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Abstract WSMX is an execution environment for dynamic discovery,
selection, mediation and invocation of web services. WSMX builds on
WSMO, a conceptual framework for semantically describing web services,
goals, ontologies and mediators. The design process of WSMX included
formally specifying the operational behaviour of the system. In general,
the reasons to formally model system behaviour in a design process are:
enlarging developers’ understanding of the system, proving several prop-
erties of the (model of the) future system and enabling model-driven
execution of components. We present the execution semantics of WSMX
and describe whether our approach addressed these requirements.

1 Introduction

The Web Services Execution Environment1 (WSMX) is an execution environ-
ment for dynamic discovery, selection, mediation and invocation of semantic web
services. WSMX builds on the Web Services Modelling Ontology2 (WSMO) that
describes various aspects related to semantic web services.

WSMO is based on four concepts: web services, ontologies, goals and medi-
ators. Web services are units of functionality; every web service has exactly one
capability, that describes logically what this web service can offer. Every web
service has a number of interfaces, which specify how to communicate with it.
Goals describe some state that a user may want to achieve. Ontologies are the
formal specification of the knowledge domain used by both the web service to
express its capability, and by the goal to express the desired world state. Me-
diators are used to solve different interoperability problems, like differences in
ontologies used by a web service and a goal.

WSMX is developed as an reference implementation of an execution environ-
ment for web services. WSMX manages a repository of web services, ontologies
and mediators. WSMX can achieve a user’s goal by dynamically selecting a
matching web service, mediating the data that needs to be communicated to
this service and invoking it.
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In the design process of WSMX several steps were taken, including design-
ing an architecture, describing a conceptual model and specifying the execution
semantics. Execution semantics is the formal specification of the operational
behaviour of a system. Such formal specifications can be used for a number of
reasons during software development. In the context of WSMX we are interested
in modelling the execution semantics of WSMX in such a way, that (i) it helps
developers understand the system, (ii) it allows for deducing certain properties
of the system and (iii) it enables model-driven execution of components.

Most work in the field of formal software specification and verification is
related to (i) and (ii) but in general not concerned with executing specifications.
In the field of business process management and web service composition on
the other hand, (iii) is investigated (how to enable model-driven execution of
components) but (i) and (ii) are usually neglected. We will explain why we
believe combining these approaches and using a single formal specification for
these three objectives is useful.

The structure of the paper is as follows: first we describe what we mean by
execution semantics and outline the advantages of specifying it during software
development; then we present the execution semantics of WSMX and describe
whether the approach taken was an adequate response to the above-mentioned
requirements; we conclude with a brief description of future steps we want to
take to overcome the encountered problems.

2 What are execution semantics

In developing software one can distinguish four phases: requirements analysis,
software design, implementation and testing. A software design is an answer
to the requirements analysis and a guideline for the implementation. During
a design process formal methods can be used to improve the resulting design
and the process itself. A formal method is a mathematically-based language,
technique or tool for specifying and verifying hardware and software systems [4].
Modelling execution semantics is an example of such a formal method.

Execution semantics is the formal definition of the operational behaviour of
a system. It describes how the system behaves, what the semantics are of the
execution of the system. The formal definition is only concerned with abstract
concepts. Statements are not about the real world but only about the abstract
concepts in the model. In a model certain statements can be deduced from other
statements. A model is sound if only true statements can be deduced, a model
is complete if every logical consequence can be deduced in the model. A formal
definition should be sound and complete with respect to the modelled behaviour.

3 Why model execution semantics

Formal methods can be used in software specification to reveal ambiguity, incom-
pleteness and inconsistency [13]. In early stages of the development they help to
identify design flaws that would otherwise only be discovered (if at all) during



testing; repairing these flaws at that stage is usually much more expensive than
when they are identified earlier. Using a formal method does not automatically
result in correct programs: “Use of formal methods does not a priori guarantee
correctness. However, it can greatly increase our understanding of a system by
revealing inconsistencies, ambiguities and incompletenesses that might otherwise
go undetected” [4].

The first benefit of using formal methods in the design process comes from
the increased understanding of the system and increased agreement between
different team members; this is not so much due to the resulting specification
but much more to the process of formalising the individual ideas about the
system. An important reason for modelling the conceptual model and execution
semantics prior to the technical software design lies in this benefit: the increased
understanding and agreement between team members about the behaviour of
the system.

To serve as a prescription during the implementation, it is important that
the specification is easily human readable. The people that will implement the
designed system have to understand the specification in order to follow it. When
the implementation differs from the specification the model is not longer related
to the real system – all one can prove in the model is then useless in reality.

