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Abstract.  LRR [3] is a rewriting system developed at the Computer Science 
Department of University of Houston. LRR has two subsystems: Smaran (for 
tabled rewriting), and TGR (for untabled rewriting). It can utilize the history of 
computation to eliminate the redundant work in the process of reducing terms 
to their normalized forms. However the practicality of using LRR as a 
framework for implementing model checking has not been experimented before.  
We have implemented LTL and CTL model checking algorithms using LRR. 
The current result of this research shows that LRR can provide a convenient 
programming framework, and the model checker has already in some aspects 
achieved the efficiency comparable to those leading model checkers such as 
SPIN. The model checker also has the potential to be improved significantly.  

 
1   Introduction 

[Model Checking] Model checking [1] is a verification technique to verify 
whether a system has a property expressed as a temporal formula. Since many 
systems can be described as finite states models, model checking techniques can be 
applied in many areas. Model checking techniques are relatively new when compared 
with traditional formal verification techniques, such as theorem proving. Compared to 
other verification techniques, model checking has several advantages. For example, it 
is completely automatic, and special expertise is not required when model checkers 
are used. However, model checking techniques also need to handle several challenges 
such as the state explosion problem. In order to explore different model checking 
algorithms, it is a practical issue for programmers to find some convenient 
programming framework.  

[Normalization Systems] Rewriting systems [5, 8] can provide an elegant 
framework for symbolic computation, theorem proving, equational reasoning and 
equational logic programming.  These applications have the similar goal to find the 
normal forms of one or more terms. So to obtain efficient normalization algorithms is 
crucial in all these applications. The congruence closure based normalization 
algorithm (CCNA) [7] stores the history of its computations in a compact data 
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structure to eliminate repeating computations, and thus can do the normalization 
quickly.  CCNA is implemented in LRR [3] 

[Implementing Model Checking Using Rewriting] Since any computation 
can be implemented as normalization, and tabled normalization systems can reduce 
redundant computations, we think Model Checking algorithms can be implemented 
efficiently on normalization systems that have tabling. 

  Currently we are not aware of other works that use term rewriting and CCNA to 
implement model checking. Very recently we discovered that Maude [6] has 
implemented Büchi Automata based model checking using rewriting. Also we have 
noticed the work of  [2] that uses the XSB interpreter and Prolog. The work of [2] 
uses different techniques of tabled resolution, as apposed to the CCNA tabling 
technique used in LRR.    

It is interesting to implement model checking algorithms using LRR. To attack the 
state explosion problem of model checking, it is crucial to find out the redundant and 
repeated computation tasks. It is possible that the amount of repeated computation 
will be abundant in some model checking computation, since the same state will be 
visited repeatedly when the model checker is verifying some temporal logic formula. 
Therefore, we expect that by using the CCNA based normalization system, and letting 
it find out the repeated computation automatically, efficient and convenient model 
checkers can be built.   

 
2    LRR 

LRR [3] is a normalization system and its basic idea is the congruence closure 
based normalization algorithm. It has been developed at the Computer Science 
Department of University of Houston for several years, and has experienced 
considerable progress, and it is still evolving. LRR has different heuristics. Smaran is 
the normalization subsystem of LRR that use the full power of computation history, 
while TGR is the normalization subsystem without using the computation history.  

Terms that need to be normalized can be given as expressions in prefix form. A 
programmer needs to specify the variables, constants, functions, and rewriting rules 
to the system. Currently, LRR has a modularized programming interface. A group of 
rules, variables, and functions can be defined together in a module file. A module file 
can export functions and variables that can be used by other modules. A module file 
can also import other modules.  Every rule has LHS and RHS separated by =>. LHS 
must be a functional term. 

For example, the following is the module file that defines the rules to compute 
fibonacci numbers. 

module fib   
  rem  (the comments) compute fibonacci numbers ;  
  import ; 
  export fib; 
  var x ; 
  func fib(1),f(2);      
  rule  
    fib(x)     => f(>(x,1),x) ; 
    f(true,x)  => +(fib(-(x,1)),fib(-(x,2))); 
    f(false,x) => 1 ; 
end module fib   



The following is a sample term file. 

fib(100)                                             
fib(25)                            

There are no type checking issues in LRR. LRR has its own strategies to handle 
the computation history automatically.  Given a term to be normalized, a signature 
will be computed for it. The signatures of all equivalent terms will be grouped 
together. LRR will quickly find whether there is some equivalent term already 
computed in the history, and will avoid any possible repeated computation. Once the 
simple module interface is understood, programmers can implement algorithms 
quickly without worrying about language issues.   

 
3   Model Checker 

The model is interpreted as a state graph. The states and edges are specified in a 
module file, model.m.  The current model checker has implemented the model 
checking algorithms with bottom-up style. Its goal is to find all of the states in the 
model that can satisfy the given temporal logic formula.   

[CTL Model Checker] The implemented CTL module checker is based 
on the fixed-points algorithms [1]. The code is very compact, about 50 lines, and runs 
very efficiently. The computation of a fixed point will start with an empty set of states 
or the full set of states, and the set will change along with the steps of the 
computation. When the set can not change any more, it is the set of states that can 
satisfy the CTL formula. The complexity of the CTL checking algorithm chosen from 
the book [1] is O(|f| (|S| + |R|) ), where |f| is the length of the formula, |S| is the number 
of states, and |R| is the size of the transition relation.  

