
Plastic User Interfaces: Designing for Change

Montserrat Sendín, Jesús Lorés
Computer Science Department

University of Lleida
69, Jaume II St., 25001- Lleida, SPAIN

+34 973 70 2 700
{msendin, jesus}@eup.udl.es

ABSTRACT
Everybody knows that mobile computing provides us with
tremendous versatility. But this versatility also increases in
a great deal the complexity in the design of User Interfaces
(UI). It is obvious the necessity of an architectural
framework that provides dynamic adaptation.
We propose a reflective architecture to manage the system
to adjust its own behaviour according to certain runtime
conditions, related to the context of use. The benefits of
reflection are, apart from dynamic adaptation, transparency
and reusability. We also present the underlying plastic UIs
development framework, inspired in the model-based
approach . Its focus of attention is also to solve contextual
changes, as one of the most important lacks detected in
literature.
Keywords
model-based approach, context of use, reflection, plasticity

INTRODUCTION
Today technology allows users to move about with
computing power and network resources at hand.
Computers are shrinking while the bandwidth of wireless
communications keeps increasing. These changes have
increasingly enabled access to information “anytime and
anywhere”, making computing possible in multiple and
varied contexts of use (set of environment parameters that
describe a particular context where the interaction takes
place by a determined user). Nevertheless, runtime
conditions related not only to resources constraints
(bandwidth, server availability, physical resources, etc.),
but also other related to the user (user mobility, user’s
changing needs, tasks to be developed, profile and current
situation), and even related to the environment (day of the
week, hour, weather conditions, etc.), are volatile and
require sophisticated adaptive capabilities that today are
still challenging. The adaptation to this continuous and
diverse variability must be solved as automatically as
possible, and this raises an important challenge. We refer to
the context-awareness issue. [1] offers a detailed survey.
Designing this kind of systems becomes a complex task,
due to a number so high of concerns to consider. This
involves a lot of decisions about how these runtime
conditions must be modelled, as well as the way in which
they interact. Furthermore, adaptive capabilities should be
incremental. It is also desirable for the adaptive capabilities

and the system’s core functionality to be handled
orthogonally, so that they can evolve individually and
promote system’s flexibility. Besides, the adaptation
mechanism should be transparent.
Reflection techniques arise as a promising tool to develop
context-aware systems, because they provide all of
previous requirements. A reflection system has the
capability to reflect about its own status and behavior and
adapt those if the need arises. This leads to the separation
of the UI component into an abstract representation of
requirements and constraints, and a set of concrete sub-
components which are assembled into a specific interface
instantiation according to the current context in which the
system is used. We can assert that reflective computation
provides an architecture for the adaptation. But using
reflection we obtain a set of additional benefits. As the core
application abstracts from context constraints, it becomes
easier to design and implement. Finally, separation of
concerns allows to obtain a reusable context representation
and adaptation mechanism. For example, we could think in
a tourism application, as is presented in [10], and also, for
example, in a telemedicine application.
But apart from the context-awareness issue, it is necessary
to realize that such a multiplicity of contexts of use requires
making available a specific UI suitable for each case. This
imposes another important challenge if we want to solve it
without falling into an extremely repetitive process, and
preserving at the same time consistence and usability.
These considerations motivated the development of generic
methodologies (model-based approach [7] and appliance-
independent XML-based languages [6]), arisen with the
aim of making this process flexible. The idea consists of
specifying a unique generic UI1, flexible enough to cope
with multiple variations, producing so as many of UIs as
necessary. The goal is to guarantee usability continuity
under any variation, while minimising development cost.
This capacity of adaptation from a same generic UI to
different contexts of use is called plasticity property [12].
What we intend is to develop a plastic UIs development
framework as a support of systematic and dynamic
development, and whose focus of attention is solving the

1 UI whose aspects can vary in different devices, while its

functionality prevails in all of them.

mailto:{msendin, jesus}@eup.udl.es

anticipation to contextual changes, as one of the most
important lacks detected in literature.

