4 Synthesizing S-CREAM
In order to synthesize S-CREAM out of the existing frameworks
CREAM and Amilcare, we consider their core processes in terms
of input and output, as well as the process of the yet undefined S-
CREAM. Figure 2 surveys the three processes.

The first process is indicated by a circled M. It is manual anno-
tation and authoring of metadata, which turns a document into rela-
tional metadata that corresponds to the given ontology (as sketched
in Section 2 and described in detail in [16]) For instance, an annotator
may use OntoMat to describe that on the homepage of hotel “Zwei
Linden” (cf. Figure 1) the relationships listed in Table 1(a) show up.

The second process is indicated by a circled A1. It is information
extraction, e.g. provided by Amilcare [1], which digests a document
and produces either a XML tagged document or a list of XML tagged
text snippets (cf. Table 1(b)).

The obvious questions that come up at this point are: Is the result
of Table 1(b) equivalent to the one in Table 1(a)? How can Table 1(b)
be turned into the result of Table 1(a)? The latter is a requirement for
the Semantic Web.

The “Semantic Web answer” to this is: The difference between

Document
tagged

Output

DR

IE

Hotel

City

M

A1 A2 A3
region

City Hotel

accommodation

Thing

located_at

Zwei LindenDobbertin

located_at

Hotel

City

Figure 2. Two Ways to the Target: Manual and Automatic Annotation

Table 1(a) and Table 1(b) is analogous to the difference between an
RDF structure and a very particular serialization of data in XML.
This means that assuming a very particular serialization of informa-
tion on Web pages, the Amilcare tags can be specified so precisely5

that indeed Table 1(b) can be rather easily mapped into Table 1(a).
The only requirement may be a very precise specification of tags, e.g.
“43,46” may need to be tagged as � lowerprice-of-doublebedroom-
of-hotel � 43,46 � /lowerprice-of-doubleroom-of-hotel � in order to
cope with its relation to a doubleroom of a hotel.

The “Natural Language Analysis answer” to the above questions
is: Learnable information extraction approaches like Amilcare do not
have an explicit discourse model for relating tagged entities — at
least for now. Their implicit discourse model is that each tag corre-
sponds to a place in a template6 and every document (or document
analogon) corresponds to exactly one template. This is fine as long as
the discourse structures in the text are simple enough to be mapped
into the template and from the template into the target RDF structure.

In practice, however, the assumption that the underlying graph
structures/
discourse structures are quite similar, often does not hold. Then the
direct mapping from XML tagged output to target RDF structure be-
comes awkward and difficult to do.

The third process given in Figure 2 is indicated by the composition
of A1, A2 and A3. It bridges from the tagged output of the informa-
tion extraction system to the target graph structures via an explicit
discourse representation. Our discourse representation is based on a
very lightweight version of Centering [12, 24] and explained in the
next section.

5 Discourse Representation (DR)

The principal task of discourse representation is to describe coher-
ence between different sentences. The core idea is that during the
interpretation of a text (or, more general, a document), there is al-
ways a logical description (e.g., a RDF(S) graph) of the content that
has been read so far. The current sentence updates this logical de-
scription by:

1. Introducing new discourse referents: I.e. introducing new enti-
ties. E.g., finding the term ‘Hotel & Inn “Zwei Linden” ’ to denote
a new object.

�
We abstract here from the problem of correctly tagging a piece of text.�
A template is like a single tuple in an unnormalized relational database
table, where all or several entries may have null values.

Zwei Linden INSTOF Hotel
Zwei Linden is LOCATED AT Dobbertin
Dobbertin INSTOF City
Zwei Linden HAS ROOM single room 1
single room 1 INSTOF Single Room
single room 1 HAS RATE rate2
rate2 INSTOF Rate
rate2PRICE 25,66
rate2CURRENCY EUR
Zwei Linden HAS ROOM double room 3
double room 3 INSTOF Double Room
double room 3 HAS RATE rate4
rate4 INSTOF Rate
rate4PRICE 43,46
rate4PRICE 46,02
rate4CURRENCY EUR
. . .

