Editing Description Logic Ontologies
with the Protégé OWL Plugin

Holger Knublauch and Mark A. Musen
Stanford Medical Informatics, Stanford University, CA
holger@smi.stanford.edu, musen@smi.stanford.edu

Alan L. Rector
Medical Informatics Group, University of Manchester, UK
rector@cs.man.ac.uk

Abstract

The growing interest in the Semantic Web and the Web Ontology Lan-
guage (OWL) will reveal the potential of Description Logics in industrial
projects. The rich semantics of OWL provide powerful reasoning capabil-
ities that help build, maintain and query domain models for many pur-
poses. However, before OWL can unfold its full potential, user-friendly
tools with a scalable architecture are required. We present the OWL
Plugin, an extension of the Protégé ontology development environment,
which can be used to define classes and properties, to edit logical class
expressions, to invoke reasoners, and to link ontologies into the Semantic
Web. We analyze some of the challenges for developers of Description
Logic editors, and discuss some of our user interface design decisions.

1 Introduction

The formal underpinnings of Description Logics (DL) [1] are a cornerstone of
Semantic Web technology such as the Web Ontology Language (OWL) [8]. DL
reasoners can help build and maintain sharable ontologies by revealing inconsis-
tencies, hidden dependencies, redundancies, and misclassifications [7].

While the formal terrain of DLs is now well mapped out and covered by
efficient algorithms, a new generation of end-user tools is necessary to put this
technology into the spotlight of industrial routine. In contrast to DLs, other
modeling paradigms such as Object-Orientation and frames are supported by
many professional editing tools that have evolved over many years of industrial
use and, as a result, reflect best practices and common design patterns. A good

example of such a tool is Protégé [3], a knowledge modeling platform developed
at Stanford Medical Informatics with support from a community of thousands
of users over almost two decades.

Some of the technologies explored and refined by these tools can be applied
to DL. For example, UML diagrams and Protégé’s class explorer may serve as a
good starting point for DL editors as well. However, there are crucial differences
between DLs on the one hand and object-oriented or frame-based systems on
the other that require custom-tailored solutions. In this paper, we will focus on
four key issues in DL editing tools:

1. Logical Ezxpressions. DL languages rely on (potentially deeply nested)
logical expressions which can be hard to read, understand, and edit.

2. Class Descriptions. Classes in DL ontologies are either primitive or de-
fined. A consistent approach for editing these two modes is needed.

3. Reasoning. DL ontologies can be classified (i.e., some relationships between
concepts are inferred from the asserted class descriptions). A tool should
provide both views, and allow users to compare the differences.

4. Scalability. DL ontologies are potentially very complex and large. An
ontology editor should simplify navigation and help users to maintain large
ontologies through mechanisms such as annotation metadata.

Some solutions for these issues have been explored by existing tools, most
notably OilEd [2], developed at the University of Manchester. While OilEd
succeeded in making DL technology available to a broader user community, its
authors never intended it as a full ontology development environment but rather
as a platform for experiments. As a result, OilEd’s architecture is neither scal-
able to really large ontologies nor sufficiently flexible to allow its user interface
to be customized.

The developers of Protégé and the OilEd team have recently joined forces in
a transatlantic project called CO-ODE !. Our goal is to develop a new generation
of OWL ontology editing tools, based on Protégé and the experiences collected
with OilEd. Our collaboration has lead to the development of the Protégé OWL
Plugin, which can be used to define classes and properties, to edit logical class
expressions, to invoke reasoners, and to link ontologies into the Semantic Web.

The following sections provide details and design decisions of our current
system. Due to space constraints we cannot provide a comprehensive description
of the full system, but we focus on the key issues mentioned above. Before we go
into these issues, we will start with some background on the Protégé architecture
and its general principles.

http://www.co-ode.org

2 Protégé and the OWL Plugin

Protégé [3] is an open-source ontology development environment with function-
ality for editing classes, slots (properties), and instances. The current version
of Protégé (2.0) is highly extensible and customizable. At its core is a frame-
based knowledge model [5] with support for metaclasses. Other languages such
as OWL can be defined on top of this core frame model [6]. The mechanism we
have used to represent the OWL metamodel in terms of Protégé frames will be
described in a separate paper.