A second benefit is that most formal methods allow for automatically check-
ing certain properties of the constructed specification. If the specification is writ-
ten in a language that has an inference system one can derive consequences from
the specification. This inference proves properties of the specifications that were
not explicitly stated, for instance that no unreachable states exist or that the
system will eventually reach a terminating state. In this way one can discover
future properties of the system before or without implementing it and reveal
properties that might not be discovered during testing.

In a component-based system a third benefit arises. In these systems, different
components work together to achieve the functionality of the system, usually
managed by some central component. The primary task of this management
component is to control and coordinate the execution of the components; the
control flow between the components is usually hard-coded into this component.
This is not a very flexible situation, for every time the inter-operation of the
components changes this management component has to be reprogrammed.

This inflexibility of component-based systems could be overcome by making
use of the formal specification of the system: formally specifying the interplay
between the different components and using a process enactment service to ex-
ecute this specification (runtime execution of the modelled system by an engine).
The specification would serve as process model stating which component should
do what and when; a business process management engine could be used to
execute this specification.

To summarise, formal techniques are used for specification and verification
of systems. The reasons are threefold: to enhance the developers’ understanding
of the system, to automatically check properties of the system and to isolate
and automate the control-flow between components. To accommodate for the



first goal the technique must be easily readable by humans yet unambiguous in
its interpretation. To accommodate for the second goal the technique must be
formal and have a proof system in which properties of a model can be deduced. To
accommodate for the third goal the technique must have an operationalisation,
an execution procedure for a model.

4 How to model execution semantics

We are interested in automating the control-flow between components, as stated
in section 3. We will therefore not model the execution semantics of the complete
system but that of the central management component. Other components are
treated as black-boxes: we know their functionality but not how they operate to
achieve this functionality. Therefore we can not describe or predict under which
conditions these components will succeed or fail, that is a non-deterministic
choice from our viewpoint. What we do model however, is how the manage-
ment component reacts to the outcome of this non-deterministic choice. We will
limit the model to the execution semantics of achieving a goal using WSMX;
the behaviour when adding or removing descriptions from the repository is not
modelled.

We will describe the execution semantics using Petri nets [10]. Petri nets
are a formalism for modelling dynamic systems. They are graphical and there-
fore (supposedly) easily understood and communicated. They are mathematic-
ally formalised and well analysable. Classical Petri nets are somewhat awkward
to use; various extensions were developed providing new modelling constructs.
Some of these extensions provide easier modelling but offer the same formal
expressiveness as classical Petri nets, some also provide more expressiveness [7].

Petri nets are syntactically very simple; they consist of transitions and places.
Transitions can only be connected to places, and places can only be connected
to transitions: a Petri net is a directed (weighed) bipartite graph (a graph whose
elements can be divided in two disjoint sets and whose arcs have a specified
direction). The weight of an arc is a positive integer, an a k -weighted arc can
be interpreted as k parallel arcs. A place can contain zero or more tokens, the
assignment of tokens to places is called a marking. A transition is called enabled
if in each input place as many tokens are present as the weight of the arc from
this input place to the transition.

For modelling the Petri net we used CPNTools 3. This tool models high-level
Petri nets which extend classical Petri nets with hierarchy, colour and time [1],
which is an extension that makes the nets more concise and readable. The tool
uses a functional language to describe arc inscriptions and transition guards.
Both arc inscriptions and transition guards put conditions on the ‘firing’ of
a transition; only the tokens that satisfy the conditions are considered when
determining whether a transition is enabled. Defining the inscriptions tends to
clutter the model but cannot be avoided in order to precisely define the execution
semantics.
3 see http://wiki.daimi.au.dk/cpntools/
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5 WSMX execution semantics

WSMX is a event-based system, consisting of different components that com-
municate using events. They exhibit an asynchronous form of communication,
one component raises an event with some message content and another com-
ponent can at some point in time consume this event and react upon it. Figure
1 shows a simplified view of the architecture of WSMX. The manager is the
central component responsible for invoking the different components in order to
achieve the required functionality. In a usual operation WSMX is invoked by
some back-end application with a specific goal to be resolved; the manager com-
ponent responds to this request and invokes the discovery4, selector5, mediator6

and invoker7 components (one or more times) to resolve the requested goal.

manager

discovery selection mediation invocation

repository

web service

web service

web service

web service

goal

Figure 1. WSMX architecture

Figure 2 shows the execution semantics of the system for achieving a goal.
This figure is hierarchical: the behaviour of some components is specified in sub-
sequent diagrams, which is denoted by a blue rectangle underneath the trans-
ition.

