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Abstract.  The so-called Semantic Web vision will certainly benefit from
automatic semantic annotation of words in documents. We present a method,
called structural semantic interconnections (SSI), that creates structural
specifications of the possible senses for each word in a context, and selects
the best hypothesis according to a grammar G, describing relations between
sense specifications. The method has been applied to different semantic
disambiguation problems, like automatic ontology construction, sense-
based query expansion, disambiguation of words in glossary definitions.
Evaluation experiments have been performed on each disambiguation task,
as well

1   Introduction

Word sense disambiguation (WSD) is perhaps the most critical task in the area of
computational linguistics. We do not attempt here a survey of the field, but we refer
the interested reader to the Senseval1 home page for a collection of state of art sense
disambiguation methods, and the results of public challenges in this area. During the
most recent Senseval evaluation, the best system in the English all-words task [1]
reached a 69% precision and recall, a performance that in [2] is claimed to be well
below the threshold that produces improvements in a text retrieval task.
The lack of high-performing methods for sense disambiguation may be considered the
major obstacle that prevented an extensive use of natural language processing
techniques in many areas of information technology, such as information classification
and retrieval, query processing, advanced web search, document warehousing, etc. In
these application fields, the use of statistical and algebraic methods largely prevails on
knowledge-based methods, a tendency that clearly emerges in main information
retrieval conferences and challenges, such as SIGIR2 and TREC3.
However, emerging applications like the so called Semantic Web [3] foster "an
extension of the current web in which information is given well-defined meaning,
better enabling computers and people to work in cooperation", an objective that hardly
will be met through mere manual semantic annotations using languages such as
XML, RDF, OWL etc [4]. Large-scale semantic annotation projects would greatly
benefit from reliable methods for automatic sense selection. In recent years, the results

                                                
1 http://www.senseval.org/
2 http://www.acm.org/sigir/
3 http://trec.nist.gov/
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of many research efforts for the construction of on-line knowledge repositories,
ontologies and glossaries are now available (e.g. [5] [6] [7]), creating new
opportunities for knowledge-based sense disambiguation methods.
In this paper we present a WSD algorithm, called structural semantic interconnections
(SSI), that uses graphs to describe the objects to analyze (word senses) and a context-
free grammar to detect relevant semantic patterns between graphs. Sense classification
is based on the number and type of detected interconnections. The graph representation
of word senses is automatically built from several available resources, such as
lexicalized ontologies, annotated corpora, and glossaries. The SSI algorithm is applied
to different problems, namely:
§ extending and trimming a general-purpose ontology with complex domain
terms (e.g. respectively for computer networks, tourism, and finance: local area
networks, hotel facility, leveraged buy-out).
§ disambiguating the words in a natural language concept definition: this is a
prerequisite for creating formal axiomatic sense descriptions from informal ones;
§ disambiguating the words in a query for sense-based web query expansion.
The paper is organized as follows: in Section 2 we the structural semantic
interconnection algorithm and describes the context-free grammar for detecting
semantic interconnections. Section 3 provides implementation details for the three
word sense disambiguation problems listed above. Finally, Section 4 is dedicated to
the description of several experiments that we made on standard and ad-hoc testing
environments.

2 The SSI algorithm for sense tagging

Our approach to WSD lies in the structural pattern recognition framework. Structural
or syntactic pattern recognition [8] [9] has proven to be effective when the objects to
be classified contain an inherent, identifiable organization, such as image data and
time-series data. For these objects, a representation based on a “flat” vector of features
causes a loss of information that negatively impacts on classification performances.
Word senses clearly fall under the category of objects that are better described through a
set of structured features.
The classification task in a structural pattern recognition system is implemented
through the use of grammars that embody precise criteria to discriminate among
different classes. Learning a structure for the objects to be classified is often a major
problem in many application areas of structural pattern recognition. In the field of
computational linguistics, however, several efforts have been made in the past years to
produce large lexical knowledge bases and annotated resources, offering an ideal
starting point for constructing structured representations of word senses.

