
Proceedings of the

Whistler, BC, Canada
June 6-8, 2004

Edited by:

Volker Haarslev
Ralf Möller

Also electronically available as CEUR Publication at
http://CEUR-WS.org

2004 International Workshop on
Description Logics

(DL2004)

Preface

The 2004 International Workshop on Description Logics (DL’04) was held in Whistler, British
Columbia, Canada, from June 6 to 8, 2004. It continued the tradition of international workshops
devoted to discussing developments and applications of knowledge representation formalisms
based on Description Logics. The list of International Workshops on Description Logics can be
found at http://dl.kr.org.

Each paper submitted to DL’04 was reviewed by at least two members of the program commit-
tee, or by additional reviewers recruited by the PC members. Due to the success of the poster
session from the previous DL workshop, it was decided to schedule a poster session together with
a set of system demonstrations that were often motivated by the advent of the semantic web.

In addition to the presentation of accepted papers, posters, and demonstrations, two invited talks
were presented at DL’04:

• Sheila McIlraith, University of Toronto, Toronto, Canada, gave a talk on OWL-S and web
agent/web service composition;

• Frank Wolter, University of Liverpool, Liverpool, UK, gave a talk on Combining
Description Logics.

We would like to thank the Concordia University and the Technical University Hamburg-
Harburg for their support.

Volker Haarslev
Ralf Möller

(The DL’04 PC chairs)

DL2004 Program Committee

Carlos Areces
INRIA Lorraine, France

Diego Calvanese
Faculty of Computer Science, Free University of Bozen-Bolzano

Enrico Franconi
Faculty of Computer Science, Free University of Bozen-Bolzano

Giuseppe De Giacomo
Dipartimento di Informatica e Sistemistica, Università di Roma "La Sapienza"

Volker Haarslev
Computer Science Department, Concordia University, Montreal, Quebec, Canada

Ian Horrocks
Department of Computer Science, University of Manchester, Manchester, UK

Ralf Küsters
Department of Computer Science, Stanford University, CA, USA

Carsten Lutz
Technical University Dresden, Department of Computer Science, Institute for Theoretical
Computer Science, Dresden, Germany

Deborah L. McGuinness
Knowledge Systems Laboratory, Stanford University, CA, USA

Ralf Möller
Technical University Hamburg-Harburg, Germany

Peter Patel-Schneider
Network Data and Services Research Department, Bell Laboratories, Murray Hill, NJ, USA

Ulrike Sattler
Department of Computer Science, University of Manchester, Manchester, UK

Grant Weddell
Computer Science Department, University of Waterloo, Waterloo, Ontario, Canada

Chris Welty
IBM Watson Research Center, Hawthorne, NY, USA

Additional reviewers

Franz Baader, Sebastian Brandt, Dimitry Tsarkov, Anni-Yasmin Turhan, Daniele Turi.

i

Contents

Theory 1

Alessandro Artale
Reasoning on Temporal Conceptual Schemas with Dynamic Constraints1

Franz Baader, Baris Sertkaya, Anni-Yasmin Turhan
Computing the Least Common Subsumer w.r.t. a Background Terminology 11

Sebastian Brandt
On Subsumption and Instance Problem in ELH w.r.t. General TBoxes 21

Implementation Techniques 1

Ian Horrocks, Lei Li, Daniele Turi, Sean Bechhofer
The Instance Store: DL Reasoning with Large Numbers of Individuals 31

Dmitry Tsarkov, Ian Horrocks
Efficient Reasoning with Range and Domain Constraints ... 41

Eldar Karabaev, Carsten Lutz
Mona as a DL Reasoner ... 51

Graphical Interfaces 1

Volker Haarslev, Ying Lu, Nematollah Shiri
OntoXpl: Exploration of OWL Ontologies ... 60

Holger Knublauch, Mark A. Musen, Alan L. Rector
Editing Description Logic Ontologies with the Protégé OWL Plugin.................................... 70

Thorsten Liebig, Holger Pfeifer, Friedrich von Henke
Reasoning Services for an OWL Authoring Tool: An Experience Report 79

ii

Implementation Techniques 2

Marco Cadoli, Diego Calvanese, Giuseppe De Giacomo
Towards Implementing Finite Model Reasoning in Description Logics 83

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Riccardo Rosati, Guido Vetere
DL-Lite: Practical Reasoning for Rich Dls ... 92

Luciano Serafini, Andrei Tamilin
Local Tableaux for Reasoning in Distributed Description Logics 100

Applications 1

Andrea Cali, Diego Calvanese, Simona Colucci, Tommaso Di Noia, Francesco M. Donini
A Description Logic Based Approach for Matching User Profiles 110

Paolo Dongilli, Enrico Franconi, Sergio Tessaris
Semantics Driven Support for Query Formulation .. 120

Posters

Bernardo Cuenca Grau, Bijan Parsia
From SHOQ(D) Toward E-connections.. 130

Cartik R. Kothari, David J. Russomanno
Specifying the Disjoint Nature of Object Properties in DL.. 132

Deborah L. McGuinness, Pavel Shvaiko, Fausto Giunchiglia, Paulo Pinheiro da Silva
Towards Explaining Semantic Matching .. 134

Jeff Z. Pan, Ian Horrocks
Extending DL Reasoning Support for the OWL Datatyping (or “Why Datatype Groups?”) 136

Applications 2

Ronald Cornet, Ameen Abu-Hanna
Using Non-Primitive Concept Definitions for Improving DL-based Knowledge Bases....... 138

Volker Haarslev, Ralf Möller, Ragnhild Van Der Straeten, Michael Wessel
Extended Query Facilities for Racer and an Application to Software-Engineering Problems148

iii

Theory 2

S. Colucci, T. Di Noia, E. Di Sciascio, F.M. Donini, M. Mongiello
A Uniform Tableaux-Based Approach to Concept Abduction and Contraction in ALN 158

Jan Hladik, Jörg Model
Tableau Systems for SHIO and SHIQ... 168

David Toman, Grant Weddel
Attribute Inversion in Description Logic with Path Functional Dependencies..................... 178

Graphical Interfaces 2

Anni-Yasmin Turhan, Christian Kissig
Sonic: System Description.. 188

Brian R Gaines
Understanding Ontologies in Scholarly Disciplines .. 198

Position Papers

Daniela Berardi
Description Logics for e-Service Composition ... 208

Ken Kaneiwa
Description Logic and Order-sorted Logic.. 209

Francis Kwong
Explaining Description Logic Reasoning.. 210

Toni Mancini
Finite Satisfiability of UML Class Diagrams by Constraint Programming 211

Evren Sirin, Bijan Parsia
Pellet: An OWL DL Reasoner .. 212

Stefan Schulz
DL Requirements from Medicine and Biology ... 214

Reasoning on Temporal Conceptual Schemas with
Dynamic Constraints

Alessandro Artale∗

Faculty of Computer Science – Free University of Bozen-Bolzano
artale@inf.unibz.it

1 Introduction

Temporally enhanced conceptual models have been developedto help designing temporal
databases [12]. In this paper we deal with Extended Entity-Relationship (EER) diagrams1

used to model temporal databases. The temporal conceptual model ERV T has been intro-
duced both toformally clarify the meaning of the various temporal constructs appeared in
the literature [2, 4], and to check the possibility to perform reasoningon top of temporal
schemas [5].ERV T supports valid time for entities, attributes, and relationships in the line of
TIMEER [10] and ERT [15], while supporting dynamic constraints for entities as presented
in MADS [14]. ERV T is able to distinguish betweensnapshotconstructs—i.e. each of their
instances has a global lifespan—andtemporaryconstructs—i.e. each of their instances have
a limited lifespan. Dynamic constructs capture theobject migrationfrom a source entity to a
target entity.

The contribution of this paper is twofold. Moving from the formal characterization of
ERV T given in [4] we clarify the relevant reasoning problems for temporal EER diagrams. In
particular, we distinguish between six different reasoning services, introducing two new ser-
vices for both entities and relationships:liveness satisfiability—i.e. whether an entity or rela-
tionship admits a non-empty extension infinitely often in the future—andglobal satisfiability—
i.e. whether an entity or relationship admits a non-empty extension at all points in time. After
a systematic definition of the various reasoning problems wethen show that all the satisfia-
bility problems (i.e. schema, entity and relationship satisfiability problems) together with the
subsumption problem (i.e. checking whether two entities orrelationships denote one a subset
of the other so that there is an implicitISA link between them) can be mutually reduced to
each other. On the other hand, checking whether a schemalogically impliesanother schema
is shown to be the more general reasoning service.

The second contribution is to prove that reasoning on temporal conceptual models is unde-
cidable provided the diagrams are able to: (a) Distinguish between temporal and non-temporal
constructs; (b) Representdynamic constraintsbetween entities, i.e. entities whose instances

∗The author has been partially supported by the EU projects Sewasie, KnowledgeWeb, and Interop. This paper
is a shorter version of [1].

1EER is the standard entity-relationship data model, enriched with ISA links, generalized hierarchies with
disjoint and covering constraints, and full cardinality constraints.

1

C, D → A | (atomic concept)

> | (top)

⊥ | (bottom)

¬C | (complement)

C u D | (conjunction)

C t D | (disjunction)

∃R.C | (exist. quantifier)

∀R.C | (univ. quantifier)

3
+C | (Sometime)

2
+C | (Every time)

AI(t) ⊆ ∆I

>I(t) = ∆I

⊥I(t) = ∅

(¬C)I(t) = ∆I \ CI(t)

(C u D)I(t) = CI(t) ∩ DI(t)

(C t D)I(t) = CI(t) ∪ DI(t)

(∀R.C)I(t) = {a ∈ ∆I | ∀b.RI(t)(a, b) ⇒ CI(t)(b)}

(∃R.C)I(t) = {a ∈ ∆I | ∃b.RI(t)(a, b) ∧ CI(t)(b)}

(3+C)I(t) = {a ∈ ∆I | ∃v > t.CI(v)(a)}

(2+C)I(t) = {a ∈ ∆I | ∀v > t.CI(v)(a)}

Figure 1: Syntax and Semantics for theALCF Description Logic

migrate to other entities. To the best of our knowledge, thisis the first time such a result is
proved. Indeed, the result presented in [5] showed thatERV T diagrams can be embedded into
the temporal description logic (DL)DLRUS—whereU , S extendDLR with the until and
sincetemporal modalities—and that reasoning inDLRUS was undecidable. Instead, here we
prove that even reasoning just onERV T schemas is undecidable. The undecidability result is
proved via a reduction of the Halting Problem with a technique similar to [9]. In particular,
we proceed by first showing that the halting problem can be encoded as a Knowledge Base
(KB) in ALCF—whereF extendsALC with thefuturetemporal modality—and then proving
that such a KB inALCF can be captured by anERV T diagram.

The paper is organized as follows. The temporal DLALCF and the conceptual model
ERV T are formally presented in Sections 2 and 3, respectively. The various reasoning ser-
vices for temporal conceptual modeling are defined in Section 4 and their equivalence is
proved. That reasoning in presence of dynamic constraints is undecidable is proved in Sec-
tion 5.

2 The Temporal Description Logic

In this Section we introduce theALCF DL [16, 3, 9] as a the tense-logical extension of
ALC. Basic types ofALCF areconceptsandroles. According to the syntax rules of Figure 1,
ALCF conceptsare built out ofatomic conceptsandatomic roles. Tense operators are added
for concepts:3+ (sometime in the future) and2+ (always in the future). Furthermore, while
tense operators are allowed only at the level of concepts—i.e. no temporal operators are
allowed on roles—we will distinguish between so calledlocal—RL—and global—RG—
roles.

Let us now consider the formal semantics ofALCF. A temporal structureT = (Tp, <) is
assumed, whereTp is a set of time points and< is a strict linear order onTp—T is assumed
to be isomorphic to either(Z, <) or (N, <). An ALCF temporal interpretationover T is
a triple of the formI

.
= 〈T ,∆I , ·I(t)〉, where∆I is non-empty set of objects and·I(t) an

interpretation functionsuch that, for everyt ∈ T , every conceptC, and every roleR, we have
CI(t) ⊆ ∆I andRI(t) ⊆ ∆I × ∆I . Furthermore, ifR ∈ RG, then,∀t1, t2 ∈ T .RI(t1) =
RI(t2). The semantics ofALCF concepts is defined in Figure 1.

2

A knowledge base(KB) in this context is a finite setΣ of terminological axiomsof the
form C v D. An interpretationI satisfiesC v D iff the interpretation ofC is included in
the interpretation ofD at all time, i.e.CI(t) ⊆ DI(t), for all t ∈ T . A knowledge baseΣ is
satisfiableif there is a temporal interpretationI that satisfies every axiom inΣ. Σ logically
impliesan axiomC v D (written Σ |= C v D) if C v D is satisfied by every model ofΣ.
A conceptC is satisfiable, given a knowledge baseΣ, if there exists a modelI of Σ such that
CI(t) 6= ∅ for somet ∈ T , i.e.Σ 6|= C v ⊥.

3 Temporal Conceptual Modeling

In this Section, the temporal EER modelERV T is briefly introduced.ERV T supports valid
time for entities, attributes, and relationships in the line of TIMEER [10] and ERT [15],
while supporting dynamic constraints for entities as presented in MADS [14].ERV T is able
to distinguish betweensnapshot(see the consensus glossary [11] for the terminology used)
constructs—i.e. each of their instances has a global lifespan—temporaryconstructs—i.e.
each of their instances have a limited lifespan—orimplicitly temporalconstructs—i.e. their
instances can have either a global or a temporary existence.Two temporal marks,S (snapshot)
andVT (valid time), are introduced inERV T to capture such temporal behavior.

Dynamic constructs capture theobject migrationfrom a source entity to a target entity. If
there is adynamic extensionbetween a source and a target entity (represented inERV T by a
dotted link labeled withDEX) models the case where instances of the source entityeventually
become instances of the target entity. On the other hand, adynamic persistency(represented
in ERV T by a dotted link labeled withPER) models the dual case of instancespersistently
migrating to a target entity (for a complete introduction onERV T with a worked out example
see [4]).

ERV T is equipped with both a linear and a graphical syntax along with a model-theoretic
semantics as a temporal extension of the EER semantics [7]. Presenting theERV T linear
syntax, we adopt the following notation: given two setsX,Y , anX-labeledtuple overY is
a function fromX to Y ; the labeled tupleT that maps the set{x1, . . . , xn} ⊆ X to the set
{y1, . . . , yn} ⊆ Y is denoted by〈x1 : y1, . . . , xn : yn〉, andT [xi] = yi. An ERV T schema is
a tuple:

Σ = (L, REL, ATT, CARD, ISA, DISJ, COVER, S, T, KEY, DEX, PER), such that:
L is a finite alphabet partitioned into the sets:E (entity symbols),A (attribute symbols),
R (relationshipsymbols),U (role symbols), andD (domainsymbols). E is further parti-
tioned into: a setES of snapshot entities(the S-markedentities in Figure 2), a setEI of
Implicitly temporal entities(the unmarkedentities in Figure 2), and a setET of temporary
entities(the VT-markedentities in Figure 2). A similar partition applies to the setR. ATT

is a function that maps an entity symbol inE to anA-labeled tuple overD, ATT(E) =
〈A1 : D1, . . . , Ah : Dh〉. REL is a function that maps a relationship symbol inR to an
U -labeled tuple overE , REL(R) = 〈U1 : E1, . . . , Uk : Ek〉, andk is thearity of R. CARD

is a functionE × R × U 7→ N × (N ∪ {∞}) denoting cardinality constraints. We denote
with CMIN(E,R,U) andCMAX(E,R,U) the first and second component ofCARD. In Fig-
ure 2, CARD(TopManager, Manages, man) = (1, 1). ISA is a binary relationshipISA ⊆
(E × E) ∪ (R × R). ISA between relationships is restricted to relationships withthe same

3

EmployeeS
Name(String)

S

PaySlipNumber(Integer)

Salary(Integer)
VT

Project

ProjectCode(String)

Manager VT

TopManagerAreaManager

DepartmentS InterestGroup

OrganizationalUnitS

d

DEX

Works-forVT

Manages

Resp-forS

(1,n) act

emp

man

(1,1)

prj(1,1)

(1,n)
prj

org

Figure 2: AnERV T diagram

arity. ISA is visualized with a directed arrow, e.g.Manager ISA Employee in Figure 2.
DISJ, COVER are binary relations over2E ×E , describing disjointness and covering partitions,
respectively.DISJ is visualized with a circled “d” andCOVER with a double directed arrow,
e.g.Department, InterestGroup are both disjoint and they coverOrganizationalUnit.
S, T are binary relations overE × A containing, respectively, the snapshot and temporary
attributes of an entity (seeS, T marked attributes in Figure 2).KEY is a function that maps
entity symbols inE to their key attributes,KEY(E) = A. Keys are visualized as underlined
attributes. BothDEX andPERare binary relations overE×E describing the dynamic evolution
of entities. DEX andPER are visualized with dotted directed lines labeled withDEX or PER,
respectively (e.g.AreaManager DEX TopManager).

The model-theoretic semantics associated with theERV T modeling language adopts the
snapshot2 representation of abstract temporal databases and temporal conceptual models [8].
Following this paradigm, the flow of timeT = 〈Tp, <〉, whereTp is a set of time points (or
chronons) and< is a binary precedence relation onTp, is assumed to be isomorphic to either
〈Z, <〉 or 〈N, <〉. Thus, a temporal database can be regarded as a mapping from time points
in T to standard relational databases, with the same interpretation of constants and the same
domain.

Definition 3.1 (ERV T Semantics). Let Σ be anERV T schema. Atemporal database state
for the schemaΣ is a tupleB = (T ,∆B ∪ ∆B

D, ·B(t)), such that: ∆B is a nonempty set
disjoint from∆B

D; ∆B
D =

⋃

Di∈D
∆B

Di
is the set of basic domain values used in the schema

Σ; ·B(t) is a function such that for eacht ∈ T , every domain symbolDi ∈ D, every entity
E ∈ E , every relationshipR ∈ R, and every attributeA ∈ A, we have:DB(t)

i = ∆B
Di

,

EB(t) ⊆ ∆B, RB(t) is a set ofU -labeled tuples over∆B, andAB(t) ⊆ ∆B × ∆B
D. B is a

legal temporal database stateif it satisfies all integrity constraints expressed in the schema. In
particular, the interpretation ofISA, ATT, REL, CARD, DISJ.COVER is similar to the atemporal
case (see [7, 4]). For the temporal constructs we have:

2The snapshot model represents the same class of temporal databases as thetimestampmodel [12, 13] defined
by adding temporal attributes to a relation [8].

4

For each snapshot entityE ∈ ES , if, e∈EB(t), then,∀t′∈T .e∈EB(t′).

For each temporary entityE ∈ ET , if, e∈EB(t), then,∃t′ 6= t.e 6∈EB(t′).

For each snapshot relationshipR∈RS, if, r∈RB(t), then,∀t′∈T .r∈RB(t′).

For each temporary relationshipR∈RT , if, r∈RB(t), then,∃t′ 6= t.r 6∈RB(t′).

For each entityE ∈ E with a snapshot attributeAi, i.e. 〈E,Ai〉 ∈ S, if,

(e ∈ EB(t) ∧ 〈e, ai〉 ∈ A
B(t)
i), then,∀t′ ∈ T .〈e, ai〉 ∈ A

B(t′)
i .

For each entityE ∈ E with a temporary attributeAi, i.e. 〈E,Ai〉 ∈ T, if,

(e ∈ EB(t) ∧ 〈e, ai〉 ∈ A
B(t)
i), then,∃t′ 6= t.〈e, ai〉 6∈ A

B(t′)
i .

For eachE ∈ E , A ∈ A such thatKEY(E) = A, then,〈E,Ai〉 ∈ S—i.e. a key is a snapshot
attribute—and∀a ∈ ∆B

D.#{e ∈ EB(t) | 〈e, a〉 ∈ AB(t)} ≤ 1.

For eachE1, E2 ∈ E , if E1 DEX E2, if, e ∈ E
B(t)
1 , then,∃t1 > t.e ∈ E

B(t1)
2 ;

For eachE1, E2 ∈ E , if E1 PERE2, if, e ∈ E
B(t)
1 , then,∀t′ > t.e ∈ E

B(t′)
2 .

4 Reasoning on Temporal Models

Reasoning tasks over a temporal conceptual model include verifying whether an entity, re-
lationship, or schema aresatisfiable, whether asubsumptionrelation exists between entities
or relationships, or checking whether a new schema propertyis logically impliedby a given
schema. The model-theoretic semantics associated withERV T allows us to formally define
these reasoning tasks.

Definition 4.1 (Reasoning inERV T). Let Σ be anERV T schema,E ∈ E an entity, and
R ∈ R a relationship. The following are the reasoning tasks overΣ:

1. E (R) is satisfiableif there exists a legal temporal database stateB for Σ such that
EB(t) 6= ∅ (RB(t) 6= ∅), for somet ∈ T ;

2. E (R) is liveness satisfiableif there exists a legal temporal database stateB for Σ such
that∀t∈T .∃t′>t.EB(t′) 6=∅ (RB(t′) 6=∅), i.e. E (R) is satisfiable infinitely often;

3. E (R) is globally satisfiableif there exists a legal temporal database stateB for Σ such
thatEB(t) 6= ∅ (RB(t) 6= ∅), for all t ∈ T ;

4. Σ is satisfiableif there exists a legal temporal database stateB for Σ that satisfies at least
one entity inΣ (B is said amodelfor Σ);

5. E1 (R1) is subsumedby E2 (R2) in Σ if every legal temporal database state forΣ is also
a legal temporal database state forE1 ISA E2 (R1 ISA R2);

6. A schemaΣ′ is logically implied by a schemaΣ over the same signature if every legal
temporal database state forΣ is also a legal temporal database state forΣ′.

Based on this formal characterization the following Proposition proves that reasoning ser-
vices (1-5) relative to entities are mutually reducible to each other. As far as relationships are
concerned, the reasoning services (1-3) can be reduced to analogous problems for entities.

5

> S

E1 VTE2 VT E0R

d

(1,n)

(a)

>1 S

E1 VTE2 VT >2R

d

(1,n)

(b)

E1 E0DEX

(c)

E1 S E0R
(1,n)

(d)

Figure 3: Reductions: (a) From Entity Sat to Schema Sat; (b) From Schema Sat to Entity
Liveness Sat; (c) From Entity Liveness Sat to Entity Global Sat; (d) From Entity Global Sat
to Entity Sat.

Indeed, we can verify whether a relationshipR is satisfiable inΣ by adding a new entity,
sayAR such that: (a)AR ISA E, with E an arbitrary entity participating in the relationship,
and (b)AR totally participates in the relationship. Then,R is satisfiable (liveness or globally
satisfiable) if and only ifAR is satisfiable (liveness or globally satisfiable). As far as relation-
ships subsumption is concerned, it can be reduced to relationships satisfiability by extending
ERV T to express disjoint hierarchies between relationships andthen applying the reduction
proposed by [6] for entities.

Proposition 4.2. There is a mutual reducibility between the reasoning services (1-5) inERV T .

Proof. (Sketch.)

1. Proving the mutual reducibility between satisfiability and subsumption inERV T can
be done similarly to [6].

2. Entity satisfiability reduces to schema satisfiability.
An arbitrary entity,E0, is satisfiable w.r.t.Σ iff a new schemaΣ′ is satisfiable.Σ′ is
obtained by adding toΣ the schema in Figure 3(a), where>, E1, E2 are new entities
such that∀E ∈ E .E ISA >, andR is a new binary relationship.

3. Schema satisfiability reduces to entity liveness satisfiability.
An arbitrary schemaΣ is satisfiable iff an entity is liveness satisfiable w.r.t. a new
schemaΣ′. Σ′ is obtained by adding toΣ the schema in Figure 3(b), where>1,>2, E1, E2

are new entities andR is a new binary relationship. Furthermore,{E | E ∈ E} COVER

>2. In particular,Σ is satisfiable iff>1 is liveness satisfiable w.r.t.Σ′.

4. Entity liveness satisfiability reduces to entity global satisfiability.
An arbitrary entity,E0, is liveness satisfiable w.r.t.Σ iff an entity is globally satisfiable
w.r.t. a new schemaΣ′. Σ′ is obtained by adding toΣ the new entityE1 as shown in
Figure 3(c). In particular,E0 is liveness satisfiable w.r.t.Σ iff E1 is globally satisfiable
w.r.t. Σ′.

6

5. Entity global satisfiability reduces to entity satisfiability.
An arbitrary entity,E0, is globally satisfiable w.r.t.Σ iff the new entityE1 is satisfiable
w.r.t. the new schemaΣ′. Σ′ is obtained by adding toΣ the schema in Figure 3(d),
whereE1 is new snapshot entity andR is a new binary relationship. 2

Finally, we show that all the reasoning problems can be reduced to a logical implication
problem. Indeed, checking whether an entityE is satisfiable can be reduced to logical im-
plication by choosingΣ′ = {E ISA A,E ISA B, {A,B} DISJ C}, with A,B,C arbitrary
entities. Then,E is satisfiable iffΣ 6|= Σ′. Given the result of Proposition 4.2, then the rea-
soning services (1-5) for entities are reducible to logicalimplication. Furthermore, given two
relationshipsR1, R2, checking for sub-relationship can be reduced to logical implication by
choosingΣ′ = {R1 ISA R2}.

5 Reasoning onERV T is Undecidable

We now show that reasoning on fullERV T is undecidable. The proof is based on a reduction
from the undecidable halting problem for a Turing machine tothe entity satisfiability problem
w.r.t. anERV T schemaΣ. We apply ideas similar to [9] (Sect. 7.5) to show undecidability
of certain products of modal logics. The proof can be dividedin the following two steps:1.
Reduction of the halting problem to concept satisfiability w.r.t. anALCF KB; 2. Reduction
of concept satisfiability w.r.t. anALCF KB to entity satisfiability w.r.t. anERV T schema.

Reasoning onALCF is undecidable

Using a reduction from the halting problem we now prove that reasoning involving anALCF

knowledge base is undecidable. In [9] the undecidability ofALCF is proved using: (a) com-
plex axioms—i.e. axioms can be combined using Boolean and modal operators—(b) both
global and local axioms—i.e. axioms can be either true at all time or true at some time, re-
spectively. SinceERV T is able to encode just simple global axioms, we modify the proof
presented in [9].

Proposition 5.1. Concept satisfiability w.r.t. anALCF KB is undecidable.

Proof. (Sketch.) A single-tape right-infinite deterministic Turing machine, M, is a triple
〈A,S, ρ〉, where:A is the tape alphabet(b ∈ A stands for blank);S is a finite set ofstates
with initial state, s0, andfinal state, s1; ρ is thetransition function, ρ : (S − {s1}) × A →
S × (A ∪ {L, R}). We construct anALCF KB, sayKBM , with a concept that is satisfiable
w.r.t. KBM iff the machineM does not halt. We introduce some shortcuts. The implication,
C → D, is equivalent to¬C t D. We definenext(C,D) as: C v 3

+D u ¬3
+
3

+D.
Finally, discover(C, {D1, . . . ,Dn}) is the disjoint covering betweenC andD1 . . . Dn. Let
A′ = A ∪ {£} ∪ (S × A), where£ 6∈ A is a symbol marking the left end of the tape. With
eachx ∈ A′ we introduce a conceptCx. We also use conceptsCs, Cl, Cr to denote the active
cell, its left and right cells, respectively. The conceptS1 denotes the final state. The halting
problem reduces to satisfiability ofC0. Extra conceptsC,D1,D2,D3, will be also used.R is
a global role.KBM contains the following axioms:

7

C0 v C£ u 3
+

C〈s0,b〉 (1)

> v ∃R.> (2)

next(C£, D1) (3)

next(D1, D2) (4)

C〈s0,b〉 v D1 (5)

C〈s0,b〉 v 2
+

Cb (6)

next(Cl, Cs) (7)

next(Cs, Cr) (8)

next(Cr, D3) (9)

C£ v Cl t 3
+

Cl (10)

Cl v Cα → ∀R.Cα′ (11)

Cs v Cβ → ∀R.Cβ′ (12)

Cr v Cγ → ∀R.Cγ′ (13)

Ca v (¬Cl u ¬Cs u ¬Cr) → ∀R.Ca, ∀a ∈ A ∪ {£} (14)

discover(S1, {C〈s1,a〉 | a ∈ A ∪ {£}}) (15)

discover(C, {Cx | x ∈ A
′}) (16)

discover(Cs, {C〈s,a〉 | 〈s, a〉 ∈ S × A}) (17)

Cs v ¬S1 (18)

with axioms (11–13) for each instruction,δ(α, β, γ) = 〈α′, β′, γ′〉, defined as

δ(ai, 〈s, aj〉, ak) =















〈ai, 〈s
′, a′j〉, ak〉, if ρ(s, aj) = 〈s′, a′j〉

〈〈s′, ai〉, aj , ak〉, if ρ(s, aj) = 〈s′, L〉 andai 6= £

〈£, 〈s′, aj〉, ak〉, if ρ(s, aj) = 〈s′, L〉 andai = £

〈ai, aj , 〈s
′, ak〉〉, if ρ(s, aj) = 〈s′, R〉

We can prove thatC0 is satisfiable w.r.t.KBM iff M has an infinite computation starting
from the empty tape. 2

ReducingALCF concept sat toERV T entity sat

We now show how to capture theALCF knowledge baseKBM with anERV T schema,ΣM .
The mapping is based on a similar reduction presented in [6] for capturingALC axioms. For
each atomic concept and role inKBM we introduce an entity and a relationship, respectively.
To simulate the universal concept,>, we introduce a snapshot entity,Top, that generalizes
all the entities inΣM . Additionally, the various axioms inKBM are encoded inERV T as
follows:

1. Axioms involvingdiscover are mapped using disjoint and covering hierarchies.

2. Axioms of the formC v D, with C,D atomic concepts are encoded asC ISA D.

3. For axioms of the formC v ¬D we construct the hierarchy in Figure 4(a).

4. For axioms of the formC v D1 t . . . t Dn we construct the hierarchy in Figure 4(b).

5. Axioms of the formC v ∀R.D are mapped together with the axiom> v ∃R.> by
introducing a new sub-relationship,RC , and consideringR as a functional role3. Figure 4(c)
shows the mapping whereR is a snapshot relationship to capture the fact thatR is a global
role inKBM .

6. For each axiom of the formC v 2
+D (C v 3

+D) we use a persistency (respectively,
dynamic extension) constraint:C PERD (respectively,C DEX D).

7. Axioms of the formnext(C,D) are mapped by using the dynamic extension constraint to
capture thatC v 3

+D. To capture thatC v ¬3
+
3

+D we rewrite it asC v 2
+
2

+¬D,
which, in turn, is encoded by the following axioms:C v 2

+C1; C1 v 2
+C2; C2 v ¬D.

Figure 4(d) shows the diagram that mapsnext axioms.

3ConsideringR as a functional role does not change theALCF undecidability proof.

8

Top S

DC

d

(a)

D

D1 D2 DnC

(b)

Top S

R S

RCC D
(1,1)

(1,1)

(c)

Top S

C2 DC1C

d

PERPER

DEX

(d)

Figure 4: Encoding axioms: (a)C v ¬D; (b) C v D1 t . . . t Dn; (c) C v ∀R.D and
> v ∃R.>; (d) next(C,D).

The above reductions are enough to capture all axioms inKBM . Indeed, axioms (11–13) have
the form:C v ¬C1t∀R.C2, while axioms (16) have the form:Ca v Cl tCstCr t∀R.Ca.
We are now able to prove the main result of this paper.

Theorem 5.2. Reasoning inERV T using persistency and dynamic constructs is undecidable.

Proof. Proving that the above reduction fromKBM to ΣM is true can be easily done by
checking the semantic equivalence between eachALCF axiom and its encoding (for a similar
proof see [6]). Then, the conceptC0 is satisfiable w.r.t.KBM iff the entity C0 is satisfiable
w.r.t. ΣM . Thus, because of Proposition 5.1, the halting problem can be reduced to reasoning
in ERV T . 2

Acknowledgments

I would like to thank Diego CAlvanese, Enrico Franconi, Sergio Tessaris and Frank Wolter
together with the anonymous referees for enlightening comments on earlier drafts of the paper.

References

[1] A. Artale. Reasoning on temporal conceptual schemas with dynamic constraints. In
Proc. of the 11th Int. Symposium on Temporal Representationand Reasoning, TIME’04.
IEEE Computer Society, July 2004.

9

[2] A. Artale and E. Franconi. Temporal ER modeling with description logics. InProc. of
the Int. Conference on Conceptual Modeling (ER’99). Springer-Verlag, 1999.

[3] A. Artale and E. Franconi. A survey of temporal extensions of description logics.Annals
of Mathematics and Artificial Intelligence, 30(”1-4”), 2001.

[4] Alessandro Artale, Enrico Franconi, and Federica Mandreoli. Description logics for
modelling dynamic information. In Jan Chomicki, Ron van derMeyden, and Gunter
Saake, editors,Logics for Emerging Applications of Databases. LNCS, Springer, 2003.

[5] Alessandro Artale, Enrico Franconi, Frank Wolter, and Michael Zakharyaschev. A tem-
poral description logic for reasoning about conceptual schemas and queries. In S. Flesca,
S. Greco, N. Leone, and G. Ianni, editors,Proc. of the 8th Joint European Conference
on Logics in Artificial Intelligence (JELIA-02), volume 2424 ofLNAI. Springer, 2002.

[6] Daniela Berardi, Andrea Cal̀ı, Diego Calvanese, and Giuseppe De Giacomo. Reasoning
on UML class diagrams. Technical Report 11-03, 2003.

[7] D. Calvanese, M. Lenzerini, and D. Nardi. Unifying class-based representation for-
malisms.J. of Artificial Intelligence Research, 11:199–240, 1999.

[8] J. Chomicki and D. Toman. Temporal logic in information systems. In J. Chomicki and
G. Saake, editors,Logics for Databases and Information Systems. Kluwer, 1998.

[9] D. Gabbay, A.Kurucz, F. Wolter, and M. Zakharyaschev.Many-dimensional modal
logics: theory and applications. Studies in Logic. Elsevier, 2003.

[10] H. Gregersen and J.S. Jensen. Conceptual modeling of time-varying information. Tech-
nical Report TimeCenter TR-35, Aalborg University, Denmark, 1998.

[11] C. S. Jensen, J. Clifford, S. K. Gadia, P. Hayes, and S. Jajodia et al. The Consensus
Glossary of Temporal Database Concepts. In O. Etzion, S. Jajodia, and S. Sripada,
editors,Temporal Databases - Research and Practice. Springer-Verlag, 1998.

[12] C. S. Jensen and R. T. Snodgrass. Temporal data management. IEEE Transactions on
Knowledge and Data Engineering, 111(1):36–44, 1999.

[13] C. S. Jensen, M. Soo, and R. T. Snodgrass. Unifying temporal data models via a con-
ceptual model.Information Systems, 9(7):513–547, 1994.

[14] S. Spaccapietra, C. Parent, and E. Zimanyi. Modeling time from a conceptual perspec-
tive. In Int. Conf. on Information and Knowledge Management (CIKM98), 1998.

[15] C. Theodoulidis, P. Loucopoulos, and B. Wangler. A conceptual modelling formalism
for temporal database applications.Information Systems, 16(3):401–416, 1991.

[16] F. Wolter and M. Zakharyaschev. Satisfiability problemin description logics with modal
operators. InProc. of the 6th International Conference on Principles of Knowledge
Representation and Reasoning (KR’98), pages 512–523, Trento, Italy, June 1998.

10

Computing the Least Common Subsumer

w.r.t. a Background Terminology∗

Franz Baader, Baris Sertkaya, and Anni-Yasmin Turhan
Theoretical Computer Science, TU Dresden, Germany
{baader,sertkaya,turhan}@tcs.inf.tu-dresden.de

Abstract

Methods for computing the least common subsumer (lcs) are usually restricted
to rather inexpressive DLs whereas existing knowledge bases are written in very
expressive DLs. In order to allow the user to re-use concepts defined in such
terminologies and still support the definition of new concepts by computing the
lcs, we extend the notion of the lcs of concept descriptions to the notion of the
lcs w.r.t. a background terminology.

1 Introduction and problem definition

Non-standard inferences such as computing the least common subsumer can be used
to support the bottom-up construction of DL knowledge bases, as introduced in [4, 5]:
instead of directly defining a new concept, the knowledge engineer introduces several
typical examples as objects, which are then automatically generalized into a concept
description by the system. This description is offered to the knowledge engineer as a
possible candidate for a definition of the concept. The task of computing such a con-
cept description can be split into two subtasks: computing the most specific concepts
of the given objects, and then computing the least common subsumer of these con-
cepts. The most specific concept (msc) of an object o (the least common subsumer (lcs)
of concept descriptions C1, . . . , Cn) is the most specific concept description C express-
ible in the given DL language that has o as an instance (that subsumes C1, . . . , Cn).
The problem of computing the lcs and (to a more limited extent) the msc has already
been investigated in the literature [11, 12, 4, 5, 21, 20, 19, 3, 9].

The methods for computing the least common subsumer are restricted to rather
inexpressive descriptions logics not allowing for disjunction (and thus not allowing
for full negation). In fact, for languages with disjunction, the lcs of a collection of
concepts is just their disjunction, and nothing new can be learned from building it. In
contrast, for languages without disjunction, the lcs extracts the “commonalities” of
the given collection of concepts. Modern DL systems like FaCT [18] and Racer [17]
are based on very expressive DLs, and there exist large knowledge bases that use this
∗This work has been supported by the German Research Foundation (DFG) under grants GRK

334/3 and BA 1122/4-3 and National ICT Australia Limited, Canberra Research Lab.

11

expressive power and can be processed by these systems [22, 23, 16]. In order to allow
the user to re-use concepts defined in such existing knowledge bases and still support
the user during the definition of new concepts with the bottom-up approach sketched
above, we propose the following extended bottom-up approach.

Consider a background terminology T defined in an expressive DL L2. When
defining new concepts, the user employs only a sublanguage L1 of L2, for which
computing the lcs makes sense. However, in addition to primitive concepts and roles,
the concept descriptions written in the DL L1 may also contain names of concepts
defined in T . Let us call such concept descriptions L1(T)-concept descriptions.

Definition 1 Given an L2-TBox T and a collection C1, . . . , Cn of L1(T)-concept
descriptions, the least common subsumer (lcs) of C1, . . . , Cn w.r.t. T is the most
specific L1(T)-concept description C that subsumes C1, . . . , Cn w.r.t. T , i.e., it is an
L1(T)-concept description D such that

1. Ci vT D for i = 1, . . . , n; D is a common subsumer.

2. if E is an L1(T)-concept description satisfying
Ci vT E for i = 1, . . . , n, then D vT E. D is least.

Depending on the DLs L1 and L2, least common subsumers of L1(T)-concept
descriptions w.r.t. an L2-TBox T may exist or not.

Note that the lcs only uses concept constructors from L1, but may also contain
concept names defined in the L2-TBox. This is the main distinguishing feature of
this new notion of a least common subsumer w.r.t. a background terminology. Let us
illustrate this by a small example.

Example 2 Assume that L1 is the DL EL (allowing for conjunction, existential re-
strictions, and the top concept) and L2 isALC (extending EL by negation, disjunction,
and value restrictions). Consider the ALC-TBox

T := {A ≡ P tQ},

and assume that we want to compute the lcs of the EL(T)-concept descriptions P and
Q. Obviously, A is the lcs of P and Q w.r.t. T . If we were not allowed to use the
name A defined in T , then the only common subsumer of P and Q in EL would be
the top concept >.

In the following we always assume that DLs L1 and L2 and an L2-TBox are given,
and if we talk about (least) common subsumers we mean the ones in L1(T), and not
in L1 or L2. In the next section, we consider the case where L1 is EL and L2 is ALC
in more detail. We show the following two results:

• If T is an acyclic ALC-TBox, then the lcs w.r.t. T of EL(T)-concept descriptions
always exists;

• If T is a general ALC-TBox allowing for general concept inclusion axioms
(GCIs), then the lcs w.r.t. T of EL(T)-concept descriptions need not exist.

12

At first sight, one might assume that the first result can be shown using results on
approximation of DLs [10]. In fact, given an acyclic ALC-TBox T and EL(T)-concept
descriptions C1, . . . , Cn, one can first unfold C1, . . . , Cn into ALC-concept descriptions
C ′1, . . . , C

′
n, then build the ALC-concept description C := C ′1 t . . . t C ′n, and finally

approximate C from above by an EL-concept description E. However, E then does
not contain concept names defined in T , and thus it is not necessarily the least EL(T)-
concept description subsuming C1, . . . , Cn w.r.t. T (see Example 2 above). One might
now assume that this can be overcome by applying known results on rewriting concept
descriptions w.r.t. a terminology [6]. However, in Example 2, the concept description
E obtained using the approach based on approximation sketched above is >, and this
concept cannot be rewritten using the TBox T := {A ≡ P tQ}.

The result on the existence and computability of the lcs w.r.t. a background ter-
minology shown in the next section is theoretical in the sense that it does not yield a
practical algorithm. In Section 3 we follow a more practical approach. Assume that
L1 is a DL for which least common subsumers (without background TBox) always
exist. Given L1(T)-concept descriptions C1, . . . , Cn, one can compute a common sub-
sumer w.r.t. T by just ignoring T , i.e., by treating the defined names in C1, . . . , Cn as
primitive and computing the lcs of C1, . . . , Cn in L1. In Section 3 we sketch practical
methods for computing “good” common subsumers w.r.t. background TBoxes, which
may not be the least common subsumers, but which are better than the common
subsumers computed by just ignoring the TBox.

2 Two exact theoretical results

In this section, we assume that L1 is EL and L2 is ALC. In addition, we assume
that the sets of concept and role names available for building concept descriptions are
finite. First, we consider the case of acyclic TBoxes.

Theorem 3 Let T be an acyclic ALC-TBox. The lcs of EL(T)-concept descriptions
w.r.t. T always exists and can effectively be computed.

The theorem is an easy consequence of the following facts:

1. If D is an EL(T)-concept description of role depth k, then there are (not neces-
sarily distinct) roles r1, . . . , rk such that D v ∃r1.∃r2. . . .∃rk.>

2. Let C be an EL(T)-concept description, and assume that the ALC-concept
description C ′ obtained by unfolding C w.r.t. T is satisfiable and has the role
depth ` < k. Then C ′ 6v ∃r1.∃r2. . . .∃rk.>, and thus C 6vT ∃r1.∃r2. . . .∃rk.>.
In fact, the standard tableau-based algorithm for ALC applied to C ′ constructs
a tree-shaped interpretation of depth at most ` whose root individual belongs
to C ′, but not to ∃r1.∃r2. . . .∃rk.>.

3. For a given bound k on the role depth, there is only a finite number of inequiv-
alent EL-concept descriptions of role depth at most k. This is a consequence of
the fact that we have assumed that the sets of concept and role names are finite,
and can be shown by induction on k.

13

To show that these facts imply Theorem 3 consider the EL(T)-concept descriptions
C1, . . . , Cn. If all of them are unsatisfiable w.r.t. T , then one of them (e.g., C1) can
be taken as their lcs w.r.t. T . Otherwise, assume that Ci is satisfiable w.r.t. T . Let
C ′i be the ALC-concept description obtained by unfolding Ci w.r.t. T , and assume
that its role depth is `. Now, take an arbitrary EL(T)-concept description E that is
a common subsumer of C1, . . . , Cn w.r.t. T . Then, the role depth of E is at most `.
Otherwise, Ci vT E would be in contradiction to the above facts 1. and 2. Thus, fact
3. implies that, up to equivalence, there are only finitely many common subsumers of
C1, . . . , Cn in EL(T). The least common subsumer is simply the conjunction of these
finitely many EL(T)-concept descriptions.

It is not hard to see that the above proof is effective in the sense that one can effec-
tively compute (representatives of the equivalence classes of) all common subsumers
of C1, . . . , Cn, and then build their conjunction. However, this brute-force algorithm
is probably not useful in practice.

Second, we consider the case of TBoxes allowing for GCIs.

Theorem 4 Let T := {A v ∃r.A, B v ∃r.B}. Then, the lcs of the EL(T)-concept
descriptions A,B w.r.t. T does not exist.

Proof. Let En denote the EL-concept description ∃r.∃r. . . .∃r.> of role depth n. For
all n ≥ 0, En is a common subsumer of A and B w.r.t. T . Assume that D is a least
common subsumer of A and B, and let ` be the role depth of D. If D contains neither
A nor B, then D 6vT En for all n > `, which is a contradiction. However, if D contains
A, then it is easy to see that D cannot be a subsumer of B, and if D contains B,
then it cannot be a subsumer of A. Consequently, such a least common subsumer D
cannot exist.

Note that this example is very similar to the one showing non-existence of the lcs
in EL with cyclic terminologies interpreted with descriptive semantics [2]. However,
the proof of the result in [2] is more complicated since there one is allowed to extend
the terminology in order to build the lcs.

3 A practical approximative approach

We have seen above that the lcs w.r.t. general background TBoxes need not exist. In
addition, even in the case of acyclic TBoxes, where the lcs always exists, we do not
have a practical algorithm for computing the lcs. In the bottom-up construction of
DL knowledge bases, it is not really necessary to use the least common subsumer,1

a common subsumer that is not too general can also be used. In this section, we
introduce an approach for computing such “good” common subsumers w.r.t. a back-
ground TBox. In order to explain this approach, we must first recall how the lcs of
EL-concept descriptions can be computed.

1Using it may even result in over-fitting.

14

The lcs of EL-concept descriptions

Since the lcs of n concept descriptions can be obtained by iterating the application
of the binary lcs, we describe how to compute the lcs lcsEL(C,D) of two EL-concept
descriptions C,D.

In order to describe this algorithm, we need to introduce some notation. Let
C be an EL-concept description. Then names(C) denotes the set of concept names
occurring in the top-level conjunction of C, roles(C) the set of role names occurring
in an existential restriction on the top-level of C, and restrictr(C) denotes the set of
all concept descriptions occurring in an existential restriction on the role r on the
top-level of C.

Now, let C,D be EL-concept descriptions. Then we have

lcsEL(C,D) = u
A∈names(C)∩names(D)

A u

u
r∈roles(C)∩roles(D)

u
E∈restrictr(C),F∈restrictr(D)

∃r.lcsEL(E,F)

Here, the empty conjunction stands for the top concept >. The recursive call of
lcsEL is well-founded since the role depth of the concept descriptions in restrictr(C)
(restrictr(D)) is strictly smaller than the role depth of C (D).

A good common subsumer in EL w.r.t. a background TBox

Let T be a background TBox (acyclic or general) in some DL L2 extending EL such
that subsumption in L2 w.r.t. this class of TBoxes is decidable. Let C,D be EL(T)-
concept descriptions. If we ignore the TBox, then we can simply apply the above
algorithm for EL-concept descriptions to compute a common subsumer. However, in
this context taking

u
A∈names(C)∩names(D)

A

is not the best we can do. In fact, some of these concept names may be constrained
by the TBox, and thus there may be relationships between them that we ignore by
simply using the intersection.

Instead, we propose to take the smallest (w.r.t. subsumption w.r.t. T) conjunction
of concept names that subsumes (w.r.t. T) both

u
A∈names(C)

A and u
B∈names(D)

B.

We modify the above lcs algorithm in this way, not only on the top level of the input
concepts, but also in the recursive steps. It is easy to show that the EL(T)-concept
description computed by this modified algorithm still is a common subsumer of A,B
w.r.t. T . In general, this common subsumer will be more specific than the one obtained
by ignoring T , though it need not be the least common subsumer.

15

As a simple example, consider the ALC-TBox T :

NoSon ≡ ∀has-child.Female,

NoDaughter ≡ ∀has-child.¬Female,

SonRichDoctor ≡ ∀has-child.(Female t (Doctor u Rich))
DaughterHappyDoctor ≡ ∀has-child.(¬Female t (Doctor u Happy))

ChildrenDoctor ≡ ∀has-child.Doctor

and the EL-concept descriptions

C := ∃has-child.(NoSon u DaughterHappyDoctor),
D := ∃has-child.(NoDaughter u SonRichDoctor).

If we ignore the TBox, then we obtain the EL-concept description ∃has-child.> as
common subsumer of C,D. However, if we take into account that both NoSon u
DaughterHappyDoctor and NoDaughter u SonRichDoctor are subsumed by the concept
ChildrenDoctor, then we obtain the more specific common subsumer

∃has-child.ChildrenDoctor.

Computing the subsumption lattice of conjunctions of concept names

In order to obtain a practical lcs algorithm realizing the approach described above,
we must be able to compute in an efficient way the smallest conjunction of concept
names that subsumes two such conjunctions w.r.t. T . We propose to precompute this
information using methods from formal concept analysis (FCA) [15]. In FCA, the
knowledge about an application domain is given by means of a formal context.

Definition 5 A formal context is a triple K = (O,P,S), where O is a set of objects,
P is a set of attributes (or properties), and S ⊆ O×P is a relation that connects each
object o with the attributes satisfied by o.

Let K = (O,P,S) be a formal context. For a set of objects A ⊆ O, A′ is the set of
attributes that are satisfied by all objects in A, i.e.,

A′ := {p ∈ P | ∀a ∈ A: (a, p) ∈ S}.

Similarly, for a set of attributes B ⊆ P, B′ is the set of objects that satisfy all
attributes in B, i.e.,

B′ := {o ∈ O | ∀b ∈ B: (o, b) ∈ S}.

A formal concept is a pair (A,B) consisting of an extent A ⊆ O and an intent
B ⊆ P such that A′ = B and B′ = A. Such formal concepts can be hierarchically
ordered by inclusion of their extents, and this order (denoted by ≤ in the following)
induces a complete lattice, called the concept lattice of the context. Given a formal
context, the first step for analyzing this context is usually to compute the concept
lattice.

16

In many applications, one has a large (or even infinite) set of objects, but only a
relatively small set of attributes. Also, the context is not necessarily given explicitly
as a cross table; it is rather “known” to a domain “expert”. In such a situation,
Ganter’s attribute exploration algorithm [13, 15] has turned out to be an efficient
approach for computing an appropriate representation of the concept lattice. This
algorithm is interactive in the sense that at certain stages it asks the “expert” certain
questions about the context, and then continues using the answers provided by the
expert. Once the representation of the concept lattice is computed, certain questions
about the lattice (e.g. “What is the supremum of two given concepts?”) can efficiently
be answered using this representation.

Recall that we are interested in the subsumption lattice2 of conjunctions of concept
names (some of which may occur in GCIs or concept definitions of an L2-TBox T).
In order to apply attribute exploration to this task, we define a formal context whose
concept lattice is isomorphic to the subsumption lattice we are interested in. This
problem was first addressed in [1], where the objects of the context were basically all
possible counterexamples to subsumption relationships, i.e., interpretations together
with an element of the interpretation domain. The resulting “semantic context” has
the disadvantage that an “expert” for this context must be able to deliver such coun-
terexample, i.e., it is not sufficient to have a simple subsumption algorithm for the
DL in question. One needs one that, given a subsumption problem “C v D?”, is able
to compute a counterexample if the subsumption relationship does not hold, i.e., an
interpretation I and an element d of its domain such that d ∈ CI \DI .

To overcome this problem, a new “syntactic context” was recently defined in [8]:

Definition 6 The context KT = (O,P,S) is defined as follows:

O := {E | E is an L2 concept description};
P := {A1, . . . , An} is the set of concept names occurring in T ,
S := {(E,A) | E vT A}.

The following is shown in [8]:

Theorem 7 (1) The concept lattice of the context KT is isomorphic to the subsump-
tion hierarchy of all conjunctions of subsets of P w.r.t. T .
(2) Any decision procedure for subsumption w.r.t. TBoxes in L2 functions as an expert
for the context KT .

It should be noted that formal concept analysis and attribute exploration has
already been applied in a different context to the problem of computing the least
common subsumer. In [7], the following problem is addressed: given a finite collection
C of concept descriptions, compute the subsumption hierarchy of all least common sub-
sumers of subsets of C. Again, this extended subsumption hierarchy can be computed
by defining a formal context whose concept lattice is isomorphic to the subsumption

2In general, the subsumption relation induces a partial order, and not a lattice structure on con-
cepts. However, in the case of conjunctions of concept names, all infima exist, and thus also all
suprema.

17

lattice we are interested in, and then applying attribute exploration (see [7] for de-
tails). In [8], it is shown that this approach and the one sketched above can be seen
as two instances of a more abstract approach.

Extension to DLs more expressive than EL

For the DL ALE (which extends EL by value restrictions and atomic negation), an
lcs algorithm similar to the one described for EL exists [5]. The main differences
are that (i) the concept descriptions must first be normalized (which may lead to
an exponential blow-up); (ii) the recursive calls also deal with value restrictions, and
not just existential restrictions; and (iii) on the top level, one has to deal with a
conjunction of concept names and negated concept names. In the lcs algorithm, the
conjunctions mentioned in (iii) are treated similarly to the case of EL (unless they are
contradictory): one separately computes the intersections of the positive and of the
negative concept names.

When adapting this algorithm to one that computes “good” common subsumers in
ALE w.r.t. a background TBox, all we have to change is to compute a conjunction of
concept names and negated concept names that is the most specific such conjunction
subsuming the given conjunctions w.r.t. the TBox, rather than building the intersec-
tions. It is easy to see that attribute exploration can again be used to precompute
the necessary information. Basically, the only change is that now both concept names
and negated concept names are attributes in the formal context.

4 Future work

The attributes of the formal contexts introduced in our approach (concept names and
possibly negated concept names) are not independent of each other. For example, the
name A and its negation ¬A are disjoint, i.e., it is not possible for an object (other
than ⊥) of the context to satisfy both A and ¬A. In addition, the TBox induces
subsumption relationships between the attributes (and this information may already
be precomputed for the given TBox during classification). Thus, one can try to apply
a modified version of attribute exploration that can use such background knowledge
[14] to speed up the exploration process.

References

[1] Franz Baader. Computing a minimal representation of the subsumption lattice
of all conjunctions of concepts defined in a terminology. In G. Ellis, R. A. Levin-
son, A. Fall, and V. Dahl, editors, Knowledge Retrieval, Use and Storage for
Efficiency: Proc. of the 1st Int. KRUSE Symposium, pages 168–178, 1995.

[2] Franz Baader. Computing the least common subsumer in the description logic EL
w.r.t. terminological cycles with descriptive semantics. In Proceedings of the 11th
International Conference on Conceptual Structures, ICCS 2003, volume 2746 of
Lecture Notes in Artificial Intelligence, pages 117–130. Springer-Verlag, 2003.

18

[3] Franz Baader. Least common subsumers and most specific concepts in a descrip-
tion logic with existential restrictions and terminological cycles. In Georg Gottlob
and Toby Walsh, editors, Proceedings of the 18th International Joint Conference
on Artificial Intelligence, pages 319–324. Morgan Kaufmann, 2003.

[4] Franz Baader and Ralf Küsters. Computing the least common subsumer and the
most specific concept in the presence of cyclicALN -concept descriptions. In Proc.
of the 22th German Annual Conf. on Artificial Intelligence (KI’98), volume 1504
of Lecture Notes in Computer Science, pages 129–140. Springer-Verlag, 1998.

[5] Franz Baader, Ralf Küsters, and Ralf Molitor. Computing least common sub-
sumers in description logics with existential restrictions. In Proc. of the 16th Int.
Joint Conf. on Artificial Intelligence (IJCAI-99), pages 96–101, 1999.

[6] Franz Baader, Ralf Küsters, and Ralf Molitor. Rewriting concepts using termi-
nologies. In Proc. of the 7th Int. Conf. on the Principles of Knowledge Represen-
tation and Reasoning (KR-00), pages 297–308, 2000.

[7] Franz Baader and Ralf Molitor. Building and structuring description logic knowl-
edge bases using least common subsumers and concept analysis. In B. Ganter
and G. Mineau, editors, Conceptual Structures: Logical, Linguistic, and Compu-
tational Issues – Proceedings of the 8th International Conference on Conceptual
Structures (ICCS2000), volume 1867 of Lecture Notes In Artificial Intelligence,
pages 290–303. Springer-Verlag, 2000.

[8] Franz Baader and Baris Sertkaya. Applying formal concept analysis to description
logics. In P. Eklund, editor, Proceedings of the 2nd International Conference
on Formal Concept Analysis (ICFCA 2004), volume 2961 of Lecture Notes in
Computer Science, pages 261–286, Sydney, Australia, 2004. Springer-Verlag.

[9] S. Brandt, A.-Y. Turhan, and R. Küsters. Extensions of non-standard inferences
for description logics with transitive roles. In M. Vardi and A. Voronkov, editors,
Proceedings of the tenth International Conference on Logic for Programming and
Automated Reasoning (LPAR’03), LNCS. Springer, 2003.

[10] Sebastian Brandt, Ralf Küsters, and Anni-Yasmin Turhan. Approximation and
difference in description logics. In D. Fensel, F. Giunchiglia, D. McGuiness, and
M.-A. Williams, editors, Proceedings of the Eighth International Conference on
Principles of Knowledge Representation and Reasoning (KR2002), pages 203–
214, San Francisco, CA, 2002. Morgan Kaufman.

[11] William W. Cohen and Haym Hirsh. Learning the CLASSIC description logics:
Theoretical and experimental results. In J. Doyle, E. Sandewall, and P. Torasso,
editors, Proc. of the 4th Int. Conf. on the Principles of Knowledge Representation
and Reasoning (KR-94), pages 121–133, 1994.

[12] Michael Frazier and Leonard Pitt. CLASSIC learning. Machine Learning, 25:151–
193, 1996.

19

[13] Bernhard Ganter. Finding all closed sets: A general approach. Order, 8:283–290,
1991.

[14] Bernhard Ganter. Attribute exploration with background knowledge. Theoretical
Computer Science, 217(2):215–233, 1999.

[15] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis: Mathematical
Foundations. Springer-Verlag, Berlin, 1999.

[16] Volker Haarslev and Ralf Möller. High performance reasoning with very large
knowledge bases: A practical case study. In Proc. of the 17th Int. Joint Conf. on
Artificial Intelligence (IJCAI-01), 2001.

[17] Volker Haarslev and Ralf Möller. RACER system description. In Proc. of the
Int. Joint Conf. on Automated Reasoning (IJCAR-01), 2001.

[18] Ian Horrocks. Using an expressive description logic: FaCT or fiction? In Proc. of
the 6th Int. Conf. on the Principles of Knowledge Representation and Reasoning
(KR-98), pages 636–647, 1998.

[19] Ralf Küsters and Alex Borgida. What’s in an attribute? Consequences for the
least common subsumer. Journal of Artificial Intelligence Research, 14:167–203,
2001.

[20] Ralf Küsters and Ralf Molitor. Approximating most specific concepts in de-
scription logics with existential restrictions. In Franz Baader, Gerd Brewka, and
Thomas Eiter, editors, Proceedings of the Joint German/Austrian Conference
on Artificial Intelligence (KI 2001), volume 2174 of Lecture Notes In Artificial
Intelligence, pages 33–47, Vienna, Austria, 2001. Springer-Verlag.

[21] Ralf Küsters and Ralf Molitor. Computing least common subsumers in ALEN .
In Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI-01), pages
219–224, 2001.

[22] Alan Rector and Ian Horrocks. Experience building a large, re-usable medical
ontology using a description logic with transitivity and concept inclusions. In Pro-
ceedings of the Workshop on Ontological Engineering, AAAI Spring Symposium
(AAAI’97), Stanford, CA, 1997. AAAI Press.

[23] Stefan Schultz and Udo Hahn. Knowledge engineering by large-scale knowl-
edge reuse—experience from the medical domain. In Anthony G. Cohn, Fausto
Giunchiglia, and Bart Selman, editors, Proc. of the 7th Int. Conf. on the Princi-
ples of Knowledge Representation and Reasoning (KR-00), pages 601–610. Mor-
gan Kaufmann, 2000.

20

On Subsumption and Instance Problem in ELH
w.r.t. General TBoxes

Sebastian Brandt∗

Institut für Theoretische Informatik
TU Dresden, Germany

brandt@tcs.inf.tu-dresden.de

Abstract

Recently, it was shown for the DL EL that subsumption and instance problem
w.r.t. cyclic terminologies can be decided in polynomial time. In this paper, we
show that both problems remain tractable even when admitting general concept
inclusion axioms and simple role inclusion axioms.

1 Motivation

In the area of DL based knowledge representation, the utility of general TBoxes,
i.e., TBoxes that allow for general concept inclusion (GCI) axioms, is well known.
For instance, in the context of the medical terminology Galen [18], GCIs are used
especially for two purposes [16]:

• indicate the status of objects: instead of introducing several concepts for the
same concept in different states, e.g., normal insulin secretion, abnormal but harmless

insulin secretion, and pathological insulin secretion, only insulin secretion is defined while
the status, i.e., normal, abnormal but harmless, and pathological, is implied by GCIs
of the form . . . v ∃has status.pathological.

• to bridge levels of granularity and add implied meaning to concepts. A classical
example [11] is to use a GCI like

ulcer u ∃has loc.stomach

v ulcer u ∃has loc.(lining u ∃is part of.stomach)

to render the description of ‘ulcer of stomach’ more precisely to ‘ulcer of lining
of stomach’ if it is known that ‘ulcer of stomach’ is specific of the lining of the
stomach.

It has been argued that the use of GCIs facilitates the re-use of data in applications of
different levels of detail while retaining all inferences obtained from the full descrip-
tion [18]. Hence, to examine reasoning w.r.t. general TBoxes has a strong practical
motivation.
∗Supported by the DFG under Grant BA 1122/4-3

21

Research on reasoning w.r.t. general TBoxes has mainly focused on very expres-
sive DLs, reaching as far as, e.g., ALCNR [5] and SHIQ [12], in which deciding
subsumption of concepts w.r.t. general TBoxes is EXPTIME hard. Fewer results exist
on subsumption w.r.t. general terminologies in DLs below ALC. In [9] the problem
is shown to remain EXPTIME complete for a DL providing only conjunction, value
restriction and existential restriction. The same holds for the small DL AL which al-
lows for conjunction, value and unqualified existential restriction, and primitive nega-
tion [7]. Even for the simple DL FL0, which only allows for conjunction and value
restriction, subsumption w.r.t. cyclic TBoxes with descriptive semantics is PSPACE
hard [14], implying hardness for general TBoxes.

Recently, however, it was shown for the DL EL that subsumption and instance
problem w.r.t. cyclic terminologies can be decided in polynomial time [3, 2]. In the
present paper we show that even w.r.t. general ELH-TBoxes, including GCIs and
simple role inclusion axioms, subsumption and instance problem remain tractable. A
surprising result given that DL systems usually employed for reasoning over general
terminologies implement—highly optimized—EXPTIME algorithms [13, 10]. Similarly,
Racer [10], the only practicable reasoner for ABox reasoning w.r.t. general TBoxes,
uses an EXPTIME algorithm for the very expressive DL ALCNHR+ .

The paper is organized as follows. Basic definitions related to general ELH TBoxes
are introduced in Section 2. In Sections 3 and 4 we show how to decide subsumption
and instance problem, respectively, w.r.t. general ELH-TBoxes in polynomial time.
All details and full proofs of our results can be found in our technical report [4].

2 General TBoxes in ELH
Concept descriptions are inductively defined with the help of a set of concept construc-
tors, starting with a set Ncon of concept names and a set Nrole of role names. In this
paper, we consider the DL ELH which provides the concept constructors top-concept
(>), conjunction (C uD), and existential restrictions (∃r.C). As usual, ELH concept
descriptions are interpreted w.r.t. a model-theoretic semantics, see [4] for details.

An EL-terminology (called EL-TBox) is a finite set T of axioms of the form C v D
(called GCI) or C .= D (called definition iff C ∈ Ncon) or r v s (called simple role
inclusion axiom (SRI)), where C and D are concept descriptions defined in L and
r, s ∈ Nrole. A concept name A ∈ Ncon is called defined in T iff T contains one or
more axioms of the form A v D or A .= D. The size of T is defined as the sum of the
sizes of all axioms in T . Denote by NTcon the set of all concept names occurring in T
and by NTrole the set of all role names occurring in T . A TBox that may contain GCIs
is called general. Denote by ELH the extension of EL by SRIs in TBoxes.

An interpretation I is a model of T iff for every GCI C v D ∈ T it holds that
CI ⊆ DI , for every definition C .= D it holds that CI = DI , and for every SRI r v s
it holds that rI ⊆ sI . A concept description C subsumes a concept description D
w.r.t. T (C vT D) iff CI ⊆ DI in every model I of T . C and D are equivalent w.r.t.
T (C ≡T D) iff they subsume each other w.r.t. T .

An ELH-ABox is a finite set of assertions of the form A(a) (called concept assertion)

22

or r(a, b) (called role assertion), where A ∈ Ncon, r ∈ Nrole, and a, b are individual
names from a set Nind. I is a model of a TBox T together with an ABox A iff I is a
model of T and aI ∈ ∆I such that all assertions in A are satisfied, i.e., aI ∈ AI for
all A(a) ∈ A and (aI , bI) ∈ rI for all r(a, b) ∈ A. An individual name a is an instance
of C w.r.t. T (A |=T C(a)) iff aI ∈ AI for all models I of T together with A. Denote
by NAind the set of all individual names occurring in an ABox A.

The above semantics for TBoxes and ABoxes is usually called descriptive seman-
tics [15]. In case of an empty TBox, we write C v D instead of C v∅ D and
analogously C ≡ D instead of C ≡∅ D.

Example 1 As an example of what can be expressed by an ELH-TBox, consider
the following TBox showing in an extremely simplified fashion a part of a medical
terminology.

Pericardium v Tissue u ∃cont in.Heart

Pericarditis v Inflammation

u ∃has loc.Pericardium

Inflammation v Disease u ∃acts on.Tissue

Disease u ∃has loc.∃comp of.Heart v Heartdisease

u ∃is state.NeedsTreatment

cont in v comp of

The TBox contains four GCIs and one SRI, stating, e.g., that Pericardium is tissue
contained in the heart and that a diesease located in a component of the heart is
a heart disease and requires treatment. Without going into detail, one can check
that Pericarditis would be classified as a heart disease requiring treatment because,
as stated in the TBox, Pericarditis is a disease located in the Pericardium contained
in the heart, and everything contained in something is a component of it.1

3 Subsumption in ELH w.r.t. general TBoxes

We aim to show that subsumption of ELH concepts w.r.t. general TBoxes can be de-
cided in polynomial time. A natural question is whether we may not simply utilize an
existing decision procedure for a more expressive DL which might exhibit polynomial
time complexity when applied to ELH-TBoxes. Using the standard tableaux algorithm
deciding consistency of general ALC-TBoxes [1] as an example, one can show that this
approach in general does not bear fruit, even for the sublanguage EL, see [4].

Hence, new techniques are required exploiting the simpler structure of general
ELH-TBoxes better. The first step in our approach is to transform TBoxes into a
normal form which limits the use of complex concept descriptions to the most basic
cases.

1The example is only supposed to show the features of ELH and in no way claims to be adequate
from a Medical KR point of view.

23

Definition 2 (Normalized ELH-TBox) Let T be an ELH-TBox over Ncon and Nrole.
T is normalized iff (i) T contains only GCIs and SRIs, and, (ii) all of the GCIs have
one of the following forms:

A v B
A1 uA2 v B

A v ∃r.B
∃r.A v B,

where A,A1, A2, B represent concept names from Ncon or the top concept >.

Such a normal form can be computed by exhaustively applying the following trans-
formation rules.

Definition 3 (Normalization rules) Let T be an ELH-TBox over Ncon and Nrole.
For every ELH-concept description C,D,E over Nrole ∪ {>} and for every r ∈ Nrole,
the ELH-normalization rules are defined modulo commutativity of conjunction (u) as
follows:

NF1 C
.= D −→ {C v D, D v C}

NF2 Ĉ uD v E −→ {Ĉ v A, A uD v E}
NF3 ∃r.Ĉ v D −→ {Ĉ v A, ∃r.A v D}
NF4 C v ∃r.D̂ −→ {C v ∃r.A, A v D̂}

NF5 C v D u E −→ {C v D, C v E}

where Ĉ, D̂ denote non-atomic concept descriptions and A denotes a new concept
name from Ncon. Applying a rule G −→ S to T changes T to (T \ {G}) ∪ S. The
normalized TBox norm(T) is defined by exhaustively applying Rules NF1 to NF4 and,
after that, exhaustively applying Rule NF5.