Protégé makes it not only possible to extend the metamodel but also to
customize the user interface freely. As illustrated in Figure 1, Protégé’s user
interface consists of several screens, called tabs, each of which displays a differ-
ent aspect of the ontology in a specialized view. Each of the tabs can include
arbitrary Java components. Most of the existing tabs provide an explorer-style
view of the model, with a tree on the left hand side and details of the selected
node on the right hand side. The details of the selected object are typically dis-
played by means of forms. The forms consist of configurable components, called
widgets. Typically, each widget displays one property of the selected object.
There are standard widgets for the most common property types, but ontology
developers are free to replace the default widgets with specialized components.
Widgets, tabs, and back-ends are called plugins. Protégé’s architecture makes
it possible to add and activate plugins dynamically, so that the default system’s
appearance and behavior can be completely adapted to a project’s needs.

The OWL Plugin? is a large Protégé plugin with support for OWL. It can be
used to load and save OWL files in various formats, to edit OWL ontologies with
custom-tailored graphical widgets, and to perform intelligent reasoning based on
DLs. As shown in Figure 1, the OWL Plugin’s user interface provides various
default tabs. The OWLClasses tab displays the ontology’s class hierarchy, allows
developers to create and edit classes, and displays the result of the classification.
The Properties tab can be used to create and edit the properties in the ontology.
The Individuals tab can be used to create and edit individuals, and to acquire
Semantic Web contents. The Forms tab allows to customize the forms used for
editing classes, properties and individuals. The Metadata tab displays ontology
metadata such as namespace prefixes. Ontology builders will typically focus on
the OWLClasses tab, which is described in the following sections.

3 Editing Logical OWL Expressions

One of the first and most important decisions in the design of an OWL editor is
how to display class expressions in a user-friendly but efficient way. The RDF

’http://protege.stanford.edu/plugins/owl

idm-cortex Protégé 2.0 (C:\projects\owl\docs\KRMed2004\cortex\idm-cortex.pprj, OWL Files) EI@]FZ\

Project Edit Window OWL Help

o (=@ -] [B]%) (313 [AIR] [2]5] [5] Bls
(@E)UWLCIasses rEﬂPropenies r[ﬂIForms r@IndMuuaIs r@metadata |

Subelass Relationship [4| C) frontoPolarGyrus (type=owl:Class) [+[=[F][T]
) F
Asserted Hierarchy | V” c ” X‘ A | ("Mame [Labels ‘ [] Annotations v Cv| +.| _
©nw\ Thing - | ‘
f lfrontaP olarGyrus | Praperty alue
¢ ©"‘C2;§mlacilcomem DJ author Olivier Dameran
? é)”L:ﬂGynSet Documentation @ awlwersianinfo 11
(S} RighttsyriSet
©|smmusCmgulateGyrus
(E) paracentralLobule
@suhCemraleus = -
@ (© oyrus | 7| [Asserted || Inferred | AtClass | At owkThing | Al |
%;?gﬁg;ﬁs | nsserted Conditions ClG| +| - ¥ [P[| Properties at Class V| C| +_| - ﬁ
e’@)emngIeerw’l,us NECESSARY & SUFFICIENT Marme
©- (C) anteriorrhitalGyrus 1) Left-frontoPolarGyrus u Right-rantoPolarGyrus =1 [0 hasDirecttnatomicalPar @ T
©- () cingulateGyrus K NECES$4R [O] hasAnatomicalPart
@ (T cuneus | [©oys 0] isDirectanatoricalPanor T
@ () dentateGyrus [{33 hasDirectAnatomicalPart inferiorP arsFrontaPolarGyrus (0] isAnatomicalPartor
@ (C) frontoMarginalGyrus | 133 hasDirectanatomicalP art superiorParsFrantoPolarGyrus
@Leﬂ-fruntuMarginalerus 3 @3 hasDirectAnatomicalPart intermediateParsFrontoPolarGyrus
Right-frontoMarginal Gyrus) INHERITED
@ (S frontoPolarGyrus | 1D Lefttyrus U Rightyrus firam Gyrus][€]
(C) Left-frontoPolarGyus
(B Right-frontoPalarGyris : - =
@ () fusiformGyrs | = pisjaints v C‘ +v‘ |=| X
9‘©h\ppncampus ©angular6yru5 =
& (E) inferiarFrontalGyrus : KE) rectusGyrus (2
©- (S inferiarParietalLabule] Cuneus
& (B inferiarTamporalGyrs L2 (B0 lingualivis =
& (i i " | —
e

Figure 1: The class editor of the Protégé OWL Plugin.

syntax proposed in the OWL specification [8] is clearly too verbose to be of any
use here. The OWL Abstract Syntax [9] is much more user-friendly, but still
quite verbose. For the OWL Plugin, we chose to use an expression syntax based
on standard DL symbols [1], such as V and L. These symbols (Figure 2) allow
to the system display even complex nested expressions in a single row.