MODEL-BASED APPROACH: STATE OF THE ART
The main idea of this kind of techniques is, on one hand,
the fact that all of the relevant aspects of the UI are
explicitly formalised and represented in declarative models
that get together all the different requirements of each
context of use (the interface model2), storing that way the
conceptual representation of the interface. On the other
hand, this kind of techniques also provides methods and
tools that exploit these models for supporting the
systematic development of the interface. The assemblage of
the interface model with the underlying development tools
is what is called MB technique [9].
MB techniques provide a lot of benefits. We can remark
these ones as the most remarkable:
• Provide a more abstract description of UI than other

UI development tools.
• Facilitate the creation of methods to design and

implement UI in a systematic way and provide
infrastructure to automate tasks related to UI design.

• Provide a comprehensive support of the whole system
life-cycle.

• They are a user-centred design methodology.
There exist a great variety of examples. Even we can

distinguish between a first and a second generation of MB
techniques. See [8] to look up a complete overview of
some of the best-known MB techniques.
Particularly we have revised in depth the MB techniques
developed for three members of the RedWhale: Eisenstein,
Vanderdonckt and Puerta [2], the method for Universal
Design of UIs in [3], a framework for supporting plasticity
[12], as well as the TERESA tool [6]. In general, the
techniques proposed until now are substantially static. This
means that situations provoked by contextual changes are
not enough anticipated. It will be better a more dynamic
solution.
In conclusion, although there are commercial products that
use this kind of tools, there exist aspects that must be
studied in order to increase their acceptation. In general, we
can remark this set of problems and shortcomings:
• Complexity of the models and their notations.
• Multiple and meaningful differences (no consensus) in

range, nature and notation of supported models, which
make difficult the comparison and reutilization of
models. It would be beneficial to dispose some
standard notation.

• Difficulty to model the relationships between models
(the mapping problem).

• The problem of post-editing refinements.

2 Formal, declarative and implementation-neutral

description of the UI, that should be expressed by a
modeling language.

• They mostly support the generation of form-based UIs
only (limited set of interactors, and also very simple).

• The problem of integrating the different UIs with their
underlying application.

But, as far as we are conserned, the problems that we
consider more important are the next ones:
• The problem of flexibility in content adaptation and

coherence, that remains unsolved .
• The fact that they are in general substantially static,

leaving without solving the anticipation to contextual
changes, as it occurs, for example, in ARTStudio
(Adaptation by Reification and Translation). This is
the problem in which we are mainly focused.

• The lack of semantic information inside the models.
Definitely, the MB-UIDE should improve for addressing
the problem of plasticity. We can assert that they are still
challenging.
In our opinion, the set of models taken into account is quite
limited. In general, they only consider tasks, users and
platform models, leaving without modelling the contextual
aspects, except in punctual cases. As a consequence of that,
the anticipation to contextual changes rests still without
solving. In our opinion, the context model has also to be
considered and appropriately related to the rest of models,
taking part in the process of constructing plastic UIs.
It is worthy to say that despite the apparent correlation
between the user model and the context model, the
utilisation of user modelling techniques within the domain
of context-aware computing is a relatively unexploited
research area.

OUR PROPOSAL
The Reflective Architecture
Under an object-oriented reflective architecture view [5,
11, 14], a system is considered integrated by two parts: the
application part and the reflective part, which is capable of
reasoning about and acting upon itself. These parts reside
in two different levels: the base level and the meta level,
respectively. The components related to the functionality
of the application are represented at the base level, and they
are manipulated by the meta level. The base level has no
knowledge about the existence of the other one. This
feature lets designers to isolate the behaviour of the base
level form the assigned orthogonal properties in the meta
level.
The meta level provides a representation of the behaviour
of the system and internal structure. It is commonly called
auto-representation. This auto-representation is amenable
to inspection and adaptation (introspection property), and
also is causally-connected to the underlying behaviour it
describes. This means that changes made to the self-
representation are immediately mirrored in the underlying
system’s actual state and behaviour, and vice-versa
(reflection property).

