Understanding Higher Order Unification via Explicit
Substitutions and Patterns

Flavio L. C. de Moura'*

Departamento de Matemadtica, Universidade de Brasilia, Brasilia D.F., Brasil.
flavio@mat.unb.br

1 Introduction

Unification plays an essential role in many areas of computation such as automated deduction, programming
languages, proof assistants, etc. First order unification is decidable [Rob65] and the solutions are unique.
In fact, every unifiable set has a most general unifier (mgu). Applications of first order unification include
implementations of type inference algorithms and of the resolution principle used in programming languages,
such as Prolog. For higher order languages, the unification problem is undecidable [Luc72,Hue73], even for
the second order case[Gol81], and the notion of mgu no more exists. The importance of first order unification
notwithstanding, first order languages have limited expressive power which raise difficulties for manipulation
of higher order features, such as higher order functions, that is, functions that take another functions as
argument or return another functions as result. The (untyped) A-calculus is a higher order language, with
a simple and compact syntax, adequate to express computable functions, and hence higher order functions.
Unification in the A-calculus, or simply Higher Order Unification (HOU), is more complex than first order
unification because it involves semantical aspects of the language.

In [DHKOO], an algorithm for unification in the Ao-calculus of explicit substitutions [ACCL91] is pre-
sented. This algorithm is a generalisation of the Huet’s algorithm, although no formal comparison between
them is provided. In this work, we formally compare these two methods proving that using particular strate-
gies of the Aec-HOU algorithm we can simulate the algorithm of Huet. Afterwards, we introduce the decidable
subclass of A\-terms known as higher order patterns as well as some of its properties.

2 Higher Order Unification via Explicit Substitutions

The A-calculus is based on a notion of substitution that belongs to a meta-language. Such a notion is necessary
because the substitution process adopts renaming of bound variables in order to avoid variable capture. A
natural solution for this drawback is to turn the substitution process explicit. The first mechanism that made
the substitutions explicit was the Ao-calculus [ACCL91]. The Ao-terms are built over two different sets of
entities: terms ¢t =1 | X | (¢ ¢) | (A.t) | ¢[s] and substitutions s uz=id| 1 |t-s| sos, where
constants and bound variables are coded as de Bruijn indexes and (free variables) X,Y, Z, ... range over the
set X of the meta-variables. In this calculus, when a substitution s is applied to a term ¢ we internalise this
as t[s]. Simultaneous substitutions are represented as lists of terms with the usual operator cons (written as
“”), an operator for the empty list (written ¢d which represents the identity substitution) and the operator
1 which represents the infinite substitution 2.3.....

In [DHKO00], a generalisation of the Huet’s unification method, based on the Ao-style of explicit sub-
stitutions, is presented. Nevertheless, no formal comparison among these methods is provided. Here, we
compare these two methods proving that the SIMPL and MATCH procedures of Huet can be simulated in
the Ao-calculus for both - and Bn-unification.

A unification problem in the Ao-calculus is written as a disjunction of existentially quantified conjunctions
of the form \/, S Nier, si =}, t; where s; and t; are Ao-terms of the same type. If |J| = 1 then the
unification problem is called a unification system. The process of translating a unification problem P from
the simply typed A-calculus to the correspondent unification problem P in the typed Ao-calculus is done
by the precooking translation (cf. [DHKO00]).

The SIMPL), procedure takes a unification system with at least one rigid-rigid equation as argument
according to the description given below.

The inference rules used to manipulate rigid-rigid equations are given in the Table 1. Note that in the
rule Dec-A the binder A4 can be removed because bound and free variables belong to different sets and can
always be distinguished.

* Author supported by the Brazilian CAPES Foundation (PhD studentship 2002-2006 and PhD sandwich studentship
2004-2005 at Heriot-Watt University - Scotland - UK).

In the Ao-calculus with Eta-conversion, the second step (Dec-App-)) in the below description may be
eliminated because it never applies since Eta-long terms of functional types are always abstractions and, if
they have the same type, they also have the same number of external abstractors.

Procedure SIMPL,,
INPUT: A unification system P with at least one rigid-rigid equation egq.

WHILE there exists a rigid-rigid equation in P DO
1. Apply Dec-) as much as possible to eq, generating the new equation eq’.
2. Apply Dec-App-)\ to eq', call P the resulting unification system and return P.
3. Apply Dec-Fail or Dec-App to eq’, call P the resulting unification system after an application of the
rules Replace and Normalise and then return P.
DONE.

If P contains a flexible-rigid equation then return P, else stop returning a success status.
OUTPUT: A success status or an equivalent unification system P without rigid-rigid equations.

