
The Role of Ontology in Integrating Semantically
Heterogeneous Databases

DB-Fusion 2002

Chris Partridge1 & 2

1 BORO Program, 83 Sixth Avenue, Queens Park Estate, London, W10 4HF, England
partridge@BOROProgram.org

http://www.BOROProgram.org/
2 National Research Council, Institute of Systems Theory and Biomedical Engineering

(LADSEB-CNR), Group of Conceptual Modeling and Knowledge Engineering, Corso Stati
Uniti, 4, I-35127 Padova, Italy

partridge@ladseb.pd.cnr.it
http://www.ladseb.pd.cnr.it/infor/ontology/BusinessObjectsOntolo

gy.html

Abstract. More and more enterprises are currently undertaking projects to
integrate their applications. They are finding that one of the more difficult tasks
facing them is determining how the data from one application matches
semantically with the data from the other applications. Currently there are few
methodologies for undertaking this task – most commercial projects just rely on
experience and intuition. Taking semantically heterogeneous databases as the
prototypical situation, this paper describes how ontology (in the traditional
metaphysical sense) can contribute to delivering a more efficient and effective
process of matching by providing a framework for the analysis, and so the basis
for a methodology. It delivers not only a better process for matching, but the
process also gives a better result. This paper describes a couple of examples of
this: how the analysis encourages a kind of generalisation that reduces
complexity and how ontological relativity can be used to enhance this. Finally,
it suggests that the benefits are not just restricted to individual integration
projects: that the process processes models which can be used as to construct a
universal reference ontology – for general use in a variety of types of projects.

1 Introduction

Not only are there an increasing number of enterprise integration projects, but the
need for wider and closer integration keeps on growing – driven by technologies such
as the Internet and business goals such as straight through processing. Enterprises
undertaking these projects are finding that one of the more difficult tasks facing them
is working out how the data from the various applications matches up semantically.

Integration projects come in a variety of forms: for example, building a data
warehouse or a middleware messaging system involves a significant amount of
integration. However underlying this variety of forms is a common semantic task –

what can be called the ‘matching of semantically heterogeneous data’ or more simply
‘semantic matching’. There is a reasonably clear recognition that the analysis stage of
this task needs to focus on identifying the entities that the data describes – the ‘real-
world semantics’1. In theory and practice, this identification currently relies mostly on
experience and intuition.

This is a situation familiar to metaphysicians. In ordinary life most people rely on
experience and intuition to build up their picture of the ‘real world’. Metaphysicians
suggest that this ordinary everyday picture is based upon, among other things, implicit
ontological assumptions. And that we tend to make avoidable errors about what
entities we are talking about when we do not try and understand what these
assumptions are. What adds poignancy to the metaphysicians’ claim is that most
people are unaware of the issue and seem positively uninterested in becoming aware –
perhaps because they see no benefits in doing so.

1.1 This paper

This paper suggests that in the particular case of matching of semantically
heterogeneous data, the (metaphysicians’) ontology is helpful: not only in clarifying
applications’ ontological assumptions - but also in providing a common framework
across applications for analysing what entities their data describes. This acts as both
an explanatory framework and a foundation for a methodology for the analysis.

The paper makes its case in five sections which:
? Clarify the context for semantic matching task that ontology is intended to

help – outlining what its prime source - semantic heterogeneity - is, how this
arises out of a combination of design autonomy and diversity and how it is
resolved.

? Clarify the meaning of the terms used to describe the proposed approach:
ontology, semantics, ontological model, semantic divergence and ontological
paradigm.

? Use these terms to characterise the ontological process – and illustrates it with
examples of some of how the analysis approaches some of the main types of
semantic divergence.

? Describes, using examples, two key ways in which this process can lead to
better results: how the analysis encourages a kind of generalisation that
reduces complexity (a serious problem in large integration projects) and how
ontological relativity can be used to enhance this.

? Finally, describes how the potential benefits are not just restricted to
individual integration projects: that the models built by integration projects

1 “All these schema integration techniques require either explicitly or implicitly that (the

relationship) between the real-world semantics of the classes to be integrated is known. This
is a reasonable assumption in tightly-coupled approaches, but … in a federation of databases
from multiple modelling contexts this may be surprisingly difficult.” Vermeer, M. W. W. and
Apers, P. M. G. On the Applicability of Schema Integration Techniques to Database
Interoperation. ER 1996: 179-194.

can be used as to construct a universal reference ontology – which can then
be used in a variety of types of projects.

2 Context

It is important to be clear about what the semantic matching task, that the ontological
analysis is intended to help, is. This section starts by explaining why database
integration has been chosen to illustrate the task and then outlines the current
perception of the main focus of this task: semantic heterogeneity. It outlines where it
comes from, what it is and the basis for resolving it.

2.1 The focus on database integration

As noted earlier, although application integration comes in a variety of forms, these
share a common task – the ‘matching of semantically heterogeneous data’. Our
interest here is not in the variety of forms, but on how ontology helps in this common
task. So it makes sense to focus on a single form that will most clearly illustrate this.
Database integration is a reasonably common and straightforward form of integration,
one in which the task clearly manifests itself – so this has been selected as the
prototypical situation (the other forms can then be regarded as variations of this).

Simplifying slightly, the database integration design process can be regarded as2:

• taking the multiple databases – schemas and data as input, and
• producing as output a single unified database – schemas and data – and a

mapping from the individual databases to the unified database.

The task of ‘matching of semantically heterogeneous data’ takes place during the

analysis done in the initial stages. This determines how the elements of the multiple
databases are matched with each other.

2.2 Prime source of semantic heterogeneity

What usually makes the task of matching onerous is a high level of heterogeneity
between the databases. A prime reason of this heterogeneity is quite easy to identify, it

2 Basically the same point is made in the Introduction of Parent, C. and S. Spaccapietra (2000).

Database Integration: The Key to Data Interoperability. (Chapter 10 of Advances in
ObjectOriented Data Modeling. M. Papazoglou and S. Spaccapietra. Cambridge, Mass., MIT
Press.) - “The kernel of design issues … is the database integration problem. Simply stated,
database integration is the process which: takes as input a set of databases (schema and
population), and produces as output a single unified description of the input schemas (the
integrated schema) and the associated mapping information supporting integrated access to
existing data through the integrated schema.”

is what Sheth and Larson call on p. 187 of [1] design autonomy. This is “the ability of
a component DBS to choose its own design with respect to any matter”. As they note,
this includes “The conceptualization or semantic interpretation of the data (which
greatly contributes to the problem of semantic heterogeneity)”. In fact, they say:
“Heterogeneity [in general] … is primarily caused by design autonomy among
component DBSs.”

