
Philosophical Issues in Computer Science

Ralph Kopperman1, Steve Matthews2, and Homeira Pajoohesh3

1 Department of Mathematics, The City College of New York,
138th St & Convent Avenue, New York, NY 10031, USA.

rdkcc@att.net
2 Department of Computer Science,

University of Warwick, Coventry CV4 7AL, UK.
Steve.Matthews@warwick.ac.uk

3 CEOL, Unit 2200, Cork Airport Business Park,
Kinsale Road, Co. Cork, Ireland.

homeiraaa@yahoo.com

Abstract. The traditional overlap between computer science and phi-
losophy centres upon the issue of in what sense a computer may be said to
think. A lesser known issue of potential common interest is the ontology
of the semantics computer science assigns to programming languages
such as Pascal or Java. We argue that the usual purely mathematical
approach of denotational semantics necessarily excludes important se-
mantic notions such as program reliability. By studying the ontology of
determinism versus non determinism we deduce the presence of vague-
ness in programming language semantics, this then being compared to
the Sorites paradox. Parallels are drawn between Williamson’s treatment
of the paradox using ignorance and generalised metric topology.

Introduction
Computer science has well established itself as an academic discipline throughout
universities of the world. Often a separate department will exist specifically for
the large number of undergraduates who wish to major in the subject they loosely
term ‘computers’. The power which computers bring both to the individual and
society to change the world, for better or for worse, is self evident. What is less
clear is the extent to which the use of computers changes our comprehension of
the world. While internet communication makes the world appear smaller it does
not mean we have created a new world as such. However, popular culture can
clearly visualise the existence of inorganic life forms such as Commander Data in
Star Trek. As there is no conceptual problem for android life forms can we in the
academic discipline of computer science not provide substance to the notion of
a computer existing? Usually this question is reduced to, can a computer think?
If so, it is considered to exist, otherwise not. But this begs the question, what
is intelligence? While being an interesting question, it does not address matters
of computer existence which, while successfully employed in computer science,
bear no obvious relation to intelligence.

Due to Gödel’s incompleteness theorems computers necessarily have to pro-
cess incomplete data, thus necessarily giving rise to consideration of the semantic



concept of partial information. Mathematics before the 1960s had no ready made
answers on how to model information which in a well defined sense had bits miss-
ing. Computer scientists wishing to understand the semantics of programming
languages had to find ways to denote information which could, quite legitimately
& usefully, be incomplete. An analogy can be drawn from mathematics where
there are many applications requiring us to have a real number i such that
i2 = −1. As clearly no such real number exists we creatively extend the real
numbers to include appropriately termed imaginary numbers, one of which is to
be i =

√
−1. The mathematical solution for denoting partiality accords a pivotal

role to nothing, that information totally devoid of all content. In what sense
then can nothing be said to exist? Posed as an oxymoron, what is the sound of
silence? Fortunately we have available to us the inspired mathematics developed
by, largely one person, Dana Scott to resolve the potential logical paradox of
self reference embodied in any non trivial deterministic programming language.
Roughly speaking a computer program is deterministic if each time it is exe-
cuted the same output necessarily results. What are the implicit philosophical
premises upon the nature of information assumed in Scott’s ground breaking
technical work? And what do these premises tell us about why his work has
great difficulty in generalising to non deterministic programs, those where one
execution may legitimately yield different results from another. In this paper
we take a non deterministic program to be one where at one or more points in
the program’s execution the computer may choose any one from a finite set of
commands specified in the program to execute next. A non deterministic pro-
gram thus specifies a possibly infinite number of possible execution sequences.
The work in this paper is an attempt to identify the key premises upon the fun-
damental nature of information underpinning Scott’s work, and to demonstrate
how computer science has successfully generalised the ontology of information
inherited from mathematics. This paper is intended to promote research into on-
tological backdrops for existing practical work on the epistemology of reasoning,
knowledge representation, and knowledge acquisition using computers. A clearer
understanding of such ontology could make existing highly technical work on the
semantics of programming languages more accessible to programmers. For phi-
losophy, this work is intended to promote debate upon how we might ultimately
develop a theory of everything to reconcile the essence of mathematics with that
of computer science.