(a) OntoMat

�
hotel � Zwei Linden

�
/hotel �

�
city � Dobbertin � /city �

�
singleroom � Single room

�
/singleroom �

�
price � 25,66 � /price ��
currency � EUR � /currency �

�
doubleroom � Double room

�
/doubleroom �

�
lowerprice � 43,46 � /lowerprice ��
upperprice � 46,02 � /upperprice ��
currency � EUR � /currency �

...
(b) Amilcare

Table 1. Comparison of Output: Manual OntoMat versus Amilcare

2. Resolving anaphora: I.e. describing denotational equivalence be-
tween different entities in the text. E.g. ‘Hotel & Inn “Zwei Lin-
den” ’ and ‘Country inn’ refers to the same object.

3. Establishing new logical relationships: I.e. relating the two ob-
jects refered to by ‘Hotel & Inn “Zwei Linden” ’ and ‘Dobbertin’
via LOCATEDAT.

The problem with information extraction output is that it is not
clear what constitutes a new discourse entity. Though information ex-
traction may provide some typing (e.g. � city � Dobbertin � /city �),
it does not describe whether this constitutes an attribute value (of
another entity) or an entity of its own. Neither do information extrac-
tion systems like Amilcare treat coherence between different pieces
of tagged text.

Grosz & Sidner [12] devised centering as a theory of text struc-
tures that separate text into segments that are coherent to each other.
The principal idea of the centering model is to express fixed con-
straints as well as “soft” rules which guide the reference resolution
process. The fixed constraints denote what objects are available at all
for resolving anaphora and establishing new logical inter-sentential
relationships, while soft rules give a preference ordering to these pos-
sible antecedents. The main data structure of the centering model is
a list of forward-looking centers, ����	������ for each utterance �� . The
forward-looking centers ����	������ constitutes a ranked list of what is
available and what is prefered for resolving anaphora and for estab-
lishing new logical relationships with previous sentences.

The centering model allows for relating a given entity in utterance
��� to one of the forward-looking centers, ����	����! � � . For instance,
when reading “The chef of the restaurant” in Figure 1 the centering
model allows relationships with “Country inn”, but not with “Dob-
bertin”.

The drawback of the centering model is that, first, it has only been
devised for full text and not for semi-structured text such as appears
in Figure 1 and, second, it often needs more syntactic information
than shallow information extraction can provide.

Therefore, we use only an extremly lightweight, “degraded” ver-
sion of centering, where we formulate the rules on an ad hoc basis as
needed by the annotation task. The underlying ideas of the degrading
are that S-CREAM is intended to work in restricted, though adapt-
able, domains. It is not even necessary to have a complete model,
because we analyse only a very small part of the text. For instance,
we analyse only the part about hotels with rooms, prices, addresses
and hotel facilities. Note that thereby, hotel facilities are found in full
texts rather than tables and not every type of hotel facility is known

beforehand.
We specify the discourse model by logical rules, the effects of

which we illustrate in the following paragraphs. Thereby, we use the
same inferencing mechanisms that we have already exploited for sup-
porting annotation [14], viz. Ontobroker [5].

As our baseline model, we assume the “single template stragey”,
viz. only one type of tag, e.g. � hotel � , is determined to really in-
troduce a new discourse referent. Every other pair of tag name and
tag value is attached to this entity as an attribute filled by the tag
value. E.g. “Zwei Linden” is recognized as an instance of Hotel, ev-
ery other entity (like “Dobbertin”, etc.) is attached to this instance
resulting in a very shallow discourse representation by logical facts
illustrated in Table 2(a).7 This is probably the shallowest discourse
representation possible at all, because it does not include ordering
constraints or other soft constraints. However, it is already adequate
to map some of the relations in the discourse namespace (“dr:”) to
relations in the target space, thus resulting in Table 2(b). However,
given this restricted tag set, not every relation can be detected.

For more complex models, we may also include ordering informa-
tion (e.g. simply by augmenting the discourse representation tuples
given in Table 2 by numbers; this may be modelled as 4-arity predi-
cates in F-Logic used by Ontobroker) and a set of rules that maps the
discourse representation into the target structure integrating

� rules to only attach instances where they are allowed to become
attached (e.g., prices are only attached where they are allowed)� rules to attach tag values to the nearest preceding, conceptually
possible entity (thus, prices for single and double room may be
distinguished without further ado).� rules to create a new complex object when two simple ones are
adjacent, e.g., to create a rate when it founds adjacent number and
currencies.

