
Weaving the Biomedical Semantic Web with the Prot́eǵe OWL Plugin

Holger Knublauch Olivier Dameron Mark A. Musen

Stanford Medical Informatics, Stanford University, Stanford, CA (http://protege.stanford.edu )

Abstract
In this document we show how biomedical resources
can be linked into a Semantic Web using Protéǵe.
Protéǵe is a widely-used open-source ontology mod-
eling environment with support for the Web Ontology
Language (OWL). With the example domain of brain
cortex anatomy we demonstrate how Protéǵe can be
used to build an OWL ontology and to maintain on-
tology consistency with a description logic classifier.
We also show how Protéǵe can be used to link existing
Web resources such as biomedical articles and images
into a Semantic Web.

INTRODUCTION
Biomedical Web resources in the existing internet are
mainly optimized for use by humans. For example,
researchers need to know the “correct” keywords to
do a meaningful search using an online publications
database. The vision of the Semantic Web [3] is to ex-
tend the existing Web with conceptual metadata that
are more useful to machines, revealing the intended
meaning of Web resources. This meaning could be
used by software agents to perform tasks that are dif-
ficult with the current Web architecture. For example,
an intelligent agent could retrieve semantically related
publications, even if they don’t contain the “correct”
keyword.
Ontologies are a central building block of the Seman-
tic Web. Ontologies define domain concepts and the
relationships between them, and thus provide a do-
main language that is meaningful to both humans and
machines. Ontologies are being defined for many
biomedical domains, such as anatomy, genetics, and
cancer research. The concepts from these ontologies
can be used to annotate Web resources. The Web On-
tology Language (OWL) [13] is widely accepted as the
standard language for sharing Semantic Web contents.
Prot́eǵe [4, 7] is an ontology development environment
with a large community of active users. Protéǵe has
been used for more than a decade to build large-scale
biomedical applications. Rather recently, Protéǵe has
been extended with support for OWL, and has become
one of the leading OWL tools.
Our goal in this document is to help biomedical
projects get started with Semantic Web technology.

We first describe the architecture of a typical biomed-
ical Semantic Web application from the domain of
brain cortex anatomy. Then we give a short overview
of Prot́eǵe and its OWL support. We describe how
Prot́eǵe can be used to define domain classes and prop-
erties, and how to use features such as a classifier to
maintain semantic consistency. We also briefly intro-
duce the essential features of OWL and their represen-
tation in Prot́eǵe. Then we show how to link existing
Web resources into the Semantic Web, so that they can
be accessed by intelligent agents. We end this docu-
ment with discussion and conclusions.

A BIOMEDICAL SEMANTIC WEB
The current Internet already contains vast amounts of
biomedical information resources, such as research
articles, images, clinical guidelines, and drug cata-
logues. Making these resources available in a more
structured way is one of the goals of several large-
scale ontology development efforts. For example,
the goal of the National Cancer Institute’s Thesaurus
project [5] is to provide a well-defined conceptual
model so that cancer-related resources can be struc-
tured in a machine-readable way. This conceptual
model is an OWL ontology with tens of thousands of
classes and dozens of properties.
For the purpose of this paper, we start with a less
ambitious example ontology of brain cortex anatomy.
Potential use cases of this ontology are teaching, de-
cision support for clinical practice, sharing of neu-
roimaging data, or semantic assistance for data pro-
cessing tools. The ontology defines concepts such
asFrontalLobe andLeftCentralSulcus , and
specialization, composition and spatial neighborhood
relationships. In addition, the ontology also defines
the logical characteristics of the concepts. For exam-
ple, it states that a brainHemisphere is composed
of exactly five distinct lobes: oneFrontalLobe ,
one ParietalLobe , one TemporalLobe , one
OccipitalLobe and oneLimbicLobe . These
concepts and relationships are implemented as OWL
classes and properties. They are stored in an OWL file
which resides on a publicly accessible Web server. Af-
ter the ontology has been published on the Web, other
OWL ontologies, resources, agents, and services can