2.1 Building structural representations of word senses

A structural representation of word senses is automatically built using a variety of
knowledge sources, i.e. WordNet, Domain Labels [12] annotated corpora like SemCor
and LDC-DSO4. We use this information to automatically generate labeled directed

                                                
4 LDC http://www.ldc.upenn.edu/
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graph (digraph) representations of word senses. We call these semantic graphs, since
they represent alternative conceptualizations for a lexical item.
Figure 1 shows an example of the semantic graph generated for senses #1 of market,
where nodes represent concepts (WordNet synsets), and edges are semantic relations. In
each graph, we include only nodes with a maximum distance of 3 from the central
node, as suggested by the dashed ovals in Figure 1. This distance has been
experimentally established.
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Figure 1. Graph representations for sense #1 of market.

All the used semantic relations are explicitly encoded in WordNet, except for the latter
three. Topic, gloss and domain are extracted respectively from annotated corpora, sense
definitions and domain labels.

2.2 Summary description of the SSI algorithm

The SSI algorithm consists of an initialization step and an iterative step.
In a generic iteration of the algorithm the input is a list of co-occurring terms T = [ t1,

…, tn ] and a list of associated senses I = [ ,..., ]St Stn1 , i.e. the semantic

interpretation of T , where Sti 5 is either the chosen sense for ti (i.e., the result of a
previous disambiguation step) or the empty set (i.e., the term is not yet
disambiguated).

A set of pending terms is also maintained, P ti Sti= = ∅{ | }  . I is named the

semantic context of T and is used, at each step, to disambiguate new terms in P.
The algorithm works in an iterative way, so that at each stage either at least one term
is removed from P (i.e., at least a pending term is disambiguated) or the procedure
stops because no more terms can be disambiguated. The output is the updated list I of
senses associated with the input terms T.
Initially, the list I includes the senses of monosemous terms in T . If no monosemous
terms are found, the algorithm makes an initial guess based on the most probable
sense of the less ambiguous term. The initialisation policy is adjusted depending upon

                                                
5 Note that with  we refer interchangeably to the semantic graph
associated with a sense or to the sense name.
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the specific WSD task considered. Section 3 describes the policy adopted for the task
of gloss disambiguation in WordNet.
During a generic iteration, the algorithm selects those terms t in P showing an
interconnection between at least one sense S  of t and one or more senses in I. The
likelihood for a sense S  of being the correct interpretation of t, given the semantic
context I, is estimated by the function fI C: → ℜ , where C  is the set of all the
concepts in the ontology O, defined as follows:

fI S t
S S S I if S Senses t Synsets

otherwise
( , )
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where Senses(t) is the subset of concepts C in O associated with the term t, and
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weights (w) of each path connecting S  with S’, where S  and S’ are represented by
semantic graphs. A semantic path between two senses S  and S’,
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1... ' , is represented by a sequence of edge labels e e en1 2⋅ ⋅ ⋅... . A

proper choice for both ρ and ρ’ may be the sum function (or the average sum
function).
A context-free grammar G = (E, N , SG, PG) encodes all the meaningful semantic
patterns. The terminal symbols (E) are edge labels, while the non-terminal symbols
(N) encode (sub)paths between concepts; SG is the start symbol of G and PG the set of
its productions.
We associate a weight with each production A → α  in PG, where A N∈  and
α ∈ ∪( ) *N E , i.e. α  is a sequence of terminal and non-terminal symbols. If the
sequence of edge labels e e en1 2⋅ ⋅ ⋅...  belongs to L(G), the language generated by the

grammar, and provided that G is not ambiguous, then w e e en( ... )1 2⋅ ⋅ ⋅  is given by the

sum of the weights of the productions applied in the derivation SG e e en⇒ + ⋅ ⋅ ⋅1 2 ... .

The grammar G is described in the next section.
Finally, the algorithm selects arg ( )max

S C
fI S

∈
 as the most likely interpretation of t and

updates the list I with the chosen concept. A threshold can be applied to (Sf  to

improve the robustness of system’s choices.
At the end of a generic iteration, a number of terms is disambiguated and each of them
is removed from the set of pending terms P. The algorithm stops with output I when
no sense S can be found for the remaining terms in P such that fI S( ) > 0, that is, P
cannot be further reduced.
In each iteration, interconnections can only be found between the sense of a pending
term t and the senses disambiguated during the previous iteration.
A special case of input for the SSI algorithm is given by I = ∅ ∅ ∅[ , , ..., ] , that is
when no initial semantic context is available (there are no monosemous words in T).
In this case, an initialisation policy selects a term t ∈  T and the execution is forked
into as many processes as the number of senses of t.
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2.3  The grammar