The size of T is increased only linearly by exhaustive application of Rule NF1.
Since this rule never becomes applicable as a consequence of Rules NF2 to NF5, we may
restrict our attention to Rules NF2 to NF5. A single application of one of the Rules NF2

to NF4 increases the size of T only by a constant, introducing a new concept name and
splitting one GCI into two. Exhaustive application therefore produces an ontology of
linear size in the size of T .

After exhaustive application of Rules NF1 to NF4, the left-hand side of every GCI
is of constant size. Hence, applying Rule NF5 exhaustively similarly yields an ontology
of linear size in T . Conseqently, the following lemma holds.

Lemma 4 The normalized TBox norm(T) can be computed in linear time in the size
of T . The resulting ontology is of linear size in the size of T .

24

ISR If s ∈ Si(r) and s v t ∈ T and t 6∈ Si+1(r)
then Si+1(r) := Si+1(r) ∪ {t}

IS1 If A1 ∈ Si(α) and A1 v B ∈ T and B 6∈ Si+1(α)
then Si+1(α) := Si+1(α) ∪ {B}

IS2 If A1, A2 ∈ Si(α) and A1 uA2 v B ∈ T
and B 6∈ Si+1(α) then Si+1(α) := Si+1(α) ∪ {B}

IS3 If A1 ∈ Si(α) and A1 v ∃r.B ∈ T
and B1 ∈ Si(B) and s ∈ Si(r) and ∃s.B1 v C ∈ T
and C 6∈ Si+1(α) then Si+1(A) := Si+1(α) ∪ {C}

Figure 1: Rules for implication sets

Note that applying Rule NF5 before exhaustive application of the other rules may
produce a terminology of quadratic size in the size of T .

Our strategy is, for every concept name A ∈ NTcon and >, to compute a set of
concept names S∗(A) with the following property: whenever in some point x in a
model of T the concept A holds then every concept in S∗(A) necessarily also holds in
x. Similarly, for every role r we want to represent by S∗(r) the set of all roles included
in r. The simple structure of GCIs in normalized TBoxes allows us to define such sets
as follows. To simplify notation, let NT ,>con := NTcon ∪ {>}.

Definition 5 (Implication set) Let T denote a normalized ELH-TBox T over Ncon

and Nrole. For every A ∈ NT ,>con (r ∈ NTrole) and every i ∈ N, the set Si(A) (Si(r))
is defined inductively, starting by S0(A) := {A,>} (S0(r) := {r}). For every i ≥ 0,
Si+1(A) (Si+1(r)) is obtained by extending Si(A) (Si(r)) by exhaustive application
of the extension rules shown in Figure 1, where α ∈ NT ,>con . The implication set
S∗(A) of A is defined as the infinite union S∗(A) :=

⋃
i≥0 Si(A). Analogously, define

S∗(r) :=
⋃
i≥0 Si(r).

Note that the successor Si+1(A) of some Si(A) is generally not the result of only a
single rule application. Si+1(A) is complete only if no more rules are applicable to any
Si(B) or Si(r). Implication sets induce a reflexive and transitive but not symmetric
relation on NT ,>con and NTrole, since B ∈ S∗(A) does not imply A ∈ S∗(B). We have to
show that the idea underlying implication sets is indeed correct. Hence, the occurrence
of a concept name B in S∗(A) implies that A vT B and vice versa.

Lemma 6 For every normalized ELH-TBox over Ncon and Nrole, (i) for every r, s ∈
NTrole, s ∈ S∗(r) iff r vT s, and (ii) for every A,B ∈ NT ,>con it holds that B ∈ S∗(A) iff
A vT B.

We give a proof sketch, the full proof is shown in [4]. For Claim (i), obviously
r vT s iff (r, s) is in the transitive closure induced by all s′ v t′ ∈ T . Exactly this
closure is computed breadth-first by means of Rule ISR.

For the direction (⇒) of Claim (ii), assume x ∈ AI for some model I of T and
B ∈ S∗(A). Proof by induction over the minimal n with B ∈ Sn(A). For n = 0, B ∈

25

{A,>}, implying x ∈ BI . For n > 0, we distinguish the rule which caused the inclusion
of B in the ith step. In each case the induction hypothesis for the precondition of
Rule IS1 to IS3 implies the semantical consequence x ∈ BI . For instance, if B has been
included in Sn(A) as a result of Rule IS3 then there exist concept names A1, A2, A3 ∈
NT ,>con such that, on the one hand, A1 ∈ Sn−1(A) and G := A1 v ∃r.A2 ∈ T , and
on the other hand, A3 ∈ Sn−1(A2) and H := ∃s.A3 v B ∈ T with s ∈ Sn−1(r). By
induction hypothesis, r vT s, implying by G that x ∈ (∃r.A2)I . Since A3 ∈ Sn−1(A2)
the induction hypothesis implies x ∈ AI1 and x ∈ (∃s.A3)I , yielding by H that x ∈ BI .

The reverse direction (⇐) is more involved. We show that if B 6∈ S∗(A) then there
is a model I of T with a witness xA ∈ AI \ BI . We construct a canonical model
I for A starting from a single vertex xA ∈ AI , iteratively applying generation rules
which extend I so as to satisfy all GCIs in T . As T is normalized, one rule for each
type of GCI suffices. For instance, a GCI A v ∃r.B induces for x ∈ AI the creation
of an r-successor labeled B. After showing that the (possibly infinite) model thus
constructed is in fact a model of A, we show by induction over the construction of I
that the following property holds for every vertex x. If A is the first concept name
to whose interpretation x was added and if also x ∈ BI then B ∈ S∗(A). Note that
this holds in general only if A is the ‘oldest’ concept with x ∈ AI . The induction step
exploits the fact that if a generation rule for I forces x into the extension of B then
one of the Rules IS1 to IS3 includes B into some Sm(A). For instance, in the most
simple case, if x ∈ BI because of a GCI C v B then at some point previous, x ∈ CI ,
implying C ∈ S∗(A) by induction hypothesis, yielding B ∈ S∗(A) by Rule IS1.

To show decidability in polynomial time it suffices to show that, (i) T can be
normalized in polynomial time (see above), and, (ii) for all A ∈ NT ,>con and r ∈ NTrole,
the sets S∗(A) and S∗(r) can be computed in polynomial time in the size of T . Every
Si+1(A) and Si+1(r) depends only on sets with index i. Hence, once Si+1(A) = Si(A)
and Si+1(r) = Si(r) holds for all A and r the complete implication sets are obtained.
This happens after a polynomial number of steps, since Si(A) ⊆ NTcon and Si(r) ⊆
NTrole. To compute Si+1(A) and Si+1(r) from the Si(B) and Si(s) costs only polynomial
time in the size of T .

Theorem 7 Subsumption in ELH w.r.t. general TBoxes can be decided in polynomial
time.

4 The instance problem in ELH w.r.t. general TBoxes

We show that the instance problem in ELH w.r.t. general TBoxes can be decided
in polynomial time. To this end, the approach to decide subsumption by means of
implication sets for concept names presented in the previous section is extended to
ABox individuals. For every individual name a ∈ NAind, we want to compute a set
S∗(a) of concept names with the following property: if A ∈ S∗(a) then in every model
I of T together with A the individual aI is a witness of A (and vice versa). To extend
the definition of implication sets in this way we generalize Rules IS1 to IS3 to individual
names and introduce a new Rule IS4 specifically for individual names.

26

IS4 If r(a, b) ∈ A and B ∈ Si(b) and s ∈ Si(r)
and ∃s.B v C ∈ T and C 6∈ Si+1(a)
then Si+1(a) := Si+1(a) ∪ {C}

Figure 2: Additional rule for implication sets (instance problem)

Definition 8 (Implication set) Let T denote a normalized ELH-TBox T over Ncon

and Nrole and A an ABox over Nind, NTcon and NTrole. For every r ∈ NTrole, A ∈ NT ,>con ,
and a ∈ NAind and for every i ∈ N, the sets Si(r), Si(A), and Si(a) are defined
inductively, starting by

S0(r) := {r}
S0(A) := {A,>}
S0(a) := {A | A(a) ∈ A} ∪ {>}.

For every i ≥ 0, Si+1(r), Si+1(A), and Si+1(a) are obtained by extending Si(r), Si(A),
and Si(a), respectively, by exhaustive application of Rules ISR to IS4 shown in Figures 1
and 2, where α ∈ NT ,>con ∪ NAind. The implication set S∗(r) of r is defined as the
infinite union S∗(r) :=

⋃
i≥0 Si(r). Analogously, define S∗(A) :=

⋃
i≥0 Si(A) and

S∗(a) :=
⋃
i≥0 Si(a).

Since the above definition extends Definition 5 without adding new rules for
concept-implication sets S∗(A), Lemma 6 still holds. The following lemma shows that
the idea underlying individual-implication sets S∗(a) is also correct in the sense that
A ∈ S∗(a) iff A |=T A(a). W.l.o.g. we assume that every individual name a ∈ NAind

has at most one concept assertion A(a) ∈ A. For every a with {A1(a), A2(a)} ⊆ A
this can be satisfied by (i) introducing new TBox definitions of the form Aa v A1uA2

and A1 u A2 v Aa, where Aa is a new concept name, and, (ii) modifying A to
(A \ {A1(a), A2(a)})∪ {Aa(a)}. Iterating this modification yields a normalized TBox
T ′ of linear size in T with the required property.

Lemma 9 Let T be a normalized ELH-TBox over Ncon and Nrole and A an ABox
over Nind, NTcon and NTrole. For every A0 ∈ NTcon and every a0 ∈ NAind, A0 ∈ S∗(a0) iff
A |=T A0(a0).

Similar to Lemma 6, proof direction (⇒) is shown by induction over the least n
for which A0 ∈ Sn(a0). For the more interesting reverse direction (⇐), we assume
A0 6∈ S∗(a0) and construct a canonical model I of T together with A where aI 6∈ AI .
See [4] for the full proof.

The proof of decidability in polynomial time is analogous to the case of subsump-
tion: regarding computational complexity, the individual-implication sets S∗(a) have
the same properties as concept-implication sets. The new Rule IS4 also does not in-
crease the complexity of computing the sets S∗(a) significantly.

Theorem 10 The instance problem in ELH w.r.t. general TBoxes can be decided in
polynomial time.

27

5 Conclusion

We have seen how subsumption and instance problem in ELH w.r.t. general TBoxes can
be decided in polynomial time. Moreover, the implication sets computed for one TBox
T can be used to decide all subsumptions between defined (or primitive) concepts in
T . Hence, classifying T requires only a single computation of the implication sets
for T . The same holds for the instance problem, where a single computation of the
relevant implication sets suffices to classify T and decide all instance problems w.r.t.
defined (or primitive) concepts occurring in T .

Since subsumption and instance problem remain tractable under the transition
from cyclic to general EL-TBoxes, the second natural question is how far the DL can
be extended further preserving tractability. Obviously, adding value restrictions makes
subsumption NP hard even for the empty TBox [8]. Moreover, it can be shown that
adding one of the constructors number restriction, disjunction, or allsome [6] makes
subsumption co-NP hard even without GCIs.

It is open, however, whether subsumption and instance problem w.r.t. general
TBoxes remain tractable when extending ELH by inverse roles. Extending our sub-
sumption algorithm by more expressive role constructors might lead the way to a
more efficient reasoning algorithm for the representation language underlying the
Galen [17] terminology, where inverse roles and complex role inclusion axioms can
be expressed. While the polynomial upper bound would undoubtedly be exceeded,
still a complexity better than EXPTIME might be feasible.

Acknowledgements

My thanks to Carsten Lutz for a multitude of useful remarks and ideas that have
greatly influenced this work.

28

References

[1] F. Baader and U. Sattler. An overview of tableau algorithms for description
logics. Studia Logica, 69:5–40, 2001.

[2] Franz Baader. The instance problem and the most specific concept in the descrip-
tion logic EL w.r.t. terminological cycles with descriptive semantics. In Proceed-
ings of the 26th Annual German Conference on Artificial Intelligence, KI 2003,
volume 2821 of Lecture Notes in Artificial Intelligence, pages 64–78, Hamburg,
Germany, 2003. Springer-Verlag.

[3] Franz Baader. Terminological cycles in a description logic with existential re-
strictions. In Georg Gottlob and Toby Walsh, editors, Proceedings of the 18th
International Joint Conference on Artificial Intelligence, pages 325–330. Morgan
Kaufmann, 2003.

[4] S. Brandt. Subsumption and instance problem in ELH w.r.t. general tboxes.
LTCS-Report LTCS-04-04, Chair for Automata Theory, Institute for Theoreti-
cal Computer Science, Dresden University of Technology, Germany, 2004. See
http://lat.inf.tu-dresden.de/research/reports.html.

[5] M. Buchheit, F. M. Donini, and A. Schaerf. Decidable reasoning in terminological
knowledge representation systems. Journal of Artificial Intelligence Research,
1:109–138, 1993.

[6] Robert Dionne, Eric Mays, and Frank J. Oles. The equivalence of model-theoretic
and structural subsumption in description logics. In Ruzena Bajcsy, editor, Pro-
ceedings of the Thirteenth International Joint Conference on Artificial Intelli-
gence, pages 710–716, San Mateo, California, 1993. Morgan Kaufmann.

[7] F.M. Donini. Complexity of reasoning. In Franz Baader, Diego Calvanese, Deb-
orah McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, editors, The De-
scription Logic Handbook: Theory, Implementation, and Applications, pages 96–
136. Cambridge University Press, 2003.

[8] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, Bernhard Hollunder,
Werner Nutt, and Alberto Spaccamela. The complexity of existential quantifica-
tion in concept languages. Artificial Intelligence, 53(2–3):309–327, 1992.

[9] Robert Givan, David A. McAllester, Carl Witty, and Dexter Kozen. Tarskian set
constraints. Information and Computation, 174(2):105–131, 2002.

[10] Volker Haarslev and Ralf Möller. racer system description. Lecture Notes in
Computer Science, 2083:701–712, 2001.

[11] Ian Horrocks, Alan L. Rector, and Carole A. Goble. A description logic based
schema for the classification of medical data. In Knowledge Representation Meets
Databases, 1996.

29

[12] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for ex-
pressive description logics. In Harald Ganzinger, David McAllester, and Andrei
Voronkov, editors, Proceedings of the 6th International Conference on Logic for
Programming and Automated Reasoning (LPAR’99), number 1705 in Lecture
Notes in Artificial Intelligence, pages 161–180. Springer-Verlag, September 1999.

[13] Ian R. Horrocks. Using an expressive description logic: FaCT or fiction? In
Anthony G. Cohn, Lenhart Schubert, and Stuart C. Shapiro, editors, KR’98:
Principles of Knowledge Representation and Reasoning, pages 636–645. Morgan
Kaufmann, San Francisco, California, 1998.

[14] Yevgeny Kazakov and Hans De Nivelle. Subsumption of concepts in FL0 for
(cyclic) terminologies with respect to descriptive semantics is pspace-complete. In
Proceedings of the 2003 International Workshop on Description Logics (DL2003),
CEUR-WS, 2003.

[15] B. Nebel. Terminological cycles: Semantics and computational properties. In
J. F. Sowa, editor, Principles of Semantic Networks: Explorations in the Rep-
resentation of Knowledge, pages 331–361. Morgan Kaufmann Publishers, San
Mateo (CA), USA, 1991.

[16] A. Rector. Medical informatics. In Franz Baader, Diego Calvanese, Deborah
McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, editors, The Descrip-
tion Logic Handbook: Theory, Implementation, and Applications, pages 406–426.
Cambridge University Press, 2003.

[17] A. Rector, S. Bechhofer, C. A. Goble, I. Horrocks, W. A. Nowlan, and W. D.
Solomon. The grail concept modelling language for medical terminology. Arti-
ficial Intelligence in Medicine, 9:139–171, 1997.

[18] A. Rector, W. Nowlan, and A. Glowinski. Goals for concept representation in
the galen project. In Proceedings of the 17th annual Symposium on Computer
Applications in Medical Care, Washington, USA, SCAMC, pages 414–418, 1993.

30

The Instance Store:
DL Reasoning with Large Numbers of Individuals

Ian Horrocks, Lei Li, Daniele Turi and Sean Bechhofer
University of Manchester, UK

<lastname>@cs.man.ac.uk

Abstract
We present an application – the Instance Store – aimed at solving some of the scala-

bility problems that arise when reasoning with the large numbers of individuals envisaged
in the semantic web. The approach uses well-known techniques for reducing description
logic reasoning with individuals to reasoning with concepts. Crucial to the implementa-
tion is the combination of a description logic terminological reasoner with a traditional
relational database. The resulting form of inference, although specialised, is sound and
complete and sufficient for several interesting applications. Most importantly, the appli-
cation scales to sizes (over 100,000s individuals) where all other existing applications
fail. This claim is substantiated by a detailed empirical evaluation of the Instance Store
in contrast with existing alternative approaches.

Introduction

The Semantic Web [6] aims at making Web resources more accessible to automated processes
by adding “semantic annotations”—metadata that describes their content. It is envisaged that
the semantics in semantic annotations will be given by ontologies, which will provide a source
of precisely defined terms (vocabularies) that are amenable to automated reasoning.

A standard for expressing ontologies in the Semantic Web has already emerged: the on-
tology language OWL [9], which recently became a W3C recommendation. One of the main
features of OWL is that there is a direct correspondence between (two of the three “species”
of) OWL and Description Logics (DLs) [19]. This means that DL reasoners can be used to
reason about OWL ontologies and about annotations that are instances of concept descriptions
formed using terms from an ontology.

Unfortunately, while existing techniques for TBox reasoning (i.e., reasoning about the
concepts in an ontology) seem able to cope with real world ontologies [18, 14], it is not
clear if existing techniques for ABox reasoning (i.e., reasoning about the individuals in an
ontology) will be able to cope with realistic sets of instance data. This difficulty arises not
so much from the computational complexity of ABox reasoning, but from the fact that the
number of individuals (e.g., annotations) might be extremely large.

In this paper we describe the instance Store (iS), an approach to a restricted form of
ABox reasoning that combines a DL reasoner with a database. The result is a system that can
deal with very large ABoxes, and is able to provide sound and complete answers to instance
retrieval queries (i.e., computing all the instances of a given query concept) over such ABoxes.

31

While iS can be highly effective, it does have limitations when compared to a fully fledged
DL ABox. In particular, iS can only deal with a role-free ABox, i.e., an ABox that does not
contain any axioms asserting role relationships between pairs of individuals. Although this
may seem a rather severe restriction, the functionality provided by iS is precisely what is
required by many applications, and in particular by applications where ontology based terms
are used to describe/annotate and retrieve large numbers of objects. Examples include the use
of ontology based vocabulary to describe documents in “publish and subscribe” applications
[10], to annotate data in bioinformatics applications [12] and to annotate web resources such
as web pages [11] or web service descriptions [20] in Semantic Web applications. Indeed, we
have successfully applied iS to perform web service discovery [8], to search over the gene
ontology [12] and its associated instances (see below), and in an application to guide gene
annotation [4].

Using a database in order to support ABox reasoning is certainly not new (see below),
but to the best of our knowledge iS is the first such system that is general purpose (i.e., can
deal with any TBox and role-free ABox without customising the database schema), provides
sound and complete reasoning, and places no a-priori restriction on the size of the ABox.

In order to evaluate the design of iS , and in particular its ability to provide scalable perfor-
mance for instance retrieval queries, we have performed a number of experiments using iS to
search over a large (50,000 concept) gene ontology and its associated very large number (up
to 650,000) of individuals – instances of concept descriptions formed using terms from the
ontology. In the absence of other specialised ABox reasoners we have compared the perfor-
mance of iS with that of RACER [15] (the only publicly available DL system that supports full
ABox reasoning for an expressive DL) and of FaCT [18] (using TBox reasoning to simulate
reasoning with a role-free ABox).

Related Work As already mentioned, the idea of supporting DL style reasoning using
databases is not new. One example is [7], which can handle DL inference problems by
converting them into a collection of SQL queries. This approach is not limited to role-free
ABoxes, but the DL language supported is much less expressive, and the database schema
must be customised according to the given TBox. Another example is the Parka system [2].
Parka is not limited to role-free ABoxes and can deal with very large ABoxes. However, Parka
also supports a much less expressive language, and is not based on standard DL semantics, so
it is not really comparable to iS . Finally, [21] describes a “semantic indexing” technique that
is very similar to the approach used in iS except that files and hash tables are used instead of
database tables, and optimisations such as the use of equivalence sets are not considered.

1 Instance Store

Description Logics are a family of knowledge representation formalisms evolved from early
frame systems and semantic networks. We assume the reader to be familiar with DLs—see
[3] for a detailed discussion of DLs.

An ABox A is role-free if it contains only axioms of the form x : C. We can assume,
without loss of generality, that there is exactly one such axiom for each individual as x :
Ct¬C holds in all interpretations, and two axioms x : C and x : D are equivalent to a single

32

axiom x : (C uD). It is well known that, for a role-free ABox, instantiation can be reduced
to TBox subsumption [16, 22]; i.e., if K = 〈T ,A〉, and A is role-free, then K |= x : D iff
x : C ∈ A and T |= C v D. Similarly, if K = 〈T ,A〉 and A is a role-free ABox, then the
instances of a concept D could be retrieved simply by testing for each individual x in A if
K |= x : D. However, this would clearly be very inefficient if A contained a large number of
individuals.

An alternative approach is to add a new axiom Cx v D to T for each axiom x : D in A,
where Cx is a new atomic concept; we will call such concepts pseudo-individuals. Classifying
the resulting TBox is equivalent to performing a complete realisation of the ABox: the most
specific atomic concepts that an individual x is an instance of are the most specific atomic
concepts that subsume Cx and that are not themselves pseudo-individuals. Moreover, the
instances of a concept D can be retrieved by computing the set of pseudo-individuals that
are subsumed by D. The problem with this latter approach is that the number of pseudo-
individuals added to the TBox is equal to the number of individuals in the ABox, and if
this number is very large, then TBox reasoning may become inefficient or even break down
completely (e.g., due to resource limits).

The basic idea behind iS is to overcome this problem by using a DL reasoner to classify
the TBox and a database to store the ABox, with the database also being used to store a
complete realisation of the ABox, i.e., for each individual x, the concepts that x realises
(the most specific atomic concepts that x instantiates). The realisation of each individual is
computed using the DL (TBox) reasoner when an axiom of the form x : C is added to the iS
ABox.

A retrieval query Q to iS (i.e., computing the set of individuals that instantiate a concept
Q) can be answered using a combination of database queries and TBox reasoning. Given an
iS containing a KB 〈T ,A〉 and a query concept Q, retrieval involves the computation of sets
of concepts and individuals which we denote as follows:

• Q↓T denotes the set of atomic concepts in T subsumed by Q; these are the equivalents
and descendants of Q in T .

• dQeT denotes the set of most specific atomic concepts in T subsuming Q; if Q is itself
an atomic concept in T then clearly dQeT = {Q}.

• I1 denotes the set of individuals in A that realise some concept in Q↓T ;

• I2 denotes the set of individuals in A that realise every concept in dQeT .

The iS algorithm to retrieve the instances of Q can be then described as follows:

1. use the DL reasoner to compute Q↓T ;

2. use the database to find the set of individuals I1;

3. use the reasoner to check whether Q is equivalent to any atomic concept in T ; if that is
the case then simply return I1 and terminate;

4. otherwise, use the reasoner to compute dQeT ;

5. use the database to compute I2;

33

6. use the reasoner and the database to compute I3, the set of individuals x ∈ I2 such that
x : C is an axiom in A and C is subsumed by Q;

7. return I1 ∪ I3 and terminate.

Proposition. The above procedure is sound and complete for retrieval, i.e., given a concept
Q, it returns all and only individuals in A that are instances of Q.

The above is easily proved using the fact that we assume, without loss of generality, that for
each individual there is only one axiom associated to it.

An Optimised Instance Store

In practice, several refinements to the above procedure are used to improve the performance
of iS . In the first place, as it is potentially costly, we should try to minimise the DL reasoning
required in order to compute realisations (when instance axioms are added to the ABox) and
to check if individuals in I1 are instances of the query concept (when answering a query).

One way to (possibly) reduce the need for DL reasoning is to avoid repeating computa-
tions for “equivalent” individuals, e.g., individuals x1, x2 where x1 : C1 and x2 : C2 are
ABox axioms, and C1 is equivalent to C2. Since checking for semantic equivalence between
two concepts would require DL reasoning (which we are trying to avoid), the optimised iS
only checks for syntactic equality using a database lookup. (The chances of detecting equiva-
lence via syntactic checks could be increased by transforming concepts into a syntactic normal
form, as is done by optimised DL reasoners [17], but this additional refinement has not yet
been implemented in iS .) Individuals are grouped into equivalence sets, where each individ-
ual in the set is asserted to be an instance of a syntactically identical concept, and only one
representative of the set is added to the iS ABox as an instance of the relevant concept. When
answering queries, each individual in the answer is replaced by its equivalence set. Similarly,
we can avoid repeated computations of sub and super-concepts for the same concept (e.g.,
when repeating a query) by caching the results of such computations in the database.

Finally, the number and complexity of database queries also has a significant impact on
the performance of iS . In particular, the computation of I1 can be costly as Q ↓T may be
very large. One way to reduce this complexity is to store not only the most specific concepts
instantiated by each individual, but to store every concept instantiated by each individual. As
most concept hierarchies are relatively shallow, this does not increase the storage requirement
too much, and it greatly simplifies the computation of I1: it is only necessary to compute
the (normally) much smaller set of most general concepts subsumed by Q and to query the
database for individuals that instantiate some member of such set. On the other hand, the
computation of I2 is slightly more complicated, because I1 must be subtracted from the set of
individuals that instantiate every concept in dQeT . Empirically, however, the savings when
computing I1 seems to far outweigh the extra cost of computing I2.

2 Implementation

We have implemented iS using a component based architecture that is able to exploit existing
DL reasoners and databases. The core component is a Java application [1] talking to a DL

34

reasoner via the DIG interface [5] and to a relational database via JDBC. We have tested it
with FaCT [18] and RACER reasoners and MySQL, Hypersonic, and Oracle databases.

initialise(Reasoner reasoner, Database db, TBox t)
addAssertion(Individual i, Concept C)
retract(Individual i)
retrieve(Concept Q): Set〈Individual〉

Figure 1: Basic functionality of iS

The basic functionality of iS is illustrated by Figure 1. The four basic operations are
initialise, which loads a TBox into the DL reasoner, classifies the TBox and establishes
a connection to the database; addAssertion, which adds an axiom i : D to iS ; retract,
which removes any axiom of the form i : C (for some concept C) from iS ; and retrieve,
which returns the set of individuals that instantiate a query concept Q. Since an iS ABox can
only contain one axiom for each individual, asserting i : D when i : C is already in the ABox
is equivalent to first removing i and then asserting i : (C uD).

In the current implementation, we make the simplifying assumption that the TBox itself
does not change. Extending the implementation to deal with monotonic extensions of the
TBox would be relatively straightforward, but deleting information from the TBox might
require (in the worst case) all realisations to be recomputed.

Database. For the basic iS , the database schema is straightforward: a table with all the
assertions stored as pairs individual/concept (with individual as primary key), and a table of
pairs individual/atomic concept. The latter table holds the asserted individuals together with
the most specific atomic concepts instantiated by them.

For the optimised iS , the database schema is illustrated in Figure 2. There is a main

Concepts(id, concept)
Assertions(individual, conceptId)
Types(conceptId, atomicConcept)
Equivalents(conceptId, atomicConcept)
Parents(conceptId, atomicConcept)
Children(conceptId, atomicConcept)

Figure 2: Database Schema for the Optimised iS

Concepts table assigning a unique id to every asserted or retrieved concept; the conceptId
in the other tables is a foreign key referencing id. Apart from the evident Assertions ta-
ble, the remaining tables hold TBox information inferred using the reasoner: the Types table
holds all ancestors and equivalents of the asserted/retrieved concepts, while the position of the
concepts in the taxonomy is recorded by either storing their equivalents if they exist or both
their children and parents in the corresponding tables.

3 Empirical Evaluation

To illustrate the scalability and performance of iS we describe the tests we have performed
using the gene ontology and its associated instance data. We also illustrate how this compares

35

with existing non-specialised ABox reasoning techniques by describing the same tests per-
formed using RACER and FaCT (the latter using the pseudo-individual approach discussed in
Section 1).

The gene ontology (GO) itself, an ontology describing terms used in gene products and
developed by the Gene Ontology Consortium [23], is little more than three taxonomies of
gene terms, with a single role being used to add “part-of” relationships. However, the on-
tology is large (47,012 atomic concepts) and the instance data, obtained by mining the GO
database [13] of gene products, consists of 653,762 individual axioms involving 48,581 dis-
tinct complex DL expressions using three more roles.

The retrieval performance tests use two sets of queries. The first set (Q1-Q5) was for-
mulated with the help of domain experts and consists of five realistic queries that might be
posed by a biologist. The second set (Q6-Q11) consists of six artificial queries designed to
test the effect on query answering performance of factors such as the number of individuals
in the answer, whether the query concept is equivalent to an atomic concept (if so, then the
answer can be returned without computing I3), and the number of candidate individuals in I2

for which DL reasoning is required in order to determine if they form part of the answer. The
characteristics of the various queries with respect to these factors is shown in Table 1.

Table 1: Query characteristics
Query Equivalent to No. of Instances No. of “candidates”

Atomic Concept in Answer in I2

Q1 Yes 2,641 n/a
Q2 No 0 284
Q3 No 3 284
Q4 Yes 7,728 n/a
Q5 Yes 25 n/a
Q6 No 13,449 551
Q7 No 11,820 116
Q8 No 12 603
Q9 No 19 19
Q10 Yes 4,543 n/a
Q11 Yes 1 n/a

3.1 Loading and Querying Tests

In these tests, we compared the performance of iS with that of RACER using the GO TBox
and different sized subsets of the GO ABox. The iS was first initialised with the GO TBox,
then for each ABox, we measured the time (in CPU seconds) taken to load the ABox into it.
A comparison with RACER is shown in Table 2.

The time taken by the iS to load the ABoxes increases more slowly than their size: for
ABox size 200, iS takes about 1s to add each individual axiom; by the time the ABox size has
reached 400,000 this has fallen to approximately 0.25s per axiom. In view of the equivalent
individuals optimisation employed by iS , however, it may be more relevant to consider the

36

Table 2: iS and RACER load and realise times (CPU seconds)
Number of Distinct Load & Realise (s)
Individuals Descriptions iS RACER

200 155 189 180
500 330 405 3,420

1,000 591 804 22,320
2,000 1,017 1,395 fault
5,000 2,024 2,906 fault

10,000 3,299 5,988 fault
20,000 5,364 11,057 fault
50,000 9,760 21,579 fault

100,000 15,147 33,456 fault
200,000 23,387 56,613 fault
400,000 35,800 96,503 fault
653,762 48,581 140,623 fault

time taken per distinct description: this increases from about 1s per description for the size
200 ABox (which contains 155 distinct descriptions) to approximately 3s per description for
the size 653,762 ABox (which contains 48,581 distinct descriptions).

The time taken by RACER to realise the smallest ABox is roughly the same as that taken
by iS . As the ABox size grows, however, the time taken by RACER increases rapidly, and
at ABox size 1,000 it is already taking approximately 22s per axiom. For larger ABoxes,
RACER broke down due to a resource allocation error in the underlying Lisp system.

Next, we measured retrieval times. For RACER, we carried out the same tests in two
different ways. In both cases we first initialised RACER with the GO TBox, then loaded the
ABox. In the first test, we used the realize-abox function to force RACER to compute a com-
plete realisation of the ABox before answering any queries; if the realisation was successfully
completed, we then timed how long it took to answer each of the queries. In the second test,
we simply timed how long it took RACER to answer each of the queries without first forcing
it to realise the ABox.

The results for iS when answering each of the five realistic queries and six artificial
queries are plotted against the size of the ABox in Figure 3; note the logarithmic scales on
both axes. The figure shows that the time taken to answer queries like Q6 and Q8 becomes
quite large. This is due to the fact that I2 is large, thus demanding repeated invocations of
the expensive check (roughly 0.2s per individual) in step 6 of iS retriecal algorithm. The
number of “distinct” individuals in the answer also has a significant impact on performance:
when there are many such individuals, the database query required in order to compute the
complete answer set can be quite time consuming.

We tested also RACER with the above queries, both in the case where the ABox has
been realised and where it has not. Once the ABox has been realised, queries are answered
almost instantly, but results are only available for the relatively small ABoxes that RACER

was able to realise (up to 1,000 individuals). When the ABox was not realised, answers

37

Figure 3: iS realistic (left) and artificial (right) query times -v- ABox size

were again returned almost instantly for smaller ABoxes, but when the ABox size exceeded
1,000 individuals the answer times increased dramatically, and for ABoxes larger than 10,000
individuals (larger than 5,000 in the case of Q9) RACER again broke down due to a resource
allocation error in the underlying Lisp system.

It should be mentioned that the results for iS include significant communication overheads
(both with the database and DL reasoner), which was not the case for RACER since queries
were posed directly via its command line interface.

3.2 Pseudo-individual Tests

As discussed in §1, one way to deal with role-free ABoxes is to treat individuals as atomic
concepts in the TBox (pseudo-individuals). To test the feasibility of this approach, we again
used the GO TBox and ABox, and the set of queries described above. To make the comparison
fair, only distinct instantiated concept are used. The FaCT system was used in these tests
as RACER broke down when trying to classify the GO TBox augmented with the pseudo-
individuals, again due to a resource allocation error in the underlying Lisp system.

In order to investigate how the pseudo-individual approach would scale with increasing
ABox (and hence TBox) size, we tried computing the concepts subsumed by each query with
the GO TBox alone (which contains 47,012 concept names) and with the TBox augmented
with the pseudo-individuals derived from the GO ABox (a total of 95,593 concept names).
The results of these tests are given in Table 3. It is important to note that they do not include
the time required to expand answers to include sets of equivalent individuals—as discussed
above, this can be quite time consuming for some queries (e.g., 19.5s in the case of Q9 with
the largest ABox).

As one can see, the time taken to compute the answers to the queries is heavily dependent
on the size of the answers, and in the case of Q4 with the pseudo-individual augmented TBox,
the time was over 600s. This is in contrast to iS , where the size of answer had comparatively
little effect on the time taken to answer queries. For queries with relatively small answers,
however, the pseudo-individual approach was highly effective, even for queries that were time
consuming to answer using iS .

38

Table 3: Pseudo-individual query time (CPU seconds) and answer size
Query GO TBox GO TBox + ABox

Time Answer Size Time Answer Size
Q1 8.1 220 233.3 2,861
Q2 1.3 1 1.2 1
Q3 0.2 1 1.4 4
Q4 26.0 881 631.8 8,609
Q5 0.5 2 5.2 27
Q6 4.3 86 176.6 2,450
Q7 1.4 1 10.0 147
Q8 1.3 1 1.5 7
Q9 1.4 1 3.5 22
Q10 4.2 109 114.4 1,407
Q11 0.5 1 2.0 2

4 Discussion and Future Work

Our experiments show that iS provides stable and effective reasoning for role-free ABoxes,
even those containing very large numbers of individuals. In contrast, full ABox reasoning us-
ing the RACER system exhibited accelerating performance degradation with increasing ABox
size, and at least the current RACER release (1.7.7) was not able to deal with the larger ABoxes
used in our evaluation. The pseudo-individual approach to role-free ABox reasoning was
more promising, and may be worth further investigation.

The acceptability of the performance of iS would obviously depend on the nature of
the application and the characteristics of the KB and of typical queries. It is likely that the
performance of iS can be substantially improved simply by dealing with constant factors such
as communication overheads.

Future work includes the investigation of additional optimisations and enhancements,
such as providing a more sophisticated query interface. We are also investigating ways to
extend iS to ABoxes that are not completely role-free. This may be possible in restricted
cases by applying some form of precompletion [16] to the ABox.

Acknowledgements.

Thanks to Phil Lord for help with the implementation and to Chris Wroe for help with the GO
ontology and the formulation of realistic queries.

References
[1] Instance Store website. http://instancestore.man.ac.uk.

[2] W. A. Andersen, K. Stoffel, and J. A. Hendler. Parka: Support for extremely large knowledge
bases. In G. Ellis et al, editor, Proc. First Int’l KRUSE Symposium, pages 122–133, 1995.

[3] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P.F. Patel-Schneider, editors. The De-
scription Logic Handbook: Theory, Implementation and Applications. CUP, 2003.

39

[4] M. Bada, D. Turi, R. McEntire, and R. Stevens. Using Reasoning to Guide Annotation with
Gene Ontology Terms in GOAT. SIGMOD Record (special issue on data engineering for the life
sciences), June 2004.

[5] Sean Bechhofer. The DIG description logic interface: DIG/1.1. In Proceedings of the 2003
Description Logic Workshop (DL 2003), 2003.

[6] Tim Berners-Lee. Weaving the Web. Harpur, San Francisco, 1999.

[7] Alexander Borgida and Ronald J. Brachman. Loading data into description reasoners. In Proc.
of the ACM SIGMOD Int. Conf. on Management of Data, pages 217–226, 1993.

[8] Olga Caprotti, Mike Dewar, and Daniele Turi. Mathematical service matching using Description
Logic and OWL. Technical Report IST-2001-34145, MONET Consortium, March 2004.

[9] M. Dean, D. Connolly, F. van Harmelen, J. Hendler, I. Horrocks, D.L. McGuinness, P.F. Patel-
Schneider, and L.A. Stein. OWL web ontology language 1.0 reference, July 2002.

[10] M. Uschold et al. A semantic infosphere. In D. Fensel et al, editor, Proc. ISWC 2003, number
2870 in LNCS, pages 882–896. Springer, 2003.

[11] Stephen Dill et al. Semtag and seeker: Bootstrapping the semantic web via automated semantic
annotation. In Proc. WWW 2003, 2003.

[12] GO project. European Bioinformatics Institute. http://www.ebi.ac.uk/go.

[13] Gene Ontology Database, 2003. http://www.godatabase.org/dev/database/.

[14] V. Haarslev and R. Möller. High performance reasoning with very large knowledge bases: A
practical case study. In Proc. IJCAI 2001, 2001.

[15] Volker Haarslev and Ralf Möller. RACER system description. In Proc. IJCAR 2001, volume
2083 of LNAI, pages 701–705. Springer, 2001.

[16] Bernhard Hollunder. Consistency checking reduced to satisfiability of concepts in terminological
systems. Ann. of Mathematics and Artificial Intelligence, 18(2–4):133–157, 1996.

[17] I. Horrocks. Implementation and optimisation techniques. In F. Baader, D. Calvanese, D.L.
McGuinness, D. Nardi, and P.F. Patel-Schneider, editors, The Description Logic Handbook: The-
ory, Implementation, and Applications, pages 306–346. CUP, 2003.

[18] Ian Horrocks. Using an expressive description logic: FaCT or fiction? In Proc. of the 6th Int.
Conf. on Principles of Knowledge Representation and Reasoning (KR’98), pages 636–647, 1998.

[19] Ian Horrocks and Peter F. Patel-Schneider. Reducing OWL entailment to description logic satis-
fiability. In Proc. of the 2nd International Semantic Web Conference (ISWC), 2003.

[20] Lei Li and Ian Horrocks. A software framework for matchmaking based on semantic web tech-
nology. In Proc. WWW 2003, pages 331–339. ACM, 2003.

[21] A. Schmiedel. Semantic indexing based on description logics. In F. Baader, M. Buchheit, M.A.
Jeusfeld, and W. Nutt, editors, Reasoning about structured objects: knowledge representation
meets databases. Proceedings of the KI’94 Workshop KRDB’94, September 1994.

[22] Sergio Tessaris. Questions and Answers: Reasoning and Querying in Description Logic. PhD
thesis, University of Manchester, Department of Computer Science, April 2001.

[23] The Gene Ontology Consortium. Gene ontolgy: Tool for the unification of biology. Nature
Genetics, 25(1):25–29, 2000.

40

Efficient Reasoning with Range and Domain Constraints

Dmitry Tsarkov and Ian Horrocks

Department of Computer Science
The University of Manchester

Manchester, UK
{tsarkov|horrocks}@cs.man.ac.uk

Abstract

We show how a tableaux algorithm for SHIQ can be extended to support role boxes
that include range and domain axioms, prove that the extended algorithm is still a de-
cision procedure for the satisfiability and subsumption of SHIQ concepts w.r.t. such a
role box, and show how support for range and domian axioms can be exploited in order
to add a new form of absorption optimisation called role absorption. We illustrate the
effectiveness of the optimised algorithm by analysing the perfomance of our FaCT++
implementation when classifying terminologies derived from realistic ontologies.

1 Introduction

Many modern ontology languages (e.g., OIL [3], DAML+OIL [8] and OWL [2]) are based on
expressive description logics, and in particular on the SHIQ family of description logics [9].
These ontology languages typically support domain and range constraints on roles, i.e., ax-
ioms asserting that if an individual x is related to an individual y by a role R, then x must be
an instance of the concept that is the domain of R and y must be an instance of the concept
that is the range of R.Such axioms are not directly supported by SHIQ, but can trivially
be transformed into general inclusion axioms (GCIs), i.e., an axiom asserting a subsumption
relationship between two arbitrary concept terms. In particular, restricting the domain of a
role R to be concept C is equivalent to adding an axiom ∃R.> v C, and restricting the range
of a role R to be concept D is equivalent to adding an axiom > v ∀R.D.

The problem with this transformation is that such GCIs are not amenable to absorption,
an optimisation technique that tries to rewrite GCIs so that they can be efficiently dealt with
using the lazy unfolding optimisation [6]. Absorption is one of the crucial optimisations that
enable state of the art DL reasoners such as FaCT [7], Racer [5] and Pellet [12] to deal ef-
fectively with large knowledge bases (KBs), and these reasoners perform much less well with
KBs containing significant numbers of unabsorbable GCIs. Unfortunately, many ontologies
contain large numbers of different roles, each with a range and domain constraint, and the
resulting KBs therefore contain many unabsorbable GCIs.

It has already been shown that, in order for the Racer system to be able to classify large
KBs containing many range and domain constraints, it is necessary to give a special treatment
to the GCIs introduced by range and domain axioms [4]. The approach used by Racer is
to extend the lazy unfolding optimisation so that concepts equivalent to those that would be

41

introduced by the GCIs are introduced only as necessary. In the approach presented here,
we extend the tableaux satisfiability testing algorithm so that range and domain axioms are
directly supported. The advantage with this approach is that we are able to extend the formal
correctness proof to demonstrate that the extended algorithm is still a decision procedure for
SHIQ satisfiability (i.e., it returns satisfiable iff the input concept is satisfiable).

As well as allowing range and domain to be dealt with very efficiently, this algorithm also
allows us to implement an extended version of the absorption optimisation, called role absorp-
tion, that transforms GCIs into domain constraints. Role absorption can provide alternative
and perhaps more effective ways to absorb certain forms of GCI, and can also be applied to
some otherwise unabsorbable forms of GCI. This can lead to dramatic performance improve-
ments for KBs that contain significant numbers of such GCIs. We demonstrate this (as well
as the performance improvements resulting from support for range and domain axioms) with
an empirical analysis of the performance of the extended algorithm when classifying several
KBs derived from realistic ontologies.

2 Preliminaries

We first introduce the syntax and semantics of the SHIQ logic, including the semantics of
role boxes extended with range and domain axioms. Most details of the logic and the tableaux
algorithm are little changed from those presented in [9]. We will, therefore, focus mainly on
the parts that have been added in order to deal with range and domain axioms, and refer the
reader to [9] for complete information on the remainder.

The absolutely most part of formal definitions here is taken from [9]. We have introduced
new constructions into the existing definitions, so all algorithms were slightly changed.

Definition 1 Let C and R be disjoint sets of concept names and role names respectively.
The set of SHIQ-roles is R ∪ {R− | R ∈ R}. To avoid considering roles such as R−−, we
define a function Inv on roles such that Inv(R) = R− if R is a role name, and Inv(R) = S if
R = S−. For R and S SHIQ-roles and C a SHIQ-concept, a role axiom is either a role
inclusion of the form R v S, a transitivity axiom of the form Trans(R), or a constraint axiom
of the form Domain(R, C) or Range(R, C). A role box R is a finite set of role axioms.

A role R is called simple if, for v* the transitive reflexive closure of v on R and for each
role S, S v* R implies Trans(S) 6∈ R and Trans(Inv(S)) 6∈ R.

The set of concepts is the smallest set such that every concept name is a concept, and,
for C and D concepts, R a role, S a simple role and n a non-negative integer, then C u D,
C t D, ¬C, ∃R.C, ∀R.C, >nS.C and 6nS.C are also concepts.

The semantics is given by means of an interpretation I = (∆I , ·I) consisting of a non-
empty set ∆I , called the domain of I, and a valuation ·I which maps every concept to a subset
of ∆I and every role to a subset of ∆I × ∆I such that, for all concepts C, D, roles R, S,
and non-negative integers n, the properties in Figure 1 are satisfied, where]M denotes the
cardinality of a set M .

An interpretation satisfies a role axiom if it satisfies the semantic conditions given in
Figure 1. An interpretation satisfies a role box R if it satisfies each role axiom in R.

A terminology or TBox T is a finite set of general concept inclusion axioms, T = {C1 v
D1, . . . , Cn v Dn}, where Ci, Di are arbitrary SHIQ-concepts. An interpretation I satis-
fies T iff CI

i
⊆ DI

i
holds for all Ci v Di ∈ T .

42

Concepts & Roles Syntax Semantics
atomic concept C A AI ⊆ ∆I

atomic role R R RI ⊆ ∆I × ∆I

inverse role R− {〈x, y〉 | 〈y, x〉 ∈ RI}
conjunction C u D (C u D)I = CI ∩ DI

disjunction C t D (C t D)I = CI ∪ DI

negation ¬C (¬C)I = ∆I \ CI

exists restriction ∃R.C (∃R.C)I = {x | ∃y.〈x, y〉 ∈ RI and y ∈ CI}
value restriction ∀R.C (∀R.C)I = {x | ∀y.〈x, y〉 ∈ RI implies y ∈ CI}
atleast restriction >nS.C (>nS.C)I = {x |]({y.〈x, y〉 ∈ SI} ∩ CI) > n}
atmost restriction 6nS.C (6nS.C)I = {x |]({y.〈x, y〉 ∈ SI} ∩ CI) 6 n}
Role Axioms Syntax Semantics
role inclusion R v S RI ⊆ SI

transitive role Trans(R) RI = (R+)I

role domain Domain(R, C) 〈x, y〉 ∈ RI implies x ∈ CI

role range Range(R, C) 〈x, y〉 ∈ RI implies y ∈ CI

Figure 1: Syntax and semantics of SHIQ

A SHIQ-concept C is satisfiable w.r.t. a role box R and a terminology T iff there is an
interpretation I with CI 6= ∅ that satisfies both R and T . Such an interpretation is called
a model of C w.r.t. R and T . A concept C is subsumed by a concept D w.r.t. R and T iff
CI v DI for each interpretation I satisfying R and T .

Theorem 1 Satisfiability and subsumption of SHIQ-concepts w.r.t. terminologies and role
boxes is polynomially reducible to (un)satisfiability of SHIQ-concepts w.r.t. role boxes [9].

3 Tableaux Reasoning with Range and Domain

Here we present an algorithm for deciding the satisfiability of a SHIQ-concept C w.r.t. a
role box R; it is an extension of the SHIQ tableaux algorithm from [9].

For ease of Tableaux construction, we assume C and all concepts in (range and domain
axioms in) R to be in negation normal form (NNF), that is, negation occurs only in front
of concept names. Any SHIQ-concept can easily be transformed into an equivalent one in
NNF by pushing negations inwards; with ∼C we denote the NNF of ¬C. We define RD(R)
as the set of concepts s.t. C ∈ RD(R) iff Domain(R, C) ∈ R or Range(R, C) ∈ R for some
role R. We define cl(C,R) as the smallest set of concepts that is a superset of C ∪ RD(R)
and is closed under subconcepts and ∼.

Definition 2 Let D be a SHIQ-concept in NNF, R a role box, and RD the set of roles
occurring in D and R together with their inverses. Then T = (S, L, E) is a tableau for D

w.r.t. R iff S is a set of individuals, L : S → 2cl(D,R) maps each individual to a set of
concepts, E : RD → 2S×S maps each role to a set of pairs of individuals, and there is some
individual s ∈ S such that D ∈ L(s). Furthermore, for all s, t ∈ S, C, C1, C2 ∈ cl(D,R),
and R, S ∈ RD, it holds that:

43

1. if C ∈ L(s), then ¬C /∈ L(s),

2. if C1 u C2 ∈ L(s), then C1 ∈ L(s) and C2 ∈ L(s),

3. if C1 t C2 ∈ L(s), then C1 ∈ L(s) or C2 ∈ L(s),

4. if ∀S.C ∈ L(s) and 〈s, t〉 ∈ E(S), then C ∈ L(t),

5. if ∃S.C ∈ L(s), then there is some t ∈ S such that 〈s, t〉 ∈ E(S) and C ∈ L(t),

6. if ∀S.C ∈ L(s) and 〈s, t〉 ∈ E(R) for some R v* S with Trans(R), then ∀R.C ∈ L(t),

7. 〈s, t〉 ∈ E(R) iff 〈t, s〉 ∈ E(Inv(R)),

8. if 〈s, t〉 ∈ E(R) and R v* S, then 〈s, t〉 ∈ E(S),

9. if (6 n S C) ∈ L(s), then]ST (s, C) 6 n,

10. if (> n S C) ∈ L(s), then]ST (s, C) > n,

11. if (./ n S C) ∈ L(s) and 〈s, t〉 ∈ E(S) then C ∈ L(t) or ∼C ∈ L(t),

12. if 〈s, t〉 ∈ E(S) and Domain(S, C) ∈ R, then C ∈ L(s),

13. if 〈s, t〉 ∈ E(S) and Range(S, C) ∈ R, then C ∈ L(t),

where we use ./ as a placeholder for both 6 and > and we define

ST (s, C) := {t ∈ S | 〈s, t〉 ∈ E(S) and C ∈ L(t)}.

Lemma 1 A SHIQ-concept D is satisfiable w.r.t. a role box R iff D has a tableau w.r.t. R.

3.1 An Extended Tableaux Algorithm

In order to make the following description easier, we will abuse notation by using Domain(R)
and Range(R) to mean the sets of concepts corresponding to the domain and range axioms in
R that apply to a role R, i.e., Domain(R) = {C | Domain(R, C) ∈ R}, and Range(R) =
{C | Range(R, C) ∈ R}.

Definition 3 A completion tree for a concept D is a tree where each node x of the tree is
labelled with a set L(x) ⊆ cl(D,R) and each edge 〈x, y〉 is labelled with a set L(〈x, y〉)
of (possibly inverse) roles occurring in cl(D,R); explicit inequalities between nodes of the
tree are recorded in a binary relation 6

.
= that is implicitly assumed to be symmetric.

Given a completion tree, a node y is called an R-successor of a node x iff y is a successor
of x and S ∈ L(〈x, y〉) for some S with S v* R. A node y is called an R-neighbour of x iff y

is an R-successor of x, or if x is an Inv(R)-successor of y. Predecessors and ancestors are
defined as usual.

A node is blocked iff it is directly or indirectly blocked. A node x is directly blocked iff
none of its ancestors are blocked, and it has ancestors x′, y and y′ such that

1. x is a successor of x′ and y is a successor of y′ and

2. L(x) = L(y) and L(x′) = L(y′) and

3. L(〈x′, x〉) = L(〈y′, y〉).

44

A node y is indirectly blocked iff one of its ancestors is blocked, or it is a successor of a
node x and L(〈x, y〉) = ∅.

For a node x, L(x) is said to contain a clash iff {A,¬A} ⊆ L(x) or if, for some concept
C, some role S, and some n ∈ N: (6 n S C) ∈ L(x) and there are n + 1 S-neighbours
y0, . . . , yn of x such that C ∈ L(yi) and yi 6

.
= yj for all 0 ≤ i < j ≤ n. A completion tree

is called clash-free iff none of its nodes contains a clash; it is called complete iff none of the
expansion rules is applicable.

For a SHIQ-concept D, the algorithm starts with a completion tree consisting of a single
node x with L(x) = {D} and 6

.
= = ∅. It applies the expansion rules in Fig. 2, stopping when

a clash occurs, and answers “D is satisfiable” iff the completion rules can be applied in such
a way that they yield a complete and clash-free completion tree.

Note that the only change w.r.t. [9] is addition of the domain and range-rules that add
concepts to node labels as required by domain and range axioms.

Lemma 2 Let D be an SHIQ-concept.

1. The tableaux algorithm terminates when started with D.

2. If the expansion rules can be applied to D such that they yield a complete and clash-free
completion tree, then D has a tableau.

3. If D has a tableau, then the expansion rules can be applied to D such that they yield a
complete and clash-free completion tree.

The following theorem is an immediate consequence of Lemmas 1, 2 and Theorem 1.

Theorem 2 The tableaux algorithm is a decision procedure for the satisfiability and sub-
sumption of SHIQ-concepts with respect to role boxes.

4 Role Absorption

Given that the new algorithm is able to deal directly with range and domain axioms, it makes
sense to transform GCIs into range and domain axioms. We call this new form of absorp-
tion role absorption in contrast to the usual form of absorption we will refer to as concept
absorption (see [10]).

Role absorption is important because in ontology derived KBs range and domain con-
straints will often have been transformed into GCIs. This is because tools such as OilEd
[1] and Protégé [11] are designed to work with range of DL reasoners, some of which (e.g.,
FaCT) do not support range and domain axioms. Moreover, these forms of GCI are not, in
general, amenable to standard concept absorption techniques.

We introduce two kinds of role absorption: basic and extended role absorptions.

Basic role absorption.

The simple form of role absorption, which we will refer to as basic role absorption, deals
with the axiom of the form ∃R.> v C and > v ∀R.C and is formalised in the following
theorem:

45

u-rule: if 1. C1 u C2 ∈ L(x), x is not indirectly blocked, and
2. {C1, C2} 6⊆ L(x)

then L(x) −→ L(x) ∪ {C1, C2}

t-rule: if 1. C1 t C2 ∈ L(x), x is not indirectly blocked, and
2. {C1, C2} ∩ L(x) = ∅

then L(x) −→ L(x) ∪ {C} for some C ∈ {C1, C2}

∃-rule: if 1. ∃S.C ∈ L(x), x is not blocked, and
2. x has no S-neighbour y with C ∈ L(y),

then create a new node y with L(〈x, y〉) = {S} and L(y) = {C}

∀-rule: if 1. ∀S.C ∈ L(x), x is not indirectly blocked, and
2. there is an S-neighbour y of x with C /∈ L(y)

then L(y) −→ L(y) ∪ {C}

∀+-rule: if 1. ∀S.C ∈ L(x), x is not indirectly blocked, and
2. there is some R with Trans(R) and R v* S,
3. there is an R-neighbour y of x with ∀R.C /∈ L(y)

then L(y) −→ L(y) ∪ {∀R.C}

choose-rule: if 1. (./ n S C) ∈ L(x), x is not indirectly blocked, and
2. there is an S-neighbour y of x with {C,∼C} ∩ L(y) = ∅

then L(y) −→ L(y) ∪ {E} for some E ∈ {C,∼C}

>-rule: if 1. (> n S C) ∈ L(x), x is not blocked, and
2. there are not n S-neighbours y1, . . . , yn of x with

C ∈ L(yi) and yi 6
.
= yj for 1 ≤ i < j ≤ n

then create n new nodes y1, . . . , yn with L(〈x, yi〉) = {S},
L(yi) = {C}, and yi 6

.
= yj for 1 ≤ i < j ≤ n.

6-rule: if 1. (6 n S C) ∈ L(x), x is not indirectly blocked, and
2.]ST(x, C) > n and there are two S-neighbours y, z of x with

C ∈ L(y), C ∈ L(z), y is not an ancestor of x, and not y 6
.
= z

then 1. L(z) −→ L(z) ∪ L(y) and
2. if z is an ancestor of x

then L(〈z, x〉) −→ L(〈z, x〉) ∪ Inv(L(〈x, y〉))
else L(〈x, z〉) −→ L(〈x, z〉) ∪ L(〈x, y〉)

3. L(〈x, y〉) −→ ∅
4. Set u 6

.
= z for all u with u 6

.
= y

domain-rule if 1. C ∈ Domain(S), x is not indirectly blocked, and
2. there is an S-neighbour y of x and C 6∈ L(x)

then L(x) −→ L(x) ∪ {C}

range-rule if 1. C ∈ Range(S), x is not indirectly blocked, and
2. there is an S-neighbour y of x with C 6∈ L(y)

then L(y) −→ L(y) ∪ {C}

Figure 2: The complete tableaux expansion rules for SHIQ

Theorem 3 Let R be a SHIQ role box.

46

1. An interpretation I satisfies R and ∃R.> v C iff I satisfies R∪ {Domain(R, C)}.

2. An interpretation I satisfies R and > v ∀R.C iff I satisfies R∪ {Range(R, C)}.

Extended Role Absorption

Rewriting techniques similar to those used in concept absorption can be used to extend the
basic role absorption technique to deal with a wider range of axioms. An axiom of the form
∃R.C v D can be absorbed into a domain constraint Domain(R, D t ¬∃R.C) by rewriting
it as ∃R.> v D t ¬∃R.C. Similarly, an axiom of the form D v ∀R.C can be absorbed into
a domain constraint Domain(R,¬D t ¬∃R.¬C).

5 Implementation and Empirical Evaluation

We have implemented the extended tableaux algorithm and role absorption optimisation in
the FaCT++ DL reasoner. FaCT++ is a next generation of the well-known FaCT reasoner [7],
being developed as part of the EU WonderWeb project (see http://wonderweb.
semanticweb.org/); it is based on the same tableaux algorithms as the original FaCT,
but has a different architecture and is written in C++ instead of Lisp.

Absorption

Absorption in FaCT++ uses the same basic approach as FaCT [10, 6]. Given a TBox T , the
absorption algorithm constructs a triple of TBoxes 〈Tdef , Tsub, Tg〉 such that:

• Tdef is a set of axioms of the form A ≡ C (equivalent to a pair of axioms {A v C, C v
A} ⊆ T), where A ∈ C (i.e., A is a concept name) and there is most one such axiom
for each A ∈ C. Such an axiom is often called a definition (of A).

• Tsub consists of a set of axioms of the form A v D, where A ∈ C and there is no
axiom A ≡ C in Tdef .

• Tg contains all the remaining axioms from T .

The lazy unfolding optimisation allows the axioms in Tdef and Tsub to be dealt with more
efficiently than those in Tg. Therefore, during the absorption process, FaCT++ processes
the axioms in Tg one at a time, trying to absorb them into Tsub. Those axioms that are not
absorbed remain in Tg.

To simplify the formulation of the absorption algorithm, each axiom C v D is viewed as
a clause G = {D,¬C}, corresponding to the axiom > v C → D, which is equivalent to
C v D. The concepts in G are also assumed to be in negation normal form. For each such
axiom, FaCT++ applies the absorption steps described in Fig. 3, with t({C1, . . . , Cn}) being
used to denote C1 t . . . t Cn.

In contrast to the FaCT approach, FaCT++ applies all possible simplifications (except
recursive absorption) in a single step. This usually leads to several possible concept and
role absorption options, with the intention that heuristics will be used to select the “best”
absorption. The development of suitable heuristics is, however, still part of future work.

47

B Beginning of the absorption cycle.

C Concept absorption. If there is a concept ¬A ∈ G such that A ∈ C and there is no
axiom of the form A ≡ C in Tdef , then add A v t(G \ {¬A}) to Tsub and exit.

R Role absorption. If there is a concept ¬∃R.C ∈ G, then add Domain(R,t(G))
to R and exit.

S Simplification.

1. For every C ∈ G such that C is of the form (C1 t . . . t Cn), change G as
follows: G = G ∪ {C1, . . . , Cn} \ {C}}.

2. For every A ∈ G (resp. ¬A ∈ G), if there is an axiom A ≡ C in Tdef , then
substitute A ∈ G (resp. ¬A ∈ G) with C (resp. ∼C).

3. If any simplification rule was applied, then return to step B.

E If there is some C ∈ G such that C is of the form (C1 u . . . u Cn), then for each
Ci try to absorb (recursively) G ∪ {Ci} \ {C}, and exit. Otherwise, absorption of
G has failed; leave G in Tg, and exit.

Figure 3: FaCT++ absorption algorithm

Experiments

We have tested FaCT++’s performance when classifying several TBoxes derived from realis-
tic ontologies. In each case range and domain constraints from the ontology had already been
transformed into GCIs of the form ∃R.> v C and > v ∀R.C as described above. All tests
used FaCT++ version 0.90 beta running under Linux on an Athlon 2000+ machine with 1Gb
of memory.

All our experiments shows that classification time and number of operations reduced by
approximately 1 order of magnitude after applying basic role absorption, and by a further
60-80% (approximately) after applying extended role absorption (if avaliable). Due to lack of
space we only present here results for a single example.

The RTIMS ontology is taken from a publish and subscribe application where it is used by
document publishers to annotate documents so that they can be routed to the appropriate sub-
scribers [13]. The ontology contains about 250 concepts (with medium-complex structure),
76 range and domain constraints and 14 GCIs that are not absorbable by concept absorption.

This ontology is too small to show significant gains in performance. In order to give an
indication of the effects of extended role absorption on larger Tboxes containing proportion-
ately more GCIs, we duplicating the RTIMS TBox, systematically renaming concepts and
roles, and generated larger TBoxes by unioning together several (from 1 to 100) copies of the
the original TBox.

The results of our experiments with these Tboxes are shown in Figure 4, with the prob-
lem size (number of copies of the original TBox) on the x-axis and classification time in
CPU seconds and number of t-rule applications on the y-axis (using a logarithmic scale). It
can be seen that without role absorption the classification time (and other y-axis parameters)
increases rapidly with problem size, and without extended (basic) role absorption a TBox con-

48

0.1

1

10

100

1000

10000

0 10 20 30 40 50 60 70 80 90

problem size

No absorption
Domain and Range

Extended RnD

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

0 10 20 30 40 50 60 70 80 90

problem size

No absorption
Domain and Range

Extended RnD

Figure 4: Classification time (left) and t-rule applications (right) for multi-RTIMS TBoxes

sisting of 28 (8) copies of the original already takes several thousand CPU seconds to classify.
Further tests failed due to memory limits. In contrast, when using extended role absorption,
a TBox consisting of 100 copies of the original could be classified in a little over 100 CPU
seconds and requires about 34Mb of memory.

6 Discussion

We have shown how a tableaux algorithm for SHIQ can be extended to support role boxes
that include range and domain axioms, and proved that the extended algorithm is still a de-
cision procedure for the satisfiability and subsumption of SHIQ concepts w.r.t. such a role
box. It should be straightforward to similarly extend tableau algorithms for related DLs such
as SHOQ. We have also shown how support for range and domian axioms can be exploited
in order to add a new form of absorption optimisation called role absorption.

We have implemented the extended algorithm and the role absorption optimisation in the
FaCT++ reasoner, and we have illustrated their effectiveness by analysing the behaviour of
FaCT++ when classifying several KBs derived from realistic ontologies. The analysis shows
that, not only are the new techniques highly effective, but also that the ordering of different
absorption steps can have a significant effect on performance. Future work will include a
more detailed study of this effect with a view to devising heuristics that can select the most
effective absorption for each GCI.

References

[1] S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. OilEd: a reason-able ontology
editor for the semantic web. In Proc. of the Joint German/Austrian Conf. on Artificial
Intelligence (KI 2001), number 2174 in Lecture Notes in Artificial Intelligence, pages
396–408. Springer-Verlag, 2001.

[2] Mike Dean, Dan Connolly, Frank van Harmelen, James Hendler, Ian Horrocks, Debo-
rah L. McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein. OWL web on-

49

tology language 1.0 reference. W3C Proposed Recommendation, 15 December 2003.
Available at http://www.w3.org/TR/owl-ref/.

[3] D. Fensel, F. van Harmelen, I. Horrocks, D. McGuinness, and P. F. Patel-Schneider. OIL:
An ontology infrastructure for the semantic web. IEEE Intelligent Systems, 16(2):38–45,
2001.

[4] Volker Haarslev and Ralf Möller. High performance reasoning with very large knowl-
edge bases: A practical case study. In Proc. of the 17th Int. Joint Conf. on Artificial
Intelligence (IJCAI 2001), pages 161–168, 2001.

[5] Volker Haarslev and Ralf Möller. RACER system description. In Proc. of the Int.
Joint Conf. on Automated Reasoning (IJCAR 2001), volume 2083 of Lecture Notes in
Artificial Intelligence, pages 701–705. Springer, 2001.

[6] I. Horrocks. Implementation and optimisation techniques. In Franz Baader, Diego Cal-
vanese, Deborah McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, editors, The
Description Logic Handbook: Theory, Implementation, and Applications, pages 306–
346. Cambridge University Press, 2003.

[7] Ian Horrocks. Using an expressive description logic: FaCT or fiction? In Proc. of the
6th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR’98), pages
636–647, 1998.

[8] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. Reviewing the design
of DAML+OIL: An ontology language for the semantic web. In Proc. of the 18th Nat.
Conf. on Artificial Intelligence (AAAI 2002), pages 792–797. AAAI Press, 2002.

[9] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for expressive
description logics. In Harald Ganzinger, David McAllester, and Andrei Voronkov, ed-
itors, Proc. of the 6th Int. Conf. on Logic for Programming and Automated Reasoning
(LPAR’99), number 1705 in Lecture Notes in Artificial Intelligence, pages 161–180.
Springer, 1999.

[10] Ian Horrocks and Stephan Tobies. Reasoning with axioms: Theory and practice. In
Proc. of the 7th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR 2000), pages 285–296, 2000.

[11] N. F. Noy, M. Sintek, S. Decker, M. Crubezy, R. W. Fergerson, and M. A. Musen.
Creating semantic web contents with Protégé-2000. IEEE Intelligent Systems, 16(2):60–
71, 2001.

[12] Pellet OWL reasoner. Maryland Information and Network Dynamics Lab, http://
www.mindswap.org/2003/pellet/.

[13] Michael Uschold, Peter Clark, Fred Dickey, Casey Fung, Sonia Smith, Stephen
Uczekaj Michael Wilke, Sean Bechhofer, and Ian Horrocks. A semantic infosphere.
In Dieter Fensel, Katia Sycara, and John Mylopoulos, editors, Proc. of the 2003 In-
ternational Semantic Web Conference (ISWC 2003), number 2870 in Lecture Notes in
Computer Science, pages 882–896. Springer, 2003.