link to this file and use the ontology’s concepts. For
example, a Web repository of MRI scans could pro-
vide a collection of image metadata objects that would
represent the attributes of the single scans (dimensions,
resolution, contents), so that the best images for a spe-
cific topic can be retrieved automatically. If the im-
age repository is loosely coupled and distributed over
multiple hosts (e.g., multiple hospitals), then each of
the servers could provide its own metadata objects. A
user searching for a particular scan of a frontal lobe
could then invoke an intelligent agent that would crawl
through the various repositories to search for the best
matches.
Another example of a Semantic Web application
would be a context-sensitive search function for re-
search articles. A publication database such as
PubMed could provide a Web service that would refer
to a conceptual model when providing metadata about
articles. It could also rely on this conceptual model
to guide and assist query processing. Users could in-
voke this Web service through a simple client appli-
cation. The Web service could exploit the definitions
from the ontology to widen or narrow the search into
concepts that are substantially related to the terms the
user has asked for. For example, it could deliver papers
about glioma located in the precentral gyrus although
the user has only asked for tumors of the frontal lobe,
exploiting the background knowledge that a glioma is
a kind of tumor and that the precentral gyrus is a part
of the frontal lobe.
One of the advantages of shared conceptual models is
that they can be reused in various contexts, even some
that have not been imagined yet. Finally, the Semantic
Web could even be used to point researchers and do-
main experts into new directions and to reveal cross-
links between domains.

These examples illustrate the central role ofontologies
in Semantic Web applications. Ontologies should ad-
equately represent a domain and allow some kind of
formal reasoning. They should be both understand-
able by humans and processable by software agents.
Furthermore, since ontologies will evolve over time,
they need to be maintainable. This demands for ontol-
ogy modeling tools that provide a user-friendly view
on the ontology and support an iterative working style
with rapid turn-around times. Tools should also pro-
vide intelligent services that reveal inconsistencies and
hidden dependencies among definitions.

PROTÉGÉ AND THE OWL PLUGIN
Since its beginning in the 1980’s, Protéǵe has been
driven by biomedical applications. Protéǵe started as
a rather specialized tool for a specific kind of problem

solving [4], but evolved into a very generic and flexible
platform for many types of knowledge-based applica-
tions and tools from all kinds of domains.
Prot́eǵe can be characterized as an ontology develop-
ment environment. It provides functionality for edit-
ing classes, slots (properties), and instances. One of
its strengths is that it can automatically generate a
user interface from class definitions, and thus can sup-
port rapid knowledge acquisition. Protéǵe supports
database storage that is scalable to several million con-
cepts, and provides multi-user support for synchronous
knowledge entry.
The current version of Protéǵe (2.1) is highly exten-
sible and customizable. At its core is a frame-based
knowledge model [9] with support for metaclasses.
These metaclasses can be extended to define other lan-
guages on top of the core frame model [10]. For these
other languages, Protéǵe can be extended with back-
ends for alternative file formats. Currently, back-ends
for Clips, UML, XML, RDF, DAML+OIL, and OWL
are available for download.
Prot́eǵe not only allows developers to extend the in-
ternal model representation, but also to customize
the user interface freely. As illustrated in Figure 1,
Prot́eǵe’s user interface consists of several screens,
calledtabs, which display different aspects of the on-
tology in different views. Each of the tabs can be filled
with arbitrary components. Most of the existing tabs
provide a tree-browser view of the model, with a tree
on the left and details of the selected node on the right
hand side. The details of the selected object are typi-
cally displayed by means offorms. The forms consist
of configurable components, calledwidgets. Typically,
each widget displays one property of the selected ob-
ject. There are standard widgets for the most com-
mon property types, but ontology developers are free
to replace the default widgets with specialized compo-
nents. Widgets, tabs, and back-ends are calledplugins.
Prot́eǵe’s architecture allows developers to add and ac-
tivate plugins arbitrarily, so that the default system’s
appearance and behavior can be completely adapted to
a project’s needs.
The OWL Plugin1 [8] is a complex Prot́eǵe plugin
with support for OWL. It can be used to load and
save OWL files in various formats, to edit OWL on-
tologies with custom-tailored graphical widgets, and
to provide access to reasoning based on description
logic. As shown in figure 1, the OWL Plugin’s user in-
terface provides various default tabs for editing OWL
classes, properties, forms, individuals, and ontology
metadata. The following section explains how to use
the Classes, Properties and Metadata tabs for the de-

1http://protege.stanford.edu/plugins/
owl



Figure 1: The class editor of the Protéǵe OWL Plugin.

sign of a biomedical ontology. The section after that
introduces how to use the Individuals and Forms tabs
for the acquisition of Semantic Web contents.

