
Model Checking Using Tabled Rewriting*
(for IJCAR2004 Doctoral Programme)

Zhiyao Liang

Advisor: Rakesh M. Verma

Computer Science Department, The University of Houston, 501 PGH, Houston, Texas,
77204 – 3010, USA

{zliang,rmverma}@cs.uh.edu

Abstract. LRR [3] is a rewriting system developed at the Computer Science
Department of University of Houston. LRR has two subsystems: Smaran (for
tabled rewriting), and TGR (for untabled rewriting). It can utilize the history of
computation to eliminate the redundant work in the process of reducing terms
to their normalized forms. However the practicality of using LRR as a
framework for implementing model checking has not been experimented before.
We have implemented LTL and CTL model checking algorithms using LRR.
The current result of this research shows that LRR can provide a convenient
programming framework, and the model checker has already in some aspects
achieved the efficiency comparable to those leading model checkers such as
SPIN. The model checker also has the potential to be improved significantly.

1 Introduction

[Model Checking] Model checking [1] is a verification technique to verify
whether a system has a property expressed as a temporal formula. Since many
systems can be described as finite states models, model checking techniques can be
applied in many areas. Model checking techniques are relatively new when compared
with traditional formal verification techniques, such as theorem proving. Compared to
other verification techniques, model checking has several advantages. For example, it
is completely automatic, and special expertise is not required when model checkers
are used. However, model checking techniques also need to handle several challenges
such as the state explosion problem. In order to explore different model checking
algorithms, it is a practical issue for programmers to find some convenient
programming framework.

[Normalization Systems] Rewriting systems [5, 8] can provide an elegant
framework for symbolic computation, theorem proving, equational reasoning and
equational logic programming. These applications have the similar goal to find the
normal forms of one or more terms. So to obtain efficient normalization algorithms is
crucial in all these applications. The congruence closure based normalization
algorithm (CCNA) [7] stores the history of its computations in a compact data

* Research partially supported by NSF grant CCF 036475

structure to eliminate repeating computations, and thus can do the normalization
quickly. CCNA is implemented in LRR [3]

[Implementing Model Checking Using Rewriting] Since any computation
can be implemented as normalization, and tabled normalization systems can reduce
redundant computations, we think Model Checking algorithms can be implemented
efficiently on normalization systems that have tabling.

 Currently we are not aware of other works that use term rewriting and CCNA to
implement model checking. Very recently we discovered that Maude [6] has
implemented Büchi Automata based model checking using rewriting. Also we have
noticed the work of [2] that uses the XSB interpreter and Prolog. The work of [2]
uses different techniques of tabled resolution, as apposed to the CCNA tabling
technique used in LRR.

It is interesting to implement model checking algorithms using LRR. To attack the
state explosion problem of model checking, it is crucial to find out the redundant and
repeated computation tasks. It is possible that the amount of repeated computation
will be abundant in some model checking computation, since the same state will be
visited repeatedly when the model checker is verifying some temporal logic formula.
Therefore, we expect that by using the CCNA based normalization system, and letting
it find out the repeated computation automatically, efficient and convenient model
checkers can be built.

2 LRR

LRR [3] is a normalization system and its basic idea is the congruence closure
based normalization algorithm. It has been developed at the Computer Science
Department of University of Houston for several years, and has experienced
considerable progress, and it is still evolving. LRR has different heuristics. Smaran is
the normalization subsystem of LRR that use the full power of computation history,
while TGR is the normalization subsystem without using the computation history.

Terms that need to be normalized can be given as expressions in prefix form. A
programmer needs to specify the variables, constants, functions, and rewriting rules
to the system. Currently, LRR has a modularized programming interface. A group of
rules, variables, and functions can be defined together in a module file. A module file
can export functions and variables that can be used by other modules. A module file
can also import other modules. Every rule has LHS and RHS separated by =>. LHS
must be a functional term.