Premises for partiality
We now attempt to identify the implicit premises in Scott’s approach to mod-
elling partial information in the semantics of programming languages.

Premise 1 : programming language semantics is certain
knowledge.

Assigning a semantics to a program is the problem of determining and express-
ing all of its certain properties, these being properties which are provable in
an appropriate logic of programs. By implication, there is no room here for ap-
proximation, lack of clarity, or ignorance of program properties. A program is



understood to be exactly what it is, neither in part of what it is, nor what it
might be.

Premise 2 : a program’s semantics is mathematically de-
notable.

This premise asserts that a mathematical model can be constructed in which
each program can, for its meaning, be assigned a single value in that model.

Premise 3 : the semantics of a program is its observable
behaviour.

The semantics of a deterministic program is the totality of effects which can be
observed and recorded (by a human or another program) in the one, and only
possible, execution sequence. At the risk of using an anthropomorphism, we
may say that a deterministic program is what it does4. In contrast a non deter-
ministic program may, when executed, produce one of many possible execution
sequences. Thus, what may we say a non deterministic program does? Attempts
have been made to generalise Scott’s approach to non deterministic programs, so
providing, in accordance with premise 2, a denotation for non determinism. By
premise 1 we require certain knowledge of all properties of each non determin-
istic program. Thus, the meaning of a non deterministic program has to entail
all the certain properties of each and every possible execution sequence. Thus,
non determinism, it is reasoned by some, can be captured as a set of deter-
minisms, a determinism being the meaning assigned to a deterministic program.
And so, by premise 2, we need a mathematical model in which a value is a set
of determinisms. And so, if S is the set of all possible determinisms for deter-
ministic programs, then all we should need is a so-called power domain 2S of
subsets of S, each such subset to be the meaning assigned to a non deterministic
program. The power domain approach presumes non determinism to be a set
of determinisms. Non determinism is defined in terms of the primitive notion of
determinism, and as such is a kind of, what we may say, multiple determinism.

Process calculi such as Milner’s Calculus of Communicating Systems (CCS )
[Mi89] have presumed non determinism to be a primitive notion, rather than
a derivative of determinism. The process P + Q (pronounced P or Q) is the
process which can either behave like process P or behave like process Q. ‘+’
is introduced as a primitive notion of choice. While the program may specify
what choices there are, such as a coin has the sides head and tail, it is the
computer executing the program, as in the tossing of a coin, that will make
the choice. CCS reverses the approach of power domains, by asserting choice to
be a core primitive notion, and that determinism is a process having just one
choice. In other words, determinism is a choice of one. And so, in accordance with
premise 2, what is the denotation of choice? An equivalence relation5, termed
4 The use of the terms does and can do in this paper are common parlance in com-

puter science. They have no anthropomorphic connotations, they merely refer to the
underlying capabilities of the computer system used to execute programs.

5 A binary relation ≡ over a set A is an equivalence if it has the following properties
for all a, b, c in A. a ≡ a. If a ≡ b then b ≡ a. If a ≡ b and b ≡ c then a ≡ c. The
equivalence class for a is the set of all those members of A equivalent to a.



a bisimulation (pronounced bi simulation), on processes whose semantics are to
be regarded as logically equivalent is introduced. The denotation of a process is
its equivalence class.

Premise 4 : the semantics of a program is precisely that
information which can be discovered by means of Turing
computation.

This premise asserts that we can know whatever the computer can reveal to
us by way of (Turing) computation, but no more. It is thus, by presumption,
not permitted to enhance our understanding of the program’s meaning by use
of clever reasoning which would go beyond the Church-Turing hypothesis uni-
versally accepted in computer science as the definition of what is computable.
The semantics of a program is thus necessarily taken to be precisely the com-
putation(s) it describes. For a deterministic program we observe what it does,
as this word was used earlier, in its one and only possible computation. For a
non deterministic program, such as a process in CCS, we need to observe both
what choices are available and what each such choice (when chosen) does. The
required notion of observation is thus twofold, what a process can do and what
it does. As a deterministic program only can do what it does, the notion of can
do is safely dropped from consideration in its semantics.