Of course, autonomy by itself does not lead to heterogeneity. There is in principle
no reason why two autonomous designers should not end up with the same design.
However, in practice, autonomy allows what I shall call design diversity to manifest
itself. This diversity is partly the result of the different requirements of the
applications. But it also, partly, the result of the large amount of judgment exercised
by the designers. This is reflected in the fact that different designers will (as a result of
different judgements, different trade-offs) come up with different database designs for
two similar applications. It can be quite surprising how different the designs can be3.

2.3 Nature of semantic heterogeneity

It is important to clarify what semantic heterogeneity is. Sheth and Larson on p. 187 of
[1] provide a description that is a useful starting point. They suggest that heterogeneity
occurs “… when there is a disagreement about the meaning, interpretation or intended
use of the same or related data [in different databases].” But they noted that “… this
problem is poorly understood, and there is not even an agreement regarding a clear
definition of the problem.”

There are two interpretations of ‘disagreement’ in this description that illuminate
different aspects of the integration task: disagreement between communities and
disagreement in form.

Disagreement between communities. Disagreement between communities occurs
when two or more communities are not agreed on the meaning of a piece of data in a
database. There is no a priori reason for heterogeneity of this type to exist when
integrating applications. Where a single, small community is solely responsible for the
design of a number of applications, it will usually have naturally developed an
understanding of how they fit together. When this community is made responsible for
their integration, even if the designs are very different, there is no semantic
heterogeneity in the community sense.

However, in practice, there usually is heterogeneity in this sense. This is
understandable, as the applications often belong to different communities who have no
real knowledge of the details of each other’s applications. In these cases, there is
typically no basis for a common agreement about what the data in the various systems
mean – though this is more of a lack of common agreement than an actual

3 For example, the various chapters of Papazoglou, M., S. Spaccapietra, et al. (2000) Advances

in object-oriented data modeling show markedly different designs for a standard car
example. As its Chapter 10 (Parent, C. and S. Spaccapietra (2000) Database Integration:
The Key to Data Interoperability) notes there are a surprisingly wide variety of designs.

disagreement. This is problem that dogs most large integration projects. And a
significant part of the work of integration is developing this agreement.

The usual way of developing agreement is for the communities to agree first on
what entities their data describes – and then investigate how the data in the other
databases describes these entities4. Ontology can help by providing a framework for
analysing and, importantly, explaining, what these entities are.

Disagreement in form. Disagreement in form is where the “same or related” piece of
data in different databases has a semantically different form. Sheth and Larson on p.
187 of [1] offer as an example two attributes with the same name - MEAL-COST. The
first is related to the entity RESTAURANT in database DB1 and describes the
average cost of a meal per person in a restaurant without service charge and tax. The
second is related to the entity BOARDING in database DB2 and describes the average
cost of a meal per person including service charge and tax. Despite their surface
similarities these are semantically heterogeneous – where “the heterogeneity is due to
differences in the definition (i.e., in the meaning)”. The two attributes do not refer to
exactly the same entity in the real world, but they are closely related: BOARDING’s
notion of MEAL-COST is a component of RESTAURANT’s notion of MEAL-
COST5. This kind of close miss is characteristic of semantic heterogeneity. Ontology’s
role is to help unbundle the objects and making clear the relation between them. From
now on the focus is on semantic heterogeneity in this sense.

2.4 Basis for agreement

The last example also provides an illustration of what usually makes integration hard
work. The databases in the example do not, by themselves, give us enough
information. They do not tell us enough about the two MEAL-COST attributes for us
to determine whether they describe the same or different things. And as databases tend
to be semantically heterogeneous, we cannot even presume that having the same name
is a good indication that they are describing the same kind of thing.

It is generally accepted that databases do not by themselves contain enough
information for semantic matching6. And this connects the two senses of

4 This point has been made through most of the history of database integration – for example,

from Bill Kent’s (1978) Data and reality through to Sheth’s (1999) Changing Focus on
Interoperability in Information Systems: From system, syntax, structure to semantics.

5 It is worth noting that this, Sheth and Larson’s and, presumably, the database designers’
analysis assumes that the meaning of the individual attributes in not restricted to the
associated entity – for example, that BOARDING’s notion of MEAL-COST is not restricted
to hotel meals. This assumption of a more general meaning is the beginnings of
generalisation – a topic discussed later in the paper.

6 See, for example, (Sheth and Larson 1990)’s comment that: “Typically, DBMS schemas do
not provide enough semantics to interpret data consistently.” As they also note:
“Heterogeneity due to differences in data models also contributes to the difficulty in
identification and resolution of semantic heterogeneity. It is also difficult to decouple the

‘disagreement’. The process of getting hold of the information needed to determine
how the forms are related involves securing agreement from the parties involved.

Requirement for translation. Database integration (and this MEAL-COST example)
can be regarded as a special case of a general requirement for translation. The need
for securing correct agreement about what the data (language) describes is clearly
visible in the extreme situation where people try to develop a means of communicating
when there is no known translation between their languages. The need for sufficient
information to be able to make a translation is one of the key points in Quine’s [2].

This point is well illustrated by the (possibly mythical) story of the meaning in
English of the aboriginal word kangaroo. Apparently this meant “I don't understand”,
and when the British explorers asked, presumably loudly and slowly in English,
pointing to what we now know as a kangaroo, the aborigines replied “Kangaroo.”

The situation is not so extreme for database integrators as they can discuss what the

databases describe in ordinary everyday language with the applications’ communities.
As [3] note in their Introduction “…existing database schemas provide basic

knowledge about the semantics of data, which may be easily enhanced … through
interviews of current users and data administrators.”

heterogeneity due to differences in DBMSs from those resulting from semantic
heterogeneity.”

Limitations of expertise. Neither is the situation so straightforward. What experience
of integration reveals is the extent to which experts have know-how but not what I
shall call, know-what. They know how to do their job, but are less clear on what the
entities involved actually are – the know-what7. This is a common observation in
metaphysics8. And the point is made even more strongly in relation to the institutional
and social facts that are the subjects of most enterprise data9. It is a less common
observation in application design where the responsibility for knowing-what and
checking this is passed over to the user-experts.