For example, the following is the module file that defines the rules to compute
fibonacci numbers.

module fib
 rem (the comments) compute fibonacci numbers ;
 import ;
 export fib;
 var x ;
 func fib(1),f(2);
 rule
 fib(x) => f(>(x,1),x) ;
 f(true,x) => +(fib(-(x,1)),fib(-(x,2)));
 f(false,x) => 1 ;
end module fib

The following is a sample term file.

fib(100)
fib(25)

There are no type checking issues in LRR. LRR has its own strategies to handle
the computation history automatically. Given a term to be normalized, a signature
will be computed for it. The signatures of all equivalent terms will be grouped
together. LRR will quickly find whether there is some equivalent term already
computed in the history, and will avoid any possible repeated computation. Once the
simple module interface is understood, programmers can implement algorithms
quickly without worrying about language issues.

3 Model Checker

The model is interpreted as a state graph. The states and edges are specified in a
module file, model.m. The current model checker has implemented the model
checking algorithms with bottom-up style. Its goal is to find all of the states in the
model that can satisfy the given temporal logic formula.

[CTL Model Checker] The implemented CTL module checker is based
on the fixed-points algorithms [1]. The code is very compact, about 50 lines, and runs
very efficiently. The computation of a fixed point will start with an empty set of states
or the full set of states, and the set will change along with the steps of the
computation. When the set can not change any more, it is the set of states that can
satisfy the CTL formula. The complexity of the CTL checking algorithm chosen from
the book [1] is O(|f| (|S| + |R|)), where |f| is the length of the formula, |S| is the number
of states, and |R| is the size of the transition relation.

[LTL Model Checker] The LTL model checker is implemented using the
tableau based algorithms [1]. Given a model and a LTL formula, the algorithm will
first construct a corresponding graph, called the atom graph. Then the LTL model
checking task is reduced to finding all the states that have a corresponding path to a
self-fulfilling strongly connected component (SCC) in the atom graph. A self-
fulfilling SCC mean that, if a U formula, like f U g, appears in an atom in the SCC,
there must exist an atom in the SCC, such that g appears in that atom.

The implemented SCC algorithm chosen from book [1] is based on the traditional
depth-first-search algorithm. The LTL model checking algorithm has the complexity
of O((|S| + |R|) 2O(|f|), which is obviously more time consuming than the CTL model
checker.

[CTL* Model Checker] The temporal formulas that need to be verified can
be expressed as CTL* formulas. CTL* has more expressive power than CTL and
LTL. CTL* formulas include LTL and CTL formulas. Given a temporal formula, the
model checker will automatically identify its category, and the LTL model checker or
the CTL model checker will be called accordingly. The task to check a long CTL*
formula can be divided into checking its sub-formulas. Eventually all CTL* model
checking tasks will be handled by the LTL model checker or the CTL model checker.
The CTL* model checker works correctly in all experiments.

So far the implemented model checking algorithms are in the preliminary stage,
and do not include the more advanced techniques such as partial order reduction,

symbolic representation, Büchi Automata, and on-the-fly LTL model checking. These
techniques are implemented in SPIN. We attribute the reasonable performance of our
model checker in some of the experiments comparing to SPIN to the power of LRR.

[The Automatic Model File Generator] In order to do model checking
for large models, it is necessary to generate the model files automatically, since it
becomes impractical to do it manually. For example, as one of our experiments has
showed, given two simple concurrent processes for the mutual exclusion problem,
there are 8 states in the model. But with three such processes, the number of states
quickly grows to 32.

A C program was written to generate model files automatically. The user only need
to specify the code of the processes, then the corresponding model file will be
generated by the C program. By doing this, the process description code expressed in
other languages, such as Promela that is the protocol specification language used in
SPIN, can be easily translated into the model files of this model checker.

4 Performances

We have compared the performances of our current model checker with the
famous model checker SPIN version 4.1.2 [4]. When the temporal formula can be
expressed using CTL formulas, the performance of our model checker is very close to
SPIN. The following chart shows the running time of SPIN 4.1.2 and TGR (the
rewriting system without using computation history) and Smaran. The experiment is
to check four different CTL* formulas (the first three are expressible in both CTL and
LTL, but the last one can only be expressed in LTL) with a small model of 8 states
(two parallel process), and a bigger model with 32 states (three parallel processes, the
model is automatically generated by the automatic model file generator), for the
mutual exclusion problem. The experiment was performed on a desktop using Redhat
Linux 9.0, with Pentium4 2.4GHZ CPU and 512MB memory. In Tables 1, 2, timings
are in seconds.