P AXaer = Aaes PAnel,...,ep) ="n(ei,...,e)
Dec-)\ Dec-A =P ANE LR R
Pher="e PP T PRI =T A Nep =" €3
PAn(el,....el) ="m(e?,..., €2 PAXse="me},..., e
Dec-Fail n(er ;;13\J_ m(e’ pZ), if m # n. Dec-App-)\ A P/_\(J_l p2)

Table 1. Unification Rules for the Ao-calculus

Proposition 1. The application of the procedure SIMPL), to the unification problem P terminates and,
if the result is not a terminal status, it produces an equivalent unification problem P without rigid-rigid
equations, in the Ao-calculus with or without the Eta-conversion.

Proposition 2. There is a correspondence between the procedures SIMPLy, and SIMPL such that if P is
a unification system in the simply typed A\-calculus and Prg is its precooked image in the typed Ao-calculus,
then:

— SIMPL(P) fails < SIMPLy,(Pr) contains the constant L;

— SIMPL(P) stops reporting a success status < SIMPL), (Pr) stops returning a success status;

— SIMPL(P) returns P < SIMPLy,(Pr) returns Pr.

The MATCH,, procedure takes a unification system as argument and return an equivalent unification
problem. In the unification method for the Ao-calculus, graftings are build from solved equations which
justifies our construction of the procedure MATCH,,. The other rules used in the unification algorithm are
in Table 2. The subscripts indicate the position of the unification system in the matching tree.

Procedure MATCH,, (with Eta)
INPUT: A unification system P, with at least one flexible-rigid equation eq.
1. Apply Dec-) as much as possible to eq and call eq' the resulting equation.
2. Apply the strategy Exp-), Replace and Normalise as much as possible to (P \ eq) A eq’ and call P,
the resulting unification system.
3. Apply Exp-App to P, and let P,; V...V Py be the resulting unification problem.
OUTPUT: A disjunction of the form Py V...V Py.

In the Ao-calculus, our version of the Huet’s algorithm can be seen as successive calls to the procedures
SIMPL), and MATCH), according to the following description. For the sake of clarity, we will denote the
disjunction Py V...V Py, by Sy, and S, = P..

Main Procedure
INPUT: A unification problem S..
FOR each P; not in Ao-solved form in S} DO: .
1. If P; contains a rigid-rigid equation then apply SIMPL), to it, else rename P; to P; and go to next
step. If SIMPL), does not return a success status then let P; be the resulting unification system and go
to next step.

2. If Fj contains the constant L then stop reporting a failure status; else, if Fj contains a flexible-rigid
equation then go to next step, else stop reporting a success status.
3. Apply MATCH,, to ﬁj, call Sj := Pj; V...V Pj, the new unification problem and go to next step.
4. Apply Replace and then Normalise to each Pj; in S; and call §j the resulting unification problem.
DONE.

If S; contains a unification system which is not in Ao-solved form then apply the above FOR to it, else stop
reporting a success status.

OUTPUT: A success or a failure status and in the former case the solutions are the solved equations whose left
hand side are the meta-variables of the initial problem. If the initial problem is non-unifiable the algorithm
may not terminate.

Lemma 1. Let X|a;..... ap. 1(e1,. .., ex) =%, t be a flezible-rigid equation in the Ao-calculus such that
the type of X is given by Ay — --- - A — B (with k > 0 and B atomic) and X does not occur in t.
Then the Ao-normal form of this equation, after some atomisation steps generated by successive applications
of the strategy Exp-)\, Replace and Normalise, produces an equivalent flexible-rigid equation of the form
Xileg.-- .e1.a1.0a..... ap- 1] =§\a tAX =?M A4y --- A4, - Xk A Q where X}, is a new meta-variable with
atomic type B and Q) is a conjunction of solved equations.

Proposition 3. Let A4, ... A4, .X[Tk](elp, ey Chp) :7/\0 A4, --- A4, tF be a flexible-rigid equation in Eta-
long normal form which is in the image of the precooking translation and, Xgleg,.--- .e1,. t¥] =%, tr its
equivalent form after some atomisation steps according to the strategy given in Lemma 1. Then for each new
equation generated by the rule Exp-App of the form Xy :f\a r(Hi,...,Hs) withz € R;UR,, there ezists a
1-1 correspondence between the solutions in the Ao-calculus and in the pure A-calculus in the following sense:
for each element in R, there exists a corresponding projection in the pure A-calculus, and R; # 0 if and only
if there exists an imitation substitution in the pure A-calculus.

Procedure MATCH), (without Eta)
INPUT: A unification problem P, with at least one flexible-rigid equation eq.

1. Apply Dec-)\ as much as possible to eq and call eq' the resulting equation.
2. Apply Exp or Exp2 to (P, \ eq) Aeq' and call Py, V...V Py the resulting unification problem.