Our objective consists of developing a system capable of
adapting the UI according to a set of conditions related to
the context of use. These conditions will be modelled and
treated isolatedly in the meta level, with the aim of
providing the required adaptation. The part destined to the
functionality will reside in the base level of the
architecture. Both of them will be independent each other.
That way, in the base level, following the abstraction
principle, the system work without any conception of
interface. This will be taken on in the meta level at run-
time, fixing which concrete interface components will
represent the functionality described by the abstract
components, depending on the contextual situation (final
device, the user’s profile and other runtime conditions).
This will be the main responsibility of the meta level and it
will be realised in a transparent way to the user.
Moreover, following the component-oriented programming
approach, the base level can be formed, independently of
his functionality, by a control structure similar to a states
machine, where each state is associated to a dialog,
identified in the design phase. The transition from one state
to another one will not be realised until the user provides
the necessary information and this is validated. Again this
validation task is to be done by the meta level. Figure 1
represents that idea.
Fig. 1. Reflective architecture and distribution of responsibilities

Plastic UIs Development Framework
The models that we consider relevant from the point of
view of this kind of UIs are the next ones: user model
(UM), task model (TM), domain model (DM), dialogue
model (DgM), presentation model (PM), platform model
(PltM) –explicit expression of the target platforms in terms
of quantified physical resources-, spatial model (SM) –the
detailed spatial model from the real world-, and finally the
contextual model (CM) -to take into account daily aspects,
which also can influence in the adaptation.

Apart from these models, there are other specifications that
also take part in the process: the Abstract User Interface
(AUI) and the Concrete User Interface (CUI). We define
the AUI as an abstract specification of the layout of the
resulting interface (set of abstract interactors), as a static
structure, as well as a description about how the UI evolves
over the time. It is high-level and appliance-independent.
We define the CUI as a concrete instance of an AUI, low-
level and appliance-dependent. Lets go to outline the
general description of our framework.

• Composed of two sequential phases called Abstract
Rendering Process (ARP) and Concrete Rendering
Process (CRP) respectively, in which vary the set of
models to take part. The first stage is in charge of
obtaining the AUI. The models that intervene are the
next ones: SM, TM, DM, UM and DgM. The second
stage manages the selection of the set of final
interactors, which reside in the PM, according to all
the contextual information represented in the next
models: UM, SM, PltM and CM, and also ruled by the
DgM. More concretely, it is in charge of translating
each abstract interface object in the AUI to a concrete
interface object according with the current situation.
As a result, this stage obtains the expected CUI,
resulting from the restrictions propagation.

• We propose to use model repositories. This allows
each model to populate a common area with the
specific concepts it is responsible for capturing. We
use a model repository for each rendering process,
making possible to share concepts between the models.

• Equally, we consider necessary to use two groups of
mapping rules, one for phase, to manage the relations
in each group.

• There also intervene some ergonomic heuristics, style
guidelines and usability patterns [13] in the second
phase to manage the transformation from Abstract
Interaction Objects (AIO) to Concrete Interaction
Objects (CIO), according to some environmental
circumstances and to preserve usability.

This model corresponds to a shared model approach that
allows informing the other models of any change to any
concept produced in the UI, providing so a propagation
mechanism. The lack of a mechanism to propagate changes
is one of the relevant limitations we have detected in the
model-based tools we have analyzed.
These ideas have been inspired in the approach used in the
Teallach system [4]. Figure 2 shows the sketch of our
plastic UIs development framework, depicting all the
relations among the models.