50

���� �� � �� �������	

����� �������� �	�
�����	
���

�	������� ��� �����������
������� ����	��

�� ������	� �����	�

��������������� ���!�	�!��"������	!��

��������

�� ���� ��� ��� ���	 ���
 ��� ��	���
��
� ��� ���	�
� ������ ����� �����
��
���� 	�� ���� �	� �� ���� �� ���	
� ���
�
�� ���������� ��� �����
��
��
��
���
��� �������	��� �� ��
� 	����	��
� ��	
�	��� 	�� ����	��� �� ��� ���
�	���
�� ��	������ ���� 	�� ������

� ����������

��� ���� ����	
� �����	 �
	�
 ����

�� �� ��� ��	 ��� ��������
�� �������� �����	
���� ��	 ����� �
� ����� ��� ���� ����
��� 	��
	���� ���
�� ����� ��	�� �����
��
�
� �
������	 �� ��� ���� ���� � ��
�� �����
 �� 	���

��
�� ���
��� ��	�� ���
���
��	 	����
� ���
�� ��� �� �
�������	
��� ���� ����� ����� � �!� ��	 ���� �� ���

��
���
"� ���#��������
� ������$
��% ���
� �$
��� �� ���
�
"�
�����
 � ���� ����
���
�&��
�
�� �� ���� �
 ���� ��
����� ��� �� 	��
	�	
� �#������� �'�� (���
��
���

 ����
��� �$�
���
"
�� ��	
������ ��������
���� ������$
��� �
�� ���)���
���� ���
� �$
��� �� �Æ�
���
����������
�� �� ���� ���� ��	 ���� �*�� +� ���
)��� ������ ����
�� ,�Æ�
��� ��
� ����� ���� ��� ����
� ���� ������ �� ��"� ����
���	
� � "�

��� �� ���#�

"
�� ����
���-� .�	��	� ��
��
���
"� �
�� �� ����������
����
���
��� ��� �� ����	 �� ���)��� �������� ����

�
���
�
� ������ ������	�� ���� ���� (/� ��� �� �
�������	
��� �����
�

� � ����
��
	�� �� ���)��� ��
 (/
�����
��� ����� ��� ������� �� ��� 	����
�

����� �� �� ���
�
��� ��� ����	 ���	������

���	 ��� �
�� �����
�� ��������
� �� ��
��

�
� �� ���
���� ��
��� ��������
	� ��� �� �����
�
��)�
� �
��
����� �� ��� � ����#
����� �
������
�� �� ���
��� ���� ��
�� � 0��
�#����� ����	
�� �� ���#�
��
� �
���

��� �
��
� �
���� ��	 �$�
�
� � ��"��
�	���
�� �� ���
��� ���� ����
�
���

�	
�� 1
���2� ,���� ��
�
���
��- �����
3�� ��
 	��
	
�� ��� ���
�&��
�
�� �� ��	�� ���
�
��
������ �� ���� �����
� ��� ��
��
����� ��)��� �
�� ���� �� ��� 	�	
����	
(/
������
� ���� ��	 ����� �4� 5�� ���
� �
� �� ����� ���
������ ��� ���� �
�����

���
�
���
���
��% &
���
� ����
���� ��� ��
��
����� �� (/
������
� �
��
��� ��
��
����� �� ��
� ����
��
������
�� ���� ��
��
� ��� �
�� �� ���� ���
� ���
��
��
����� �� ��� ���� ������
� �����
�	 �� ���� �� ��� &
�� �
	�
 ����
�� �
�"�

6���

�� �����	�)���
��������� �� ��������#����	 	��
�
�� �
���	�
�� ��
�� ���
��� (/
������
� �
� �������#����	 ��	 ���� � �����

��� ��� ����

���� �� ���
��	�
����	
�� �� ��� �	"������� ��	 	
��	"������� �� ��� ��� ���
�������

��� ������� �� ��

�"���
���
��
� �� �������%
� �� �7�$�� �
�
�"��"�	� ����
)���2� ��
��
�����
�
���������� ������
� ������
���� ��� ��
��
����� �� ����

51

��	 ������ .� ��� �
������ �� �7�$���)���2� ��
��
�����
� �$�
����� ���
�
��#
	�

�� ���)��� ���
���� �� (/
�����
�� "

������ �������� 8���"�
� �� ���
�"�
���� ��
��)��� ��
 (/
�����
�� �
����� �7�$�� ��� �� ������ �� ����� ��
 �
������#

�� ��
�����% ���� ��	 ���� �
� ����
��� ������ �� ������	��� ���� �$�
���
"�
	���

��
�� ���
�� ���� �� ���� �
 (/�
�"��"
�� �
���
�
"� �����
� ��
����� ��	
�#
�������
�� � �
�������

� ����
	�
���� ���� 	
Æ���� ����
��������
�� �� ���
�
9�	�
	�	
����	
������
� (�"����
�� �
������
��� ��
 ��
� ������$ (/�� ����"�
�
� ����
	�
��� ����� �� ��
� ����
�

� 	
���������� ��
��� ���
���

�� ������ ���
��

�� �
�� ��� 	���

��
�� ���
� ���� ���� ����� ��� ��
 	���
��� .�
�7�$��� �� �	�
� ������� �3���
��� �

�
: � �
�� ���� � ��	 � ����
��� ������$�

����� �7�$�� �
�
���
�
���	 ����
	
�� �� ��� ����� 	���

��
"� ������
��� (�� ��
����� �
�
���
���� �� ������ �
"� � ���� 	���

��
�� �� ��� ����	
� ���� �����	#�
	�

����

�� ���� ��	 ����� .���
�
"���� ��� �����$ �� ��
 ����	
� �����	#�
	�
 �)�;!
��������
� ����
��	 �
�� ��� ���
�
�
 &
��#�
	�
 �<;! �������� �
����� �����
��
������� ��	 ��������� ���� �
�� �3���
��! ��

��
���

��
�� �
�	
����� �� �� ���
�=

�� �		
�� �����	#�
	�
 3����
&�
� ,�- ��	 ,�- ���� ��� �� ���	 �� 3����
�� �"�

���
� �
�	
������ ��
�� �
�
� ��
� �����$� �����	 �����	#�
	�
 "�

�����=

 �
� ��� ���� �� ����� �		
�� �� �
	�

�� �
�	
���� ,�- ��	 � ��������
 ����#
�
�� ��	!=

*�
� ��� ���� �� ����� �		
�� �� �
	�

�� �
�	
���� ,�- ��	 ��� ��������
 ����#
�
��� ���	! ��	 ���	!�

+� ��
 ��� ������
��� ��
����� �� ���� �
�
���
�
���	
� ��� ��
����
� �� ��� ��������

�����
���
���
� ���#�
	�
�&�
�� ��
	�� ��� ��
��#
� �
	�

�� �
�	
���� ,�- ��� ���
��"
���
���
�
����
�� �� ���
�
���
� ���� �#��
	�� ��	 ��� ��������
 �����
�� ���
�� ���	 ��
 ��
�� �� ��� �������
"� ���
�
��� .� ��� ���� �� ����� ��
����� �
�

���
�
���	
� ��� ��
����
� �� ��� ��������
 �����
����
���
�
�&�
�� �
��
� �
���� ���
�
	�

�� �
�	
���� ,�- 	���

��� ��� ,�>��

��-
����
��
� ���� �
���� ��	 ��� ���
��������
 �����
��� ���	! ��	 ���	! ��� �� ���	 ��
 ��
�� �� ��� ���� ��	

��� ��������
�

������
"���� <�
 ���� ���� ��	 ����� ��� ,�- ����	� ��
 ,����-
�	
���
�� ����
3����
&���
��
� �� �
��� ����
����
 ���� �� �
�
�
�
� ���� ��
� ��� �������
�����	
����

�� ��� ��	 ����

�� ���� ��� �	
 ������
 �	
��� �� ������
 �
��

�� &
�� �
����� � �
������
�� �� ��� �������� ��	 �7�$�� �� ����� �

����
 �� ���
)�; ����
� ��
�&�
�� ���� �
��� �� �
�� ��� ��� ����2� ��
��#
� �
	�

�� �
�	
�����
��	 ��������
 �����
���� ��� �
������
��
�
���

�	 �� ��� 1
���#����� ,���� ��
�
#
���
��- �
���	�
� ��
 	��
	
�� ��� ���
�&��
�
�� �� ��	�� ��
���� ����� .���
�
"����

52

���� ��
�
���
��
� ����	 �� ��� ������
�� �
���� ����
"��
��%
� � 	���
� �������

� �� ���
���
�
����
�� ���
�&�� � ��� �� �������� ? �����
�
�� �� �$
�����
�� "����

���

��
�� ����� ���� ���
� ���� �$
�� ������
 	���
� ������� ���
���
�� � ��	 ���
� �
�� ����
 ?� ��
� ����
"��
�� ���� �����
����� ��� ��
� �� ��� ����
�	���
���

/�� � �� �� ���#������� ��	 � � �7�$� �� ��� ��	��! �� 	����� ��� ��� ��
����������� �� � ��	 ���

��	���� ! %: ��	��! �
�

�
�
����

��	��! � ��	�	!�

)�
��"�
� �� ���
������� ! ��	
������ � ! �� 	����� ��� ���� �� ������� �����
��	
��� ����� ����

��
� � ��	 � �
������
"���� �� �
������� � ��	 �
��� �
��

�����	
�� �����	 �
	�
 ��
����� ��
��
�	��� � ���
� <;#�
�	
����
� ��
 ����
�

������� !� ��	 � ���
� <;#�
�	
���� �� ��
 ���� �
 ��	���� ! �� ��� ��
�
���	 �
 ���	� ����� ��
 ���� ������� �
 ��	���� ! ��	 ���� &
��#�
	�
 "�

����
�
�� 	�&�� � ��
���� ���
! ��
�����
��

�� ������� ����� � �
��
��
!=

��
 �
�� � ��	 � �
�� �=

 � ���� �
�� ������
! ��	 ���� �
�� ������
!�

@����
�
�� ��� ����
���� �� ����
������ �$
�����
�� ��	 ��
"�
��� "����
���

��
���
���� �
� ��� �����
��	
��
	� ������
 "����
���

��
��� <�
 �$������ ���
��

� : �
 ����������
 ��!!

��	 ��� <; "�

����
� �� ����
�

���
! :
��
! � �������������	���
!�

A�$�� ��
 ����
��� ���� �

������� ! �� 	�&�� � ��
����

�� %: �
����
� �
���
�������� �

�
����
�
!�

�
���� ��!� ����!

��

�
�

���
�������� �

�
����
�
!�

�
���� ��! �����!

���

���
�

� � &
�� �
	�
 "�

���� ��	 �
� � �����	 �
	�
 "�

���� ���� ���� "�

�����
��� �� ���	 ��
 �"�
� �

������� !!� <
������ �� ��� 	�&�� ��� ���� ��
����
��
�� � ��
��
� ��� �
������
�� �� � ��	 � %

��
�� %: �
����
! � �
�
� �

�
�
����

����
!� 	��
!!
	
�

�
�������
�� �

��

����
���
�� �� ��
� �
������
��� ��
��
� �����	 ��
� ���
���
�	�
 �� ��
� ����
�
�
�
� �
	�
� <

���
�
� �
���
 ��	 ��� �"��
�����
� �� �$������
�� ����
���
�� ��

53

���
���� ������� ��	 �7�$� �����	� ��� ��
���� ��
�� 	��� ���
���
 �� ��� ��������

�����
��� ��	 �
	�

�� �
�	
������ ��	 ��� ����� ��
���
�
���	 ����
� ���� ��	
�
���)�; ����
� ��
�&�
�� ����� +�	 ��

	�
�
�
���
���
�� �� ���� ���� 	���

��
��
���
�
���� �
� ��� �$��
�
���
��
������	 �� ��� �����	#�
	�
 �
	�� ��
�
� �� ������� ��
��"� ���� � �
����
����
�� �"�
�����
� ����% ��� ��������
 �����
��� ��
�� 	��� ���
���� ��
����� ��

��
�����
�� ���
� ����
�� ���#�����
����
���
����
����
��� ����
��
���
� �� � ���� ��
�
���
�� ��
�����
"� ��
�
�
���� �������	% ��� �$
�����
����
3����
&�	 "�

���� �
� �� ����

��� ����� 	���
� �������� ���� �
� ���	�	 ��
���
��� ��� ��� �$
�����
�� "����
���

��
��� ��
�

�	
��
� �� � 	�
	��� � �� ��������
� ������ � ���� � � ��
�� �� ��������
� �
 ���

�!"#������ �� �
�
��� ���� � ��
�� �� $!%!#��������
��

.�
�
���
���
�� �� ���� ���� �� ��� �"�� ��
�
���� ��� �����	#�
	�
 3����
&�

� ���
�
�"
��� �
������
�� �� 	�&�
�� ��� ��
���� ��
� � 	
>�
��� ���� 8�
�� ���
����
��
�� ���� ��
�
���
��
� �"�� ��
� "
�
���%

��� %: �
�
�

���
�������� �

�
����
�
!�

�
���

�
����! �

�
������������ �

�������
!� ����!!
���

�
�� ��
� ��	
&���
��� �� ����	 ��� ��
 �
������
�� �������
 �
�� � &
��#�
	�
 ����#

�� �
�"�

����
 ���� �������
 �
��)���B� ���� ���� �� �
� ��� ��
�� �� �$���
�

� ��� ��

��� ����
� A��� ���� ��� ��	
&�	 �
������
��
� 3��	
��
�
����
 ����
�
���
�

�� ����

��� �
������
�� �� ����
� ���� ��
� ����	�
	 ���� ��
 ���� �
������
��� �
��� ��
��"� ��� ��������
 �����
��� �"�
�����
� ����� �� ��� ��� �$��
�
���
��
����� ���

����
���� ��
����
� �� ��� �����	#�
	�
 �
	�% ���
� ����� �� ��"� ��� �
��#��	��
�
���
��� ��	 �� ��	 �

�� �� 0��
� ���� ��� �� ���	 �� �
�����
� ���2� �
�� ��	����
��
�� �
� ��� �������

�� �
��
� �
����
��� ��� �
��
� �
�� ��
����
� �� �����

/�� � �� �� ��� ������� ��	 � � �7�$� <�
 ��� ��� �
������
��� �� &$ ��
�����
��
�� �� ���
����
� � ��	 � � ��	 ��� C� �� 	����� ��� ���
�
�� �� �
��� �
�
��
� �����
��
��� ��
��
�	��� � ���
� <;#�
�	
����
� ��
 ���� �

������ � !�
��	 ������
 ���
� <;#�
�	
���� � � ����� ��
�	���
"��� 	�&�� ��� �
������
��
�����
��� 	
 ��	 	�� ���
�
 ��	 � �
� &
��#�
	�
 "�

������ 8�
�
� ��� 	
 �
������
��%

�
 %: ��
!
���!
 %: ��

��
�!
 %: �
 ��

�� ��!
 %: �
 ��

�����!
 %: ����� �� �
�
� �
! � �

� ����!! ���
� � %: C�
�����!
 %: ������ �� �

�
� �
! ����!!� ��! ���
� � %: C�

.� ��
� �
������
��� ���	!
� ��� ,

���- ��������
 �����
��� ��	 ��� �	! ����	� ��
 ��
��
�� ���

��� ��������
 � �
����)�
��"�
� ��
� ��� �
	�

�� �"�
 ���� ��������
� �����

54

�
��� ��
�
� ��� �"�
�����
�)���� �� �
������ � ��
 �� �

�
��

���
�

 � � ���

�
�
 �� �� : � � ����!
 �!

��
�

A��� ���� ��
� ��
���� ���� ��
�� �
����
� ����� 3����
&���
��
� �"�
 �
��� �����
��� 	� �
������
��
� 	�&��	 ������

����� �� 	
� 	���
�� �
� ��
���	� D
"�� � �������
� ��	 � �7�$ � � �� ��� 	�&�� ���

 �
������
�� �� ���� �� �������%

��
�� %: �
����
! ��
! �
�

�
�
����

�
���
 � 	
!�

���
���
�
�� ���
�	 ��
� �
������
��� ��
��
� �����	 ���
� �� �������% ���
�
� � ���#
��#��� ��

�����	���� ������� 	���
� �������� �� ���
���
�
����
��� ��	 ��	��
�
��� ���� �
�� ��
����
� ���� �
�
� ��� �$����
�� �� ��� �
�	
���� � � /��
 �� �
��	�
� ��� ���� �
�� ����
�
� � � �� &�	 ��� �#��������
� ��
 ��
 �
��� ����
�

������� ! �
�� �� : �� �� ���
� ��
 ��	 ������ ���

��� ��������
 �����
��
�$����� � �
��� �� ��� ��	� �� ���� ��� �#��������
� ��
 �
� ��
�� ���� ��������
�

�� ���� ��������
2� ���� ��������
� ��	 �� ��
��� ��
� ���� �$���
�� ��� ��� �� ��� �
�
�	
����% �
��� �� 	� ��� ���� �� ��"�
�&�
���� ���� ��������
� ��
 ���� 	���
�
������� ��	 ����
��� ����� �� ��
� ��� ,�$
��
�� ����- �
�� � �

�	
��
� �� � 	�
	��� � �� ��������
� ������ � ���� � � ��
�� �� $!&!#��������
��

���
� �
� ����
���
���
�� "�

��
��� �� ��
� �
������
��� <�
 �$������ �� ��� ��	
��
��� �
������
�� 	
 �� ������� ���	 	� �����������!%

�����!
 %: ����� �
!! � ����� �� ����
�
� �
!! ��

�! ���
� � %: C�
�����!
 %: ����� �
!!� ����� �� ����

�
� �
!!� ��! ���
� � %: C�

8�
�� ���
���
�
�� �� ��� � �
�	
����
� � 	
>�
��� ��� �
��� �
� ���� ���	 �� �����
������
 � ��	�
 ��� ��������
� ��
 �
��� ���� � �� ���% ��
�
� ��� ����
� ��	 ����

� ��� �
!
�
� � � �
�� � : ��� ��
� �����	 "�

��� �� ��� ��� �
������
��
� 	�����	
�
�� ��	�

� ����������

�� �"������ ��� ��
��
����� ��)��� ���� ���	 ��
 	��
	
�� ��� ���
�&��
�
�� �� ���
�������� �
�����
���
���� �� �7�$��� �� �������	 ��� 	
>�
��� ������� �� ���������
<

����� �� �����	 ��
 ���
���� �� ��� �������$2'4 ��������
�� �'4! �������
� ��
��
����
� �
�3������ ���	 �� �"������ (/
������
�� ���� ����� �4� ���� ��� �'4 ��
��
����
��� �� �4 ��3������ �� ��������� ���� ��3����� ����

��	 �� �� �������� �
��

��
���
�� 	
Æ������ �
��� ��� �'4 �������� �
� �
�
&�
��
� ��� ����� ���� ���� ��"�
���� 	��
���	 �
�� ��� ���� ��
���� �� ���
��
�����
�� 	
Æ���� �E�� �� �����	��
���	 �������� ���� ��
� �$�
����	 �
�� ���
��� ��
�	 ������	�� ����� ����� ��	
�����B��� �F� ��
 ��
�
���
���
�� �� ���� �� �����

+�� ����� ��
� ��
����	 &"� �
���% ���� ��
 ���� �� ��� ��
�� �
������
��� ��� ���
��	 ��	� ��	 ���� ��
�� ��� ����#����� (/
������
� ���� ��	 ����� �4� 5�� ���

55

�� �� ��	 ����� ����

 	���
� � � � � �� �

 	���
� � � � � ��

 �� � � � � �� ��

 �� � � ! � �� ��

 ��� � � � ! �� ��

 ��� � � � " �� ��

 ��� � � ! # �� ��

 ��� � � � # �� ��

 ��� � � � �� �� ��

 ��� � � " �� �� ��

 ���� � � ! �� ��

 ���� � � � �" �� ��

 �� � � � �� �� $

 �� � � � �� $

 ���� � � � � �� ��

 ���� � � � � �� ��

 ��� � � � � �� ��

 ��� � � � �� �� ��

������ � #� �!" !# !��

������
�����%& $"�!� $!��! $���" ������ ������

������
�����%& $$�#� $ ��� $"� ! ������ ������

 ����%& ������ ������ ������ ������ ������

<
��
� �% G$��

������ 0������

������ �
� �����

9�	
� <
��
� �� .� ��� ������ ��� ����� � � � 	����� ��� �������
��3������ �� �'4� ��� ���

�� �
� �� ��
��	 �� �������% ���
������
� ��	 ��� �����	�
�� 	��
	� ��� ���
�&��
�
�� �� ���� �������
� � ��3������ ��� �����
 �
"��
� ���
�����
� ���� ��� �����
 �� ��� ���� ������� ���� �
������
 ��� ���� �� ���"� �
��
�
��
� �
��� ����� ��� ���
� ,��- ����� ���� ��� ��������
� � �
"�� ��3����� ��"�
���� ���"�	� <�
 ��� ,
��� ��
�	- ��������� ��
 ��
�� ���
������ ��� �� ����	
� ���
���� ��
�� �
���� �� ��� � 	
>�
��� ������% ���
� �
� ���
� ��� �����	� �"�
����� ��

�����
�� �� ���� �������� ��� �
��� ����� �������� �
� ��� �
	�
�	 ��
���
��
���
��
	
Æ������ �� �
���� �
"� ��� ��
������� �� ������� ���� ���
������
 ��� ���� �� ���"�
�
��
� ��� �
"�� �
��� A��� �����
� ������ ���
� ��
� ��E5 �������� ��
 �����#�
��#��
�' E �������� ��
 �����#�
��#�� ��	 �E� �������� ��
 �����

���
� �
� ��"�
��
���
���
�� ����
"��
��� �� �� ��	�
� <
��
� �� <

���
�
� ��#
"
��� ���� ��� 	�	
����	 (/
������
� ����� ��	 ���� �����
��
�)���
� ����
������ �$���� ��
 ��� �
������
�� ��	 ���	 �� ��� ��3������ � ��� �� � ���� �� � ���� ��
� �� �� ��	 � �� �B
� ��� ���� �����)��� �"�� ����� ���� �
� ������ �����	� ��
��� �'4 �������� ��� �
������
�� ��	 ��
��
�� ���� �����
 ���� ��� ����
 ��� �
���#
���
���� ��	 ��
� ��
�� ���"
�� ���� E �������� ��� �� F4� ��
�

�
����� ��� �
����
��

�
�"�
��	 ��
 ���
��� ��
�	 ��������% ��
� �� �����
��
�� ���� ����
 �
������
���
��	 ��	
� ��
��� +�	 ��

	� ���
�
� � ��
�

�
�� 	
>�
����
� ��� ��
��
����� �� ���
������
	���
��� �� ��	 ��	 �
������
��� ��� ����� �� ��� �'4 ��������!� �����)���

� ����
����� 3�
�� ����
�
"� �� ����� �������
� ��� �
������
���

56

8�� �����	 �����
������ �� H�	��	I /�� �� ���
� �
�� ���
�� ���� ��� �����

��
��
����� �� ���� ��	 �����
� ��
���� ��� ��� ��
�

�
��% ����)��� ��	 ���

�"��"�	 (/
������
� �
� �
���� ���
�
9�	� ���)���
� ������� �� 	���
�� �
��
� ���� ��
� ����
��� ���
�� ��
�
� �
������	 �� ��� ���� ���� ��� ������$
�� ��
���� ��	 ����
� ���#��������
� �'�� ��
�� ���� ��	 �����
�������� �������#
�������� ���
��� ��
��� �� ���
�"� ���� ��� ��
��
����� �� ��
 �
������
���
�
����������
.� ��
�
����
�
� �����	 �� �����
��� ������� ����� �����
�	 �� ���
����������
��
�� � ����#J�	��	 (/
������
� ���
����������
�� �� ��
 �
������
���
� � �
��� ��
����� �
��� ���� 	
>�
��� 	���

��
�� ���
�� ��� �� �
�������	 �� ���� ��	 �����
�� ���
�"� ���� ���� �
������
��� ��� �� ������ �� ����� ��
 �
������
�� ��
������

�� �����9� ��� ��� ��
�� �
������
��� �$�
�
� � 	
>�
��� ��
��
������ �� ���	
��
��
�	��� ���� ��)���2�
����������
�� 	���
��� �� 	��
	� ��� ���
�&��
�
�� �� �
��
�����)��� �����
���� � &�
�� ��������� ���� ������� ��� ����� ��������
� ��	
����
� ���
���� ��
����
� �����
�&����� ��	 ���� ��
��
�� �� ��������� ���� �� ��
�
���������� ��� �����
���
�� �� ��� ���������� ��
�� ��
�� �� �#��
	�
� ��� ���� ��
���� ��	 ��
�&�
�� �
���
� ��� ���� �����
�"��"�� � �����
 �� ��������#����
��
�
���
��
���% ������������
�� ��
 	���
�� �
�� ���
��� �����
��� ��
�� ��
 	
�H����
���
�
�	��� ��
 ���H����
��� ��	 �
�H���
�� ��
 3����
&�
�� �
���)��� ������ ��
�� �
��
�������
���	 ��������� ��� ���� ,	����
���- ���
��
��
� ��
� �
��
� �
�H���
�� ��

�
�"��"�� ��� 	���
�
�
9��
�� �� � ���#	���
�
�
��
� ���������� +�
� ����#������
��
� ��� �
�	��� �� �$������
�� ������
� ��������� �
9��
� ����
��� �� ��������
������ �
�	���	 �� ������������
�� ��	 ��
��� ��	 3��	
��
� ������ �
�	���	
�� ��� �
�	���� ��
�
� �������
�����	 �� ��� ���� ���� ���� ��	 ���� �
� ���#
��������
�% � ����
��� �
�H���
�� ������ �� �"�
	�	 ��
 ���� ����
���
�� �� ���
���
3����
&�
�� ����
�����
��
�
������	 �$������
�� ��������

��
�

�
����� ����"�
� 3����
&�
 ����
���
��
� ������ ��"�
 ��� ����

� �� ��
#
��
����� �
������
� ��
 �
������
��#����	 ������� �� (/
�����
��% ���
�����
��
 ���#��
�
���
��
� ������� ��� ��
� ��
����� ����
�� �
�	��� ���
��
���
��� ���
�
������� �� ���
��� ���H����
��� �� ��	�
����	 ��
�� �� ���� ���� ���� ��
� 	���
��
�����)���
���
����% ��� �������� �� ��� ��������� �����
����	 ��
 � ����!��
����
�
� ����

��	 �� �K�#��

��� ����� ������
�
	���
��� �� ��� �����
 �� �
�� "�

#
�����
� �B���
���
�
��
� ���� ��� 	���
� ������� 	���

��	 �� ���� � ��

��
�
�����
��	
� ��� �$����
�� �� �$����� ����� �
�� "�

����� ��
 ��
�� �� &�	 � ,�- "����

� ��� ��

��� ����� ��� �
9� �� ��� ��������
� �$������
��
� ��� ������ �� ���
����
��
����� �� ���� �
�� ��
��)��� ���
�� ��� �
���
�
�� ����� �� ��������
� � ���#
�
����	 ��� ��
�� �
��
� 	��
�
�� 	
��
��� �7((�!� L���
��������� ��
� ����
���
��
���� ��
�� ����
� ��� ��	�
��
�� ��
���� ����
��� ����
���
	����	���
�� ����� ���
�
�� "�

������

A�� ����
	�
 ��
 �
������
�� ��% ���� �����
���� ��
� � ���� ���H����
��
��
	�
� ,��- 3����
&�
 �����
��)�
��"�
� ���� ���H����
�"��"�� � ��
�� �����
 �� �
��
"�

�����% �
��� &
��#�
	�
 �
�	
����� �
� �
����	 ��)��� �� �
�� "�

����� ���
�� �
�

���
�
��� �$
�����
���� 3����
&�	 �� ��� ����
���� ��"��!� ��
�
����	�� ��� �
�	
�����

�
��
�	���	 ��
 ������� ����� ��	 ��� �
�	
����� �

��
�	���	 ��
 ����������� �
�� ��� ��
� ���� ��	 ����� L���
��������� ���
���
���
�� ������� ����� �
�� "�

#
����� ��
�� ��� �� ��
����
 ����
� ����
��� ����� ���
������	 �
�	��� ���
��
���

57

��
��
��	 ���� �
�����
�� ��� ���� ���H����
��
� �� �
�	��� �� ��������� �����
7((��� �� �$����
"� �����
 �� ��	��� ��� �����3���� �
�H���
�� ��	 	���
�
�
9�#
�
�� ����
� ��
��
��	 �� �
��� ��� �����	 ���
���

� ��� ,��- �����
�
� ��� ���� ��
�
����� ��
� ��
�� ����������

.� ����
���� ��� ��
����� �
�	���	 �� �� ��	 ��	
�J��� ��� ��
����
� �� ���
�

�
��� �������� ��	 �
� ���� ��� H��� � �
� ���H����
��� ��
� �$���
�� ��� ��	
�
�����
 �� ��� �'4 �������
�� 7�� ���� �����
� �� �����
 ��
��� ��
�	 ��������I
���
� ���� �� �� ���
������% &
��� ��� �������� �$�
����	 �
��
��� ��
�	 ������	��
����� �
� ���� ������
 ���� ��� �'4 ����� ��
�� ��� �� ��"�
�� ���������
� �
9��
����� ���H����
��� �
�	���	 �� �� �
� ���� �
����
�
� ���
��� ��
�	 ����� �����	�
)��� ��� ���	�� �������� �� �#��
	� ��
� �Æ�
����� ���� �
��#��������� ����
�
"
�� �� �� �	"������ �"�
 �� ��	 ��	�

�� ��"� ���� ���	 ��
 �
������
�� ��
 	��
	
�� ��� ���
�&��
�
�� �� �������� ��
���
�7�$��� ���� �� ��� ����� ������	�� ���� ��	 �� ��� ��� ��� "�
�
��� �� ������
L���
��������� ���
������ ��
� 	
����
��
��%)��� ��
�
����	 ���� ��
 "�
� �����
�7�$�� �� �� ������� �3���
���! ��	 ��� ��� ���� �� �����
�� ��� �� ���
��� ��
�	
M7�� ���
����� ��
 ��
�
� ���
� 	�� �� ��� ����
��
�� �� 7((� �
�� � ����
"� �����

�� ��	��%
� ��� ��
 �
������
���� �7�$�� �
� �
�������	
��� � ���� ���H����
��
��
	�
� ,�- 3����
&�
� 8����� �� ��� ����
"� ��� ���� ������ �����
� �� �
�� �� �� ���
�'4 ��������� G"�� � �
����	
�� ,����
��
��- �� ������� �3���
��� �� ����� �
��
�F�� ��	 �� ��
�
���
�� �� ,���#
���"���- ������� �3���
��� �� �
�����	
� ���� 	
	
��� ����� �� �� �����
��
��� ��
�	 M7��

� ����������

�� ��"� ����� ��� ���)��� ���� ��� �� �$���
��	 ��

�����
�� ����� 	���

��
��
���
��� ��� ������� �� ��
 �$��

����� �������� ����� ��������)���
� �����
��
��	
�� 	�	
����	 (/
������
�� ��
 ��
��
�����
� ��Æ�
��� �� ����� ��
 �
������
�� ��
#
������ .� ��
� �����$��
� �����	 �� ����	 ���� �
������
��� ��� ��
���������	
����

3�
����� ��	 ����)���
� �$�
���
"� ������ �� �����
� � ��
�� ����� �� 	���

��
��
���
��� <�
 �$������
� �����	 ��� �� ��
	 �� ���� �� �
�� �
������
��� ��
 ��
�
����
��� (/� ���� �� ����� ��	 �"�� �� �
��� �����
�� ���� �
� "�
� 	
Æ���� ��

�������
������
�� ���� �� ��� �
���
�
"� �����
� ��
�����

.� ����	 �� "�
�
���
���
�� �� 	���
�
�� � ����� �� �������� �� ��
��)���
��
��
�� ���	� ��� ��� (/
������
� 	� ���� ��	 "
�� "�
��� + &
��
	��
� �
�"
	�	 ��
��� 	
�����
��
� ����
�� %)���
� ���	 �� 	
�H����
�� ���� ��

�����	
�� ���
��
��
,�������� ��
��- ���� �
��	� � �������� ������
� �
9�!� ��	 ��	 �� ���H����
��= ��

������� ����

����� ��
�
� ��� ����
 ���
���	� ��
��� �� ����	
� 	
Æ���� �� ����
�� �
�� ��� 	��

�	 ����� �� �������� 	�� �� ���
��

���� ���
�
9��
�� �����
3��� ��
���� ��	 ������ ��� ���
������
� �"�� ����"� 3�
�� 	
>�
�����% �� ��"� ����	
��� ������� �� ��
����� �� ��
��)��� ��
��
�� ���	� ��� ��� �� ���� ��	 �����

��
��
�� ��	� + ����� �� ���� ��
����� �� ��
�� ���� ���� ��	 ����� ��
��
� ��	�
����"�
�
���
�� ��� �� �� �����

��� �
�������
 ��	 �������� ���	
� ��� �$��

����� ��� �� 	������	�	 �
�� ���

58

���
���� ���� ����%KK����
�����#	
��	���	�K����K�������
��9�

����
�����

��� ���)��� ��������� ����%KK�����

���	�K����K�

��� <� 7��	�
� (� /�)�D�
����� (� A�
	
� ��	 1� 1����#�����
	�
� ��� ���	������

����	 '�
����() ������� ���
���
�����
 �
� ���
�	����
�� @���

	�� L�
"�
�
��
1
���� ��� �

� � 1� 7������
��)� 	� 0
H��� ��	 N� 6������ ����
 ����	� @���

	�� L�
"�
�
��
1
���� �����

�*� O� G����
	� A� M��
���	� ��	 +�)����
�)��� ��$% ��� �����
3��� ��
 ���� ��	
����� .� *������� ����� +����	����
� *�+ �,-� .��	����
��� "����� �*�F ��
�/*!� ��

���
 6�
���� �''4�

�5� 6� 8��
���" ��	 0�)P����
� 0+@G0 ������ 	���

��
��� .� 0� D�
Q�� +� /�
�����
��	 �� A
����� �	
��
�� .��	����
�� �� ��� 0���� 1
���
����
�
 2��
� *�
����
	�
�
 ��������� 3����
�
� 412*�3�5%6� �����
 ��4
� /����
� A����
� +
�
&���
.�����
������ ����� F��RF�5� ��

���
#6�
���� �����

�E� +� 8���
	
�� ��	 �� ������	
����� + �������
� �����	 ��
 ��� �
����
�
����
��	�� ���
�� �� ��� �*� �����
��� 0���
� .+)#'E#��5� L�
"�
�
�� �� 7�
�� ��
�9�
#
���	� �''E�

�F� .� 8�

����� "�������
� ���
���� ��	����
 .��	������ ��� ���	������
 ����	��
1�	 ����
�� L�
"�
�
�� ��)��������
� �''F�

�4� .� 8�

����� L�
�� �� �$�
���
"� 	���

��
�� ���
�% <��� �
 &��
��I .� .��#

	����
�� �� ��� !���� 1
���
����
�
 *�
����
	� �
 ��� .��
	��
�� �� 7
��
����

3������
�����
 �
� 3����
�
� 473,-6� ����� E ERE*F� �''4�

�'� +�)���
� ���� ����	
� �����	 �
	�
 ����
� �� ��������

� ��� ��������
�#

���
�
"�� .� �"8*"��"9) ����	 *�

�:����� /����
� A����
�)�������
���
A�� *5 � ��

���
#6�
���� �'F5�

����)�;� 0��
�� (��
	��
�
�� �� �����	#�
	�
 ����

�� ��	 �������� ��
�&�
�� �
����
���
��	���
� �� ��� �����	�
 ���������	�
 !�	����� �*�%�R 5� �'E'�

���� 6� 0� 1
����)�	��� �� �
��
�� ���
��� .� .��	����
�� �� ��� ���
����� �

��

!�������� �
 0��
�����
� �� *������� !	��
	�� ��� O���� 1��
�� 0
��� �'F'�

���� (� ���
��" ��	 .� 8�

���� (�
������
 "�� &
��#�
	�
 �
�"�
� .� G� <� (
��� @��#
"������ D
������ (� D
������ �	
��
� .��	����
�� �� ��� 1
���
����
�
 $��(����

�
 ���	������
 ����	� &55; 4��&55;6� �����
 4�
� @GL0#�� �����%KK���
#
����
�K!� ����� �5�R�5'� ��� �

59

OntoXpl∗

Exploration of OWL Ontologies

Volker Haarslev and Ying Lu and Nematollah Shiri
Computer Science Department

Concordia University, Montreal, Canada
haarslev@cs.concordia.ca

ying lu@cs.concordia.ca

shiri@cs.concordia.ca

Abstract

This paper describes the OWL ontology explorer OntoXpl. It is available
as a web server based on the tomcat architecture. Standard HTML browsers
can be used to interact with OntoXpl. At least three potential user groups are
targeted by OntoXpl’s design: (i) users with a limited background of ontologies
and OWL; (ii) ontology developers that are OWL experts; (iii) users interested
in understanding and reusing existing ontologies. OntoXpl is intended to com-
plement existing ontology editors and does not offer any editing support. The
current implementation of OntoXpl is based on the OWL DL reasoner Racer
and uses Racer’s extensive query interface in order to support the exploration
of OWL ontologies.

1 Introduction

Practical description logic systems play an ever-growing role for knowledge represen-
tation and reasoning research. In particular, the semantic web initiative [3] is based
on description logics (DLs) and defines important challenges for current system im-
plementations. Recently, one of the main standards for the semantic web has been
proposed: the Web Ontology Language (OWL) [17]. OWL is based on two other stan-
dards: Resource Description Format (RDF [10]) and its corresponding “vocabulary
language” RDF Schema (RDFS) [4]. In recent research efforts, these languages are
mainly considered as ontology representation languages (see e.g. [1] for an overview).
The languages are used for defining classes of so-called abstract objects. Now, many
applications start to use the RDF part of OWL for representing information about
specific abstract objects of a certain domain. Graphical editors such as OilEd [2] or
Protégé [14] support this way of using OWL quite well.

State-of-the-art description logic (DL) inference systems such as Racer allow for
interpreting OWL ontology documents as T-boxes and A-boxes [8]. Racer accepts
the OWL DL subset [17] (with the additional restriction of approximated reasoning

∗OntoXpl’s download page: http://www.cs.concordia.ca/ying lu/

60

for so-called nominals and no full number restrictions for datatype properties). De-
scriptions of individuals are represented as A-boxes by the Racer System (for details
see the Racer User’s Guide [7]). Viewing the RDF part of OWL DL documents as
A-boxes provides for query languages supported by DL systems. Furthermore, graph-
ical interfaces for description logic inference systems can be used to inspect OWL
ontologies.

User interfaces are very important for practical work with description logic infer-
ence systems. An increasing number of graphical interfaces are available for existing
DL systems. One class of interfaces consists of ontology editors such as OilEd [2]
and Protégé [14]. With these editors ontologies can be interactively built and they
can be stored, for example, as OWL documents. In addition, the editors can be used
to develop RDF documents for describing information about individuals with respect
to OWL ontologies. Applications using these OWL documents require an inference
engine that supports reasoning about individuals. Indeed, OilEd and Protégé can
be configured to use Racer [6] as an inference engine for classifying ontologies and
for answering simple queries about individuals.

The second class of interfaces offers browsing and visualization capabilities. Rice
[13] supports the input of textual queries and displays the concept/class hierarchy of T-
boxes as outline views as well as the relational structure of A-boxes as directed graphs.
The outline view of classes is usually also supported by ontology editors but Rice
additionally supports the visualization of A-boxes. Other OWL/RDF visualization
tools or editors with visualization capabilities are, e.g., KAON [15], OntoEdit [16],
and OntoTrack [11].

The OWL ontology explorer OntoXpl presented in this paper is intended to
complement existing ontology editors and visualization tools. It is completely based
on OWL and offers a large variety of information queries. Three potential user groups
are targeted by OntoXpl’s design: (i) users with a limited background of ontologies
and OWL; (ii) ontology developers that are OWL experts; (iii) users interested in
understanding and reusing existing ontologies. OntoXpl is available as a web server
based on the tomcat architecture. Standard HTML browsers can be used to interact
with OntoXpl. Its interface makes heavy use of Racer’s extensive query interface
in order to support users when exploring OWL ontologies. The following sections give
a brief tour on using OntoXpl and explain its rationale in more detail. Afterwards
OntoXpl is compared with related work. This paper concludes with an outlook to
possible future work.

2 OntoXpl’s main user interface

OntoXpl’s design is influenced by OWL (and its foundation on DLs).1 Therefore, it
focuses on the three main language elements of OWL, classes/concepts, roles/properties,
and nominals/individuals.

The main command pane of OntoXpl is shown in Figure 1. The filename of
the OWL ontology currently loaded into OntoXpl and Racer is shown with a sum-
mary of the number of contained concept and role names (see also Section 3 for an

1The DL and OWL vocabulary is used interchangeably in this paper.

61

Figure 1: OntoXpl’s main command pane.

explanation of the example knowledge base). OntoXpl’s interface offers eight princi-
pal browsing categories (from left to right and top to bottom): file selector, “natural
language” description, structural information, exploration of concept/property ax-
ioms, inspection of concept and role hierarchies, view of statistical information (not
yet implemented), inspection of A-box graph structures, and the interactive use of
Racer’s query language nRQL. In the following the seven implemented categories
are described.

Figure 2 shows a zoom of the first (horizontal) command pane. The left group
of commands is used to load an OWL file and generate a DIG representation of the
loaded OWL file. The middle group of commands applies to concepts, roles, and
individuals. These commands result in displaying the OWL source code (e.g., see
Figure 8) together with a “natural language” description (e.g., see Figure 7). The
“natural language” (NL) description is based on the DL notation and tries to describe
the selected item w.r.t. this notation. These NL descriptions are intended for users
with a limited background on DL and OWL. The information views of concepts (e.g.,
see the window at the left-hand side of Figure 9), roles (e.g., see Figure 10), and
individuals (e.g., see the two windows at the right-hand side of Figure 9) use Racer’s
query interface to display their (inferred) characteristics. Concepts are described by
(i) their relative position in the classification hierarchy (e.g., parent, children), (ii) the
roles occurring in the concept declarations, and (iii) the individuals that are instances
of this concept. By analogy, a role is similarly described but in addition to its position
in the role hierarchy, the concepts are listed that use this role. An individual is
described by (i) its most specific concept names (so-called types) of which it is an

62

Figure 2: Zoom of the upper three command menus (from left to right): file selection,
OWL / natural language views, information page views.

Figure 3: Zoom of the middle two command menus (from left to right): explore
concept/property characteristics, show concept/role hierarchies.

Figure 4: Zoom of the bottom two command menus (from left to right): A-box
command menu, nRQL Racer Query Language.

instance, (ii) other individuals that are instances of concepts (parents, children, etc)
related to its types.

The two implemented command groups from the middle pane are shown in Fig-
ure 3. The command group displayed on the left allows one to query about equivalent
or disjoint concept names and symmetric, inverse, and transitive roles. The other
group is concerned with concept and role hierarchies. There exist two principal ser-
vices: (i) one can browse the concept or roles hierarchies in an outline view; (ii) a data
file for the SpaceTree tool [5] is generated such that the taxonomies can be graphically
inspected.2

The last two command groups from the bottom pane are shown in Figure 4. They
are dedicated to explore A-boxes. The first command group has several search forms
to retrieve individuals and their known relationships with other individuals, to browse
relationships in an outline view or inspect the A-box structure with SpaceTree. The
second command group allows users to query A-boxes with Racer’s query language
nRQL [9].

2The hierarchy is shown as a pure tree, i.e., edges to more than one superclass are ignored.

63

Figure 5: Class (left) and property hierarchy (right) of the “family” KB.

Figure 6: Graph of the A-box relationships.

Figure 7: “Natural Language” description of class PERSON.

3 Example scenario

The capabilities of OntoXpl are best explored interactively. However, in this section
we try to briefly illustrate some of its main features. Let us assume that OntoXpl is
used to explore an ontology file called “family.owl” describing knowledge about family
members (e.g., mother, aunt) and their relationships (e.g., has-child, has-sibling). The
structure of the corresponding class and role hierarchies is shown in Figure 5 and the
structure of the A-box in Figure 6. From the T-box graph a user might be interested
in the class PERSON and selects this class for further inspection. Figure 7 shows a
“natural language” (NL) description of this class (the underlined names link to the

64

Figure 8: OWL specification of class PERSON.

Figure 9: Taxonomic information about the class PERSON (left) and the individuals
ALICE (top-right) and BETTY (bottom-right).

Figure 10: Taxonomic information about the role HAS-CHILD.

65

Figure 11: Outline view of class hierarchy (left) and all pairs of disjoint concept names
(right).

corresponding NL views) while Figure 8 displays its OWL specification (using the XML
syntax). The NL and OWL views are directly linked with the corresponding taxonomic
views. Figure 9 displays the taxonomic information about the class PERSON retrieved
from Racer. It lists ancestors, parents, children, and descendants of PERSON. It
also shows the role names used in this class specification and the individuals which
are instances of PERSON.

A user might be interested in the individual ALICE. Its taxonomic information is
shown in Figure 9, e.g., ALICE is an instance of GRANDMOTHER. This view also
lists instances of concepts that are ancestors, parents, siblings, descendants, or children
of ALICE’s most-specific subsumers (GRANDMOTHER). For instance, BETTY is
an instance of these parent classes. The corresponding information about BETTY is
shown in Figure 9. Figure 10 shows the taxonomic information about the role HAS-
CHILD. The display of inferred information in these windows is intended to help users
better understand the structure of the T-boxes and A-boxes.

In contrast to the hierarchical views displayed by using the SpaceTree tool, On-
toXpl also offers its own outline views for concept and role hierarchies as well as

66

Figure 12: Asserted and inferred role fillers of ALICE.

Figure 13: Example nRQL query and its result.

A-box structures. The left-hand side of Figure 11 shows the complete unfolded hier-
archy using an outline view. The disadvantage of this type of view is the repeated
occurrence of classes (or subtrees) that have more than one parent (e.g., FATHER,
MOTHER). The right-hand side of Figure 11 displays all pairs of disjoint concept
names.

Figure 12 displays information about the asserted and inferred role fillers of ALICE
(ordered by individual or role name). Figure 13 shows a complex nRQL [9] query
which searches for children having a common mother. The dialog box displays the
input query and its returned result in a Lisp-like notation.

67

4 Discussion

Currently there do not exist many stable and usable ontology visualization or explo-
ration tools (and even editors). The lack of suitable tools and their shortcomings were
one of the major motivations to design and implement OntoXpl. The motivation for
OntoXpl’s web server based architecture was the ease of use with standard HTML
browsers and the simple adaptation to multi-user environments. To the best of our
knowledge OntoXpl is currently the only ontology exploration tool that is fully tar-
geted to OWL and relies on Racer’s deductive capabilities for offering users better
exploration capabilities. A detailed description of OntoXpl and its architecture as
well as a comparison with related work can be found in [12].

Various features of OntoXpl are also (partly) supported by ontology editors
such as Protégé [14] and OilEd [2] or OWL/RDF visualization tools or editors
with visualization capabilities such as KAON [15], OntoEdit [16], and OntoTrack
[11]. For instance, Protégé also offers users a high-level (DL-like) description of the
definition of concept names if the mouse pointer is moved over these names. However,
this does not seem to be very suitable for longer concept definitions and does not
support the inspection of the occurring OWL elements via hyperlinks. OntoXpl’s
“NL description” seems to be more readable and carefully supports the inspection of
mentioned entities via hyperlinks. Rice [13] offers visualization facilities for A-boxes
where the complete graph structure of A-boxes is displayed. OntoXpl is restricted
to a tree-like approximation due to the underlying SpaceTree tool [5] but it works
better for larger A-boxes.

In our experience, OntoXpl’s cross-referencing capabilities for hyperlinked con-
cept, role, and individual names help users comprehend unknown ontologies faster
than with the support offered by traditional editors.

5 Conclusion

In this paper we briefly introduced OntoXpl, a first step toward an OWL ontology
exploration tool. OntoXpl is intended to complement ontology editors or other on-
tology visualization tools. A recently conducted informal experiment, where about
40 students had to design and implement 15 different OWL ontologies with a size of
several hundred concept names, demonstrated that OntoXpl provides helpful infor-
mation about ontologies that is otherwise not as easily available in ontology editors
such as Protégé or OilEd. The implementation of the statistics command group is
underway. It is also planned to integrate query results from nRQL such that individu-
als names are recognized as hyperlinks. Another important issue is the optimization of
OntoXpl performance for larger ontologies containing thousands of concept names.

References

[1] F. Baader, I. Horrocks, and U. Sattler. Description logics as ontology languages for
the semantic web. In D. Hutter and W. Stephan, editors, Festschrift in honor of Jörg
Siekmann. LNAI. Springer-Verlag, 2003.

68

[2] S. Bechhofer, I. Horrocks, and C. Goble. OilEd: a reason-able ontology editor for the
semantic web. In Proceedings of KI2001, Joint German/Austrian conference on Artificial
Intelligence, September 19-21, Vienna. LNAI Vol. 2174, Springer-Verlag, 2001.

[3] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American, May
2001.

[4] D. Brickley and R.V. Guha. RDF vocabulary description language 1.0: RDF Schema,
http://www.w3.org/tr/2002/wd-rdf-schema-20020430/, 2002.

[5] J. Grosjean, C. Plaisant, and B. Bederson. SpaceTree: Supporting exploration in large
node link tree, design evolution and empirical evaluation. In Procedings of IEEE Sympo-
sium on Information Visualization, pages 57–64, Boston, USA, October 2002.

[6] V. Haarslev and R. Möller. RACER system description. In Proc. of the Int. Joint Conf.
on Automated Reasoning (IJCAR 2001), 2001.

[7] V. Haarslev and R. Möller. The Racer user’s guide and reference manual, 2003.

[8] V. Haarslev and R. Möller. Optimization techniques for retrieving resources described
in OWL/RDF documents: First results. In Proceedings of the Ninth International Con-
ference on the Principles of Knowledge Representation and Reasoning (KR2004), June
2004.

[9] V. Haarslev, R. Möller, R. Van Der Straeten, and M. Wessel. Extended query facilities
for Racer and an application to software-engineering problems. In Proceedings of the
International Workshop on Description Logics (DL-2004), Whistler, BC, Canada, June
2004.

[10] O. Lassila and R.R. Swick. Resource description framework (RDF) model and syntax
specification. recommendation, W3C, february 1999. http://www.w3.org/tr/1999/rec-
rdf-syntax-19990222, 1999.

[11] T. Liebig and O. Noppens. OntoTrack: Fast browsing and easy editing of large ontologies.
In Proceedings of The Second International Workshop on Evaluation of Ontology-based
Tools (EON2003), located at ISWC03, Sanibel Island, USA, October 2003.

[12] Y. Lu. Exploration of OWL ontologies. Master’s thesis, Department of Computer Science,
Concordia University, Montreal, 2004 (in preparation).

[13] R. Möller, R. Cornet, and V. Haarslev. Graphical interfaces for Racer: querying
DAML+OIL and RDF documents. In Proc. International Workshop on Description
Logics – DL’03, 2003.

[14] N. F. Noy, M. Sintek, S. Decker, M. Crubezy, R. W. Fergerson, and M. A. Musen. Creating
semantic web contents with Protege-2000. IEEE Intelligent Systems, 16(2):60–71, 2001.

[15] D. Oberle, R. Volz, B. Motik, and S. Staab. An extensible ontology software environment.
In Handbook on Ontologies, International Handbooks on Information Systems, chapter
III, pages 311–333. Steffen Staab and Rudi Studer, Eds., Springer, 2004.

[16] Y. Sure, J. Angele, and S. Staab. OntoEdit: multifaceted inferencing for ontology engi-
neering. Journal on Data Semantics, 2800/2003:128–152, 2003.

[17] F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider, and
L. A. Stein. OWL web ontology language reference, http://www.w3.org/tr/owl-guide/,
2003.

69

Editing Description Logic Ontologies
with the Protégé OWL Plugin

Holger Knublauch and Mark A. Musen
Stanford Medical Informatics, Stanford University, CA
holger@smi.stanford.edu, musen@smi.stanford.edu

Alan L. Rector
Medical Informatics Group, University of Manchester, UK

rector@cs.man.ac.uk

Abstract

The growing interest in the Semantic Web and the Web Ontology Lan-
guage (OWL) will reveal the potential of Description Logics in industrial
projects. The rich semantics of OWL provide powerful reasoning capabil-
ities that help build, maintain and query domain models for many pur-
poses. However, before OWL can unfold its full potential, user-friendly
tools with a scalable architecture are required. We present the OWL
Plugin, an extension of the Protégé ontology development environment,
which can be used to define classes and properties, to edit logical class
expressions, to invoke reasoners, and to link ontologies into the Semantic
Web. We analyze some of the challenges for developers of Description
Logic editors, and discuss some of our user interface design decisions.

1 Introduction

The formal underpinnings of Description Logics (DL) [1] are a cornerstone of
Semantic Web technology such as the Web Ontology Language (OWL) [8]. DL
reasoners can help build and maintain sharable ontologies by revealing inconsis-
tencies, hidden dependencies, redundancies, and misclassifications [7].

While the formal terrain of DLs is now well mapped out and covered by
efficient algorithms, a new generation of end-user tools is necessary to put this
technology into the spotlight of industrial routine. In contrast to DLs, other
modeling paradigms such as Object-Orientation and frames are supported by
many professional editing tools that have evolved over many years of industrial
use and, as a result, reflect best practices and common design patterns. A good

70

example of such a tool is Protégé [3], a knowledge modeling platform developed
at Stanford Medical Informatics with support from a community of thousands
of users over almost two decades.

Some of the technologies explored and refined by these tools can be applied
to DL. For example, UML diagrams and Protégé’s class explorer may serve as a
good starting point for DL editors as well. However, there are crucial differences
between DLs on the one hand and object-oriented or frame-based systems on
the other that require custom-tailored solutions. In this paper, we will focus on
four key issues in DL editing tools:

1. Logical Expressions. DL languages rely on (potentially deeply nested)
logical expressions which can be hard to read, understand, and edit.

2. Class Descriptions. Classes in DL ontologies are either primitive or de-
fined. A consistent approach for editing these two modes is needed.

3. Reasoning. DL ontologies can be classified (i.e., some relationships between
concepts are inferred from the asserted class descriptions). A tool should
provide both views, and allow users to compare the differences.

4. Scalability. DL ontologies are potentially very complex and large. An
ontology editor should simplify navigation and help users to maintain large
ontologies through mechanisms such as annotation metadata.

Some solutions for these issues have been explored by existing tools, most
notably OilEd [2], developed at the University of Manchester. While OilEd
succeeded in making DL technology available to a broader user community, its
authors never intended it as a full ontology development environment but rather
as a platform for experiments. As a result, OilEd’s architecture is neither scal-
able to really large ontologies nor sufficiently flexible to allow its user interface
to be customized.

The developers of Protégé and the OilEd team have recently joined forces in
a transatlantic project called CO-ODE 1. Our goal is to develop a new generation
of OWL ontology editing tools, based on Protégé and the experiences collected
with OilEd. Our collaboration has lead to the development of the Protégé OWL
Plugin, which can be used to define classes and properties, to edit logical class
expressions, to invoke reasoners, and to link ontologies into the Semantic Web.

The following sections provide details and design decisions of our current
system. Due to space constraints we cannot provide a comprehensive description
of the full system, but we focus on the key issues mentioned above. Before we go
into these issues, we will start with some background on the Protégé architecture
and its general principles.

1http://www.co-ode.org

71

2 Protégé and the OWL Plugin

Protégé [3] is an open-source ontology development environment with function-
ality for editing classes, slots (properties), and instances. The current version
of Protégé (2.0) is highly extensible and customizable. At its core is a frame-
based knowledge model [5] with support for metaclasses. Other languages such
as OWL can be defined on top of this core frame model [6]. The mechanism we
have used to represent the OWL metamodel in terms of Protégé frames will be
described in a separate paper.

Protégé makes it not only possible to extend the metamodel but also to
customize the user interface freely. As illustrated in Figure 1, Protégé’s user
interface consists of several screens, called tabs, each of which displays a differ-
ent aspect of the ontology in a specialized view. Each of the tabs can include
arbitrary Java components. Most of the existing tabs provide an explorer-style
view of the model, with a tree on the left hand side and details of the selected
node on the right hand side. The details of the selected object are typically dis-
played by means of forms. The forms consist of configurable components, called
widgets . Typically, each widget displays one property of the selected object.
There are standard widgets for the most common property types, but ontology
developers are free to replace the default widgets with specialized components.
Widgets, tabs, and back-ends are called plugins . Protégé’s architecture makes
it possible to add and activate plugins dynamically, so that the default system’s
appearance and behavior can be completely adapted to a project’s needs.

The OWL Plugin2 is a large Protégé plugin with support for OWL. It can be
used to load and save OWL files in various formats, to edit OWL ontologies with
custom-tailored graphical widgets, and to perform intelligent reasoning based on
DLs. As shown in Figure 1, the OWL Plugin’s user interface provides various
default tabs. The OWLClasses tab displays the ontology’s class hierarchy, allows
developers to create and edit classes, and displays the result of the classification.
The Properties tab can be used to create and edit the properties in the ontology.
The Individuals tab can be used to create and edit individuals, and to acquire
Semantic Web contents. The Forms tab allows to customize the forms used for
editing classes, properties and individuals. The Metadata tab displays ontology
metadata such as namespace prefixes. Ontology builders will typically focus on
the OWLClasses tab, which is described in the following sections.

3 Editing Logical OWL Expressions

One of the first and most important decisions in the design of an OWL editor is
how to display class expressions in a user-friendly but efficient way. The RDF

2http://protege.stanford.edu/plugins/owl

72

Figure 1: The class editor of the Protégé OWL Plugin.

syntax proposed in the OWL specification [8] is clearly too verbose to be of any
use here. The OWL Abstract Syntax [9] is much more user-friendly, but still
quite verbose. For the OWL Plugin, we chose to use an expression syntax based
on standard DL symbols [1], such as ∀ and t. These symbols (Figure 2) allow
to the system display even complex nested expressions in a single row.

A trade-off from this syntax is that some characters are not found on stan-
dard keyboards. The OWL Plugin provides a comfortable expression editor
which allows users to quickly assemble expressions with either the mouse or the
keyboard (Figure 2). The special characters are mapped onto keys known from
languages such as Java (e.g., owl:intersectionOf is entered with the & key).
To simplify editing, keyboard users can exploit a syntax completion mechanism
known from programming environments, which semi-automatically completes
partial names after the uses has pressed tab. The expression editor is invoked
by a double-click on a class expression, and then pops up directly below the
expression. For really complex expressions, users can open a multi-line editor in
an extra window, which formats the expression using indentation.

The OWL Plugin helps new users to get acquainted with the expression
syntax. An English prose text is shown as a “tool tip” when the mouse is moved
over the expression. For example, “∃ hasPet Cat” is displayed as “Any object
which has a cat as its pet”.

73

Figure 2: Protégé provides a comfortable editor for arbitrary OWL expressions.

4 Editing Class Descriptions

Another major design decision for a DL class editor is how to edit the logical
class definitions. Protégé users are accustomed to an object-centered view to
the interface which has required some effort to adapt to OWL. The distinc-
tion between defined and primitive classes simply is not found in frame-style
or object-oriented modeling paradigms, and this can compound users’ confusion
when learning the DL paradigm. In the OWL specification, there is a lack of uni-
formity between defined classes (classes with necessary & sufficient conditions)
and primitive classes (only necessary conditions). Multiple necessary conditions
are represented by multiple rdfs:subClassOf statements whose intersection is
implied, whereas sets of multiple necessary & sufficient conditions are repre-
sented by an owl:equivalentClass block containing an explicit intersection
class. Although logically consistent, experience has shown that many users find
the difference confusing. As a result, it was decided that the user interface
should not simply reflect the structure suggested by the OWL specification but
attempt to provide a clearer more uniform presentation to users.

During the evolution of the OWL Plugin we experimented with several in-
terface designs, partly based on existing tools such as the Protégé core system
and OilEd, partly on suggestions from our colleagues and users. OilEd has two
modes: one to “partially” define a class with only necessary conditions, the other
to “completely” define a class with necessary & sufficient conditions. There is a
button to switch between these two modes. While this feature allowed the OilEd
developers to provide customized widgets for various kinds of class descriptions
(e.g. a widget for only restrictions), it has the disadvantage that users have to
maintain separate class axioms in a separate pane for the necessary restrictions
of classes that also are “completely” defined by a set of necessary & sufficient
conditions. There is no one pane in OilEd in which one can see both the sets of
necessary and sufficient conditions and any additional necessary conditions (i.e.
axioms taking the defined class as their antecedent.)

As shown in the center of Figure 1, the OWL Plugin solves this problem
by means of a list of conditions, organized into blocks of necessary & sufficient,

74

necessary, and inherited (i.e., inferred) conditions. Each of the necessary &
sufficient blocks represents a single equivalent intersection class, and only those
inherited conditions are listed that have not been further restricted higher up in
the hierarchy (e.g., allValuesFrom Animal would not be shown if allValuesFrom
Dog were also inferable).

The editor supports drag-and-drop between blocks in the conditions list,
and copy-and-paste of expressions. It also supports changing superclasses by
dragging a class from one parent to another in the class tree on the left hand
side of the window.

In addition to the list of conditions, there is also a custom-tailored widget for
entering disjoint classes, which has special support for typical design patterns
such as making all siblings disjoint. This rather object-centered design of the
OWLClasses tab makes it possible to maintain the whole class definition on a
single screen.

5 Working with Classification

The OWL Plugin provides direct access to reasoners such as Racer [4]. The
current user interface supports two types of DL reasoning: Consistency checking
and classification (subsumption). Other types of reasoning, such as instance
checking, are work in progress.

Consistency checking (i.e., the test whether a class could have instances) can
be invoked either for all classes with a single mouse click, or for selected classes
only. Inconsistent classes are marked with a red bordered icon.

Classification (i.e., inferring a new subsumption tree from the asserted def-
initions) can be invoked with the classify button on a one-shot basis. When
the classify button is pressed, the system determines the OWL species, because
some reasoners are unable to handle OWL Full ontologies. This is done using
the validation service from the Jena3 library. If the ontology is in OWL Full
(e.g., because metaclasses are used) the system attempts to convert the ontol-
ogy temporarily into OWL DL. The OWL Plugin supports editing some features
of OWL Full (e.g., to assign ranges to annotation properties, and to create meta-
classes). These are easily detected and can be removed before the data are sent
to the classifier. Once the ontology has been converted into OWL DL, a full
consistency check is performed, because inconsistent classes cannot be classified
correctly. Finally, the classification results are stored until the next invocation
of the classifier, and can be browsed separately. Classification can be invoked
either for the whole ontology, or for selected subtrees only. In the latter case,
the transitive closure of all accessible classes is sent to the classifier.

3http://www.hpl.hp.com/semweb/jena2.htm

75

Figure 3: Protégé allows users to compare asserted and inferred class relation-
ships. The system displays two hierarchies for asserted and inferred subsumption
relationships, and provides a clickable list of the differences between them.

OWL files only store the subsumptions that have been asserted by the user.
However, experience has shown that, in order to edit and correct their ontologies,
users need to distinguish between what they have asserted and what the classifier
has inferred. Many users may find it more natural to navigate the inferred
hierarchy, because it displays the semantically correct position of the classes.

The OWL Plugin addresses this need by displaying both hierarchies and
making available extensive information on the inferences made during classifi-
cation. As illustrated in Figure 3, after classification the OWL Plugin displays
an inferred classification hierarchy beside the original asserted hierarchy. The
classes that have changed their superclasses are highlighted in blue, and moving
the mouse over them explains the changes. Furthermore, a complete list of all
changes suggested by the classifier is shown in the upper right area. A click
on an entry navigates to the affected class. Also, the conditions widget can be
switched between asserted and inferred conditions. All this allows the users to
quickly analyze the changes.

6 Scalability

DL ontologies may become complex and large. The support for arbitrary class
expressions means that DL ontologies typically contain many cross-links among
classes, properties, individuals, and even among ontologies. This situation is
complicated by the emerging Semantic Web, in which ontology development
is distributed between groups around the world. As a result, scalability and
support for ontology maintenance are crucial issues in ontology tools.

Protégé supports database storage that is scalable to several million concepts,
and provides multi-user support for synchronous knowledge entry. The OWL

76

Plugin has already been used to edit ontologies with tens of thousands of classes.
In support of handling such large ontologies, the OWL Plugin also provides a
variety of navigation aids, such as lexical search functions and “find usage”
buttons which allow to directly access all classes and properties that somehow
reference a given object.

Documentation is essential for large ontologies. Most modeling or program-
ming languages allow the attachment of comments or annotations to document
the model’s contents and to track provenance and changes. OWL supports this
through annotation properties. The OWL Plugin allows to attach annotations
to ontologies, properties, individuals, and classes, including anonymous classes.
Annotation properties can be edited by means of a specific table widget (in the
upper right area of Figure 1). The OWL Plugin allows the user to put arbitrary
values into annotations, including complex objects. We are currently optimizing
the tool for Dublin Core metadata so that, for example, annotation properties
with change dates and authors will be filled in automatically.

7 Discussion

We have provided a brief overview of the OWL Plugin for Protégé. The Plugin
explores several innovative approaches for displaying and editing logical expres-
sions, editing class definitions, displaying classification results, and maintaining
ontologies. Although we have not performed a formal evaluation of our user
interface yet, the feedback from the user community is very encouraging. Many
users suggest that the plugin’s simple editors and comfortable reasoning inter-
face supports rapid but sustainable ontology evolution. The constructive dialogs
on forums such as those of the CO-ODE project and the Protégé discussion list
will accelerate the evolution of the user interface with support for additional
design patterns and best practices.

Many other groups from around the world are also developing Protégé plug-
ins, including alternative wizard-style editors, and tools to query ontologies, to
visualize ontologies graphically, and to manage ontology versions and changes.
Furthermore, Protégé provides immediate access to all services for the Jena API,
because it internally synchronizes the ontology with a Jena model.

Protégé has a large and rapidly growing community of thousands of users.
Providing the community with a widely available, easy-to-use, open-source plat-
form for OWL ontology design has the potential to use the leverage of that user
base to bring DL technology into a wider audience. However, to do so effectively,
requires thinking carefully about how to provide user interface metaphors with
which that community is comfortable. The OWL Plugin aims to retain Protégé’s
object-centered interface without compromising OWL’s DL semantics.

77

Acknowledgements. This work has been funded by a contract from the
US National Cancer Institute and by grant P41LM007885 from the National
Library of Medicine. Additional support for this work came from the UK Joint
Information Services Committee under the CO-ODE grant. We would like thank
our colleagues in Stanford (especially Ray Fergerson and Natasha Noy) and
Manchester (especially Sean Bechhofer and Ian Horrocks for their work on OilEd
and contribution to the interface discussions), the developers of the Jena library
at HP Labs in Bristol, and the many Protégé users around the world for very
valuable feedback during the evolution of the OWL Plugin.

References

[1] F. Baader, D. Calvanese, D. McGuineness, D. Nardi, and P. Patel-Schneider,
editors. The Description Logic Handbook. Cambridge University Press, 2003.

[2] S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. OilEd: a reason-able
ontology editor for the Semantic Web. In 14th International Workshop on
Description Logics, Stanford, CA, 2001.

[3] J. Gennari, M. Musen, R. Fergerson, W. Grosso, M. Crubézy, H. Eriksson,
N. Noy, and S. Tu. The evolution of Protégé-2000: An environment for
knowledge-based systems development. International Journal of Human-
Computer Studies, 58(1):89–123, 2003.

[4] V. Haarslev and R. Moeller. Racer: A core inference engine for the Semantic
Web. In 2nd International Workshop on Evaluation of Ontology-based Tools
(EON-2003), Sanibel Island, FL, 2003.

[5] N. Noy, R. Fergerson, and M. Musen. The knowledge model of Protégé-2000:
Combining interoperability and flexibility. In 2nd International Confer-
ence on Knowledge Engineering and Knowledge Management (EKAW’2000),
Juan-les-Pins, France, 2000.

[6] N. Noy, M. Sintek, S. Decker, M. Crubézy, R. Fergerson, and M. Musen. Cre-
ating Semantic Web contents with Protégé-2000. IEEE Intelligent Systems,
2(16):60–71, 2001.

[7] A. Rector. Description logics in medical informatics. Chapter in [1].

[8] World Wide Web Consortium. OWL Web Ontology Language Reference.
W3C Recommendation 10 Feb, 2004.

[9] World Wide Web Consortium. OWL Web Ontology Language Semantics
and Abstract Syntax. W3C Recommendation 10 Feb, 2004.

78

Reasoning Services for an OWL Authoring Tool:

An Experience Report

Thorsten Liebig & Holger Pfeifer & Friedrich von Henke
Dept. of Artificial Intelligence
University of Ulm, Germany

{liebig|pfeifer|vhenke}@informatik.uni-ulm.de

1 Background

OWL has been designed to be a formal language for representing ontologies in the
Semantic Web. In short, OWL is the result of combining an expressive Description
Logic (DL) with techniques and standards of the Web. DLs have been well studied in
the field of knowledge representation over the last decades. As one result, some highly
optimized DL reasoners have been implemented, which provide an excellent starting
point for building a sound and complete OWL DL/Lite reasoner. However, having a
traditional DL system with standard functionality is not enough in the current context.
So far, DL systems have been used by KR experts mainly in isolated application
domains. Now, in order to make the Semantic Web happen far more flexible and
interactive DL-based tools are needed for building, maintaining, linking, and applying
ontologies even for non-experienced users. The importance of so-called non-standard
inference services that support building and maintaining knowledge bases has been
pointed out recently [1, 2]. We argue that the availability of those inference services is a
fundamental premise for upcoming real-world Semantic Web systems and applications.
Our experience in the course of developing the graphical ontology editor OntoTrack

is a prime example here.

