
A Resolution Decision Procedure for the

Guarded Fragment with Transitive Guards

Yevgeny Kazakov

MPI für Informatik, Saarbrücken, Germany
ykazakov@mpi-sb.mpg.de

Abstract. We show how well-known refinements of ordered resolution,
in particular redundancy elimination and ordering constraints in combi-
nation with a selection function, can be used to obtain a decision pro-
cedure for the guarded fragment with transitive guards. Another contri-
bution of the paper is a special scheme notation, that allows to describe
saturation strategies and show their correctness in a concise form.

1 Introduction

The guarded fragment GF of first order logic has been introduced by Andréka,
van Benthem & Németi (1998) to explain and generalize the good computational
properties of modal and temporal logics. This is achieved essentially by restrict-
ing quantifications in first order formulae to the following “bounded” forms:
∀x.[G→ F] and ∃y.[G ∧ F], where G should be an atomic formula (so-called
guard) containing all free variables of F . The guarded fragment is decidable in
2EXPTIME (Grädel 1999) and inherits many other nice computational prop-
erties from the modal logics like the finite model property, the interpolation
property and invariance under an appropriate notion of bisimulation.

The transitivity axiom: ∀xyz.(xTy ∧ yTz→ xTz) is an example of formula
that cannot be expressed in GF . Transitivity is important, since it is used to
model discrete time (in temporal verification) and ordered structures (in program
shape analysis). However, as it is shown by Grädel (1999), the guarded fragment
becomes undecidable as long as transitivity is allowed. (Szwast & Tendera 2001)
have considered an extension of GF , that allows for a restricted use of transitive
relations, namely in guard positions only. This, so called guarded fragment with

transitive guards GF [T G] was shown to be decidable in 2EXPTIME, that is of
the same complexity as GF .

The result obtained by (Szwast & Tendera 2001) is far not trivial and is
done by establishing the regular model property for GF [T G]. This yields a deci-
sion procedure for GF [T G] based on enumeration of certain regular structures.
A practical disadvantage such procedures, is that without further optimizations,
those methods exhibit the full worst-case complexity. Resolution-based approach,
is a reasonable alternative to model-theoretic procedures, as its goal-oriented na-
ture and numerous refinements allow to scale well between “easy” and “hard”
instances of problems. In this paper we demonstrate the practical power of res-
olution refinements, such as redundancy elimination and usage of ordering con-

straints in combination with selection function. We present a first resolution-
based decision procedure for GF [T G]. Another aspect that is demonstrated in
our paper is the usage of resolution as a specification language for decision proce-
dures. We introduce a special scheme notation that allows to describe resolution
strategies in a concise form. This may provide a formal foundation for using
resolution for specifying decision procedures and proving their correctness.

The framework of resolution theorem proving. The ordered resolution

calculus ORÂSel is parametrized with an admissible ordering Â and a selection

function Sel .1 It can be formulated with the following inference rules (we mark
eligible literals with asterisk and underline expressions to be unified):

Ordered (Hyper-)Resolution

HR :
C1 ∨A1

∗ . . . Cn ∨An
∗ D ∨ ¬B1

∗ ∨...∨ ¬Bn
∗

C1σ ∨...∨ Cnσ ∨Dσ

where (i) σ = mgu(Ai, Bi), (ii) Ai
and ¬Bi are eligible (1 ≤ i ≤ n).

Ordered Factoring

OF :
C ∨A∗ ∨A′

Cσ ∨Aσ

where (i) σ = mgu(A,A′), (ii) A
is eligible.

The conventional Ordered Resolution rule OR, is a partial case of the ordered
(hyper-)resolution rule when n = 1. The calculus ORÂSel is refutationally com-
plete for any choice of an admissible ordering Â and a selection function Sel .
Moreover, the calculus is compatible with a general notion of redundancy which
allows to make use of additional simplification rules.