Real world semantics. So what one needs to know (secure agreement about) for
integration, and many authors note this, is what the database representations mean,
what entities they describe – their real world semantics. As [4] notes “…schema
integration techniques require either explicitly or implicitly that (the relationship)
between the real-world semantics of the classes to be integrated is known.”10

Once we know what RESTAURANT’s and BOARDING’s MEAL-COSTs real-
world semantics are – in other words, what the database representations describe, we
are in a good position to start integrating them. And it is important to keep reminding
ourselves that what is being identified here is not in the database but the entities that
the database is describing.

An ontological framework for analysis. What ontology provides is a framework
within which the “interviews with users and data administrators” can be focused on
the entities the database describes and the information this provides analysed and
organised. This framework helps both to explain what is happening when one analyses
the ‘real-world semantics’ and to suggest a systematic process for undertaking it. This
paper attempts to illustrate both of these.

3 Clarifying the terms

Before we look at the details of ontological analysis, we need to clarify the use here of
some basic terms: firstly, ontology and semantics.

7 There are examples of this ‘lack of know-what’ in. and M. Stefanova’s A Synthesis of State of

the Art Enterprise Ontologies: Lessons Learned (2001) and Partridge, C’s LADSEB-CNR -
Technical report 07/02 - STPO - Synthesis of a TOVE Persons Ontology (forthcoming) and
LADSEB-CNR - Technical report 04/02 - What is Pump Facility PF101? (forthcoming).

8 For example, Strawson makes this point in the Introduction to his Analysis and metaphysics
(1992).

9 See, for example, Searle’s The construction of social reality (1995) and Gilbert’s On social
facts (1992).

10 As it also notes: “One of the central problems … is that the definition of relationships
between local and imported data is far from trivial in a situation where information on the
meaning of a remote schema is limited. … [I]n a federation of databases from multiple
modelling contexts this may be surprisingly difficult.”

3.1 Ontology

For the purposes of database integration, the traditional philosophical (metaphysical)
notion of ontology is useful – where this is “the set of things whose existence is
acknowledged by a particular theory or system of thought.” 11

This view was famously summarised by Quine, who claimed that the question
ontology asks can be stated in three words ‘What is there?’ – and the answer in one
‘everything’. Not only that, but tongue in cheek, he also said “everyone will accept
this answer as true” though he admitted that there was some more work to be done as
“there remains room for disagreement over cases.”12

Quine’s description of ontology captures a common position in many disciplines,
where it is unthinkingly assumed that the answer to the question “What is there?” will
be a set of things. From the perspective of database integration, each database can be
regarded as a ‘theory’ that acknowledges the existence of a set of objects – its
ontology.

Some care needs to be taken to distinguish this traditional metaphysical use of the
word ontology from one that has recently developed in Computer Science. Here an
ontology is regarded as a “specification of a conceptualisation” [5] and has been
applied to a wide range of things, including dictionaries. This sense of the word does
not give us a fine-grained enough tool for our needs: it regards a database as simply an
ontology – and so it cannot make sense of talking about the ontology underlying it, let
alone underlying a set of databases.

A similar point can be made about the conceptual schema described in
ANSI/X3/SPARC [6]. This is a representation of the conceptual perspective, and
reflects how we conceive of the world – which is, in ways important for database
integration, not the same as what our conceptualisation assumes exists in the world.

3.2 Semantics

Along with the traditional philosophical sense of ontology there is a related notion of
semantics – where this is the relationship between words (data) and the world – the
things the words (data) describe13. This needs to be distinguished from the different,
but related, sense of the word in linguistics where it means the study of meaning14.

These notions of ontology and semantics can then be used to describe two other
useful notions – that of an ontological model and semantic divergence.

11 E. J. Lowe in the Oxford Companion to Philosophy.
12 In W.V. Quine’s On what there is (1948), Review of Metaphysics, Vol. II, No. 5, reprinted

in From a logical point of view (1961).
13 Or as Nelson Goodman put it in the Introduction to Quine’s lectures published as Roots of

Reference – “… an important relation of words to objects – or better – of words to other
objects, some of which are not words – or even better, of objects some of which are words to
objects some of which are not words.”

14 “Semantics – the study of meaning” from the Concise Oxford Dictionary of Linguistics, ©
Oxford University Press 1997.

3.3 Ontological model

An ontological model is a model that directly reflects the ontology. There is a simple
semantics where each object in the ontology has a direct relationship with the
corresponding representation in the model15.

One of the characteristics of an ontological model is that the representations in it
can be regarded as the names of the objects in the ontology – from a Fregean
perspective as reference and no sense (from a Millian perspective as denotation
without connotation). In [7], Ruth Barcan Marcus (explicitly following in the footsteps
of Mill and Russell) calls this ‘tagging’.

3.4 Semantic divergence

Semantic divergence occurs where the semantic relationship between the ontology and
the representation is not direct and straightforward. This is related to the notion of
ontological model – as these have no semantic divergence. The kind of ontological
analysis proposed here involves the extraction of an ontological model from a
database, and this can be characterised as identifying and removing semantic
divergences.

As the examples later in the paper will illustrate, working databases are rarely
straightforward ontological models – that is they have semantic divergences. While
there are sometimes quite deep reasons for these, they do not have to be profound. It
can also just be the exigencies of constructing an application that meets the
enterprise’s requirements – and then maintaining it – that cause them.

The notion of semantic divergence and semantic heterogeneity overlap – but do not
coincide. By itself, semantic divergence does not necessarily lead to semantic
heterogeneity. If two databases that need to be integrated have identical semantic
divergences, then they are not semantically heterogeneous (vis a vis semantic
divergence). However, databases with different semantic divergences (for the same
objects) would be semantically heterogeneous.

In practice, much of the semantic heterogeneity in databases has its sources in
differing semantic divergences. As the number of databases increases, the likelihood
of this kind of semantic heterogeneity also increases. So, in practice, most database
integration projects have to deal with significant semantic divergence.

15 This is called strong reference in Partridge’s Business Objects: Re - Engineering for re - use

(1996).

Different matching strategies. The distinction between semantic heterogeneity and
diversity can be used to characterise the way in which the ontological matching
strategy proposed here differs from that typically adopted. Currently many integration
projects view the semantic matching process as a mechanism for dealing with
semantic heterogeneity – focusing on resolving the semantic differences between the
databases. And they analyse these differences using ‘real world semantics’. The
unified database is then a combination of the homogenous and resolved heterogeneous
data. Note that there is no reason why the homogeneous data should be homogeneous
with respect to any future applications that need to be integrated. I call this the
heterogeneity strategy.