The grammar G has the purpose of describing meaningful interconnecting patterns
among semantic graphs representing conceptualisations in O. We define a pattern as a
sequence of consecutive semantic relations e e en1 2⋅ ⋅ ⋅...  where ei E∈ , the set of

terminal symbols, i.e. the vocabulary of conceptual relations in O. Two relations
ei ei+1 are consecutive if the edges labelled with i  and 1+ie  are incoming and/or

outgoing from the same concept node, that is → →
+ei

S
ei

( )
1 , ← →

+ei
S

ei
( )

1 , → ←
+ei

S
ei

( )
1 ,

← ←
+ei

S
ei

( )
1 . A meaningful pattern between two senses S and S’ is a sequence

e e en1 2⋅ ⋅ ⋅...  that belongs to L(G).

In its current version, the grammar G has been defined manually, inspecting the
intersecting patterns automatically extracted from pairs of manually disambiguated
word senses co-occurring in different domains. Some of the rules in G are inspired by
previous work on the eXtended WordNet project described in (Milhalcea and Moldovan,
2001). The terminal symbols ei are the conceptual relations extracted from WordNet
and other on-line lexical-semantic resources, as described in Section 2.1.
G is defined as a quadruple (E, N , SG, PG), where E = { ekind-of, ehas-kind, epart-of, ehas-part,
egloss, eis-in-gloss, etopic, … }, N = { SG, Ss, Sg, S1, S2, S3, S4, S5, S6, E1, E2, … }, and PG

includes about 50 productions.
As stated in previous section, the weight w e e en( ... )1 2⋅ ⋅ ⋅  of a semantic path

e e en1 2⋅ ⋅ ⋅...  is given by the sum of the weights of the productions applied in the

derivation SG e e en⇒ + ⋅ ⋅ ⋅1 2 ... . These weights have been learned using a perceptron

model, using standard word sense disambiguation data, such as the SemCor corpus.
Examples of the rules in G are provided in the subsequent Section 3.

3 Three applications of the SSI algorithm

The SSI algorithm has been applied in three different WSD tasks. Each of these tasks
required some adaptation of the algorithm, as detailed hereafter.

3.1 Disambiguation of textual definitions in an ontology or glossary.

Glossaries and ontologies often provide a textual definition of concepts in which words
are left ambiguous. For example, the WordNet definition of transport#3 is “the
commercial enterprise of transporting goods and materials”. In this gloss, the word
enterprise has 3 senses, and material has 6. Associating the correct sense with each
word in a gloss is a sort of preliminary step to construct formal concept definitions
from informal ones [13].
For the gloss disambiguation task, the SSI algorithm is initialized as follows: In step
1, the list I includes the synset S whose gloss we wish to disambiguate, and the list P
includes all the terms in the gloss   and   in the gloss of the hyperonym of S . Words in
the hyperonym’s gloss are useful to augment the context available for disambiguation.
In the following, we present a sample execution of the SSI algorithm for the gloss
disambiguation task applied to sense #1 of retrospective: “an exhibition of a
representative selection of an artist’s life work”. For this task the algorithm uses a
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context enriched with the definition of the synset hyperonym, i.e. art exhibition#1:
“an exhibition of art objects (paintings or statues)”.
Initially we have:

I = { retrospective#1 }6

P = { work, object, exhibition, life, statue, artist, selection, representative, painting,
art }

At first, I is enriched with the senses of monosemous words in the definition of
retrospective#1 and its hyperonym:

I = { retrospective#1, statue#1, artist#1 }
P = { work, object, exhibition, life, selection, representative, painting, art }

since statue and artist are monosemous terms in WordNet. During the first iteration,
the algorithm finds three matching paths7:

retrospective#1
2 → −ofkind

exhibition#2, statue#1 
3 → −ofkind

 art#1 and statue#1
6 → −ofkind

object#1 (all instances of rule S1 in Figure 4).