2 ONTOTRACK: a Novel Ontology Editor

OntoTrack [7] is a new browsing and editing ”in-one-view” ontology authoring tool
for OWL Lite that combines a sophisticated graphical layout with mouse-enabled
editing features and instant reasoning feedback using an external DL reasoner. More
precisely, all user changes after each editing step are send to the RACER [6] rea-
soner via a TCP-based client interface. The reasoner will then make all modeling
consequences explicitly available. OntoTrack will hand over relevant consequences
(e.g. new subsumption relationships, equivalent or unsatisfiable classes) to the user
by providing appropriate graphical feedback. However, implementing this feedback
functionality turned out to become difficult and even impossible for some language
statements (e.g. the deletion of global domain and range restrictions of properties
couldn’t be implemented due to a missing retraction functionality).

79

Currently, DL reasoners only provide some kind of batch-oriented enter and query
interface. Because of lack of algorithms for appropriately handling incremental addi-
tions to a knowledge base [9] complete reclassification after each user interaction is
necessary. Furthermore, in order to become aware of a new subsumption relationship
due to a just added property restriction for example, OntoTrack needs to query the
reasoner about direct super classes for almost all classes of the ontology in turn. One
could of course narrow this set to those classes that also have an explicit or inherited
restriction on that particular property or a sub-property thereof. But this requires
to have explicit knowledge about inherited restrictions or sub-properties, which in
turn may result in additional queries. Deletion of, or changes within, classes and
properties or even fractions thereof is an analogous problem. However, using an opti-
mized tableaux-style reasoner for a language with an expressivity comparable to that
of OWL, retraction and changing of definitions (e. g. GCIs) may be of high complexity
because of optimization techniques like absorption.

3 Desirable Reasoning Services

Based on our experiences in the course of developing OntoTrack, we briefly summa-
rize our application requirements with respect to DL reasoners for supporting ontology
editing.

Instead of querying for all possible changes with respect to a specific consequence
(most notably the direct subsumption relationship) after each editing step we would
like to have an event-triggered notification model on the reasoner side. This mech-
anism should only publish the set of differences in conclusions with respect to the
previous state. This would correspond to a likewise TBox technique of RACERs
ABox publish-subscribe mechanism.

Another desirable feature is incremental reasoning and retraction of definitions.
As long as partial class definitions are concerned, additive incremental reasoning can
be done with help of additional GCIs and reclassification. However, adding a global
domain or range restriction will then result in GCIs which are not absorbable. In-
cremental reasoning with complete class definitions requires to retract the original
definition before adding a new restriction in combination with the original one. As
mentioned before, retraction of definitions or statements may be of high cost but is
a prerequisite for interactive ontology tools. A solution could consist of a reasoner
heuristic that analyzes the retraction statement and decides about on-the-fly dele-
tion or reclassification. A related problem is how to detect and deal with statements
explicitly or implicitly affected by a retraction process e. g. due to references.

A serious issue of each ontology authoring tool is concerned with debugging of
ontologies. Here standard inference services provide no help to resolve inconsistencies
in logical incoherent ontologies. In [12] a new reasoning service for pinpointing logical
contradictions of ALC ontologies has been developed.

Methods for explaining unsatisfiability of classes and class subsumption have also
been developed for ALC [11, 5]. Sophisticated debugging or explanation services
in combination with an appropriate graphical user interface would obviously make

80

ontology authoring much more efficient. An on-demand generation of an ABox model
for a selected class may also be helpful for explanation.

Other novel inference services intended to support building an ontology have been
developed (see sec. 6.3 in [3] for a summary). One interesting service consists of
matching of class patterns against class descriptions in order to find already defined
classes with a similar structure. Another approach tries to create class definitions by
generalizing one or more user given ABox assertions. Other non-standard inference
services like least common subsumer or most specific concept are also relevant during
authoring of ontologies.

Unfortunately, only some of these non-standard reasoning services have been im-
plemented1 and only a few are found in state of the art reasoning systems today. First
this is due to the fact that some of them only make sense if used for DLs less expressive
than OWL. Second, approaches for solving these services are usually based on struc-
tural subsumption algorithms known to be not appropriate for languages like OWL.
However, only some ontologies use all available language constructs. A large fraction
is within restricted clusters of less expressive sublanguages [13]. We therefore hope to
see some of these reasoning features (even for sublanguages of OWL) integrated into
reasoners in the future.

Technical requirements with respect to interfaces and communication are also an
important issue for building a successful application. A state of the art architecture
should support multiple clients via standard protocols. Notably, some of the most
recent reasoner developments are either not network-aware or without any interface
documentation. Support of standard formats (e. g. KRSS [10], DIG [4]) and native
OWL import either from file or via HTTP is also a desired quality.

4 Conclusion

The development of sophisticated and adequate Semantic Web tools for end users
strongly depends on sufficiently broad reasoning services and appropriate interfaces of
its core technology, namely DL reasoners. It is worth mentioning that our experiences
are not specific to our choice for RACER as external DL reasoner. An internal evalu-
ation of some DL based reasoning systems potentially capable of handling portions of
OWL (FaCT, FaCT++, RACER, Pellet, BOR) identified general deficits with respect
to our requirements mentioned above. We therefore argue that not only correctness,
efficiency, and language conformity are important, service diversity and interactive
capabilites should become an issue for research and criteria of future reasoner evalu-
ations.

References

[1] Franz Baader, Ian Horrocks, and Ulrike Sattler. Description Logics as Ontology
Languages for the Semantic Web. In Festschrift in honor of Jörg Siekmann.
Springer, 2003.

1The Classic system is a notable exception here [8].

81

[2] Franz Baader, Ian Horrocks, and Ulrike Sattler. Handbook on Ontologies, chap-
ter Description Logics, pages 3–28. International Handbooks on Information
Systems. Springer Verlag, 2004.

[3] Franz Baader, Ralf Küsters, and Frank Wolter. The Description Logic Handbook,
chapter Extensions to Description Logics. Cambridge University Press, 2003.

[4] Sean Bechhofer, Ralf Möller, and Peter Crowther. The DIG Description Logic
Interface. In Proc. of International Workshop on Description Logics (DL2003),
Rome, Italy, 2003.

[5] Alex Borgida, Enrico Franconi, and Ian Horrocks. Explaining ALC subsumption.
In Proc. of International Workshop on Description Logics (DL1999), Linköping,
Sweden, 1999.

[6] Volker Haarslev and Ralf Möller. RACER System Description. In Proc. of the
International Joint Conference on Automated Reasoning (IJCAR’2001), volume
2083 of LNAI, pages 701–706, Siena, Italy, 2001.

[7] Thorsten Liebig and Olaf Noppens. OntoTrack: Fast Browsing and Easy Edit-
ing of Large Ontologies. In Proc. of The 2nd Int. Workshop on Evaluation of
Ontology-based Tools (EON2003), Sanibel Island, USA, 2003.

[8] Deborah L. McGuinness and Alex Borgida. Explaining Subsumption in Descrip-
tion Logics. Technical Report LCSR-TR-228, Dept. of Computer Sciences, Rut-
gers University, September 1994.

[9] Ralf Möller and Volker Haarslev. The Description Logic Handbook, chapter De-
scription Logics Systems. Cambridge University Press, 2003.

[10] Peter F. Patel-Schneider and Bill Swartout. Description Logic Specification from
the KRSS Effort. Working version (draft), 1993.

[11] Stefan Schlobach and Ronald Cornet. Explanation of Terminological Reasoning
A Preliminary Report. In Proc. of International Workshop on Description Logics
(DL2003), Rome, Italy, 2003.

[12] Stefan Schlobach and Ronald Cornet. Non-Standard Reasoning Services for the
Debugging of Description Logic Terminologies. In Proc. of the Belgian-Dutch
Conference on AI (BNAI03), Nijmegen, The Netherlands, 2003.

[13] Christoph Tempich and Raphael Volz. Towards a benchmark for Semantic Web
reasoners - an analysis of the DAML ontology library. In Proc. of The 2nd Int.
Workshop on Evaluation of Ontology-based Tools (EON2003), Sanibel Island,
USA, 2003.

82

Towards Implementing Finite Model Reasoning in

Description Logics

Marco Cadoli1, Diego Calvanese2, Giuseppe De Giacomo1

1 Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”

Via Salaria 113, I-00198 Roma, Italy
lastname @dis.uniroma1.it

2 Faculty of Computer Science
Free University of Bolzano/Bozen

Piazza Domenicani 3, I-39100 Bolzano, Italy
calvanese@inf.unibz.it

Abstract

We describe our ongoing work that aims at understanding how one can develop
a system that performs finite model reasoning in Description Logics. In particular
we report on the preliminary results that we have obtained by encoding reasoning
services in DLs as specifications for constraint programming solvers. We have used
such an approach to reason with respect to finite models on UML class diagrams.

1 Introduction

Expressive Description Logics (DLs) do not enjoy the finite model property. This
means that a knowledge base expressed in such a DL may be satisfiable, though it ad-
mits only models with an infinite domain [9, 1]. The loss of the finite model property
is due to the interaction between cardinality constraints, the use of direct and inverse
roles, and general (possibly cyclic) inclusion assertions in the knowledge base. Hence,
for such DLs, techniques have been investigated to address reasoning with respect to
finite models only [10, 6, 8, 13]. Notably, the presence of cardinality constraints, to-
gether with the requirement of models to be finite, gives rise to combinatorial aspects
in the reasoning problems, and such aspects are taken into account by the proposed
techniques by resorting to the encoding of satisfiability into solving numerical depen-
dencies.

The recent interest in DLs as a means to formalize and reason on class based
formalisms for conceptual modeling, software engineering, and ontologies, has revived
the interest in finite model reasoning, since such formalisms are often used to represent
structures that are intrinsically finite (e.g., a databases, object repositories, etc.).

In this paper we focus on UML class diagrams.1 Finite model reasoning in UML

1http://www.omg.org/uml/

83

enrolled20..* 1..1

0..3 1..*

assignedworks

1..1 0..6

student curriculum

teaching
assistant

Figure 1: A finitely inconsistent class diagram

class diagrams is of crucial importance for assessing quality of the analysis phase in
software development. Finite unsatisfiability of a class diagram means that there
are some classes or associations which cannot have a finite number of instances. This
concept must be contrasted with unrestricted unsatisfiability, which means that classes
or associations cannot have any, i.e., both finite and infinite, number of instances.
Indeed, for the purpose of software engineering, finite model reasoning in UML class
diagrams is often considered more important than unrestricted reasoning.

Example 1 As an example, consider Figure 1, which states reasonable constraints
for a university scenario; e.g., there is a binary association enrolled between classes
student and curriculum, and the multiplicities on the association express that each
student is enrolled in exactly one curriculum, while each curriculum must enroll at least
20 students (‘*’ denotes that there is no constraints on the maximum multiplicity).
Such a diagram is satisfiable in the unrestricted sense. Indeed, suppose there is an
instance c1 of curriculum; then there must be at least 20 students enrolled in c1,
and since each such student must work with exactly one teaching assistant and each
teaching assistant can work with at most 3 students, there must be at least 7 teaching
assistants; since at most 6 teaching assistants can be assigned to c1, there must be a
second instance c2 of curriculum; considering that each student can be enrolled in at
most one curriculum, by applying the same line of reasoning, we can see that there
must be an infinite sequence of instances c3, c4, . . . of curriculum. However, this shows
also that the diagram in Figure 1 is not finitely satisfiable.

In this paper we address the implementation of finite model reasoning in DLs, a
task that has not been attempted so far. As a matter of fact, state-of-the-art DL
reasoning systems, such as Fact or Racer, perform unrestricted reasoning, and do
not address finite model reasoning. Interestingly, finite model reasoning on UML class
diagrams itself has, to the best of our knowledge, never been implemented in any kind
of system.

The main result of this paper is that it is possible to use off-the-shelf tools for
constraint modeling and programming for obtaining a finite model reasoner. In par-
ticular, exploiting the finite model reasoning technique presented in [10, 8], we propose

84

an encoding as Constraint Satisfaction Problem (CSPs) of knowledge base satisfiabil-
ity. Moreover, we show also how CSP can be used to actually return a finite model of
the knowledge base (a task needed for particular applications, as [4]).

In fact, in this paper, we focus on UML class diagrams without ISA relations
between associations, seen as a means of describing DL knowledge bases (see, e.g., [3]).
More precisely, such UML class diagrams correspond essentially to primitive ALUNI
knowledge bases, which consist of (possibly cyclic) inclusion assertions of the form
B v C, where B is boolean combination of atomic concepts and C is a concept of the
DL ALUNI [10]. Experimentation so far is in a preliminary stage, but the results we
have obtained are quite encouraging.

2 Finite Model Reasoning in DLs

The technique for finite model reasoning in DLs with number restrictions, inverse roles
and inclusion assertions was first presented in [10, 6], and is based on translating the
knowledge base in a set of linear inequalities. Intuitively, consider a simple knowledge
base K formed by inclusion assertions

> v ∀R−.A u ∀R.B

A v (≥ m1 R) u (≤ n1 R)
B v (≥ m2 R−) u (≤ n2 R−)

for each role R. Such assertions express that R is typed on A for the first component
and B for the second, and additionally expresses minimum and maximum cardinality
constraints on the participation to R. It is easy to see that such a knowledge base
K is always satisfiable (assuming mi ≤ ni) if we admit infinite models. Hence, only
finite model reasoning is of interest. We observe that, if K is finitely satisfiable, then
it admits a finite model in which all atomic concepts are pairwise disjoint. Exploiting
this property, we can encode finite satisfiability of K in a constraint system as follows.
We introduce one variable for each role and atomic concept, representing the number
of instances of the role (resp., concept) in a possible model of K. Then, for each R we
introduce the constraints

m1 · a 6 r 6 n1 · a
m2 · b 6 r 6 n2 · b

a · b > r

where a, b, and r are the variables corresponding to A, B, and R, respectively.
It is possible to show that, from a solution of such a constraint system, we can

construct a finite model of K in which the cardinality of the extension of each concept
and role is equal to the value assigned to the corresponding variable2.

The approach above can be extended to deal also with inclusion assertions ex-
pressing ISA, disjointness, and covering between concepts. Intuitively, one needs to
introduce one variable for each combination of atomic concepts; similarly, for roles

2In fact, if one is interested just in the existence of a finite model, one could drop the nonlinear

constraints of the form a · b > r.

85

Figure 2: The “restaurant” UML class diagram

one needs to distinguish how, among the possible combinations of atomic concepts,
the role is typed in its first and its second component. This leads, in general, to the
introduction of an exponential number of variables and constraints [10]. We illustrate
this, in the context of UML, in the next section.

3 Finite Model Reasoning via CSP

We address the problem of finite satisfiability of UML class diagrams, and show how it
is possible to encode two problems as constraint satisfaction problems (CSPs), namely:

1. deciding whether all classes in the diagram are simultaneously finitely satisfiable,
and

2. finding –if possible– a finite model with non-empty classes and associations.

We use the “restaurant” class diagram, shown in Figure 2, as our running example.
First we address the problem of deciding finite satisfiability. As mentioned, we use

the technique proposed in [6], which is based on the idea of translating the multiplicity
constraints of the UML class diagram into a set of inequalities among integer variables.

86

The variables and the inequalities of the CSP are modularly described considering
in turn each association of the class diagram. Let A be an association between classes
C1 and C2 such that the following multiplicity constraints are stated:

• there are at least min1 and at most max 1 links of type A (instances of the
association A) for each object of the class C1;

• there are at least min2 and at most max 2 links of type A for each object of the
class C2.

Referring to Figure 2, if A stands for served in, C1 stands for banquet, and C2 stands
for menu, then min1 is 1, max 1 is 1, min2 is 1, and max 2 is ∞.

For the sake of simplicity, we start from the special case in which neither C1 nor
C2 participates in a ISA hierarchy, e.g., the related and the served in associations of
Figure 2.

The CSP is defined as follows:

• there are three non-negative variables c1, c2, and a, which stand for the number
of objects of the classes C1 and C2 and the number of links of A, respectively;

• there are the following constraints (we use the syntax of the constraint program-
ming language opl [14]):

1. min_1 * c1 <= a;

2. max_1 * c1 >= a;

3. min_2 * c2 <= a;

4. max_2 * c2 >= a;

5. a <= c1 * c2;

6. a >= 1;

7. c1 >= 1;

8. c2 >= 1;

Constraints 1–4 account for the multiplicity of the association; they can be omitted
if either min i = 0, or max i = ∞ (symbol ‘*’ in the class diagram). Constraint 5
sets an upper bound for the number of links of type A with respect to the number
of objects. Constraints 6–8 define the satisfiability problem we are interested in: we
want at least one object for each class and at least one link for each association. The
latter constraints can be omitted by declaring the variables as strictly positive.

When either C1 or C2 are involved in ISA hierarchies, the constraints are more
complicated, because the meaning of the multiplicity constraints changes. As an
example, the multiplicity 1..* of the order association in Figure 2 states that a client

orders at least one banquet, but the client can be a person, a firm, both, or neither
(assuming the generalization is neither disjoint nor complete). In general, for an
ISA hierarchy involving n classes, O(2n) non-negative variables corresponding to all
possible combinations must be considered. For the same reason, we must consider four
distinct specializations of the order association, i.e., one for each possible combination.
Summing up, we have the following non-negative variables:

87

• person, order p, for clients who are persons and not firms;
• firm, order f, for clients who are firms and not persons;
• person firm, order pf, for clients who are both firms and persons;
• client, order c, for clients who are neither firms nor persons;

plus the positive banquet variable.
The constraints (in the opl syntax) which account for the order association are

as follows:

/* 1 */ client <= order_c;

/* 2 */ firm <= order_f;

/* 3 */ person <= order_p;

/* 4 */ person_firm <= order_pf;

/* 5 */ banquet = order_c + order_f + order_p + order_pf;

/* 6 */ order_c <= client * banquet;

/* 7 */ order_f <= firm * banquet;

/* 8 */ order_p <= person * banquet;

/* 9 */ order_pf <= person_firm * banquet;

/* 10 */ client + firm + person + person_firm >= 1;

/* 11 */ order_c + order_f + order_p + order_pf >= 1;

Constraints 1–4 account for the ‘1’ in the 1..* multiplicity; Constraint 5 translates
the 1..1 multiplicity; Constraints 6–9 set an upper bound for the number of links
of type order with respect to the number of objects; Constraints 10–11 define the
satisfiability problem (banquet is already strictly positive).

We refer the reader to [8, 6] for formal details of the translation, and in particular
for the proof of its correctness. As for the implementation, the “restaurant” example
has been encoded in opl as a CSP with 24 variables and 40 constraints. The solu-
tion has been found by the underlying constraint programming solver, i.e., ILOG’s
Solver [12, 11], in less than 0.01 seconds.

4 Constructing a Finite Model

We now turn to the second problem, i.e., finding –if possible– a finite model with non-
empty classes and associations. The basic idea is to encode in the constraint modeling
language of opl the semantics of the UML class diagram (see [3, 2]). In particular we
use arrays of boolean variables representing the extensions of predicates, where the
size of the arrays is determined by the output of the first problem. Since in the first
problem we have enforced the multiplicity constraints, and obtained an admissible
number of objects for each class (actually for each combination of classes), we know
that a finite model of the class diagram exists. We also know the size of the universe
of such a finite model, which is equal to the sum, over all combinations of classes, of
the number of objects in each combination of classes (recall that each combination of
classes is disjoint from all other combinations of classes).

Referring to our “restaurant” example, we have the following declarations describ-
ing the size of our universe and two sorts:

int size = client + person + firm + person_firm + restaurant + menu +

88

characteristic_restaurant + dish + specialty + banquet + celebration;

range Bool 0..1;

range Universe 1..size;

The arrays corresponding, e.g., to the client and banquet classes, and to the order c
association are declared as follows:

var Bool Client[Universe];

var Bool Banquet[Universe];

var Bool Order_C[Universe,Universe];

Now, we have to enforce some constraints to reflect the semantics of the UML

class diagram [3, 2], namely that:

1. each object belongs to exactly one class;
2. the number of objects (resp., links) in each class (resp., association) is coherent

with the solution of the first problem;
3. the associations are typed, e.g., that a link of type order c insists on an object

which is a banquet and on another object which is a client;
4. the multiplicity constraints are satisfied.

Such constraints can be encoded as follows (for brevity, we show only some of the
constraints).

// AN OBJECT BELONGS TO ONE CLASS

forall(x in Universe)

Client[x] + Person[x] + Firm[x] + Person_Firm[x] + Restaurant[x] +

Characteristic_Restaurant[x] + Dish[x] + Specialty[x] + Banquet[x] +

Celebration[x] + Menu[x] = 1;

// ENFORCING SIZES OF CLASSES AND ASSOCIATIONS

sum(x in Universe) Client[x] = client;

sum(x in Universe) Banquet[x] = banquet;

sum(x in Universe, y in Universe) Order_C[x,y] = order_c;

// TYPES FOR ASSOCIATIONS

forall(x, y in Universe)

Order_C[x,y] => Client[x] & Banquet[y];

// MULTIPLICITY CONSTRAINTS ARE SATISFIED

forall(x in Universe)

Client[x] => sum(y in Universe) Order_C[x,y] >= 1;

Summing up, the “restaurant” example has been encoded in opl with about 40
lines of code. After instantiation, this resulted in a CSP with 498 variables and 461
constraints. The solution has been found by ILOG’s Solver in less than 0.01 seconds,
and no backtracking.

5 Notes on Complexity

Few notes about the computational complexity are in order. It is known that solv-
ing both problems of deciding finite satisfiability and finite model finding for primi-
tive ALUNI knowledge bases (and hence for UML class diagrams) are EXPTIME-
complete [10, 7, 8]. Our encoding of the first problem in a CSP may result in a

89

number of variables which is exponential in the size of the diagram. Anyway, since
the exponentiality depends on the maximum number of classes involved in the same
ISA hierarchy, the actual size for real UML diagrams will not be very large.

As for the second problem, our encoding is polynomial in the size of the class
diagram. Note that this does not contradict the EXPTIME lower bound, due to the
program complexity of modeling languages such as opl. Indeed, in [5] it is shown that
the program complexity of boolean linear programming is NEXPTIME-hard.

6 Conclusions

In this paper we have reported on our ongoing investigation on implementing finite
model reasoning in DLs. We have shown how current state-of-the-art constraint solvers
can be used to perform such a kind of reasoning. The performance of such systems
in the experiments done so far is quite good, though these results still need to be
confirmed on larger cases, such as the CIM3 diagrams. This is ongoing work. We are
also building a prototype system for finite model reasoning that uses opl as reasoning
engine.

Our implementation can so far not deal with UML class diagrams containing as-
sociations between roles. The translation of such diagrams in a DL knowledge base
requires to introduce inclusion assertions between roles, or, alternatively, to reify roles
and thus introduce qualified number restrictions to encode multiplicities [2]. In [8, 6],
an extension of the technique for finite model reasoning illustrated here is proposed,
that can deal also with qualified number restrictions. However, such a method re-
quires to introduce a number of variables and constraints that is double exponential
in the size of the knowledge base. In [13] a more involved technique is presented, for
which the size of the constraint system stays simply exponential. However, numbers
appearing in number restrictions cannot be dealt with directly in the constraints and
need to be encoded using counters. Thus, the possibility of actually implementing
one or the other of these methods by making use of constraint solvers requires further
investigation.

References

[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider,
editors. The Description Logic Handbook: Theory, Implementation and Applica-
tions. Cambridge University Press, 2003.

[2] D. Berardi, A. Cal̀ı, D. Calvanese, and G. De Giacomo. Reasoning on UML class
diagrams. Technical Report 11-03, Dipartimento di Informatica e Sistemistica,
Università di Roma “La Sapienza”, 2003.

[3] D. Berardi, D. Calvanese, and G. De Giacomo. Reasoning on UML class diagrams
is EXPTIME-hard. In Proc. of the 2003 Description Logic Workshop (DL 2003),

3http://www.dmtf.org/standards/cim/

90

pages 28–37. CEUR Electronic Workshop Proceedings, http://ceur-ws.org/

Vol-81/, 2003.

[4] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. e-
Service composition by description logics based reasoning. In Proc. of the 2003
Description Logic Workshop (DL 2003), pages 75–84. CEUR Electronic Work-
shop Proceedings, http://ceur-ws.org/Vol-81/, 2003.

[5] M. Cadoli. The expressive power of binary linear programming. In Proc. of the
7th Int. Conf. on Principles and Practice of Constraint Programming (CP 2001),
volume 2239 of Lecture Notes in Computer Science, 2001.

[6] D. Calvanese. Finite model reasoning in description logics. In Proc. of the 5th Int.
Conf. on the Principles of Knowledge Representation and Reasoning (KR’96),
pages 292–303, 1996.

[7] D. Calvanese. Reasoning with inclusion axioms in description logics: Algo-
rithms and complexity. In Proc. of the 12th Eur. Conf. on Artificial Intelligence
(ECAI’96), pages 303–307. John Wiley & Sons, 1996.

[8] D. Calvanese. Unrestricted and Finite Model Reasoning in Class-Based Represen-
tation Formalisms. PhD thesis, Dipartimento di Informatica e Sistemistica, Uni-
versità di Roma “La Sapienza”, 1996. Available at http://www.dis.uniroma1.
it/pub/calvanes/thesis.ps.gz.

[9] D. Calvanese, G. De Giacomo, M. Lenzerini, and D. Nardi. Reasoning in expres-
sive description logics. In A. Robinson and A. Voronkov, editors, Handbook of
Automated Reasoning, chapter 23, pages 1581–1634. Elsevier Science Publishers
(North-Holland), Amsterdam, 2001.

[10] D. Calvanese, M. Lenzerini, and D. Nardi. A unified framework for class based
representation formalisms. In Proc. of the 4th Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR’94), pages 109–120, 1994.

[11] ILOG Solver system version 5.1 user’s manual, 2001.

[12] ILOG OPL Studio system version 3.6.1 user’s manual, 2002.

[13] C. Lutz, U. Sattler, and L. Tendera. The complexity of finite model reasoning
in description logics. In Proc. of the 19th Int. Conf. on Automated Deduction
(CADE 2003), pages 60–74, 2003.

[14] P. Van Hentenryck. The OPL Optimization Programming Language. The MIT
Press, 1999.

91

DL-Lite: Practical Reasoning for Rich DLs

Diego Calvanese1, Giuseppe De Giacomo2, Maurizio Lenzerini2,
Riccardo Rosati2, Guido Vetere3

1 Faculty of Computer Science
Free University of Bolzano/Bozen

Piazza Domenicani 3
I-39100 Bolzano, Italy

calvanese@inf.unibz.it

2 Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”

Via Salaria 113
I-00198 Roma, Italy

lastname @dis.uniroma1.it

3 IBM Italia
Via Sciangai 53, I-00144 Roma, Italy

guido_vetere@it.ibm.com

Abstract

In this paper we study a DL rich enough to express UML class diagrams
including ISA and disjointness between classes (but not covering constraints),
typing of associations, and participation and functional cardinality constraints.
For such a DL, which we call DL-Lite, we propose novel reasoning techniques for
a variety of tasks, notably including query containment and query answering for
conjunctive queries over concepts and roles. The techniques are based on query
containment under constraints typical of databases. A prototype implementation
of DL-Lite has been developed and experimented with.

1 Introduction

One of the most important lines of research in Description Logics (DLs) is concerned
with the trade-off between expressive power and computational complexity of sound
and complete reasoning. Research on this topic has shown that DLs with efficient,
i.e., worst-case polynomial time, reasoning algorithms lack modeling power required
in capturing conceptual models and basic ontology languages, while DLs with suffi-
cient modeling power suffers from inherently worst-case exponential time behavior of
reasoning [8, 9, 2].

In this paper we propose a new DL specifically tailored to capture conceptual data
models (e.g., Entity-Relationship) [1], Object-oriented formalisms (e.g., basic UML
class diagrams)1, and basic ontology languages. Notably, we show that advanced forms
of sound and complete reasoning, taking into account a knowledge base constituted
by a TBox and an ABox, and queries, can be done in polynomial time in the size of
the knowledge base. More precisely, our contributions are the following:

1. We define DL-Lite, a DL rich enough to capture a significant ontology language.
In particular, DL-Lite is able to express UML class diagrams including ISA

1http://www.omg.org/uml/

92

and disjointness between classes (but not covering constraints), typing of asso-
ciations, and cardinality constraints imposing mandatory participation to roles
and functionality of roles.

2. For such a DL we propose novel reasoning techniques for a variety of tasks,
including conjunctive query answering and containment between conjunctive
queries over concepts and roles. Our presentation is focused on the problem of
answering conjunctive queries over a knowledge base. We observe that this is one
of the few results on answering complex queries (i.e., not corresponding simply to
a concept or a role) over a knowledge base [6, 7]. Indeed, answering conjunctive
queries over a knowledge base is a challenging problem, even in the case of
DL-lite, where the combination of constructs expressible in the knowledge base
does not pose particular difficulties in computing subsumption. Our solution bu
builds upon and extends a series of techniques developed in databases for query
containment and query answering under constraints [10, 3, 4].

3. We show that the above mentioned reasoning tasks can be carried out in poly-
nomial time in the size of the knowledge base.

A prototype implementation of DL-Lite has been developed and tested within the
SMO (System Management Ontology) project carried out jointly by the University of
Rome “La Sapienza” and the IBM Tivoli Laboratory.

The next section defines DL-Lite and the associated reasoning services. Section 3
shows that DL-Lite is indeed an interesting logic for capturing the basic modeling
constructs of conceptual models and ontology languages. Section 4 briefly describes
the fundamental reasoning technique associated to DL-Lite. Section 5 concludes the
paper.

2 DL-Lite

The DL DL-Lite that we present in this paper is quite simple from the language
point of view. Namely, starting from atomic concepts, denoted by A, possibly with
subscripts, and atomic roles, denoted by R, possibly with subscripts, we define basic
concepts, denoted by B, as follows:

B ::= A | ∃R | ∃R−

where A is an atomic concept, ∃R is the usual unqualified existentiality on atomic
roles R, and ∃R− is the same on inverse roles. General concepts in DL-lite are then
defined as follows:

C ::= B | ¬B | C1 u C2

Note that we have negation on basic concept only and that we have conjunction but
not disjunction.

Using this simple language we allow to make assertions of specific forms. Specifi-
cally, in a DL-Lite TBox, we allow for inclusion assertions of the form:

B v C

93

where on the left-hand-side we must have a basic concept (B), while on the right-
hand-side we may have a general DL-Lite concept.

Observe that we do allow for cyclic assertions. Indeed, we can enforce the cyclic
propagation of the existence of an R-successor using the two DL-Lite inclusion asser-
tions A v ∃R, ∃R− v A. The constraint imposed on a model is similar to the one
imposed by the ALC cyclic assertion A v ∃R.> u ∀R.A, though stronger, since it
additionally enforces the second component of R to be typed by A.

Also, in addition to inclusion assertions, in DL-Lite we have functionality asser-
tions of the form

(funct R), (funct R−)

expressing, respectively, the functionality of atomic roles and of inverses of atomic
roles.

As for the ABox, we allow for membership assertions on atomic concept and on
atomic roles:

A(a), R(a, b)

stating respectively that the object (denoted by the constant) a is and instance of
A and that the pair (a, b) of objects (denoted by the two constants a and b) is an
instance of the atomic role R.

In fact, to denote objects, DL-Lite includes two kinds of constants: the usual con-
stants for which the unique name assumption holds, and the so called soft constants,
which are constants for which the unique name assumption does not hold.

Notice that, using soft constants, we can express in the ABox also membership
assertions involving existentials. For example, to express the membership assertion
(∃R)(a), where a is a non-soft constant, we can include in the ABox the membership
assertion R(a, u) where u is a fresh (i.e., not used elsewhere in the ABox) soft constant.

Given a DL-Lite KB K = (T ,A), where T is a TBox and A is an ABox, we
can query the knowledge base using conjunctive queries. A conjunctive query q is an
expression of the form

{ ~x | conj(~x, ~y) }

where ~x are the so called distinguished variables that will be bound with object in the
KB, ~y are the non-distinguished variables, which are existentially qualified variables,
and conj(~x, ~y) is a conjunction of atoms of the form A(z) or R(z1, z2) where A and R

are respectively atomic concept and roles and z, z1, z2 are either constants in the KB
or variables in ~x or ~y.

The reasoning services that are of interest in DL-Lite are:

• query-answering : given a query q(~x) with distinguished variables ~x and a knowl-
edge base K, return all tuples ~t of objects that substituted to ~x are such that
K |= q(~t). Observe that as a special case of query answering we have concept
satisfiability and logical implication of ABox assertions.

• query-containment : given two queries q1 and q2 and a knowledge base K, verify
whether K |= q1 v q2, i.e., whether in every model I of K the tuples of objects

94

that form the extension of q1 in I are also in the extension of q2 in I. Ob-
serve that as a special case of query containment we have logical implication of
inclusion assertions involving atomic concepts on both sides.

In fact, it can be shown that query containment can be reformulated as query
answering, in particular with the help of soft constants. Hence, when we discuss
reasoning (see Section 4) we will focus on query answering only.

3 Why DL-Lite is a “rich” DL

Although equipped with advanced reasoning services, at first sight DL-Lite seems to
be rather weak in modeling intensional knowledge, and hence of limited use in practice.
In fact this is not the case. Despite the simplicity of its language and the specific form
of inclusion assertions allowed, DL-Lite is able to capture the main notions (though
not all, obviously) of conceptual modeling formalism used in databases and software
engineering such as ER and UML class diagrams.

In particular, DL-Lite assertions allow us to specify (below A, A1 and A2 are
atomic concepts, and R is an atomic role):

• ISA, using assertions of the form A1 v A2, stating that the class A1 is a subclass
of the class A2;

• class disjointness, using assertions of the form A1 v ¬A2, stating disjointness
between the two classes A1 and A2;

• role-typing, using assertions of the form ∃R v A1 (resp., ∃R− v A2), stating
that the first (resp., second) component of the relation R is of type A1 (resp.,
A2);

• participation constraints, using assertions of the form A v ∃R (resp., A v ∃R−),
stating that instances of class A participate to the relation R as the first (resp.,
second) component;

• non-participation constraints, using assertions of the form A v ¬∃R (resp., A v
¬∃R−), stating that instances of class A do not participate to the relation R as
the first (resp., second) component;

• functionality restrictions, using assertions of the form (funct R) (resp., (funct R−)),
stating that an object can be the first (resp., second) component of the relation
R at most once.

Notably two important modeling features are missing in DL-Lite:

• the ability of stating covering constraints, i.e., stating that each instance of a
class must be an instance of (at least) one of its subclasses;

• the ability of stating subset constraints between relations.

95

These features are missing exactly to get the nice computational characteristics that
we are after.

Instead, observe that the limitation to binary roles only is not crucial. Indeed, it
is possible to extend the reasoning techniques reported here to n-ary relations without
losing most nice computational properties.

Finally, let us comment on the ability of DL-Lite of asserting extensional knowledge
using soft constants. These can be considered as an advanced form of null values
stating that the object with the desired property exists, though its identifier is not
known. In other words, soft constants act as existentially quantified variables whose
scope is the entire knowledge base.

4 Query answering in DL-Lite

We now present an algorithm that computes the answers to a conjunctive query over
a DL-Lite KB. In the following, for ease of exposition we assume that the input
query is a boolean query: the extension of the algorithm to non-boolean queries is
straightforward.

Due to space limitations, we are only able to provide an informal description of
the algorithm; moreover, we assume that no soft constants are present in the ABox.

4.1 Algorithm

The algorithm takes as input a DL-Lite KB K = (T ,A) and a boolean conjunctive
query q, and returns a boolean value. The algorithm consists of five steps:

1. TBox normalization: inclusion assertions of T in which conjunctive concepts
occur in the right-hand side are rewritten by iterative application of the rule: if
B v C1uC2 occurs in T , then replace this assertion in T with the two assertions
B v C1 , B v C2. The normalized TBox resulting from such a transformation
contains the following types of assertions:

• ISA assertions of the form A1 v A2, where A1 and A2 are atomic concepts;

• disjointness assertions of the form B1 v ¬B2 where B1 is a basic concept
(i.e., either an atomic or an existential concept) and ¬B2 is a negated basic
concept;

• role-typing assertions of the form ∃R v B or ∃R− v B, where B is a basic
concept;

• participation assertions of the form A v ∃R or A v ∃R−, where A is an
atomic concept;

• functionality assertions of the form (funct R) or (funct R−).

2. KB consistency check : this step checks whether the ABox A satisfies the func-
tionality and disjointness assertions occurring in the TBox T . Specifically:

96

(a) First, in order to check satisfiability w.r.t. disjointness assertions, the TBox
is expanded by computing all the disjointness assertions implied by the
inclusion assertions in T . More precisely, the TBox T is closed with respect
to the following inference rule: if the assertions C1 v C2 and C2 v C3

occur in T (where C1, C2, C3 are arbitrary concepts), then add the assertion
C1 v C3 to T .

(b) Then, the algorithm checks satisfiability w.r.t. disjointness assertions in T :
e.g., the assertion B1 v ¬B2 in T is satisfied in A iff there is no a such
that both a : B1 and a : B2 are in A (if B2 is the existential concept ∃R
(resp., ∃R−), then also assertions of the form R(a, b) (resp., R(b, a)) are
taken into account).

(c) Finally, also satisfiability of A w.r.t. functionality assertions is checked:
e.g., the assertion (funct R) in T is satisfied in A iff there is no pair of
assertions in A of the form R(a, b), R(a, c).

If there is a disjointness assertion or a functionality assertion in T that the ABox
A does not satisfy, then the algorithm returns true (there is no model for the
KB K, therefore every query is trivially true), otherwise the algorithm executes
the next step.

3. Query expansion: the conjunctive query is rewritten based on the ISA, role-
typing, and participation assertions in T . More specifically, starting from the
initial conjunctive query, a union of conjunctive queries is computed, by es-
sentially applying the ISA, role-typing, and participation assertions as concept
rewriting rules, applied from right to left. For instance, in the presence of the
ISA assertion A v C, the query C(a) can be rewritten as A(a), while in the
presence of the role-typing assertion ∃R v C, the same query can be rewritten
as R(a, x), where x is a new variable symbol. Intuitively, in expanding the query
we essentially embed all the relevant knowledge of the TBox represented by ISA,
role-typing, and participation assertions.

4. Query evaluation: Finally, the expanded query is evaluated over the ABox A.
More precisely, the algorithm returns true if and only if there exists a conjunct
of the expanded query that has an image in the ABox. Basically, a conjunct
has an image in the ABox A if there exists a substitution σ from the variables
occurring in the conjunct to the constants occurring in A such that for each
atom φ occurring in the conjunct, σ(φ) ∈ A (actually, if an existential concept
occurs in the atom, then also role memberhip assertions can provide an image
for the atom). In other words, the algorithm evaluates the union of conjunctive
queries considering the ABox as a database.

4.2 Correctness

Informally, the correctness of the above reasoning technique is essentially due to the
fact that the assertions in the TBox can be divided into two classes:

97

• disjointness and functionality assertions, taken into account by Step 2 of the
algorithm;

• ISA, role-typing, and participation assertions, considered in Step 3.

Indeed, it can be shown that the interaction between these two classes of assertions
is limited to the derivation of new disjointness assertions in the TBox closure com-
puted during Step 2. After these steps, the TBox can be discarded in the final query
evaluation step.

4.3 Complexity

As for the complexity of the algorithm, it is easy to prove that the algorithm runs in
polynomial time with respect to the size of the knowledge base K, while the computa-
tion time is exponential with respect to the size of the query. The latter is due to the
fact that the union of conjunctive queries computed in Step 3 may consist of a number
of disjuncts (each of polynomial size) that is exponential in the number of atoms in
the body of the initial query. Moreover, the evaluation of each disjunct in Step 4 may
take nondeterministic polynomial (i.e., for practical purposes, exponential) time in
the number of atoms of the disjunct, and hence in the number of atoms in the body
of the initial query.

The algorithm can be extended to the presence of soft constants in the ABox,
by adding a unification step that takes into account the presence of functionality
assertions on the soft constants. Such an extension does not affect the computational
properties of the algorithm.

Finally, it can be shown that, in the presence of soft constants, containment be-
tween conjunctive queries can be immediately reduced to query answering by the
well-known “query freezing” technique (see, e.g., [11]), in which soft constants are
used to deal with possible equalities implied by functionality assertions.

Summarizing, the following property holds.

Theorem 1 Subsumption, query answering, and query containment in DL-Lite are
polynomial in the size of the knowledge base.

5 Conclusions

We have described DL-Lite, a new DL specifically tailored to capture conceptual data
models and basic ontology languages, while keeping the worst-case complexity of sound
and complete reasoning tractable.

In this paper we focused on binary roles only, but this is not a crucial limitation.
Indeed, it is possible to extend the reasoning techniques reported here to n-ary re-
lations without loosing their nice computational properties. On the other hand, the
results reported in [5] imply that the introduction of subset constraints on roles (i.e.,
role inclusion assertions) makes our technique inapplicable.

98

Acknowledgments This research was partly supported by MIUR under FIRB
(Fondo per gli Investimenti della Ricerca di Base) project “MAIS: Multichannel Adap-
tive Information Systems” in the context of the Workpackage 2 activities, and by the
EU funded projects INFOMIX (IST-2001-33570) and SEWASIE (IST-2001-34825).

References

[1] C. Batini, S. Ceri, and S. B. Navathe. Conceptual Database Design, an Entity-
Relationship Approach. Benjamin and Cummings Publ. Co., Menlo Park, Cali-
fornia, 1992.

[2] A. Borgida and R. J. Brachman. Conceptual modeling with description logics. In
F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider,
editors, The Description Logic Handbook: Theory, Implementation and Applica-
tions, chapter 10, pages 349–372. Cambridge University Press, 2003.

[3] A. Cal̀ı, D. Lembo, and R. Rosati. On the decidability and complexity of query
answering over inconsistent and incomplete databases. In Proc. of the 22nd
ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems
(PODS 2003), pages 260–271, 2003.

[4] A. Cal̀ı, D. Lembo, and R. Rosati. Query rewriting and answering under con-
straints in data integration systems. In Proc. of the 18th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2003), pages 16–21, 2003.

[5] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. What to
ask to a peer: Ontology-based query reformulation. In Proc. of the 9th Int. Conf.
on Principles of Knowledge Representation and Reasoning (KR 2004), 2004.

[6] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query
containment under constraints. In Proc. of the 17th ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems (PODS’98), pages 149–158,
1998.

[7] D. Calvanese, G. De Giacomo, and M. Lenzerini. Answering queries using views
over description logics knowledge bases. In Proc. of the 17th Nat. Conf. on
Artificial Intelligence (AAAI 2000), pages 386–391, 2000.

[8] D. Calvanese, M. Lenzerini, and D. Nardi. Description logics for conceptual
data modeling. In J. Chomicki and G. Saake, editors, Logics for Databases and
Information Systems, pages 229–264. Kluwer Academic Publisher, 1998.

[9] D. Calvanese, M. Lenzerini, and D. Nardi. Unifying class-based representation
formalisms. J. of Artificial Intelligence Research, 11:199–240, 1999.

[10] D. S. Johnson and A. C. Klug. Testing containment of conjunctive queries under
functional and inclusion dependencies. J. of Computer and System Sciences,
28(1):167–189, 1984.

[11] J. D. Ullman. Information integration using logical views. In Proc. of the 6th Int.
Conf. on Database Theory (ICDT’97), volume 1186 of Lecture Notes in Computer
Science, pages 19–40. Springer, 1997.

99

Local tableaux for reasoning in

distributed description logics ∗

Luciano Serafini
ITC-IRST, 38050 Povo, Trento, Italy

luciano.serafini@itc.it

Andrei Tamilin
DIT - University of Trento, 38050 Povo, Trento, Italy

andrei.tamilin@dit.unitn.it

Abstract

The last decade of basic research in the area of Description Logics (DL) has
created a stable theory, efficient inference procedures, and has demonstrated a
wide applicability of DL to knowledge representation and reasoning. The success
of DL in the semantic web and the distributed nature of the last one inspired
recently a proposal of Distributed DL framework (DDL). DDL is composed of
a set of stand alone DLs pairwise interrelated with each other via collection of
bridge rules. In this paper, we investigate the reasoning mechanisms in DDL
and introduce a tableau-based reasoning algorithm for DDL, built on the top of
the state of the art tableaux reasoners for DL. We also describe a first prototype
implementation of the proposed algorithm.

1 Introduction

Ontologies have been advocated as the basic tools to support interoperability be-
tween distributed applications and web services. The basic idea is that different au-
tonomously developed applications can meaningfully communicate by using a common
repository of meaning, i.e. a shared ontology. The optimal solution obviously lies in
having a unique worldwide shared ontology describing all possible domains. Unfortu-
nately, this is unachievable in practice. The actual situation in the web is characterized
by a proliferation of different ontologies. Each ontology describes a specific domain
from different perspectives and at different level of granularity. The initial interop-
erability problem, therefore, passes from the application level to the ontology level.
Though the semantic standardization is far to be reached, the syntactic standardiza-
tion is almost there, as it is widely accepted that ontologies should be expressed in a
language, which is a variation of a descriptive language [6, 8].

Given this situation, one of the challenges in the semantic web is of being able to
deal with a large number of overlapping and heterogeneous local ontologies. We use
the term “local” to stress the fact that each ontology describes a domain of interest
from a local and subjective perspective. In this paper, we focus on the problem of

∗We thank Chiara Ghidini and Floris Roelofsen for their feedback on this paper.

100

manager

Peer ontology

manager

Peer ontology

Peer ontology

manager

Figure 1: P2P architecture for managing multiple ontologies. In each peer, circles
stand for ontologies, and arrows for semantic relations between ontologies.

reasoning within such web of local ontologies. We start form a long tradition of
logics for distributes systems, based on propositional Multi-Context Systems [5, 4]
and its Local Models Semantics [2], the extension of First Order Logics which leads
to Distributed First Order Logics [3], and the extension of Description Logics which
leads to Distributed Description Logics (DDL) [1]. Starting from these logical studies,
our goal is to propose a theoretically grounded and scalable solution to the problem of
reasoning with a set of distributed, heterogeneous, and overlapping local ontologies.
Most of state of the art formalizations of that problem are based on a global ontology
that allows to uniformly represent a set of local ontologies and semantic relations
between them. In these approaches, reasoning in a set of local ontologies is rephrased
into a problem of reasoning in the global ontology.

The approaches based on the global ontology, however, present two main draw-
backs. First, from a computational complexity point of view it is more convenient
to keep the reasoning as much local as possible, exploiting the structure provided by
semantic relations for the propagation of reasoning through the local ontologies. Some
intuition in this direction can be found in the computational complexity results for
satisfiability in Multi-Context Systems described in [11]. Second, the reasoning proce-
dure that has to be implemented in the global ontology should be capable of dealing
with the most general local language, whereas having a more distributed approach
would allow to apply to every local ontology the specific reasoner, optimized for the
local language.

From the architectural point of view, our idea is inspired by peer-to-peer (P2P)
distributed knowledge management architectures, proposed in the SWAP [13] and
Edamok [12] projects, and by the C-OWL language [14]. We have implemented a
P2P architecture, shown in Figure 1, consisting of peer ontology managers, providing
reasoning services on a set of local ontologies, and capable of requesting reasoning
services to other peers. The ontology manager of a pear p is capable of providing local
and global reasoning services. Local services involve only ontologies local to p, while
global services involve both ontologies in p and in other semantically related peers.
Among the provided reasoning services, the fundamental ones are checking a local and
a global subsumptions.

The paper contributes to the realization of the architecture described above with
the following four points: (i) we describe a logical framework (DDL) capable of cap-

101

turing the behavior of the overall system, i.e. how subsumptions propagate through
peers; (ii) give a general reference (and näıve) global algorithm for computing global
subsumption, which is sound and complete w.r.t. any topology of the P2P ontol-
ogy network; (iii) propose a distributed tableau algorithm for computing global sub-
sumption, built as a composition of standard tableaux algorithms for computing local
subsumption, which is sound and complete w.r.t. acyclic topology; and finally, (iv)
describe a java-based prototype implementing the distributed tableau algorithm.

2 Distributed Description Logics

Distributed description logics (DDL), defined by Borgida and Serafini in [1], is a knowl-
edge representation and reasoning formalism for describing distributed environments
composed of a set of distinct description logics interrelated between each other through
a set of pairwise inference connectives. In this section we briefly recall the definition
of DDL as given in [1].

Before giving the formal definitions of DDL framework let us make several pre-
liminary remarks. Given a non empty set I of indexes, let {DLi}i∈I be a collection
of description logics. Each DLi can be one of the logics which is weaker or equivalent
to SHIQ [9] (e.g. ALC, ALCN , SH)1. For each i ∈ I let us denote a T-box of DLi

as Ti. To distinguish descriptions in each DLi, we will prefix them with the index of
corresponding description logics. E.g. to reflect that any concept C is stated locally
in a terminology of DLi we will write i : C; similarly, to reflect the fact that particular
axiom, say C � D, holds locally in a terminology of DLi we will write i : C � D.

Bridge rules are used to express semantic relations between different T-boxes.

Definition 2.1 (Bridge rules). A bridge rule, from i to j is an expression of the
following two forms:

1. i : x
�−→ j : y, an into-bridge rule;

2. i : x
�−→ j : y, an onto-bridge rule;

where x and y are either two concepts, or two roles, or two individuals of DLi and
DLj respectively.

In spite of this general definition, in this paper we concentrate on bridge rules
between concepts. Intuitively, the into-bridge rule i : C

�−→ j : D states that, from the
j-th point of view the concept C in DLi is less general than its local concept D.
Similarly, the onto-bridge rule i : C

�−→ j : D expresses the fact that, according to j, C
in DLi is more general than D in DLj . Therefore, bridge rules from i to j represent
the possibility of DLj to translate (under some approximation) the foreign concepts
of DLi into its internal model. Note, that bridge rules are directional and reflect the
subjective point of view of particular DL on other DLs surrounding it. Therefore,
rules from j to i are not necessarily the inverse of rules from i to j.

Example 2.1. The International Standard Classification of Occupations (ISCO-88)2

is an ontology that organizes occupations in a hierarchical framework. At the lowest
1We assume familiarity with DLs and related tableaux-based systems described in [9].
2http://www.ilo.org/public/english/bureau/stat/class/isco.htm

102

ISCO-88 WordNet

2 Professionals adEntity

21 Physical, mathematical and engineering science professionals Causal_agency

211 Physicists, chemists and related professionals Cause

2111 Physicists and astronomers Causal_agent

2114 Geologists and geophysicists Entity

212 Mathematicians, statisticians and related professionals Physical_object

2121 Mathematicians and related professionals Object

2122 Statisticians Animate_thing

213 Computing professionals Living_thing

2131 Computer systems designers, analysts and programmers Being

2139 Computing professionals not elsewhere classified Organism

214 Architects, engineers and related professionals Person

2141 Architects, town and traffic planners Self

2146 Chemical engineers Grownup

3 Technicians and associate professionals Nurser

31 Physical and engineering science associate professionals Engineer

311 Physical and engineering science technicians Worker

Figure 2: An extract from ISCO-88 and WordNet.

level is the unit of classification - a job - which is defined as a set of tasks or duties
designed to be executed by one person. An extract of ISCO-88 is shown on the left
side of Figure 2. A similar, though less detailed, ontology can be extracted from the
People sub-hierarchy of WordNet3. Notice, that in WordNet there is no hierarchical
classification of jobs, as the term “worker” is at the same level than “engineer”. If,
for whatever reason, one wants to import the ISCO-88 classification into WordNet,
an example of bridge rules would be the following:

ISCO : Professionals
�−→ WNP : Worker (1)

ISCO : Technicians And Associate Professionals
�−→ WNP : Worker (2)

ISCO : Architects Engineers And Related Professionals �
Physical And Engineering Science Associate Professionals

�−→ WNP : Engineer (3)

ISCO : � �−→ WNP : ¬Child (4)

ISCO : Doorkeepers watchpersons and. . .
�−→ WNP : Gatekeeper (5)

Definition 2.2 (Distributed T-box). A distributed T-box (DTB) T = 〈{Ti}i∈I ,B〉
consists of a collection of T-boxes {Ti}i∈I , and a collection of bridge rules B =
{Bij}i�=j∈I between them.

In order to deal with ontologies which are locally unsatisfiable (this can happen
when a set of local axioms are not satisfiable or when bridge rules with other ontologies
are not satisfiable) we will introduce two special types of local interpretations, called
holes.

Definition 2.3 (Holes). A full hole in a T-box T is an interpretation I∆ = 〈∆I , ·I∆〉,
where ∆I is the original nonempty domain in T , and ·I∆

is a function that maps every
concept expression in T in the whole ∆I . An empty hole in T as an interpretation
I∅ = 〈∆I , ·I∅〉, where ∆I is the original nonempty domain T , and ·I∅

is a function
that maps every concept expression in T in the empty set.

3http://xmlns.com/wordnet/1.6/Person

103

According to the above definition, holes interpret every concept, both atomic and
complex ones, either in the empty set or in the universe. The recursive definition
of the interpretation of a concept does not apply for holes. One should notice that
the interpretation of the concepts (¬C), denoted as (¬C)I∅ , is not ∆I∅ \ CI∅ = ∆I∅ ,
but is ∅. The consequence of this fact is that I∅ |= C � D and I∆ |= C � D for
any pair of concepts C and D. Obviously, since both I∆ and I∅ satisfy all (even
contradictory) concepts in T , they are models of T , i.e. I∆ � T and I∅ � T . Holes
represent interpretations of locally inconsistent T-boxes.

Definition 2.4 (Domain relation). A domain relation rij from ∆Ii to ∆Ij is a
subset of ∆Ii × ∆Ij . We use rij(d) to denote {d′ ∈ ∆Ij | 〈d, d′〉 ∈ rij}; for any subset
D of ∆Ii , we use rij(D) to denote

⋃
d∈D rij(d); for any R ⊆ ∆Ii × ∆Ii we use rij(R)

to denote
⋃

〈d,d′〉∈R rij(d) × rij(d′).

A domain relation rij represents the capability of Tj to map the elements of ∆Ii

into its domain ∆Ij . For instance if John ∈ ∆I1 is a person and J12 ∈ ∆I2 is an
individual that represents the student John in a specific school, the pair 〈John, J12〉
will be contained in r12. Notice that r12 is not necessarily a function. Indeed, John
could attend two schools, and therefore, correspond to two individuals in ∆I2.

Definition 2.5 (Distributed interpretation). A distributed interpretation I =
〈{Ii}i∈I , {rij}i�=j∈I〉 of distributed T-box T consists of local interpretations Ii on lo-
cal domains ∆Ii for all Ti, and a family of domain relations rij between these local
domains.

Definition 2.6. A distributed interpretation I satisfies (written I �d) the elements
of a DTB T according to the following clauses: for every i, j ∈ I

1. I �d i : A � B, if Ii � A � B;
2. I �d Ti, if I �d i : A � B for all A � B in Ti;
3. I �d i : x

�−→ j : y, if rij(xIi) ⊆ yIj ;

4. I �d i : x
�−→ j : y, if rij(xIi) ⊇ yIj ;

5. I �d Bij , if I satisfies all bridge rules in Bij ;
6. I �d T, if for every i, j ∈ I, I �d Ti and I �d Bij ;
7. T �d i : C � D if for every I, I �d T implies I �d i : C � D.

Let us see now how bridge rules affect concept subsumption. Hereafter, Binto
ij and

Bonto
ij will denote the set of into- and onto-bridge rules of Bij respectively.

Monotonicity Bridge rules do not delete local subsumptions. Formally:

Ti � A � B =⇒ T |=d i : A � B (6)

Directionality T-box without incoming bridge rules is not affected by other T-boxes.
Formally, if Bki = ∅ for any k �= i ∈ I, then:

T |=d i : A � B =⇒ Ti � A � B (7)

104

Strong directionality Sole into- or onto-bridge rules incoming to local terminology
do not affect it. Formally, if for all k �= i either Binto

ki = ∅ or Bonto
ki = ∅, then:

T |=d i : A � B =⇒ Ti � A � B (8)

Local inconsistency The fact that Bij contains into- and onto-bridge rules does
not imply that inconsistency propagates. Formally:

T |=d i : � � ⊥ �=⇒ T |=d j : � � ⊥ (9)

Simple subsumption propagation Combination of onto- and into-bridge
rules allows to propagate subsumptions across ontologies. Formally, if Bij con-

tains i : A
�−→ j : G and i : B

�−→ j : H, then:

T |=d i : A � B =⇒ T |=d j : G � H (10)

Generalized subsumption propagation If Bij contains i : A
�−→ j : G and

i : Bk
�−→ j : Hk for 1 ≤ k ≤ n, then:

T |=d i : A �
n⊔

k=1

Bk =⇒ T |=d j : G �
n⊔

k=1

Hk (11)

Among the given properties, property (9) and property (11) play special roles. The
first one is important as it allows us to explain how full and empty holes constitute
“locally inconsistent interpretations”. The second one is important as it constitutes
the main reasoning step of the tableau algorithm proposed in the next section. The
proofs of the above properties can be found in [1, 10].

Example 2.2. In the hierarchy WNP of the previous example there is no subsumption
relation between Engineer and Worker. From bridge rules (1–3) and from the fact that
in the ISCO-88 ontology the concept Architects Engineers And Related Professionals
is a subclass of Professionals, it is impossible to infer that Engineers is a subclass
of Worker, i.e. that in WNP Engineers � Worker. Similarly, the bridge rules (4)
and (5) allow to infer that WNP classes Gatekeeper and Child are disjoint, i.e. that
WNP : Gatekeeper � Child � ⊥.

3 Distributed reasoning in DDL

The reasoning services one would like to have in the web of ontologies are the following:

Local reasoning services are all kind of reasoning services one wants to have for
a local ontology. The adjective “local” indicates that these reasoning services
consider a local ontology as a stand alone object (no bridge rules are taken into
account). The fundamental local reasoning service is local subsumption, i.e. the
fact that Ti |= C � D.

105

Global reasoning services are services which take into account local ontologies in
the context of the whole ontology space. These services should allow to infer
subsumption between concepts on the basis of bridge rules, as well as new bridge
rules on the basis of the existing ones. In this paper, we will focus on the basic
global reasoning service that computes global subsumption, i.e. the fact that
T |=d i : C � D.

A first proposal for implementing global reasoning services in DDL is based on
reduction of a DTB T to an equivalent global T-box TG, such that subsumption in T

can be computed via subsumption in TG (see [1] for the transformation details). In
this approach, however, a DTB can not be trivially reduced to a single global T-box
simply by indexing the concepts and roles with the T-box they occur in. Furthermore,
the reformulation done, works in the limited case when all local T-boxes are consistent.
We therefore, would like to investigate a more general decision procedure.

Our proposal consist in building a distributed tableau for DDL on top of state of
the art DL tableaux, implemented in FaCT and DLP[7], RACER[15], Pellet, and other
DL systems. Given a concept C, they generate a tableau of C, Tab(C). Subsumption
between concepts C and D is performed by checking the presence of clashes in all the
branches of Tab(C � ¬D).

To understand how local tableaux are combined in order to check global subsump-
tion we first consider a limited case of DDL that is composed of only two T-boxes T1

and T2, and bridge rules of only one direction from 1 to 2. Though this is unrealistic
limitation, it constitutes a mandatory step, from which one can generalize and build a
procedure capable of dealing with complex DDL topologies. For the sake of simplicity,
we assume the second premise that requires the atomicity of concepts involved into
bridge rules. This restriction can be later relaxed, since any bridge rule involving a
complex concept i : C, can be replaced with a bridge with a new atomic concept i : A
and by the addition of the definition A ≡ C to Ti.

Example 3.1. For a distributed T-box T12 = 〈T1,T2,B12〉, suppose that T1 contains
axioms A1 � B1 and A2 � B2, T2 does not contain any axiom, and that B12 contains
the following bridge rules:

1 : B1
�−→ 2 : H1 1 : B2

�−→ 2 : H2 (12)

1 : A1
�−→ 2 : G1 1 : A2

�−→ 2 : G2 (13)

Let us show that T12 |=d 2 : G1 � G2 � H1 � H2, i.e. that for any distributed
interpretation I = 〈I1,I2, r12〉, (G1 � G2)I2 ⊆ (H1 � H2)I2 .

1. Suppose that by contradiction there is an x ∈ ∆2 such that x ∈ (G1 �G2)I2 and
x �∈ (H1 � H2)I2 .

2. Then x ∈ GI2
1 , x ∈ GI2

2 , and either x �∈ HI2
1 or x �∈ HI2

2 .

3. Let us consider the case where x �∈ HI2
1 . From the fact that x ∈ GI2

1 , by the
bridge rule (13), there is y ∈ ∆1 with 〈y, x〉 ∈ r12, such that y ∈ AI1

1 .

106

Tab2((G1 � G2) � (¬H1 � ¬H2))

2 : x (G1 � G2) � (¬H1 � ¬H2)

2 : x (G1 � G2), (¬H1 � ¬H2)

2 : x G1, G2, (¬H1 � ¬H2)

2 : x G1, G2, ¬H1

Determine the CLASH by
applying bridge rules (12)
and (13) and computing
the tableau
Tab1(¬B1 � A1)

2 : x G1, G2, ¬H2

Determine the CLASH by
applying bridge rules (12)
and (13) and computing
the tableau
Tab1(¬B2 � A2)

Tab1(¬B1 � A1)

1 : y (¬B1 � A1), (¬A � B)

1 : y A1,¬B1, (¬A1 � B1)

1 : y A1,¬B1, ¬A1

CLASH

1 : y A1,¬B1, B1

CLASH

Tab1(¬B2 � A2)

1 : y (¬B2 � A2), (¬A2 � B2)

1 : y A2, ¬B2, (¬A2 � B2)

1 : y A2, ¬B2,¬A2

CLASH

1 : y A2, ¬B2, B2

CLASH

Figure 3: An example of distributed tableau.

4. From the fact that x �∈ HI1
1 , by bridge rule (12), we can infer that for all y ∈ ∆1

if 〈y, x〉 ∈ r12 then y �∈ BI1
1 .

5. But, since A � B ∈ T1, then y ∈ BI1
1 , and this is a contradiction.

6. The case where x �∈ HI2
2 is similar.

The above combination of a tableau in T2 with a tableau in T1 gives a distributed
tableau in T, depicted in Figure 3.

The intuitions given in Example 3.1 can be generalized for the case of multiple
T-boxes, when there are no cyclical references between them. Formally, distributed
T-box T = 〈{Ti}i∈I , {Bij}i�=j∈I〉 is acyclical if Bij �= ∅ requires i < j for all i, j ∈ I.

Algorithm 1 implements a distributed reasoning procedure intuitively introduced
above. Here we define a distributed procedure dTab, which takes as an input a
complex concept Φ to be verified and returns the result of its (un)satisfiability test.
The algorithm first builds a local completion tree T by running local tableau algorithm
Tab, and further attempts to close open branches of T by checking the bridge rules,
which are capable of producing the clash in nodes of T. According to the local tableau
algorithm, each node x introduced during creation of the completion tree, is labeled
with a function L(x) containing concepts that x must satisfy.

4 Prototype implementation

To evaluate the proposed distributed reasoning procedure we built a prototype mod-
eling the P2P architecture given in Figure 1. Each peer ontology manager maintains
ontologies in OWL and mappings in C-OWL, and provides local/global reasoning
services, such as performing classification and checking entailment.

The key role in the ontology manager is played by a distributed reasoning engine,
implementing developed distributed tableau algorithm. The kernel of the engine is
formed by Pellet OWL DL reasoner4. Opennes of the source code and implementation

4http://www.mindswap.org/2003/pellet.

107

Algorithm 1 Distributed reasoning procedure
dTabj(Φ)

1: BEGIN
2: T=Tabj(Φ); {perform local reasoning and create completion tree}
3: if (T is not clashed) then
4: for each open branch β in T do
5: repeat
6: select node x ∈ β and an i �= j;

7: �
onto
i (x) = {C | i : C

�−→ j : D, D ∈ L(x)};
8: �into

i (x) = {C | i : C
�−→ j : D,¬D ∈ L(x)};

9: if ((�onto
i (x) �= ∅) and (�into

i (x) �= ∅)) then
10: for each C ∈ �onto do
11: if (dTabi(C � ¬⊔

�
into
i) is not satisfiable) then

12: close β; {clash in x}
13: break; {verify next branch}
14: end if
15: end for
16: end if
17: until ((β is open) and (there exist not verified nodes in β))
18: end for{all branches are verified}
19: end if
20: if (T is clashed) then
21: return unsatisfiable;
22: else
23: return satisfiable;
24: end if
25: END

in java made Pellet a good candidate for our prototype. Extension of the core reasoning
functionality of Pellet transforms it to the distributed successor called D-Pellet.

To depicture the life cycle of D-Pellet, consider the case where a peer ontology
manager is asked to perform one of the supported reasoning services in a local on-
tology it maintains. The ontology manager submits this query to D-Pellet, which in
turn invokes the relative core Pellet functionality and checks for available mappings.
Mapping processing can generate subqueries which are dispatched by the ontology
manager to the corresponding foreign ontology manager. In turn, this starts another
reasoning cycle. The reasoning stops when the initial D-Pellet receives the answers
to the subproblems it sent out. Analysis of the subproblem answers defines the final
reasoning result.

5 Conclusions

In this paper we have presented a tableau-based distributed reasoning procedure for
DDL. We made several assumptions to study the reasoning in DDL, such as acyclicity
of bridge rules and atomicity of concepts involved into bridge rules. The future work
is to relax these assumptions in order to receive a practically usable framework.

References

[1] A.Borgida and L.Serafini. Distributed description logics: Assimilating informa-
tion from peer sources. Journal of Data Semantics, pages 153–184, 2003.

108

[2] C.Ghidini and F.Giunchiglia. Local model semantics, or contextual reasoning =
locality + compatibility. Artificial Intelligence, 127(2):221–259, 2001.

[3] C.Ghidini and L.Serafini. Distributed first order logics. In Proc. of the Frontiers
of Combining Systems, pages 121–139, 2000.

[4] F.Giunchiglia. Contextual reasoning. Epistemologia, special issue on I Linguaggi
e le Macchine, XVI:345–364, 1993.

[5] F.Giunchiglia and L.Serafini. Multilanguage hierarchical logics (or: How we can
do without modal logics). Artificial Intelligence, 65(1):29–70, 1994.

[6] G.Antoniou and F. van Harmelen. Web ontology language: Owl. In Handbook
on Ontologies in Information Systems, pages 67–92, 2003.

[7] I.Horrocks and P.F.Patel-Schneider. FaCT and DLP. In Proc. of the Automated
Reasoning with Analytic Tableaux and Related Methods (TABLEAUX’98), pages
27–30, 1998.

[8] I.Horrocks, P.F.Patel-Schneider, and F. van Harmelen. From SHIQ and RDF
to OWL: The making of a web ontology language. Journal of Web Semantics,
1(1):7–26, 2003.

[9] I.Horrocks, U.Sattler, and S.Tobies. Practical reasoning for very expressive de-
scription logics. Logic Journal of IGPL, 8(3):239–263, 2000.

[10] L.Serafini and A.Tamilin. Distributed reasoning services for multiple ontologies.
Technical Report DIT-04-029, University of Trento, 2004.

[11] L.Serafini and F.Roelofsen. Satisfiability for propositional contexts. In Proc.
of the Principles of Knowledge Representation and Reasoning (KR2004), 2004.
Accepted for publication.

[12] M.Bonifacio, P.Bouquet, and P.Traverso. Enabling distributed knowledge
management. Managerial and technological implications. Novatica and Infor-
matik/Informatique, III(1), 2002.

[13] M.Ehrig, Ch.Tempich, J.Broekstra, F. van Harmelen, M.Sabou, R.Siebes,
S.Staab, and H.Stuckenschmidt. A metadata model for semantics-based p2p sys-
tems. In Proc. of the 2nd Konferenz Professionelles Wissensmanagement, 2003.

[14] P.Bouquet, F.Giunchiglia, F. van Harmelen, L.Serafini, and H.Stuckenschmidt.
C-owl: Contextualizing ontologies. In Proc. of the 2d International Semantic
Web Conference (ISWC2003), pages 164–179, 2003.

[15] V.Haarslev and R.Moller. Racer system description. In Proc. of the International
Joint Conference on Automated Reasoning (IJCAR2001), pages 701–706, 2001.