BUILDING OWL ONTOLOGIES WITH
PROTÉGÉ

An OWL ontology can be regarded as a network of
classes, properties, and individuals.Classesdefine
names of the relevant domain concepts and their log-
ical characteristics.Properties(sometimes also called
slots, attributes or roles) define the relationships be-
tween classes, and allow to assign primitive values
to instances.Individualsare instances of the classes
with specific values for the properties. The Seman-
tic Web can be regarded as a network of ontologies
and other Web resources. OWL ontology concepts can
have references to concepts in other ontologies. The
basic mechanism for this capability is ontology import
(i.e., an ontology can import resources from existing
ontologies and create instances or specializations of
their classes).
In our biomedical example ontology, we have a class
calledCentralSulcus which is defined as a kind of
AnatomicalConcept that has a measured average
depth. Individuals from this ontology would describe
specific case data (e.g., a specific left central sulcus of
an individual with the value of 23 mm for its depth).
For the example ontology, we can import an existing
ontology about units, and thus reuse the concepts from

other files and support knowledge sharing. Let’s take a
look at how these elements can be defined in Protéǵe.

Classes

The most important view in the Protéǵe OWL Plugin
is the OWLClasses tab (Figure 1). This tab displays
the tree of the ontology’s classes on the left, while the
selected class is shown in a form in the center. The up-
per region of the class form allows users to edit class
metadata such as name, comments, and labels, in mul-
tiple languages. The widget in the upper right area of
the form allows users to assign values forannotation
propertiesto a class. Annotation properties can hold
arbitrary values such as author and creation date. On-
tologies can define their own annotation properties or
reuse existing ones such as those from the Dublin Core
ontology. In contrast to other properties, annotation
properties do not have any formal meaning for exter-
nal OWL components like reasoners, but they are an
extremely important vehicle for maintaining project-
specific information. A typical use case for annota-
tion properties in a biomedical field is to assign stan-
dardized identifiers such as ICD codes for concepts
that describe a disease. Annotation properties, such as
the predefinedrdfs:seeAlso , can also be used to
define cross-references between concepts. The OWL
Plugin also uses annotation properties to store Protéǵe-
specific information, and to manage “to-do” lists for
ontology authors.



Properties

ThePropertieswidget of the OWLClasses tab allows
users to view and create relationships between classes.
It provides access to those properties that could be
used by the instances of the current class. The char-
acteristics of a property are edited through the form
shown in Figure 2. This form provides a metadata area
in the upper part, displaying the property’s name, an-
notations, and so on, similar to the presentation in the
class form.

Figure 2: An OWL property form in Protéǵe.

The available choices in theRangedrop-down box de-
pend on whether the property is adatatype property
with primitive values, or anobject propertywith refer-
ences to other classes. For datatype properties, Protéǵe
supports enumerations of symbols (owl:oneOf ), and
all reasonable XML Schema datatypes, grouped into
booleans, floats, integers, and string types. For ex-
ample, the datatype propertyhasMeasuredDepth
can only take floats as values. Object properties
can store references to individuals or classes from
the ontology. For example, the object property
hasAnatomicalPart can only take instances of
AnatomicalConcept as values.
Depending on whether a property is an object or a
datatype property, Protéǵe provides widgets for other
property characteristics, such as whether the property
is symmetric or transitive. Symmetric properties de-
scribe bidirectional relationships (i.e., ifA is related
to B via propertyRs, thenB is also related toA). For
example, the contiguity relationship is symmetric. A
propertyRt is transitive if whenA is related toB by
Rt and B is related toC by Rt, then (A is also re-
lated toC by Rt). Part/whole relationships such as
hasAnatomicalPart are usually considered to be
transitive.
TheDomainwidget can be used to restrict a property’s

domain (i.e., the list of classes where the property can
be used). Domain restrictions are optional and often
left blank in OWL ontologies, because they may slow
down some reasoning processes. If a property does
not have a domain restriction, then it can be used for
instances of any class.