The ontological strategy focuses on purging the semantic divergence from each of
the databases. It analyses the semantics of the databases, making their semantic
divergences explicit and mapping the underlying ontology. (This assumes there is a
single common ontology underlying the various databases – a point we return to
below.) This ontology then provides a basis for designing the “single unified
database” that is the output of the integration. Another important benefit is that (unlike
the heterogeneity strategy’s unified database), this ontology’s form is not tied to any
of the individual databases, and so should be equally applicable to other applications
that cover the same ground – a point that is explored in the later section on reference
ontologies.

For simple integrations involving a small number of fixed databases the
heterogeneity strategy may be the best solution. However, for more demanding
integrations it makes sense, other things being equal, to adopt the ontological strategy.

3.5 Ontological paradigm

There is one more phrase whose use here needs to be clarified: ontological paradigm.
The term paradigm is used here in a sense taken from Kuhn’s [8]. He describes how
scientific paradigms provide world views determining what kinds of things exist – for
example, on p.41 he describes the Cartesian paradigm: “As metaphysical, it told
scientists what kinds of entities the universe did and did not contain: there was only
shaped matter in motion. As methodological, it told them what ultimate laws and
fundamental explanations must be like: laws must specify corpuscular motion and
interaction.” For Kuhn, paradigms are the frameworks of background assumptions that
scientists working in a field share. These are typically make a ruling on matters that
cannot (at the time) be resolved so that ‘normal’ scientific work can focus on areas
where it can more easily make progress16.

People’s ontological paradigm works in a similar way. It is the background of
ontological assumptions that they share. These typically characterise what kinds of
things can exist – and how they can exist. They are often formalised into a number of
categories into which the rest of the things that exist fall. These categories are also
sometimes known as the top ontology.

16 This point is made on p.6 of Partridge’s Business Objects: Re - Engineering for re – use

(1996).

4 Ontological analysis for semantic matching

The preceding terms can now be used to characterise what ontological analysis for
semantic integration is. Ontology provides a framework and suggests a process for the
analysis needed for semantic matching. This process focuses on the semantics of the
database, identifying semantic divergence. It aims to purge this divergence to produce
an ontological model. One key aspect of this model is that it explicitly contains at its
top level the categories that form the ontological paradigm.

To give you a flavour of this kind of analysis, this section the paper briefly
describes with examples showing how it reveals some of the main forms of semantic
divergence. The examples should reinforce the point made earlier, that semantic
divergence is ubiquitous in database systems. The first form described here is one of
the most persistent and pernicious: divergence at the categorical level – the level of
the ontological paradigm.

4.1 Categorical semantic divergence

Databases have a number of top-level categories or metatypes that form a framework.
In some texts these database’s categories (entity, object, attribute etc.) are –
mistakenly – presented as if they were also ontological ones. If this were the case, then
an object would always be represented in the same database category in every
database. If a car is represented as an entity in one database, it would also be
represented as one in ever other database that used the entity category.

Entity type as a design decision. In practice, this usually turns out not to be so. This
is a simple point, but it can be difficult to appreciate, so I quote two extracts below to
ensure that it is clear. These are from data modelling textbooks and turn on the idea
that it is a design decision whether to represent a thing as an entity or an attribute17.

“One of the difficulties in designing data entities and identifying their
relationship is that it is not always clear whether a data item should be
included as an attribute of an entity or constitute an entity in its own right. A
simple example to illustrate this point is the data item LOC (location) which
is included as an attribute in the EMPLOYEE entity. This could equally be
set up as an entity, in which case it would have a one-to-many relationship
with EMPLOYEE, as is shown in Figure 7-6. The LOCATION entity may be
just a key field, or it may contain attribute data fields. In a like manner the
employee address field could also be set up as an entity. No hard and fast
rules can be laid down concerning the identification of entities in a database.”
pp. 194-5 [9].
“There is no absolute distinction between entity types and attributes.
Sometimes an attribute can exist only as related to an entity type. In a
different context, it can be an entity type in its own right… For example, to a

17 Part 2 of Partridge’s Business Objects: Re - Engineering for re – use (1996) has an extended

example making this particular point by showing two different designs for the same entities.

car manufacture, a colour is merely an attribute of one of its products; to the
company that makes the paint, a color may well be an entity type.” p. 26 [10].

Database categories as a mode of representation. The root of the difference is that
the database categories are modes of representation – rather than modes of existence
(ontological). In other words, they are categorising the representation rather than what
is being represented. Though these may map directly onto the ontological categories –
and in an ontological model they would – there is no reason why they should. The
database category is not determined by what (category of thing) is being represented,
but by how the designer chooses to represent that thing. Some data modelling texts
quite explicitly note this difference – as the following extract shows.

“This cannot be emphasised too strongly. An entity cannot be equated to a
record, nor can a record be equated to an entity. There are many facets to this
inequality. It should always be borne in mind when thinking about data in a
computer because the data ultimately will be represented as a collection of
records. The data ultimately, however, must be interpreted as a set of
entities.” [11] p. 22.

Saving appearances. Another way to illustrate the representational nature of the
database categories is to look at what manoeuvres can be made to save the appearance
that they are ontological. Many textbooks take a simple extensional view of the
semantics of individual entity types. It may seem that one could use a similar
extensional view to reify objects for the database categories can refer to. This provides
them with a simple semantics where the representation entity type in a database refers
to the set of entity types that the particular database’s individual entity type
representations refer to.

One result of this is that it indexes the notion of entity type to the database, with the
result that there is no general entity type category, but only a series of categories
relative to individual databases. For example, if colour is an entity type in database
DB3, then it is a DB3 entity type – and there is a different DB4 entity type, which may
or may not have colour as an instance. But there is no general entity type. Under this
interpretation, the question whether colour is an entity type does not make sense. This
is a substantial revision of database designers’ intended meaning. They assume there
are entity types per se – irrespective of the individual databases. The interpretation of
database categories as representational respects this.

Equivocating type-instance relations. The perception of database categories as
ontological is often fatally attractive. One of the main reasons for this is the use of the
same names for the representational and ontological categories and an equivocation on
the type-instance relation. On the representational level, individual entity types in the
database have type-instance relations with their (database) instances. They are also
subject to type-instance relations with the (representational) entity type category.
There is a natural interpretation of the higher-level entity type to individual entity
type-instance relations as representations of corresponding ontological type-instance
relations. However, there is no such interpretation for the entity type category to entity
type type-instance relations (as there is no natural ontological interpretation of the
entity type category).

At the representational level it makes sense to group the lower and higher levels of
type-instances together. And this can (falsely) suggest that all the members of this
group have a similar natural interpretation - which would then imply that there is an
ontological entity category corresponding to the representational one – to act as the
ontological type for higher level type-instance relations. This false suggestion is
usually reinforced by equivocation on the type-instance relation – switching between
talking about the representational and the ontological levels without clearly
signposting that this is being done.