First of all a list of known web services exists, which are the web services that
WSMX knows about, denoted by the place known ws. From this list, one web
service is picked and matching is tried. If necessary, mediation is asked for, by
placing a token in the place need mediation. This mediation can succeed, after
which the matching can continue. The mediation can also fail, after which a new
web service is needed (the chosen web service cannot be mediated into, and is
useless for this goal).

The matching process continues until a useful web service is found (with or
without mediation). If no web service is found, the no more ws transition is fired,
resulting in a matching error. This means that all the web services have been
4 the discovery component finds services that match the requested goal.
5 the selector selects one of the matching services.
6 the mediator mediates data from the goal ontology into the service ontology.
7 the invoker invokes the selected service with the mediated data.
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Figure 2. Execution Semantics of WSMX

tried for the matchmaking, but none resulted in a match. After matchmaking,
the selection component selects the web service that best fits the preferences
specified in the goal. Finally, the invocation component invokes the selected web
service.

The process of matchmaking is specified in figure 38. This models that when
deciding whether a web service matches a goal, three situations can occur: either
there is a match (denoted by matching ok), or there is no match which means the
matchmaking should retry using another web service (denoted by matching error,
new ws needed). The third possibility is that mediation is needed, denoted by
placing a token in need mediation, and waiting until this mediation is successfully
finished mediation ok.

The matching is (from the viewpoint of the manager component) a non-
deterministic choice, either a match is found, or an error occurs or a mediation is
needed; this choice is not made by the manager component but by the matching
component. This nondeterministic exclusive-or is modelled by having an output
place match out, whose token is consumed by either by the match ok transition,
or by the matching error transition, or by the need mediation transition.

The same pattern repeats for modelling the other components, all of whose
outcomes are nondeterministic exclusive-or’s. Both the mediation component

8 figures 3– 6 are shown in the appendix.



and the selection component can either fail or succeed. This is modelled in
figures 4 and 5.

The invocation component is modelled slightly different, since this component
should retry an invocation a number of times in case of network time-outs or
other temporary errors. This component is shown in figure 6; each time an
error occurs, a counter is incremented. If the counter does not exceed a certain
threshold, the invocation is retried; otherwise, the invocation fails.

6 Using execution semantics

As stated in section 1, the goal of specifying the execution semantics for WSMX
was threefold: (i) to help developers understand the system, (ii) to deduce cer-
tain properties of the system and (iii) to enable model-driven execution of com-
ponents. Let us investigate whether the execution semantics as specified are an
adequate response to these goals.

Understandability The specification is not easily readable. Although the syntax
of a Petri net is very simple and the semantics can be explained in a few sen-
tences, most people involved in the WSMX project did not easily understand the
model. It is hard to understand what has been specified exactly and the model
gets easily cluttered when specifying complex systems. A result of this unread-
ability was a reduced interaction in specifying the model and reduced discussion
about the specification. Also when implementing the system the specification
was not really used as a guideline.

Secondly, it turned out to be quite hard and time-consuming to devise and
maintain the specification. A significant amount of time was spend figuring out
how to model certain mechanisms in the Petri net. Since system development
is usually an iterative process the modelling technique should support change
management; a specification that is hard to change and hard to maintain is not
preferable. Problems with maintainability and readability of complex Petri nets
are well-known9.

However, it turned out that simulating the model was very useful in over-
coming this problem: people tend to have difficulties visualising what a Petri net
means and simulating the net clearly helps making the specification concrete.
Being able to go through some example and see how the Petri net reacts helps a
lot in understanding the specification. Also for provoking discussion and getting
developers to comment on the model simulation proved very helpful.

Model checking On the decidability and complexity of different problems in
Petri nets a lot of work has been done; the results are of course depending on
the expressivity of the Petri net variant. Some common problems are checking
reachability (whether some marking is reachable from some other marking),
boundedness (whether the number of tokens in each place is finite) and liveness
9 for example [2] argues that modelling certain complex patterns in Petri nets easily

ends up in “spaghetti code”.



(whether the system is deadlock-free) of a classic Petri net; these properties have
been shown to be decidable. The subset problem (is the reachability of one net
the subset of the reachability of some other) or the equivalence problem (is the
reachability of one net equal to the reachability of some other net) on the other
hand have been shown to be undecidable [9].

A number of tools exist that implement different model-checking algorithms
(c.f. [12]). However, these tools operate on specific variants of Petri nets and can
in general not be used for checking CPNTools models. CPNTools itself is able
to verify certain properties of a model such as syntactical correctness, unreach-
able (unused) places or unsatisfiable conditions; it also allows for more complex
analysis of the constructed model using state-space analysis.