A trade-off from this syntax is that some characters are not found on stan-
dard keyboards. The OWL Plugin provides a comfortable expression editor
which allows users to quickly assemble expressions with either the mouse or the
keyboard (Figure 2). The special characters are mapped onto keys known from
languages such as Java (e.g., owl:intersectionOf is entered with the & key).
To simplify editing, keyboard users can exploit a syntax completion mechanism
known from programming environments, which semi-automatically completes
partial names after the uses has pressed tab. The expression editor is invoked
by a double-click on a class expression, and then pops up directly below the
expression. For really complex expressions, users can open a multi-line editor in
an extra window, which formats the expression using indentation.

The OWL Plugin helps new users to get acquainted with the expression
syntax. An English prose text is shown as a “tool tip” when the mouse is moved
over the expression. For example, “d hasPet Cat” is displayed as “Any object
which has a cat as its pet”.

(J[3 hasDirectdnatomicalPart uncul

Sl ElEEEN Sk
©) Bl || B] | €| | @) 0]«

b - e

Error: Class or property name expected at "uncu®

Figure 2: Protégé provides a comfortable editor for arbitrary OWL expressions.

4 Editing Class Descriptions

Another major design decision for a DL class editor is how to edit the logical
class definitions. Protégé users are accustomed to an object-centered view to
the interface which has required some effort to adapt to OWL. The distinc-
tion between defined and primitive classes simply is not found in frame-style
or object-oriented modeling paradigms, and this can compound users’ confusion
when learning the DL paradigm. In the OWL specification, there is a lack of uni-
formity between defined classes (classes with necessary & sufficient conditions)
and primitive classes (only necessary conditions). Multiple necessary conditions
are represented by multiple rdfs:subClass0f statements whose intersection is
implied, whereas sets of multiple necessary & sufficient conditions are repre-
sented by an owl:equivalentClass block containing an explicit intersection
class. Although logically consistent, experience has shown that many users find
the difference confusing. As a result, it was decided that the user interface
should not simply reflect the structure suggested by the OWL specification but
attempt to provide a clearer more uniform presentation to users.

During the evolution of the OWL Plugin we experimented with several in-
terface designs, partly based on existing tools such as the Protégé core system
and OilEd, partly on suggestions from our colleagues and users. OilEd has two
modes: one to “partially” define a class with only necessary conditions, the other
to “completely” define a class with necessary & sufficient conditions. There is a
button to switch between these two modes. While this feature allowed the OilEd
developers to provide customized widgets for various kinds of class descriptions
(e.g. a widget for only restrictions), it has the disadvantage that users have to
maintain separate class axioms in a separate pane for the necessary restrictions
of classes that also are “completely” defined by a set of necessary & sufficient
conditions. There is no one pane in OilEd in which one can see both the sets of
necessary and sufficient conditions and any additional necessary conditions (i.e.
axioms taking the defined class as their antecedent.)

As shown in the center of Figure 1, the OWL Plugin solves this problem
by means of a list of conditions, organized into blocks of necessary & sufficient,

necessary, and inherited (i.e., inferred) conditions. Each of the necessary &
sufficient blocks represents a single equivalent intersection class, and only those
inherited conditions are listed that have not been further restricted higher up in
the hierarchy (e.g., allValuesFrom Animal would not be shown if allValuesFrom
Dog were also inferable).

The editor supports drag-and-drop between blocks in the conditions list,
and copy-and-paste of expressions. It also supports changing superclasses by
dragging a class from one parent to another in the class tree on the left hand
side of the window.

In addition to the list of conditions, there is also a custom-tailored widget for
entering disjoint classes, which has special support for typical design patterns
such as making all siblings disjoint. This rather object-centered design of the
OWLClasses tab makes it possible to maintain the whole class definition on a
single screen.

5 Working with Classification

The OWL Plugin provides direct access to reasoners such as Racer [4]. The
current user interface supports two types of DL reasoning: Consistency checking
and classification (subsumption). Other types of reasoning, such as instance
checking, are work in progress.