Clarifying the semantic divergence of the categories. The semantic divergence of
representational categories from ontological ones provides the basis for a substantial
amount of ontological analysis. The first task of this analysis is to establish the
implicit ontological categories. Often the database and ontological categories will
have similar names (in ordinary language) and structures – so they need to be clearly
distinguished. The next task is to determine what falls under the ontological categories
– as the database categorisation is not a reliable guide.

Examples of categorical divergence. A couple of examples where the choice of
representation has been guided by the requirements of the application – rather than
ontological considerations – will help to give a flavour of the kind of divergences this
kind of analysis reveals.

In almost all databases, amounts, dates (and times) and locations are represented as
attributes. So much so that within the database, dates and amounts are normally a
specific attribute sub-type. However, they do not have to be represented as attributes –
and doing so leads to some ontologically odd results.

Let me illustrate this with a simplified example. MegaBank has as customers Tom
and Dick, who both live in London. In MegaBank’s database the entries for Tom and
Dick both have ‘London’ address attributes. Today Tom comes into the bank and
makes a simple foreign exchange (fx) trade – exchanging a £10 note for 20 Euro one.
Dick comes in later and exchanges a different 20 Euro note for the same £10 note. In
the bank’s database two fx trades are recorded. The first has a buy amount attribute of
£10, the second a sell amount attribute of £10. Both have trade and value date
attributes of today.

From an application point of view representing the location, amounts and dates as
attributes has many information processing advantages. However there are some odd
aspects of this representation that suggests there is semantic divergence, these are:
ontic redundancy, missing ontic identity and multi-faceted representation.

There are two address attributes, one is Tom’s the other Dick’s, but there is only
one city, London, that they refer to. There is only one £10 note and one day (today)
that the two fx amount attributes and various date attributes refer to. These are
examples of ontic redundancy – a kind of ontic counterpart to data redundancy. There
is one object that is represented many times in the database. Ontic redundancy leads to
the same problems as data redundancy – a change to one representation does not
propagate automatically to the others.

London, the £10 note and today have an identity. We can identify and re-identify
them – and distinguish them from each other and other objects. However, the database
has no direct mechanism for tracking their identity. For example, just from the data,
one cannot tell whether the same £10 is involved in the two fx trades. This is missing
ontic identity – the objects have identity but the database does not track it.

The £10 note is represented by an attribute that names an amount – a quantity. This
quantity attribute implies the existence of the £10 note and its participation in the fx
trade. This is an example of a multi-faceted representation: where a single
representation is used to describe facets of a number of objects.

There are certain types of attribute that inhere in an entity. My personal height or
weight is my attribute. For these forms of attribute, the inhered-in entity (me)
underwrites the attribute’s identity (and so there is no missing ontic identity). It does
this because the attribute cannot inhere in any other entity – my height is mine and not
yours (so there is no possibility of ontic redundancy).

For these types of attribute we talk directly about being – ‘being height x’ or ‘being
weight y’. Amounts, dates and locations are not of this type. In these cases, we talk
about being indirectly – about ‘being for £10’, ‘being done today’ and ‘being in
London’. A database design that was more interested in the ontological aspects of
these objects, would treat them as entities with relationships. As, for example, a £10
note entity in a participation relationship with the fx trade. And it would represent the
same £10 note entity as related to both fx trades18.

There are some commercial applications that find it practical to take a more
ontological view. To my surprise, a couple of years ago, I came across a security
settlements application that stored dates as entity types. In the last couple of years, the
designers of the universal data models (for example, [12] and [13]) have chosen to
represent locations (addresses) as a series of related entities.

What the ontological form of these types of object is, is a more tricky question.
Aristotle (in his ‘The Categories’) suggests that time and place (location) are kinds of
attribute – but the form of his attributes are different from that of database attributes19.

18 For a model of these three types of attributes, which reveals their ontological form, see Part

6 of Partridge’s Business Objects: Re - Engineering for re – use (1996).
19 A point made at length in Part 2 of Partridge’s Business Objects: Re - Engineering for re –

use (1996).

The mechanism for characterising these forms is the ontological paradigm – we
examine this more in a later section.

4.2 Lack of representational expressiveness

There are a myriad of sources of semantic divergence. I briefly describe three more
common types starting with lack of representational expressiveness.

This can occur at various levels. It can happen at the categorical level. A common
situation is where the database categories do not support sub-typing: in other words,
where there is no sub-type relation. Then a workaround is needed to represent the
ontological sub-type relation20. A similar situation occurs when the database does not
support higher levels of type-instance relation21. One result of both these workarounds
is that they create categorical divergence ontological. Entity types are represented by
individual database entities, and so the database category of individual entity no
longer corresponds with the similarly named ontological category.

Lack of expressiveness can create divergence at lower levels. A couple of years ago
I was involved in implementing a securities settlements system that was also being
used for fx settlements. In order to accommodate the fx trades, a workaround that
treated them like security trades had to be adopted. This involved setting up a new fx
security for each combination of currencies for each date there was an fx trade. These
‘fx securities’ were clearly ontologically spurious – they did not refer to any kind of
‘real’ security.

One task within the ontological analysis is to unwind these kinds of workarounds to
arrive at a clearer representation of what actually exists.

4.3 Indexicality

Another common source of semantic divergence is indexicality. This is where the truth
of an expression (representation) depends the conditions of its utterance. A classical
example is the expression “I am here” – which is usually true, but will refer to
different people and places on different occasions. This is clearly a way in which we
use language (representation) and not a way in which the world is.

From an integration point of view, a central issue in the analysis of indexicality is
determining which representations are indexed to their specific applications. These
need to be unbundled before they can be integrated - as the examples later in this
section illustrate. The ontological strategy provides a framework for this. It takes
indexicality as a kind of semantic divergence that needs to be refined out of the
database to get to the ontological model.

The amount of indexicality in applications soon becomes apparent when one tries
to integrate across enterprise boundaries. Most enterprises’ systems take the

20 Parent, C. and S. Spaccapietra (2000) Database Integration: The Key to Data

Interoperability discusses an example of this.
21 Partridge’s Business Objects: Re - Engineering for re – use (1996) has an example of this

involving car types.

perspective of their particular enterprise as their given context. A common example,
also often found in textbooks, is: employee modelled as a sub-type of person.
Examination of how the data is used usually reveals that what is meant is that the
person is an employee of the particular company that ‘owns’ the application. So an
employee in Megabank’s payroll application, is an employee of Megabank.