Premise 5 : nothing is observable.

The problem of how to assign a denotation for a non terminating loop in a deter-
ministic program written in a typical Pascal-like language loosely corresponds
to the problem of assigning a semantics for recursive function theory, which in
turn is similar to the problem of how to demonstrate the logical consistency of
self applications such as x(x) in the lambda calculus. The initial and instrumen-
tal technical concept in Scott’s work is to utilise the notion of ⊥ (pronounced
bottom). ⊥ can be understood for Pascal-like languages as a non terminating
program which, while remaining alive, never progresses in any observable sense
of producing further output. For example, the following Pascal code will run
forever, but never produce any output.

while true do begin end ;
writeln("hello") ;

In other words, silence is the ‘output’ of the above code that never outputs any-
thing. As with a person in a coma with irreparable brain damage, this program
will remain alive indefinitely when executed, yet will never usefully progress in
the sense that the writeln command is never executed, and so cannot produce
the observable output hello. ⊥ is introduced as a denotation for that which
is undefinable. We can know all there is to know about ⊥ up to the extent to
which ⊥ is defined. In summary, Scott cleverly arranges in his work that any
entity will exist only up to the extent to which we can know, in accordance with
Premise 4, its properties by means of computation. Consequently the meaning of
something defined in terms of itself is that information which can be computed



from that definition, and no more. In summary, ⊥ creatively introduces the in-
triguing oxymoron, the sound of silence as the starting point for computing a
meaning for self reference.

So, what is nothing in a non deterministic language such as a process calcu-
lus? Hoare’s Co-operating Sequential Processes (CSP)[Ro98] has a denotational
semantics, a refinement of the power domain approach. If, as power domains do,
we can take sets of determinisms, why not take sets of partial determinisms as
such partiality is understood in Scott’s work. CSP does just this, it uses, what we
may term, multiple partiality to construct a Scott-like semantics for non deter-
minism. Just as power domains define non determinism in terms of determinism,
so CSP understands non determinism to be defined in terms of partial deter-
minism. Power domains and CSP thus share the notion of non determinism as
being derived from a notion of determinism, the former from totally defined de-
terminisms, the latter from partial determinisms. This is not a reconciliation of
determinism with (say) the primitive notion of choice as used in CCS, but a
wishfully simplistic reduction of non determinism. Such a reconciliation is, we
argue here, necessary if, in accordance with premise 5, the nothingness which
may be either or both of does ⊥ and the (primitive) choice of can do ⊥ is to be
truly observable.

A technical fix for an ontological problem?
Bisimulation, undoubtedly ingenious6, is ultimately a mathematical device for
avoiding an ontological problem. We have denotational approaches which can
model non determinism in terms of total (i.e. power domains) or partial (i.e.
CSP) determinism, and a non denotational approach (i.e. CCS ) having choice
as a primitive.

Our suggested premises trace the initial steps in Scott’s mathematical con-
structions. More such premises would be needed for a complete treatment of his
work, but the subject of this paper is to discuss philosophical issues surrounding
concepts such as ⊥ , partiality, and can do involving less than certain knowledge
of programs. In premises 1 through 5 we have established the key concept of
⊥ . ⊥ is the starting point for a comprehensive mathematical theory to provide
a denotation for each program in a deterministic programming language[AJ94].
⊥ is at first sight contradictory, it is the value defined for that which is totally
undefined, an ingenious mathematical device to reason about that which is, in a
well defined sense, unknown. There is no problem of self reference as the theory
is carefully configured to ensure that we know partiality up to, but no more,
the extent to which it is known with certainty by means of computation. Math-
ematically this works just fine, however, it will not generalise to include choice
as a primitive notion. In contrast the process calculus CCS can elegantly handle

6 The importance of bisimulation, created by Park & Milner for CCS, was clearly
demonstrated when subsequently the mathematician Peter Aczel defined a theory
of non-well-founded sets[Ac88], allowing for a set to have an infinite nesting of sub-
sets. For example, the recursive definition A = {A} defines a non-well-founded set
{{{. . .}}}, but this would not be a legitimate set in a well-founded set theory such
as Zermelo-Frankel.