Consistency checking (i.e., the test whether a class could have instances) can
be invoked either for all classes with a single mouse click, or for selected classes
only. Inconsistent classes are marked with a red bordered icon.

Classification (i.e., inferring a new subsumption tree from the asserted def-
initions) can be invoked with the classify button on a one-shot basis. When
the classify button is pressed, the system determines the OWL species, because
some reasoners are unable to handle OWL Full ontologies. This is done using
the validation service from the Jena? library. If the ontology is in OWL Full
(e.g., because metaclasses are used) the system attempts to convert the ontol-
ogy temporarily into OWL DL. The OWL Plugin supports editing some features
of OWL Full (e.g., to assign ranges to annotation properties, and to create meta-
classes). These are easily detected and can be removed before the data are sent
to the classifier. Once the ontology has been converted into OWL DL, a full
consistency check is performed, because inconsistent classes cannot be classified
correctly. Finally, the classification results are stored until the next invocation
of the classifier, and can be browsed separately. Classification can be invoked
either for the whole ontology, or for selected subtrees only. In the latter case,
the transitive closure of all accessible classes is sent to the classifier.

3http://www.hpl.hp.com/semweb/jena2.htm

r (ClJ1 OW Classes r [F][|Properties r | Forms r I3 Individuals r (a 2) Metadata |
Subclass Relationship ﬂ: Subclass Relationship =EEIE] : Classifier Results
e el Hierar[:hy| v " c “ X' A /] Inferred Hierarchy ‘ v “ ol Class \ Changed superclasses
.5 omil Thing [owl Thing B animal_laver Woved fram person to pet_owner
& (C) adult @ (Chadult hus_driver Moved fram person to driver
9 @ animal g @ eldetly cat_owner Moved fram person to pet_owner, cat_liker
©cat 9 (© grownup dog Moved fram owl:Thing ta anirnal
(C) duek @ (© driver dog_owner Woved from person to dog_liker, pet_owner
(C) giraffe (E) bus_driver driver Woved fram person, adultto grownup —
-
@ (2 person (E) haulage_ruck_dv Lsauiane_tnucle_diuor Mouad fom norean e boulase ot i T
animal_laver lorry_driver bus_driver {type-owl:Class) [=[=E [T
bus_driver & (B} van_driver -
(© cat_liker @ (Crman Name [{Labels | [Annotations
(B cat_ominer & (B woman - Propert,
{C) dog_liker @ (Cranimal |bu97drlver |
(S dog_owmer () eat "
@drlver @dog Documentation
(T grownup (C) duck |50meone wha drives a hus. |
C hanlana triek drivar (T niraffa

Figure 3: Protégé allows users to compare asserted and inferred class relation-
ships. The system displays two hierarchies for asserted and inferred subsumption
relationships, and provides a clickable list of the differences between them.

OWL files only store the subsumptions that have been asserted by the user.
However, experience has shown that, in order to edit and correct their ontologies,
users need to distinguish between what they have asserted and what the classifier
has inferred. Many users may find it more natural to navigate the inferred
hierarchy, because it displays the semantically correct position of the classes.

The OWL Plugin addresses this need by displaying both hierarchies and
making available extensive information on the inferences made during classifi-
cation. As illustrated in Figure 3, after classification the OWL Plugin displays
an inferred classification hierarchy beside the original asserted hierarchy. The
classes that have changed their superclasses are highlighted in blue, and moving
the mouse over them explains the changes. Furthermore, a complete list of all
changes suggested by the classifier is shown in the upper right area. A click
on an entry navigates to the affected class. Also, the conditions widget can be
switched between asserted and inferred conditions. All this allows the users to
quickly analyze the changes.

6 Scalability

DL ontologies may become complex and large. The support for arbitrary class
expressions means that DL ontologies typically contain many cross-links among
classes, properties, individuals, and even among ontologies. This situation is
complicated by the emerging Semantic Web, in which ontology development
is distributed between groups around the world. As a result, scalability and
support for ontology maintenance are crucial issues in ontology tools.

Protégé supports database storage that is scalable to several million concepts,
and provides multi-user support for synchronous knowledge entry. The OWL

Plugin has already been used to edit ontologies with tens of thousands of classes.
In support of handling such large ontologies, the OWL Plugin also provides a
variety of navigation aids, such as lexical search functions and “find usage”
buttons which allow to directly access all classes and properties that somehow
reference a given object.