Further information that could be included is, e.g., adjacency infor-
mation, etc. Thus, one may produce Table 1(a) out of the discourse
representation from a numbered Table 2(a).

The strategy that we follow here is to make simple things sim-
ple and complex tasks possible. The experienced user will be able to
handcraft logical rules in order to define the discourse model to his
needs. The standard user, will only exploit the simple template strat-
egy. When the resulting graph structures are simple enough to allow
for the latter strategy and a simple mapping, the mapping can also be

"
Results have been selected to be comparable with Table 1.

Zwei Linden DR:INSTOF Hotel Zwei Linden INSTOF Hotel
Zwei Linden DR:CITY Dobbertin Zwei Linden is LOCATED AT Dobbertin

Dobbertin INSTOF City
Zwei Linden DR:SINGLE ROOM single room Zwei Linden HAS ROOM single room1

single room1 INSTOF Single Room
Zwei Linden DR:PRICE 25,66
Zwei Linden DR:CURRENCY EUR
Zwei Linden DR:DOUBLE ROOM double room Zwei Linden HAS ROOM double room1

double room3 INSTOF Double Room
Zwei Linden DR:PRICE 43,46
Zwei Linden DR:PRICE 46,02
Zwei Linden DR:CURRENCY EUR

(a) Discourse Representation (b) Target Graph Structure

Table 2. Template Strategy

defined by directly aligning relevant concepts and relations by drag
and drop, while in the general case one must write logical rules.

6 Usage scenario
This section describe a usage scenario. The first step is the project
definition. A domain ontology can be the basis for the annotation
of different types of documents. Likewise a certain kind of docu-
ments can be annotated in reference to different ontologies. There-
fore a project defines the combination of a domain ontology (e.g.
about tourism) with a certain text type (e.g. hotel homepages). Fur-
ther the user have do define which part of the ontology is relevant for
the learning task, e.g. which attributes of the several concepts will
be used for tagging the corpus. The mapping of the Ontology to the
Amilcare tags works as follows:
� concepts: concepts are mapped by the name of the concept, e.g.

the concept with the name ”Hotel” results in a � hotel � tag.� inheritance: the concepts of the ontology represents a hierarchical
structure. To emulate the different levels of conceptualization On-
O-Mat allows to map a concept in multiple tags, e.g. the concept
”Hotel” in � company � , � accommodation � , and � hotel � .� attributes: The mapping of attributes to tags is a tradeoff between
an specific and a general naming. The specific naming ease the
mapping to the ontology concepts but at the same time it results
in more complex extraction rules. These rules are less general and
less robust. For example a specific naming of the attribute ”phone”
would result in tags like � hotel phone � , � room phone � , and
� person phone � in comparison to the general tag � phone � .
Therefore the user have to decide for every attribute the adequate
accuracy of the naming, because it influences the learning results.

After the definition of the project parameters one needs a corpus,
a set of certain type of documents, e.g. hotel homepages.

If there exist already enough annotated documents in the web the
user can perform a crawl with OntoMat and collect the necessary
documents. The crawl can be limited here to documents which are
annotated with the desired ontology. If necessary the ontology sub-
set and the mapping to the Amilcare tags must be re-adjusted accord-
ing to the existing annotations in the crawled documents. Afterwards
the desired type of document must be checked still manually.

If there are no annotated documents, one can produce the neces-
sary corpus with OntoMat themselves. The user have to collect and
annotate documents of a certain type by the sub-set of the ontology
that is chosen in the project definition phase. The document are an-
notated by OntoMat with RDF facts. These facts are linked by an
XPointer description to the annotated text part. Because Amilcare
needs as a corpus XML tagged files, these RDF annotations will be

transformed into corresponding XML tags according to the mapping
done in the project definition. Only these tags are used to train. Other
Tags like HTML tags will be used as contextual information.

The learning phase is executed by Amilcare, which is embedded
as a plugin into OntoMat. Amilcare processes each document of the
corpus and generates extraction rules as described in section 3. Af-
ter the training Amilcare stores the annotation rules in a certain file
which belongs to the project.