OUTPUT: A disjunction of the form Py V...V Py.
3 Higher Order Patterns

Although the undecidability of the HOU problem, there is at least one important reduct of A-terms where
this problem is decidable. This reduct was discovered by Miller [Mil91] and is known as (higher order)
patterns. Pattern unification is also unitary and is, in fact, a generalisation of first order unification. The
characterisation of such classes of A-terms are fundamental since it simplifies significantly the unification
process allowing better implementations of HOU algorithms. The importance of patterns is justified by the
fact that they frequently turn up in practice. In this section, we present an algorithm for pattern unification
in the A-calculus in de Bruijn notation with 7-conversion.

A Higher Order Pattern Unification (HOPU) problem is a list of equations of the form ¢ =7 s, where
t and s are patterns of the same type. The use of list as data structure is important due to termination.
For instance, consider the unification problem n(X) =7 AY =’ X. Applying the Flex-Rig rule, we get
n(X)="n(H;) An(H;)=" X with the substitution Y/n(H;). After an application of the rule Dec-App we
get X =" H; An(H;) =" X which is equivalent to the original problem up to renaming of meta-variables, and
so applying the same strategy to the second equation of the current problem, we can generate an infinite
reduction. The manipulation of rigid-rigid equations are done by the same rules Dec-)\, Dec-App and Dec-
Fail of Table 1 where conjunction should be seen as the usual cons list operator, written as “::”. The rules
for flexible-rigid and flexible-flexible equations are given in Table 3 and are based on [Nip93].

Procedure SIMPL,

INPUT: a pattern unification problem P with at least one rigid-rigid equation eq.

1. Apply Dec-) as much as possible to the equation eq and call eq’ the resulting equation.
2. Apply Dec-App or Dec-Fail to the equation eq’. Call P’ the resulting unification problem after elimi-
nating all trivial equations.

3. If P’ contains a rigid-rigid equation, say eq, then go to step 1 else call P the current unification problem

and return P. o
OUTPUT: an equivalent pattern unification problem P without rigid-rigid equations.

The Main Procedure
INPUT: a pattern unification problem P;.

1. If P; has a rigid-rigid equation then apply SIMPL, to P;, call P; the resulting equivalent unification
problem and go to the next step; else simply rename P; to P; go to step 2.

2. If P; contains the constant L then stop returning a failure status, else if P; is empty then go to step 3;
else select a an equation eq in P;. If eq is a flexible-rigid equation then apply the Flex-Rig rule, else
apply Flex-Flex1 or Flex-Flex2 and, in either case, call P11 the resulting unification problem after
eliminating all trivial equations and call o; the generated substitution.

3. Stop reporting a success status and the substitution solution is given by the composition o;_10;_5...01.
OUTPUT: A success or a failure status according to P; is unifiable or not, respectively. In the former case, if
P; is empty but P;_; is not, then the most general unifier for P, is given by 0;_10;_2...01. If i = 1 then g9
denotes the empty substitution.

Another important property of the patterns is that some general unification problems can be embed-
ded into a pattern unification problem and hence this reduct is not very restrictive. For instance, the
term Ag.n(Ap-m(X(m, Y (k))),Y(Z)) can be flattened to Ag-n(Ap-m(X1(2,1)), X2) with constraints X; =
Mg X(m,Y(k)) and X5 = Y(Z). The possibility of such translation to patterns is important since it
simplifies the unification problem. In fact, if the A-terms ¢; and ¢ can be flattened into patterns (with
constraints) ¢] and t} then if ¢{ and t} are not unifiable neither are ¢; nor ¢» (cf. [Pre97]).

4 Conclusions and Future Work

In this work, we compared two methods for higher order unification. Using particular strategies of the
inference rules of the HOU method via the Ao-calculus of explicit substitutions, we build the Ao-version of
the procedures SIMPL and MATCH of Huet, called SIMPL,, and MATCH,,,, respectively. We proved that
there is a correspondence between the procedures SIMPL,, and SIMPL and also between the procedures
MATCH,, and MATCH. Our correspondences allow us to formalise the fact that the method of HOU
via explicit substitution & la [DHKO0] is a generalisation of the HOU method of [Hue75]. In addition, we
presented an algorithm for higher order patterns unification in de Bruijn notation with 7-conversion.

We believe this formalisation is worthwhile for having a good understanding of the novel alternative of
HOU via general explicit substitutions calculi and contributes to current research related to the design and
implementation of higher order computational environments.

An important work, still in development, is a complete characterisation of the patterns in the As.- and
suspension styles of explicit substitutions that will permit better comparisons among these calculi as well as
better implementations of HOU algorithms.

References

[ACCL91] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit Substitutions. J. of Func. Programming,
1(4):375-416, 1991.

[DHKO00] G. Dowek, T. Hardin, and C. Kirchner. Higher-order unification via explicit substitutions. Information
and Computation, 157:183-235, 2000.