109

A Description Logic Based Approach for

Matching User Profiles

Andrea Cal̀ı1,2, Diego Calvanese2, Simona Colucci3,
Tommaso Di Noia3 Francesco M. Donini4

1Dip. di Informatica e Sistemistica
Università di Roma “La Sapienza”

Via Salaria 113
I-00198 Roma, Italy
ac@andreacali.com

2Faculty of Computer Science
Free University of Bolzano/Bozen

Piazza Domenicani, 3
I-39100 Bolzano, Italy

calvanese@inf.unibz.it

3Dip. di Elettrotecnica ed Elettronica
Politecnico di Bari
Via Re David 200
I-70125 Bari, Italy

{s.colucci, t.dinoia}@poliba.it

4Università della Tuscia
Facoltà di Scienze Politiche

Via San Carlo 32,
I-01100 Viterbo, Italy
donini@unitus.it

Abstract

Several applications require the matching of user profiles, e.g., job recruitment
or dating systems. In this paper we present a logical framework for specifying
user profiles that allows profile description to be incomplete in the parts that are
unavailable or are considered irrelevant by the user. We present an algorithm
for matching demands and supplies of profiles, taking into account incomplete-
ness of profiles and incompatibility between demand and supply. We specialize
our framework to dating services; however, the same techniques can be directly
applied to several other contexts.

1 Introduction

The problem of matching demands and supplies of personal profiles arises in the
business of recruitment agencies, in firms’ internal job assignments, and in the recently
emerging dating services. In all scenarios, a list of descriptions of persons is to be
matched with a list of descriptions of required persons. In electronic commerce, the
general problem is known as matchmaking, although here we do not consider any
exchange of goods or services.

We stress the fact that in matchmaking, finding an exact match of profiles is not
the objective; in fact, such a match is very unlikely to be found, and in all cases
where an exact match does not exist, a solution to matchmaking must provide one or
more best possible matches to be explored. Non-exact matches should consider both
missing information — details that could be positively assessed in a second phase —
and conflicting information — details that should be negotiated if the proposed match

110

is worth enough pursuing. Moreover, when several matches are possible, a matchmaker
should list them in a most-promising order, so as to maximize the probability of a
successful match within the first trials. However, such an order should be based on
transparent criteria — possibly, logic — in order for the user to trust the system.

Profiles matchmaking can be addressed by a variety of techniques, ranging from
simple bipartite graph matching (with or without cost minimization) [9], to vector-
based techniques taken from classical Information Retrieval [11, 13, 12], to record
matching in databases, among others. We now discuss some drawbacks of these tech-
niques when transferred to solve matchmaking.

Algorithms for bipartite graph matching find optimal solutions when tying to
maximize the number of matches [8, 10]. However, such algorithms rely on some way
of assigning costs to every match between profiles. When costs are assigned manually,
knowledge about them is completely implicit (and subjective), and difficult to revise.
Moreover, in maximizing the number of matches a system may provide a bad service
to single end users: for example, person P1 could have a best match with job profile
J1, but she might be suggested to take job J2 just because J1 is the only available job
for person P2. Hence, from end user’s viewpoint, maximizing the number of matches
is not the feature that a matchmaker should have.

Both Database techniques for record matching (even with null values), and in-
formation retrieval techniques using similarity between weighted vectors of stemmed
terms, are not suited for dealing with incomplete information usually present in match-
making scenarios. In fact, information about profiles is almost always incomplete, not
only because some information is unavailable, but also because some details are simply
considered irrelevant by either the supplier or the demander — and should be left as
such. Imposing a system interface for entering profiles with long and tedious forms
to be filled in, is the most often adopted “solution” to this incompleteness problem
— but we consider this more an escape for constraining real data into an available
technique, than a real solution. For example, in a job posting/finding system, the
nationality could be considered irrelevant for some profiles (and relevant for others);
or in a dating service, some people may find disturbing (or simply inappropriate) the
request to specify the kind of preferred music, etc. In such situations, missing infor-
mation can be assumed as an “any-would-fit” assertion, and the system should cope
with this incompleteness as is.

To sum up, we believe that there is a representation problem that undermines
present solutions to matchmaking: considering how profiles information is represented
is a fundamental step to reach an effective solution, and representations that are either
too implicit, or overspecified, lead to unsatisfactory solutions.

Therefore, our research starts with proposing a language, borrowed from Artificial
Intelligence, that allows for incomplete descriptions of profiles, and both positive and
negative information about profiles. In particular, we propose a Description Logic [1]
specifically tailored for describing profiles. Then, we model the matching process as
a special reasoning service about profiles, along the lines of [5, 6]. Specifically, we
consider separately conflicting details and missing details, and evaluate how likely
is the match to succeed, given both missing and conflicting details. Our approach
makes transparent the way matches are evaluated — allowing end users to request

111

justifications for suggested matches. We devise some special-purpose algorithms to
solve the problem for the language we propose, and evaluate the possible application
scenarios of a dating service.

The paper is organized as follows. In Section 2 we present the Description Logic we
use for describing profiles. In Section 3 we describe how to represent user profiles, and
in Section 4 we present the algorithm for matching user profiles. Section 5 concludes
the paper.

2 A Description Logic for Representing Profiles

We use a restriction of the ALC(D) Description Logic, that, besides concepts and roles
to represent properties of (abstract) objects, also allows one to express quantitative
properties of objects, such as weight, length, etc., by means of concrete domains [2].
Each concrete domain D, e.g., the real numbers R, has a set of associated predicate
names, where each predicate name p denotes a predicate pD over D. For our purpose,
it is sufficient to restrict the attention to unary predicates, and we assume that among
such unary predicates we always have a predicate > denoting the entire domain, and
predicates >`(·) and 6`(·), for arbitrary values ` of D. We also assume that the
concrete domains we deal with are admissible, which is a quite natural assumption,
satisfied e.g., by R (see [2] for the details). Besides roles, the logic makes use of fea-
tures. Each feature has an associated concrete domain D and represents a (functional)
relation between objects and values of D.

Starting from a set of concept names (denoted by the letter A), a set of role names
(denoted by R), a set of unary predicate names (denoted by p), and a set of features
(denoted by f), we inductively define the set of concepts (denoted by C) as follows.
Every concept name A is a concept (atomic concept), and for C1 and C2 concepts, R

a role name, f a feature with associated domain D, and p a unary predicate of D, the
following are concepts:

• C1 u C2 (conjunction), C1 t C2 (disjunction), and ¬C (negation);
• ∃R.C (existential restriction) and ∀R.C (universal restriction);
• p(f) (predicate restriction).

To express intentional knowledge about concepts, we make use of a concept hi-
erarchy, which is a set of assertions of the form A1 v A2 and A1 v ¬A2, with A1

and A2 concept names. The former assertion expresses an inclusion, while the latter
expresses a disjointness. For example, football v sport and male v ¬female could be
assertions that are part of a concept hierarchy.

Formally, the semantics of concepts is defined by an interpretation I = (∆I , ·I),
consisting of an abstract domain ∆I and an interpretation function ·I that assigns
to each concept name A a subset AI of ∆I ; to each role name R a binary relation
RI over ∆I , and to each feature name f , associated with the concrete domain D,
a partial function fI : ∆I → D. The interpretation function can be extended to
arbitrary concepts as follows:

(C1 u C2)
I = CI1 ∩ CI2

112

(C1 t C2)
I = CI1 ∪ CI2

(¬C)I = ¬CI

(∃R.C)I = {c ∈ ∆I | there exists d ∈ ∆I s.t. (c, d) ∈ RI and d ∈ CI}

(∀R.C)I = {c ∈ ∆I | for all d ∈ ∆I s.t. (c, d) ∈ RI we have d ∈ CI}

(p(f))I = {c ∈ ∆I | fI(c) ∈ pD}

An assertion A1 v A2 is satisfied by an interpretation I if AI
1
⊆ AI

2
. An assertion

A1 v ¬A2 is satisfied by an interpretation I if AI
1
∩AI

2
= ∅. We call an interpretation

that satisfies all assertions in a hierarchy H a model of H. A concept C is satisfiable
in H if H admits a model I such that CI 6= ∅. A hierarchy H logically implies an
assertion C1 v C2 between arbitrary concepts C1 and C2 if CI

1
⊆ CI

2
, for each model

I of H.

3 Representing User Profiles

We describe how to represent user profiles using the Description Logic presented in
Section 2. The user profiles are tailored for dating services, though the same framework
can be used, with small modifications, for different applications. We do not use the
full expressive power of the Description Logic. In particular, we use a single role
hasInterest, to express interest in topics1, and we make a limited use of the constructs.
We assume the set of features to represent physical characteristics such as age, height,
etc. Additionally, we use a special feature level that expresses the level of interest in a
certain field. The concrete domain associated to level is the interval {` ∈ R | 0 < ` 6

1}.
A user profile P consists of the conjunction of the following parts:

• A conjunction of atomic concepts, to represent atomic properties associated to
the user. We denote the set of such concepts as Names(P).

• A conjunction of concepts of the form p(f), to represent physical characteristics.
The (unary) predicate p can be one of the predicates >`(·), 6`(·), =`(·), where
` is a value of the concrete domain associated to f , or any logical conjunction
of them. We denote the set of such concepts as Features(P). Since (p1 ∧ p2)(f)
is equivalent to p1(f) u p2(f), in the following, we can assume w.l.o.g. that
Features(P) contains at most one concept of the form p(f) for each feature f .

• A conjunction of concepts of the form ∃hasInterest.(C u>x(level)), where C is a
conjunction of concept names, and 0 6 x 6 1. Each such concept represents an
interest in a concept C with level at least x. We denote the set of such concepts
as Interests(P).

• A conjunction of concepts of the form ∀hasInterest.(¬Ct6x(level)), where C is a
conjunction of concept names, and 0 6 x 6 1. Each such concept represents the

1For modeling profiles in different contexts, additional roles could be added to this language. For

example, hasSkill for expressing skills in certain fields.

113

fact that the interest in a concept C has level at most x. Note that, to represent
the complete lack of interest in C, it is sufficient to put x = 0. We denote the
set of such concepts as NoInterests(P).

Example 1 A supplied profile describing, say, a 35-years-old male, 1.82 cm tall, with
strong interests in fantasy novels and japanese comics, fair interest in politics and no
interest in football, could be expressed as follows:

male u =35(age) u =1.82(height) u
∃hasInterest.(fantasyNovels u >0.8(level)) u
∃hasInterest.(japaneseComics u >0.8(level)) u
∃hasInterest.(politics u >0.4(level)) u
∀hasInterest.(¬football t 60(level))

where we suppose that interests are organized in a hierarchy including fantasyNovels v
novels, japaneseComics v comics, and male v ¬female

Observe that, when a profile is demanded, usually features like age and height will
be used with range predicates (e.g., (>30∧670)(age)), instead of equality predicates
as in the above example.

The following property follows immediately from the semantics of existential re-
striction. For every pair of concepts C1 and C2, role R, feature f with associated
concrete domain D, and p a predicate of D:

if H |= C1 v C2 then H |= ∃R.(C1 u >`(f)) v ∃R.(C2 u >`(f))

For example, if football v sport, then someone with a level of interest ` in football has
at least the same level of interest in sport. This property is exploited in the matching
algorithm provided in Section 4.

4 The Matching Algorithm

We present the algorithm for matching user profiles. The matching is performed over
two profiles: the demand profile Pd and the supply profile Ps. The algorithm is not
symmetric, i.e., it evaluates how Ps is suited for Pd, which is different from how Pd

is suited for Ps [7]; of course, in order to determine how Pd is suited for Ps, we can
simply exchange the arguments of the algorithm.

From a logical point of view, we extend the non-standard inferences contraction
and abduction defined in [4]. In particular, our contraction either removes or weakens
conjuncts from Pd so as to make Pd u Ps satisfiable in H; abduction, instead, either
adds or strengthens conjuncts in Ps so as to make H |= Ps v Pd. The algorithm
is based on structural algorithms for satisfiability and subsumption [3]. Since it is
reasonable to assume that users do not enter contradicting information, we assume
that the profiles Pd and Ps are consistent.

The result of the match is a penalty in R: the larger the penalty, the less Ps is
suited for Pd. In particular, partial penalties are added to the overall penalty by
matching corresponding conjuncts of the two profiles; this is done in two ways.

114

Contraction. When a conjunct Cd in Pd is in contrast with some conjunct Cs in Ps,
then Cd is removed and a penalty is added. Intuitively, since the supplier has some-
thing the demander does not like, in order to make the profiles match the demander
gives up one of her requests. For example, let Cd = ∀hasInterest.(¬sport t60.2(level))
and Cs = ∃hasInterest.(football u >0.4(level)), where we have football v sport in H.
In this case the demander looks for someone who does not like sports very much,
while the supplier likes football and therefore he likes sports. In this case, pursuing
the match would require the demander to give up his/her request about sports, so
the algorithm adds a penalty Πc`(0.4, 0.2) that depends on the gap between the lower
bound (0.4) of the supply and the upper bound (0.2) of the demand. Similarly, for a
feature f with contrasting predicates pd and ps, a penalty Πcf (pd(f), ps(f)) is added
to take into account the removal of pd(f) from Pd. In case a concept Ad representing
an atomic property has to be removed, the algorithm makes use of another penalty
function Πc(·), whose argument is the concept Ad.

Abduction. When a conjunct cd in Pd has no corresponding conjunct in Ps, we add
a suitable conjunct cs in Ps that makes the profiles match, and add a correspond-
ing penalty. Intuitively, the demander wants something which the supplier does not
provide explicitly; in this case we assume that the supplier may or may not satisfy
the demander’s request, and as a consequence of this possibility of conflict we add
a penalty. This is done by means of a penalty function Πa(·), whose argument is a
concept C, that takes into account the addition of C to Ps. When the level of inter-
est must be strengthened, we use a function Πa`(·), that takes into account the gap
between bounds. Similarly, a penalty function Πaf (·) takes into account the addition
of features.

Algorithm CalculatePenalty
Input demand profile Pd, supply profile Ps, concept hierarchy H
Output real value penalty > 0
penalty := 0;

// Contraction

foreach Ad ∈ Names(Pd) do

if there exists As ∈ Names(Ps)
such that H |= Ad v ¬As

then remove Ad from Pd

penalty := penalty + Πc(Ad)

foreach pd(f) ∈ Features(Pd) do

if there exists ps(f) ∈ Features(Ps)
such that ∃x.pd(x) ∧ ps(x) is unsatisfiable in the domain associated to f

then remove pd(f) from Pd

penalty := penalty + Πcf (pd(f), ps(f))

foreach ∃hasInterest.(Cd u >xd
(level)) ∈ Interests(Pd) do

foreach ∀hasInterest.(¬Cs t 6xs
(level)) ∈ NoInterests(Ps) do

if H |= Cd v Cs and xd > xs

115

then replace ∃hasInterest.(Cd u >xd
(level)) in Pd

with ∃hasInterest.(Cd u >xs
(level))

penalty := penalty + Πc`(xd, xs)

foreach ∀hasInterest.(¬Cd t 6xd
(level)) ∈ NoInterests(Pd) do

foreach ∃hasInterest.(Cs u >xs
(level)) ∈ Interests(Ps) do

if H |= Cs v Cd and xd 6 xs

then replace ∀hasInterest.(¬Cd t 6xd
(level)) in Pd

with ∀hasInterest.(¬Cd t 6xs
(level))

penalty := penalty + Πc`(xs, xd)

// Abduction

foreach Ad ∈ Names(Pd) do

if there does not exist As ∈ Names(Ps) such that H |= As v Ad

then add Ad to Ps

penalty := penalty + Πa(Ad)

foreach pd(f) ∈ Features(Pd) do

if there exist ps(f) ∈ Features(Ps)
then if ∀x.ps(x) ⇒ pd(x) is false in the domain associated to f

then add pd(f) to Ps

penalty := penalty + Πaf (pd(f), ps(f))
else add pd(f) to Ps

penalty := penalty + Πaf (pd(f),>(f))

foreach ∃hasInterest.(Cd u >xd
(level)) ∈ Interests(Pd) do

if there does not exist ∃hasInterest.(Cs u >xs
(level)) ∈ Interests(Ps)

such that H |= Cs v Cd and xs > xd

then if there exists ∃hasInterest.(Cs u >xs
(level)) ∈ Interests(Ps)

such that H |= Cs v Cd

then let ∃hasInterest.(Cs u >xs
(level)) be the concept in Interests(Ps)

with maximum xs among those for which H |= Cs v Cd holds
penalty := penalty + Πa`(xd, xs)

else penalty := penalty + Πa(∃hasInterest.(Cd u >xd
(level)))

add ∃hasInterest.(Cd u >xd
(level)) to Ps

foreach ∀hasInterest.(¬Cd t 6xd
(level)) ∈ NoInterests(Pd)

if there does not exist ∀hasInterest.(¬Cs t 6xs
(level)) ∈ NoInterests(Ps)

such that H |= Cd v Cs and xd > xs

then if there exists ∀hasInterest.(¬Cs t 6xs
(level)) ∈ NoInterests(Ps)

such that H |= Cd v Cs

then let ∀hasInterest.(¬Cs t 6xs
(level)) be the concept in Interests(Ps)

with minimum xs among those for which H |= Cd v Cs holds
penalty := penalty + Πa`(xs, xd)

else penalty := penalty + Πa(∀hasInterest.(¬Cd t 6xd
(level)))

add ∀hasInterest.(¬Cd t 6xd
(level)) to Ps

return penalty

116

The penalty functions used in the algorithm are defined as follows.

• For an atomic concept Ad, Πc(Ad) and Πa(Ad) depend solely from domain knowl-
edge; for example, if the demander searches for a female while the supplier is
a male, we are expected to associate a very high penalty to Πc(female) while
removing female from Pd in the contraction phase.

• Given a feature f and the predicates pd(f), and ps(f), let Id and Is be the
intervals associated to pd and ps respectively, and G the gap between them; we
define

Πcf (pd(f), ps(f)) =
|G|

|Id ∪ Is ∪ G|

In other words, the penalty is calculated by dividing the gap between Id and Is

by the sum of the sizes of Id, Is, and G.

For abduction we define (notice that, since P c

d
uPs is consistent, there is no gap

G, and since ∀x.ps(x) ⇒ pd(x) is false in the domain associated to f , we have
that |Is| > 0):

Πaf (pd(f), ps(f)) =
|Is \ Id|

|Is|

• Given xd, xs ∈ [0, 1], Πcl(xd, xs) = xd − xs and Πa`(xd, xs) = xd−xs

1−xs
.

• For Cd = un

i=1
Ai, we define

Πa(∃hasInterest.(Cd u >xd
(level))) = xd ·

n∑

i=1

Πa(Ai)

Πa(∀hasInterest.(¬Cd t 6xd
(level))) =

1 − xd∑
n

i=1

1

Πa(Ai)

Note that only the penalty functions Πa(·) and Πc(·), when calculated on atomic
concepts, rely on domain knowledge; all other penalty functions are defined based on
the previous ones, and independently of other domain knowledge.

It is easy to check that all subsumption tests H |= C1 v C2 in the algorithm
can be done in polynomial time in the size of H, C1, and C2. Hence, it can be
straightforwardly proved that the complexity of the algorithm is polynomial w.r.t. the
size of the input.

Pd = male u >30(age) u >1.80(height)
u ∃hasInterest.(literature u >0.5(level))
u ∃hasInterest.(politics u >0.4(level))

Ps = male u =35(age) u =1.70(height)
u ∃hasInterest.(fantasyNovels u >0.8(level))
u ∃hasInterest.(japaneseComics u >0.8(level))
u ∀hasInterest.(¬football t ≤0(level))

Figure 1: Formalization of profiles of Example 2

117

Example 2 Let Pd be the demand for a ”man over thirty, taller than 180 cm, with
fair interest in literature and politics” and Ps the supplied profile describing a ”35
year-old male, 1.70 cm tall, with strong interest in fantasy novels and japanese comics
and no interest in football”. Such profiles are formalized in Figure 1 w.r.t. a hierarchy
H including fantasyNovels v novels, japaneseComics v comics, comics v literature

and novels v literature. The evaluation of the matching algorithm on Ps and Pd

w.r.t. H returns a penalty value equal to Πcf (1.80, 1.70) + Πa(∃hasInterest.(politics u
>0.4(level))). The first term represents the need of giving up the height requirement in
Pd during the contraction phase, while the second one takes into account the addition
of politics among Interests(Ps) during the abduction phase.

The following theorem establishes the correctness of the above algorithm w.r.t. the
computation of contraction and abduction. We denote with P c

d
the profile Pd after

contraction, and with P a

s
the profile Ps after abduction.

Theorem 3 Given a concept hierarchy H, a demand profile Pd, and a supply profile
Ps, the following properties hold: (i) P c

d
u Ps is satisfiable in H; (ii) P a

s
is satisfiable

in H; (iii) H |= P c

d
v P a

s
. (iv) there does not exist a profile P ′

s
more general than P a

s

(i.e., H |= P a

s
v P ′

s
and H 6|= P ′

s
v Ps) such that H |= P ′

s
v Ps and H |= P ′

s
v P c

d
.

Proof (sketch). (i) The proof is by construction of a model I of H such that (P c

d
u

Ps)
I 6= ∅. (ii) Follows directly from (i), since in the abduction step we add to Ps

conjuncts that are already in P c

d
. (iii) and (iv) Follow by construction of P a

s
, since

exactly those conjuncts of P c

d
that are not subsumed by Ps in H have been included in

P a

s
. By the fact that H consists only of inclusions and disjointness assertions between

pairs of atomic concepts, it is indeed sufficient to consider pairs of concepts to check
subsumption.

5 Conclusions

In this paper we have addressed the problem of matching user profiles, when the
demander’s and supplier’s profiles can have missing or conflicting information. In such
a case, we have to take into account that the demander may need to give up some of
her requests, and/or she may need to make assumptions on unspecified properties of
the supplier’s profile. We have proposed a DL-based framework for expressing user
profiles in this setting, and a language suited for dating services. We have proposed
an ad-hoc structural algorithm for matching profiles that, given a demander’s and a
supplier’s profile, returns a penalty: the higher the penalty, the less the two profiles
are compatible. As a future work, we want to test the algorithm in real cases with a
prototype that is currently under development: we believe that promising applications
of our techniques can be dating, recruitment, and service discovery systems.

Acknowledgments The first two authors were partly supported by MIUR under
FIRB (Fondo per gli Investimenti della Ricerca di Base) project “MAIS: Multichannel
Adaptive Information Systems” in the context of the Workpackage 2 activities.

118

References

[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider,
editors. The Description Logic Handbook: Theory, Implementation and Applica-
tions. Cambridge University Press, 2003.

[2] F. Baader and P. Hanschke. A schema for integrating concrete domains into
concept languages. In Proc. of IJCAI’91, pages 452–457, 1991.

[3] A. Borgida and P. F. Patel-Schneider. A semantics and complete algorithm for
subsumption in the CLASSIC description logic. J. of Artificial Intelligence Re-
search, 1:277–308, 1994.

[4] S. Colucci, T. Di Noia, E. Di Sciascio, F. M. Donini, and M. Mongiello. Concept
abduction and contraction in description logics. In Proc. of DL 2003. CEUR
Electronic Workshop Proceedings, http://ceur-ws.org/Vol-81/, 2003.

[5] S. Colucci, T. Di Noia, E. Di Sciascio, F. M. Donini, M. Mongiello, and M. Mot-
tola. A formal approach to ontology-based semantic match of skills descriptions.
J. of Universal Computer Science, Special issue on Skills Management, 2003.

[6] T. Di Noia, E. Di Sciascio, F. M. Donini, and M. Mongiello. Abductive match-
making using description logics. In Proc. of IJCAI 2003, pages 337–342, 2003.

[7] T. Di Noia, E. Di Sciascio, F. M. Donini, and M. Mongiello. A system for
principled matchmaking in an electronic marketplace. In Proc. of WWW 2003,
pages 321–330, May 20–24 2003.

[8] Z. Galil. Efficient algorithms for finding maximum matching in graphs. ACM
Computing Surveys, 18(1):23–38, 1986.

[9] F. S. Hillier and G. J. Lieberman. Introduction to Operations Research. McGraw-
Hill, 1995.

[10] J. Kennington and Z. Wang. An empirical analysis of the dense assignment
problem: Sequential and parallel implementations. ORSA Journal on Computing,
3(4):299–306, 1991.

[11] D. Kuokka and L. Harada. Integrating information via matchmaking. J. of
Intelligent Information Systems, 6:261–279, 1996.

[12] K. Sycara, S. Widoff, M. Klusch, and J. Lu. LARKS: Dynamic matchmaking
among heterogeneus ssoftware agents in cyberspace. Autonomous agents and
multi-agent systems, 5:173–203, 2002.

[13] D. Veit, J. P. Müller, M. Schneider, and B. Fiehn. Matchmaking for autonomous
agents in electronic marketplaces. In Proc. of AGENTS ’01, pages 65–66. ACM,
2001.

119

Semantics driven support for query formulation

Paolo Dongilli, Enrico Franconi, and Sergio Tessaris

Free University of Bozen-Bolzano, Italy
<lastname>@inf.unibz.it

Abstract

In this paper we describe the principles of the design and development of an intelli-
gent query interface, done in the context of the SEWASIE (SEmantic Webs and AgentS in
Integrated Economies) European IST project. The SEWASIE project aims at enabling a
uniform access to heterogeneous data sources through an integrated ontology. The query
interface is meant to support a user in formulating a precisequery – which best captures
her/his information needs – even in the case of complete ignorance of the vocabulary of
the underlying information system holding the data. The intelligence of the interface is
driven by an ontology describing the domain of the data in theinformation system. The
final purpose of the tool is to generate a conjunctive query ready to be executed by some
evaluation engine associated to the information system.

1 Introduction

In this paper we describe the principles of the design and development of an intelligent query
interface, done in the context of the SEWASIE (SEmantic Webs and AgentS inIntegrated
Economies) European IST project. The SEWASIE project aims at enablinga uniform access
to heterogeneous data sources through an integrated ontology. The query interface is meant to
support a user in formulating a precise query – which best captures her/his information needs
– even in the case of complete ignorance of the vocabulary of the underlying information
system holding the data. The final purpose of the tool is to generate a conjunctive query (or
a non nested Select-Project-Join SQL query) ready to be executed by some evaluation engine
associated to the information system.

The intelligence of the interface is driven by an ontology describing the domain of the
data in the information system. The ontology defines a vocabulary which is richer than the
logical schema of the underlying data, and it is meant to be closer to the user’s rich vocabulary.
The user can exploit the ontology’s vocabulary to formulate the query, and she/he is guided
by such a richer vocabulary in order to understand how to express her/his information needs
more precisely, given the knowledge of the system. This latter task – calledintensional navi-
gation– is the most innovative functional aspect of our proposal. Intensionalnavigation can
help a less skilled user during the initial step of query formulation, thus overcoming problems
related with the lack of schema comprehension and so enabling her/him to easily formulate
meaningful queries. Queries can be specified through an iterative refinement process sup-
ported by the ontology through intensional navigation. The user may specify her/his request

This work has been partially supported by the EU projects Sewasie, KnowledgeWeb, and Interop.

120

using generic terms, refine some terms of the query or introduce new terms, and iterate the
process. Moreover, users may explore and discover general information about the domain
without querying the information system, giving instead an explicit meaning to a query and
to its subparts through classification.

In the literature there are several approaches at providing intelligent visual query systems
for relational or object oriented databases (see[10] for an extensive survey). However, to
our knowledge, the work presented in this paper is among the first well-founded intelligent
systems for query formulation support in the context of ontology-based query processing.
The strength of our approach derives from the fact that the graphical and natural language
representation of the queries is underpinned by a formal semantics provided by an ontology
language. The use of an appropriate ontology language enables the system engineers to pre-
cisely describe the data sources, and their implicit data constraints, by meansof a system
global ontology (see[9]). The same ontology is leveraged by the query interface to sup-
port the user in the composition of the query, rather than relying on a less expressive logical
schema. The underlying technology used by the query interface is basedon the recent work
on query containment under constraints (see[8; 16]).

The paper is organised as follows. Firstly we present the system w.r.t. user viewpoint,
with the functionalities of the interface, then we describe the semantics and the reasoning
services supporting the query interface. These include the query language expressiveness,
the ontology support to the query formulation, and the natural language verbalisation issues.
Finally, we discuss related work and we draw some conclusions.

2 Query interface: the user perspective

Initially the user is presented with a choice of different query scenarios which provide a
meaningful starting point for the query construction. The interface guides the user in the
construction of a query by means of a diagrammatic interface, which enablesthe generation
of precise and unambiguous query expressions.

Query expressions are compositional, and their logical structure is not flat but tree shaped;
i.e. a node with an arbitrary number of branches connecting to other nodes. This structure
corresponds to the natural linguistic concepts of noun phrases with one or more propositional
phrases. The latter can contain nested noun phrases themselves.

A query is composed by a list of terms coming from the ontology (classes); e.g. “Supplier”
and “Multinational”. Branches are constituted by a property (attributes or associations) with
its value restriction, which is a query expression itself; e.g. “selling on Italianmarket”, where
“selling on” is an association, and “Italian market” is an ontology term.

The focus paradigm is central to the interface user experience: manipulation of the query
is always restricted to a well defined, and visually delimited, subpart of the whole query (the
focus). The compositional nature of the query language induces a natural navigation mecha-
nism for moving the focus across the query expression (nodes of the corresponding tree). A
constant feedback of the focus is provided on the interface by means ofthe kind of operations
which are allowed. The system suggests only the operations which are “compatible” with the
current query expression; in the sense that do not cause the query tobe unsatisfiable. This is
verified against the formal model describing the data sources.

One of the main requirements for the interface is that it must be accessed by any HTML
browser, even in presence of restrictive firewalls. This constraints theits design, which overall
appearance is shown in Figure 1. The interface is composed by three functional elements. The

121

first one (top part) shows a natural language representation of the query being composed, and
the current focus. The second one is the query manipulation pane (bottompart) containing a
diagram representing the focus and its terminological context, together with tools to specialise
the query. Finally, a query result pane containing a table representing theresult structure. The
first two components are used to compose the query, while the third one is used to specify
the data which should be retrieved from the data sources. Because of lack of space, in this
paper we concentrate on the query building part. Therefore we wont discuss the query result
pane, which allows the user to define the columns of a table which is going to organise the
data from the query result.

Query textual representation The first component consists of a text box representing the
query expression in a natural language fashion. The user selects subparts of the query for
further refinement. The selection defines the current focus, which will be represented in the
diagrams described in the following sections. The selected subexpressioncan be modified
(refined or extended) by means of the query manipulation pane.

Although the query verbalisation does not provide accounts of the querystructure, the
system is aware of the nesting (and so is the user). The system provides the feedback on
the nesting by means of navigation in the query expression when the user is interested in
selecting a subpart of the query. When a node is selected, then the systemautomatically
selects the whole subtree rooted at the node selected by the user.

It is important to stress that, although natural language is used as feedback to represent
the query, this is used in generation mode only. Since the user does not writequeries directly,
there is no need to parse any natural language sentence or to resolve linguistic ambiguities.

Query manipulation pane The elements in the pane represent the current selection, and the
operations allowed in its context. It is organised as a diagram showing the taxonomic context
of the selection (the central part), and tools enabling the user to build the query expression.

The central part of the interface is occupied by the diagram allowing whatwe callsubsti-
tution by navigation; i.e. the possibility of substituting the selected portion of the query with
a more specific or more general terms.

The central part in the diagram shows the main term of the focus. While the surrounding
terms are either more specific or more general w.r.t. the query expressionfrom the focus
viewpoint. For example, w.r.t. the query showed in Figure 1 with the focus on the first term
(“Supplier”), the terms “Merchant” and “Agent” are more general term inthe ontology, while
“Retailer” and “Wholesaler” are more specific. By selecting one of these terms, the user can
substitute the whole focus with the selected term. The purpose of the substitutiongroup is
twofold: it enables the replacement of the focus and it shows the position ofthe selection
w.r.t. the terms in the ontology.

It can be the case that in the ontology there are terms which are equivalentto the selected
part. In this case the user is offered to replace the selection with the equivalent term by the
activation of theReplace Equivalent button.

A different refinement enabled by the interface is bycompatible terms. These are terms
in the ontology whose overlap with the focus can be non-empty. These ontology terms can be
added to the head of the selection by using theAdd Concept pop-up menu. For example,
“Student” is among the compatible terms for the focus “Employee”, but “Textile”is not. The
compatible terms are automatically suggested to the user by means of appropriatereasoning
task on the ontology describing the data sources.

122

Analogously, the user can add properties to the focus:associations(e.g. “Industry with
sector”), and/orattributes(e.g. “Employee whose name is”). This can be performed by means
of a Add Property pop-up menu, which presents the possible alternatives. Name and
value restrictions for each property are verbalised using meta information associated to the
terms in the ontology. For example, the association “with sector” with the restriction “Textile”
is shown as “belonging to the textile sector”.

Note that the terms and the prop-

Figure 1: Query building interface.

erties proposed by the system de-
pend on the overall query expres-
sion, not only on the focus. This
means that subparts of the query
expression, taken in isolation, would
generate different suggestions w.r.t.
those in their actual context in the
query.

Sub-queries can be associated
to new names by means of aDefine
button. This process corresponds
to the definition of a new named
view. These newly introduced names
can be used to shorten the query
expression, or as a simple mech-
anism to extend the ontology to build
a customised user’s viewpoint.

3 Query interface: inside the box

In this section we describe the underpinning technologies and techniques enabling the user
interface described in the previous sections. We will start by describing our assumptions on
the query language, followed by system perspective over the described query building process.
The whole system is supported by formally defined reasoning services which are described in
Section 3.2. Finally, we introduce the verbalisation mechanism which enables the system to
show the queries in a natural language fashion.

3.1 Conjunctive queries

Since the interface is build around the concept of classes and their properties, we consider
conjunctive queries composed by unary (classes) and binary (attributeand associations) terms.

The body of a query can be considered as a graph in which variables (and constants) are
nodes, and binary terms are edges. A query is connected (or acyclic) when for the corre-
sponding graph the same property holds. Given the form of query expressions composed by
the interface introduced in Section 2, we restrict ourselves to acyclic connected queries. This
restriction is dictated by the requirement that the casual user must be comfortable with the
language itself.1 Note that the query language restrictions do not affect the ontology lan-

1Our technique can deal with disjunction of conjunctive queries, even with alimited form of negation applied
to single terms. See[8; 16] for the technical details.

123

guage, where the terms are defined by a different (in our case more expressive) language. The
complexity of the ontology language is left completely hidden to the user, who doesn’t need
to know anything about it.

To transform any query expression in a conjunctive query we proceed in a recursive fash-
ion starting from the top level, and transforming each branch. A new variable is associated to
each node: the list of ontology terms corresponds to the list of unary terms.For each branch,
it is then added the binary query term corresponding to the property, andits restriction is
recursively expanded in the same way.

Let us consider for example the query “Supplier and Multinational corporation selling on
Italian market located in Europe”, with the meaning that the supplier is located in Europe.
Firstly, a new variable (x1) is associated to the top level “Supplier and Multinational corpo-
ration”. Assuming that the top level variable is by default part of the distinguished variables,
the conjunctive query becomes

{x1 |Suppl(x1), Mult corp(x1), . . .},
where the dots mean that there is still part of the query to be expanded. Then we consider
the property “selling on”, with its value restriction “Italian market”: this introduces a new
variablex1,1. The second branch is expanded in the same way generating the conjunctive
query
{x1 | Suppl(x1), Mult corp(x1), sell on(x1, x1,1), It market(x1,1), loc in(x1, x1,2), Eur(x1,2)}.

This transformation is bidirectional, so that a connected acyclic conjunctivequery can
be represented as a query expression (in the sense of Section 2) by dropping the variable
names. As a matter of fact, the system is using this inverse transformation sincethe internal
representation of queries is conjunctive queries.

Since a query is a tree, the focus corresponds to a selected sub-tree. It is easy to realise that
each sub-tree is univocally identified by the variable corresponding to a node. Therefore, the
focus is always on variable, and moving the focus corresponds to selecting a different variable.
Modifying a query sub-part means operating on the corresponding sub-tree modifying the
corresponding query tree.

Substitution by navigationcorresponds to substitute the whole sub-tree with the chosen
ontology term. The result would be a tree composed by a single node, withoutany branch,
whose unary term is the given ontology term. In therefinement by compatible terms, the
selected terms are simply added to the root node as unary query terms. For the property
extension, adding an attribute or associations corresponds to the creation of a new branch.
This operation introduces a new variable (i.e. node) with the correspondingrestriction. When
an attribute is selected, and a constant (or an expression) is specified, then this is added as
restriction for the value of the variable.

3.2 Reasoning services and query interface

Reasoning services w.r.t. the ontology are used by the system to drive the query interface. In
particular, they are used to discover the terms and properties (with their restrictions) which
are proposed to the user to manipulate the query.

Our aim is to be as less restrictive as possible on the requirements for the ontology lan-
guage. In this way, the same technology can be adopted for different frameworks, while the
user is never exposed to the complexity (and peculiarities) of a particular ontology language.

In our context, an ontology is composed by aset of predicates(unary, binary), together
with a set of constraintsrestricting the set of valid interpretations (i.e. databases) for the

124

predicates. The kind of constraints which can be expressed defines theexpressiveness of the
ontology language. Note that these assumptions are general enough to take account of widely
used modelling formalisms, like UML for example.

We do not impose general restrictions on the expressiveness of the ontology language;
however, we require the availability of twodecidablereasoning services: satisfiability of
a conjunctive query, and containment test of two conjunctive queries, both w.r.t. the con-
straints. If the query language includes theemptyquery (i.e. a query whose extension is
always empty), then query containment is enough (a query is satisfiable iffit is not contained
in the empty query). As described in Section 2, the query building interface represents the
available operations on the query w.r.t. the current focus; i.e. the variablewhich is currently
selected. Therefore, we need a way of describing a conjunctive query from the point of view
of a single variable. The expression describing such a viewpoint is still a conjunctive query;
which we callfocused. This new query is equal to the original one, with the exception of the
distinguished (i.e. free) variables: the only distinguished variable of the focused query is the
variable representing the focus. In the following we represent asqx the queryq focused on
the variablex. For example, the query
q ≡ {x1, x1,2 |Mult corp(x1), sell on(x1, x1,1), It market(x1,1), loc in(x1, x1,2), Eur(x1,2)},
focused in the variablex1,1 would simply be
qx1,1 ≡ {x1,1 |Mult corp(x1), sell on(x1, x1,1), It market(x1,1), loc in(x1, x1,2), Eur(x1,2)}.

The operations on the query expression require two different types ofinformation: hi-
erarchical (e.g. substitution by navigation), and oncompatibility (e.g. refinement and new
properties).

Let us consider the substitution by navigation with the more specific terms (the cases
with more general and equivalent terms are analogous). Given the focused queryqx, we are
interested to the unary atomic termsT s.t. the query{y |T (y)} is contained inqx and it is most
general (i.e. there is no other query of that form contained inqx, and containing{y |T (y)}).

Refinement by compatible terms and the addition of a new property to the query require
the list of terms “compatible” with the given query. In terms of conjunctive queries, this
corresponds to add a new term to the query. The term to be added should “join” with the
query by means of the focused variable, and must be compatible in the sensethat the resulting
query should be satisfiable. This leads to the use of satisfiability reasoning service to check
which predicates in the ontology are compatible with the current focus. With unary terms this
check corresponds simply to the addition of the termT (x) to the focused queryqx, and verify
that the resulting query is satisfiable.

The addition of a property requires the discovery of both a binary term and its restriction:
the terms to be added are of the form{x |R(x, y), T (y)} if the focused variable isx. As for
the refinement by compatible terms, the system should check all the differentbinary pred-
icates from the ontology for their compatibility. This is practically performed by verifying
the satisfiability of the queryqx ./ {x |R(x, y)}, for all atomic binary predicatesR in the
signature and wherey is a variable not appearing inq.2 Once a binary predicateR is found
to be compatible with the focused query, the restriction is selected as the most general unary
predicateT such that the queryqx ./ {x |R(x, y), T (y)} is satisfiable.

2Here./ represents a natural join.

125

3.3 Using a Description Logics Reasoner

Although our approach is not tight to any ontology language, in the test implementation of
our system we are using Description Logics (DLs). The reasons for thischoice lie in the facts
that DLs can capture a wide range of widespread modelling frameworks, and the availability
of efficient and complete DL reasoners.

We adopted the Description LogicsSHIQ (see[15]); which is expressive enough for
our purposes, and for which there are state of the art reasoners. Note that the adoption of
SHIQ allow us to use ontologies written in standard Web Ontology languages like OWL–
DL (see[14]).

For space limitations we are not going to describe in detail the underlyingSHIQ DL;
the reader is referred to the above mentioned bibliographic references.The ontology contains
unary (concepts) and binary (roles) predicates, and the constraints are expressed by means of
inclusion axioms between concept or role expressions. One of the key features ofSHIQ is
the possibility of expressing the inverse of a role; which is extremely usefulfor converting
tree–shaped queries into DL concept expressions.

Given the restriction to tree–shaped conjunctive query expressions, together with the
availability of inverse roles, a focused query (see Section 3.2) corresponds to a concept ex-
pression (see[17]). Therefore, all the reasoning tasks described in Section 3.2 correspond to
standard DL reasoning services. Again, this is not a restriction imposed bythe underlying
technology, since general conjunctive queries can be dealt with techniques described in[8;
16].

The idea behind the transformation of a query expression into a single concept description
is very simple, and it is based on the fact that a concept expression can be seen as a query
with a single distinguished variable. To focus the query on a variable, we start from the
variable itself, then we traverse the query graph by encoding binary termsinto DL existential
restrictions and dropping the variable names. The fact that queries are tree–shaped ensures
that variable names can be safely ignored. Let us consider for example the query expression

{Mult corp(x1), Italian(x1), sell on(x1, x1,1), It market(x1,1)}.
The DL expression corresponding to the query focused onx1,1 is

(It marketu ∃sell on−(Mult corpu Italian));
where sellon− corresponds to the inverse of sellon role.

As explained in Section 3.2, we need two kinds of information: hierarchical and com-
patibility. These, in the DL framework, are provided by the standard reasoning services of
satisfiability and taxonomy position of a concept expression respectively.The first service
verifies the satisfiability w.r.t. a knowledge base; while the second classifies aconcept expres-
sion (i.e., provides it w.r.t. the ISA taxonomy of concept names).3 Reasoning tasks described
in Section 3.2 can be straightforwardly mapped into satisfiability and classification.

For example, checking the compatibility of the term Italian with the query
{Mult corp(x1), sell on(x1, x1,1), It market(x1,1)},

is performed by checking the satisfiability of the concept
Italianu Mult corpu ∃sell onIt market.

Compatibility of binary terms is performed analogously by using an existential restriction;
e.g.,∃sell on>.4 To discover the restriction of a property we use classification instead of

3DL systems usually provide an efficient way of obtaining the taxonomic position of a given concept expres-
sion.

4Note the use of the> concept representing the whole domain (any possible concept).

126

repeated satisfiability. The idea is to classify the query focused on the variable introduced by
the property. For example, to discover the restriction of sellon applied to the query expression

{x1 |Mult corp(x1), Italian(x1)},
we classify the expression∃sell on−(Mult corpuItalian)). The DL reasoner returns the list of
concept names more general and equivalent to the range of the relation sell on, when restricted
to the domain(Mult corpu Italian). This is exactly the information we need to discover the
least general predicate(s) which can be applied to the property in the given context.

Our implementation uses the DL reasoner Racer (see[12]); which fully supports the
SHIQ DL. The interaction with the DL reasoner is based on the DIG 1.0 interface API
(see[1]), a standard to communicate with DL reasoners developed among differentDL sys-
tems implementors. This choice makes our system independent from a particular DL reasoner,
which can be substituted with any DIG based one.

3.4 Query verbalisation

The system always presents the user with a natural language transliteration of the conjunctive
query. This is performed in an automatic way by using meta information associated with
the ontology terms, both classes and properties. The verbalisation of the ontology terms
must be provided in advance by the ontology engineers. For the verbalisation we use an
approach similar to the one adopted by the Object Role Modelling framework (ORM, see[13;
19]).

Each class name in the ontology has associated a short noun phrase (usually one or two
words), which represents the term in a natural language fashion. For example, to the class
PStudentis associated “Postgraduate student” The user will see only the associatedsentence,
while PStudentis just used in the internal ontology representation.

For (binary) associations the ontology engineer has to provide two different verbalisations
for the two directions. For example, let assume that the ontology states that theassociation
occ room links the two classesPStudentand Room. Then the engineer associates to the
association the verbalisation “occupies” for the direction fromPStudentto Room, and the
verbalisation “is occupied by” for the other direction.

Attributes need one direction only, since they are never used from the point of view of the
basic data type. In this case, the engineer is only required to provide the attribute verbalisation
from the point of view of the class.

4 Discussion

The work proposed in this paper deals with a relatively new problem, namely providing the
user with a visual interface to query heterogeneous data sources through an integrated ontol-
ogy (that is, a set of constraints), and a specific literature does not exist yet. By looking at
the extensive survey on Visual Query System (VQS) presented in[10] it easy to see that only
little work has been done in the specific context we are dealing with. Some preliminary work
was done by one research group[4; 11; 6; 5]. Similar work from the point of view of the
visual interface paradigm, but without the well founded support of a logic-based semantics
was carried out in the context of the Tambis project[18; 2]. Also [3] contains some interesting
approach from the point of view of the visual interface, but again the system has a different
background semantics.

127

In fact, only recently research has started to have a serious interest in query processing and
information access supported by ontologies. Recent work has come up withproper seman-
tics and with advanced reasoning techniques for query evaluation and rewriting using views
under the constraints given by the ontology – also called view-based query processing[20;
7]. This means that the notion of accessing information through the navigation ofan ontology
modelling the information domain has its formal foundations.

This paper has presented the first well-founded intelligent user interface for query for-
mulation support in the context of ontology-based query processing. This paper hopefully
proved that our work has been done in a rigorous way both at the level of interface design and
at the level of ontology-based support with latest generation logic-based ontology languages
such as description logics, DAML+OIL and OWL. However, there are open problems and
refinements which have still to be considered in our future work.

The system uses the verbalisations described in Section 3.4 to transform theconjunctive
query into a natural language expression closer to the user understanding. In the course of
the SEWASIE project some effort will be dedicated to explore semi-automatic techniques to
rephrase the expressions in more succinct ways without loosing their semantic structure.

Another important aspect to be worked out is the understanding of the effective method-
ologies for query formulation in the framework of this tool, a task that needs astrong coop-
eration of the users in its validation. This will go in parallel with the interface user evalua-
tion, which is just starting at the time of writing this paper.5 The other crucial aspect is the
efficiency and the scalability of the ontology reasoning for queries. We are currently experi-
menting the tool with various ontologies in order to identify possible bottlenecks.

We would like to thank Tiziana Catarci, Tania Di Mascio, and Giuseppe Santucci, for their
valuable suggestions and discussions on the user interface. Moreover, the support of Ralf
Möller and Volker Haarslev with the Racer reasoner has been essential for the development
of our system prototype.

References

[1] Sean Bechhofer, Ralf Mller, and Peter Crowther. The dig description logic interface. InProceed-
ings of the 2003 International Workshop on Description Logics (DL2003), volume 81 ofCEUR
Workshop Proceedings, 2003.

[2] Sean Bechhofer, Robert Stevens, Gary Ng, Alex Jacoby, and Carole A. Goble. Guiding the user:
An ontology driven interface. InUIDIS 1999, pages 158–161, 1999.

[3] Francesca Benzi, Dario Maio, and Stefano Rizzi. VISIONARY:a viewpoint-based visual lan-
guage for querying relational databases.J. Vis. Lang. Comput., 10(2):117–145, 1999.

[4] P. Bresciani and E. Franconi. Description logics for information access. InProceedings of the
AI*IA 1996 Workshop on Access, Extraction and Integration of Knowledge, Napoli, September
1996.

[5] Paolo Bresciani and Paolo Fontana. A knowledge-based querysystem for biological databases.
In Proceedings of FQAS 2002, volume 2522 ofLecture Notes in Computer Science, pages 86–89.
Springer Verlag, 2002.

5An on-line prototypical version of the query building tool, with a toy ontology without lexicalisation, is
available at the URLhttp://dev.eurac.edu:8090/sewasie/.

128

[6] Paolo Bresciani, Michele Nori, and Nicola Pedot. A knowledge based paradigm for querying
databases. InDatabase and Expert Systems Application, volume 1873 ofLecture Notes in Com-
puter Science, pages 794–804. Springer Verlag, 2000.

[7] D. Calvanese, G. De Giacomo, and M. Lenzerini. Answering queries using views over descrip-
tion logics knowledge bases. InProc. of the 16th Nat. Conf. on Artificial Intelligence (AAAI
2000), 2000.

[8] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. On the decidability of query
containment under constraints. InProc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on
Principles of Database Systems (PODS’98), pages 149–158, 1998.

[9] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini,Daniele Nardi, and Riccardo
Rosati. Information integration: Conceptual modeling andreasoning support. InProc. of the
6th Int. Conf. on Cooperative Information Systems (CoopIS’98), pages 280–291, 1998.

[10] Tiziana Catarci, Maria Francesca Costabile, Stefano Levialdi, and Carlo Batini. Visual query
systems for databases: A survey.Journal of Visual Languages and Computing, 8(2):215–260,
1997.

[11] Enrico Franconi. Knowledge representation meets digital libraries. InProc. of the 1st DELOS
(Network of Excellence on Digital Libraries) workshop on “Information Seeking, Searching and
Querying in Digital Libraries”, 2000.

[12] Volker Haarslev and Ralf M̈oller. Racer system description. InAutomated Reasoning: First In-
ternational Joint Conference, IJCAR 2001, volume 2083 ofLecture Notes in Computer Science.
Springer-Verlag Heidelberg, 2001.

[13] Terry A. Halpin. Augmenting UML with fact orientation. InHICSS, 2001.

[14] Ian Horrocks and Peter F. Patel-Schneider. Reducing OWL entailment to description logic sat-
isfiability. In Dieter Fensel, Katia Sycara, and John Mylopoulos, editors,Proc. of the 2003 In-
ternational Semantic Web Conference (ISWC 2003), number 2870 in Lecture Notes in Computer
Science, pages 17–29. Springer, 2003.

[15] Ian Horrocks and Ulrike Sattler. Optimised reasoning forSHIQ. In Proc. of the 15th Eur. Conf.
on Artificial Intelligence (ECAI 2002), pages 277–281, July 2002.

[16] Ian Horrocks, Ulrike Sattler, Sergio Tessaris, and StephanTobies. How to decide query con-
tainment under constraints using a description logic. InLogic for Programming and Automated
Reasoning (LPAR 2000), volume 1955 ofLecture Notes in Computer Science, pages 326–343.
Springer, 2000.

[17] Ian Horrocks and Sergio Tessaris. Querying the semantic web: a formal approach. In Ian Hor-
rocks and James Hendler, editors,Proc. of the 2002 International Semantic Web Conference
(ISWC 2002), number 2342 in Lecture Notes in Computer Science. Springer-Verlag, 2002.

[18] Norman Murray, Carole Goble, and Norman Paton. A framework for describing visual interfaces
to databases.J. Vis. Lang. Comput., 9(4):429–456, 1998.

[19] http://www.orm.net, 2003.

[20] J. D. Ullman. Information integration using logical views.In Proc. of the 6th Int. Conf on
Database Theory (ICDT’97), pages 19–40, 1997.

129

From SHOQ(D) Toward E-connections

Bernardo Cuenca Grau
Maryland Information and Network Dynamics Laboratory

University of Maryland, College Park, USA
bernardo@mindlab.umd.edu

Bijan Parsia
Maryland Information and Network Dynamics Laboratory

University of Maryland, College Park, USA
bparsia@isr.umd.edu

Abstract

In this paper, we propose a tableau-based technique for reasoning with various
distributed DL knowledge bases. This technique can be applied both to DDLs
and to new and relevant sublanguages of basic E-connections. Its main advantage
is that it is straightforward to implement by extending the existing tableau-based
algorithms, as witnessed by our implementation in the Pellet OWL reasoner.

1 Introduction

Combining DL ontologies in a controlled and scalable way is crucial for the success of
the Semantic Web. Recently, several proposals, like the Distributed Description Logics
(DDL) [1] approach and the E-connections framework [3] [4], have been presented as
possible solutions for these and other related problems. In this paper, we define a new
sub-formalism of basic E-connections which is strictly more expressive than DDLs and
that seems very straightforward to implement on existing tableau-based reasoners.

2 Perspectival E-connections

Perspectival E-connections (PECs) is an expressive sub-formalism of basic E-connections
which constraints the use of link properties in the component logics. For the simple
case of two component logics, the set of links is partitioned into two disjoint sets
ε = ε1 ∪ ε2, where ε1 = {Ej |j ∈ J}, ε2 = {Fk|k ∈ K}. The component logics are
then enriched with the operators < Ej >1, < Fk >2. PECs are strictly less expressive
than basic E-connections because the use of the operators < Ej >2 and < Fk >1 is
explicitly disallowed in the syntax and hence the links cannot be “navigated” in both
directions. PECs are still strictly more expressive than DDLs

130

3 Reasoning technique

We have developed a tableaux-based reasoning technique for determining the satisfi-
ability of concept terms in a certain PEC, whose component languages are DLs. The
algorithm uses an instance of each tableaux-based decision procedure for the compo-
nent DLs. In order to deal correctly with the new operators in the enriched language
we need to define two new rules to each of the component decision procedures. These
rules are basically analogous to the → ∃ and → ∀ rules in an ordinary tableau-based
algorithm. For ensuring termination, a new blocking condition has to be defined

One important feature of this technique is that the decision procedures for the
component logics are treated as black boxes in quite a similar way in which a DL
reasoner considers a type checker as a black box when a DL is coupled to a conforming
type system [2]. This shows that a slight modification of existing DL reasoners suffices
for implementing the algorithm, as witnessed by our implementation in the Pellet
OWL reasoner.

However, this technique cannot be straightforwardly extended to basic E-connections.
Intuitively, dealing with a link and its inverse breaks the black box condition and makes
the algorithm unsound. Nominals also cause unsoundness if the algorithm is naively
extended to PECs whose component logics contain nominals.

Finally, we have shown that this technique yields to a sound and complete algo-
rithm for checking the satisfiability of concepts in a PEC, whose component languages
are the SHIF DL or any of its sub-languages. Hence, we show that this technique can
be used for combining OWL-Lite ontologies in the Semantic Web using the PEC
formalism.

Future work includes the development of reasoning techniques for handling nomi-
nals in the combination (and hence OWL-DL ontologies), ABoxes, and also to explore
the transition from PECs to full E-connections. We are also looking into integrating
support for multiple ontologies in the SWOOPed ontology editor in order to make
these formalisms as usable and intuitive as possible for modelers, which is crucial for
successfully bringing them to the Semantic Web.

References

[1] A. Borgida and L. Serafini. Distributed description logics: Assimilating informa-
tion from peer sources. Journal of Data Semantics, 1:153-184, 2003.

[2] I. Horrocks and U. Sattler. Ontology reasoning in the shoq(d) description logic.
In B. Nebel, editor, Proc. of the 17th Int. Joint Conf. on Artificial Intelligence
(IJCAI 2001), pages 199–204. Morgan Kaufmann, 2001.

[3] O. Kutz, C. Lutz, F. Wolter, and M. Zakharyaschev. E-connections of abstract
description systems. Artificial Intelligence, 2003. To appear.

[4] O. Kutz, C. Lutz, F. Wolter, and M. Zakharyaschev. E-connections of description
logics. In Proceedings of the 2003 International Workshop on Description Logics
(DL2003), CEUR-WS, 2003.

131

Specifying the disjoint nature of object properties in DL

Cartik R. Kothari and David J. Russomanno
Department of Electrical and Computer Engineering

The University of Memphis, Memphis, TN 38152 USA
rkothari@memphis.edu, d-russomanno@memphis.edu

Abstract

This paper proposes constructs that can be used to declaratively specify the
disjoint nature of object properties or roles. These constructs may be a useful
extension to the Description Logic system that is the basis of OWL.

1 Introduction

The ability to specify disjoint relations has several applications in database and knowledge
based systems. This paper introduces a set of syntactic constructs that can be used to specify
the disjoint nature of roles in Description Logic (DL) [1] systems. Wessel [2] presents another
study upon DL systems that specify the disjointness of roles; however, it did not specifically
investigate the disjoint nature of roles. Instead, role disjointness was used as a starting premise
to investigate the composition of roles in ALCRA DL, which was determined to be undecidable.

2 Specifying the disjoint nature of roles

The semantics of DL constructors is defined in terms of an interpretation I = (∆I, ⋅I) that consists
of a non-empty domain ∆I and an interpretation function ⋅I. The interpretation maps individual
names (e.g., x, y and z) into objects or individuals of the domain; and the role names (e.g., R1
and R2) into subsets of the Cartesian product of the domain (∆I X ∆I) as shown in (1) ~ (5).

xI ∈ ∆I (1)
yI ∈ ∆I (2)
zI ∈ ∆I (3)

R1I ⊆ ∆I x ∆I (4)
R2I ⊆ ∆I x ∆I (5)

Four types of role disjointness can now be distinguished as follows: 1) if an object appears as a
range element in role R1 then it cannot appear as a range element in R2; 2) if an object appears
as a domain element in role R1 then it cannot appear as a domain element in R2; 3) the
conjunction of the conditions in 1 and 2; and 4) two roles can have no instances in common.

For the scenario in which two disjoint roles cannot have instances that have a common range
object, the required semantics are shown in (6). A new construct (|r) is proposed to capture the
semantics of (6). The disjoint nature of R1 and R2 can now be specified as in (7). This
constraint would not allow the same object to appear as the range in instances of both roles.

∀x∀y∀z (xI, yI) ∈ R1I ⇒ (zI, yI) ∉ R2I (6)
R1 |r R2 (7)

For the scenario in which two disjoint roles cannot have instances that have a common domain
object, the required semantics are shown in (8). A new construct (|d) is proposed to capture the
semantics of (8). The disjoint nature of R1 and R2 can now be specified as in (9). This

132

constraint does not permit the same object to appear as the domain in instances of both the roles
R1 and R2.

∀x∀y∀z (xI, yI) ∈ R1I ⇒ (xI, zI) ∉ R2I (8)
R1 |d R2 (9)

The semantics of two disjoint roles such that no domain element in R1 can appear as a domain
element in R2 and no range element in R1 can appear as a range element of R2 is shown in (10).
A new construct (|) is defined to capture the semantics of (10). The disjoint nature of R1 and R2
can now be specified as in (11).

∀x∀y∀z∀w (xI, yI) ∈ R1I ⇒ (xI, zI) ∉ R2I ∧ (wI, yI) ∉ R2I (10)
R1 | R2 (11)

Finally, each new construct (|r, |d, and |) expresses different semantics than rule (12), which
states that two roles can have no instances in common as captured in (13). Applying the
substitution {z/x} to (6) yields (12) as does applying the substitution {z/y} to (8). Rule (12) is a
factor of (10) when applying the substitution {z/y, w/x} to (10). However, it is not possible with
the semantics expressed in (12) alone to determine whether the two roles can share domain
objects, range objects, or neither as captured by the new constructs.

∀x∀y (xI, yI) ∈ R1I ⇒ (xI, yI) ∉ R2I (12)
R1I ∩ R2I = ⊥ (13)

3 Conclusions

A premise of this paper is that Semantic Web knowledge representation formalisms should
support the declarative representation of property disjointness. Four types of property
disjointness have been described in this paper. It should be noted that if a knowledge
engineering application required capturing the semantics provided by the constructs |r, |d, and |,
a workaround could be declaratively achieved, albeit requiring minor re-conceptualization, to
enforce the semantics. For example, to achieve |d, the domain of roles R1 and R2 would be
partitioned into two disjoint concepts and the disjoint nature of roles R1 and R2 would then be
implied if they were re-defined to use these disjoint concepts as their respective, restricted
domains. However, no such workaround appears to exist for expressing R1 ∩ R2 = ⊥ for roles
defined on the same domain and range, which suggests that a DisjointProperties(R1 … Rn)
construct may be useful in Description Logics based ontology languages such as OWL. Role
intersection constructs are provided by the ALB DL [3], which has been proved to be decidable.
The analysis of the computational properties of the constructs proposed herein is the subject of
ongoing investigation. The investigation will include decidability strategies discussed in [3] and
its relevance to the proposed constructs.

References

[1] D. Nardi and R. J. Brachman, “An Introduction to Description Logics,” In F. Baader et al.

(Eds.), The Description Logic Handbook, Cambridge University Press, 2003.
[2] M. Wessel, “Undecidability of ALCRA,” Technical Report No. FBI-HH-M-302/01, Computer

Science Department, University of Hamburg, Germany, 2001.
[3] U. Hustadt and R. Schmidt, “Issues of Decidability for Description Logics in the Framework

of Resolution,” In R. Caferra and G. Salzer (Eds.), Automated Deduction in Classical and
Non-Classical Logics, LNAI 1761, Springer, 2000, 192 – 206.

133

Towards Explaining Semantic Matching

Deborah L. McGuinness1 Pavel Shvaiko2 Fausto Giunchiglia2

Paulo Pinheiro da Silva1

1Stanford University, Stanford, USA
{dlm,pp}@ksl.stanford.edu.

2University of Trento, Povo, Trento, Italy
{pavel,fausto}@dit.unitn.it

Abstract
Interoperability among systems using different term vocabularies requires map-
pings between them. Matching applications generate these mappings. When the
matching process utilizes term meaning (instead of simply relying on syntax),
we refer to the process as semantic matching. If users are to use the results of
matching applications, they need information about the mappings. They need
access to the sources that were used to determine relations between terms and
potentially they need to understand how deductions are performed. In this paper,
we discuss our approach to explaining semantic matching. Our initial work uses
a satisfiability-based approach to determine subsumption and semantic matches
and uses the Inference Web and its OWL encoding of the proof markup language
to explain the mappings.

1 Semantic Matching

In this paper, we discuss semantic matching as introduced in [3], and implemented
within the S-Match system [4]. We view information sources to be graph-like struc-
tures containing terms and their inter-relationships. The semantic matching distin-
guishes the following relations between terms: equality (=, mutual subsumption);
more general (�, subsumer); less general (�, subsumee); mismatch (⊥, disjoint);
overlapping (�, there may exist an instance of both classes). The semantic relations
are calculated by mapping meaning which is codified in the element descriptions and
the graphs in two steps: obtaining a representation of the node meaning and by de-
termining the meaning of the node position in the graph. In order to obtain some
information about the node labels, our initial implementation accesses WordNet. Ex-
tensions to the work would also take other DL representations of the classes as input
such as full OWL ontologies. Semantic matching translates the matching problem into
a validity check of the appropriate propositional formula. The algorithm then checks
for sentence validity by proving that its negation is unsatisfiable. Our implementation
uses the JSAT SAT reasoner.

2 Explaining Matching using Inference Web

Inference Web (IW) [6] enables applications to generate portable and distributed ex-
planations for answers. In order to explain semantic matching and thereby increase

134

the trust level of its users, we need to provide information about background theories
(initially Wordnet), the JSAT manipulations of sentences, and the semantic matching
translations of graphs into propositional sentences. The IW proof and explanation
documents are represented in PML [1] and are composed of PML node sets. This rep-
resentation could be viewed as the web-ized distributed OWL version of one author’s
previous work on explaining description logics [7].

Users may need different types of explanations. For example, if negotiating agents
trust each other’s information sources, explanations should focus on the S-Match ma-
nipulations. If on the other hand, the sources may be suspect, explanations should
focus on meta information about sources. If a user wants an explanation of the in-
ference engine(s) embedded in a matching system, a more complex explanations may
be required, see [9] for details. Our current version of S-Match uses JSAT, and in
particular the Davis-Putnam-Longemann-Loveland (DPLL) procedure [2].

3 Discussion

While there are a number of other efforts in semi-automated schema/ontology match-
ing [8], we are not aware that any provide explanations. By extending S-Match to
use the IW infrastructure, we demonstrate our approach for explaining matching sys-
tems that use background ontological information and reasoning engines1. The DPLL
procedure explained in our approach, while unoptimized, includes the essence of the
state of the art SAT engines. Thus, one could consider using another optimized SAT
reasoner that may be chosen for particular matching problems and use the approach
discussed for generating explanations. Future work includes using more expressive
background ontologies and other SAT engines as well as other non-SAT DPLL-based
inference engines, e.g., DLP, FaCT [5].
References
[1] P. Pinheiro da Silva, D. L. McGuinness, and R. Fikes. A proof markup language for

semantic web services. TR KSL-04-01, Stanford University, 2004.

[2] M. Davis and H. Putnam. A computing procedure for quantification theory. In Journal
of the ACM, number 7, pages 201–215, 1960.

[3] F. Giunchiglia and P. Shvaiko. Semantic matching. In The Knowledge Engineering Review
journal, number 18(3), 2004. Also TR DIT-03-013.

[4] F. Giunchiglia, P. Shvaiko, and M. Yatskevich. S-match: an algorithm and an implemen-
tation of semantic matching. In Proceedings of ESWS’ 04, 2004. Also TR DIT-04-015.

[5] I. Horrocks and P. F. Patel-Schneider. Fact and dlp. In Automated Reasoning with Analytic
Tableaux and Related Methods: Tableaux’98, pages 27–30, 1998.

[6] D. L. McGuinness and P. Pinheiro da Silva. Infrastructure for web explanations. In
Proceedings of ISWC’03, pages 113–129, 2003.

[7] D.L. McGuinness. Explaining reasoning in description logics. PhD thesis, Rutgers Uni-
versity, 1996.

[8] E. Rahm and P. Bernstein. A survey of approaches to automatic schema matching. In
VLDB Journal, number 10(4), pages 334–350, 2001.

[9] P. Shvaiko, F. Giunchiglia, P. Pinheiro da Silva, and D. L. McGuinness. Web explanations
for semantic heterogeneity discovery. TR KSL-04-02, Stanford University, 2004.

1Long version of this paper is available at http://www.dit.unitn.it/research/publications/techRep?id=549
as TR DIT-04-019 and at http://www.ksl.stanford.edu/people/dlm/papers/dl04long-abstract.html

135

Extending DL Reasoning Support for

the OWL Datatyping

(or “Why Datatype Groups?”)

Jeff Z. Pan and Ian Horrocks
Department of Computer Science,

University of Manchester, UK M13 9PL
{last-name}@cs.man.ac.uk

The OWL [2] datatype formalism (or simply OWL datatyping) presents some new
requirements for DL reasoning services, in terms of semantics (to allow the use of so-
called ‘un-supported’ datatypes), expressive power (to support enumerated datatypes)
and datatype construction mechanism (both datatypes and datatype expressions). On
the other hand, OWL datatyping is expected to be extended to include more expressive
power. E.g., OWL datatyping does not provide a general framework for user-defined
datatypes, such as XML Schema derived datatypes, nor does it support n-ary datatype
predicates (such as the binary predicate > for integers), not to mention user-defined
datatype predicates (such as the binary predicate > for non-negative integers). In this
poster, we explain why it is necessary to extend the existing datatype approaches to
the datatype group approach, in order to meet the above new requirements.

It was Baader and Hanschke [1] who first presented a rigorous treatment of datatype
predicates (or simply predicates). In their approach, a concrete domain [1, 4] is com-
posed of a set of datatype values (such as integers) and a set of n-ary predicates
(such as ‘<’) defined over these values with obvious (fixed) extensions. Horrocks
and Sattler [3] proposed the so called ‘type system approach’, which can be seen as a
simplified version of the concrete domain approach, where the datatype domain (of a
datatype interpretation) is regarded as a universal concrete domain and datatypes are
treated as unary predicates in the universal concrete domain. In short, in the above
two approaches, datatypes are nothing but unary predicates.

In OWL datatyping, however, people take another view. A Datatype d distin-
guishes from a predicate in that it is characterised not only by the value spaces V (d),
but also a lexical space, L(d), which is a set of Unicode strings, and a total mapping
L2V (d) from the lexical space to the value space. E.g., boolean is a datatype with value
space {true, false}, lexical space {T,F,1,0} and lexical-to-value mapping {T 7→ true,
F7→ false, 17→ true, 07→ false}. Data values can be represented by typed literals or
plain literals, where typed literals are combinations of string and datatype URIs, while
plain literals are simply strings, with optional language tag. E.g., “1”ˆˆxsd:boolean is
a typed literal, while “1” is a plain literal. Therefore, when we extend OWL datatyp-
ing to support predicates, we should not simply replace datatypes with predicates,

136

but let them co-exist in a proper framework.
Secondly, an OWL datatype interpretation is relativised to a datatype map, which

is a partial mapping from datatype URIs to datatypes; e.g., Md1 = {〈xsd:string, string〉,
〈xsd:integer, integer〉}. Unsupported datatypes, which are not included in a given
datatype map, are interpreted as any subsets of the datatype domain. Therefore, the
datatype domain (of a datatype interpretation) is expected to be unfixed, which is
different from the (datatype) domain in existing approaches.