One can see that there is a semantic divergence here by considering how this
application would be integrated with Gigabank’s payroll application. The two
employee files cannot simply be merged – the result would be a substantial loss of
information. The merged file would not tell which of the two banks was the employer.

Ontological analysis reveals the indexicality as a kind of multi-faceted
representation, which it unbundles as person and an employed by relation. This
unbundled relation can be directly merged without any problematic loss of meaning.

Most enterprise applications abound with indexicality. Examples are:
? Securities trading applications that have security purchase and security sale as

types of deal – reflecting the way dealers talk about their trades. The indexicality
is revealed by the fact that the trader’s security purchase is the counterparty’s
security sale – and vice versa.

? In many applications there is the notion of legal entity, but this is relative
(indexed) to a particular legal system. This point is touched upon in [14] and
explored in more detail in [15].

? Commercial applications represent roles that are indexical. For example, the role
of counterparty (or customer or supplier) is relative to the party (or supplier or
customer). Here an application’s customer is the customer’s application’s
supplier.

And the issues of indexicality get complicated when the ‘owner’ of the application
is not clear. For example, an application is being used by a department, but the
employer is the company of which the department is part. This kind of identity can get
even more problematic during mergers and acquisitions22 – hence the importance of
making a good ontological analysis to purge the indexicality.

4.4 Epistemic characteristics

The final source of divergence described here is epistemic characteristics. The
designers of databases need to specify what the database has to ‘know’. So its form
can be the result of designed epistemic characteristics, which conceal the underlying
ontological form.

The clearest examples of this are often found in the constraints imposed on
relations. For example, an insurance application may allow for the birth date to be
entered for a policy holder – but designate this as optional. From the database
designer’s (epistemic) perspective, it is enough to specify that the application only has
to be able to store this, but does not need to know it for each policy holder. However,
from an ontological point of view, each person has a birth date – even if the

22 A point pursued in Partridge, C’s LADSEB-CNR - Technical report 07/02 - STPO - Synthesis

of a TOVE Persons Ontology (forthcoming).

application does not know it. So birth date is ontologically mandatory, but
epistemically optional. The ontological analysis aims to reveal this kind of underlying
form.

4.5 Clarifying and explaining

The forgoing discussion and examples illustrate a point the metaphysicians have been
at pains to point out. That the ontological analysis raises questions whose answers
both clarify and explain what things are being represented and what kinds of thing
they are. The explanations help, among other things, to ease the process of gaining
agreement across communities – helping to resolve the ‘disagreement between
communities’ mentioned earlier.

4.6 Introducing semantic divergence

Though not part of the scope of this paper, to avoid misunderstanding, it may be worth
noting that it is not being suggested that semantic divergence should always be
avoided. For example, it is likely that the design of the unified database will involve
introducing the semantic divergences that the applications require – maybe re-
introducing divergences that have been purged. For example, in a security trading
application, dealers may wish to classify their deals as (indexical) security purchase
and sales. The point is that semantic divergence gets in the way of ground level
semantic matching – and so needs to be purged when doing this.

5 A better analysis

This kind of ontological analysis not only offers a better way to do the existing task, it
also produces a better result. This section describes two aspects of this. The first is
one of the most valuable from the perspective of the enterprise. It is that the analysis
encourages a kind of generalisation that reduces complexity, leading to a simpler,
more general model. The second aspect described is less immediately obviously a
benefit. This is ontological relativity – which, properly harnessed, can be used to
enhance benefits such as generalisation.

5.1 Encouraging generalisation that reduces complexity

Complexity is a major issue for large integration projects. As the size of the individual
applications and the number of applications grow, the amount of matching required
grows exponentially. Ontological analysis helps as it both prepares the ground for and
suggests generalisations.

Describing generalisation. Generalisation is not often described in textbooks – so I
clarify what is meant here. It can be usefully contrasted with the notion of abstraction.
This has its origins in Locke [16], see for example, ii. xi. 9 and 10 and iii. iii. 6 ff.
Central to the notion of abstraction is taking an idea, then, by ignoring some of its
details, ending up with a more general idea. For Locke it is the psychological
mechanism that enables humans to move from less general to more general ideas –
from the idea of an equilateral triangle to that of a triangle23. More recently, computer
science has taken up Locke’s notion.

Generalisation works in a different way. It is similar in that it starts with a
collection of types and by analysing commonalities generalises them. It is different in
that it makes the original collection redundant, not only without losing any
information, but also ending up with a smaller simpler collection of types24. Though
generalisation is not mentioned much in computing textbooks, it is common practice
in actual projects25. What is less common is an environment, like that provide by
ontological analysis, which encourages generalisation and creates the opportunity for
high levels of generalisation.

Outside computing generalisation is recognised as a key feature of the growth of
knowledge. For example, Kuhn’s [8] regards radical generalisation as a feature of
scientific revolutions – where the revolutionary theory is both more general, simpler
and typically contains more information: information that was not explicitly known at
the beginning. This generation of extra information is a common feature of
generalisation – within scientific theories it is often known as fruitfulness.

It is clear that semantic heterogeneity and divergence can hinder generalisation. If
the commonalities of two entities are represented in a semantically different ways,
their similarities are more difficult to see. And the semantic differences may create the
appearance of commonality where, in reality, none exists. So ontological analysis
clears the ground for generalisation, by making what exists clearer.

Examples of generalisation. But it practice it does more than this. Experience of using
the ontological analysis for semantic integration shows it actually encourages, often
enforces, generalisation. This can be illustrated using the earlier examples.

The example recognition of the indexicality of the notion of security purchase,
turned on seeing that the same thing the application classifies as a security purchase,
the counterparty’s application classifies as a security sale. This suggests, by analogy,
that what the application classifies as a security sale will be classified as a security
purchase by the counterparty’s application. This, in turn, suggests there is a more

23 People were unhappy with Locke’s proposal from the beginning. His near contemporary

Berkeley criticised the notion: see for example, paras. 6 ff. and paras. 98, 119 and 125 of his
A treatise concerning the principles of human knowledge. More recently Frege has made
some trenchant criticisms. Dummett’s Frege: Philosophy of Mathematics (1991) has a good
summary of the Fregean concerns.