[Gol81] W. Goldfarb. The Undecidability of the Second-Order Unification Problem. T'CS, 13(2):225-230, 1981.

[Hue73] G. Huet. The undecidability of unification in third order logic. Information and Control, 22(3):257-267,
April 1973.

[Hue75] G. Huet. A Unification Algorithm for Typed A-Calculus. T'CS, 1:27-57, 1975.

[Luc72] C. L. Lucchesi. The undecidability of the unification problem for third order languages. Technical report,
University of Waterloo, 1972.

[Mil91] D. Miller. A Logic Programming Language with Lambda-abstraction, Function Variables, and Simple
Unification. Logic and Computation, 1(4):497-536, 1991.

[Nip93] Tobias Nipkow. Functional unification of higher-order patterns. In Proc. 8th IEEE Symp. Logic in Computer
Science, pages 64-74, 1993.

[Pre97] C. Prehofer. Progress in Theoretical Computer Science. In R. V. Book, editor, Solving Higher-Order
Equations: From Logic to Programming. Birkh&user, 1997.

[Rob65] J. A. Robinson. A Machine-oriented Logic Based on the Resolution Principle. Journal of the ACM,
12(1):23-41, January 1965.

P A (X[al T ap. Tn](elv' . '781) Z‘;\o' m(blv | '7bQ))

Exp
PA(X[a1---ap. t](e1, ..., e) =5, m(br, ..., b)) A \/ 3Hi...3Hy: X = r(Hi,...,Hy)VQ
r€ERpUR;
if X is not solved.
where Hy,..., Hy are variables of the appropriate type not occurring in P with the contexts I'y; = I'x,
R, is the subset of {1,...,p} such that r(Hji,...,Hy) has the right type, R; = if m > n + 1 then
{m —n+p} else h and Q = IY X =%, AY if X has a functional type and Q = L otherwise.
EXp2 P/\(X[Cll"'ap. Tn](ela"'ael) =?)\o')‘b
PAXlar--ap. t](er,...,e1) =5, AbA \/ 3H1...3Hy : X =}, x(Hy,..., Hy) VIV X =} AV
r€Rp
if X is not solved.
where Hy, ..., H} are variables of the appropriate type not occurring in P with the contexts I'y; = I'x,
R, is the subset of {1,...,p} such that r(Hz,..., Hy) has the right type.
P
Exp-)\
*P IV : (ATFB),PAX =AY
if(X:I'tA— B) € TVar(P),Y & TVar(P), and X is not a solved variable.
ny _?
Exp-App PAXlar...ap. "] =5 m(b1,...,bq)
P/\X[al...ap.‘rn]:;U@(bl,...,bq)/\ v 3H1...E|Hk,X:;az(Hl,...,Hk)
r€ERpUR;
if X has an atomic type and is not solved.
where Hy,..., Hy are variables of appropriate types, not occurring in P, with the contexts I'y; = I'x,
R, is the subset of {1,...,p} such that r(Hx,..., Hy) has the right type, R; =if m > n + 1 then
{m —n + p} else 0.
?
Normalise L_i“’e?) if a or b is not in long normal form.
P A(ey =5, €3)
where a' (resp. b') is the long normal form of a (resp. b) if a (resp. b) is not a solved variable and
a (resp. b) otherwise.
Replace PAX =, ¢ if X € TVar(P),X ¢ TVar(t) and if t is a constant then t € TVar(P)
P (X > t}(P)AX =1 ¢t ’ '
Table 2. Unification Rules for the Ao-calculus
X(i1,...,is) = n(e1,...,ex) : P
Flex-Ri — = —
ex-T1g Hi(m,...,1)="e1 :...:: Hy(m,...,1) =" ex :: Po
where o = {X/)‘T(Li) ce)\"'(Lm)'m+ n(Hl(ILl, e ,l), C. ,Hk(lll, e ,l))}, X ¢ FV(GZ),V’L =1,...,k and
Hy, ..., Hy are new meta-variables of the appropriate type.
X1, .. in) =" XGt,y ooy jn) = P
Flex-Flex1 (s ix) (J_i J_)
Po
where o = {X/)\-r(i_i) o /\.,.(i_m).H(l&, C. ,l&)},
H is a new meta-variables of the appropriate type and {ki,... ,l&} ={is | is=js, Vs =1,...m}.
X1, .. i0) =" Y (G, ey ja) o P
Flex-Flexz - o~ 32) - Goond) 5P ooy
o
where o = {X/)‘T(LQ S)\T(Lm).H(l&, e ,l&),Y/)\T(j_ﬂ .)\T(j_n).H(l&, S ,l&)} and
{ly, okt = {dy, o dn} N {J1, -5 3a))

Table 3. Unification Rules for Patterns