Specialization

OWL has its theoretical foundation in description
logic [1]. In description logic, a class is a set of in-
dividuals. The concept corresponding to the set of all
individuals is usually calledTop(>), or Thing. When-
ever the set of the individuals of a classB is a subset of
the set of the individuals of a classA, B is said to be a
subclassof A (notedBv A). B is also said to be a kind
of A. All classes are subconcepts of>.
In other words, superclasses definenecessarycondi-
tions for class membership. Conversely, subclasses
definesufficientconditions for class membership. For
example, being a frontal lobe is a necessary condition
for being a left frontal lobe: in order to be an instance
of LeftFrontalLobe , an individual has to be an
instance ofFrontalLobe (and most certainly has
to fulfill other requirements). Conversely, being a left
frontal lobe is a sufficient condition for being a frontal
lobe: every instance ofLeftFrontalLobe is also
an instance ofFrontalLobe (but there may be other
instances ofFrontalLobe that are not instances of
LeftFrontalLobe ).
It is really important to keep in mind that a subconcept
is a subset of individuals. Indeed, it is a common mis-
take to mix specialization and composition hierarchies.
However, definingUpperLobeOfLung as a subcon-
cept ofLung is erroneous because a lobe of a lung is
not a kind of lung, but a part of a lung. Correct subcon-
cepts for lung could beLeftLung andRightLung .

The specialization principle also implies inheritance
of the properties. For instance, if we say that
every Sulcus has anaverageDepth and that
CentralSulcus is a subclass ofSulcus , then ev-
eryCentralSulcus also has anaverageDepth .
Because subclasses are more specific than their super-
classes, the range of a subclass may itself be a subclass
of the range of the superclass. This is calledprop-
erty restriction. For example, we can say that every
Sulcus has a side in the classSide , and that ev-
ery LeftSulcus (subclass ofSulcus ) has a side
LeftSide (subclass ofSide ).

In Prot́eǵe, the tree widget of the OWLClasses tab is
organized according to the subclass hierarchy. We can
see thatowl:Thing (which represents>) is the root
of the tree. Prot́eǵe users can browse, view, and edit
the classes from the tree, create new subclasses, and



move classes easily with drag-and-drop. Direct super-
classes are also listed in the Conditions widget, which
is described next. The OWL Plugin also allows to
navigate and edit ontologies according to other rela-
tionships between classes, in particular to visualize the
part-of relationships that are so common in biomedical
domains.

Logical Class Characteristics
TheConditionswidget of the OWLClasses tab allows
to fully take advantage of OWL’s description logic
support, and to express conditions on the classes based
on property restrictions and other expressions. The
syntax used for OWL expressions in Protéǵe is sum-
marized in table 1.
The key point here is to understand that an ex-
pression involving a property and its range such
as “∃ property Concept ” or “∀ property
Concept ” represents a set of individuals, and there-
fore can be interpreted as a concept. For example, (∃
hasPart Lobe ) is the set of all the individuals re-
lated to at least one instance ofLobe by thehasPart
relationship (they could also be related to instances of
other concepts). Conversely, (∀ hasPart Lobe ) is
the set of all the individuals which are exclusively re-
lated to instances ofLobe by thehasPart relation-
ship (or which are related to nothing by this relation-
ship). Similarly, the union and intersection of two sets
are also sets and can be interpreted as classes. For ex-
ample, (LeftAnatomicalPart u Gyrus ) repre-
sents the set of all left anatomical parts that are at the
same time gyri, and (LeftGyrus t RightGyrus )
represents the set of individuals that are instances of
either concept. The¬ operator can be used to define a
class of any individual except those from a given class.
For instance,¬LeftSide is the set of all the individ-
uals that are not instance ofLeftSide . Finally, OWL
also allows to define a class by exhaustively enumerat-
ing its instances.

The logical symbols used by the Protéǵe OWL Plu-
gin are widely used in the description logic commu-
nity [1]. Their major advantage is that they allow to
display even complex class expressions in a relatively
compact form. As shown in Figure 3, Protéǵe pro-
vides a convenient expression editor with support for
either mouse or keyboard editing. However, some do-
main experts, especially from rather non-technical do-
mains such as biomedicine, may require some train-
ing before they get used to these symbols. For these
users, Prot́eǵe provides an English prose explanations
of an OWL expression when the mouse is moved over
it. Our collaborators are also working on alternative
editors which support a rather template-based editing
metaphor. Protéǵe’s generic form architecture allows

to quickly assemble alternative editors into the envi-
ronment.

Figure 3: Prot́eǵe provides a comfortable editor for ar-
bitrary OWL expressions.