Now it is possible to use the induced rules for semi-automatic an-
notation. Based on the rules the Amilcare plugin produces XML an-
notation results (cf. A1 in Figure 2). Here a mapping (A2) is done
from OntoMat from the flat markup to the conceptual markup in or-
der to create new RDF facts (A3). These mapping is undertaken by
the discourse representation (cf. section 5).

These mapping results in several automatic generated proposals
for the RDF annotation of the document. The user can interact with
these annotation proposals in three different ways of automation: (i)
a highlighting of the annotation candidates or (ii) interactive sugges-
tion of each annotation or (iii) a first full automatic annotation of the
document and a later refinement by the user.

highlighting mode: First of all the user opens a document he
would like to annotate in the OntoMat document editor. Then the
highlighting mode marks all annotation candidates by a colored un-
derline. The user can decide on his own if he use this hint for an
annotation or not.

interactive mode: This mode is also meant for the individual doc-
ument processing. The interactive suggestion is a step by step pro-
cess. Every possible annotation candidate will be suggested to the
user and he can refuse, accept or change the suggestion in a dialog
window.

automatic mode: The fully automatic approach is useful if there
is a bunch of documents that needs to be annotated, so it can be done
in batch mode. All selected documents are annotated automatically.

7 Related Work
S-CREAM can be compared along four dimensions: First, it is a
framework for mark-up in the Semantic Web. Second, it may be
considered as a particular knowledge acquisition framework very
vaguely similar to Protégé-2000[9]. Third, it is certainly an annota-
tion framework, though with a different focus than ones like Annotea
[18]. Fourth, it produces semantic mark-up with support of informa-
tion extraction.

7.1 Knowledge Markup in the Semantic Web

We know of three major systems that intensively use knowledge
markup in the Semantic Web, viz. SHOE [17], Ontobroker [5] and
WebKB [21]. All three of them rely on knowledge in HTML pages.
They all start with providing manual mark-up by editors. However,
our experiences (cf. [8]) have shown that text-editing knowledge
mark-up yields extremely poor results, viz. syntactic mistakes, im-
proper references, and all the problems sketched in the scenario sec-
tion.

The approaches from this line of research that are closest to S-
CREAM is the SHOE Knowledge Annotator8 and the WebKB anno-
tation tool.

The SHOE Knowledge Annotator is a Java program that allows
users to mark-up webpages with the SHOE ontology. The SHOE
system [20] defines additional tags that can be embedded in the body
of HTML pages. The SHOE Knowledge Annotator is rather a little
helper (like our earlier OntoPad [10], [5]) than a full fledged annota-
tion environment.

WebKB uses conceptual graphs for representing the semantic con-
tent of Web documents. It embeds conceptual graph statements into
HTML pages. Essentially they offer a Web-based template like inter-
face like knowledge acquisition frameworks described next.

7.2 Comparison with Knowledge Acquisition
Frameworks

The S-CREAM framework allows for creating class and property in-
stances to populate HTML pages. Thus it has a target roughly similar
to the instance acquisition phase in the Protégé-2000 framework [9]
(the latter needs to be distinguished from the ontology editing ca-
pabilities of Protégé). The obvious difference between S-CREAM
and Protégé is that the latter does not (and was not intended to) sup-
port the particular Web setting, viz. managing and displaying Web
pages — not to mention Web page authoring. From Protégé we have
adopted the principle of a meta ontology that allows to distinguish
between different ways that classes and properties are treated.

7.3 Comparison with Annotation Frameworks

There are a number of — even commercial — annotation tools like
ThirdVoice9, Yawas [6], CritLink [26] and Annotea (Amaya) [18].
These tools all share the idea of creating a kind of user comment
about Web pages. The term “annotation” in these frameworks is un-
derstood as a remark to an existing document. For instance, a user of
these tools might attach a note like ”A really nice hotel!” to the name
“Zwei Linden” on the Web page. In S-CREAM we would design a
corresponding ontology that would allow to type the comment (an
unlinked fact) “A really nice hotel” into an attribute instance belong-
ing to an instance of the class comment with a unique XPointer at
“Zwei Linden”.