[LTL Model Checker] The LTL model checker is implemented using the 
tableau based algorithms [1]. Given a model and a LTL formula, the algorithm will 
first construct a corresponding graph, called the atom graph. Then the LTL model 
checking task is reduced to finding all the states that have a corresponding path to a 
self-fulfilling strongly connected component (SCC) in the atom graph.  A self-
fulfilling SCC mean that, if a U formula, like f U g, appears in an atom in the SCC, 
there must exist an atom in the SCC, such that g appears in that atom.  

The implemented SCC algorithm chosen from book [1] is based on the traditional 
depth-first-search algorithm. The LTL model checking algorithm has the complexity 
of O((|S| + |R|) 2O(|f|), which is obviously more time consuming than the CTL model 
checker.  

[CTL* Model Checker] The temporal formulas that need to be verified can 
be expressed as CTL* formulas. CTL* has more expressive power than CTL and 
LTL. CTL* formulas include LTL and CTL formulas. Given a temporal formula, the 
model checker will automatically identify its category, and the LTL model checker or 
the CTL model checker will be called accordingly. The task to check a long CTL* 
formula can be divided into checking its sub-formulas. Eventually all CTL* model 
checking tasks will be handled by the LTL model checker or the CTL model checker. 
The CTL* model checker works correctly in all experiments. 

So far the implemented model checking algorithms are in the preliminary stage, 
and do not include the more advanced techniques such as partial order reduction, 



symbolic representation, Büchi Automata, and on-the-fly LTL model checking. These 
techniques are implemented in SPIN.  We attribute the reasonable performance of our 
model checker in some of the experiments comparing to SPIN to the power of LRR. 

[The Automatic Model File Generator] In order to do model checking 
for large models, it is necessary to generate the model files automatically, since it 
becomes impractical to do it manually. For example, as one of our experiments has 
showed, given two simple concurrent processes for the mutual exclusion problem, 
there are 8 states in the model. But with three such processes, the number of states 
quickly grows to 32.   

A C program was written to generate model files automatically. The user only need 
to specify the code of the processes, then the corresponding model file will be 
generated by the C program. By doing this, the process description code expressed in 
other languages, such as Promela that is the protocol specification language used in 
SPIN, can be easily translated into the model files of this model checker.   
 
4 Performances  

We have compared the performances of our current model checker with the 
famous model checker SPIN version 4.1.2 [4]. When the temporal formula can be 
expressed using CTL formulas, the performance of our model checker is very close to 
SPIN. The following chart shows the running time of SPIN 4.1.2 and TGR (the 
rewriting system without using computation history) and Smaran. The experiment is 
to check four different CTL* formulas (the first three are expressible in both CTL and 
LTL, but the last one can only be expressed in LTL) with a small model of 8 states 
(two parallel process), and a bigger model with 32 states (three parallel processes, the 
model is automatically generated by the automatic model file generator), for the 
mutual exclusion problem. The experiment was performed on a desktop using Redhat 
Linux 9.0, with Pentium4 2.4GHZ CPU and 512MB memory. In Tables 1, 2, timings 
are in seconds. 

 
Table 1. Performances of SPIN and TGR and Smaran with a  model of 8 states 
           SPIN4.1.2                        TGR                 Smaran 
       Real time  Normalizing 

time  
Number of 
reductions 

Normalizing 
time  

Number of 
reductions 

Formula 1    0.005  0.000  1378 0.010 402 
Formula 2    0.006  0.340  37250 0.010 2620 
Formula 3    0.006  0.180  14785 0.000 3316 
Formula 4    0.006  1430.470  396578 273.410 136444 
 
Table 2, Performances of SPIN, TGR, and Smaran with a model of 32 states 
           SPIN4.1.2                        TGR                 Smaran 
       Real time  Normalizing 

time  
Number of 
reductions 

Normalizing 
time  

Number of 
reductions 

Formula1   0.006  0.030 6998 0.000 1019 
Formula2   0.006 120.300 1342537 0.210 24464 
Formula3   0.006 53.810 1504170 0.008  31560 
Formula4   0.051 System limit 

reached 
> 1906070 3626.36 1247044 



From the above tables, we can see that our CTL model checker has comparable 
performance with SPIN. Smaran has a considerable performance improvement over 
TGR. By using tabling, the number of reductions can be reduced significantly. Notice 
the 0.000 times recorded by system means the normalization time is too short or the 
computation can be found in history. But the performance of our LTL model checker 
is not comparable to SPIN, due to the highly advanced algorithms implemented in 
SPIN, which can take the direct shortcut of the computation, and which has evolved 
for more than a decade. 

Several hundred rules are implemented in a relatively short time, which is the first 
experience of the author with LRR. Comparing to the programming experience using 
other languages, we think Smaran can help the programmers improve their 
productivity considerably. 

  
5   Future Work 

We plan to improve the performance of LRR. More features will be built into 
LRR. The programming interface will be enriched and improved.  

We will implement more efficient model checking algorithms. The current version 
of our model checker has the bottom-up style. We are also interested in the top-down 
style. We also want to research about the algorithms to handle models with infinite 
size. Since Smaran can provide a unified programming environment, it is possible to 
also implement the theorem proving algorithms together with model checker. When 
model checkers and theorem provers work together within Smaran, we expect a more 
powerful and convenient automatic verification tool.  

The author plans to contribute in the areas of theory and implementation of model 
checking, and applications of LRR in his PhD thesis.  
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