Schemes of expressions and clauses. To describe resolution-based decision
procedures we have to reason about sets of clauses. We introduce a special no-
tation that allows to represent sets of clauses in a compact form. We extend our
vocabulary with additional symbols called signature groups (denoted by symbols
with a “hat” ĝ) that represent sets of signature elements. We build expressions

schemes and clause schemes by using them as usual elements of signature in
expressions and clauses. Each expression (clause) scheme represents a set of ex-

pressions (clauses). For instance, if f̂all denotes the set of all functional symbols,

the scheme f̂all(t) represents any term of the form f(t) where f ∈ f̂all. We
adopt the following notation for referring to arguments of expressions. By writ-
ing ê〈!t1, ..., !tn, s1, ..., sm〉 we mean an expression starting with the expression
symbol e ∈ ê, having all arguments t1, ..., tn and optional arguments s1, ..., sm

(arranged in some way). The formal definitions for clause schemes is given in the
extended version of the paper (de Nivelle & Kazakov 2004).

Example 1. Suppose â is a predicate group consisting of all predicate symbols
and α̂ := {â,¬â} is a literal group consisting of all (negated) predicate symbols.
The clause scheme Ĉ = ¬!â〈!x〉∨α̂〈!f(x), x〉 represents any clause C such that (i)
C has a nonempty subset of negative literals containing all variables x1,..., xn and
no other arguments and (ii) other literals of C contain a subterm f ′(x1,..., xn) as
an argument and possibly some variables from x1,..., xn. In particular, 〈Ĉ〉 con-
tains the clauses ¬a(x, y, x) ∨ b(y, f ′(x, y)), ¬b(x, y) ∨ ¬b(y, x) and ¬p∨¬q(c, c),
but not the clauses ¬a(x, y, x) ∨ b(f ′(x, y), f ′(y, x)) or ¬b(y, f ′(x, y)).
1 For a description of the calculus and its variations see (Bachmair & Ganzinger 2001)

2 How to obtain a resolution decision procedure?

We demonstrate how a resolution decision procedure for the guarded fragment
(de Nivelle & de Rijke 2003) can be specified using our notation. For describing
the procedure it is convenient to use the recursive definition for the guarded
fragment: GF ::= A | F1 ∨ F2 | F1 ∧ F2 | ¬F1 | ∀x.(G→F1) | ∃x.(G ∧ F1).
where A is an atom, Fi, i = 1, 2 are guarded formulas, and G is an atom called
the guard containing all free variables of F1. Then the guarded formulas in the
negation normal form can be defined by:

[GF]nnf ::= (¬)A | F1 ∨ F2 | F1 ∧ F2 | ∀y.(G→F1) | ∃y.(G ∧ F1).
The important step of CNF transformation is a so-called structural trans-

formation, that decomposes the formula by introducing definitions for all of
its subformulae. We assume that to each subformula F

′ of F, a unique predicate
PF′ = pF

′(x) is assigned. The structural transformation is defined as ∃x.PF∨[F]
st,

where F [F]st is given below. In each row, x are the free variables of F.

[F]st
g :=[(¬)A]st

g : ∀x.(PF→(¬)A) | ¬pF(x) ∨ (¬)a〈x〉

[F1∨∧F2]
st
g : ∀x.(PF→ [PF1

∨∧PF2
])∧[F1]

st
g ∧[F2]

st
g | ¬pF(x) ∨ pFi

〈x〉 [∨ pFj
〈x〉]

[∀y.(G→F1)]
st
g : ∀x.(PF→∀y.[G→PF1

]) ∧ [F1]
st
g | ¬g〈!x, !y〉 ∨ ¬pF(x) ∨ pF1

〈x, y〉

[∃y.F1]
st
g : ∀x.(PF→∃y.PF1

) ∧ [F1]
st
g . ¬pF(x) ∨ pF1

〈f(x), !x〉

The transformation produce an equisatisfiable formula that is a conjunction of
simple definitions of the form ∀x.(PF→ . . .). Applying the usual skolemization
and writing the result in a clause form, we obtain the clauses shown to the right
of the definition for [F]st

g . It is easy to see that the clauses for PF ∧ [F]st
g fall into

the set of clauses described by the following clause schemes:

1. α̂〈ĉ〉;
2. ¬!â〈!x〉 ∨ α̂〈f(x), x〉.

(G)

where the predicate group â consists of all (initial and introduced) predicate
symbols and the literal group α̂ consists of all literal symbols.

