
Specifying the disjoint nature of object properties in DL

Cartik R. Kothari and David J. Russomanno
Department of Electrical and Computer Engineering

The University of Memphis, Memphis, TN 38152 USA
rkothari@memphis.edu, d-russomanno@memphis.edu

Abstract

This paper proposes constructs that can be used to declaratively specify the
disjoint nature of object properties or roles. These constructs may be a useful
extension to the Description Logic system that is the basis of OWL.

1 Introduction

The ability to specify disjoint relations has several applications in database and knowledge
based systems. This paper introduces a set of syntactic constructs that can be used to specify
the disjoint nature of roles in Description Logic (DL) [1] systems. Wessel [2] presents another
study upon DL systems that specify the disjointness of roles; however, it did not specifically
investigate the disjoint nature of roles. Instead, role disjointness was used as a starting premise
to investigate the composition of roles in ALCRA DL, which was determined to be undecidable.

2 Specifying the disjoint nature of roles

The semantics of DL constructors is defined in terms of an interpretation I = (∆I, ⋅I) that consists
of a non-empty domain ∆I and an interpretation function ⋅I. The interpretation maps individual
names (e.g., x, y and z) into objects or individuals of the domain; and the role names (e.g., R1
and R2) into subsets of the Cartesian product of the domain (∆I X ∆I) as shown in (1) ~ (5).

xI ∈ ∆I (1)
yI ∈ ∆I (2)
zI ∈ ∆I (3)

R1I ⊆ ∆I x ∆I (4)
R2I ⊆ ∆I x ∆I (5)

Four types of role disjointness can now be distinguished as follows: 1) if an object appears as a
range element in role R1 then it cannot appear as a range element in R2; 2) if an object appears
as a domain element in role R1 then it cannot appear as a domain element in R2; 3) the
conjunction of the conditions in 1 and 2; and 4) two roles can have no instances in common.

For the scenario in which two disjoint roles cannot have instances that have a common range
object, the required semantics are shown in (6). A new construct (|r) is proposed to capture the
semantics of (6). The disjoint nature of R1 and R2 can now be specified as in (7). This
constraint would not allow the same object to appear as the range in instances of both roles.

∀x∀y∀z (xI, yI) ∈ R1I ⇒ (zI, yI) ∉ R2I (6)
R1 |r R2 (7)

For the scenario in which two disjoint roles cannot have instances that have a common domain
object, the required semantics are shown in (8). A new construct (|d) is proposed to capture the
semantics of (8). The disjoint nature of R1 and R2 can now be specified as in (9). This

constraint does not permit the same object to appear as the domain in instances of both the roles
R1 and R2.

∀x∀y∀z (xI, yI) ∈ R1I ⇒ (xI, zI) ∉ R2I (8)
R1 |d R2 (9)

The semantics of two disjoint roles such that no domain element in R1 can appear as a domain
element in R2 and no range element in R1 can appear as a range element of R2 is shown in (10).
A new construct (|) is defined to capture the semantics of (10). The disjoint nature of R1 and R2
can now be specified as in (11).

∀x∀y∀z∀w (xI, yI) ∈ R1I ⇒ (xI, zI) ∉ R2I ∧ (wI, yI) ∉ R2I (10)
R1 | R2 (11)

Finally, each new construct (|r, |d, and |) expresses different semantics than rule (12), which
states that two roles can have no instances in common as captured in (13). Applying the
substitution {z/x} to (6) yields (12) as does applying the substitution {z/y} to (8). Rule (12) is a
factor of (10) when applying the substitution {z/y, w/x} to (10). However, it is not possible with
the semantics expressed in (12) alone to determine whether the two roles can share domain
objects, range objects, or neither as captured by the new constructs.

∀x∀y (xI, yI) ∈ R1I ⇒ (xI, yI) ∉ R2I (12)
R1I ∩ R2I = ⊥ (13)

3 Conclusions

A premise of this paper is that Semantic Web knowledge representation formalisms should
support the declarative representation of property disjointness. Four types of property
disjointness have been described in this paper. It should be noted that if a knowledge
engineering application required capturing the semantics provided by the constructs |r, |d, and |,
a workaround could be declaratively achieved, albeit requiring minor re-conceptualization, to
enforce the semantics. For example, to achieve |d, the domain of roles R1 and R2 would be
partitioned into two disjoint concepts and the disjoint nature of roles R1 and R2 would then be
implied if they were re-defined to use these disjoint concepts as their respective, restricted
domains. However, no such workaround appears to exist for expressing R1 ∩ R2 = ⊥ for roles
defined on the same domain and range, which suggests that a DisjointProperties(R1 … Rn)
construct may be useful in Description Logics based ontology languages such as OWL. Role
intersection constructs are provided by the ALB DL [3], which has been proved to be decidable.
The analysis of the computational properties of the constructs proposed herein is the subject of
ongoing investigation. The investigation will include decidability strategies discussed in [3] and
its relevance to the proposed constructs.

References

[1] D. Nardi and R. J. Brachman, “An Introduction to Description Logics,” In F. Baader et al.

(Eds.), The Description Logic Handbook, Cambridge University Press, 2003.
[2] M. Wessel, “Undecidability of ALCRA,” Technical Report No. FBI-HH-M-302/01, Computer

Science Department, University of Hamburg, Germany, 2001.
[3] U. Hustadt and R. Schmidt, “Issues of Decidability for Description Logics in the Framework

of Resolution,” In R. Caferra and G. Salzer (Eds.), Automated Deduction in Classical and
Non-Classical Logics, LNAI 1761, Springer, 2000, 192 – 206.