24 Partridge’s Business Objects (1996) has an extended description of this with examples.
25 For example, Doug Lenat, the progenitor of Cyc, in a posting to the SUO mailing list dated

Thu 11/04/2002 wrote “… we continually try to police the KB and find ways to generalize
and combine assertions, to REDUCE the number of assertions …”.

general class of security trade that underlies both security purchases and sales.
Interestingly this more general class also encompasses internal trades – where both
parties are ‘within’ the application. Previously these would be a different class of trade
as they were, from the application’s point of view neither (or both) purchases or sales.
This is a simple, though far from trivial, illustration of fruitfulness.

A similar analysis can be made for customer and supplier – where the
generalisation also manages to encompass internal customer-supplier relationships.
Ditto for counterparty.

As these examples should make clear, within the ontological framework,
integration analysis naturally leads to generalisation. And it can also, usefully
engender a culture of generalisation.

5.2 Using ontological relativity to improve integration analysis

For the analysis, and in particular, generalisation, to work smoothly there needs to be
a single common underlying ontology. This is an aspect of the ontological framework
that now needs to be clarified.

It turns out that there is ontological relativity: that different applications can be
based upon different ontological paradigms. It is perhaps easiest to see this with a
simple example

A simple example of ontological relativity. Consider two of MegaBank’s
applications. One is for trading securities. Fund managers use it to buy and sell
securities, which are recorded in its database. The other is a portfolio performance
application. This tracks the long-term performance of the portfolios of securities
bought and sold by the fund managers. Both applications keep a record of the
securities involved. At first sight it might appear that there is an ontological type,
securities, that is represented in both applications – and there is some truth in this.
However, closer examination of exactly which securities the applications consider
exist throws up some fundamental differences that cannot be simply explained away as
semantic divergence.

In the trading application, a natural interpretation of what qualifies as a security
changes over time. There is a notion of a security currently existing. Before a new
security is issued it does not (currently) exist (ignoring grey markets, to keep things
simple) and once it matures it no longer (currently) exists. This makes sense, as a
trader cannot trade a security that does not currently exist.

In the portfolio performance application, there is a different natural interpretation.
Here securities that have matured are still securities. They have an important part to
play in the calculation of the performance. In this application, the notions of coming
into and going out of existence seem to have no place. Securities have a lifespan, they
get issued and mature, but these events are not burdened with the extra load of
indicating existence.

The two applications have different natural interpretation of, say, the representation
of IBM’s ABC bonds. The trading application would say that IBM’s ABC bonds exist
now, but (simplifying slightly) will no longer exist after they mature next week.

Whereas the portfolio performance application will say they exist simpliciter. They
cannot be talking about the same bonds.

The different ontological paradigms underlying these two interpretations are well
known to metaphysicians. The trading application has an ontological paradigm that
includes a position called presentism that takes tenses as real, affecting existence. The
portfolio performance application includes a position called endurantism that does
not. (One can find explanations of these positions in metaphysics textbooks such as
[17]).

Mapping between the paradigms. As noted above, the ontological analysis has,
strictly speaking, clarified that the IBM ABC bonds in the trading and portfolio
performance applications are different things. Yet no practical person would want to
claim that the two applications are talking about different IBM ABC bonds – they
intuitively recognise that the two are, in some sense, the same. They also intuitively
recognise that they are not identical. The portfolio performance’s database of
securities cannot simply be installed in the trading application.

From a database integration point of view, there is a need for a single unified view
across the two applications. To do this one needs to accommodate both applications
within a single ontology. The natural way to do this, in this case, is to provide an
interpretation of the trading application within the portfolio performance application
by introducing the (indexical) notion of a currently tradable security – and so currently
tradable IBM ABC bonds. This manoeuvre re-interprets (slightly less naturally from
the trading perspective) the presentist trading ontology as a semantically divergent
version of the endurantist portfolio performance ontology.

Understanding the scope of ontological relativity. As the example makes clear, the
ontological paradigm is rarely particularly explicit in the database – or in the minds of
the community using the database. Ontological analysis requires the relevant parts of
the paradigm be made explicit. Therefore it is helpful if one can start the analysis with
some idea of the scope of ontological relativity – in other words, how the ontological
paradigms can vary. One way of understanding the differences between the paradigms
is to consider them the result of different metaphysical choices26. These choices,
typically closely related, determine what kinds of things count as existing. Overall,
once one has made these choices one has settled on an ontological paradigm.
However, different choices lead to different ontological paradigms.

For example, the choice between endurantism and perdurantism involves deciding
whether change is real (exists). Similarly, the choice between presentism and
eternalism involves deciding whether the passing of time is real.

26 Partridge’s Business Objects (1996) offers another route to understanding – it explains how

the ontological paradigms evolved in response to various problems.

Converting a liability into an opportunity. For an integration project, at first sight
the existence of ontological relativity seems a liability. The task of semantically
matching takes on an extra level of complexity. Not only is there a need to determine
when different databases are talking about the same thing (within a paradigm) – but
also of determining how to map the things that exist according to one paradigm into
the ‘same but different things’ that exist according to another (across paradigms).
There is also the task of determining which paradigm underlies each database and
which should underlie the unified database.

However, opening up the choice of paradigm presents an opportunity to select one
that is most suitable for the integration task at hand – taking into account the various
costs and benefits27. This differentiates the position here from the situation in the
traditional metaphysical debate. Here there is clear goal for the paradigm – application
integration – and a basis for measuring the success of achieving it.

There are a number of factors to consider. One that has already been mentioned is
the need to deal with the complexity that currently dogs most large integration projects
– and how ontological analysis can encourage a form of generalisation the reduces this
complexity. It turns out that the metaphysical choices that go into making up a
paradigm can have a big effect on the degree of complexity generated28.

One aspect of the metaphysical choices that go into the paradigm that is well known
to metaphysicians is that they can have a multiplying or unifying effect. The
multiplying choices lead to a wider range of types of entities and the need to explain
how these are related. From a complexity management point of view, this is
undesirable – and this needs to be taken into account when deciding upon the
ontological paradigm.

A good choice of paradigm is even more important when building a reference
ontology – the subject of the next section.

6 Using integration to build a reference ontology

It should also be becoming clear that the application independence of ontological
models makes them a prime candidate for reference models. By stripping the
applications of the semantic divergences introduced to satisfy their requirements or the
design judgements of the designers, a common application-independent foundation is
revealed. This can act as the basis for the integration of applications (and a variety of
other tasks) in the domains that it covers.

6.1 The yet-to-be completed universal reference model

In an ideal world one might be able to set up a project to produce a universal reference
model that could form the basis for integrating any application. In the real world, the

27 David Lewis’s (1986) On the plurality of worlds is unusual in having an extended discussion

of the need to balance the costs and benefits when deciding upon an ontology.
28 This is one of the major themes of Partridge’s Business Objects (1996).

elements of this putative model are often going to be developed piecemeal in
particular integration projects. This leaves the meta-integration task of combining
these elements.