The formal definitions of the OWL primitives can be
exploited by reasoners. They compute the special-
ization relationships (inheritance) between the classes
based on their logical definitions. This reasoning sup-
port has shown to be a very valuable feature during
ontology design, particularly in biomedical domains
([5, 11]). Ontology designers can periodically invoke
a reasoner to see whether the logical class definitions
meet the expectations, and to make sure that no incon-
sistency arise.

Necessary conditions. As mentioned above, a nec-
essary condition for an individual to be an instance of
a class is to be an instance of all the superclasses of this
class. In addition to saying that a class is a subclass of
its superclasses, such asFrontalLobe is a subclass
of Lobe , necessary conditions allow the specify the
properties that the class has to fulfill. This is an impor-
tant activity when building an ontology, because, we
don’t want to limit ourselves to saying that a frontal
lobe is a kind of lobe; we also want to represent what
is specific to the frontal lobe, as opposed to the other
lobes. For example, the frontal lobe has to be delimited
by the central sulcus, as well as by the lateral sulcus.
Therefore, to the original conditionFrontalLobe
v Lobe , we can add the two following necessary
conditions “FrontalLobe v (∃ isDelimitedBy
CentralSulcus )” and “FrontalLobe v (∃
isDelimitedBy LateralSulcus )”. These con-
ditions can also hold for other concepts, but an indi-
vidual that fails to fulfill these conditions cannot be an
instance ofFrontalLobe .

Necessary and sufficient conditions. Necessary
conditions can be interpreted as subset-superset re-
lationships between sets of individuals. Similarly,
we may want to represent that two classes have ex-
actly the same instances (they are mutual subclasses
of the other). For example, as the left and the right
frontal lobe are two kinds of frontal lobe, we have



OWL element Symbol Key Example expression in Prot́eǵe
owl:allValuesFrom ∀ * ∀ hasPart Lobe
owl:someValuesFrom ∃ ? ∃ hasDirectAnatomicalPart RectusGyrus
owl:hasValue 3 $ hasColor 3 yellow
owl:minCardinality ≥ > hasSide ≥ 1 (at least one value)
owl:maxCardinality ≤ < hasSide ≤ 2 (at most two values)
owl:cardinality = = hasSide = 1 (exactly one value)
owl:intersectionOf u & LeftAnatomicalConcept u Gyrus
owl:unionOf t | LeftGyrus t RightGyrus
owl:complementOf ¬ ! ¬LeftSide
owl:oneOf { ... } { } {yellow green red }

Table 1: Prot́eǵe uses traditional description logic symbols to display OWL expressions. Property names such as
hasSide appear in italics. A common naming convention is to use uppercase names such asLobe to represent
classes, while individuals likeyellow should be written in lower case.

the following condition: (LeftFrontalLobe t
RightFrontalLobe ) v FrontalLobe . But we
also want to say that every frontal lobe is either a
left or a right frontal lobe. Therefore, we use a nec-
essary and sufficient condition (LeftFrontalLobe
t RightFrontalLobe ) ≡ FrontalLobe , which
basically says that if you have a frontal lobe, then it is
either a left or a right one (w); and that if you have a
left or a right frontal lobe, then it is a frontal lobe (v).
Classes with necessary and sufficient conditions are
calleddefinedclasses (represented by orange icons in
Prot́eǵe), while classes with only necessary conditions
are calledprimitive (yellow icons). The Conditions
widget allows to edit either type of conditions, and to
copy or move expressions between blocks.

The open world assumption. Description logic
make the so-calledopen world assumption, that is
what is not said denotes a lack of knowledge (whereas
in other contexts such as databases, what is not said
is assumed to be false). A direct consequence is
that if we don’t say explicitly that two classes such
asLeftFrontalLobe andRightFrontalLobe
are disjoint, then it is perfectly valid for them to have
individuals in common. TheDisjoints widget, in the
lower right corner of the OWLClasses tab allows users
to represent axioms to control this aspect.

Classification and Consistency Checking

One of the major strengths of description logic lan-
guages like OWL is their support for intelligent rea-
soning. In our context,reasoningmeans to infer new
knowledge from the statements asserted by an ontol-
ogy designer.Reasonersare tools that take an ontology
and perform reasoning with it. The OWL Plugin can
interact with any reasoner that supports the standard
DIG interface, such as Racer [6]. Since these reason-

ers are separate tools we will not discuss their details
in this paper, but focus on their application oriented
utility. During ontology design, the most interesting
reasoning capabilities from these tools are classifica-
tion and consistency checking.