non determinism using a bisimulation relation, but, for this to work, excludes
partial objects such as ⊥ . Computer science semanticists, studying either de-
terminism or non determinism are agreed upon the validity of premises 1, 2,
& 3, thus leading to a stark choice of either a denotation of programs having
an overly simplistic reduction of non determinism to determinism, or a relation
upon programs without the deterministic ⊥ . Is there no model of reconcilia-
tion? Is there no model in classical logic having referents for certain knowledge
of programs such as deterministic behaviour, yet can accommodate the inherent
lack of certainty which is non determinism? There is a well known problem in
philosophy which strongly suggests that such searching is in vain. In addition,
research into this problem indicates an alternative way forward, one which leads
us to challenge the validity of the certain knowledge of premise 1.

Vagueness
Williamson[Wi96] describes the Sorites paradox as being one of seven puzzles
proposed by the logician Eubulides of Miletus. No one disputes that that one
grain of sand does not constitute a heap, and likewise that a trillion does make
a heap. So, how many grains are needed to constitute a heap? Williamson
traces the development of this perplexing problem from ancient Greece to fuzzy
logic[Kos94], concluding that ”. . . none of the alternative approaches has given
a satisfying account of vagueness without falling back upon classical logic”. In
one way or another there is a presumption that we can obtain with certainty
a knowledgeable solution to the paradox, and so the inevitable recourse to the
only certain language which is logic. Programming language semantics makes
the same assumption, that each program can be all known, hence our premise 1.
In contrast the serious programmer, such as any of our computer science under-
graduates here at Warwick, ‘know’ that all the ‘horrible’ mathematics taught in
our semantics course is even more complicated than the task of programming
itself! They ‘know’ that one designs good software to be reliable, that is, to have
a very high chance of producing desired results. They ‘know’ that producing a
totally correct program in accordance with a semantics given as a specification
(in an appropriate system of mathematics or logic) of what it can or should do is
in practice, if not in theory, usually beyond their reach. The notion of reliability
to a programmer is as a heap is to a philosopher. A program that always crashes
when executed is clearly not reliable, while one that has run numerous times
without a problem clearly is reliable. So, what is reliability? Computer science
semanticists are sadly disdaining of the notion of reliability, only willing to dis-
cuss the certainty of total correctness. Philosophers have to their credit struggled
with the notion of heap, while computer scientists have, through premise 1, had
to reject reliability, a common sense notion used by all accomplished program-
mers. Reliability is a notion of vagueness that programming language semantics
has yet to embrace, as the Sorites paradox has been embraced in philosophy.

The serious programmer does not expect to ‘know’ everything about their
program, accepting that many of its properties cannot, for reasons they care not
of, be known. The argument in this paper is that the insistence upon certain
knowledge of premise 1 forces us to seek certain models of uncertain situations



such as non determinism. In contrast, fuzzy logic asserts that an imprecise truth
value can be modelled by a precise real number between 0 and 1. Following
Scott’s example in the characterisation of ⊥ , we argue for the following position,
contrary to those of both premise 1 and fuzzy logic.

Premise of necessary uncertainty : the partial can at best
be known up to the extent to which it is partial.

This premise implies the existence of ignorance in programming language se-
mantics, the inclusion of necessary uncertainty. Not only may our knowledge of
programs be partial, as in the case of ⊥ , but in addition our ability to know
may be partial as in the case of the actual choices made during the execution
of a non deterministic program. A computer program to simulate the tossing
of a coin can specify in its code the two possibilities of head and tail, what
the program can do. What the program does when executed cannot be known
from the program’s semantics. Yet, paradoxically, current denotational models
of non determinism, such as those for CSP, define can do in terms of does, when
no one can know what does happen until it has happened. The result is that
current work on semantics is really can-do-semantics, the only knowledge that
can possibly conform to premise 1, and as such is of little use to the serious
programmer whose common sense mind visualises what the program does. The
prevailing idealistic culture of mathematical certainty in programming language
semantics severely inhibits communication with programmers whose need is for
a usable model of reliability. Program reliability is not a notion in semantics that
classical mathematics can model as it is not a matter of certainty; mathematics
needs to work with vagueness.