Annotea actually goes one step further. It allows to rely on an RDF
schema as a kind of template that is filled by the annotator. For in-
stance, Annotea users may use a schema for Dublin Core and fill the
author-slot of a particular document with a name. This annotation,
however, is again restricted to attribute instances. The user may also
decide to use complex RDF descriptions instead of simple strings
for filling such a template. However, no further help is provided by
Amaya for syntactically correct statements with proper references.
#

http://www.cs.umd.edu/projects/plus/SHOE/KnowledgeAnnotator.html$
http://www.thirdvoice.com

7.4 Semantic Markup with Support from
Information Extraction

The only other system we know that produce semantic markup
with support from information extraction is the annotation tool cited
in [25]. It uses information extraction components (Marmot, Bad-
ger and Crystal) from the University of Massachusetts at Amherst
(UMass). It allows the semi-automatic population of an ontology
with metadata. We assume that this approach is more laborious than
to use Amilcare for information extraction, e.g. they had to define
their own verbs, nouns and abbreviations in order to apply Marmot
for a domain. Also, they have not dealt with relational metadata or
authoring concerns so far.

8 Conclusion

CREAM is a comprehensive framework for creating annotations, re-
lational metadata in particular — the foundation of the future Se-
mantic Web. The new version of S-CREAM presented here supports
metadata creation with the help of information extraction in addi-
tion to all the other nice features of CREAM, like comprises in-
ference services, crawler, document management system, ontology
guidance/fact browser, document editors/viewers, and a meta ontol-
ogy.

OntoMat is the reference implementation of the S-CREAM frame-
work. It is Java-based and provides a plugin interface for extensions
for further advancements, e.g. collaborative metadata creation or in-
tegrated ontology editing and evolution. The plugin interface has al-
ready been used by third parties, e.g. for creating annotation for Mi-
crosoft WordTM documents. Along similar lines, we are now inves-
tigating how different tools may be brought together, e.g. to allow
for the creation of relational metadata in PDF, SVG, or SMIL with
OntoMat.

REFERENCES
[1] Fabio Ciravegna, ‘Adaptive information extraction from text by rule in-

duction and generalisation’, in Proceedings of the 17th International
Joint Conference on Artificial Intelligence (IJCAI)e, Seattle, Usa, (Au-
gust 2001).

[2] Fabio Ciravegna, ‘Challenges in information extraction from text for
knowledge management’, IEEE Intelligent Systems and Their Applica-
tions, 16(6), 88–90, (2001).

[3] Fabio Ciravegna, ‘(lp)
�
, an adaptive algorithm for information extrac-

tion from web-related texts’, in Proceedings of the IJCAI-2001 Work-
shop on Adaptive Text Extraction and Mining held in conjunction with
17th International Joint Conference on Artificial Intelligence (IJCAI),
Seattle, Usa, (August 2001).

[4] Fabio Ciravegna and Daniela Petrelli, ‘User involvement in adaptive in-
formation extraction: Position paper’, in Proceedings of the IJCAI-2001
Workshop on Adaptive Text Extraction and Mining held in conjunction
with 17th International Joint Conference on Artificial Intelligence (IJ-
CAI), Seattle, Usa, (August 2001).

[5] S. Decker, M. Erdmann, D. Fensel, and R. Studer, ‘Ontobroker: On-
tology Based Access to Distributed and Semi-Structured Information’,
in Database Semantics: Semantic Issues in Multimedia Systems, eds.,
R. Meersman et al., 351–369, Kluwer Academic Publisher, (1999).

[6] L. Denoue and L. Vignollet, ‘An annotation tool for web
browsers and its applications to information retrieval’, in In Pro-
ceedings of RIAO2000, Paris, (April 2000). http://www.univ-
savoie.fr/labos/syscom/Laurent.Denoue/riao2000.doc.

[7] Aaron Douthat, ‘The message understanding conference
scoring software user’s manual’, in 7th Message Un-
derstanding Conference Proceedings, MUC-7, (1998).
http://www.itl.nist.gov/iaui/894.02/related projects/muc/.

[8] M. Erdmann, A. Maedche, H.-P. Schnurr, and Steffen Staab, ‘From
manual to semi-automatic semantic annotation: About ontology-based
text annotation tools.’, in P. Buitelaar & K. Hasida (eds). Proceedings

of the COLING 2000 Workshop on Semantic Annotation and Intelligent
Content, Luxembourg, (August 2000).