Documentation is essential for large ontologies. Most modeling or program-
ming languages allow the attachment of comments or annotations to document
the model’s contents and to track provenance and changes. OWL supports this
through annotation properties. The OWL Plugin allows to attach annotations
to ontologies, properties, individuals, and classes, including anonymous classes.
Annotation properties can be edited by means of a specific table widget (in the
upper right area of Figure 1). The OWL Plugin allows the user to put arbitrary
values into annotations, including complex objects. We are currently optimizing
the tool for Dublin Core metadata so that, for example, annotation properties
with change dates and authors will be filled in automatically.

7 Discussion

We have provided a brief overview of the OWL Plugin for Protégé. The Plugin
explores several innovative approaches for displaying and editing logical expres-
sions, editing class definitions, displaying classification results, and maintaining
ontologies. Although we have not performed a formal evaluation of our user
interface yet, the feedback from the user community is very encouraging. Many
users suggest that the plugin’s simple editors and comfortable reasoning inter-
face supports rapid but sustainable ontology evolution. The constructive dialogs
on forums such as those of the CO-ODE project and the Protégé discussion list
will accelerate the evolution of the user interface with support for additional
design patterns and best practices.

Many other groups from around the world are also developing Protégé plug-
ins, including alternative wizard-style editors, and tools to query ontologies, to
visualize ontologies graphically, and to manage ontology versions and changes.
Furthermore, Protégé provides immediate access to all services for the Jena API,
because it internally synchronizes the ontology with a Jena model.

Protégé has a large and rapidly growing community of thousands of users.
Providing the community with a widely available, easy-to-use, open-source plat-
form for OWL ontology design has the potential to use the leverage of that user
base to bring DL technology into a wider audience. However, to do so effectively,
requires thinking carefully about how to provide user interface metaphors with
which that community is comfortable. The OWL Plugin aims to retain Protégé’s
object-centered interface without compromising OWL’s DL semantics.

Acknowledgements. This work has been funded by a contract from the
US National Cancer Institute and by grant P41LMO007885 from the National
Library of Medicine. Additional support for this work came from the UK Joint
Information Services Committee under the CO-ODE grant. We would like thank
our colleagues in Stanford (especially Ray Fergerson and Natasha Noy) and
Manchester (especially Sean Bechhofer and Ian Horrocks for their work on OilEd
and contribution to the interface discussions), the developers of the Jena library
at HP Labs in Bristol, and the many Protégé users around the world for very
valuable feedback during the evolution of the OWL Plugin.

References

[1] F. Baader, D. Calvanese, D. McGuineness, D. Nardi, and P. Patel-Schneider,
editors. The Description Logic Handbook. Cambridge University Press, 2003.

[2] S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. OilEd: a reason-able
ontology editor for the Semantic Web. In 14th International Workshop on
Description Logics, Stanford, CA, 2001.

[3] J. Gennari, M. Musen, R. Fergerson, W. Grosso, M. Crubézy, H. Eriksson,
N. Noy, and S. Tu. The evolution of Protégé-2000: An environment for

knowledge-based systems development. International Journal of Human-
Computer Studies, 58(1):89-123, 2003.

[4] V. Haarslev and R. Moeller. Racer: A core inference engine for the Semantic
Web. In 2nd International Workshop on Evaluation of Ontology-based Tools
(EON-2003), Sanibel Island, FL, 2003.

[5] N. Noy, R. Fergerson, and M. Musen. The knowledge model of Protégé-2000:
Combining interoperability and flexibility. In 2nd International Confer-
ence on Knowledge Engineering and Knowledge Management (EKAW’2000),
Juan-les-Pins, France, 2000.

[6] N. Noy, M. Sintek, S. Decker, M. Crubézy, R. Fergerson, and M. Musen. Cre-
ating Semantic Web contents with Protégé-2000. IEEE Intelligent Systems,
2(16):60-71, 2001.

[7] A. Rector. Description logics in medical informatics. Chapter in [1].

[8] World Wide Web Consortium. OWL Web Ontology Language Reference.
W3C Recommendation 10 Feb, 2004.

[9] World Wide Web Consortium. OWL Web Ontology Language Semantics
and Abstract Syntax. W3C Recommendation 10 Feb, 2004.