Thirdly, OWL advocates a more user-friendly style of datatyping than what the
existing approaches provide. OWL provides a kind of datatype expressions, called
enumerated datatypes, of the form oneOf(l1, . . . , ln), where l1, . . . , ln are literals, which
is interpreted as the union of all the interpretation of li (1 ≤ i ≤ n). It is expected that
it supports more expressive datatype expressions, to represent user-defined datatypes
and user-defined predicates. Furthermore, it is desirable that the interpretation of
negated predicate is relativised to the value space of the related datatypes; e.g., > 5
is interpreted as V (integer)\ >D

5 but not ∆D\ >D
5 . Therefore, the interpretation of

> 5 will not be affected by the existence of other datatypes in a datatype map.
We extend OWL datatyping with datatype predicates by a revised definition of

datatype groups, which was first presented in [5] and was meant to be an exten-
sion of DAML+OIL datatyping. Unlike the original definition, the revised definition
of datatype groups is completely compatible with OWL datatyping. We show that
the predicate conjunctions over datatype groups can be easily reduced to those over
concrete domains. We then propose OWL-E, a language extending OWL DL with
datatype expression axioms, as well as the datatype group-based class constructors
to allow the use of datatype expressions in class restrictions. The novelty of OWL-E
is that it enhances OWL DL with much more datatype expressiveness and it is still
decidable. Of course, we will need a full paper to present details of the above.

References

[1] Franz Baader and Philipp Hanschke. A Schema for Integrating Concrete Domains
into Concept Languages. In Proc. of the 12th Int. Joint Conf. on Artificial Intel-
ligence (IJCAI’91), pages 452–457, 1991.

[2] Sean Bechhofer, Frank van Harmelen, James Hendler, Ian Horrocks, Deborah L.
McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein eds. OWL Web
Ontology Language Reference. URL http://www.w3.org/TR/owl-ref/, Feb 2004.

[3] Ian Horrocks and Ulrike Sattler. Ontology reasoning in the SHOQ(D) description
logic. In Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001),
pages 199–204, 2001.

[4] C. Lutz. The Complexity of Reasoning with Concrete Domains. PhD thesis, Teach-
ing and Research Area for Theoretical Computer Science, RWTH Aachen, 2001.

[5] Jeff Z. Pan and Ian Horrocks. Web Ontology Reasoning with Datatype Groups.
In Proc. of the 2nd International Semantic Web Conference (ISWC2003), 2003.

137

Using Non-Primitive Concept Definitions for Improving

DL-based Knowledge Bases

Ronald Cornet, Ameen Abu-Hanna
Department of Medical Informatics

Academic Medical Centre, Amsterdam, The Netherlands
{r.cornet,a.abu-hanna}@amc.uva.nl

April 29, 2004

Abstract

Medical Terminological Knowledge Bases contain a large number of primi-
tive concept definitions. This is due to the large number of natural kinds that
are represented, and due to the limits of expressiveness of the Description Logic
used. The utility of classification is reduced by these primitive definitions, hinder-
ing the knowledge modeling process. To better exploit the classification utility,
we devise a method in which definitions are assumed to be non-primitive in the
modeling process. This method aims at the detection of: duplicate concept defi-
nitions, underspecification, and actual limits of a DL-based representation. This
provides the following advantages: duplicate definitions can be found, the limits
of expressiveness of the logic can be made more clearly, and tacit knowledge is
identified which can be expressed by defining additional concept properties. Two
case studies demonstrate the feasibility of this approach.

1 Introduction

Medical terminological knowledge bases (TKBs) represent knowledge about concepts,
relationships and terms, in the domain of medicine. For example, a concept may be
defined as “inflammation of the membranes of the brain or spinal cord”, and described
by the synonymous terms “cerebrospinal meningitis” and “meningitis”. TKBs provide
an invaluable source of structured medical knowledge, serving a range of purposes.

Advantages of representing this knowledge using Description Logics (DL) include
the explicit semantics of the represented knowledge and the possibility to perform
automatic reasoning based on this knowledge. The prominent reasoning tasks are
satisfiability and subsumption. To infer subsumption, concept definitions with nec-
essary and sufficient conditions are required. We will refer to such definitions as
non-primitive definitions (sometimes referred to by others as “equalities”), whereas a
primitive concept definition (sometimes referred to by others as “inclusion”) specifies
only necessary conditions. It is however in general not possible to define all concepts
in a non-primitive manner. This is well described in [5]: “There are a large number
of concepts that are unclassifiable by virtue of being natural kinds. The problem

138

is exacerbated by a large number of “fake” primitives, concepts which are primitive
only because their definitions cannot be expressed in the restricted language. Since
these reduce the utility of classification, using classification’s efficiency as the design
criterion misplaces emphasis.”

Hence, there are various impediments to fully exploit the reasoning strengths that
Description Logics offer. This means that in practice, classification may be overlooked
that could have been inferred if concept definitions would have been non-primitive.
This paper describes the possibilities of using non-primitive concept definitions in the
process of knowledge modeling. We describe a method, developed to increase the util-
ity of classification, especially during the knowledge modeling process. This method
aims at utilizing DL inference services for the detection of: duplicate concept defini-
tions, underspecification, and actual limits of a DL-based representation. Duplicate
definitions should generally not occur in a knowledge base, and underspecification
may point at tacit (i.e. not represented by a concept definition) knowledge. Mini-
mizing tacit knowledge will increase the possibilities for distinguishing concepts based
on their definitions, and may improve the model by reducing the number of primitive
definitions.

We describe the knowledge modeling process in Section 2 and then explain our
method in detail in Section 3. Results of the application of the methods in a case
study are presented in Section 4 and discussed in section 5. Section 6 concludes this
paper.

2 The Knowledge Modeling Process

Medical TKBs have grown in size and complexity. This growth has been stimulated
by the availability of computers and the potential of using medical TKBs for a wide
range of purposes. The complexity has increased due to the possibility of using repre-
sentation formalisms that allow for more elaborate specification of concept definitions.
Medical TKBs evolved from simple taxonomies to semantic networks with (informal
and formal) concept definitions. An example of such a system is SNOMED CT1, a
terminological system consisting of approximately 350,000 concepts. Maintenance of
systems this large needs to be supported as much as possible in order to reduce mod-
eling errors. To this end we have started a project aiming at assessing and improving
the quality of Medical TKBs. Previously, we have discussed the possibilities of detect-
ing inconsistencies in concept definitions [3], and others have focused on this issue as
well (e.g. [7]). However, (logical) inconsistencies are not the only modeling error that
can occur. Generally, a good terminological system should fulfill a number of desider-
ata [1]. A formal, concept-oriented approach to modeling terminological knowledge
can largely contribute to fulfill a number of these desiderata, for example providing
formal definitions and multiple consistent views. However, representation alone is not
sufficient. To fully exploit the advantages of formally represented knowledge, services,
such as inference services, are indispensible. Standard Description Logic inference
services (satisfiability and subsumption testing) provide a solid basis for supporting

1http://www.snomed.org/

139

http://www.snomed.org/�

1. InfectiousDisease ≡ Disease u ∃ involves Infection
2. LiverDisease ≡ Disease u ∃ location Liver
3. ViralHepatitis ≡ InfectiousDisease u ∃ location Liver u ∃ cause Virus
4. DuplicateViralHepatitis ≡ LiverDisease u ∃ involves Infection u ∃ cause Virus
5. PrimViralHepatitis v InfectiousDisease u ∃ location Liver
6. PrimDuplicateViralHepatitis v LiverDisease u ∃ involves Infection
7. ViralHepatitisTypeA ≡ InfectiousDisease u ∃ cause HepatitisAVirus u ∃ location
Liver

Figure 1: Examples of primitive and non-primitive concept definitions

knowledge modeling, but do not support all of the modeling process. For example,
these services do not by default contribute to ensuring definition of non-redundant, un-
ambiguous definitions that explicitly and maximally capture the semantics. However,
although this is not supported directly, it is possible to utilize DL inference services
for tasks such as ensuring definition of non-redundant, unambiguous definitions.

In the next section we focus on methods that utilize DL inference services for
detection of concepts that are inadvertently defined more than once, and concepts
that may not be exhaustively defined. With exhaustive definitions we mean definitions
that maximally capture the semantics of the defined concept. Duplicate definitions
should be prevented, as they introduce redundancy into the knowledge base. The
motivation for focusing on detection (and reduction) of non-exhaustive definitions,
is that non-exhaustively defined concepts may point at tacit (i.e. not represented
by a concept definition) knowledge. Minimizing tacit knowledge will increase the
possibilities for distinguishing concepts based on their definitions, and may improve
the model by reducing the number of primitive definitions, supporting among others
more elaborate classification.

3 Use of non-primitive Definitions

An essential feature of Description Logics is the distinction between definitions that
state only necessary conditions (which we refer to as primitive definitions) and defini-
tions that state necessary and sufficient conditions (non-primitive definitions). Non-
primitive definitions facilitate the inference of classification (subsumption) of concepts.
These definitions also make it possible to detect equivalent concepts (which actually
boils down to mutual subsumption). For example, given the definitions 1 and 2 from
Figure 1, equivalence of the concepts ViralHepatitis and DuplicateViralHepatitis, de-
fined in 3 and 4, can be inferred. However, if these concept definitions would have
been primitive, as in definitions 5 and 6, equivalence would not have been detected,
and duplicate concepts would remain undetected. Furthermore, the concepts defined
in 5 and 6 contain tacit knowledge, as these definitions do not state the viral cause of
the disease.

As the domain of medicine consists of many natural kinds, for which no necessary
and sufficient conditions exist, many disease concepts in Medical TKBs can only be

140

defined in a primitive manner. As a result of this, much of the inferential potential is
lost, as the example above demonstrates. Another example would be missed classifica-
tion. For example, given definition 7, ViralHepatitisTypeA would be rightly classified
as a ViralHepatitis, but not as a PrimViralHepatitis, although it should be.

Although it is inevitable to have many primitive definitions in a Medical TKB, it
makes sense to use the inferential powers of DL reasoners in the modeling process by
stating, as an assumption, non-primitivity of all relevant concept definitions.

The first step is to determine which concepts in a knowledge base might have
duplicate definitions or contain tacit knowledge that needs to be made explicit. Gen-
erally, medical TKBs consist of various “modules” that are used to define the concepts
in the primary category of interest. Such TKBs can be regarded as a collection of
subtrees, where the roots of these subtrees can be for example Diseases, Anatomical
Components and Micro-Organisms. The Micro-Organisms subtree is used in the defini-
tions of etiology of diseases, as is also shown in definition 7 in Figure 1. As a TKB
is generally focused on one subtree, in this case diseases, it may be expected that
the other modules are far from exhaustively defined. This will result in many equiva-
lent concepts, not only in the respective subtrees, but also in the Diseases subtree, as
concepts in this subtree are defined using concepts that were considered equivalent.
There are two options in such a situation. The first option is to initially focus on the
respective subtrees (such as Micro-Organisms), in order to find duplicates and make
tacit knowledge explicit. The second option is to leave these subtrees out of account
(i.e. treat the concepts as base symbols), and focus on the subtree of primary interest,
which contains disease concepts in this example.

The next step is to find all concepts that have a definition of the form: B v
A, where A is a concept name. There is no use in changing these definitions to non-
primitive definitions, as this will provide a trivial equivalence (B ≡ A). These concepts
may be expected not to represent duplicate definitions (as they have been explicitly
defined), but B either represents a natural kind or is underspecified. As concepts of
this form are easily recognizable, they can be studied separately. The last step is to
redefine all relevant concepts (e.g. disease concepts) that are not of the form B v A
as non-primitive.

When the TKB has been altered according to the steps mentioned above, it can
be classified with a DL reasoner. This classification will result in clusters of equivalent
concepts. These clusters then have to be analyzed by hand. This analysis will provide
two types of outcomes. First, a set of concepts that form duplicate definitions, which
were previously undetected due to their primitive definitions. Second, a set of concepts
for which the differences among them do exist, but are not represented. In the latter
case, which we will refer to as underspecification, the knowledge base can potentially
be improved by making explicit the implicit knowledge that distinguishes one concept
from another. If this distinction can not be made explicit, this can either be caused
by the lack of characteristic features of the concept (i.e. it is a natural kind), or by
limitations of the used DL. We have previously performed a study on the use of terms
indicating the need for certain constructors [2]. The above-mentioned method will
contribute to gaining insight into the need for specific constructors by making the
needs more precise and related to a specific TKB.

141

Cachexia ≡ Medical Diagnosis u ∃ involved system Metabolic system
Starvation ≡ Medical Diagnosis u ∃ involved system Metabolic system
Hypermagnesaemia ≡ Metabolic Disorder u ∃ involved component Body fluids
Hypomagnesaemia ≡ Metabolic Disorder u ∃ involved component Body fluids
Hypercalcaemia ≡ Metabolic Disorder u ∃ involved component Body fluids
Hypocalcaemia ≡ Metabolic Disorder u ∃ involved component Body fluids

Figure 2: Examples of equivalent concept definitions. Six concepts are defined, but
classification results in two different concepts: Cachexia and Starvation as one concept,
and Hypermagnesaemia, Hypomagnesaemia, Hypercalcaemia, and Hypocalcaemia as
another concept

4 Results of two Case Studies

The approach is applied to a medical TKB on Reasons for Admission in Intensive care
(DICE) [4] and on the Foundational Model of Anatomy (FMA)2. The DICE knowl-
edge base, which is under development at the institution of the authors, contains about
2500 concepts, of which 1456 Reasons for Admission. Reasons for Admission comprise
both diseases and procedures that require intensive care and monitoring of patients.
We have applied the above-mentioned methods to detect duplicate definitions in the
system, and to determine possibilities to improve modeling by reducing underspeci-
fications. As we are aware of underspecification in domains other than Reasons for
Admission (such as anatomy, and etiology), we have limited our evaluation to the
Reasons for Admission taxonomy.

The case study on FMA has been performed mainly to determine to what extent
the findings in DICE were knowledge-base-specific. FMA, developed by the Univer-
sity of Washington, provides about 69000 concept definitions, describing anatomical
structures, shapes, and other entities, such as coordinates (left, right, etc.).

4.1 Results of the Case Study on DICE

The DICE knowledge base, which was implemented as a simple TBox with an empty
ABox, was represented using Knowledge Representation System Specification (KRSS)
syntax [6]. This made it straightforward to discern primitive definitions from non-
primitive ones, simply by performing a text-based search in the KRSS file. Replace-
ment of primitive definitions by non-primitive definitions for appropriate concepts out
of 1456 Reasons for Admission, resulted in 108 (7%) concept definitions that were
primitive, and 1348 (93%) concept definitions that were non-primitive. As was ex-
plained in Section 3, all primitive definitions were of the form B v A, for example:
Eclampsia v Hypertension induced by Pregnancy.
RACER3 was used to classify the resulting TBox. This resulted in 24 unsatisfiable

concepts, which we will discuss further in Section 5. Of the remaining 1432 satisfiable
concept names (in the Reason for Admission module), 1160 (81%) had a unique defini-

2http://sig.biostr.washington.edu/projects/fm/
3http://www.sts.tu-harburg.de/~r.f.moeller/racer/

142

http://sig.biostr.washington.edu/projects/fm/�
http://www.sts.tu-harburg.de/~r.f.moeller/racer/�

Table 1: Results of detection of equivalently defined concepts in the Reason of Admis-
sion module of DICE. The first column shows the size of clusters, the second column
the number of clusters with the specified size, the last column shows the total number
of concepts in the clusters of the specified size (i.e. the product of cluster size and
number of clusters).

equivalent definitions # clusters # concepts in clusters

2 60 120
3 23 69
4 8 32
6 2 12
7 4 28
11 1 11

98 272

tion, and 272 concepts (19%) were equivalent to one or more other concepts. As shown
in Figure 2, classification will render multiple concepts with equivalent definitions as
one concept. The 272 concepts could be traced back to 98 definitions that were used
twice or more, as is shown in Table 1. There were 60 tuples of equivalent definitions
(such as Cachexia and Starvation), and 1 cluster with 11 concepts. This last cluster
contained concepts as diverse as Water Depletion and Familial Periodic Paralysis.

4.2 Result of the Case Study on FMA

The FMA knowledge base, which is implemented as a frame-based model in Protege4,
has been migrated to DL, where specified slot-fillers in the frame-based representation
were interpreted as existentially quantified roles. This simple TBox, with an empty
ABox, was represented using KRSS syntax. Replacement of primitive definitions by
non-primitive definitions for appropriate concepts, resulted in a DL-based represen-
tation of all of FMA that contained about 50% primitive and 50% non-primitive
concept definitions. We were not able to classify the full TBox with RACER, prob-
ably because of the use of roles and their inverses (e.g. part of and part), leading
to cyclic definitions. Because of this, we limited the case study to “Organs”. Of
the 3826 concept definitions, 2659 (69%) were non-primitive, and 1167 (31%) were
primitive. Classification with RACER resulted in 3323 concepts (87%) that had a
unique definition, and 503 concepts (13%) that were equivalent to one or more other
concepts. These 503 concepts could be traced back to 160 definitions that were used
twice or more, as is shown in Table 2. There were 106 tuples of equivalent defini-
tions, and 1 cluster with 54 equivalent concepts. This cluster contained a variety of
ligaments of joints, such as Interosseous ligament of carpometacarpal joint and Pal-
mar ligament of left fifth carpometacarpal joint.

4http://protege.stanford.edu/

143

http://protege.stanford.edu/�

Table 2: Results of detection of equivalently defined concepts in the Organ module of
FMA. The first column shows the size of clusters, the second column the number of
clusters with the specified size, the last column shows the total number of concepts
in the clusters of the specified size (i.e. the product of cluster size and number of
clusters).

equivalent definitions # clusters # concepts in clusters

2 106 212
3 33 99
4 10 40
5 4 20
6 3 18
7 1 7
≥8 3 107

160 503

4.3 Explanation of equivalence

As described in Section 3, there can be various explanations for concept equivalence.
Concepts can be actually duplicately defined, but can also be underspecified. This
underspecification is inevitable when concepts are natural kinds, or when concept
properties can not be expressed due to limits of the used DL. Avoidable underspeci-
fication indicates tacit knowledge, that could be made explicit by making definitions
more exhaustive. Although a full evaluation of equivalent definitions has to be per-
formed, a first study provides markable results.

In DICE, only 4 tuples of concept definitions were found that are potential dupli-
cates, but this needs to be discussed with domain experts. Examples of such concepts
are “reconstruction of artery” versus “arterial angioplasty” and “biliary drainage”
versus “drainage of biliary duct”.

Apart from these potentially true duplicates, all equivalent concepts differ in mean-
ing in a way that is not represented in the knowledge base. In DICE, a small number
of natural kinds was found, which were to a large extent syndromes and/or eponyms.
Examples of these are “Adult Respiratory Distress Syndrome”, “Wilms’ tumour”, and
“Wolff-Parkinson-White syndrome”.

Both DICE and FMA originally have a frame-based representation, and both have
been migrated to DL in order to be able to perform the experiments described. In
DICE, a small number of concepts was found that explicitly mentioned negation,
which can not be represented using frames. Examples of these are “bleeding” versus
“non-bleeding” and “obstructive” versus “non-obstructive”. This difference could be
explicitly represented using a DL that allows for negation.

The vast majority of concepts that were defined as primitive or that were non-
uniquely defined, demonstrated underspecification that seemed to be relatively easy
to avoid. This means that it is possible and appropriate to make definitions more

144

exhaustive by adding conditions.
Possible improvements to DICE can be determined by studying equivalent con-

cepts. For example, equivalence of hypocalcaemia and hypercalcaemia can be resolved
by making explicit the level involved: “below normal” resp “above normal”. Equiv-
alence of hypercalcaemia and hypermagnesaemia is explained by the lack of specifi-
cation of the involved chemical elements (calcium resp magnesium). These examples
demonstrate required extensions to the knowledge base, as chemical elements and lev-
els are currently not defined in the knowledge base. There were however also many
concepts that can be refined using concept and roles that are already available in
the knowledge base. For example “Meningococcal meningitis” was defined as a “Bac-
terial meningitis”, without mention of a relation with a concept “Meningococcus”
through an “etiology” role. Hence, making such a definition more exhaustive is not
only straightforward, it is even required, if one wants to classify meningococcal menin-
gitis as a disease that is caused by meningococcus. Making concept definitions more
exhaustive using readily available concepts and roles, also seemed possible in FMA.
For example, “Synovial tendon sheath of flexor hallucis longus” and “Synovial tendon
sheath of tibialis anterior”, can be distinguished by explicitly relating them to “flexor
hallucis longus”, and “tibialis anterior”, respectively.

5 Discussions

The two case studies demonstrate the feasibility and usability of our approach. In
order to assess the overall applicability of the approach, it is useful to look further
into the peculiarities of the knowledge bases used in the case studies. We will discuss
these below. Thereafter, we will shortly discuss an alternative approach that could be
used instead of our method, namely structural subsumption.

5.1 Modeling Issues

The knowledge bases that have been studied exhibit a number of properties that
render them suitable for the method described in this paper. Both DICE and FMA
are represented as simple TBoxes. This implies that no atomic concept occurs more
than once as left-hand side, and the left-hand side of all axioms are atomic concepts
(so no arbitrary concept expressions are allowed on the left-hand side). Moreover,
the DICE TBox is acyclic, meaning that no concept name is defined with reference
to itself (such as for example: Human ≡ Animal u ∀ hasParent Human). The FMA
TBox contains cycles, caused by the use of roles and their inverses (e.g. part of and
part). The similarity and simplicity of both knowledge bases can be explained by the
fact that the DL-based representations are the result of a migration process from a
frame-based representation, as described in [3].

The FMA TBox was coherent, and the DICE TBox contained only a small num-
ber of unsatisfiable concepts (due to the migration process). Having a minimum of
unsatisfiable concepts is important as unsatifiability “propagates” over existentially
quantified roles. Assume that B is an unsatisfiable concept, then C, defined as C v
A u ∃ R B, will also be unsatisfiable.

145

In order to minimize the number of unsatisfiable concepts, no disjointness between
concepts was explicitly stated. This can be explained by the following example. Sup-
pose the original knowledge base contains two primitive definitions: C1 v A u ∃ R
B, and C2 v A u ∃ R B, and C1 and C2 are stated to be disjoint. Applying our
method would change these definitions to non-primitive definitions, which would ren-
der C1 and C2 equivalent. But as they are also disjoint, each would be inferred to be
unsatisfiable.

The DICE TBox is defined using the language ALCQ, the FMA TBox can be
expressed with ALCI. This means that for example role hierarchies and transitive
roles are not used in these TKBs. Actually, DICE was modeled using Structure-
Entity-Part (SEP) triplets, described in [8], in order to prevent the use of transitive
roles and role hierarchies.

It needs to be determined whether the method is also useful for more complex
knowledge bases. Issues that increase the complexity of knowledge bases are the
use of a more expressive language, cyclic definitions, use of concept inclusion axioms
with concept expressions on the left-hand side (instead of only atomic concepts), and
allowing multiple definitions of a concept.

5.2 Alternative Approach: Structural Subsumption

There are two reasons for discussing structural subsumption as an alternative ap-
proach. The first reason is the fact that the case studies involved relatively simple
knowledge bases. The second reason was that a superficial inspection of equivalent
definitions of concepts indicated that most of them were not only logically equivalent
(as definitions 3 and 4 from Figure 1), but even structurally equivalent, as shown in
Figure 2. Structural subsumption could prove useful for knowledge bases for which
the computational cost of classification is too high, such as for example the complete
FMA. The advantage of using a structural subsumption algorithm is that it is gener-
ally cheaper in terms of computational costs, but it has the drawback that it is not
complete.

6 Conclusions

We have applied the inferential powers of DL reasoners to detect concepts that are
equivalently defined within a knowledge base. In order to be able to find such con-
cepts, we have considered relevant concept definitions as non-primitive. This results
in clusters of concepts which have equivalent definitions.

Two case studies show that the size of such clusters varied mainly from 2 to 7. For
the vast majority of concept definitions that turned out to be equivalent it is possible
to make them more exhaustive by adding conditions that distinguish between them.
For a minority of the equivalent concepts there seemed to be no possibilities of making
the definition more exhaustive, as these concepts represented natural kinds, or could
not be defined due to limits of the underlying representation. The case study on DICE
revealed only a few duplicate definitions in the knowledge base.

146

Overall, it can be concluded that applying the methods described in this paper,
contributes to gaining insight in tacit knowledge, which is unrepresented in a knowl-
edge base. Making this knowledge explicit by means of refining concept definitions
improves the knowledge base, and results in more exhaustive concept definitions. How-
ever, it can not be guaranteed that these more exhaustive definitions will now provide
both necessary and sufficient conditions. Therefore, it needs to be determined whether
this method can result in an actual decrease in the number of primitive concept defi-
nitions in knowledge bases, which would increase the powers of inference based on the
knowledge base. The successful application of our method to two knowledge bases in
the field of medicine, makes it likely to be applicable to other domains as well.

References

[1] J. J. Cimino. Desiderata for controlled medical vocabularies in the twenty-first
century. Methods of Information in Medicine, 37(4-5):394–403, 1998.

[2] R. Cornet and A. Abu-Hanna. Usability of expressive description logics – a case
study in UMLS. Proc AMIA Symp, pages 180–4, 2002.

[3] R. Cornet and A Abu-Hanna. Using description logics for managing medical ter-
minologies. In M. Dojat, E. Keravnou, and P. Barahona, editors, 9th Conference
on Artificial Intelligence in Medicine in Europe, AIME, pages 61–70, Protaras,
Cyprus, 2003. Springer.

[4] N. F. de Keizer, A. Abu-Hanna, R. Cornet, J. H. Zwetsloot-Schonk, and C. P.
Stoutenbeek. Analysis and design of an ontology for intensive care diagnoses.
Methods of Information in Medicine, 38(2):102–12, 1999.

[5] Jon Doyle and Ramesh Patil. Two theses of knowledge representation: Language
restrictions, taxonomic classifications, and the utility of representation services.
Artificial Intelligence, 48(3):261–298, 1991.

[6] PF Patel-Schneider and B Swartout. Description-logic knowledge representation
system specification from the krss group of the arpa knowledge sharing effort. Tech-
nical report, KRSS Group of the ARPA Knowledge Sharing Effort, 1 november
1993 1993.

[7] E. B. Schulz, J. W. Barrett, and C. Price. Semantic quality through semantic
definition: refining the read codes through internal consistency. Proc AMIA Annu
Fall Symp, pages 615–9, 1997.

[8] S. Schulz, M. Romacker, and U. Hahn. Part-whole reasoning in medical ontologies
revisited–introducing sep triplets into classification-based description logics. Proc
AMIA Symp, pages 830–4, 1998.

147

Extended Query Facilities for Racer and an Application to

Software-Engineering Problems

Volker Haarslev2, Ralf Möller3,
Ragnhild Van Der Straeten4 and Michael Wessel◦

Concordia University2 Technical University of Hamburg-Harburg3

Montreal, Canada Hamburg-Harburg, Germany
haarslev@cs.concordia.ca r.f.moeller@tuhh.de

Vrije Universiteit Brussel4 University of Hamburg◦

Brussels, Belgium Hamburg, Germany
rvdstrae@vub.ac.be mwessel@informatik.uni-hamburg.de

Abstract

This paper reports on a pragmatic query language for Racer. The abstract syntax
and semantics of this query language is defined. Next, the practical relevance of
this query language is shown, applying the query answering algorithms to the
problem of consistency maintenance between object-oriented design models.

1 Motivation

Practical description logic (DL) systems such as Racer [3] offer a functional API
for querying a knowledge base (i.e., a tuple of T-box and A-box). For instance,
Racer provides a query function for retrieving all individuals mentioned in an A-
box that are instances of a given query concept. Let us consider the following A-
box: {has child(alice, betty), has child(alice, charles)}. If we are interested in finding
individuals for which it can be proven that a child exists, in the Racer system, the
function concept instances can be used. However, if we would like to find all tuples
of individuals x and y such that a common parent exists, currently, it is not possible
to express this in sound and complete DL systems such as, for instance, Racer. Other
logic-based representation systems, such as, e.g., LOOM [6], however, have offered
query languages suitable for expressing the second query right from the beginning.
In this paper we define syntax and semantics of a query language similar to that
of LOOM. Users of description logic systems such as Racer already demonstrated
the demand of such a query language for sound and complete DL systems [9], and
this paper evaluates the practical relevance of the current implementation for query
answering algorithms in Racer-1-7-19 using an application to software engineering
problems.

148

2 The New Racer Query Language - nRQL

In the following we describe the new Racer Query Language, also called nRQL (pro-
nounce: Nercle). We start with some auxiliary definitions:

Definition 1 (Individuals, Variables, Objects) Let I and V be two disjoint sets
of individual names and variable names, respectively. The set O =

def
V ∪I is the set

of object names. We denote variable names (or simply variables) with letters x, y, . . .;
individuals are named i, j, . . .; and object names a, b,

�

Query atoms are the basic syntax expressions of nRQL:

Definition 2 (Query Atoms) Let a, b ∈ O; C be an ALCQHIR+(D−) [4] concept
expression, R a role expression, P one of the concrete domain predicates offered by
Racer; f = f1 ◦ · · · ◦ fn and g = g1 ◦ · · · ◦ gm be feature chains such that fn and gm are
attributes (whose range is defined to be one of the available concrete domains offered
by Racer, or f, g are individuals from one of the offered concrete domains which means
that m,n = 1 and f1, g1 are 0-ary attributes). Then, the list of nRQL atoms is given
as follows:

• Unary concept query atoms: C(a)

• Binary role query atoms: R(a, b)

• Binary constraint query atoms: P (f(a), g(b))

• Unary bind-individual atoms: bind individual(i)

• Unary has-known-successor atoms: has known successor(a,R)

• Negated atoms: If rqa is a nRQL atom, then so is \(rqa), a so-called negation
as failure atom or simply negated atom.

�

We give some examples of the various atoms and assume throughout the paper that
betty ∈ I. Note that (woman u (¬mother))(betty) and woman(x) are unary con-
cept query atoms; has child(x, y) and has child(betty, y) are binary role query atoms;
string=(has father ◦ has name(x), has name(y)) as well as ≥(has age(x), 19) are
examples of binary constraint query atoms. Finally, \(woman(x)) is an example of a
negated atom. The rationale for introducing unary bind-individual and has-known-
successor atoms will become clear later. Both are related to effects caused by negated
atoms. We can now define nRQL queries:

Definition 3 (nRQL Query Bodies, Queries & Answer Sets) A nRQL Query
has a head and a body. Query bodies are defined inductively as follows:

• Each nRQL atom rqa is a body; and

• If b1 . . . bn are bodies, then the following are also bodies:

– b1 ∧ · · · ∧ bn, b1 ∨ · · · ∨ bn, \(bi)

149

We use the syntax body(a1, . . . , an) to indicate that a1, . . . , an are all the objects
(ai ∈ O) mentioned in body. A nRQL Query is then an expression of the form

ans(ai1
, . . . , aim

)← body(a1, . . . , an),
ans(ai1

, . . . , aim
) is also called the head, and (i1, . . . , im) is an index vector with ij ∈

1 . . . n. A conjunctive nRQL query is a query which does not contain any ∨ and \
operators.

�

Before we consider atoms with variables, we define truth of ground query atoms. A
ground query atom does not reference any variables. To define truth of ground query
atoms, we will need the standard notion of logical implication or logical entailment.
We first start with positive atoms – atoms which are not negated:

Definition 4 (Entailment of Positive Ground Query Atoms) Let K be an
ALCQHIR+(D−) knowledge base. A knowledge base, KB for short, is simply a T-
box/A-box tuple: K = (T ,A).

A positive ground query atom rqa (i.e., rqa doesn’t reference variables and is not
negated) is logically entailed (or implied) by K iff every model I of K is also a model
of rqa. In this case we write K |= rqa. Moreover, if I is a model of K (rqa) we write
I |= K (I |= rqa).

We therefore have to specify when I |= rqa holds. In the following, if rqa references
individuals i, j, it will always be the case that i, j ∈ inds(A). From this it follows that
iI ∈ ∆I and jI ∈ ∆I , for any I = (∆I , ·I) with I |= K:

• If rqa = C(i), then I |= rqa iff iI ∈ CI .

• If rqa = R(i, j), then I |= rqa iff (iI , jI) ∈ RI .

• If rqa = P (f(i), g(j)), then I |= rqa iff
– ci = fI(iI),
– cj = gI(jI),
– (ci, cj) ∈ P I ; moreover,
– if f = f1 ◦ · · · ◦ fn, then we require that for all m ∈ 1 . . . n − 1 with

k = (f1 ◦ · · · ◦ fm)I(iI) there is some j ∈ inds(A) such that jI = k; and
analogously for g.

• If rqa = (i = j), then I |= (i = j) iff iI = jI .

• If rqa = has known successor(i, R), then I |= rqa iff for some j ∈ inds(A):
I |= R(i, j).

�

It is important to note that the properties of roles and concepts referenced in the query
atoms are defined in the knowledge base K. For example, if the role has descendant

has been declared as transitive in K, then has descendant will be transitive in the
queries as well, since in models of K has descendantI = (has descendantI)+ must
hold. If has father is declared as a feature, then it will behave as a feature in
the queries as well. Also note that, according to Definition 2, atoms of the form
rqa = (i = j) are not really query atoms. However, these atoms are used to replace
bind individual atoms, see below.

The complex semantic condition enforced on the binary constraint query atoms
such as rqa = P (f(i), g(j)) with f = f1 ◦ · · · ◦fn and g = g1 ◦ · · · ◦gm makes it possible

150

to substitute such an atoms with the conjunction f1(i, i1) ∧ · · · ∧ fn−1(in−2, in−1) ∧
g1(j, j1) ∧ · · · ∧ gm−1(jm−2, jm−1) ∧ P (fn(in−1), gm(jm−1)).

Now that we have defined truth of of positive ground query atoms, we can define
truth of arbitrary ground query atoms:

Definition 5 (Truth of Ground Query Atoms) Let rqa be a ground query atom.
Let K = (T ,A) be a knowledge base (T-box/A-box tuple). A ground atom rqa

is either TRUE in K (we write K |=NF rqa) or FALSE in K (we write K 6|=NF).
The relationship |=NF resp. trueness of ground query atoms is inductively defined as
follows:

• If rqa is positive (does not contain “\”): K |=NF rqa iff K |= rqa

• Otherwise: K |=NF \(rqa) iff K 6|=NF rqa
�

It is important to note that for each query body or atom q, q is TRUE iff \(q) is FALSE,
and vice versa. Note that this does not hold for the usual entailment relationship. For
example, consider the A-box {woman(betty)}. Given K =

def
(∅,A), woman(betty)

is TRUE, and mother(betty) is FALSE, since we cannot prove that betty is a mother.
Thus, \(mother(betty)) is TRUE. In contrast, ¬mother(betty) is obviously FALSE.
Moreover, (mothert¬mother)(betty) = >(betty) is not the same as (mother(betty))∨
(¬mother(betty)).

In order to check whether K |=NF rqa, we can use the basic consistency checking
and A-box retrieval methods offered by Racer. The symbol “|=NF ” shall remind the
reader of the employed “Negation as Failure” semantics (i.e., suppose rqa is positive,
then K |=NF \(rqa) iff K 6|= rqa, which means \(rqa) is TRUE in K, see below for
examples).

The truth definition of ground atoms can be extended to complex ground query
bodies in the obvious way (i.e., K |=NF b1∧· · ·∧bn iff ∀bi : K |=NF bi, and analogously
for ∨ and \).

Having defined truth of ground query atoms and bodies, we can specify the se-
mantics of queries which are not ground, but first we need one more piece of notation.
The rationale behind the next definition is best understood with an example: con-
sider the query ans(betty) ← woman(betty). The answer to this query should either
be ∅ (in case K 6|= woman(betty)), or {(betty)} (in case K |= woman(betty)). A rea-
sonable statement is that ans(betty) ← \(woman(betty)) should be the complement
query of ans(betty) ← woman(betty). The latter one should therefore return the set
{ (i) | i ∈ inds(A) }, probably without {(betty)} (note that inds(A) returns the set
of all individuals mentioned in the A-box A). Thus, within \(woman(betty)), betty

behaves in fact like a variable. To capture this behavior, we replace the individuals in
the atoms with representative variables and use (in)equality statements as follows:

Definition 6 (α-Substitution) Let rqa be an atom that contains at most one “\”
(note that rqa = \(\(rqa))). Denote the set of mentioned individuals in rqa as
inds(rqa). Then, α(rqa) is defined as follows:

• If inds(rqa) = ∅, then α(rqa) =
def

rqa.

151

• If rqa = bind individual(i), then α(rqa) =
def

xi = i

• If rqa = \(bind individual(i)), then α(rqa) =
def

xi 6= i

• If rqa is not a bind-individual atom, then

– If rqa is positive and inds(rqa) = {i, j} (possibly i = j), then α(rqa) =
def

rqa[i←xi,j←xj]
∧ (xi = i) ∧ (xj = j).

– If rqa = \(rqa′) is negative and inds(rqa) = {i, j} (possibly i = j), then
α(rqa) =

def
\(rqa′

[i←xi,j←xj]
) ∨ (xi 6= i) ∨ (xj 6= j).

�

Note that rqa[i←xi,j←xj]
means “substitute i with xi, and j with xj”. For example,

α(R(i, j)) = R(xi, xj) ∧ (xi = i) ∧ (xj = j), but α(\(R(i, j))) = \(R(xi, xj)) ∨ (xi 6=
i) ∨ (xj 6= j). We extend the definition of α to query bodies in the obvious way.
However, we need to bring the bodies into negation normal form (NNF) first, such
that “\” appears only in front of atoms. This is simply done by applying DeMorgan’s
Law to the query body (from the given semantics it follows that \(A∧B) ≡ \(A)∨\(B),
\(A ∨ B) ≡ \(A) ∧ \(B), \(\(A)) ≡ A). The semantics of a nRQL query can now be
paraphrased as follows:

Definition 7 (Semantics of a Query) Let ans(ai1
, . . . , aim

)← body(a1, . . . , an) be
a nRQL query q such that body is in NNF. Let β(ai) =

def
xai

if ai ∈ I, and ai oth-
erwise; i.e., if ai is an individual we replace it with its representative unique variable
which we denote by xai

. Let K be the knowledge base to be queried, and A be its
A-box. The answer set of the query q is then the following set of tuples:

{ (ji1
, . . . , jim

) | ∃j1, . . . , jn ∈ inds(A),∀m,n,m 6= n : jm 6= jn,

K |=NF α(body)[β(a1)←j1,...,β(an)←jn] }

Finally, we state that {()} =
def

TRUE and {} =
def

FALSE.
�

Note that we assume the unique name assumption (UNA) for the variables here.
However, the implemented query processing engine also offers non-UNA variables
(originally meant for breaking up feature chains). For reasons of brevity we decided
not to include them in the formal definition here.

Let us briefly discuss some “pathological examples” which explain why we included
bind-individual and has-known-successor atoms into nRQL.

Suppose we want to know for which individuals we have explicitly modeled children
in the A-box. For this purpose, the query ans(x)← has know successor(has child, x)
can be used, but also the query ans(x) ← has child(x, y). However, now
suppose we want to retrieve the A-box individuals which do not have a child. The
query ans(x) ← \(has child(x, y)) cannot be used, since first the complement of
has child(x, y) is computed, and then the projection to x is carried out. Thus,
ans(x)← \(has known successor(x, has child)) must be used. Please note that this
query is not equivalent to ans(x)← \(∃has child.>(x)). To see why, suppose we want
to query for mothers not having any explicitly modeled children in the A-box. Ob-
viously, these mothers cannot be retrieved with ans(x) ← \(∃has child.>(x)), since
motherhood implies having a child. But this child need not be explicitly modeled in the

152

A-box. Thus, the query ans(x)← mother(x)∧\(has known successor(x, has child))
must be used. The syntax ans(x) ← mother(x) ∧ has child(x, NIL), which we bor-
rowed from the query language of the LOOM system, is also understood by Racer.

We already mentioned that individuals appearing within negated query atoms
turn into variables. Suppose ans(eve) ← mother(eve) returns ∅. Thus, the query
ans(eve)← \(mother(eve)) will return the complement set w.r.t. all mentioned A-box
individuals, e.g. {(eve)(doris)(charles)(betty)(alice)}. But sometimes, this behavior
is unwanted: in this case we can add the additional conjunct bind individual(eve).
We then get {(eve)} for ans(eve)← bind individual(eve) ∧ \(mother(eve)).

3 An Example from Software Engineering

In [9], we plead for state-of-the-art DL tools having an extensive query language to
be able to maintain consistency between object-oriented design models.

The de facto modeling language for the analysis and design of object-oriented soft-
ware applications is UML [7]. The visual representation of this language consists of
several diagram types. Those diagrams represent different views on the system under
study. We deliberately confine ourselves to three kinds of UML diagrams: class dia-
grams representing the static structure of the software application, sequence diagrams
representing the behavior of the software application in terms of the collaboration
between different objects, and state diagrams modeling the behavior of one single
object.

State-of-the-art CASE tools have little support for maintaining the consistency be-
tween those different diagrams within the same version of a model or between different
versions of a model.

Based on a detailed analysis of all the UML concepts appearing in class, sequence
and state diagrams, several consistency conflicts are identified and classified. For an
overview of this classification, we refer to [8].

In our approach the relevant subset of the UML metamodel, defining class, state
and sequence diagrams, is translated into T-box axioms. As such the different user-
defined UML diagrams are translated into A-box assertions. Based on two illustrative
consistency conflicts, we argued in [9] that checking for inconsistencies demands an
extensive query language. This would allow us to specify UML models and consistency
rules in a straightforward and generic way.

The classless instance conflict, described in [9] is repeated here and the infinite
containment conflict is introduced.

3.1 Classless instances

The first conflict appears if there are instances in a sequence diagram which do not
have any associated class. An example of this conflict is shown in Figure 1, where
the object anATM is an instance of ATM in the sequence diagram on the right side
of Figure 1 but this class does not appear in the class diagram on the left side of the
same figure.
Classes in a class diagram are represented by the concept class in our T-box and an

153

1..1
 *

anATM : ATM

checkIfCashAvailable

ejectCard

dispenseCard

Session
 Transaction
 aSession : Session

Figure 1: Classless instances conflict

instance by the concept object . instance of specifies that an object is an instance of
a certain class. has classmodel is a role that contains the associated class diagram of
a class. The query language of Racer can now be used to find all the classes that have
no related class diagram:

ans(x)

← class(x) ∧ object(y) ∧ instance of(y, x) ∧

\(has known successor(x, has classmodel))

This yields the correct result, i.e. the individual ATM bound to the variable x:
{(ATM)}

3.2 Infinite containment

This conflict arises when the composition and inheritance relationships between classes
in class diagrams form a cycle and combined with a composition relation, define a class
whose instances will, directly or indirectly, be forced to contain at least one instance
of the same class, causing an infinite chain of instances.

An example of this conflict is shown in Figure 2, where the class ASCIIPrintingATM
is transitively a subclass of ATM and there exists a composition relation controls be-
tween those two classes. This composition indicates that every instance of ATM con-
trols at least one instance of ASCIIPrintingATM . However, an instance of
ASCIIPrintingATM is also an instance of ATM and as such must again control a
different instance of ASCIIPrintingATM due to the antisymmetric property of a com-
position relation. (The composition relation is indicated by a black diamond.)

The direct subclass relationship is represented by the direct subclass role which is a
sub role of a transitive subclass role. A class involved in an association, is linked to this
association by the role has association through an association end. An association end
has an aggregation kind which can be empty or an aggregation or a composite. This
knowledge is represented by the role has aggregation and by the concepts aggregation
and composition . An association has two or more association ends, the role ends links
the association to its ends. Each association end has a multiplicity, this is expressed by
the has multiplicity role. A multiplicity has a range (has range) and this range has a
lower and upper bound. These bounds are represented by concrete domain attributes
lower and upper which have type integer .

The following query, expressed in nRQL, returns classes which are related by

154

ATM
 PrintingATM
 ASCIIPrintingATM

-atmend
 1
 -asciiend
1..*

controls

Figure 2: Infinite containment conflict

inheritance and by a composition relation introducing an infinite containment conflict:

ans(x, y)

← subclass(x, y) ∧ has association(y, end1) ∧

has aggregation(end1, aggreg) ∧ composition(aggreg) ∧

ends(assoc, end1) ∧ ends(assoc, end2) ∧ has association(x, end2) ∧

has multiplicity(end2,m2) ∧ has range(m2, r2) ∧ (∃(lower).≥1)(r2)

The result of this query asked to the A-box containing the example of Figure 2 is the
answerset {(ASCIIPRINTINGATM ,ATM)}.

With the current nRQL implementation, the answer sets of the queries are correct
and delivered within reasonable time limits. Remark however, that this is not a mass
data application, which makes this query facility suitable for our purposes.

4 Related Work, Discussion & Conclusion

For querying OWL semantic web repositories, the query language OWL-QL [2] has
been proposed, which is the successor of the DAML+OIL query language DQL. Since
OWL is basically a very expressive description logic, the proposed query language is
relevant in our context as well.

An OWL-QL query is basically a full OWL KB together with a specification which
of the referenced URIs in the query “body” (called query pattern in OWL terminol-
ogy) are to be interpreted as variables. Variables come in three forms: must-bind,
may-bind, and do-not bind variables. OWL-QL uses the standard notion of logical en-
tailment: query answers can be seen as logically entailed sentences of the queried KB.
Unlike in nRQL, variables cannot only be bound to constants resp. explicitly modeled
A-box individuals, but also to complex OWL terms which are meant to denote the log-
ically implied domain individual(s) from ∆I . Thus, if variables in the query patterns
are substituted with answer bindings, the resulting sentences are logically entailed by
the queried KB. For must-bind variables, bindings have to be provided. May-bind
variables may provide bindings or not, and do-not-bind variables are purely existen-
tially quantified (“existential blanks in the query”). Moreover, OWL-QL queries are
full OWL KBs, and this implies that not only extensional queries like in nRQL must
be answered, but also “structural queries” are possible, such as “retrieve the subsum-
ing concept names of the concept name father”. Similar functions are also offered by
Racer’s API, but are not available in nRQL.

However, nRQL is not really a subset of OWL-QL. In OWL-QL, neither negation
as failure nor disjunctive A-boxes can be expressed. Moreover, binary constraint query

155

atoms of nRQL as well as negated has-known-successor query atoms “are missing” in
OWL-QL. The latter ones have in fact been requested by the first users of the nRQL
implementation. This clearly indicates that a limited kind of autoepistemic or closed-
world query facilities should be present in a DL query language. Negation as failure
atoms are useful to measure the completeness of the current modeling in an A-box,
and this is demanded by users. Thus, it might be more convincing to use a different
semantics for “logical implication of queries” in the first place. Such a notion has
been given in terms of the so-called K-operator [1], which has been used for the query
language ALCK. Roughly speaking, one could state that already concept instances
uses the K-operator in front of the concept whose instances are to be retrieved. A
more detailed analysis of these relationships is left for future work.

Horrocks and Tessaris [5] also consider conjunctive queries for DL systems. They
use two kinds of variables. Must-bind variables are called distinguished variables;
they are bound to explicitly mentioned A-box individuals, like in nRQL. Similarly
to the don’t-bind variables in OWL-QL, the non-distinguished variables are treated
as “existential blanks”. Only bindings of distinguished variables are listed in the
answerset of a query. Considering DLs of less expressivity than OWL, they observe
that the non-distinguished variables of a query can in fact be removed by using a
rolling-up technique without affecting logical entailment. For example, the query
ans(x) ← R(x, y) ∧ C(y) (were only x is distinguished) would be rolled-up into the
query ans(x)← ∃R.C(x). They also observe that for a DL which has the tree-model
property and which does not offer inverse roles, a variable participating in a join must
in fact be a distinguished variable; e.g. the variable y in ans(x)← R(x, y) ∧R(z, y).

In nRQL, the variables are always distinguished. The query ans(x, y)← R(x, y)∧
C(y) yields ∅ over the A-box {∃R.C(k)}. However, ans(x) ← (∃R.C)(x) could be
used instead. Obviously, a rolling-up procedure could be implemented as an addi-
tional front-end processor for nRQL as well. However, another side-effect caused
by the distinction of two kinds of variables is that the generation of answer tu-
ples can no longer be understood as a simple projection. For example, the query
ans(x)← R(x, y)∧C(y) returns {(k)} if x is distinguished and y is non-distinguished,
but its result is, un-intuitively, not the projection of ans(x, y) ← R(x, y) ∧ C(y) to
x, since this yields ∅ (note that x, y must be both distinguished, since they appear
in ans). Even ans(x) ← C(x) returns ∅ (like concept instances(C)), and this holds
for the query language in [5] as well. For OWL-QL, however, a possible binding for
x might be the concept C u ∃R−1.{k}. It should be noted that the nRQL query pro-
cessing engine as well as the whole pragmatic approach for querying DL A-boxes is
not dependent on any specific DL system. The same query processing engine would
in fact also run with any other DL system offering A-boxes, probably without binary
constraint query atoms in case the DL system does not provide concrete domains.
The nRQL engine is implemented using the documented API of Racer only, and it is
therefore a true “add on” whose implementation does not require any reference to the
internal data structures or reasoning algorithms of Racer.

Since the beginning of the Racer endeavor, users were asking for more expressive
querying facilities. The presented nRQL is a first step towards satisfying these needs.
We substantiated this thesis by presenting an application from the realm of model-

156

based software engineering, for which it is crucial that expressive query languages are
available. The new query language is an integral part since Racer-1-7-16.

References

[1] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea Schaerf.
Adding epistemic operators to concept languages. In Bernhard Nebel, Charles
Rich, and William Swartout, editors, KR’92. Principles of Knowledge Represen-
tation and Reasoning: Proceedings of the Third International Conference, pages
342–353. Morgan Kaufmann, San Mateo, California, 1992.

[2] R. Fikes, P. Hayes, and I. Horrocks. OWL-QL - a language for deductive query
answering on the semantic web. Technical Report KSL-03-14, Knowledge Systems
Lab, Stanford University, CA, USA, 2003.

[3] V. Haarslev and R. Möller. Racer system description. In International Joint Con-
ference on Automated Reasoning, IJCAR’2001, June 18-23, 2001, Siena, Italy.,
2001.

[4] V. Haarslev, R. Möller, and M. Wessel. The description logic ALCNH
R

+ extended
with concrete domains: A practically motivated approach. In R. Goré, A. Leitsch,
and T. Nipkow, editors, Proceedings of the International Joint Conference on Au-
tomated Reasoning, IJCAR’2001, June 18-23, 2001, Siena, Italy, Lecture Notes
in Computer Science, pages 29–44. Springer-Verlag, June 2001.

[5] Ian Horrocks and Sergio Tessaris. Querying the semantic web: a formal approach.
In Ian Horrocks and James Hendler, editors, Proc. of the 13th Int. Semantic Web
Conf. (ISWC 2002), number 2342 in Lecture Notes in Computer Science, pages
177–191. Springer-Verlag, 2002.

[6] Robert MacGregor and David Brill. Recognition algorithms for the LOOM clas-
sifier. In Proc. of the 10th Nat. Conf. on Artificial Intelligence (AAAI’92), pages
774–779. AAAI Press/The MIT Press, 1992.

[7] Object Management Group. Unified Modeling Language specification version 1.5.
formal/2003-03-01, March 2003.

[8] Ragnhild Van Der Straeten, Tom Mens, Jocelyn Simmonds, and Viviane Jonckers.
Using description logic to maintain consistency between UML models. In Perdita
Stevens, Jon Whittle, and Grady Booch, editors, UML 2003 - The Unified Mod-
eling Language. Model Languages and Applications. 6th International Conference,
San Francisco, CA, USA, October 2003, Proceedings, volume 2863 of LNCS, pages
326–340. Springer, 2003.

[9] Ragnhild Van Der Straeten, Jocelyn Simmonds, and Tom Mens. Detecting in-
consistencies between UML models using description logic. In Diego Calvanese,
Giuseppe De Giacomo, and Enrico Franconi, editors, Proceedings of the 2003 Inter-
national Workshop on Description Logics (DL2003), Rome, Italy September 5-7,
2003, volume 81 of CEUR Workshop Proceedings, pages 260–264, 2003.

157

A Uniform Tableaux-Based Approach to Concept
Abduction and Contraction inALN

S. Colucci1, T. Di Noia1, E. Di Sciascio1,
F.M. Donini2, M. Mongiello1

1: Politecnico di Bari, BARI, Italy
{s.colucci,t.dinoia,disciascio,mongiello }@poliba.it

2: Universit̀a della Tuscia, VITERBO, Italydonini@unitus.it

Abstract

We present algorithms based on truth-prefixed tableaux to solve both Concept Ab-
duction and Contraction inALN DL. We also analyze the computational complexity of
the problems, showing that the upper bound of our approach meets the complexity lower
bound. The work is motivated by the need to offer a uniform approach to reasoning
services useful in semantic-based matchmaking scenarios.

1 Motivation

In recent papers [16, 15], Description Logics (DLs) have been proposed to model knowledge
domains in Semantic Web scenarios. A challenging issue in such scenarios is the matchmak-
ing problem which is finding an offered resource described by a formalism with an unam-
biguous semantics [21, 8, 17]. Using DLs to describe resources, it is possible to infer which
of them satisfies the request either completely (i.e., subsumes the request) or potentially (i.e.,
the conjunction of the requested resource and the offered one is satisfiable) or partially(i.e.,
the conjunction of the requested resource and the offered one is not satisfiable).

In [9, 7] Concept Abduction and Concept Contraction have been proposed as non-standard
inference services in DL, to capture in a logical way the reasons why a resourceS1 should be
preferred to another resourceS2 for a given requestD, and vice versa. Although efficient rea-
soning methods based on tableaux have been successfully implemented for standard inference
services in DL —satisfiability, subsumption, instance check, etc. [1, Ch.8-9] — non-standard
reasoning services have been usually solved by different methods, such as automata[1, Ch.6],
making a complete system built on heterogeneous technologies. Such an approach leads to
incomparable optimization techniques and partial duplication of services —e.g., a module
computingleast common subsumercomputes also subsumption. This motivates our research
in tableaux-based methods for Concept Abduction and Concept Contraction.

Related work on abduction using tableaux is in [6], where tableaux are used for the multi-
modal logicK , corresponding to the DLALC. However, in that work the purpose was not
to find efficient methods, and contraction was not considered. Here we devise more efficient
methods, for aALN logic, which would correspond to a syntactically-restricted modal logic
with graded modalities.

158

2 Abduction and Contraction in ALN

We start with a few definitions of the problem and then move on to discuss its computational
complexity. We assume the reader is familiar with DLs, and refer to [1] for a thourough
introduction toALN , TBoxes, satisfiability, subsumption (denoted asv) and subsumption
w.r.t. a TBoxT (denoed asvT).

Here we deal only with a simple form of axioms in the TBox, where in the left hand
side of inclusions only concept names can appear and with each concept name as at most one
left-hand side of an axiom. Moreover, we admit onlyacyclicTBoxes, in the following sense.

Definition 1 (Dependency Graph of a TBox)Let T be a TBox. The dependency graph of
T is a graphGT = (N,V) whose nodes are concept names, and whose arcs are defined as
follows: if A v C ∈ T , and concept nameB appears inC, then there is an arc from nodeA
to nodeB.

A TBox T is said to beacyclic if GT contains no cycles. Even for this simple form of acyclic
TBox, it is known that subsumption is coNP-hard [18] and also satisfiability is coNP-hard
[5, 4]. However, all hardness reductions rely on “deep” TBoxes — TBoxes in which the
length of the longest path inGT is allowed to grow as large asO(|T |). ForALN TBoxes that,
in Nebel’s words [18], are “bushy but not deep”, satisfiability and subsumption can be solved
in polynomial time [3].

Definition 2 (Bushy TBox) A sequence of acyclic TBoxesT1, . . . , Tn, . . . arebushyif the
size of the longest path inGTi is bounded byO(log |Ti|).

In the rest of the paper, we limit our attention to bushy TBoxes inALN .

2.1 Concept Abduction inALN

We follow the notation in [9, 7], excluding the choice of the DL which in our case is always
ALN .

Definition 3 Let C, D, be two concepts inALN , and T be a set of axioms inALN ,
where bothC andD are satisfiable inT . A Concept Abduction Problem(CAP), denoted as
〈C,D, T 〉, is finding a conceptH ∈ ALN such thatT 6|= CuH ≡ ⊥, andT |= CuH v D.

We useP as a symbol for a CAP, and we denote withSOLCAP (P) the set of all solutions
to a CAPP. ForSOLCAP (P) the three following minimality criteria have been proposed.

Definition 4 LetP =〈C,D, T 〉 be a CAP. The setSOLCAPv(P) is the subset ofSOLCAP (P)
whose concepts are maximal undervT . The setSOLCAP≤(P) is the subset ofSOLCAP (P)
whose concepts have minimum length. The setSOLCAPu(P) is the subset ofSOLCAP (P)
whose concepts are minimal conjunctions,i.e., if C ∈ SOLCAPu(P) then no sub-conjunction
of C is in SOLCAP (P). We call such solutionsirreducible abductions.

The three forms of minimality are related by: bothSOLCAPv(P) andSOLCAP≤(P) are
included inSOLCAPu(P) [9, Prop.2].

159

2.2 Concept Contraction inALN

As defined by G̈ardenfors’ [12], who formalized the revision of a knowledge baseK with a
new piece of knowledgeA, is made up of(i) a contractionoperation, which results in a new
knowledge baseK−

A such thatK−
A 6|= ¬A, (ii) the conjunction ofA toK−

A.

Definition 5 Let C, D, be two concepts inALN , andT be a set of axioms inALN , where
both C and D are satisfiable inT . A Concept Contraction Problem(CCP), denoted as
〈C,D, T 〉, is finding a pair of concepts〈G, K〉 (both inALN) such thatT |= C ≡ G uK,
andK uD is satisfiable inT . We callK acontractionof C according toD andT .

Also for Concept Contraction, one is interested in a minimal contraction, according to some
form of minimality.

Definition 6 LetQ =〈C,D, T 〉 be a CCP. The setSOLCCPv(Q) is the subset of solutions
〈G, K〉 in SOLCCP (Q) such thatG is maximal undervT . The setSOLCCP≤(Q) is
the subset ofSOLCCP (Q) such thatG has minimum length. The setSOLCCPu(Q) is
the subset ofSOLCCP (Q) whose concepts are minimal conjunctions,i.e., if 〈G, K〉 ∈
SOLCCPu(Q) then no sub-conjunctionG′ of G is such that〈G′,K ′〉 ∈ SOLCCP (Q) for
anyK ′. We call such solutionsirreducible contractions.

We now analyze the complexity of computing a minimum-length concept abduction inALN .
Proposition 3 in [9] yields a trivial polynomial-time lower bound for Concept Abduction in
ALN with a bushy TBox. Using a simple reduction, we show a tighter lower bound, using
an elementary form of Tbox: the problem is NP-hard. It is sufficient to have a constant-depth
concept hierarchy —i.e., a set of inclusions between concept names where the longest path
in GT has length 1 — to model the set-covering model for abduction [19].

Definition 7 (Set Covering) Let U = {a1, . . . , an,} be a set, lets1, . . . , sm, be a collection
of subsets ofU such that∪isi = U and letk ≤ n be an integer. TheSet coveringproblem is
deciding whether there exists a subcollection of subsetssi1 , . . . , sik whose union coversU .

Theorem 1 Minimal-length Concept Abduction inALN is NP-hard, even whenT is a bushy
concept hierarchy.

Given an instance of Set Covering, we construct a CAPP =〈C,D, T 〉 as follows. Let
A1, . . . , An, B1, . . . , Bn be2n concept names, where eachAi andBi is one-one withai, and
let S1, . . . , Sm, be also concept names, one-one with subsets ofU . Let the TboxT be defined
as follows:{Si v Aj , Si v Bj |aj ∈ si}. Now we prove thatsi1 , . . . , sik is a minimal set cov-
ering iff Si1u· · ·uSik ∈ SOLCAP≤(P), whereC = > andD = A1u· · ·uAnuB1u. . .uBn.
First of all, we prove a property of this construction.

Property 1 Every minimal-length abductionH of P contains neitherAi nor Bi, for every
i = 1, . . . , n.

Proof. Let H ∈ SOLCAP (P) and supposeA3 – say – is a conjunct ofH. If there is a
conceptS in H, such thatS v A3 ∈ T , thenH without A3 is a shorter abduction. Oth-
erwise, sinceC u H ≡ H v D, alsoB3 must be a conjunct ofH. In this case, letS be a

160

concept such thatS v A3, S v B3 ∈ T . Then the conceptH withoutA3, B3 and withS is a
solution one conjunct shorter. The same line of reasoning could be repeated if a conceptB is
a conjunct ofH. Therefore, every minimal-length abduction contains neitherAi nor Bi, for
everyi = 1, . . . , n. 2

(If) Supposesi1 , . . . , sik is a set covering. Then,H
.= Si1 u· · ·uSik is such thatCuH is

satisfiable (in fact, every conjunction is satisfiable in this CAP), andCuH v D. Moreover, if
H is not a minimal-length abduction, then letH ′ ∈ SOLCAP≤(P). For the above property,
H ′ does not containA’s andB’s. Then it is straightforward to define a shorter set covering
from H ′,contradicting the fact thatsi1 , . . . , sik was a minimal set covering. (Only-if) On the
other hand, supposeH ∈ SOLCAP≤(P). ThenH does not containA’s andB’s, so it can
be written asSi1 u · · ·uSik , which identifies a collection of subsetsSH = si1 , . . . , sik . Since
H v D, alsoSH coversU ; moreover, ifSH was not minimal, it would define a shorter
solution forP, contradicting the hypothesis. 2

We observe that a (more realistic) CAP allows one to put weights and probabilities at-
tached to concepts in order to measure the importance that a user gives to a specified charac-
teristic. Obviously, also this weighted version of CAP is NP-hard.

3 Calculus and Algorithms

In the following we assume the reader be familiar with tableaux (e.g., [14]). In this section
two algorithms working on tableaux forALN concepts are presented. They both use the
same set of rules: the first one (contract) computes a solution〈G, K〉 for a CCP, the second
one (abduce) solves a CAP computingH.
Tableaux for DLs use a labeling functionL to map an individualx to a set of conceptsL(x)
such that for every conceptC, C ∈ L(x) stands for the formulaC(x), and similarly for roles
R ∈ L(x, y). Here we distinguish between formulas labeled “true” and formulas labeled
“false” in the tableaux[20], hence we use two labeling functionsT() andF(), both going from
individuals to sets of concepts, and from pairs of individuals to sets of roles. A (usual) tableau
branch is now represented by two functionsT() andF(). Moreover, we write in the name of an
individual x its history,i.e., the string identifyingx is made up of integers and role symbols,
such asx = 1R3Q7, which means that individualx is used for concepts in a quantification
involving role R, and inside, a quantification involving roleQ. Integers in between roles
make sure that such strings are unique,i.e., there can be two individuals with the same role
sequence, but not with the same integer sequence[11].

Given an individualx in a tableau, an interpretation(∆I , ·I) satisfies two tableau labels
T(x) andF(x) if, for every conceptC ∈ T(x) and every conceptD ∈ F(x), it is xI ∈ CI

andxI 6∈ DI respectively. Similarly,(∆I , ·I) satisfies two tableau labelsT(x, y) andF(x, y)
if for every roleR ∈ T(x, y) and for every roleQ ∈ F(x, y) it holds (xI , yI) ∈ RI and
(xI , yI) 6∈ QI . We note that forALN DL, every roleQ appearing in a labelF(x, y) is of the
form ¬R, henceQ ∈ F(x, y) means, in fact,(xI , yI) ∈ RI too. An interpretation satisfies
a tableau branch if it satisfiesT(x), F(x), T(x, y) andF(x, y) for every individualx, and for
every pair of individualsx, y in the branch.

We assume that concepts are always simplified in Negation Normal Form (NNF, see [1,

161

ch.2]), so that negations come only in front of concept names. Observe that forC ∈ ALN ,
C may not belong toALN since it is not closed under negation. In what follows, given a
conceptC, we denote withC the NNF of¬C. Rules come in pairs, first the (usual) version
with a construct in theT-constraints, then the dual construct in theF-constraints. However,
groups 2 and 3 have onlyF-constraints because the correspondent formulae do not appear in
our tableaux forALN .

1. conjunctions:

Tu) if C uD ∈ T(x), then add bothC andD to T(x).

Ft) if C tD ∈ F(x), then add bothC andD to F(x).

2. disjunctions (branching rules):

Fu) if C uD ∈ F(x), then add eitherC or D to F(x).

3. existential quantifications:

F∀) if ∀R.C ∈ F(x), then pick up a new individualy = x ◦ R ◦ m (wherem is an
integer such thaty is unique), add¬R to F(x, y), and letF(y) := {C}.

4. universal quantifications:

T∀) if ∀R.C ∈ T(x) and there exists an individualy such that eitherR ∈ T(x, y), or
¬R ∈ F(x, y), then addC to T(y).

F∃) if ∃R.C ∈ F(x), and there exists an individualy such that eitherR ∈ T(x, y), or
¬R ∈ F(x, y), then addC to F(y).

5. at-least number restrictions:

T>) if >n R ∈ T(x), with n > 0, and for every individualy neitherR ∈ T(x, y)
nor¬R ∈ F(x, y), then pick up a new individualy = x ◦ R ◦m (wherem is an
integer such thaty is unique), addR to T(x, y), and letT(y) := ∅.

F6) if 6 n R ∈ F(x) and for every individualy neitherR ∈ T(x, y) nor ¬R ∈
F(x, y), then pick up a new individualy = x ◦R ◦m (wherem is an integer such
thaty is unique), add¬R to F(x, y), and letF(y) := ∅.

6. at-most number restrictions:

T6) if 6 1 R ∈ T(x), and there are2 individualsy1, y2 such that fori ∈ 1, 2 it is
eitherR ∈ T(x, yi) or ¬R ∈ F(x, yi), then letT(y1) := T(y1) ∪ T(y2), let
F(y1) := F(y1) ∪ F(y2), and eliminatey2 in the branch.

F>) if > 2 R ∈ F(x) and there are2 individualsy1, y2 such that fori ∈ 1, 2 it is
eitherR ∈ T(x, yi) or ¬R ∈ F(x, yi), then letT(y1) := T(y1) ∪ T(y2), let
F(y1) := F(y1) ∪ F(y2), and eliminatey2 in the branch.

7. axioms inT :

162

Fv) if x is an individual such that eitherA ∈ T(x) or ¬A ∈ F(x) in the branch, and
A v C ∈ T , then addA u C to F(x).

F .=1) if x is an individual such that eitherA ∈ T(x) or ¬A ∈ F(x) in the branch, and
A

.= C ∈ T , then addA u C.

F .=2) if x is an individual such that either¬A ∈ T(x) or A ∈ F(x) in the branch, and
A

.= C ∈ T , then addC u ¬A to F(x).

When more than one rule can be applied, we always givelowestprecedence to RulesT>)
and F6), while other rules can be applied in any order. In group 7 (axioms inT) a lazy
unfoldingof the TBox is taken into account [2, 13]. Following this strategy, axioms inT are
dealt in a deterministic manner avoiding the exponential increase in the search space due to
the non-deterministic choices in a pure-tableau approach.

We now split the definition of clash (an explicit inconsistency) between clashes involving
the same truth prefix (homogeneous clashes) and those involving both prefixes (heterogeneous
clashes).

Definition 8 (Clash) A branch contains ahomogeneous clashif it contains one of the follow-
ing:

1. either⊥ ∈ T(x) or > ∈ F(x), for some individualx;

2. eitherA,¬A ∈ T(x) or A,¬A ∈ F(x) for some individualx and some concept name
A;

3. either>n R,6m R ∈ T(x) withm < n, or 6n R,>m R ∈ F(x) withm−1 < n+1,
for some individualx, and some role nameR.

A branch contains aheterogeneous clashif it contains one of the following:

1. T(x)∩F(x) contains eitherA or ¬A for some individualx and some concept nameA;

2. either>n R ∈ T(x) and >m R ∈ F(x) with m − 1 < n, or 6n R ∈ T(x) and
6m R ∈ F(x) with n < m + 1, for some individualx, and some roleR

A branch iscompleteif no new rule application is possible to labels in the branch. A complete
branch isopenif it contains no clash, otherwise it isclosed. A complete tableau is open if it
contains at least one open branch, otherwise it is closed. We call a branch with a homogeneous
clashas good as complete. Soundness and completeness of the calculus follow from the
version without prefixes [10].