[9] H. Eriksson, R. Fergerson, Y. Shahar, and M. Musen, ‘Automatic gener-
ation of ontology editors’, in Proceedings of the 12th Banff Knowledge
Acquisition Workshop, Banff, Alberta, Canada, (1999).

[10] D. Fensel, J. Angele, S. Decker, M. Erdmann, H.-P. Schnurr, S. Staab,
R. Studer, and Andreas Witt, ‘On2broker: Semantic-based access to in-
formation sources at the www’, in In Proceedings of the World Confer-
ence on the WWW and Internet (WebNet 99), Honolulu, Hawaii, USA,
(1999).

[11] Reference description of the DAML+OIL (March
2001) ontology markup language, March 2001.
http://www.daml.org/2001/03/reference.html.

[12] B. J. Grosz and C. L. Sidner, ‘Attention, intentions, and the structure of
discourse’, Computational Linguistics, 12(3), 175204, (1986).

[13] T. R. Gruber, ‘A Translation Approach to Portable Ontology Specifica-
tions’, Knowledge Acquisition, 6(2), 199–221, (1993).

[14] S. Handschuh and S. Staab, ‘Authoring and annotation of web pages in
cream’, in Proc. of WWW-2002, (2002).

[15] S. Handschuh, S. Staab, and A. Maedche, ‘CREAM — Creating rela-
tional metadata with a component-based, ontology driven framework’,
in In Proceedings of K-Cap 2001, Victoria, BC, Canada, (October
2001).

[16] Siegfried Handschuh and Steffen Staab, ‘Authoring and annotation of
web pages in cream.’, in Proceeding of the WWW2002 - Eleventh In-
ternational World Wide Web Conferenceb (to appear), Hawaii, USA,
(May 2002).

[17] J. Heflin and J. Hendler, ‘Searching the web with shoe’, in Artificial
Intelligence for Web Search. Papers from the AAAI Workshop. WS-00-
01, pp. 35–40. AAAI Press, (2000).

[18] J. Kahan, M. Koivunen, E. Prud’Hommeaux, and R. Swick, ‘Annotea:
An Open RDF Infrastructure for Shared Web Annotations’, in Proc. of
the WWW10 International Conference. Hong Kong, (2001).

[19] Nicholas Kushmerick, ‘Wrapper induction for information extraction’,
in Proceedings of the 15th International Joint Conference on Artificial
Intelligence (IJCAI), (1997).

[20] S. Luke, L. Spector, D. Rager, and J. Hendler, ‘Ontology-based Web
Agents’, in Proceedings of First International Conference on Au-
tonomous Agents, (1997).

[21] P. Martin and P. Eklund, ‘Embedding Knowledge in Web Documents’,
in Proceedings of the 8th Int. World Wide Web Conf. (WWW‘8), Toronto,
May 1999, pp. 1403–1419. Elsevier Science B.V., (1999).

[22] Diana Maynard, Valentin Tablan, Hamish Cunningham, Cristian Ursu,
Horacio Saggion, Kalina Bontcheva, and Yorick Wilks, ‘Architectural
elements of language engineering robustness’, Journal of Natural Lan-
guage Engineering – Special Issue on Robust Methods in Analysis of
Natural Language Data, (2002). forthcoming.

[23] R.S. Mickalski, I. Mozetic, J. Hong, and H. Lavrack, ‘The multi pur-
pose incremental learning system aq15 and its testing application to
three medical domains’, in Proceedings of the 5th National Conference
on Artificial Intelligence, Philadelphia, USA, (1986).

[24] M. Strube and U. Hahn, ‘Functional centering — grounding referential
coherence in information structure’, Computational Linguistics, 25(3),
309–344, (1999).

[25] M. Vargas-Vera, E. Motta, J. Domingue, S. Buckingham Shum, and
M. Lanzoni, ‘Knowledge Extraction by using an Ontology-based An-
notation Tool’, in K-CAP 2001 workshop on Knowledge Markup and
Semantic Annotation, Victoria, BC, Canada, (October 2001).

[26] Ka-Ping Yee. CritLink: Better Hyperlinks for the WWW, 1998.
http://crit.org/˜ping/ht98.html.