Classification. Classification is used to infer special-
ization relationships between classes from their formal
definitions. Basically, a classifier takes a class hierar-
chy including the logical expressions, and then returns
a new class hierarchy, which is logically equivalent to
the input hierarchy. As illustrated in Figure 4, Protéǵe
can display the classification results graphically. Af-
ter the user has clicked the classify button, the system
displays both the asserted and the inferred hierarchies,
and highlights the differences between them.
For example, we definedLeftFrontalLobe
as any frontal lobe located in the left hemi-
sphere (LeftFrontalLobe ≡ (FrontalLobe
u LeftAnatomicalConcept )). Therefore, it
appears as a direct child of the last two con-
cepts in the asserted hierarchy (Figure 4). Simi-
larly, we also definedLeftLobe as any lobe lo-
cated in the left hemisphere (LeftLobe ≡ (Lobe
u LeftAnatomicalConcept )). Because the
definition of LeftFrontalLobe doesn’t men-
tion LeftLobe , these two concepts don’t ap-
pear to be related. However, after classification,
the reasoner infers fromFrontalLobe v Lobe
that LeftFrontalLobe is also a subclass of
Leftlobe . Note: we could as well have de-
fined LeftFrontalLobe ≡ (FrontalLobe u
LeftLobe ), but then we wouldn’t have known that it
is also aLeftAnatomicalConcept until the rea-
soner have found out.
This reasoning capability associated with description
logic is of particular importance because it allows the



Figure 4: Prot́eǵe provides access to description logic classifiers and can display both the asserted and the inferred
class relationships.

user to provide intensional definitions for the classes.
The specialization relationships become consequences
of these definitions, and allow constraints inheritance.
Without reasoning capabilities, the approach of cre-
ating an ontology is more extensional. It would re-
quire to explicitly state every specialization relation-
ships between the concepts (e.g., in the previous exam-
ple betweenLeftFrontalLobe andLeftLobe ).
This support is especially valuable in the domain of
biomedicine, with its deeply nested hierarchies and
multi-relationships between almost every part of the
anatomy [1, 12]. Using OWL, ontology designers
could just add a new concept by describing its logical
characteristics, and the classifier would automatically
place it in its correct position. Furthermore, it would
report the side-effects of adding a new class.

Consistency checking. In addition to provid-
ing automatic classification, reasoning capabilities
can be exploited to detect logical inconsistencies
within the ontology. We could introduce a class
InconsistentFrontalLobe , which is both a
LeftFrontalLobe and aRightFrontalLobe .
Since the last two concepts are defined to be disjoint,
the reasoner reports that no individual can be an
instance of this class. Clearly, these consistency
checks can help tremendously in the construction and
maintenance of large biomedical terminologies [12].

OWL Full and OWL DL An important issue with
reasoning in OWL is that many reasoners are not

able to handle the full expressivity of OWL. The
OWL specification distinguishes between OWL Full
and OWL DL to indicate which language elements
are typically tractable for reasoners. Ontologies that
use OWL Full elements such as metaclasses cannot be
classified. Prot́eǵe allows users to edit some OWL
Full concepts and provides features to help convert
the ontology into OWL DL when a classifier is to be
used. However, since OWL Full ontologies can state
anything about anything, Protéǵe does not support the
complete OWL Full syntax.

LINKING BIOMEDICAL RESOURCES
INTO THE SEMANTIC WEB

This section demonstrates how to use OWL to link
biomedical resources into the Semantic Web. In our
scenario, OWL ontologies provide the vocabulary for
describing the contents of images and scientific arti-
cles.
In order to describe biomedical images, we have de-
fined a small image ontology, which basically only de-
fines a single classImage , and defines four properties
for each image: the integer propertieshasWidth and
hasHeight provide the dimensions of the image, the
propertyhasURI stores a reference to the image’s lo-
cation, and the propertyhasContents can link an
Image to an OWL class, such as those defined in
the brain cortex ontology. These content concepts can
later be used by intelligent agents for search purposes.
Prot́eǵe can now be used to create a new ontology
cortex-images.owl , which imports the cortex