Theorem 2 Let C,D be two concepts inALN , andT an acyclic TBox inALN . Then
C v D in T iff the tableau starting fromC ∈ T(x), D ∈ F(x) is closed.

Moreover, with prefixed tableaux we can distinguish between “real”subsumption, and sub-
sumption stemming from inner contradiction in concepts.

Theorem 3 Let C,D be two concepts inALN , andT an acyclic TBox inALN . If every
branch of the tableau starting fromC ∈ T(1), D ∈ F(1) contains a homogeneous clash, then
eitherC ≡ ⊥ or D ≡ > in T .

163

We now present the two algorithms for Concept Contraction and Concept Abduction, that
need some preliminary definitions.

Both algorithms use a functionroles(x), that given an individualx (as a sequence of inte-
gers and roles) returns the sequence of roles inx (without integers). For example,roles(1R3Q7) =
RQ. We letroles(k) = ε, i.e., whenx is just one integer,roles(x) returns the empty se-
quence. For a given conceptC, and a sequence of rolesσ, we define∀σ.C as∀R1.(· · ·(∀Rn.C) · · ·)
if σ = R1 · · ·Rn, and∀σ.C .= C in the special case in whichσ = ε.

Moreover, we assume that atomic concepts (names and number restrictions) can be given
a unique index, as inA1 u ∀R.((6 1 Q)2 u A3). Hence the substitution of anoccurenceof
a concept can be defined: we letD[C → >] denote the substitution of an occurrence of an
indexed atomic conceptC with the concept>, inside a conceptD. For example, ifD is
the concept above, thenD[A1 → >] = > u ∀R.((6 1 Q)2 u A3), while D[A3 → >] =
A1 u ∀R.((6 1 Q)2 u >). Multiple substitutions are denoted by a set of concepts,e.g., if
G = {A,B} thenD[C → >]C∈G means(D[A → >])[B → >]. Observe that since we
substitute only atomic concepts, the order of substitutions is ininfluent. For both algorithms,
we assume that concepts are indexed, so that substitutions are unambiguous.

Algorithm contract
input: ALN conceptsC, D, acyclic TBoxT
output: conceptsK (keep),G (giveup)
begin

compute a complete tableauτ for T , D ∈ T(x), C ∈ F(x)
if τ is openthen

/* no contraction needed */
return G := >,K := D

else ifevery branch inτ contains a homogeneous clashthen
/* eitherC or D is unsatisfiable inT */
return fail

else
choose(*) a branchβ containing only heterogeneous clashes;
let G := {〈Ci, xi〉|Ci ∈ T(xi), Ci ∈ F(xi) is a clash inβ}
let G := u〈Ci,xi〉∈G∀roles(xi).Ci

let K := D[Ci → >]〈Ci,xi〉∈G
return G, K

end

Observe that the algorithmcontractcontains a choice in step (*). This choice is needed
to select the contraction according to some minimality criterion. Only branches without ho-
mogeneous clashes need to be completely expanded, even after the first clash has been found.
Observe also that substituting an occurrence of a conceptC with > corresponds, inALN ,
to eliminating the occurrence. We preferred this notation instead of eliminating occurrences,
since it appears more concise.

Theorem 4 The conceptsG, K returned by the Algorithmcontract are a Contraction ofD
w.r.t. C andT .

164

Proof. First, note thatK u C is satisfiable by definition ofK; in fact, the tableau forK u C
is the same as the tableau forD u C, but it has now at least one open branchβ, in which all
clashes have been removed. Secondly,D ≡ G uK by construction. 2

Note that Algorithmcontract proves that Concept Contraction inALN with bushy TBoxes
is solvable in polynomial time.
We now present the algorithm for Concept Abduction, which also uses the tableaux rules
previously defined.

Algorithm abduce
input: ALN conceptsC, D, acyclic TBoxT
output: concept H (hypotheses)
begin

compute a complete tableauτ for T , C ∈ T(x), D ∈ F(x)
if τ is closedthen

/* no abduction needed */
return H := >

else
choose(*) a set of pairsH := {〈Ci, xi〉} and
let H := u〈Ci,xi〉∈H∀roles(xi).Ci

such that (1) every open branch inτ contains at least
one constraintCi ∈ F(xi) fromH
(2) C uH is satisfiable inT

return H
end

Theorem 5 The conceptH returned by the Algorithmabduce is a solution of the CAP
〈C,D, T 〉.

Proof. Let τ be the tableau built byabduce. The tableau starting fromC uH ∈ T(1), D ∈
F(1) is τ , plus the constraints signedT from H. Hence, it is closed. Hence,T |= CuH v D.
Regarding the conditionC uH satisfiable inT , it is enforced by Condition (2) in the choice
of H. 2

Condition (2) is necessary inabduce, since heterogeneous clashes could be formed also by
contradicting an axiom inT . In that case, although it still holdsC u H v D in T , the
subsumption trivially holds sinceC uH ≡ ⊥. We conclude the section by showing that our
Algorithm abduce puts an upper bound to Concept Abduction that meets the lower bound
proved in the previous section.

Theorem 6 Let P = 〈C,D, T 〉 a Concept Abduction Problem, whereC,D are concepts
in ALN , T is a bushy TBox inALN and k is an integer. Deciding whether there exists a
solution of lengthk in SOLCAP≤(P) is NP-complete.

Proof. Hardness was shown in Thm. 1. Membership in NP is proved by the correctness of
Algorithm abduce, since it is sufficient to run the algorithm, and guessing in the nondeter-
ministic step (*) a setH that defines a conceptH of lengthk. 2

165

4 Conclusion

We have shown how Concept Abduction and Concept Contraction for DLALN can be per-
formed using prefixed-tableaux. For such DL, we proved optimality of the methods by show-
ing that they meet lower bounds obtained by a complexity analysis. Although devised for a
simple DL, we believe that the proposed approach could be easily extended to more expressive
DLs.

Acknowledgements

We wish to thank A. Calı́ and D. Calvanese for fruitful discussions and the anonymous re-
viewers for helping in improving paper quality. This work was carried out in the framework
of projects PON CNOSSO and MS3DI.

References

[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel Schneider (eds.).The
Description Logic Handbook. Cambridge University Press, 2003.

[2] F. Baader, B. Hollunder, B. Nebel, H. Profitlich, and E. Franconi. An empirical analysis
of optimization techniques for terminological representation systems or “making KRIS
get a move on”. InKR’92, pages 270–281.

[3] A. Borgida and P. F. Patel-Schneider. A Semantics and Complete Algorithm for Sub-
sumption in the CLASSIC Description Logic.J. of Artificial Intelligence Research,
1:277–308, 1994.

[4] Martin Buchheit, Francesco M. Donini, Werner Nutt, and Andrea Schaerf. A refined
architecture for terminological systems: Terminology = schema + views.Artif. Intell.,
99(2):209–260, 1998.

[5] D. Calvanese. Reasoning with inclusion axioms in description logics. InECAI’96, pages
303–307. John Wiley & Sons, 1996.

[6] M. Cialdea Mayer and F. Pirri. Modal propositional abduction.Journal of the IGPL,
3(6):99–117, 1995.

[7] S. Colucci, T. Di Noia, E. Di Sciascio, F.M. Donini, and M. Mongiello. Concept abduc-
tion and contraction in description logics. InDL 2003, 2003.

[8] T. Di Noia, E. Di Sciascio, F.M. Donini, and M. Mongiello. A system for principled
matchmaking in an electronic marketplace. InWWW’03. ACM, 2003.

[9] T. Di Noia, E. Di Sciascio, F.M. Donini, and M. Mongiello. Abductive matchmaking in
description logics. InIJCAI 2003, 2003.

[10] F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of concept lan-
guages.Information and Computation, 134:1–58, 1997.

166

[11] F.M. Donini and F. Massacci. Exptime tableaux forALC. Artif. Intell., 124:87–138,
2000.

[12] P. Gardenfors.Knowledge in Flux. Mit Press, Bradford Book, 1988.

[13] I. Horrocks. Using an expressive description logic: FaCT or fiction? InKR’98, pages
636–645.

[14] I. Horrocks and U. Sattler. Ontology reasoning in the SHOQ(D) description logic. In
IJCAI 2001, pages 199–204, 2001.

[15] I. Horroks, P. Patel-Schneider, and F. van Harmelen. From shiq to rdf to owl: The
making of a web ontology language.Journal of Web Semantics, 1(1):7–26, 2003.

[16] M. Klein, J. Broekstra, D. Fensel, F. van Harmelen, and I. Horrocks.Ontologies and
schema languages on the web. MIT Press, 2003.

[17] L. Li and I. Horrocks. A software framework for matchmaking based on semantic web
technology. InWWW’03. ACM Press, 2003.

[18] B. Nebel. Terminological reasoning is inherently intractable.Artif. Intell., 43:235–249,
1990.

[19] J.A. Reggia, D.S. Nau, and Y. Wang. Diagnostic expert systems based on a set covering
model. International Journal on Man Machine Studies, 19:437–460, 1983.

[20] R. M. Smullyan.First-Order Logic. Springer-Verlag, New York inc., 1968.

[21] D. Trastour, C. Bartolini, and C. Priest. Semantic web support for the business-to-
business e-commerce lifecycle. InWWW’02, pages 89–98. ACM, 2002.

167

Tableau Systems for SHIO and SHIQ
Jan Hladik∗, Jörg Model

Chair for Automata Theory, TU Dresden
{hladik,model}@tcs.inf.tu-dresden.de

1 Introduction

Two prominent families of algorithms for the satisfiability test of DLs are automata-
based algorithms (see e.g. [6]), which translate a concept C into an automaton AC

accepting all (abstractions of) models for C, and tableau algorithms (TAs) [2], which
incrementally create a tree-shaped (pre-) model for C using a set of completion rules.
In short, the advantages of automata algorithms are on the theoretical side, because in
many cases the proofs are very elegant and provide tight complexity bounds (in partic-
ular for ExpTime-complete logics), whereas the advantages of tableau algorithms are
on the practical side, since they are well suited for implementation and optimisation.

Thus, an approach combining both advantages is highly desirable. In [1], we in-
troduced tableau systems (TSs), a framework for tableau algorithms. From a TS for
a DL L, we can derive an automata algorithm deciding satisfiability of L inputs in
exponential time, and a tableau algorithm for L, including an appropriate blocking
condition which ensures termination. As an application of this framework, we present
in this paper tableau systems for two expressive DLs, the new DL SHIO and the well-
known SHIQ [5]. Our main results are the following: firstly, we obtain that SHIO
satisfiability is ExpTime-complete and can be decided by a tableau algorithm. Sec-
ondly, we will see that although these two logics share most of their constructs, they
lead to quite different TSs, which demonstrates how the capabilities of our framework
can be used to capture different language properties. Thirdly, the succinctness of the
proofs demonstrates how our framework simplifies the design of TAs.

2 The Tableau Framework for ExpTime Logics

Although the term “DL tableau algorithm” is not formally defined, the following fea-
tures can be considered as the common ground for existing algorithms: a TA operates
on a completion tree which represents a model for the input (e.g. a concept term, pos-
sibly together with an RBox or TBox) under consideration. To generate this model,
the TA starts with an initial tree, which is subsequently modified according to a set
of completion rules, which may or may not be applicable to a certain node. These
rules essentially describe subtrees of the completion tree before and after rule appli-
cation, i.e. pre- and post-conditions. In many cases, they only operate on a node and
its direct neighbours, but sometimes they also consider nodes which are arbitrarily

∗The first author of this paper is supported by the DFG, Project No. GR 1324/3-4.

168

far apart (e.g. for nominals as in [4]) or global information which is relevant for all
nodes (e.g. for concept or role inclusion axioms). In general, it is possible that several
rules are applicable to a node at the same time, but the sequence of rule applica-
tions is don’t-care-nondeterministic, i.e. every sequence will lead to the same result.
In contrast, some rules, e.g. for disjunction, are don’t-know -nondeterministic, i.e. it is
possible that one disjunct may lead to a model, while another one may not.

An inconsistency in the generated completion tree is detected through clash trig-
gers, subtrees containing an obvious contradiction, which means that a completion
tree containing a clash trigger cannot be transformed into a model. Thus, a model is
represented by a completion tree which is saturated 1, i.e. to which no rule is applicable,
and clash-free, i.e. not containing a clash trigger.

In our framework, we formalise a completion tree as an S-tree ((V, E, n, �), µ),
where (V,E) is a bounded width tree, n and � are node and edge labelling functions,
and µ is a global memory which is used to store information relevant for all nodes.
Rules are are represented by S-Patterns, which are essentially S-trees of bounded
depth. For every S-pattern P , we describe the possible modifications by all rules as
follows: P is mapped to a set of sets of patterns {S1, S2, . . . , Sn}, where the choice of
the set Si represents the don’t-care choice of the rule that is applied, and the choice
of the pattern within the set Si represents the don’t-know choice of the alternative (a
deterministic rule corresponds to a singleton set Si). In particular, if P is saturated,
then it is mapped to the empty set. As an example, consider a pattern P in which
the node n is labelled with {C �D, E � F}. Here, one can define the rules as follows:
P �→ {{P1}, {P2, P3}}, and in P1, C and D are added to the label of n, whereas E is
added in P2 and F in P3.

S-patterns are also used to describe clash triggers: within our framework, a clash
trigger is simply a pattern which contains a contradiction (in the context of the logic
under consideration). Note that S-patterns also contain a µ component, thus rules and
clash triggers can read the global memory, and rules can also modify it.

Since our intention was to define one tableau system for one logic rather than a
particular one for every possible input, we have to include patterns for all possible node
labels in these rules and clash triggers. For a particular input Γ, these sets are mapped
to the appropriate subsets, which is necessary to ensure decidability in ExpTime.

Formally, a tableau system S is a tuple (NLE, GME, EL, ·S , k,R, C), where NLE is
the set of all possible node label elements, GME is the set of global memory elements,
EL is the set of edge labels, k is the maximum pattern depth, i.e. the number of edges
on a longest path, and R and C are the sets of rules and clash triggers as defined
above. The function ·S maps an input Γ to the tuple ΓS = (nle, gme, el, ini), where nle,
gme and el are finite subsets of the corresponding sets in S, and ini ⊆ ℘(nle)×℘(gme)
describes the possible initial states for Γ (℘ denotes power set).

In order to obtain the results of our framework (ExpTime automata algorithm
and a terminating TA) from a tableau system S, it has to satisfy three conditions:
ExpTime-admissibility, soundness and p-completeness, which will be explained in the
following paragraphs. Since the formal definitions require a rather complex notation,
we will only explain the intuition behind these conditions here and refer the reader
to [1] for the details of the definitions.

1Usually, this property is called “completeness”; we use the word “saturated” to avoid confusion
with the notion of completeness of the decision procedure.

169

ExpTime-admissibility. In order to be admissible, tableau systems have to satisfy
four conditions:

1. Rules may never remove anything from a pattern, and they must add information
(nodes, labels or global memory elements).

2. If Ps = (Vs, Es, ns, �s) is a saturated pattern and P = (V, E, n, �) is a non-
saturated sub-pattern of Ps (i.e. V ⊆ Vs and, for all v ∈ V , n(v) ⊆ ns(v)),
then every applicable rule can be applied to P in such a way that the resulting
pattern P ′ is a sub-pattern of Ps.

3. Rules may only add elements (to nodes, edges or the global memory) which
appear in the subset nle, el or gme for the corresponding input Γ.

4. If P is a clash-trigger, then all super-patterns of P are also clash-triggers.
Conditions 1 and 2 are required to prove termination. However, not all existing TAs
satisfy these conditions, e.g. sometimes there are rules which merge two nodes, e.g. the
�-rule for SHIQ in [5], or create more nodes than necessary for a saturated pattern,
e.g. the usual definition of the ∃-rule. However, for the logics we considered it was
possible to reformulate these rules in an admissible way. For example, we can define
the rules for ∃- and �-formulas non-deterministically (see below).

For ExpTime-admissibility, we require in addition to admissibility that the sets
nleS , elS , gmeS and iniS and the size of their elements are polynomial in the size of Γ
and can be computed in time exponential in the size of Γ, and that it can be decided
in exponential time whether a rule or a clash trigger is applicable to a pattern.
Soundness and p-completeness. For a tableau system S, it must be shown that
if there exists a clash-free and saturated completion tree, then there exists a model
(soundness), and conversely, that there exists a polynomial p such that for every
satisfiable input Γ, there exists a clash-free and saturated completion-tree whose out-
degree is bounded by p(|Γ|) (p-completeness). Here, we distinguish between an S-tree
compatible with Γ, a tree which is labelled in accordance with ΓS , from an S-tree
for Γ, a tree which can be constructed from an initial tree by rule application. If
a saturated and complete S-tree compatible with Γ exists, then the existence of a
saturated and complete S-tree for Γ follows from the framework (essentially from the
admissibility condition). Thus in the proofs, we will only show the existence of an
S-tree ((V, E, n, �), µ) compatible with Γ, which is defined as follows:

• µ ⊆ ℘(gmeS(Γ)) and n(x) ⊆ ℘(nleS(Γ)) for each x ∈ V ;
• �(x, y) ∈ elS(Γ) for each (x, y) ∈ E;
• there exists (Λ, ν) ∈ iniS(Γ) such that ν ⊆ µ and Λ ⊆ n(v0) for the root node v0;
• the out-degree of T is bounded by p(|Γ|) for a polynomial p.

3 The Description Logics SHIO and SHIQV

Both SHIO and SHIQ are extensions of SHI (called ALCHIR+ in [3]), which
provides for transitive and inverse roles and role hierarchies. In addition to the SHI
constructs, SHIO allows for nominals, i.e. concepts which have to be interpreted by
singleton sets. This makes it possible to express that some concept can only have
one instance (e.g. God), or to give names to individuals (e.g. Rome or John) and
use these names in concept definitions (Roman or Friend of John). The logic SHIQ
allows for qualifying number restrictions (QNR) as described in [5]. For this paper,
we introduce the syntactic variant SHIQV , which does not include universal and

170

existential quantification and thus requires fewer rules. For both logics, the presence
of transitive roles together with role hierarchies makes it possible to internalise general
concept inclusion axioms [5], thus we do not include them in our syntax.

Definition 1 (SHIO and SHIQV syntax.) Let CON be a set of concept names,
ROL be a set of role names, the set of nominal names NOM ⊆ CON, and the set of
transitive role names TRA ⊆ ROL. If r is a role name, then both r and r−, the inverse of
r, are roles. To avoid multiple inverse operators as in r−−, we use the notation r, with
the meaning r−, if r is a role name, and s, if r is an inverse role s−. If r and s are roles,
then r � s is a role inclusion axiom. An RBox is a finite set of role inclusion axioms.
For an RBox B, we define the role hierarchy B+ as B+ = B ∪ {r � s | r � s ∈ B},
and by �* B we denote the reflexive-transitive closure of � on B+. A role r is called
simple w.r.t. an RBox R if there exists no role s ∈ TRA with s �* B r or s �* B r.

The set of SHIO concepts is inductively defined as follows: every concept name
is a concept; and if C and D are concepts and r is a role, then ¬C, C � D, C � D,
∀r.C, and ∃r.C are also concepts.

The set of SHIQV concepts is inductively defined as for SHIO, with the re-
striction that the set NOM is empty and the quantifiers ∃ and ∀ are not allowed. In
addition, SHIQV provides the following constructors: if C is a concept, m is a non-
negative integer and r is a simple role, then (� m r C) and (� m r C) are SHIQV

roles. If r is an arbitrary role, then (� 0 r C) and (� 1 r C) are also SHIQV concepts.

The concepts ∀r.C and ∃r.C can be expressed in SHIQV by (� 0 r ¬C) and
(� 1 r C), respectively. Thus, our syntax allows for non-simple roles in QNRs, if they
are equivalent to an ∀ or ∃ formula, but not in the general case.

Definition 2 (SHIO and SHIQV semantics.) An interpretation of a concept C
w.r.t. an RBox B is a pair I = (∆I , ·I), where ∆I is a non-empty set of individuals
and ·I maps every concept name C to a set CI ⊆ ∆I and every role name r to a
set rI ⊆ ∆I × ∆I . For all O ∈ NOM, it holds that #OI = 1, where #S denotes the
cardinality of a set S. For all t ∈ TRA, it holds that tI = (tI)+, where ·+ denotes
the transitive closure of a relation t. Complex roles and concepts are interpreted as
follows:

• (r−)I = {(x, y) | (y, x) ∈ rI},
• (¬C)I = ∆I \ CI , (C � D)I = CI ∩ DI , (C � D)I = CI ∪ DI ,
• (∃r.C)I = {d ∈ ∆I | there is an e ∈ ∆I with (d, e) ∈ rI and e ∈ CI},
• (∀r.C)I = {d ∈ ∆I | for all e ∈ ∆I , if (d, e) ∈ rI , then e ∈ CI},
• (� m r C)I =

{
x | �{(x, y) ∈ rI and y ∈ CI} ≤ m

}
,

• (� m r C)I =
{
x | �{(x, y) ∈ rI and y ∈ CI} ≥ m

}
.

An interpretation I is a model for an RBox B if, for all r � s ∈ B, it holds that
rI ⊆ sI . A model for C w.r.t. B is a model for B where CI is a nonempty set. If such
a model exists, we say that C is satisfiable w.r.t. B.

4 The Tableau Systems SO and SQ
Before defining the tableau systems, we fix some notation. Firstly, in an S-pattern
P = ((V, E, n, �), µ) with {m,n} ⊆ V , we call m an r-neighbour of n if �(n, m) = r or

171

�(m, n) = r. Secondly, to capture roles which are implicitly declared to be transitive
(e.g. r if r ∈ TRA), we use, for an RBox B, the predicate TransB, and define that
for a role r, TransB(r) is true iff there exists a role s such that s ∈ TRA, s′ �* B r and
r �* B s′′ for some s′, s′′ ∈ {s, s−}.

For the sake of simplicity, we only deal with concepts in negation normal form
(NNF), i.e. where negation appears only directly before concept names. Every concept
can be transformed into an equivalent one in NNF in linear time using the duality
of ∧ to ∨, ∃ to ∀, and � to �. By ∼ C we denote the NNF of ¬C. The closure
clos(C, B) of a concept term C and an RBox B is defined as follows: C ∈ clos(C, B); if
¬D ∈ clos(C, B), then D ∈ clos(C, B); if D�E or D�E ∈ clos(C, B), then {D, E} ⊆
clos(C, B); if ∃r.D ∈ clos(C, B), then D ∈ clos(C, B); and if ∀r.D ∈ clos(C, B) and
the role s appears in C or B, then {D,∀s.D,∀s.D} ⊆ clos(C, B).2 For QNR, we need
the following addition: if (� m r D) or (� m r D) ∈ clos(C, B), then {D, ∼D } ⊆
clos(C, B), and if (� 0 r D) ∈ clos(C, B) and the role s appears in C or B, then
{(� 0 s D), (� 0 s D)} ⊆ clos(C, B).

We can now define a TS for SHIO, SO = (NLEO, GMEO, ELO, 1, ·SO ,RO, CO).
Here, we use the global memory for three purposes: for transitive roles, role inclusion
axioms, and for information about concepts appearing in a node label together with
a nominal.

• NLEO is the set of all SHIO concepts,
• GMEO = {(O,C) | O ∈ NOM and C ∈ NLEO} ∪
{Trans(r) | r is a role} ∪ {r �* s | r and s are roles},

• ELO is the set of all SHIO roles, and
• for an input Γ = (C, B), where C is a concept and B is an RBox, the function
·SO maps Γ to a tuple ΓSO = (nleΓ, gmeΓ, elΓ, iniΓ) with

• nleΓ = clos(C, B),
• elΓ = {r | r or r appears in C or B},
• gmeΓ = {(O,D) | O ∈ NOM ∩ clos(C, B) and D ∈ clos(C, B)} ∪
{Trans(r) | r ∈ elΓ} ∪ {r �* s | {r, s} ⊆ elΓ}, and

• iniΓ = {({C}, {Trans(r) | TransB(r) holds} ∪ {r �* s | r �* B s holds})}.
The set of rules RO is defined in Figure 1. For each pattern P = (t, µ), where

t = (V, E, n, �) has v0 as root and depth at most 1, R(P) contains the described
sets. Most of these rules correspond directly to the “standard” rules known from DL
tableaus, with the exception of R∃, which in our framework is non-deterministic. The
reason for this is that with a deterministic rule which simply adds a new son node,
this TS would violate condition 2 of admissibility (see Section 2). In an implementa-
tion, a deterministic rule would be preferable due to efficiency considerations, since
the creation of duplicate nodes does not compromise completeness of the decision pro-
cedure. Finally, the set CO of clash patterns contains all patterns ((V, E, n, �), µ) of
depth 0 with node v0 such that {D,¬D} ⊆ n(v0) for some concept D ∈ clos(C, R).
This completes SO, and we can obtain our first result:

Lemma 3 The TS SO is admissible, sound and q-complete for SHIO satisfiability,
where q = (x �→ x2).

Proof. Since admissibility of the tableau systems is easy to see, we prove only sound-
ness and p-completeness.

2The slightly unusual definition for the ∀ quantifier is motivated by the ∀+-rule (see below), which
in turn is necessary to capture transitive sub-roles of non-transitive roles.

172

R� If C � D ∈ n(v) for a node v ∈ V and {C,D} �⊆ n(v), then R(P) contains
{((V,E, n′, �), µ)}, where n′(x) = n(x) for all x �= v and n′(v) = n(v) ∪ {C,D}.

R� If C � D ∈ n(v) and {C,D} ∩ n(v) = ∅, then R(P) contains {((V,E, n′, �), µ),
((V,E, n′′, �), µ)}, where n′(x) = n′′(x) = n(x) for all x �= v, n′(v) = n(v) ∪ {C}
and n′′(v) = n(v) ∪ {D}.

R∃ If ∃r.C ∈ n(v0), v1, . . . , vm are all the sons of v0 with �(v0, vi) = r, and C /∈ n(vi) for all
i, 1 ≤ i ≤ m, then R(P) contains the set {P0, P1, . . . , Pm} with

• P0 = ((V0, E0, n0, �0), µ), where v′ /∈ V , V0 = V ∪ {v′}, E0 = E ∪ {(v0, v
′)}, n0 =

n ∪ {v′ �→ {C}}, �0 = � ∪ {(v0, v
′) �→ r}.

• for all i, 1 ≤ i ≤ m,Pi = ((V,E, ni, �), µ), where ni(x) = n(x) for all x �= vi and
ni(vi) = n(vi) ∪ {C}.

R∀ If ∀r.C ∈ n(v) for some v ∈ V , v′ is an s-neighbour of v with C /∈ n(v′) and s �* r ∈ µ, then
R(P) contains {((V,E, n′, �), µ)} with n′(x) = n(x) for x �= v′ and n′(v′) = n(v′)∪{C}.

R∀+ If ∀r.C ∈ n(v), {Trans(s), s �* r, q �* s} ⊆ µ and v′ is an q-neighbour of v with ∀s.C /∈
n(v′) , then R(P) contains {((V,E, n′, �), µ)} with n′(x) = n(x) for x �= v′ and n′(v′) =
n(v′) ∪ {∀s.C}.

R↑ If {O,C} ⊆ n(v) for some O ∈ NOM and (O,C) /∈ µ, then R(P) contains
{((V,E, n, �), µ′)}, where µ′ = µ ∪ {(O,C)}.

R↓ If O ∈ n(v) for an O ∈ NOM, (O,C) ∈ µ and C /∈ n(v), then R(P) contains
{((V,E, n′, �), µ)}, where n′(x) = n(x) for x �= v and n′(v) = n(v) ∪ {C}.

Figure 1: Tableau rules for SHIO.

Soundness. From a saturated and clash-free S-tree (t, µ) with t = (V, E, n, �), we
generate a model I = (∆I , ·I) as follows: ∆I = {dO | O ∈ NOM ∩ clos(C, B)} ∪ {dv |
v ∈ V and n(v) ∩ NOM = ∅}, i.e. we have one individual for each nominal name and
one individual for every tree node that is not labelled with a nominal. A concept name
C is interpreted as follows: for every O ∈ NOM ∩ clos(C, B), dO ∈ CI iff there is a
node v ∈ V with {O,C} ⊆ n(v). Since R↑ and R↓ are not applicable, all nodes whose
labels contain the same nominal symbol have exactly the same label, and thus ·I is
well-defined. For all other individuals, dv ∈ CI iff C ∈ n(v). For a role r, rI is the
smallest set satisfying the following conditions: if �(v, w) = r or �(w, v) = r, then
(dv, dw) ∈ rI ; if s �* r ∈ µ, then sI ⊆ rI ; if Trans(r) ∈ µ, then rI is closed under
transitivity.

We will now show by induction that complex concepts are interpreted correctly.
By definition, all individuals belong to the interpretation of the concept names in
their labels, and the interpretation of a nominal contains exactly one element. From
our construction, it follows directly that the role hierarchy is respected and transitive
roles are interpreted correctly. For a conjunct C �D (disjunct C �D) in a node label
n(v), since R� (R�) is not applicable, it follows that C and D (C or D) are contained
in n(v), and by induction, dv is contained in CI ∩ DI (CI ∪ DI).

If ∃r.C ∈ n(v), we assume w.l.o.g. that r is a role name (if it is an inverse role,
the argument is analogous). Since R∃ is not applicable, there exists an r-son w of
v with C ∈ n(w). By construction, (dv, dw) ∈ rI and dw ∈ CI . If ∀r.C ∈ n(v), we
again assume that r is a role name. There are two possible reasons why (dv, dw) can
be contained in rI : firstly, if w is an s-neighbour of v for some s with s �* r ∈ µ. In

173

this case, it follows that C ∈ n(w) because R∀ is not applicable, and thus dw ∈ CI .
Secondly, if there exist roles s, s1, . . . , sk such that {Trans(s), s �* r, si �* s} ⊆ µ for
all i ∈ {1, . . . , k} and there is an si-chain from v to w, i.e. a sequence of nodes
v1, v2, . . . , vn such that, for all edges e ∈ {(v, v1), (v1, v2), . . . , (vn, w)}, it holds that
e ∈ E and �(e) = si for some i. In this case, since R∀+ is not applicable, all nodes
v1, . . . , vk are labelled with ∀s.C and, since R∀ is not applicable to vk, n(w) contains
C. By induction, it follows that dv ∈ (∀r.C)I .
Completeness. We have to show that if there exists a model I = (∆I , ·I) for an
input Γ = (C, B), then there also exists a clash-free and saturated S-tree (t, µ) with
t = (V, E, n, �) for Γ, whose width is at most quadratic in |Γ|. We will create (t, µ) by
unravelling I: firstly, we add the appropriate transitivity axioms (Trans(r) if TransB(r)
holds) and role inclusion axioms (r �* s if r �* B s holds) to µ. The tree t is inductively
defined as follows: since I |= Γ, there is an individual d0 in ∆I which satisfies C. We
start with V = {v0} and define n(v0) as the set of all concepts in clos(C, B) which d0

satisfies. We define a function π : V → ∆I and set π(v0) = d0.
Then we iterate, for every node v, the following procedure: for every existen-

tial formula ∃r.D ∈ n(v) we choose a witness individual d ∈ ∆I with d ∈ DI and
(π(v), d) ∈ rI (such a witness exists by definition of n(v)). We create a new node w
with π(w) = d, (v, w) ∈ E and �(v, w) = r. Again, we label w with the appropriate
concepts in clos(C, B) and then continue the iteration. For every nominal concept O,
we add to µ the pair (O,D) for every concept D ∈ clos(C) which the unique element
dO of OI satisfies.

It is easy to see that (t, µ) is compatible with Γ and clash-free. We will now show
that it is also saturated: from the definition of clos, it follows that R� and R� are
not applicable. If a node label n(v) contains a concept ∃r.D, then by construction
of t, there is an r-successor of v which is labelled with D. Likewise, if ∀r.D ∈ n(v),
all r-neighbours of v are labelled with D. If ∀r.D ∈ n(v), µ contains s �* r, q �* s and
Trans(s), and there is an q-neighbour w of v, then, since I is a model, (π(v), π(w)) ∈ sI

and, since sI is transitive, for every node u with (π(w), π(u)) ∈ sI , it also holds that
(π(v), π(u)) ∈ sI , and therefore π(u) ∈ DI . Thus, π(w) |= ∀r.D and, since s �* B r,
v(w) contains ∀s.D, which means that R∀+ is not applicable. Finally, since every node
n with π(n) = dO for a nominal O is labelled with exactly those concepts for which µ
contains (O,C), R↑ and R↓ are not applicable.

The width of the S-tree is quadratic in the length of Γ, because we create for every
node at most one successor for every existential formula in clos(Γ) and the number of
such formulas is bounded by the product of the number of roles appearing in C or B
and the number of existential subformulas of C.

From this, we can derive that SHIO satisfiability is decidable through a tableau
algorithm, and we know that for the blocking condition, equality blocking suffices, i.e.
we do not need pair-wise blocking as e.g. for SHIQ [5], since we use only patterns of
depth at most 1. We can also derive a complexity result:

Theorem 4 Satisfiability for SHIO concepts w.r.t. RBoxes is ExpTime-complete.

Proof. It is easy to see that S is ExpTime-admissible: e.g. the size of nleS(Γ) and
gmeS(Γ) is quadratic in the size of the input. Soundness and completeness have been
shown above. ExpTime-hardness follows from the fact that SHIO is an extension of
ALC with TBoxes, for which satisfiability is known to be ExpTime-hard [7].

174

R�/R� See RO.
RC If (≷ m r C) ∈ n(v) (where ≷ is a placeholder for � or �) for some m and a node

v ∈ V and {C, ∼C } ∩ n(w) = ∅ for an r-neighbour w of v, then R contains the set
{((V,E, n′, �), µ), ((V,E, n′′, �), µ)} with n′(x) = n′′(x) = n(x) for all x ∈ V \ {w} and
n′(w) = n(w) ∪ {C} and n′′(w) = n(w) ∪ {∼C }.

R∀+ If (� 0 r C) ∈ n(v) for a node v ∈ V and there is a role s with {Trans(s), q �* s, s �* r} ⊆
µ and an q-neighbour w of v with (� 0 s C) �∈ n(w), then R contains {((V,E, n′, �), µ)}
with n′(x) = n(x) for x �= w and n′(w) = n(w) ∪ {(� 0 s C)}.

R� If P is a pattern of depth 2 and (� m r C) ∈ n(w) for one successor w of v0 and there are
less than m s-neighbours of w with s �* r ∈ µ and C ∈ n(ui), then R contains the set
{P0, P1 . . . Pn}, where u1 . . . un are the s-neighbours of w with s �* r ∈ µ and C �∈ n(ui)
and

• P0 = ((V0, E0, n0, �0), µ) with u0 �∈ V ,V0 = V ∪ {u0}, E0 = E ∪ {(w, u0)},
n0(x) = n(x) for all x ∈ V and n0(u0) = {C} and �0 = � ∪ {(w, u0) �→ s}.

• For 1 ≤ i ≤ n, Pi = ((V,E, ni, �), µ) with ni(x) = n(x) for all x ∈ V \ {ui} and
ni(ui) = n(ui) ∪ {C}.

R�ROOT If {(� m r C),ROOT} ∈ n(v0) of the root node v0 and there are less than m s-
successors of v0 with s �* r ∈ µ and C ∈ n(ui), then R contains the set {P0, P1 . . . Pn},
where u1 . . . un are the s-successors of v0 with s �* r ∈ µ and C �∈ n(ui) and P0, . . . , Pn

are defined as for R�.

Figure 2: Tableau Rules for SHIQV

For SHIQV , we need a TS with quite different properties: to handle QNR in the
presence of inverse roles correctly, we need patterns of size 2. However, this makes a
special treatment for the root node necessary, since it does not have a predecessor.
Thus, we need an additional concept name ROOT and a special �-rule for the root
node. Moreover, in contrast to the algorithm in [5], we do not have a �-rule, but a
nondeterministic �-rule, which recycles neighbour nodes if necessary.

The TS SQ = (NLEQ, GMEQ, ELQ, 2, ·SQ ,RQ, CQ) is defined as SO, with the ex-
ception that NLEQ contains the additional element ROOT, GMEQ and gmeΓ do
not contain any “nominal elements” (O, C) and iniΓ = {({C, ROOT}, {Trans(r) |
TransB(r) holds} ∪ {r �* s | r �* B s holds})}. The rules RQ are given in Figure 2.
Note that no rule modifies µ and that R� applies only to patterns whose depth is
exactly 2, whereas the other rules apply to patterns of depth at most 2. Here, we
obtain an explanation why double-blocking [5] is needed for SHIQ: the maximum
required pattern depth is 2.

We do not need an extra rule for concepts of the form (� 0 s D) to propagate ∼D
to all the appropriate neighbours (analogous to R∀), since this is performed by the
rule RC. We also do not have a �-rule, but only a corresponding clash trigger: the set
CQ contains all patterns in CO and additionally all patterns of depth at most 2 such
that (� m s C) ∈ n(v) with v ∈ V and there are at least m+1 r-neighbours of v with
r �* s ∈ µ. For the proof of p-completeness, we require that the numbers in number
restrictions are coded unary, since otherwise the width of a model can be exponential
in the size of the input. We can then obtain alternative proofs for the known results
of SHIQ decidability and complexity:

175

Lemma 5 If unary coding is used in number restrictions, the TS SQ is ExpTime-
admissible, sound and q-complete for SHIQV satisfiability, where q = (x �→ x2).

Proof. The soundness proof is easier than for SO, since a completion tree corresponds
directly to a model, and we do not have to “merge” nodes labelled with nominals.
Soundness. From a saturated and clash-free S-tree (t, µ) with t = (V, E, n, �), we
generate a model I = (∆I , ·I) as follows: ∆I = {dv | v ∈ V }. For any concept name
D and any role r we have the same interpretation as in the proof of soundness for
SHIO. Thus, for � and � concepts, the proof is analogous to the one for Lemma 3.

We will now show that the QNR (� m r D) and (� m r D) are also interpreted
correctly. Let (� m r C) be a concept in n(v) of a node v. Then, since the S-tree
is saturated, there exist at least m r-neighbours u1 . . . um of v with C ∈ n(ui) and
hence dui ∈ CI . From our construction, it follows that (dv, dui) ∈ rI and thus �{d |
(dv, d) ∈ rI and d ∈ CI} ≥ m. If (� m r C) ∈ n(v) for a node v and a simple role
r, then, since the S-tree is clash-free, there exist at most m r-neighbours u1 . . . um of
v with C ∈ n(ui) and hence dui ∈ CI . All other r-neighbours w contain the concept
∼D because the rule RC is not applicable. Since r is simple, our construction of rI

does not introduce any further rI-neighbours. Thus, it follows that �{d | (dv, d) ∈
rI and d ∈ CI} ≤ m.

For a concept (� 0 r C) ∈ n(v) and a non-simple role r, the proof is similar to
the one for ∀-concepts in SHIO: for roles s, s1, . . . , sn with s ∈ TRA and si �* s �* r, it
follows from saturatedness of the S-tree that (� 0 r C) ∈ n(w) for every node w that
is reachable from v via an si-chain, and thus all r-neighbours of w are labelled with
∼C since the tree is clash-free and the rule RC is not applicable.
Completeness. We have to show that if there exists a model I = (∆I , ·I) for an
input Γ = (C, B), then there also exists a clash-free and saturated S-tree (t, µ) with
t = (V, E, n, �) for Γ. We will create (t, µ) by unravelling I: the global memory µ is
created as in the case of SHIO by adding all appropriate transitivity and role inclusion
axioms. The tree is inductively defined as follows: we start with an individual d0 ∈ CI ,
create a node v0, and a function π with π(v0) = d0. Moreover, we define, for this and
all further nodes v, n(v) as the set of all concepts D ∈ clos(C, B) which the individual
π(v) satisfies. For the root node, we add the marker concept ROOT to n(v0).

New nodes are added to the tree if there is a node v and a formula
(� m r D) ∈ n(v): if there exist only k r-neighbours of v and k < m, we choose
appropriate individuals dk+1 . . . dm, i.e. individuals which are not yet in the range of
π, with di ∈ DI and (π(v), di) ∈ rI . For these nodes, we create r-neighbours u1 . . . um

of v and set π(ui) = di. Since I is a model, it always is possible to find appropriate
individuals. From this construction, it follows that R� and R�ROOT are not applica-
ble. The rule RC is not applicable by definition, since every node satisfies either C or
∼C for any concept C, and for R�, R� and R∀+, saturatedness follows analogous to
the proof for SO. Note that the out-degree of the S-tree is bounded by the number of
concepts of the form (� m r D) ∈ clos(C, B) and the highest number m occurring in
such a concept.

The resulting S-tree can neither contain a clash trigger with {C, ∼C } ⊆ n(v)
for a node v and a concept C, since I is a model, nor a clash trigger with a number
restriction of the form D = (� m r C) ∈ n(v) of a node v ∈ V with π(v) = d, because
d ∈ DI and we create at most one r-neighbour of v for every rI-neighbour of d.

176

It is easy to see that (t, µ) is compatible with Γ and the width is at
most quadratic in length of Γ since we create only m successors for a formula
(� m r C) ∈ clos(C, B), the number m is coded unary and the number of such
formulas is quadratic in the length of Γ.

Theorem 6 Satisfiability for SHIQV concepts w.r.t. RBoxes is ExpTime-complete.

Proof. The tableau system SQ is ExpTime-admissible: the size of nleS(Γ) and of
gmeS(Γ) is quadratic in the size of the input. Soundness and p-completeness have
been shown above. ExpTime-hardness follows as for SO.

5 Conclusion and Outlook

We have described the main features of the tableau framework for ExpTime logics and
defined tableau systems for the new DL SHIO and the known DL SHIQ. It turned
out that these two logics make use of different features of the tableau framework: to
capture nominals, we need the global memory, whereas large patterns are needed to
handle QNR properly. From the tableau systems, we can derive automata algorithms
deciding satisfiability of SHIO/SHIQ concepts w.r.t. RBoxes in ExpTime and ter-
minating tableau algorithms, which are well suited for implementation and include
appropriate blocking conditions. We believe that the simplicity of the proofs justifies
the additional overhead resulting from the formalisation of the algorithm within the
tableau framework.

We aim at extending our framework to cover NExpTime logics, e.g. ALCQIO [8].
One way of achieving this could consist in replacing looping automata (for which the
emptiness problem is in P) with an automata model with an NP-complete emptiness
problem, e.g. Rabin automata. However, we do not yet see a way of capturing the
ALCQIO-specific problems with a Rabin acceptance condition.

References

[1] F. Baader, J. Hladik, C. Lutz, and F. Wolter. From tableaux to automata for description logics.
Fundamenta Informaticae, 57:1–33, 2003.

[2] F. Baader and U. Sattler. An overview of tableau algorithms for description logics. Studia Logica,
69, 2001.

[3] I. Horrocks and U. Sattler. A description logic with transitive and inverse roles and role hierarchies.
Technical Report 98-05, LuFg Theoretical Computer Science, RWTH Aachen, 1998.

[4] I. Horrocks and U. Sattler. Ontology reasoning in the SHOQ(D) description logic. In Proc. of
IJCAI-01, pages 199–204. Morgan Kaufmann, 2001.

[5] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description logics. In
Proc. of LPAR’99, number 1705 in LNAI, pages 161–180. Springer-Verlag, 1999.

[6] U. Sattler and M. Y. Vardi. The hybrid µ-calculus. In IJCAR-01, volume 2083 of LNAI, pages
76–91. Springer-Verlag, 2001.

[7] K. Schild. Terminological cycles and the propositional µ-calculus. In J. Doyle, E. Sandewall, and
P. Torasso, editors, Proc. of KR-94, pages 509–520, Bonn, 1994. Morgan Kaufmann.

[8] S. Tobies. The complexity of reasoning with cardinality restrictions and nominals in expressive
description logics. J. of Artificial Intelligence Research, 12:199–217, May 2000.

177

��������� ��	��
��� �� ��

������� ����

 ����

���� ���
������ ��������
��

����� ����� ��� 	
��� �
��
��

������ �� ������

 ���
��
� ����

���� �� ���

���

������ ����������������	
������

���

��������

�� ������� � �	
������ �	�����	�
	� � �		���� �	������ ���������	�
�	��� ���

������ �������	�� ��� � ���� �������
	�� 	
 ���������� �	��
������� �
�� �������� ��	�� 	�
�� �
����� �
� ������� 	
 �����
�����	���
������������� �
� �	�����	� �� ��Æ������� ���� �	 ���	� �
� �����
�� 	

������	��� ��� �������� 	������	������� �	���������	� ���
������ �
���
����� �������� �
�� �
� ���	������ �	����� ���������	� ��	���� �������
�� !�"#���	�������

� ���������	��

��� ���� ����	
��	���
 ����� 	�
���	������� 	�
���	�� �� �����
� ��� ������	��
��	�	�� �� � ���
�	��	�� ���	
 ���� �	�� �� ��	�	�� ��
������ �	
��� ���	��	�� ��
��	�������
������	��� ��
� �� ���� ��� ���
�	���� ��������
	�� ��
 �
 !
 "#$
%������������
 	�
���	���	�� �	�� ���� �� ����	���� 	�����	���
 ��� ����
	����
���	
�� 	���	
��	�� ������� ��	
��� ��
���� ����
	����� �"#$ &� ������� �
����'
��
�
���	�	�� ��� � �������
������� �� �	�� ������� 	�����	��� ��	
� ������
�������	
��� ��� �� ���� ���
�	���� ��������
	�� � (#$)��
���	�	�� �������
���� ��� ����
	���� ���	
�� 	���	
��	�� ������� ����	�� �*+,)-.*'
�������

��� 	� ��Æ
	����� ���� �� ����� ��� ������ ���
	/
��	�� �� ���	����� �����	���� ��
��0�
�'��	����� �
����
 	�
���	�� ����� ���� ��	� �� ���	��� ������	1��	��
��'
�	�	���$)�	� ������ ��������	�� 	� 	�������� �	�
� 	� ������� �� 	�
��������
����������� �� ����	�����	�� ���� ��
��� �
����$ 2��
�� ���	�
 ��� �3�����

�	�� � 4�����	����5 ����	������ ���� ��	�� �� ���	��� ���
���	�	��� �� 6��
�'
7��� 8����� ����$ �8��� ���� ��� ������
� ���� 	� �"# 	� ��� ���������
���'
��� �� �����	�� ��
� ���������
����$� 9������� ������	1��	�� �����	���� ���
�����������
�� ���� ������ ������	�� ����	
�� ����� �� ��� �������$)���

��� �� 	� ������ ���	���� �� ������ ��� �������� �� ������� 	� ������	1��	�� ���

178

�����	�� ��0�
� ���	�� ������ ��� �����	���� ��� ��0�
�'��	����� ���� ������
�:
 !#$ &� ���� ���� ���� ����3	�� ��	�
������
�
���	�	�� ����� �� ����
	���	�'
	��$

��� ������� �	
�

2��
������
�
���	�	�� ���	��� ���� � �	�	���
���	�	�� �������� 	� �;# ��
������ ��� ����������� �� � ����� ���
������� �3	����	1��	�� ��� �� ��0�
�'
��	����� ���� �����
 ��	
� ������	���� ���� 	�
���	�� ��������
	�� �� �� ����	��
���� ����� � (#$)�� �� ��
���	��� 	� ��	� ����� 	� � ������� �������	1��	��<
����
 ��� �*+,)-.*'
����������� ������ ������� �� ���� ���	��
 �� ��� ��

����	����� �� ��� �
��������� ���	��
 ��� �����
����$

-� �"#
 ��� �������
���	��� � �� �	�� ������	����� ���
�	���� ��������
	��
�������� �	�� � ������� ���� �� ����
����� ������������� �����������$)��� ����
���� ��	� �	���
� 	� ����
	����� 	� ��� �������
���
 ��� ��
���� ��
	����� ����
����� ���
�	���� ��������
	�� ��� �	��������$ 2��
������
�
���	�	�� ������
�� �� ��������	�� ������ ��� ����	�	�� ��
	���	�	��$

= ���� �� ��� ��������
� �	�� ����'����'�	�� ������� ����� 	�
���	����� ���
� ��
������ �	�� ���	���
��
���� ����	�� � :#$)�� ������� �3����� ��� ���

�����3	�� �� ���	���
�	�� 	� 	�>���
�� �� ��� ����
�	�� �� �
��
���� ����	�
�������� �	�� ���	��� �����
�	
 �����	
�	��� �� ��� ��� ��������
	�� ����������$
&�
���	��� � �� ���� ���	�� ���� ������� �	��� �� ���
������	��� ���� ���
'
�	���� ��������
	��� ��� ��	
� 	����	��	�� ������
�� �� ��/��� �� ���	�����
����	��$

)�� ����	���� �� ��� ����� 	� �����	1�� �� �������$ ��/�	�	��� �� ��� �� �	���
�
����� ��� ��� �����'����	����
������
�
���	�	�� ��� �	��� ��3� 	� 9�
'
�	�� :$ -� 9�
�	�� !
 �� ���� ���� ��	���� �� ���	��� ���
������
�
���	�	�� �����
�� ����
	���	�	�� �� ��� 	���	
��	�� ������� ��� �����$ ���
���� ���	���	��
��	�
���	�	��
 �� ���� 	� 9�
�	�� ; ���� ��� ������� 	� �*+,)-.*'
�������$
)� �� ��	�
 �� /���
���	��� ��� ������� ��� ����
 � �������� �� ����� ����
�3
����� ��	�������
������	���$ =������� ���� 	� ���� �3�����	�� ����
 �$�$

���
 �� ��	� ��� ��������	�� �� �������	�� ��
��	�� �
����� ��� ����
�	��� 	�
� ���� 	�
�������� ����	��$ 2�� �������
������� ������ 	� 9�
�	�� "$

 ���
	�	���	��

��������� � ���	
�������
���
 ������ ��� � ��� � 	� ���� �� �����	���
��
�� ��� ���
����� ������� ��
��� ������������� � ���� �3�����	�� �� ������ 	�
��� ���

�� ��� ??@ ���� � ��� ��� � � � � �� ����� �������
��
��� ���
�	�'
�	��� 	� ��� ���

�� �� ��� ����
����
���� �� ������ �� � ������� �����������

179

������ �������	
� ��
� �
 �$�%��

� &&' � $�%� � (
� �� ��� $��%� � $��%�

� �� (� $�%�

� ���� �� & $�%�$�% 	 $�%�

� �)� �$�%�$�% & � 	 $�%�

� &&' �

� � & ���� ������� � �� �� & � � 	 $�%� ���
���$���%

�$�% ' $���%
�$�%� $��%�$�% ' $��%�$�%

�	���� ? ������ ��� ������	
� �
 ������

�	������ 	� ����� ��� ���� ���������� �� ���� ���

�� �� ������ � ���� ���
�	����
��������
� !�"#�

�� 	�
���	�� ��������
� � �� �� �$�������� �� ��� ���
 � � �� � ����	'
������ 	 �������� �� � ����� ��� �� ��������� �������������

%�� ������	
� �� �$��������� �� ������ &��� ������� �� � ��������� �A�
���
&���� A �� � ��
��� �� ��	'����� ��� ���� �� �������������� �������� ���� �$��
��� ��������������� �� ���
����� �������� � �� 	� ��	���� �� A ��� ���
�����
�����	���� � �� 	� ����� ��������� ���� ? A � A� %�� �������������� �� �$������
�� ���� �$���������� ����� @ ����� ������� @ ����� Æ ���� ��� ������� �������
������������ � ��� � �� ������ �� ��� �����
����
���� �� ������ ��

�� �������������� ���	�/�� �� 	�
���	�� ��������
� � � � �� ���� � ���� �
%�� ���	
�� 	���	
��	�� ������� ��(� �� 	 �@ � � � �����) ���� ��� �� ���� �
���� ��� ��� ��������������� ���� ������� ��� ����������� �� 	 �

)��
������
�
���	�	�� �� ��	
� ��� ��
	���	�	�� ������� ������ 	� ��/��� ��
�������$ �B�
��� ���� � �	�	���
���	�	�� 	� 	������
�� 	� �;# �� ������ ���� ��
�3	����	1��	�� ��� ���	� ���� ����� 	�
�������$�

��������� � ��������� ������������ � ���
������� 	 ��
������� ��

	 �@ ��C��
 ��C�� � ��
 ��C�

����� ��� ��� ������������ ��� ��� �����	���� � �

8��� ���� ��
�� ������������� ��������� ���� 	 	�
������� �� ���	�� ���
��C��
 ��C�� � ��
 ��C� ������	��� �� 	 ���� ��� ���
�	��	��� ��� ����
������ 	� 	 �$

180

� �����	���	
	�� ��� ������

����� ����	��
��	��

&� ���� � ����
�	�� �� ��� �������	
��� �	�	�� ������� �� ��� ����� 	�'
��	
��	�� ������� ��	�� �
������
�	�� �	�	��� �� ���� ��������� 	� �"#$ =�
�������	
��� �	�	�� ������� 	 	� � ��	��� �
��� � � �����
 	� � /�	�� ��� �� �	��
����� ��� ��� �
 �
 ��� �	���� �����	���$ = �������� ��
 	� � ����	��

 ?��� �
 ��
� ���� �
��� ���
��D � ��� � � ��� �
��� ���
��� �D �� � � ���
��� � � �$)�	� ������� 	� E�

�'
������� �
 �#$)�� /��� ���� 	� ��� ����
�	��
	� �� ������	�� �� ������� ����$)�	�
�� �� �
�	����
 ��� �3�����
 �� �������$

 $ -������
� ���� �	�0�	��
��
����
 �
 �
 � ��� �
 �����	��
��� �����$

=
 6 � �� =
 7 � �� � � � � 7
 � � �

:$ F�	�
���� ��� ������ ��
��
���� + ��� G ���� ���� ���� 	�
��	�� � ���
� ����	�����
 �����
�	����$

+ � �=C��
 �6C��
 �7C��
 ��C���

G � �=C��
 �6C��
 �7C��
 ��C��

!$)� ������ ���� ������� ��� ������
 ��� ��� ������	��$

= � 6 ? � � �� 6 � 7 ? � � �� 7 � � ? � � �� � � = ? � � ��

= � 6 ? � � �� 6 � 7 ? � � �� 7 � � ? � � �� � � = ? � � ��

= � 6 ? � � �� 6 � 7 ? � � �� 7 � � ? � � �� � � = ? � � ��

= � 6 ? � � �� 6 � 7 ? � � �� 7 � � ? � � �� � � = ? � � �

;$ =�� �� ���
� ������� �� �3���� �� ��� �	��� ��� ��
 	�
���� ��� ������	��$

= � ����� 6 � ����� 7 � ����� � � ����

)�� ��'������ ����� ���� ��� 	�����
� 	 �� ��� �	�	�� ������� ��� ��/��� ��
�������?

�
 ���
� � ���
�
���������
�� �
 ���
� � ���

�
���������
�

�
 ���
� � ���
�
���������
�� �
 ���
� � ���

�
���������
��

�����
�
���������� �� � �	��
� �
 < �� ������
�

� � � ��� ��� � � �$)��
�����
������	��� ���� � ����	������ 	� ����
	���� �	�� �� �������	
��� �	�	��
������� 	 $

������� � � ������ ���	��
 	 ��
��� � �������� �* 	� ��@ +
 �
�
����

�� � ��

)���
 ��� ����� 	���	
��	�� ������� 	� ����
	����� ��� �������	
��� ����	'
�����	��$

181

� ��������� 	��
	�� ���	���	
	��

6� �����	
�	�� ���	
�� 	���	
��	�� �������� ��� ����� ��
���� 	� ��	
� ���'
�	�����	�� ���
�������
 	� ��
���� ����	��� �� ����� ����
�	��� �� ���	�/��	�	��
�������� ��� =
������ ��������$ =���� �� 	������
� ��� ������
 �� ���	� ��
��/�	�� ����
�	��� ��� ��� �������� ����$ =� ������	���� 	�
�������� ����'
����	�� �� ����� ����
�	��� 	� ��������� 	� ��� /��� �����
�	�� 	� ��	
� �� ��'
����	�� ��� ��	� ������? ��
	���	�	�� �	��
������
� �� ��� ���	
�� 	���	
��	��
������� ��� �����$

��������� � �������
 �
������ ���� ���� ��� �� 	�
������ ���������
��
	��� ��� �� ��� �� �����	���� � �����	
 /���'����� ������� 	� ��� =
�������

���� �� � ���
��� �� ��� ���
 ��� � � ��������� � � ���	�� &���� � �� � +��������

���� ���
��� ���� ��� ��
	��� ���

*���� ������� �	�� ��� =
������� ���/3
�� ��
�������� �� ,(���
 ���
��
���
? �� �����
	�� ���	����� �� �� 9�����
�������� ��� �� �� ����� 9�����
���
�	��� ��� ������	�� 	� ��� ��	�	��� �������$)�	�
 �������� �	�� ��������
������� ���	�����
��
 �	���� � /�	�� ��� �� ��	��������'�����	/��
������
��'
��	�	�� �� ���� ��� ���	���� ���$ -� 	� ����� ���� �� =
������ ������
� ���
� ����� 	� ��� ���� 	� 	� ��� � H������� �����< ��	� ������ �� �� ��� �����
�	

��
��	���� ��� �����
������
�	��$)� ������	�� ���
�����3	�� ������ �� ���
��� ������	�� ������ ��� ��� ���	�/��	�	�� �� =
������� ��������?

!����	����� " �#$%� %�� ��
���$��� �� ��� �������	����� ���	��
 ��� ��(��
��
���
���� �� "-.!%�/-
��
������

���
����������� �	
 �	��
��� ���� ��
���	�	����

&�
������
� �� =
������'
���� ������
� ����� ���	�/��	�	�� 	� ���	������ ��
� �	��� ���� 	���	
��	�� �������$ -� ��� �	�����	��
 ����I�
��
��� ��'
�
�	��	��� � ��� ������� �� �����	
 ����	
���� �
���$)�� ���
�	�� �������
� ��� � ��� ���� 	� ������
�� �� ����� ��� ��� ����	���� � < ��� ������ � ������
��� ��� ������� �� ��� ����	���� � 	�
���� ����� �� ��0�
� 	� 	� ��� ����� ��
����	��� ����	����� ���	� �	����	��
�� �� 	������
��
 �$�$
 �� ��� ���
�	��	��
���C���
 ���C����$)�	� �����������
 	� ���
��� ��
������� ����	�����	��

������ �� �� ��������� ���� 	����������	��� �� H������� 	����������	��� �	�
��� �3������ ���������$)��
������
�	�� ���
���� 	� ��� �����$ �	���
 ���
����
����� �������	�� �� ���� ��� ��
���� ��	�� ��� ������	�� ������	���$

� 8��� �3	����
� ������	���?

������� � �������� ��� � �@ � ����� ������ ����� � ����

182

� ���
�	����	�� �� ����	����� ��� 7������
�?

���������� ����� ������ ������������� �������

� 7��
��� ������	�� ������	��� ��� �������
������
����?

������� � ��
��� � ��
����� ������
��� � ��
�����

������� � ��
��
�
��� � ��
�

��� � �
�
�����

� 7��
��� ������	�� ������	��� ��� ����	����
������
����?

������� � ������
��� � �
�������� ��� � �@ � ����

����������� � ������
�� ����� � �
����

������� � ��
������ � ��� ������ ��� � �@ �����

������� � ��
������ � �
�� ������ ��� � �@ �����

����������� � ��
���������� � �
����

)��
����
�	�� �� ��� ������	��� ����� 	� ������� E����$)�	� ���
������� ���
����
����� �����	����	�� ������� ����
��
����$ =������� ��	� ��� 	� 	�/�	��
	� �������
 ��� ��� ��
��
���� ������	�� 	� � ����	
���� 	���	
��	�� �������

	 �@ �
 	� /�	��$ H��
�
 ���
�� �����	
� ��� ��� �� ������	��� E���� �� �
/�	�� ������ E	 �

���� ����
����	�� ���� ��� ����	
���� ���� ��/��
��
���� 	�
	 � ���$ �-� ��� ���� �� ��� ����� �� ��	� ��� ������
�	�� ��������
���� ����
���
����3�$�)�
������� ��� ��������	�� �� � ���� 	���	
��	�� �������

���� ����	�� 	� ��� ��������	�� �� ��� 	�
���	��
������	���$

��������� & ��� 	 ��� � � � � � 	� � ���� ���
������� ��� �� ���������
����������� ������������� �� �����

� E	 @ ����� � �����
��� � �
���� ? � � � � 	 � ���

� E
 @ ���J�� �
�J�� ��
�J���

)�� �����
������ E
 ��������� ��� ������	1�� ����	�� �� �����
��� � �
���<
J 	� ��� 9�����
������� ��� �$ =� �����
 � ����� 4
����	�	��5 E
 	� �
���'
����3����� ��� �$)� ���� ���
�����������
� �������� �� ���� ��� ������	��
��/�	�	�� ��� �����?

��������� $ �� �������������� �A� ����� ��
������� �� �������� @ �������� �
� @ � ��� ��� �� � � A ��� �� �� �����	��� ��
��

���� ' ��� 	 	� � �������� ���
�������� � � ��	��
����� ����������� ���
� �� �������������� ���� ���� � �@ 	 ��� � ��@ �� %��� ����� �� � ��������
�������������� � � ���� ���� � � �@ 	 ��� � � ��@ ��

183

!���() �����
�� 7���	��� �	��	�
� �� � � A� ��
� ���� �	� � � �����
 �		�
� � �����
 ��� �			� �������� @ ��������$)���
 �	�
� 	 	�
�������
 � � ���

���

� $ ���
 � � ���
 ����
� ����� �� ����

���� � ����
 ����C��
 ��C���
�

�
������	
�	��$)���
 �� ������ �� ���� ���� ��� ���� ����� ��������
 ��

�� ������ ��� ������� �� � �� � ��� ��� 	�� ���
�������
 ����� ��� �	����
�
	� �������� ���� ��� ���� ����	��	�� � 	� �$)�� ������	�� 	����������	�� ��	��
���	�/�� 	 ��� ����	/�� �$ B�����	�� ��	� ���
��� �	���� �
������� 	����������	��$

�

������� * ��� 	 ��� � 	� � ���
������� ��� ��������� ���������� �� �����
������������� %��� 	 �@ � �� E���� � E	 �E
 �� ��� �������	���

!���() �����
�� 7���	��� � H������� ����� � ��
� ���� � �@ E�����E	 �
E
$ &�
������
� �� 	����������	�� �� @ �A� ����� �����?

� A @ �� ? � �@ �����

� ���� @ �� ? � �@ �
����
 ��� ���� @ ���� �� ? � @ ���� �� ���� @ ��$

-� 	� ���� �� ���	�� ���
���� ������	�� ���� �� �@ 	 ��� �� ��@ �$

��� ��� ����� �	��
�	�� �� ���� ���
������� 	����������	�� �
 ��
� ���� � �@ 	
��� � ��@ �$)�	� 	����������	�� ���� �3	�� �� ����� K �������� 	 ��@ �$ ���
� � A �� �� ��0�
� ���� ����	/�� � 	� �$ &�
������
� � H������� ��	����� ��
��� ��� �� ��� ����� ����
��������� �� ���	��
��� ����� �� ����	����� ��	�	���	��
	� �< �� ��� � � ��� ����� ����	���� � ��������� 4��
�����5 ����� ��	� ����$
*�
� �� ����� �����

�
 ��� �� ���
������
�
���	�	��

���������� �� �3�
���
��� ������� �� � � A$ 2� ��� �� ��	� ��	����� �� ��/�� � H������� �����
�� @ ��
�
�� ? � � ����� � ���
���)�� ����	���� 	� ���	/
��	�� �� �� �@
E���� �E	 �E
 ��
���� ������	�$ �

)�� ��������	�� ��������� ����	��� � �*+,)-.* ��
	�	�� ���
����� �� ������'
	�� �� ,�����	�	�� "$ 7����������� ������� ���� �*+,)-.*'�������� �� ���
	���	
��	�� ������� ��� ��� ���
�������� �������� � ;
 "#$

��������� �+ %�� �
��������� ���	��
 ��� ���� �� "-.!%�/-
��
������

���
����������� �	
 �	��
��� ����� ��
���	�	����

��� ��
� 	���	
��	�� ������� 	 �@ �
 �� ��/�� � ���	�/��	�	�� �������E������
E	 �E
$)���� ��� ���
���� ��
���	��� ������	�� �� �$

��	� �) � 	� � ���� 	�
���	�� ��������
�$

184

���� �� ��� 	 �@ � 	� � ����� �
��������� ���	��
 �� &���� 	 �� ��

������ ��� ��� &���� � �� � ���� ��������� ����������� ��� 	 � 	� ��� �������
��	��� �� 	 ���� �� ���� � ���� ���
�������� %��� 	 � �@ � �� ��� ���� ��
	 �@ ��

!���() =����� 	 � ��@ �$)��� �� ����� K ����� ���� �� �
������� 	����'
������	�� � ��
� ���� � �@ 	 � ��� � ��@ �$ H������
 �	�
� � 	�
�������
 	� ����
���	�/�� 	 $)�� ����� �	��
�	�� 	� 	����	��� �� 	 � � 	 $ �

)���
 	� ��	�
���
 ��
�� ���)������ � �� ��
	�� ��� 	���	
��	�� �������$

��	� �) � @ �� � �� ? ���� � � � ���� � ��$)� ����	�� ��
� �� 	�
���	�� �����'
���
�
 �&� ��0�
�� ���� 	� �� ��� ������� 	� ��� ���� ���	��� ��� ���
���	�	���
�� ��� ��������
� ��� ��	� �� ���	��� ���
��
���	�� ��� ������$ &� ���������

������
� ���
��	�� �� ��� 	����������	�� ��� ��� ����
������	��� 	� 	 	�
� ����	�� ��������� �� �K
 K#$ H������
 �� H������� ����� ��� ������	���� ���
���� 	� ��� ���
��	��
 	� 	� ��Æ
	��� �� �	��	���	�� ���� �� �����	�� ��� ����'
	
��� ������� � J#$ -� ���	�	��
 �� ���� �� ����� ��� 4�����5 �� �����	�� ���
���	� 	�����
�	�� �	��
��
��� ���
�	��	���$)�� ����
����� ����� ��� �����
��� ���� ��/��� �� �������?