6.2 Piecemeal development

Using integration projects to develop the pieces of a wider reference model has
several advantages. The various databases input to the integration project provide vital
‘real’ information supplemented during the ontological analysis. Also the unified
database is an excellent test bed for the unified ontological model. Users will soon
make plain if it does not work.

6.3 Meta-integrating a universal reference model

The task of integrating the various piecemeal models can follow a similar process to
the individual integration projects. The task is greatly simplified if a ‘standard’
ontological paradigm is settled on - as this eliminates cross-paradigm matching.

7 Summary

The theme of this paper is that there is an important stage in the process of integration
– semantic matching – that has had insufficient attention until now and can be
substantially improved though the application of traditional metaphysical ontology. As
the paper has been at pains to point out, this can not only help to improve the existing
process but also introduce additional benefits – such as the simplifications that
generalisation brings. From a wider perspective, it also enables integration projects to
become the engines for the production of a universal reference ontology.

Acknowledgements

This report was produced while on sabbatical leave at the Group of Conceptual
Modeling and Knowledge Engineering at CNR-LADSEB, Padova. I would like to
thank them for their support. I would also like to thank Bob Colomb for reviewing an
initial draft of this paper.

References

1. Sheth, A. and J. Larson, Federated Database Systems for Managing Distributed,
Heterogeneous and Autonomous Databases. ACM Computing Surveys, 1990.
Vol.22(No.3): p. 183 - 236.

2. Quine, W.V., Ontological relativity, and other essays. The John Dewey essays in
philosophy, no. 1. 1969, New York,: Columbia University Press. viii, 165.

3. Parent, C. and S. Spaccapietra, Database Integration: The Key to Data Interoperability, in
Advances in ObjectOriented Data Modeling, S. Spaccapietra, Editor. 2000, MIT Press:
Cambridge, Mass.

4. Vermeer, M.W.W. and P.M.G. Apers, On the Applicability of Schema Integration
Techniques to Database Interoperation. ER 1996, 1996: p. 179-194.

5. Gruber, T.R., A translation approach to portable ontology specifications. Knowledge
acquisition, 1993. Vol. 5(No. 2): p. pp. 199-220.

6. Tsichritzis, D. and A. Klug, The ANSI/X3/SPARC DBMS Framework Report of the Study
Group on Database Management. 1978: AFIPS Press.

7. Marcus, R.B., Modalities : philosophical essays. 1993, New York: Oxford University Press.
xiv, 266.

8. Kuhn, T.S., The structure of scientific revolutions. 2d ed. 1970, Chicago,: University of
Chicago Press. xii, 210.

9. Brookes, C.H.P., Information systems design. 1982, Sydney: Prentice-Hall of Australia.
477.

10.Tsichritzis, D.C. and F.H. Lochovsky, Data models. Prentice-Hall software series. 1982,
Englewood Cliffs, N.J.: Prentice-Hall. xiv, 381.

11.Thompson, J.P., Data with semantics : data models and data management. 1989, New York:
Van Nostrand Reinhold. xviii, 468.

12.Hay, D.C., Data model patterns : conventions of thought. 1996, New York: Dorset House
Pub. xix, 268.

13.Silverston, L., W.H. Inmon, and K. Graziano, The data model resource book : a library of
logical data models and data warehouse designs. 1997, New York: Wiley. xi, 355.

14.Partridge, C. and M. Stefanova, A Synthesis of State of the Art Enterprise Ontologies:
Lessons Learned. 2001, The BORO Program, LADSEB CNR, Italy: Padova.

15.Partridge, C., LADSEB-CNR - Technical report 07/02 - STPO - Synthesis of a TOVE
Persons Ontology. (forthcoming). 2002, LADSEB-CNR: Padova, Italy.

16.Locke, J. and P.H. Nidditch, An essay concerning human understanding. 1975, Oxford:
Clarendon Press. liv, 867.

17.Loux, M.J., Metaphysics: a contemporary introduction. Routledge contemporary
introductions to philosophy; 1. 1998, London ; New York: Routledge.

18.Berkeley, G. and J. Dancy, A treatise concerning the principles of human knowledge.
Oxford philosophical texts. 1998, Oxford ; New York: Oxford University Press. vi, 237.

19.Dummett, M., Frege: Philosophy of Mathematics. 1991, London: Gerald Duckworth &
Company Ltd.

20.Gilbert, M., On social facts. 1992, Princeton, N.J.: Princeton University Press. x, 521.
21.Goodchild, M., et al., eds. Interoperating Geographic Information Systems. 1999, Kluwer

Academic Publishers: Boston.
22.Kent, W., Data and reality : basic assumptions in data processing reconsidered. 1978,

Amsterdam ; New York New York: North-Holland Pub. Co. ; sole distributors for the
U.S.A. and Canada Elsevier/North-Holland. xv, 211.

23.Papazoglou, M., S. Spaccapietra, and Z. Tari, Advances in object-oriented data modeling.
Cooperative information systems. 2000, Cambridge, Mass.: MIT Press. xxiv, 367.

24.Partridge, C., Business Objects: Re-engineering for re-use. 1996, Oxford: Butterworth
Heinemann.

25.Partridge, C., LADSEB-CNR - Technical report 04/02 - What is Pump Facility PF101?
(forthcoming). 2002, LADSEB-CNR: Padova, Italy.

26.Quine, W.V., The roots of reference. 1973, LaSalle, Ill.,: Open Court. xii, 151.

27.Quine, W.V., From a logical point of view: 9 logico-philosophical essays. 2d ed. 1980,
Cambridge, Mass.: Harvard University Press. xii, 184.

28.Searle, J.R., The construction of social reality. 1995, New York: Free Press. xiii, 241.
29.Sheth, A., Changing Focus on Interoperability in Information Systems: From system,

syntax, structure to semantics., in Interoperating Geographic Information Systems, C.
Kottman, Editor. 1999, Kluwer Academic Publishers: Boston.

30.Strawson, P.F., Individuals, an essay in descriptive metaphysics. 1990, London, New York:
Routledge. 255.

31.Strawson, P.F., Analysis and metaphysics : an introduction to philosophy. 1992, Oxford ;
New York: Oxford University Press. viii, 144.

32.Lewis, D.K., On the plurality of worlds. 1986, Oxford, UK ; New York, NY: B. Blackwell.
ix, 276.