Saturation of the clause set given by the schemes from (G) can be compactly
described using the scheme notation:

1 α̂∗

1.1 α̂〈ĉ〉 ∨ â〈ĉ〉∗ :OR.1

1.2 α̂〈ĉ〉 ∨ ¬â〈ĉ〉∗ :OR.2

1.3 α̂〈ĉ〉 ∨ â〈ĉ〉∗ ∨ â〈ĉ〉 :OF

OR[1.1; 1.2]: α̂〈ĉ〉 :1
OF[1.3] : α̂〈ĉ〉 ∨ â〈ĉ〉:1

2 ¬!ĝ〈!x〉 ∨ α̂〈f(x), x〉

2.1 ¬!ĝ〈!x〉 ∨ α̂〈f(x), x〉 ∨ α̂〈!f(x), x〉∗

2.1.1 ¬!ĝ〈!x〉 ∨ α̂〈f(x), x〉 ∨ â〈!f(x), x〉∗ :OR.1

2.1.2 ¬!ĝ〈!x〉 ∨ α̂〈f(x), x〉 ∨ ¬â〈!f(x), x〉∗ :OR.2

2.1.3 ¬!ĝ〈!x〉 ∨ α̂〈f(x), x〉 ∨ â〈!f(x), x〉∗ ∨ â〈f(x), x〉 :OF

OR[2.1.1; 2.1.2]:¬!ĝ〈!x〉 ∨ α̂〈f(x), x〉 :2
OF[2.1.3] :¬!ĝ〈!x〉 ∨ α̂〈f(x), x〉 ∨ â〈!f(x), x〉:2

2.2 ¬ĝ〈!x〉∗ ∨ ¬ĝ〈!x〉 ∨ α̂〈x〉 :OR.2

OR[1.1; 2.2] : α̂ :1
OR[2.1.1; 2.2]:¬!ĝ〈!x〉 ∨ α̂〈f(x), x〉 ∨ α̂〈f(x), x〉:2

The table represents the case analysis of possible resolution inferences between
the clauses from (G). The clause schemes are spread in the table on different lev-
els of precision, according to the possibilities for eligible literal and application

of inference rules. For example, OR.1 marked to the right of the clause scheme
1.1 means that a clause represented by this scheme may act as a first premise
of the ordered resolution rule. Below the last level, inferences between preced-
ing clauses are drawn and their conclusions are identified as instances of clause
schemes. The table shows that the clause class (G) is closed under ordered reso-
lution, therefore, decidability of GF follows from the fact that, for any guarded
formula, the resolution procedure can generate only clauses from (G), which is
a finite set for a fixed signature.

2.1 Deciding the guarded fragment with transitivity

Extending the above procedure to the guarded fragment with transitivity is not
a trivial task, since resolution with transitivity axioms may produce infinitely
many clauses in simple cases:

1. ¬(xTy)∗ ∨ ¬(yTz) ∨ xTz;

2. α(x) ∨ f(x)Tx∗;

OR[2; 1]: 3. α(x) ∨ ¬(xTz) ∨ f(x)Tz∗;

OR[3; 1]: 4. α(x) ∨ ¬(xTz) ∨ ¬(zTz1) ∨ f(x)Tz1
∗;

. : .

1. ¬(xTy)∗ ∨ ¬(yTz)∗ ∨ xTz;

2. α(x) ∨ f(x)Tx∗;

HR[2, 2; 1]: 3. α(x) ∨ ff(x)Tx∗;

HR[3, 2; 1]: 4. α(x) ∨ fff(x)Tx∗;

. : .

To resolve these problems we consider the constrained version of the transitivity
clause and use the constrains to show the redundancy of dangerous inferences:

T ¬(xTy) ∨ ¬(yTz) ∨ xTz;

T.1. ¬(xTy)∗ ∨ ¬(yTz) ∨ xTz | x Â max (y, z);
T.2. ¬(xTy) ∨ ¬(yTz)∗ ∨ xTz | z Â max (y, x);
T.3. ¬(xTy)∗ ∨ ¬(yTx)∗ ∨ xTx | x Â y;
T.4. ¬(xTy)∗ ∨ ¬(yTz)∗ ∨ xTz | y º max (x, z);

For every constraint variant of
the transitivity clause we set
the selection function Sel to se-
lect the negative literals contain-
ing the maximal variable of the
clause. This immediately prevents the situation shown on the right example
above, since the constraints for the inference are not satisfiable. The following
lemma resolves the problem shown on the left example above:

Lemma 1. Let N be a clause set containing the clause:

1. C ∨ t1Tt2
∗; together with the result of the inference:

OR[1; T.1]: 2. C ∨ ¬(t2Tz) ∨ t1Tz
∗ | t1 Â max (t2, z);

Then the following inference is redundant:

OR[2; T.1]:C ∨ ¬(t2Tz) ∨ ¬(zTz1) ∨ t1Tz1 | t1 Â max (t2, z, z1);

One could see that the inference OR[3; 1] above is redundant by Lemma 1. Similar
lemmas can block other dangerous inferences with transitivity. Redundancy and
ordering constraints, however, do not help avoiding situations as the one below:

1. α(x) ∨ f(x)Tx∗;

2. ¬(xTy)∗ ∨ a(x) ∨ β(y);

3. ¬(xTy)∗ ∨ ¬a(x) ∨ β′(y);

OR[1; T.1]: 5. α(x) ∨ ¬(xTz) ∨ f(x)Tz∗ | f(x) º max (x, z);

OR[5; 2] : 6. α(x) ∨ ¬(xTz) ∨ a(f(x))∗ ∨ β(z) | f(x) º max (x, z);

OR[5; 3] : 7. α(x) ∨ ¬(xTz1) ∨ ¬a(f(x))
∗ ∨ β′(z1) | f(x) º max (x, z1);

OR[6; 7] : 8. α(x) ∨ ¬(xTz) ∨ ¬(xTz1) ∨ β(z) ∨ β
′(z1) | f(x) º max (x, z, z1);

. : .

The problem here is that the maximal literal of a clauses 6 and 7 does not con-
tain all variables of the clause – the main argument for showing decidability by
resolution is violated. To avoid the inferences OR[5; 2] and OR[5; 3] that produced
these clauses we have designed a special inference rule:

Transitive Recursion

TR :
¬(xT̂ y)∗ ∨ α(x) ∨ β(y)

¬(xT̂ y) ∨ α(x) ∨ uT̂
α(·)(y)

¬(xT̂ y) ∨ ¬uT̂
α(·)(x) ∨ u

T̂

α(·)(y)

¬uT̂
α(·)(y) ∨ β(y)

where (i) T̂ is a not empty set of

transitive predicates (ii) uT̂α is a
special unary predicate indexed by
α and T̂ .

This inference rule does not make the clauses 2 and 3, to which it applies, re-
dundant, but it makes redundant the inferences OR[5; 2] and OR[5; 3] with them.
Collecting all these refinements together, we have designed a resolution-based de-
cision procedure for GF [T G] of the optimal complexity (for details see de Nivelle
& Kazakov 2004). In particular, we have reproved the following theorem:

Theorem 1. (Szwast & Tendera 2001) The guarded fragment with transitive
guards is decidable in double exponential time.

3 Conclusions and Future Work

The resolution decision procedure for GF [T G] presented in the paper can shed
light on the reasons why this fragment is so fragile with respect to decidability
and which decidable extensions it may have. In fact we have shown decidability
of a larger fragment: it is possible to admit non-empty conjunctions of transitive
relations as guards. As a future work we try to extend our approach for other
theories like theories of general compositional axioms ∀xyz.(xSy ∧ yTz→xHz)
and theories of linear, branching and dense total orderings without endpoints.

References

Andréka, H., van Benthem, J. & Németi, I. (1998), ‘Modal languages and bounded
fragments of predicate logic’, Journal of Philosophical Logic 27, 217–274.

Bachmair, L. & Ganzinger, H. (2001), Resolution theorem proving, in A. Robinson &
A. Voronkov, eds, ‘Handbook of Automated Reasoning’, Vol. I, Elsevier Science,
chapter 2, pp. 19–99.

de Nivelle, H. & de Rijke, M. (2003), ‘Deciding the guarded fragments by resolution’,
Journal of Symbolic Computation 35, 21–58.

de Nivelle, H. & Kazakov, Y. (2004), Resolution decision procedures for the guarded
fragment with transitive guards, Research Report MPI-I-2004-2-001, Max-Planck-
Institut für Informatik, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany.

Grädel, E. (1999), ‘On the restraining power of guards’, Journal of Symbolic Logic
64(4), 1719–1742.

Szwast, W. & Tendera, L. (2001), On the decision problem for the guarded fragment
with transitivity, in ‘Proc. 16th IEEE Symposium on Logic in Computer Science’,
pp. 147–156.