E����� @ E�
���� � E�

���� �

���
��

�������� ��������
����������� � ��� ������ � ����
��������� ����� � ���

��� � ��

 ����

���
�� �

����� E� 	� ��� ��� �� ������	��� E 	� ��	
� ����� ����	
��� �
 	� ������� ��
��

 ��	�	����� ��� E��$ -� ���	�	��
 �� ��� ��� ������	�� �����	��? �� ��� ����

�� 	� � ������� ����$ �� �� 	L �� 	� � ���/3 �� �� 	� ��	
� ��
� �� ��� �����
��
�� � � ��� ��� ����� �� ��� ����	����� ��� ��������$ &� ���� ��/��

 ��! @

	
 ��� Æ���! ��� �� @ ��� Æ� � Æ �� Æ ���

�� ������	��

&�
������
� � ��� �� ������	��� ��� � �	��� ����	������ 	 $ ��� 	 � ������ ���
��������	��
������	��� 	� 	 �	����� ,���
 ��� 	 �� @ 	 "	 �$)��� �� ��/��

E	 @ E�
	 � �E�

	 �

�

��������
�������

��������� ���������� �
����

�
������� � ��

�
�������� � ���

�
������� � ��

�
��������� ���

��� �� �� Æ�� �!��� � �� �� Æ���!���

����� �� � �� ? ���� � � � ���� � ��� � 	 ��

��� �� � ������� ���/3 �� ���

��������
�������

���
 ��� � � �� � �� ? ���� � � � ���� � ��� �� ��/��

E
 @ ���J�� ��

�

�J�� ��

�

�J�� ������J��� � � � � ������J����������J���

185

������� �� ��� 	 �@ � 	� � ����� �
��������� ���	��
 �� &���� � �� �
!�"� %��� 	 �@ � �� ��� ���� �� E����� �E	 �E
 �� ��� �������	���

!���() �����
��)�� ����� ���
���� ����������� �� ��� ����� ��)������ � ��
�3��	
	���
������
�	�� �
�������3����� 	����������	�� ���� � H������� �����

��� �	
� �����$)��
��3 �	�� 	� ������	�� ����
 	� ���	�	�� �� ������ �	�����	��
�� ���� ���
�	��	���
 � ���� ��������� �	$�$
 � ���
���	�	�� �� �
���������
�� � ,��� ����� 	� � ����� 	����������	�� 	� ��� ���� 	� �
���������	��
��
�J�� ���� ������� 	� ��� H������� �����M��	� ��
� �	���� �� 	������
	��
��� � � ���
�	�� ������� ��� �� ���������	�� � �	���� ,�� ��
������� ��������$

�

� ������� ��� ����� !��"

&� ���� ��/��� �
������
�
���	�	�� ��� � �������
������� ���
�	��	�� ���	

�	�� ������� 	�����	��� ��� ���	����� ���� ���
�	���� ��������
	�� ���� �������
��� ����
	���� ���	
�� 	���	
��	�� ������� 	� �*+,)-.*'
�������< ��� �������
	� ����
	����� ������	��$)�	� �������� �� ���� 	���� �� ��
	���	�	�� �� ��
��������� 	���	
��	�� ������� 	� �;#$

= ������� �3����	�� �� ��� ���
�	��	�� ���	
 ��������� ���� ������ �������
��������� ��� �� �����
� ���� �3�����	���
 �	���	�� ��� ����
 ����
 �C�

��� � ? � � ��
������
����
 ��� �������	�� � ��
	�	�� ���
����� ��	�� ���
������
� 	� � "#$ 2�� �� ��� ��	� ����	
��	��� �� ��
� �� �3����	�� �� ���	�	��
	� ���
�	�	�� ���� ����
����� ��� �������� �� ����� ���	�	1��	��
 �3����	�� � #
�� 	���
�	�� ���� �����$

=������ �	��
�	�� �� ������
�
���	���� ������ �����	
�	��� �� ����� ���'
�	�����	�� ���� ��	�� ��������� ��
	���	�	��
 �$�$
 ����3	�� ��� ���������
���	�	��
�	�� �����
� �� ��� ����� ,��� �
������ ������� 	� � ����	������$

#���������
*+, -� .������ �
� �������������� 	
 �
� �	���	� ��	����� ���� ����� ����� 	
���

//&+012� +3//�

*2, 4	��
�� .������ -��
 #������ �	����� !	���� ��� 5�
	�
�� 6����� ���	��	����	�
	
 -�����	��
��� �
�	��
 !��	����� "� �

������� �
����
� � ������ ����� 2708+�
+33/�

*9, 4	��
�� .����� ��� �	����� !	���� ���	��	����	� 	
 �������� :������ �����
!��
 ;�����	��� ������������ ��� <��	 :	���������� "� �
�
����

�
� �
�
��
����

 �
� �

������ 	 ������ ����� 9+083� 2===�

*8, 4	��
�� .����� ��� �	����� !	���� >����� �������	� ������������ �	 �� 	������
	������� ���� �	��� ���
 ���������� �	���������� ���� �
�
�������� 93&93+0883�
2==9�

186

*?, ����	 :��������� @������� �� @���	�	� ��� #������	 A��������� "�����B����	�
:	��������� ��� ;�����	��� ������������ �� ���������	� A	����� "� !�
��
� ���
"#�� �
�� $
�
� �

��

 ����%���� �
�������
�� &�$��� '((")� ����� +??0+/=�
2==+�

*/, ����� ��C���� ����� �	���� ��� @���� �� �������� -�������� >��������
D������ ����� ���������	� A	����� "� *��������

 +
���� '((,� ����� +=90++2�
:�E-��6 �	��7+� 2==9�

*1, #����� ;F����� >��������	� ��� �
� >�������� :��� 	
 �
� ������	� !�	�����
+��
����
���
� ������ 21&+910+/2� +37+�

*7, #��	�� "�	 ��� @���� �������� "��������	� !�	�����
	� ;�����	��� :	���������
	� ��������� 6���	����� :	����G <������� $
��
��
� �
������ �
� 	 ����
	���
���� 83$9%&12/01/7� +338�

*3, H������ A� I
������ ����� �	���� ��� @���� �� �������� -���	���� ��	�� ���
������� ���������	� ���
 ���������	� A	���� "� ����� �
� -./���� �
 *���.����0
-- '(((&����
� �
�������

�� +
��� '((()� ����� +=+10+=92� 2===�

*+=, H������ A� I
������ ����� �	���� ��� @���� �� �������� <� ������������ ���
:	����G��� 	
 ���������	� A	���� ���
 E��������� :	���������� "� �
���
���

��
�

����
��

 *���.��� 1��
� ��*1�("� ����� ?80/1� 2==+�

*++, C���
� A��� ����� �	���� ��� @���� �� �������� ;��� @������ "�
	�����	� "��
�������	� ���
 ���������	� A	���� "� *��������

 +
���� '(('� ����� +0+2� :�E-�
�6 �	��?9� 2==2�

*+2, :������ A���� :���	� >������ "�� C	��	���� ��� E����� 6������� I���� J	���
����� ��� :	������ �	������ "� !�
��
� ��� "2�� �
�� $
�
� �

��

 ����%����
�
�������
�� &�$��� '((,)� ����� 98309?8� 2==9�

*+9, A��	��� 6����
�� ��� @���� �� �������� "���G 6������	�
	� �������� :	���	�
>��������	�� ����� ���������	� A	����� "� *��������

 +
���� '((,� ����� 30+7�
:�E-��6 �	��7+� 2==9�

*+8, ����� �	��� ��� @���� �� �������� <� >���������� -	���� ��� ������������
�� ���������	� A	���� ��� �
� >�������� :��� 	
 �
� ������	� !�	����� "�
*��������

 +
���� '(("� ����� 1/07?� :�E-��6 �	��83� 2==+�

*+?, ����� �	��� ��� @���� �� �������� <� -���	���� ��	�� 6��������� ��������
�� #A& > ���������	� A	��� >���	��
� 1��
������� �
������ 	���
��� 2==8�
":�� 2==9 ������� ������ �� ������

*+/, !� ��� ���� .	��� �
� �	��������� 	
 �������� "� �
����3�� 0 +
���0 �
� ���
�����

 1��
� � �	���� +71 	
 +������

��� �
 ���� �
� ������� �������������
����� 99+09/9� #����� ������ "���� +331�

*+1, @���� �������� > �
�	�� 	
 ;�����	��� ������������
	� <����� <�������
���� #	����� "� �
���
���

�� �

����
��

 *������4� �
� -./����-���
���
*���.����� ����� +/?0+78� +373�

*+7, @���� �� �������� -���	���� ��	�� ;�����	��� ������������ @����������
	�
6������� ���� #	����� 1-*	� +1$+%&920/8� +332�

187

Sonic — System Description∗

Anni-Yasmin Turhan and Christian Kissig
Institute for Theoretical Computer Science,

TU Dresden, Germany
lastname@tcs.inf.tu-dresden.de

Abstract

Sonic
1 is the first prototype implementation of non-standard inferences for

Description Logics that can be used via a graphical user interface. In addition to
that our implementation extends an earlier implementation of the least common
subsumer and of the approximation inference service to more expressive Descrip-
tion Logics, more precisely to Description Logics with number restrictions. Sonic

offers these reasoning services via an extension of the graphical ontology editor
OilEd [4].

1 Introduction and Motivation

Inference problems for Descriptions Logics (DLs) are divided into so-called standard
and non-standard ones. Well-known standard inference problems are satisfiability and
subsumption of concept descriptions. For a great range of DLs, sound and complete
decision procedures for these problems could be devised and some of them are put
into practice for very expressive DLs in state of the art DL reasoners as FaCT [15]
and Racer [13].

Prominent non-standard inferences are the least common subsumer (lcs), and ap-
proximation. Non-standard inferences resulted from the experience with real-world DL
ontologies, where standard inference algorithms sometimes did not suffice for building
and maintaining purposes. For example, the problem of how to structure the appli-
cation domain by means of concept definitions may not be clear at the beginning of
the modeling task. Moreover, the expressive power of the DL under consideration can
make it difficult to come up with a faithful formal definition of the concept originally
intended. This kind of difficulties can be alleviated by the use of non-standard in-
ferences in the bottom-up construction of DL knowledge bases, as described in [1, 8].
Here instead of directly defining a new concept, the knowledge engineer introduces
several typical examples as objects, which are then automatically generalized into a
concept description by the DL system. This description is offered to the knowledge
engineer as a possible candidate for a definition of the concept. The task of computing
∗ This work has been supported by the Deutsche Forschungsgemeinschaft, DFG Project

BA 1122/4-3.
1
Sonic stands for “Simple OilEd Non-standard Inference Component”.

1

188

haarslev
Rectangle

such a concept description can be split into two subtasks: computing the most spe-
cific concepts of the given objects, and then computing the least common subsumer
of these concepts.

The lcs was first mentioned as an inference problem for DLs in [12]. Given two
concept descriptions A and B in a description logic L, the lcs of A and B is defined as
the least (w.r.t. subsumption) concept description in L subsuming A and B. The idea
behind the lcs inference is to extract the commonalities of the input concepts. It has
been argued in [1, 8] that the lcs facilitates the “bottom-up”-approach to the modeling
task: a domain expert can select a number of intuitively related concept descriptions
already existing in an ontology and use the lcs operation to automatically construct
a new concept description representing the closest generalization of these concepts.
For a variety of DLs there have been algorithms devised for computing the lcs, see
[1, 16, 10] for details.

Approximation was first mentioned as a new inference problem in [1]. The ap-
proximation of a concept description C1 from a DL L1 is defined as the least concept
description (w.r.t. subsumption) in a DL L2 that subsumes C1. The idea underlying
approximation is to translate a concept description into a typically less expressive
DL. Approximation can be used to make non-standard inferences accessible to more
expressive DLs so that at least an approximate solution can be computed. In case the
DL L provides concept disjunction, the lcs of C1 and C2 is just the concept disjunction
(C1 t C2). Thus, a user inspecting this concept description does not learn anything
about the commonalities between C1 and C2. Using approximation, however, one can
make the commonalities explicit to some extent by first approximating C1 and C2 in
a sublanguage of L which does not provide disjunction, and then compute the lcs of
the obtained approximations in L. Approximation has so far been investigated for a
few DLs, see [7, 6].

Another application of approximation lies in user-friendly DL systems, such as the
editor OilEd [4], that offer a simplified frame-based view on ontologies defined in an
expressive background DL. Here approximation can be used to compute simple frame-
based representations of otherwise very complicated concept descriptions. OilEd is
a widely accepted ontology editor and it can be linked to both state of the art DL
reasoners, Racer [13] and FaCT [15]. Hence this editor is a good starting point
to provide users from practical applications with non-standard inference reasoning
services. The prototype system Sonic is the first system that provides some of the
non-standard inference reasoning services via a graphical user interface and thus makes
them accessible to a wider user group. Sonic was first introduced in [17] and it can
be downloaded from http://lat.inf.tu-dresden.de/systems/sonic.html.

In the next section we give an application example which underlines that—although
the supported DLs are much less expressive compared to the DLs supported by the
current DL reasoners—the inferences implemented in Sonic can be useful in practice.
In Section3 we turn to the implementation of Sonic and describe how the inferences
are realized and and how Sonic is coupled to OilEd and the underlying DL reasoner
Racer. Then we give an impression how users can work with Sonic and in the end
we sketch how the Sonic prototype system can be extended in future versions.

189

2 An Application Example

Let us briefly recall the DLs covered by Sonic. Starting with a set NC of concept
names and a set NR of role names concept descriptions are inductively defined with
the help of a set of concept constructors. The DL ALE offers the top- (>) and bottom-
concept (⊥), concept conjunction (C u D), existential restrictions (∃r.C), value re-
strictions (∀r.C), and primitive negation (¬P, P ∈ NC). The DL ALC extends ALE by
concept disjunction (C tD) and full negation (¬C). Extending each of these DLs by
number restrictions, i.e., at most restrictions (≤ n r) and at least restrictions (≥ n r)
one obtains ALEN and ALCN , respectively.

The semantics of these concept descriptions is defined in the usual model-theoretic
way in terms of an interpretation I = (∆I , ·I). The domain ∆I of I is a non-empty
set of individuals and the interpretation function ·I maps each concept name P ∈ NC

to a set P I ⊆ ∆I and each role name r ∈ NR to a binary relation rI ⊆ ∆I×∆I .
The semantics are extended to complex concept descriptions in the usual way, see for
example [1, 6].

A TBox is a finite set of concept definitions of the form A ≡ C, where A is a
concept name and C is a concept description. Sonic can only process TBoxes that
are unfoldable, i.e., they are acyclic and do not contain multiple definitions. Concept
names occurring on the left-hand side of a definition are called defined concepts. All
other concept names are called primitive concepts.

Let us illustrate by an with an application example the procedure of computing
the lcs for ALEN -concept descriptions and the approximation of ALCN -concept de-
scriptions by ALEN -concept descriptions. Consider the TBox T with ALCN -concept
descriptions modeling Airbuses and their configurations. T contains the following con-
cept definitions:

Cargo-Config ≡ ¬Passenger-Config

Airbus-300 ≡ Plane
u ∃has-configuration.Cargo-Config
u ∃has-configuration.(Passenger-Config u (≤ 2 has-classes))

Airbus-340 ≡ Plane
u (≥ 2 has-configuration)
u ∀ has-configuration.(Passenger-Config u (≥ 261 has-seats))
u
(
∃has-configuration.((≤ 419 has-seats) u (≤ 2 has-classes)) t
∃has-configuration.((≤ 380 has-seats) u (≤ 3 has-classes))

)
If we want to find the commonalities between the concepts Airbus-300 and Airbus-340
by using the lcs in ALEN , we first have to compute the approximation of Airbus-340
since its concept definition contains a disjunction. After that can we compute the lcs
of Airbus-300 and approxALEN (Airbus-340).

In order to compute the approximation of the concept definition of Airbus-340 we
first make implicit information explicit. In our example this is done by propagating the
value restriction onto the two existential restrictions which yields the new disjunction:

190

∃has-configuration.
(Passenger-Config u (≥ 261 has-seats) u (≤ 419 has-seats) u (≤ 2 has-classes)) t

∃has-configuration.
(Passenger-Config u (≥ 261 has-seats) u (≤ 380 has-seats) u (≤ 3 has-classes)).

After the propagation of the value restriction, we can obtain the approximation of our
example concept description by simply computing the lcs of these two disjuncts. They
differ only w.r.t. the number occurring in the at-most restrictions. Consequently we
have to pick the at-most restriction with the greater number from the two disjuncts
and conjoin them with (Passenger-Config u (≥ 261 has-seats) to obtain their lcs. We
get the following approximation of Airbus-340:

approxALEN (Airbus-340) =
Plane u (≥ 2 has-configuration)
u ∀ has-configuration.(Passenger-Config u (≥ 261 has-seats))
u ∃has-configuration.

(Passenger-Config u (≥ 261 has-seats) u (≤ 419 has-seats) u (≤ 3 has-classes))

To compute the lcs of approxALEN (Airbus-340) and the concept definition of Airbus-300,
we need to unfold the concept Airbus-300 w.r.t. T by replacing Cargo-Config with its
concept definition ¬Passenger-Config. It obvious now that the concept description
implies two distinct configurations, since one of the existential restriction requires
Passenger-Config and the other one ¬Passenger-Config. Thus the concept definition of
Airbus-300 induces (≥ 2 has-configuration) which occurs in approxALEN (Airbus-340) di-
rectly. The primitive concept Plane appears in both concept descriptions and thus also
in their lcs. Since the concept definition of Airbus-300 does not imply a value restriction
the lcs does not contain any. Furthermore, we have to compute the lcs of each of the
two existential restrictions from Airbus-300 and the one from approxALEN (Airbus-340).
We obtain for the overall lcs:

lcs(approxALEN (Airbus-340),Airbus-300) =
Plane u (≥ 2 has-configuration) u ∃has-configuration.>
u ∃has-configuration.(Passenger-Config u (≤ 3 has-classes)).

The first existential restriction is redundant and therefore can be omitted—it would
not be returned by our implementation. We have now extracted the commonalities of
the Airbus-340 and the Airbus-300: they are both planes with at least two configura-
tions where one configuration is a passenger configuration with up to 3 classes.

Although the DLs under consideration are not very expressible compared to the
DLs handled by the state of the art DL reasoners this application example shows that
an implementation of lcs and approximation for these DLs can be very useful to help
users to extend their ontologies.

3 The Sonic Implementation

The Sonic system implements the algorithms for computing the lcs for ALEN -concept
descriptions and the approximation of ALCN - by ALEN -concept descriptions. Fur-

191

thermore, Sonic implements a graphical user interface to offer these non-standard
inferences and an interface to a DL reasoner needed for subsumption queries.

3.1 Implementing the Inferences

We briefly sketch the main idea of the inference algorithms here. The algorithm for
computing the lcs in ALEN was devised and proven correct in [16], thus our imple-
mentation is well-founded. The algorithm for computing the lcs of ALEN -concept
descriptions consists of three main steps:

1. Unfold the input concept descriptions by recursively replacing defined concepts
by their definitions from the TBox.

2. Normalize the unfolded concept descriptions to make implicit information (e.g.
inconsistencies, induced existential restrictions, induced value restrictions or in-
duced number restrictions) explicit.

3. Represent the normalized concepts as concept trees, build the cross-product of
the trees and read out a concept description from it.

For the DL ALEN the normalization and the structural comparison are much more
involved than in ALE . Firstly, the number restrictions for roles, more precisely the at
most restrictions, necessitates merging of role-successors mentioned in the existential
restrictions. To obtain all valid mergings is a combinatorial problem. Second, the
commonalities of all mergings for existential restrictions of a concept description have
to be determined by computing their lcs. These in turn are then used to compute the
cross-product. In our implementation we use lists as data structures to represent the
concept descriptions and implement the algorithms without advanced optimizations
in order to keep this first implementation of the lcs for ALEN -concept descriptions
simple and easy to test.

The lcs algorithm for ALEN can return concept descriptions double exponential
in the size of the input concepts in the worst case. Nevertheless, so far the lcs in
ALEN realized in Sonic is a plain implementation of this algorithm. Surprisingly, a
first evaluation of our implementation shows that for concepts of an application TBox
with only integers from 0 to 5 used in number restrictions the run-times remained
under a second (with Allegro Common Lisp on a Pentium IV System, 2 GHz). Our
implementation of the lcs for ALE-concept descriptions as described in [3] uses lazy
unfolding. Due to this technique shorter and thus more comprehensible concept de-
scriptions can be obtained more quickly, see [3]. To implement lazy unfolding for the
lcs for ALEN -concept descriptions in Sonic is yet future work.

The algorithm for computing the approximation of ALCN -concept descriptions by
ALEN -concept descriptions was introduced and proven correct in [6]. The idea under-
lying this algorithm is similar to the lcs algorithm. For approximation the normaliza-
tion process additionally has to build a disjunctive normal form on each role-level by
“pushing” the disjunctions outward. With concept descriptions in this normal form
the commonalities of the disjuncts are computed by applying the lcs on each role-level.

192

The approximation of ALCN - by ALEN -concept descriptions is also implemented
in Lisp and uses the above mentioned implementation of the lcs for ALEN -concept
descriptions as a subfunction. A first implementation of the approximation of ALC-
by ALE-concept descriptions is described in [7]. This implementation is now extended
to number restrictions and provided by Sonic.

In the worst case the approximation in both pairs of DLs can yield concept de-
scriptions that are double exponential in the size of the input concepts descriptions.
Nevertheless, this is not a tight bound. A first evaluation of approximating randomly
generated concept descriptions shows that, unfortunately, both implementations run
out of memory already for concepts that contain several disjunctions with about 6 dis-
juncts. It is unknown whether this kind of concept descriptions appears in application
TBoxes from practical applications. Nevertheless, effective optimization techniques
are needed for computing approximation, before this service can be applied to large
ontologies. Similar to the lcs one can apply lazy unfolding to avoid “unnecessary”
unfolding and thereby obtain smaller concept descriptions even faster. Besides lazy
unfolding there is also the approach of so called nice concepts described in [9] known
as an optimization technique for approximation. Currently these techniques are im-
plemented and evaluated for approximation of ALC- by ALE-concept descriptions in a
student’s project in our group.

The implementation of the algorithms for both inferences are realized in a straight-
forward way without sophisticated data structures or advanced optimizations as, for
example the caching of results. This facilitated the testing and debugging of the Sonic

prototype.

3.2 Linking the System Components

In order to provide the inferences lcs and approximation to users of the ontology editor
OilEd, we need not only to connect to the editor OilEd, but also to a DL reasoner
since both inferences, lcs and approximation, use subsumption tests heavily during
their computation. The connection from Sonic to the editor OilEd, is realized as
a plug-in. Like OilEd itself, this plug-in is implemented in Java. Sonic’s plug-in
is implemented for OilEd version 3.5.3 (or higher) and realizes mainly the graphical
user interface of Sonic. A screen-shot of the lcs tab in Sonic is shown in Figure 3.2.
Sonic’s Java plug-in connects via a Telnet connection to the Lisp implementation
of the non-standard inferences to pass concept descriptions or messages between the
components.

The OilEd user can classify an ontology in the OilEd editor, by either connect-
ing OilEd to the FaCT reasoner via a CORBA interface or to any DL reasoner
supporting the DIG (“Description Logic Implementation Group”) protocol. The DIG
protocol is an XML-based interface for DL systems with a tell/ask syntax, see [5]. DL
developers of most DL systems have committed to implement this standard in their
system making it a standard for DL related software.

Sonic must have access to the same instance of the reasoner that OilEd is con-
nected to in order to have access to the information from the ontology, more precisely,
to make use of stored concept definitions and of cached subsumption relations obtained

193

Figure 1: Sonic’s lcs Tab in OilEd.

during classification by the DL reasoner. If OilEd and the DL reasoner do not have
consistent versions of the ontology, the computed results for lcs and approximation
might simply be incorrect due to this inconsistency.

Sonic needs the functionality of retrieving the concept definition of a concept
defined in the TBox in order to perform unfolding. Since such a function is not
included in the DIG protocol, we cannot use the DIG interface to connect to the DL
reasoner. Since the CORBA interface to FaCT is slow, we use Racer as underlying
DL reasoner. Sonic connects to Racer version 1.7.7 (or higher) via the TCP socket
interface described in [14]. Note, that in this setting the Racer reasoner need not
run locally, but may even be accessed via the web by OilEd and Sonic.

3.3 Sonic at Work

After the user has started the OilEd editor with Sonic, the lcs and approximation
inference are available on two extra tabs in OilEd— as shown in Figure 3.2. After
the OilEd user has defined some concepts in the OilEd ontology, has connected to
the DIG reasoner Racer and classified the ontology, she can use, for example, the lcs
reasoning service. In order to do so she can select some of the concept names from the
ontology on the lcs tab. When the button ‘compute lcs’ is clicked, the selected concept
names are transmitted to Sonic’s Lisp component and the lcs is computed based on

194

the current concept definitions stored in Racer.2 The concept description obtained
from the lcs implementation is send to the plug-in via Telnet and displayed on the lcs
tab. The approximation inference is offered on a similar Sonic tab in OilEd.

Since the concept descriptions returned by the lcs and the approximation inference
can be very large, it is not feasible to display them in a plain fashion. Sonic displays
the returned concept descriptions in a tree representation, where uninteresting sub-
concepts can be folded away by the user and inspected later. In Figure 3.2 we see
how the concept description for the lcs obtained from the application example in Sec-
tion 2 is displayed on Sonic’s tab in OilEd. Based on this representation Sonic also
provides limited functionality on both of its tabs to edit concept descriptions. OilEd

users can ’cut’ subdescriptions from the displayed concept description and thereby
reduce the displayed concept description to interesting aspects. OilEd users can also
’cut and store’ (a part of) the obtained concept description under a new concept name
in their ontology.

4 Conclusions and Future Work

The Sonic prototype is a graphical tool for supporting main steps of the bottom-
up approach for augmenting ontologies. These steps are realized by implementations
of the least common subsumer in ALEN and the approximation of ALCN - by ALEN -
concept descriptions. These reasoning services can be used from within the OilEd

ontology editor. Since Sonic is the first system that implements a graphical user
interface for non-standard inferences, it is now possible to evaluate how useful these
inference services are to users from practical applications.

Currently there is a big language gap between the DLs implemented in the state of
the art DL reasoners and the DLs for which non-standard inferences are investigated
or even implemented. To overcome this language gap to some extend we are currently
studying a new approach to compute approximate solutions for the lcs and thus obtain
a “good” common subsumer (instead of a least one) for input concept descriptions
referring to concepts defined in a more expressive DL, see [2].

Developing Sonic is ongoing work. Our next step is to optimize the current
implementation of approximation—on the one hand to speed-up the computation and
on the other hand to obtain smaller concepts. This can be achieved by using lazy
unfolding as our lcs implementation for ALE has shown, see [3]. Another step is to
implement minimal rewriting w.r.t. TBoxes to obtain more concise and thus better
comprehensible result concept descriptions from both reasoning services. In the longer
run we want to comprise the implementations of the difference operator (see [7]) and of
matching for ALE (see [11]) in Sonic and provide these inference services to users from
practical applications. The Sonic system can be down loaded for research purposes
from http://lat.inf.tu-dresden.de/systems/sonic.html.

Finally we would like to thank Ralf Möller, Volker Haarslev and Sean Bechhofer
for their help on how to implement Sonic’s linking to Racer and OilEd.

2This is why the TBox should be classified first.

195

References

[1] Franz Baader, Ralf Küsters, and Ralf Molitor. Computing least common sub-
sumer in description logics with existential restrictions. In T. Dean, editor, Pro-
ceedings of the 16th Int. Joint Conf. on Artificial Intelligence (IJCAI-99), pages
96–101, Stockholm, Sweden, 1999. Morgan Kaufmann, Los Altos.

[2] Franz Baader, Baris Sertkaya, and Anni-Yasmin Turhan. Computing the least
common subsumer w.r.t. a background terminology. In the Proceedings of 2004
International Workshop on Description Logics (DL 2004). To appear.

[3] Franz Baader and Anni-Yasmin Turhan. On the problem of computing small
representations of least common subsumers. In Proceedings of the 25th German
Annual Conf. on Artificial Intelligence (KI’02), LNAI. Springer–Verlag, 2002.

[4] Sean Bechhofer, Ian Horrocks, Carole Goble, and Robert Stevens. OilEd: a
Reason-able Ontology Editor for the Semantic Web. In Proceedings of the 24th
German Annual Conf. on Artificial Intelligence (KI’01), volume 2174 of LNAI,
pages 396–408, Vienna, Sep 2001. Springer-Verlag.

[5] Sean Bechhofer, Ralf Möller, and Peter Crowther. The DIG description logic
interface. In Proceedings of the 2003 Description Logic Workshop (DL 2003),
Rome, Italy, 2003.

[6] Sebastian Brandt, Ralf Küsters, and Anni-Yasmin Turhan. Approximating
ALCN -concept descriptions. In Proceedings of the 2002 Description Logic Work-
shop (DL 2002), number 53 in CEUR-WS. RWTH Aachen, April 2002.

[7] Sebastian Brandt, Ralf Küsters, and Anni-Yasmin Turhan. Approximation and
difference in description logics. In D. Fensel, D. McGuinness, and M.-A. Williams,
eds., Proceedings of the 8th Int. Conf. on the Principles of Knowledge Represen-
tation and Reasoning (KR-02), 2002. Morgan Kaufmann Publishers.

[8] Sebastian Brandt and Anni-Yasmin Turhan. Using non-standard inferences in de-
scription logics — what does it buy me? In Proceedings of the KI-2001 Workshop
on Applications of Description Logics (KIDLWS’01), number 44 in CEUR-WS,
Vienna, Austria, September 2001. RWTH Aachen.

[9] Sebastian Brandt and Anni-Yasmin Turhan. An approach for optimized approx-
imation. In Proceedings of the KI-2002 Workshop on Applications of Description
Logics (KIDLWS’02), number 63 in CEUR-WS, Aachen, Germany, September
2002. RWTH Aachen.

[10] Sebastian Brandt, Anni-Yasmin Turhan, and Ralf Küsters. Extensions of non-
standard inferences for description logics with transitive roles. In Proceedings
of the 10th Int. Conf. on Logic for Programming and Automated Reasoning
(LPAR’03), LNCS. Springer, 2003.

196

[11] Sebastian Brandt. Implementing matching in ALE—first results. In Proceedings
of the 2003 International Workshop on Description Logics (DL2003), CEUR-WS,
2003.

[12] Wiliam Cohen, Alex Borgida, and Haym Hirsh. Computing least common sub-
sumers in description logics. In W. Swartout, editor, Proceedings of the 10th Nat.
Conf. on Artificial Intelligence (AAAI-92), pages 754–760, San Jose, CA, 1992.
AAAI Press/The MIT Press.

[13] Volker Haarslev and Ralf Möller. RACER system description. In Proceedings of
the International Joint Conference on Automated Reasoning IJCAR’01, LNAI.
Springer Verlag, 2001.

[14] Volker Haarslev and Ralf Möller. RACER User’s Guide and Manual, Sept.
2003. available from: http://www.sts.tu-harburg.de/~r.f.moeller/racer/
racer-manual-1-7-7.pdf.

[15] Ian Horrocks. Using an expressive description logic: FaCT or fiction? In A.G.
Cohn, L.K. Schubert, and S.C.Shapiro, editors, Proceedings of the 6th Int. Conf.
on the Principles of Knowledge Representation and Reasoning (KR-98), pages
636–647, 1998.

[16] Ralf Küsters and Ralf Molitor. Computing Least Common Subsumers in ALEN .
In B. Nebel, editor, Proceedings of the 17th Int. Joint Conf. on Artificial Intelli-
gence (IJCAI-01), pages 219–224. Morgan Kaufman, 2001.

[17] Anni-Yasmin Turhan and Christian Kissig. Sonic—Non-standard inferences go
OilEd. In Proceedings of the International Joint Conference on Automated Rea-
soning IJCAR’04, LNAI. Springer Verlag, 2004. To appear.

197

Understanding Ontologies in Scholarly Disciplines
Brian R Gaines

Knowledge Science Institute
University of Calgary, Alberta, Canada

gaines@ucalgary.ca
Abstract

Description logics are valuable for modeling the conceptual structures of scientific and
engineering research because the underlying ontologies generally have a taxonomic core.
Such structures have natural representations through semantic networks that mirror the
underlying description logic graph-theoretic structures and are more comprehensible than
logical notations to those developing and studying the models. This article reports experience
in the development of visual language tools for description logics with the objective of
making research issues, past and present, more understandable.

1 Introduction
Scholarship may be conceptualized as the rational reconstruction of intuitive notions within
the conventions of a discipline. When scholarly disciplines examine their foundations the
outcome is generally a taxonomy based on logical definitions intended to capture the concepts
of the primary researchers and to clarify the differences underlying disagreements. The
development and analysis of such taxonomies can be helpful to active research communities
attempting to clarify their activities, and it is also significant in retrospect to historians
reconstructing the conceptual structures of those recognized as major contributors to the
growth of human knowledge. Description logics managed through visual languages
isomorphic to the underlying graph-theoretic structures, and visually transformable through
well-defined deductive processes, offer an attractive technology to support both historic
studies and active research communities.

The work reported in this paper is a continuation of that on the use of knowledge acquisition
and representation tools to model the knowledge structures of scholarly communities [1].
These studies involved the use of the visual language [2] that allowed knowledge structures to
be expressed as semantic networks with well-defined semantics that were automatically
translated into data structures in KRS [3], an implementation of a CLASSIC-like [4]
description logic. Inferences in KRS were graphed automatically as additions to the semantic
network so that users could visualize both the inputs and outputs without translation into
logical formulae [5].

In recent years there have been major advances in description logic research that make it
realistic to use richer representations incorporating negation, disjunction and some aspects of
recursion [6]. This enables one to overcome of the artificiality of the knowledge structures
noted above that attempted to avoid such constructions, resulting in unnatural representations,
of lesser use as models meaningful to the relevant community.

This paper reports on recent developments that: extend the visual language to support richer
description logics with disjunction, negation and existential quantification; exemplifies the
process of transforming semantic networks in coming to understand them; discusses factoring
deduction into its intensional and extensional operations to support paraconsistent reasoning
[7]; and raises a number of issues for future research.

198

2 Understanding an Ontology
I have used the term “understanding an ontology” in order to capture the notion that users
should be able to see the effects of variations in the ontology, some of which do not change its
meaning, others of which change it significantly in ways that can be readily understood, and
others of which are logical consequences that may require some degree of explanation if they
are to be understood.
A visual language representation of ontologies is useful to support those without great fluency
in symbolic logic in its textual representation. Shin [8] has demonstrated that diagrammatic
reasoning can provide a rigorous foundation for logical inference, and psychological
experiments show that non-technical users of a knowledge-based system find inference in a
visual language easier to understand [9].

2.1 Designing a visual language for description logics
The design criteria for the visual language have been:

1 The visual language should provide an alternative syntax to linear textual languages
but have standard logical semantics and be intertranslatable with textual languages.

2 The visual language should be simple to explain to users, both those with deep
understanding of symbolic logic and those with little understanding.

3 The visual language should correspond to the natural graph-theoretic representation of
description logics that is commonly used in describing operations on them and in
implementing computational inference [10].

4 As many as possible of the syntactic and inferential transformations of expressions in
the visual language should be formally specifiable as graph-theoretic operations.

5 The visual language should be usable both for the input of logical definitions and
assertions, and for the output of logical inferences.

6 The visual language should support modularity in the specification of ontologies such
that definitions/assertions may be specified in one document and used in others [11].

7 Subject to these requirements, the visual language should be similar to existing
languages for semantic networks.

2.2 Overview of the KNet visual language
KNet, the visual language used in this paper is implemented in a generic visual language
shell, RepNet [12], that supports a user-specified syntax for node types and connecting lines
and a user scriptable interface for translation to and from semantic networks in the visual
language enabling integration with web services such as KRS and RACER [13]. It is simple to
change the language to conform to existing practices, user preferences, or changing notions of
what is required. The examples given follow the conventions described in [2] and are similar
to those of other graphical interfaces for description logics such as RICE [14].
Concepts are represented by the concept name in an oval. Concepts are defined through the
property they encode [15] in the graph derived by tracing outgoing arrows from the concept,
terminating at concept nodes or terminal nodes. Concepts are used through incoming arrows,
and may be both defined and used in the same graph.
Base, or primitive, concepts are indicated by short horizontal markers in the concept oval that
indicate that there is some unspecified outgoing graph unique to the concept. This is a
sufficient explication (in Carnap/Quine terms [16]) for the logical properties of a primitive
concept. From a logical perspective, is does not matter in reasoning with the concept how the
unspecified graph is represented provided it is unique to the concept. However, in modeling
scientific reasoning, one has to take into account that each school of thought may have

199

adopted a differing, more specific representation of a particular primitive concept, making a
distinction without a difference that can be a source of confusion in the literature.
Roles, or relations, are represented by the role name without any surrounding shape.
Individuals, or singletons, are represented by the individual name in a rectangle. An
individual exhibits [15] a property derived from its outgoing arrows as for concepts, which
may be conceptualized as the concept encoding its current state.
A collective individual or set is represented by an extensional constraint, and possibly an
identifying name, in a rectangle with inset vertical lines at each end. The constraint is
specified through upper and lower cardinality and inclusion bounds on the collection as
detailed in [3] where it was shown that such bounds may be conceptualized as defining
generalized sets or mereological collections having well defined unions, intersections and
complements, and forming a subsumption lattice under inclusion ordering (I have not yet
found an elegant graphical representation of the bounds, and hence have left these defined in
textual form within the node). Sets are important in representing role fillers, co-reference and
inclusion constraints, and, when defined by comprehension, material implications or rules.
The notation for an individual may be regarded as a shorthand for a set with cardinality 1
(consistent with the Quine/Scott [17/18] extensional simplification of set theory that a={a}).
Thus there are basically only three types of nodes: concepts, roles and mereological sets. The
node type “∃” is provided as a shorthand for the cardinality constraint “≥1”.
Arrows between nodes derive their semantics from the types of the nodes they connect.
An arrow from concept A to concept B means that concept A is defined to be subsumed by
concept B. The equivalent graph-theoretic interpretation is that the arrow may be replaced by
copying the graph of outgoing arrows from concept B to concept A (including the unspecified
graph of a primitive concept).
An arrow from individual A to concept B means that A is asserted to be an instance of B and
again may be given a graph-theoretic interpretation as a copy operation.
An arrow from an individual A or a set A to a set B means that A is contained in B. This can
be used to specify co-reference and inclusion constraints. An arrow from a concept A to a set
B means that any individual comprehended by A is contained in B. This has the corollary that
a rule, or material implication, may be represented as a set with a incoming arrow from a
premise concept and an outgoing arrow to a conclusion concept.
Multiple arrows from a node are taken as specifying a conjunction of properties. This
convention necessitates the introduction of a special node, “∨”, specifying a disjunction, with
the convention that outgoing arrows from this specify a disjunction of properties. The graph-
theoretic interpretation is one of multiple alternative graphs each having one of the branches
of the disjunction, and disjunction nodes can always be eliminated by such expansion
resulting in multiple, alternative definitions of a disjunctive concept.
The conjunctive node type “∧” is also available to use after a “∨” to disambiguate multi-
branch outgoing graphs that are to be treated as a single term in the disjunction.
Negation is represented through an arrow with a cross bar having the graph-theoretic
interpretation that the graph at the end of the arrow must not occur. This gives rise to the
standard semantics for negation, including De Morgan’s laws linking conjunction, disjunction
and negation. A negation arrow from a concept to a set may be used to represent a rule with
exceptions [19].
An existential constraint is specified through a set with an arrow to a concept applying to the
individuals included in it.
If a graph contains a conjunction/disjunction of two identical graphs then one of the
conjuncts/disjuncts may deleted.

200

2.3 Models, satisfaction and subsumption
A concept definition is coherent, or consistent, if all the set bounds specified in it are
consistent and there is no conjunction in it of an arrow and a negation arrow pointing to the
same graph.
A model satisfying an ontology defined in the visual language is a collection of individuals
satisfying all the existential constraints such that their resulting states are coherent.
One ontology is extensionally subsumed by another if any model satisfying it also satisfies
the other. This definition gives rise to the standard denotational, extensional, model-theoretic
semantics for description logics, and may be used to show that the graph-theoretic operations
of the visual language conform with the standard extensional semantics of description logics.
We may also introduce the notion of intensional or structural subsumption as a sub-graph
relation, that one ontology is intensionally subsumed by another if that other ontology is a
sub-graph of it. It follows immediately that intensional subsumption implies extensional
subsumption, but not necessarily vice versa.
However, the definition of intensional subsumption needs strengthening. First, a semantic
network may be conceptualized as a meta-graph that specifies a set of equivalent graphs
derivable from it by expansion, contraction and other logical operations. One ontology
intensionally subsumes another if its graph at any stage of expansion or contraction is a sub-
graph of the other at any stage of expansion or contraction. One could state this in terms of
full expansions to a canonical form but for computational purposes the definition given is
more useful, particularly since recursive definitions give rise to infinite graphs.
Second, the labels given to non-primitive concepts are arbitrary from a logical perspective, so
that any remapping of labels that preserves non-identity may be used in computing structural
subsumption. This corresponds to the notion that different terms are being used for the same
concept, and is important in the analysis of scientific definitions since it often happens that
different terminology has been used for essentially the same concept. Mapping primitives to
one another is a deeper operation since it would imply that their tacit definitions are the same,
and is also important to the process of finding explications of the primitives. A good example
is the way in which the application of biological evolutionary theory to processes in other
disciplines has led to the abstraction of the principles of variety generation and selective
filtering underlying a general process of ‘evolution.’
Third, the semantics of set constraints have not been specified in graphical form, but their
subsumption lattice is well-defined so that one needs to extend the notion of sub-graph to be
one in which a set matches another if it subsumes it.

3 Some Examples
In order to illustrate some of the issues, this section takes the following simple ontology from
The Description Logic Handbook [6, p.52] and shows how it may be manipulated in KNet.

Woman ≡ Person Female (1)
Man ≡ Person ¬Woman (2)

Mother ≡ Woman ∃ has_Child.Person (3)
Father ≡ Man ∃ has_Child.Person (4)
Parent ≡ Father Mother (5)

Grandmother ≡ Mother ∃ has_Child.Parent (6)
Mother_With_Many_Children ≡ Mother ≥3 has_Child (7)

Mother_Without_Daughter ≡ Mother ∀ has_Child.¬Woman (8)
Wife ≡ Woman ∃ has_Husband.Man (9)

Figure 1 Simple ontology of family relationships [6, p.52]

201

Fig.2 shows the ontology of Fig.1 represented as a semantic network in KNet.

Figure 2 Ontology of Figure 1 in KNet
Figure 3 is equivalent to Figure 2, and derived from it by expanding all defined constructs,
pushing negation to terminal nodes, and excising contradictory branches from disjunctions.
These are all transformations that a representation system will probably make in transforming
the definitions into an internal normal form, and they are also of help to the user in
understanding the ontology.

Figure 3 Expanded ontology of Figure 2

202

Some problems with the ontology defined in Figure 2 are apparent in Figure 3. “Mother
Without Daughter” and “Mother With Many Children” are not defined as expected because
they encompass situations in which a child is not a person. The problem may be viewed as
arising from the definition of “Mother” that has “Person” after an existential quantifier, and it
could be avoided by moving “Person” back to be a universal quantifier of the “has Child”
role. However, this would have the consequence in recognizing a “Mother” that all her
children would have to be checked to be people when it is intended that only the existence of
one need be checked.
These problems are arising because the ontology of Figure 2 avoids the use of the natural
recursive definition that the “has Child” role of a person must be filled by a person. However,
this is an innocuous use of recursion since the concept “Person” is a primitive that can only be
asserted of an individual, not recognized as applying to it, and hence the recursive definition
acts only as a constraint that needs propagating through a graph up to its existing terminal
nodes, not expanded indefinitely beyond them.
Fig. 4 shows an alternative ontology with the recursive definition, and Fig. 5 shows that it
leads to the expected definitions after expansion.

Figure 4 Alternative ontology to Figure 1

Figure 5 Expanded ontology of Figure 4

203

Fig. 5 looks somewhat cluttered with “Person” terminals, and the user might wish to limit the
expansion by specifying that those implicit in the recursive definition are not shown, in effect
that the “has Child” role of a person is implicitly filled by a person. Nine uses of “Person” can
be dropped in Fig. 5 while preserving its equivalence to Fig. 4.
The point of this discussion to illustrate how various transformations of a ontology may affect
the understanding of it, and need to be supported through decision logic inference and
graphical interaction. Users need to be able to move back and forth between readily
understood equivalent representations, much as does the inference engine. It is interesting to
see how the defined subsumptions in Fig.4 are clearly visible to users as inferable
subsumptions in Fig. 5 through subgraph relationships. Users also need to be able to compare
the effects of changes that do affect meaning such as those between Fig.2 and Fig.4.
The situation becomes more complex as inferences are made that go beyond the restructuring
discussed so far, for example, if it is the A-Box that is being graphed and extensional case-by-
case reasoning has been applied or rules have fired. KRS graphs the results of such reasoning
as additions as to the original graph after “infer” nodes, but makes no attempt to “explain”
them. CLASSIC provides a form of explanation of terminological reasoning [20] and this
together with more recent developments [21,22] suggest approaches which it would be
interesting to implement as modules providing graphical output through semantic networks.
In its applications to presenting output from clustering algorithms, KNet provides an
interactive interface whereby users can adjust what parts of a graph are shown by moving a
slider to change a threshold. It would be interesting to take output from an inference engine in
a proof markup language [23] and have a slider that moved through a linear representation of
the proof steps while showing the resulting inferences being graphed in the semantic network.
Figure 6 provides a simple example of the distinctions made in Aristotle’s mechanics that led
to problems that medieval scientists attempted to resolve with little progress until their
reconstruction by Galileo facilitated their explication by Newton [24]. The state of an object
was seen to be either one of rest or one of motion, and several states of motion were
distinguished. One that was well-grounded in experience but problematic in the development
of a unified science of motion, was the distinction between heavenly and local bodies. The
problems generated by this distinction without a difference were greatly exacerbated by
making circular, constant motion part of the definitional essence of heavenly motion, thus
requiring no explanation in terms of material conditionals or ‘laws of motion.’

Figure 6 Distinctions in medieval mechanics
Medieval scientists accepted the heavenly—local distinction and the lack of need to explain
the ‘perfection’ of heavenly motion, and focused on problems with the behavior of bodies in
free-fall motion, that they accelerated, and ones in ‘violent’ motion, such as projectiles, that
they continued in the direction in which they were projected even though they had lost contact
with the projector. This led to explanations in terms of notions such as impressed ‘impetus’
[24].

204

Galileo dropped the distinction between heavenly and local bodies and between free fall and
violent motion, but introduced new problems through the notion that the earth itself was
moving and yet this had no apparent effect on objects in free fall. One can track the changing
ontologies and laws from Aristotle through Buridan and Oresme to Copernicus and Galileo
and hence to Descartes, Huygens, Hooke, Newton et al, as the gradual reduction of primitives
in the ontologies of motion and their replacement by the material implications which we now
know as Newton’s ‘laws of motion’ [24].

4 The Transition from Logical Opposition to Numeric Scales
One important phenomenon in the development of scientific reasoning is the way in which
qualitative distinctions become refined to be graded distinctions, eventually becoming
numeric scales of observable measured with ever-increasing precision [25]. We can model
this process in a description logic by introducing the natural symmetry of an opposition, that it
is generally conceived as based on two opposing concepts of equal status rather than one and
its negation as in Figs. 2, 4 and 6. The resultant structure turns out to have the properties of a
multi-point scale.

Figure 7 From an opposition to a five-point scale
Fig. 7 exemplifies this process. The opposition between the primitives, rest and motion, is
modeled by the extremes of absolute rest and high-speed motion which inherit from one
concept and the negation of the other. This leads to a natural five-point scale as three other
concepts are interpolated between them, the two primitives and their disjunction. Seven and
nine-point scales may be developed from this by adding another concept such as ‘extreme
value.’ Once the logical possibility of grading the opposition has been realized it is natural to
look for quantities to measure that correlate with the scale and provide further gradations.

5 Supporting Paraconsistent Reasoning
In the literature on modeling scientific reasoning it has been argued that inconsistencies are
often present but do not cause “explosive” growth of conclusions through the ex falso
quodlibet derivations of classical logic [7]. Hence it has been proposed that paraconsistent
logics are needed to account for scientific reasoning [26]. However, uniform paraconsistency
is not desirable since many major achievements in the scientific literature, such as Arrow’s
impossibility theorem, result from proofs of definitional inconsistency, and Rips’
psychological studies show that people readily generate reductio ad absurdum arguments to
solve logic problems [27].
Batens has proposed and developed adaptive logics that default to classical behavior in the
absence of inconsistency, but behave paraconsistently in its presence [28]. Description logics
are well-suited to be foundations for such logics if the reasoning is factored appropriately. The
major example of ex falso quodlibet in description logics is that any incoherent definition is
subsumed by any other. However, structural subsumption based on graph-matching does not
lead to this conclusion. It has to be imposed separately. KRS [3] would happily report that a

205

Meinongian green, round, square entity, where round and square were declared disjoint
primitives, was subsumed by green, round or square but not by red, provided that the
additional inference step of noting that the definition was incoherent and mapping it to bottom
was not taken.
Tableaux proofs by refutation obviously rely on such mapping but extensions to tableaux
methods have been described which support inconsistency-adaptive logics [29] and it would
be interesting to investigate how these might be incorporated in description logics.
A reasonable target architecture might be an inference engine with a user-interface through
semantic networks and control over the proof methods such that one can see the impact of
various methods in terms of the proofs generated and the inferences made. Normalization and
structural subsumption might provide a model of the inference patterns that have led to
incoherent definitions being accepted by scholarly communities for long periods of time, with
inferences being made despite the contradictions. Stronger proof methods might provide a
model of the anomaly detection that leads to a change in the conceptual framework marking a
minor or major “scientific revolution.”

6 Conclusions
Description logic technology, with visual language interfaces and control of proof techniques,
provides very valuable tools for understanding the knowledge processes of current and past
scholarly communities. Much of the current research on the support of the semantic web is
directly applicable since the sub-disciplines of science are known to form a “semantic web” of
inter-dependencies and provenances. It may be that some additional constructions will be
needed, but the advances of recent years in description logic research make it reasonable to
expect that it will be feasible to add them.

References
[1] Brian R Gaines and Mildred L G Shaw. Using knowledge acquisition and representation

tools to support scientific communities. In Proc. of the 12th Nat. Conf. on Artificial
Intelligence (AAAI'94), pages 707-714 1994.

[2] Brian R Gaines, An interactive visual language for term subsumption languages. In Proc.
of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI’91), pages 817-823, 1991.

[3] Brian R. Gaines. A class library implementation of a principled open architecture
knowledge representation server with plug-in data types. In Proc. of the 13th Int. Joint
Conference on Artificial Intelligence (IJCAI’93), pages 504-509, 1993.

[4] A. Borgida, A., R. J. Brachman, D.L. McGuiness and L.A. Resnick. CLASSIC: a
structural data model for objects. In Proc. of SIGMOD Conference on the Management
of Data, pages 58-67, 1989.

[5] Brian R Gaines and Mildred L G Shaw. Embedding formal knowledge models in active
documents. Communications of the ACM 42(1): 57-63, 1999.

[6] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation and
Applications. Cambridge University Press, 2003.

[7] Walter A. Carnielli, Marcello E. Coniglio and Itala M. Loffredo D'Ottaviano (Eds.).
Paraconsistency: The Logical Way to the Inconsistent. New York, Marcel Dekker, 2002.

[8] Sun-Joo Shin. The logical status of diagrams. Cambridge University Press, 1994.
[9] John T. Nosek and Itzhak Roth. A comparison of formal knowledge representations as

communication tools: predicate logic vs semantic network. International Journal of Man-

206

Machine Studies 33, 227-239, 1990.
[10] Alex Borgida and Peter F. Patel-Shneider. A semantics and complete algorithm for

subsumption in the CLASSIC description logic. Journal of Artificial Intelligence
Research 1, 277-308, 1994.

[11] Brian R Gaines. A situated classification solution of a resource allocation task
represented in a visual language. Int. J. Human-Computer Studies 40(2): 243-271, 1994.

[12] Rep IV Manual. Centre for Person-Computer Studies, 2004, http://repgrid.com.
[13] Volker Haarslev and Ralf Möller. Description of the RACER System and its

Applications. Proc. of the Int. Workshop on Description Logics (DL-2001), pages 132-
141, 2001.

[14] Ralf Möller, R. Cornet and Volker Haarslev. Graphical Interfaces for Racer: Querying
DAML+OIL and RDF Documents. Proc. of the Int. Workshop on Description Logics
(DL-2003), 2003.

[15] Edward N. Zalta. Intensional Logic and the Metaphysics of Intentionality. Cambridge,
MA: MIT Press, 1988.

[16] Willard Van Orman Quine. Word and Object. Cambridge, MA: MIT Press, 1960.
[17] Willard Van Orman Quine. Set theory and its logic. Cambridge, MA: Harvard University

Press, 1963.
[18] Dana S. Scott. Quine’s individuals. In Ernest Nagel,Patrick Suppes and Alfred Tarksi

(Eds.) Logic, Methodology and the Philosophy of Science. Stanford, CA: Stanford
University Press, pages 111-115, 1962.

[19] Brian R Gaines. Integrating rules in term subsumption knowledge representation servers.
In Proc. of the 9th National Conference on Artificial Intelligence (AAAI’91), pages 458-
463.

[20] Deborah L. McGuiness and Alex Borgida. Explaining subsumption in description logics.
In Proc. 14th Int. Joint Conf. on Artificial Intelligence (IJCAI’95), pages 816-821, 1995.

[21] S. Schlobach and R. Cornet. Explanation of Terminological Reasoning: A Preliminary
Report. Proc. of the Int. Workshop on Description Logics (DL-2003), 2003.

[22] Deborah L. McGuinness and Paulo Pinheiro da Silva. Infrastructure for Web
Explanations. In Proc. of 2nd Int. Semantic Web Conference (ISWC2003), LNCS 2870,
Berlin: Springer, pages 113-129, 2003.

[23] Paulo Pinheiro da Silva, Deborah L. McGuinness and Richard Fikes. Combinable Proof
Fragments for the Web. Tech. Rep. KSL-03-04, Knowledge Systems Laboratory,
Stanford University, 2003.

[24] Eduard Jan Dijksterhuis. The Mechanization of the World Picture. Oxford: Clarendon
Press, 1961.

[25] M. Norton Wise (Ed.). The Values of Precision. NJ: Princeton University Press, 1995.
[26] Joke Meheus (Ed.). Inconsistency in Science. Dordrecht: Kluwer, 2002.
[27] Lance J. Rips. The Psychology of Proof: Deductive Reasoning in Human Thinking.

Cambridge, MA: MIT Press, 1994.
[28] Diderik Batens, Chris Mortensen, Graham Priest and Jean-Paul Van Bendegem.

Frontiers of Paraconsistent Logic. Baldock, UK: Research Studies Press, 2000.
[29] Diderik Batens and Joke Meheus. A Tableau Method for Inconsistency-Adaptive Logics.

In Proc. Automated Reasoning with Analytic Tableaux and Related Methods
(TABLEAUX 2000), LNCS 1847, Berlin:Springer, pages 127-14, 2000.

207

Description Logics for e-Service Composition

Daniela Berardi
Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza”
Via Salaria 113, I-00198 Roma, Italy

berardi @dis.uniroma1.it

e-Services represent a new model in the utilization of the network, in which
self-contained, modular applications can be described, published, located and
dynamically invoked, in a programming language independent way.

Research on e-Services spans over many interesting issues, including descrip-
tion, discovery, composition. Our research focuses on automatic composition
synthesis.1 More specifically, we have devised techniques that, given (i) a client
specification (target e-Service) expressed as a transition system and (ii) a set of
available e-Services, also described as transition systems, synthesizes a compos-
ite e-Service that (i) uses only the available e-Services and (ii) interacts with the
client “in accordance” with the input specification. First, we have considered the
situation where the target e-Service is completely specified, and then we have
extended the framework to deal with a target e-Service which is underspecified
and presents non-determinism, in the form of don’t care condition on the next
transitions.

Our techniques are based on reducing the problem of checking the existence
of a composition into concept satisfiability in a knowledge base expressed in a
Description Logic (DL) –or equivalently satisfiability of a formula in a theory
expressed in a variant of Propositional Dynamic Logic. With this reduction, rea-
soning tools for DLs can be directly used for composition synthesis, in particular
by extracting a composite e-Service from a model of the DL knowledge base.
We have developed (and currently continue to extend) an open source prototype
system2, that realizes our techniques, which is, at the best of our knowledge, the
first effective tool for automatic composition synthesis of e-Services that export
their behavior.

1Relevant publications can be found at: http://www.dis.uniroma1.it/~berardi/
publications.

2cfr. the paride (Process-based frAmewoRk for composItion and orchestration of Dinamyc
E-Services) Open Source Project: http://sourceforge.net/projects/paride/

208

Description Logic and Order-sorted Logic

Ken Kaneiwa

National Institute of Informatics, Japan

kaneiwa@nii.ac.jp

I have been studying the following work on description logic, which is closely
related to my main work on extensions of order-sorted logic and logic program-
ming [4, 3, 2].

Title: Negation in Description Logics: Contraries, Contradictories and Sub-
contraries (under submission)

Abstract: We propose an alternative description logic ALC∼ with classical
negation and strong negation. In particular, we adhere to the notions of con-
traries, contradictories and subcontraries [1], generated from possible statement
types using predicate denial and predicate term negation. To capture these no-
tions, our formalization provides an improved semantics that suitably interprets
various combinations of classical negation and strong negation (but not Heyt-
ing negation and strong negation). We develop a tableau-based satisfiability
algorithm for ALC∼, and show the correctness: soundness, completeness and
termination and the complexity.

References

[1] L. R. Horn. A Natural History of Negation. University of Chicago Press,
1989.

[2] K. Kaneiwa. Order-sorted logic programming with predicate hierarchy. Ar-
tificial Intelligence, 2004 (accepted).

[3] K. Kaneiwa and R. Mizoguchi. Ontological knowledge base reasoning
with sort-hierarchy and rigidity. In Proceedings of the Ninth International
Conference on the Principles of Knowledge Representation and Reasoning
(KR2004), 2004.

[4] K. Kaneiwa and S. Tojo. An order-sorted resolution with implicitly negative
sorts. In Proceedings of the 2001 Int. Conf. on Logic Programming, pages
300–314. Springer-Verlag, 2001. LNCS 2237.

209

Explaining Description Logic Reasoning

Francis Kwong
University of Manchester, United Kingdom

francis.kwong@cs.man.ac.uk

The increasing reliance on automated reasoning needs not just the avail-
ability of fast reasoners, but also mechanisms to explain their, often surprising,
results to human users, so that they can understand the consequences in their
application domain. As one of the significant applications of machine reasoning
is the Semantic Web, where reasoning on Description Logic(DL) plays a critical
role, it is worth looking into explanation of DL reasoning.

There are three aspects in explanation that we are interested in:

Understandability and conciseness of explanation
Explanation means to bring understanding to the human being. Therefore gen-
erated explanation has to be easy to understand and reader friendly. It must
not be clumsy and lengthened; otherwise it would be very difficult to consume
it. Unfortunately, the tableaux algorithm and its optimizations implemented
by DL reasoners are complicated in nature, difficult to be understood. Special
explanation methodology is needed to generate understandable explanations for
DL reasoning.

Extension of explanation for expressive DLs
Today tableau-based reasoners like FaCT and RACER are capable of reasoning
with the very expressive DL (SHIQ). However, explanation methodologies pro-
posed so far can only handle basic DLs like ALC. Growth of explanation power
is far behind that of the reasoning capability. Extending explanation power is
therefore one of the goals of our research.

Integration of explanation facility to DL reasoners
An explanation engine can not work alone, it must work closely with a DL
reasoner. However, current DL reasoners do not support explanation. Modifying
an existing DL reasoner to incorporate explanation capability is difficult and
costly. A Dual-Reasoner architecture is being investigated to bring reasoning
and explanation together.

210

Finite Satisfiability of UML class diagrams by

Constraint Programming

Toni Mancini

Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza”

Via Salaria 113, I-00198 Roma, Italy

tmancini@dis.uniroma1.it

www.dis.uniroma1.it/~tmancini

The Unified Modelling Language (UML, cf. www.uml.org) is probably the most used modelling
language in the context of software development, and has been proven to be very effective for the
analysis and design phases of the software life cycle.

UML offers a number of diagrams for representing various aspects of the requirements for a
software application. Probably the most important diagram is the class diagram, which represents
all main structural aspects of an application: classes, associations, ISA hierarchies between classes,
multiplicity constraints on associations. Actually, a UML class diagram represents also other as-
pects, e.g., the attributes and the operations of a class, the attributes of an association, and the
specialization of an association. Such aspects, for the sake of simplicity, will not be considered.

A class diagram induces restrictions on the number of objects, because of its multiplicity con-
straints. In some cases the number of objects of a class is forced to be zero. When a class is forced
to have either zero or infinitely many instances, it is said to be finitely inconsistent or finitely

unsatisfiable.
Unsatisfiability, either finite or unrestricted, of a class is a symptom of a bug in the analysis phase,

since such a class is clearly superfluous. In particular, finite unsatisfiability is especially relevant in
the context of applications, e.g., databases, in which the number of instances is intrinsically finite.

Finite inconsistency may arise in complex situations, and discovering finite inconsistency may be
not doable by hand, since it requires global reasoning on the whole class diagram. Thus, automated
finite model reasoning in UML class diagrams (including checking finite satisfiability of classes) is of
crucial importance for assessing quality of the analysis phase in software development. Indeed, for the
purpose of software engineering, finite model reasoning in UML class diagrams is often considered
more important than unrestricted reasoning.

In our research we address the implementation of finite model reasoning on UML class diagrams,
a task that has not been attempted so far. This is done by exploiting an encoding of UML class
diagrams in terms of Description Logics (DLs).

Reasoning in such logics has been studied extensively, both from a theoretical point of view,
establishing EXPTIME-completeness of various DL variants, and from a practical point of view,
developing practical reasoning systems. The correspondence between UML class diagrams and DLs
allows one to use the current state-of-the-art DL reasoning systems to reason on UML class diagrams.
However, the kind of reasoning that such systems support is unrestricted (as in first-order logic),
and not finite model reasoning. That is, the fact that models (i.e., instantiations of the UML class
diagram) must be finite is not taken into account.

Interestingly, in DLs, finite model reasoning has been studied from a theoretical perspective, and
its computational complexity has been characterized for various cases. However, no implementations
of such techniques have been attempted till now. In our research we reconsider such work, and on
the basis of it we present, to the best of our knowledge, the first implementation of finite model
reasoning in UML class diagrams.

The main result of our current reseach is that it is possible to use off-the-shelf tools for constraint
modelling and programming for obtaining a finite model reasoner. In particular, we propose an
encoding of UML class diagram satisfiability as a Constraint Satisfaction Problem (CSP). Moreover,
we show also how constraint programming can be used to actually return a finite model of the UML
class diagram.

We built a system that accepts as input a class diagram written in the MOF syntax, and translates
it into a file suitable for ILOG’s OPLStudio, which checks satisfiability and returns a finite model,
if there is one. The system allowed us to test the technique on the industrial knowledge base CIM,
obtaining encouraging results.

211

Pellet: An OWL DL Reasoner

Evren Sirin and Bijan Parsia
MINDSWAP Research Group

University of Maryland, College Park, MD
evren@cs.umd.edu, bparsia@isr.umd.edu

1 Introduction

In order to gain experience with description logic reasoner, and to contribute to the OWL Can-
didate Recommendation process, a small team at MINDSWAP set out to implementa tableau
reasoner for the Lite and DL dialects of OWL (corresponding roughly to the description logics
SHIF(D) and SHION(D)). Our group found existing, available DL reasoners lacking for our
purposes, because we needed an open-source tool that provides ABox reasoning, that does not
make Unique Name assumption, supports entailment checks and works with XMLSchema
datatypes. Pellet has been developed to addresses these issues and has become both our test
bed for experiments with DL and Semantic Web reasoning, as well as our standard reasoning
component. While not (yet) in the performance range of Racer or Fact, it has many usability
features that makes it a good choice for various lighter weight situations.

Technically, Pellet is a sound and complete tableau reasoners for SHIN(D) and SHON(D)
(with ABoxes), and a sound but incomplete tableau reasoner for SHION(D) (with ABoxes).
Pellet has the usual suite of optimizations including lazy unfolding, absorption, dependency
directed backjumping, and semantic branching. It incorporates datatype reasoning for the
built-in primitive XML Schema datatypes. Pellet is implemented in pure Java and available
as open source software.

2 Special features

Pellet has a number of features either driven by OWL requirements or Semantic Web issues.

Ontology analysis and repair OWL has two major dialects, OWL DL and OWL Full, with
OWL DL being a subset of OWL Full. All OWL knowledge bases are encoded as RDF/XML
graphs. OWL DL imposes a number of restrictions on RDF graphs, some of which are sub-
stantial (e.g., that the set of class names and individual names be disjoint) and some less
so (that every item have a “type” triple). Ensuring that an RDF/XML document meets all
the restrictions is a relatively difficult task for authors, and many existing OWL documents
are nominally OWL Full, even though their authors intend for them to be OWL DL.Pellet
incorporates a number of heuristics to detect “DLizable” OWL Full documents “repair” them.

212

Datatype reasoning XML Schema has a rich set of basic datatypes including various numeric
types (integers and floats), strings, and date/type types. It also has several mechanism, both
standard and unusual for creating new types out of the base types. For example, it’s possible
to define a datatype by restricting the integers to the set of integers whose canonical represen-
tation has only 10 digits, or whose string representation matches a certain regular expression.
Currently, XML Schema systems tend toward validation of documents and generation of PSVI
instead of type checking (though, with the advent of XQuery, this might change). Pellet can
test the satisfiability of conjunctions of thus constructed datatypes.

Entailment In Semantic Web, entailment is the key inference whereas the Description Logic
community have focused on satisfiability and subsumption. While entailment can bereduced
to satisfiability, most DL systems do not support it. In part to pass a large portion of the OWL
test suite, we implemented entailment support in Pellet.

Conjunctive ABox query Query answering is yet another important feature for Semantic
Web. We have implemented an ABox query answering module in Pellet using “rolling-up”
technique. We have devised algorithms to optimize the query answering by changing how
likely candidates for variables are found and tried. Exploiting the dependencies between dif-
ferent variable bindings helps us to reduce the total number of satisfiability tests thus speeding
up the answer significantly.

3 Applications and Future Work

We expose most of Pellet’s capabilities equally from a Java API, a command lineinterface,
and a Web form. The Web form has been used by a number of people for species validation,
consistency checking, and experimenting with OWL DL classification and entailment.

Pellet is the default reasoner in SwoopEd, a lightweight ontology browserand editor.
Pellet is used for classification, class satisfiability testing, query, and species validation and
repair.

We also use Pellet for web service discovery and composition. Pellet has been incorpo-
rated as the knowledge base for a version of the SHOP2 HTN planning system and Fujitsu
Lab of America’s Task Computing Environment (TCE).

We have begun experimenting with various multi-ontology/logic formalism, such asdis-
tributed description logic and E-Connections implementation techniques. Initial results have
been both instructive and promising. We also aim to integrate the reasoner withrules to
support Semantic Web Rule Language (SWRL). Other future work projects include generat-
ing explanations for concept satisfiability, querying usingK operator and experimenting with
non-monotonic reasoning using annotated logics.

213

DL Requirements from Medicine and Biology

Stefan Schulz, Department of Medical Informatics
Freiburg University Hospital, Germany

stschulz@uni-freiburg.de

The need for semantically precise domain descriptions has given raise to an increasing num-
ber of so-called bio-ontologies covering different fields of biology and medicine. Examples
are the Foundational Model of Anatomy (FMA)[5], the Gene Ontology [3] and the Open
Biological Ontologies [6]. There are several examples of the conversion of biomedical on-
tologies into T-Boxes [2, 7, 1, 8] in order to enable terminological reasoning. The biomedical
domain, however, exhibits certain peculiarities. Besides the generally large size of biomedi-
cal terminology systems (10,000 - 100,000 concepts) the physical composition of organisms
(anatomy, biological structure) plays an pivotal role which which may impact the performance
of description logics implementations:

• Part-Whole hierarchies constitute an important ordering principle.

• Definitory cycles are common, e.g. Cell � ∃haspart.Cytoplasm and
Cytoplasm � ∃partof.Cell.

• Pairwise disjunction in taxonomies, e.g. Organ � ¬T issue

• Pairwise disjunction in partonomies, e.g. ∃partof.T runk � ¬∃partof.Head

• Role inclusion, e.g. r ◦ s � r [4]

References
[1] R. Beck and S. Schulz. Logic-based remodeling of the digital anatomist foundational model. AMIA 2003 –

Proc. of the 2003 Symposium of the American Medical Informatics Association, pages 687–691, 2003.

[2] A. Gangemi, D. M. Pisanelli, and G. Steve. An overview of the ONION project: Applying ontologies to the
integration of medical terminologies. Data & Knowledge Engineering, 31(2):183–220, 1999.

[3] Gene Ontology Consortium. Creating the Gene Ontology resource: Design and implementation. Genome
Research, 11(8):1425–1433, 2001.

[4] I. Horrocks and U. Sattler. The effect of adding complex role inclusion axioms in description logics. In
IJCAI’03 – Proc. of the 18th International Joint Conference on Artificial Intelligence, pages 343–348, 2003.

[5] C. Rosse and J. L. V. Mejino. A reference ontology for bioinformatics: the Foundational Model of Anatomy.
Journal of Biomedical Informatics, 36:478–500, 2003.

[6] OBO. Open Biological Ontologies (OBO). http://obo.sourceforge.net/, 2004.

[7] S. Schulz and U. Hahn. Medical knowledge reengineering – converting major portions of the UMLS into a
terminological knowledge base. International Journal of Medical Informatics, 64(2/3):207–221, 2001.

[8] C. J. Wroe, R. Stevens, C. A. Goble, and M. Ashburner. A methodology to migrate the gene ontology to a de-
scription logic environment using DAML+OIL. PSB 2003 – Proc. of the Pacific Symposium on Biocomputing
2003, pages 624–635, 2003.

214