Table 1. Performances of SPIN and TGR and Smaran with a model of 8 states
 SPIN4.1.2 TGR Smaran
 Real time Normalizing

time
Number of
reductions

Normalizing
time

Number of
reductions

Formula 1 0.005 0.000 1378 0.010 402
Formula 2 0.006 0.340 37250 0.010 2620
Formula 3 0.006 0.180 14785 0.000 3316
Formula 4 0.006 1430.470 396578 273.410 136444

Table 2, Performances of SPIN, TGR, and Smaran with a model of 32 states
 SPIN4.1.2 TGR Smaran
 Real time Normalizing

time
Number of
reductions

Normalizing
time

Number of
reductions

Formula1 0.006 0.030 6998 0.000 1019
Formula2 0.006 120.300 1342537 0.210 24464
Formula3 0.006 53.810 1504170 0.008 31560
Formula4 0.051 System limit

reached
> 1906070 3626.36 1247044

From the above tables, we can see that our CTL model checker has comparable
performance with SPIN. Smaran has a considerable performance improvement over
TGR. By using tabling, the number of reductions can be reduced significantly. Notice
the 0.000 times recorded by system means the normalization time is too short or the
computation can be found in history. But the performance of our LTL model checker
is not comparable to SPIN, due to the highly advanced algorithms implemented in
SPIN, which can take the direct shortcut of the computation, and which has evolved
for more than a decade.

Several hundred rules are implemented in a relatively short time, which is the first
experience of the author with LRR. Comparing to the programming experience using
other languages, we think Smaran can help the programmers improve their
productivity considerably.

5 Future Work

We plan to improve the performance of LRR. More features will be built into
LRR. The programming interface will be enriched and improved.

We will implement more efficient model checking algorithms. The current version
of our model checker has the bottom-up style. We are also interested in the top-down
style. We also want to research about the algorithms to handle models with infinite
size. Since Smaran can provide a unified programming environment, it is possible to
also implement the theorem proving algorithms together with model checker. When
model checkers and theorem provers work together within Smaran, we expect a more
powerful and convenient automatic verification tool.

The author plans to contribute in the areas of theory and implementation of model
checking, and applications of LRR in his PhD thesis.

References
1. E. Clark, O. Grumburg, D.A. Peled: Model Checking, MIT Press, Cambridge, 1999
2. Y.S. Ramakrishna, C.R. Ramakrishnan, I.V. Ramakrishnan, S.A. Smolka, T. Swift, and D.S.

Warren: Efficient Model Checking by Tabled Resolution. Proceedings of the Ninth
International Conference on Computer Aided Verification (CAV'97), Haifa, Israel, Lecture
Notes in Computer Science, Vol. 1243, Springer-Verlag (July 1997)

3. Rakesh M. Verma, S.A. Senanayake: LRR: A Laboratory for Rapid Term Rewriting.
Proceedings of the International Conference on Rewriting Techniques and Applications
(RTA), Springer-Verlag LNCS (July 1999)

4. SPIN web page: http://spinroot.com/spin/whatispin.html
5. Paul Chew: An improved algorithm for computing with equations. Proceedings of the

Twenty-first Annual Symposium on Foundations of Computer Science, 1980, pages 108–
117

6. Steven Eker, José Meseguer, Ambarish Sridharanarayanan: The Maude LTL Model Checker
and Its Implementation. SPIN 2003, Proceedings. Lecture Notes in Computer Science
2648 Springer 2003, pages 230–234

 7. R. M. Verma: A theory of using history for equational systems with application. J. ACM,
1995, Vol. 42, pages 984–1020

8. Leo Bachmair and Ramakrishnan, C. R. and Ramakrishnan, I. V. and Ashish Tiwari:
Normalization via rewrite closure, Proceedings of the Eleventh International Conference on
Rewriting, Vol. 1631, 1999, pages 190–204

	References