Fig. 2. Sketch of our development framewor

CONCLUSIONS

This paper sets up two important challeng
development of mobile applications: the context
and the systematic development of plastic UIs.
snap the present situation that way: there not e
development tool with a enough high abstractio
the design phase, leaving unsolved a lot of probl
not exists a wholly appliance-independent lang
neither integrate all of the content adaptability as
that take into account all the research work in the
obvious the necessity of developing an ar
framework that adjust this diversity.
Though the benefits of incorporating a contex
component into a mobile computer applicatio
immense, the actual practicalities of doing so pre
difficult design and implementation problems. W
reflection as the mechanism to solve the context a
Reflection offers a lot of advantages. One of
important is that thanks to the separation of con
developer only has to focus on modelling the fu
of the application, without considering the
obtaining so a reusable adaptation mechanism.
This paper presents a reflective architecture
underlying framework to develop plastic UIs “o
These ideas, arisen from a deep analysis of th
techniques and inspired in the model-based
propose a solution to some shortcomings detected
The utilisation of abstract models –neutrals reg
platform and the user’s typology, and user-c
describe the UI makes substantially easier the de
of consistent and usable UIs to mobile devices. T
way due to the exploitation of the aforemention
by means of a model-based technique pro

automated support that allows designers to surpass the
challenges posed by mobile computing.

REFERENCES

1. Chen, G. and Kotz, D.: A survey of context-aware mobile

computing research. Technical Report TR2000-381, Computer
Science Department, Dartmouth College (Hanover, New
Hampshire, November 2000)

2. Eisenstein, J., Vanderdonckt, J., Puerta, A.: Adapting to

Mobile Context with User-Interface Modeling. Workshop on
Mobile Computing Systems and Application. Monterey
(2000)

3. Furtado, E., Vasco, J., Bezerra, W., William, D., da Silva, L.,

Limbourg, Q., Vanderdonckt, J.: An Ontology-Based Method
for Universal Design of User Interfaces. Workshop on
Multiple User Interfaces over the Internet: Engineering and
Applications Trends (2001) P
CR
k

es
a
W
x
n
em
u
p
 f
ch

t-
n
s
e
w

c

nc
i

n
e
a
.
ar
en
ve
h

ed
v

ARP

 in the
wareness

e could
ists a UI
 level in

s; there
age that
ects, nor
ield. It is
itectural

sensitive
may be

ent some
 propose
areness.

the most
erns, the
tionality
nterface,

and the
the fly”.

 existing
pproach,

ding the
tred- to
lopment
is is that
 models
ides an

4. Griffiths, T., Barclay, P., McKirdy, J., Paton, N., Gray, P.,
Kennedy, J., Cooper, R., Goble, C., West, A., and Smyth, M.
Teallach: A Model-Based User Interface Development
Environment for Object Databases. Interacting with
Computers, Vol. 14, No. 1 (December 2001), 31-68.

5. Maes, P.: Concepts and Experiments in Computional

Reflection. Proc. of the 2nd OOPSLA’87 (1987) 147-156

6. Mori, G., Paterno, F., Santoro, C. Tool support for designing

nomadic applications.

7. Paternò, F.: Model-Based Design and Evaluation of Interactive

Applications. Springer-Verlag, London (2000)

8. Pinheiro, P.: The Unified Modeling Language for Interactive

Applications. http://www.cs.man.ac.uk/img/umli/links.html

9. Pinheiro, P. User interface declarative models and

development environments: a survey, in Proceedings of DSV-
IS'2000, P. Palanque and F. Paterno (Ed.)

10. Sendín, M., Montero, F., López, V., and Lorés, J:. Towards a

framework to develop plastic user interfaces, in Proceeding of
Mobile HCI’03 (Udine, Sep. 2003), Springer Verlag, 428-433.

11. Smith, B.C.: Reflection and Semantics in Lisp. Proc. of ACM

Symposium on Principles of Programming Languages (1984)
23-35

12. Thevenin, D., and Coutaz, J.: Plasticity of User Interfaces:

Framework and Research Agenda, in Proceedings of
Interact’99, (Edinburgh, 1999), 110-117.

13. Tidwell, J.: UI Patterns and Techniques. http://time-

tripper.com/uipatterns (2002).

14. Zimmerman, C.: Advances in Object-Oriented Metalevel

Architectures and Reflection. CRC Press, Inc., Boca Raton,
Florida 33431 (1996)

http://www.cs.man.ac.uk/img/umli/links.html