ontology and the images ontology. The new ontology
basically contains instances of theImage class, and
uses the classes from the cortex ontology as contents
values. Whenever concepts are imported from another
ontology, Prot́eǵe displays them with a prefix such as
cortex: .
Prot́eǵe provides excellent support for the acquisition
of instances. As illustrated in Figure 5, the OWL Plu-
gin makes this functionality available through theIn-
dividuals tab. For each class in an ontology, Protéǵe
generates forms with appropriate widgets to acquire
instances of the class. The Individuals tab shows the
classes, their instances, and a form for the selected in-
stance. By default, this form will contain default wid-
gets, such as a numeric text field for integer proper-
ties and a clickable list for object properties. For ex-
ample, Prot́eǵe has selected a list widget with create,
add and remove buttons for thehasContents prop-
erty. However, for thehasURI property, the system
has selected a simple text field widget, which is not
optimized for displaying images.
Fortunately, Prot́eǵe provides aFormstab, which can
be used to customize the forms. The Forms tab allows
users to move and resize the widgets, and to replace
widgets with other suitable ones. In our example, we
have replaced the default text field widget forhasURI
with an image widget, so that a preview of the image
can be shown below the URI. Protéǵe’s open architec-
ture allows users to add arbitrary Java components as
widgets, if the catalogue of default widgets is not suf-
ficient. With a little bit of programming, we could pro-
vide a widget that allows users to select an image, and
then fills the values of width and height automatically.

After the instances/individuals have been edited, they
can be exported onto a Web server, so that agents can
find and process them. A simple search agent would
crawl through multiple image repositories, and ana-
lyze the image ontologies using an OWL parsing li-
brary such as Jena2. Supplied with a search concept
such asFrontalLobe , an agent could then retrieve
and filter images by their semantic proximity. A very
similar approach can be used to implement a reposi-
tory of scientific articles.

DISCUSSION AND CONCLUSION

Our main goal in this paper was to introduce the
Prot́eǵe OWL Plugin, and to show that it provides a
promising platform for biomedical ontology and Se-
mantic Web projects. The OWL Plugin pioneers user-
friendly components for building and reasoning with
description logic ontologies. While researchers from

2http://jena.sourceforge.net/

the description logic community have managed to cre-
ate deeply studied maps of their theoretical terrain,
we believe it is now time to put languages such as
OWL into practice, and thus reveal the strengths and
weaknesses of these languages for particular domains
in everyday use. Some issues of how to handle de-
scription logic in the development of large clinical
terminologies have already been discussed by others
(e.g., [5, 12, 11]). However, more work is necessary,
in particular in training biomedical domain experts to
use the rich semantics of OWL.
Some of the advantages of OWL are already obvi-
ous. Descriptions logic rely on a well defined seman-
tics which makes modeling not only the structure, but
also the meaning of a domain possible. As opposed
to other formalisms such as frames [9], description
logic allow users to provide intensional definitions for
the concepts. As a consequence, ontologies are more
compact, less error-prone, and easier to maintain. The
precise semantics of description logic makes it possi-
ble to perform automatic reasoning. The intensional
definitions of the concepts can be exploited by classi-
fiers. Therefore, when adding a new class, one doesn’t
have to worry anymore about putting it in the right
place in the taxonomic hierarchy. Moreover, multiple
inheritance is automatically detected and dealt with.
Classifiers can detect any logical inconsistencies in a
class definition, that would prevent it of having in-
stances. Eventually, reasoners can infer the correct re-
lationships when combining ontologies of related do-
mains, or extending an ontology with context-specific
features. This point favors the sharing of common se-
mantic references and their reuse in various contexts.
Therefore, we expect OWL to play a key role not only
for the Semantic Web, but also for the evolution and
sharing of biomedical knowledge.

A final note about other ontology modeling tools.
Given the short history of the Semantic Web, there are
few other tools available with OWL support. One of
the most popular ontology editors beside Protéǵe is
OilEd [2]. From the beginning on, OilEd has been
optimized for reasoning with description logic, and
has been successfully used for various biomedical on-
tology projects. However, OilEd’s authors never in-
tended it as a full ontology development environment,
but rather as a platform for experiments. As a re-
sult, OilEd’s architecture is neither scalable to really
large ontologies, nor sufficiently flexible to support
customized user interface widgets. Furthermore, it
suffers from a rather complicating user interface for
editing logical expressions. The developers of Protéǵe
and the OilEd team have recently joined forces in a
transatlantic project called CO-ODE, which leads to a
growing number of extensions for the Protéǵe OWL



Figure 5: Prot́eǵe generates user interfaces to acquire individuals of ontology concepts. This can be used to annotate
Web resources such as images for a clinical online repository.