In general one can prove several properties of Petri nets and tool support is
available. In practise we did not use this possibility. The main reason was that
(during the implementation of the system) developers had to manually trans-
late the specification into Java code. Since the model was not easily readable
the translation was not performed very strictly and resulted in an implemented
system that was not equivalent to its specification. We can therefore not guaran-
tee a relation between the modelled system and the implementation: any prove
inside the model is thus useless in reality.

This is obviously not a satisfying situation, which led us to try and remove
the step where developers translate the specification into programming code:

Executable specification The general idea is to use the specification as input for an
execution engine. The engine should execute the model and inform components
whenever they should perform a task. The step of implementing the execution
semantics in programming code can be skipped: the specification itself would be
executable by an engine.

In general the main argument against directly executing specifications is
that it is not an efficient solution of the specification [6]. However, in component
composition (which is what we try to achieve here) this might very well not be
relevant: first of all the composition is quite simple and secondly efficiency of
the composition is not that important as long as the components themselves are
implemented efficiently.

One technical arose in this scenario: the tool we used is able to act as an
execution engine for the model (it is basically the same as running a simulation
of the model) but all communication to external components is synchronous.
This means, one is able to specify that some transition should be executed by
an external component and when this transition fires (in the model) the engine
makes a call to that component and informs it to do something. This call however
is synchronous, which means that the engine is waiting for this component to
finish his task before executing something else in the model.

7 Related Work

We presented the execution semantics of WSMX; that work is novel and no direct
related work exists. Secondly we argued for a certain application of software



specification: we want not only prove certain statements about the specification
but also execute it, instead of translating it to software code.

Several approaches exist on verifying compositions of web services (which
can be seen as a special case of composition of components). For instance, [8]
describes how to simulate and verify compositions of OWL-S10 web services.
In this work an OWL-S process composition is translated to a Petri net, exist-
ing simulation and verification tools and techniques are then used on the Petri
net. Although the paper claims to support enactment of the model no details
are given. However, since the possibility of executing the specification for our
approach very relevant is and since we learnt from practise that asynchronous
enactment is not trivial, we would like to see in more detail how this could be
done in this approach.

On the other hand, research and industry activities in business process man-
agement have lead to many techniques, languages and tools for modelling and
executing processes. WS-BPEL for example is a language for modelling business
processes based on web services. It could be used to model and execute compos-
ition of components, as long as those components are exposed as web services.
However, to proof properties of a model the language must at least have a formal
semantics, which is not the case for WS-BPEL: the interpretation of a WS-BPEL
model depends on the implementation of some specific engine. There are several
attempts at providing a formal semantics for WS-BPEL for example in [5]. One
problem with this approach is, that it is not part of the standard itself and one is
thus depending on specific engines to adhere to this semantics. In that sense the
approach does not differ much from defining an operational semantics for some
specific WS-BPEL engine, which is only useful if the specification is executed on
that specific engine.

8 Conclusion and Future Work

Specifying the execution semantics of WSMX is part of the software develop-
ment process. We have specified the execution semantics of WSMX with three
objectives: to help developers understand the system, to be able to prove some
properties of the model and to enable model-driven execution of components.

After providing the specification, using Petri nets, we have explained whether
we think the specification actually achieved these objectives. We conclude that
as presented here the specification does not meet its objectives: (i) it is not easily
readable, (ii) since the model and the implementation diverge proving properties
is not relevant, and (iii) component execution was technically problematic since
synchronous communication is used.

We can conclude that Petri nets are not a useful technique for specifying sys-
tem behaviour because they are not easily readable; one needs to use a technique
that is easy to devise, maintain and use. Secondly technical problems have to be
tackled when implementing model-driven components execution, which should
be taken into account when selecting the modelling technique.
10 OWL-S (formerly known as DAML-S) allows for semantic mark-up of web services.



We hope to investigate in future work whether other techniques can be used
to overcome these problems. As a first step we have started using YAWL [3],
a novel workflow management language. It builds on the formal foundations of
Petri nets but is specifically designed for usability, which could be an advantage
over a purely Petri net based approach. The system includes an enactment engine
and a design tool; the system is however quite young and not yet mature. We
have made some initial tests in using YAWL as component manager for WSMX;
we hope to continue this work in the future.

A different approach could be to generate out of the model used for verific-
ation and enactment a different model that is solely used for clarification. One
could for instance generate UML[11] diagrams out of the Petri net model, which
might be more readable for developers.
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Appendix A: WSMX Execution Semantics

goal

INT
I/O

known_ws

WS
In

matching

match_ok matching_ok

INT
Out

match_out

INT

b

a a

a

a

need_mediation

INT
Out

matching_error

need_mediation

a

a

mediation_done

mediation_ok

INT
In

a

a

a
new_ws_needed

BOOL
Out

true

false
a

Figure 3. Matchmaking in WSMX
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