Williamson’s thesis is that vagueness is, ”. . . an epistemic phenomenon, a
kind of ignorance: there really is a specific grain of sand whose removal turns
the heap into a non-heap, but that we cannot know which one it is” He makes
the thoroughly realist point that, ”. . . even the truth about the boundaries of our
concepts can be beyond our capacity to know it”

Conclusions and further work
This paper has studied a philosophical issue in computer science unrelated to the
traditional problem of whether or not a computer can think. The usual differing
technical approaches to determinism and non determinism in the semantics of
programming languages have been studied as an example of a misrepresented
ontological issue, and subsequently compared to the problem of vagueness in
philosophy. Following Williamson’s treatment of the Sorites paradox, we have
argued that a reconciliation of determinism and choice has to relax the tradi-
tional presumption for the certainty of knowledge of program properties.

Scott’s notion of partiality is traditionally modelled in a (point set) topol-
ogy by weakening the Hausdorff (i.e. T2) notion of separability, usually assumed
in mainstream mathematics, to T0 separability. Such T0 topologies have subse-
quently been modelled using a form of generalised metric topology[Ma95], lead-
ing naturally to the study of bi-topology[Kop04]. A bi-topology is a pair of related
topologies over the same universe of points, thus suggesting the inadequacy of



a single topology to model necessary uncertainty encountered in programming
language semantics.

The possibility of a necessary separation of a topological space from our
knowledge of it is unknown in the reductionism of classical mathematics, a
school of thought to which denotational semantics has always been strongly af-
filiated. This has left semantics isolated from the potential benefits of ‘inherent
uncertainty’ that have been embraced by chaos theory and quantum computing.
Computer science, quantum physics, and philosophy, each in their own distinct
way, suggest that a separation of object from knowledge can usefully, perhaps
necessarily, be drawn between the object of study and our capacity to know it. A
bi-topology could serve to model one topology defining the object of our study,
and a second to tell us what we may be permitted to know in reasoning about
the first.

The authors’ researches so far[Ma95,Ma02,Kop04], observing as they do the
doctrine of premise 1, have nonetheless made useful progress in advancing our
technical understanding of partiality. But, further progress appears to require
a definitive separation of object from knowledge. Ours, and any other related
work, needs to accommodate the possibility of necessary uncertainty. Both par-
tial metric topology [Ma95] and Williamson’s logic of clarity [Wi96, Appendix]
achieve such accommodation by quantifying the extent of partialness. At a more
fundamental level philosophers need to engage with computer science and math-
ematics on re-interpreting the classical puzzle of the Sorites paradox as an epis-
temological problem of necessary uncertainty in computing.

References

[AJ94] S. Abramsky & A. Jung, Domain Theory, in Handbook of Logic in Computer
Science, Vol. 3, Clarendon Press, pp.1-168, 1994.

[Ac88] P. Aczel, Non-well-found Sets, CSLI/SRI International, Menlo Park,
CA94025, 1988.

[Kos94] B. Kosko, Fuzzy thinking: the new science of fuzzy logic, Flamingo, London
1994.

[Kop04] K. Kopperman, S. Matthews, & H. Pajoohesh, Partial metrizability in value
quantales, Applied General Topology, to appear 2004.

[Ma02] S.G. Matthews, Pixel geometry, Electronic Notes in Theoretical Computer
Science, vol.40, www1.elsevier.com/gej-ng/31/29/23/show , 2002.

[Ma95] S.G. Matthews, Partial metric topology, in Papers on general topology and
applications, Proc. Eighth Summer Conference at Queen’s College, Annals
of the New York Academy of Sciences vol.728, pp.183-197, 1995.

[Mi89] R. Milner, Communication and concurrency, Prentice Hall, London 1989.
[Ro98] A.W. Roscoe, The theory and practice of concurrency, Prentice Hall Series

in Computer Science 1998.
[Wi96] T. Williamson, Vagueness, The Problems of Philosophy Series, Routledge

1996.