Plugin. Many other groups from around the world are
also developing Protéǵe plugins, including tools which
can be used to edit OWL classes and relationships in a
visual UML-style diagram. Other large-scale Protéǵe
plugins are being optimized for the OWL Plugin. With
its large and rapidly growing community of thousands
of users, Prot́eǵe has the potential to maintain its posi-
tion as one of the leading open-source ontology devel-
opment environments for the Semantic Web.

Acknowledgements
This work has been funded by a contract from the US
National Cancer Institute and by grant P41LM007885
from the National Library of Medicine. Olivier
Dameron is funded by INRIA. Additional support for
this work came from the UK Joint Information Ser-
vices Committee under the CO-ODE grant. Several
colleagues and students at SMI were involved in the
development of the OWL Plugin, in particular Ray
Fergerson and Prashanth Ranganathan. Our partners
from Alan Rector’s team at the University of Manch-
ester have made very valuable contributions.

References
[1] Franz Baader, Diego Calvanese, Deborah McGuine-

ness, Daniele Nardi, and Peter Patel-Schneider, editors.
The Description Logic Handbook. Cambridge Univer-
sity Press, 2003.

[2] Sean Bechhofer, Ian Horrocks, Carole Goble, and
Robert Stevens. OilEd: a reason-able ontology editor
for the Semantic Web. In14th International Workshop
on Description Logics, Stanford, CA, 2001.

[3] Tim Berners-Lee, James Hendler, and Ora Lassila. The
Semantic Web.Scientific American, 284:34–43, 2001.

[4] John H. Gennari, Mark A. Musen, Ray W. Fergerson,
William E. Grosso, Monica Crub́ezy, Henrik Eriks-

son, Natalya F. Noy, and Samson W. Tu. The evolu-
tion of Prot́eǵe-2000: An environment for knowledge-
based systems development.International Journal of
Human-Computer Studies, 58(1):89–123, 2003.

[5] Jennifer Golbeck, Gilberto Fragoso, Frank Hartel,
James Hendler, Bijan Parsia, and Jim Oberthaler.
The national cancer institute’s thesaurus and ontology.
Journal of Web Semantics, 1(1), 12 2003.

[6] Volker Haarslev and Ralf Moeller. RACER user’s
guider and reference manual.http://www.cs.
concordia.ca/˜faculty/haarslev/racer ,
2003.

[7] Holger Knublauch. An AI tool for the real world:
Knowledge modeling with Protéǵe. JavaWorld, June
20, 2003.

[8] Holger Knublauch, Mark A. Musen, and Alan L. Rec-
tor. Editing description logics ontologies with the
Prot́eǵe OWL plugin. In International Workshop on
Description Logics, Whistler, BC, Canada, 2004.

[9] Natalya F. Noy, Ray W. Fergerson, and Mark A.
Musen. The knowledge model of Protéǵe-2000: Com-
bining interoperability and flexibility. In2nd Inter-
national Conference on Knowledge Engineering and
Knowledge Management (EKAW’2000), Juan-les-Pins,
France, 2000.

[10] Natalya F. Noy, Michael Sintek, Stefan Decker, Mon-
ica Crub́ezy, Ray W. Fergerson, and Mark A. Musen.
Creating Semantic Web contents with Protéǵe-2000.
IEEE Intelligent Systems, 2(16):60–71, 2001.

[11] Alan Rector. Modularisation of domain ontologies im-
plemented in description logics and related formalisms
including OWL. In 2nd International Conference
on Knowledge Capture (K-CAP), Sanibel Island, FL,
2003.

[12] Alan L. Rector. Clinical terminology: Why is it so
hard?Methods Inf. Med., 4–5(38):239–52, 1999.

[13] Michael K. Smith, Chris Welty, and Deborah L.
McGuinness. OWL Web Ontology Language Guide.
http://www.w3.org/TR/owl-guide/ , 2003.