This leads to:

I = { retrospective#1, statue#1, artist#1, exhibition#2, object#1, art#1 }
P = { work, life, selection, representative, painting }

During the second iteration, a hyponymy/holonymy path (rule S2) is found:

art#1 
2 → −kindhas

painting#1 (painting is a kind of art)
which leads to:
I = { retrospective#1, statue#1, artist#1, exhibition#2, object#1, art#1, painting#1 }
P = { work, life, selection, representative }

The third iteration finds a co-occurrence (topic rule S5 in Figure 4) path between
artist#1 and sense 12 of life (biography, life history):

artist#1  → topic
 life#12

then, we get:
I = { retrospective#1, statue#1, artist#1, exhibition#2, object#1, art#1, painting#1,
life#12 }
P = { work, selection, representative }

The algorithm stops because no additional matches are found. The chosen senses
concerning terms contained in the hyperonym’s gloss were of help during
disambiguation, but are now discarded. Thus we have:

GlossSynsets(retrospective#1) = { artist#1, exhibition#2, life#12, work#2 }
                                                
6 For convenience here we denote I as a set rather than a list.
7 With S S’ we denote a path of i consecutive edges labeled with the
relation R interconnecting S with S’.
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In Section 5 an evaluation of this task is presented.

3.2 Association of complex concepts to multi-word terms.

Complex terms can often be defined compositionally from its constituents. For
example, we can define revenue management as “the act of managing government
income due to taxation”, a definition obtained through the concatenation of the
appropriate definitions of management and revenue. Complex concepts are included in
general purpose ontologies to a limited extent, and domain ontologies are available
only in few technical fields (e.g. medicine, computer science).
Our aim was to extend an existing general purpose ontology through the semantic
interpretation of multi-word terms. For example, revenue and management are in
WordNet, but not revenue management as a complex concept. Both revenue and
management have two senses in WordNet, which leads to 4 possible compositional
semantic interpretations8 for the complex term. In order to extend with complex
domain concepts a general-purpose ontology we devised an ontology learning system,
called OntoLearn [15][16], which is again based on the SSI algorithm. With reference
to the above example, the objective of Ontolearn is to select the appropriate senses
(management#1 and revenue#2) and attach the new concept under its direct hyperonym
in WordNet (i.e. management#1). The first step of the Ontolearn procedure is to
automatically extract from dedicated corpora a list of multi-word terms in a specific
domain (we experimented on finance, tourism and computer networks). Terms are then
arranged in tree structures, based on simple string inclusion. An example is in Figure
2, obtained from a tourism domain.

Figure 2. Complex terms arranged in a tree-structure rooted in service.

The tree is used as the initial context to activate semantic disambiguation. With
reference to Figure 5, the list T in input to the SSI algorithm would be: [service,
train, ferry, car, car-ferry, boat, bus, coach, transport, public, taxi, express]. The
initialization of I in this case is more complex. If the context is rich enough, as in the
service example, one or more monosemous terms are usually found to start the

                                                
8 Compositional interpretation of complex nominals applyes in many cases, but clearly
not in all. A backoff strategy is to parse glossary definitions, a strategy whose description
is outside the scope of this paper.
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disambiguation process. For example, taxi and car-ferry have only one sense
(respectively, “a car driven by a person whose job is to take passengers where they
want to go in exchange for money” and “a ferry that transports motor vehicles”), and
several interconnections are found during the first execution of the iterative step
between the semantic graphs of the monosemous words and the semantic graphs
corresponding to the correct sense of the other words in T.
For example, the following rules allow it to disambiguate car, ferry, boat and coach
during the first iteration of the SSI algorithm:

taxi
kind of

car

taxi
kind of

car
kind of

coach

taxi
gloss

pas ger
gloss

coach

car ferry
kind of

ferry

car ferry
kind of

ferry
has

# #

# # #

# sen # #

# # ( )

# #

1 1

1 1 3

1 1 3

1

1

− → 

− →  −←  

 → ← 

− − → 

− − →  −

(hyper rule S1)

(hyper/hypo rule S3)

(gloss rule S6 )

hyper rule S1

kindkind
boat←   # )1 (hyper/hypo rule S3

The subsequent iterations produce a complete disambiguation of the list T.
If no monosemous words are found, we explore two alternatives: either we provide
manually the synset of the root term (service#2: “a company or agency that performs a
public service”) or we fork the execution of the algorithm in as many processes as the
number of senses of the root term h. Let n be such a number. For each process i (i =
1, …, n), the input is given by Ii = ]..., ,..., ,, ∅∅∅ iS  where h

iS
 is the i-th sense of h

in Senses(h). Each execution outputs a (partial or complete) semantic context Ii.
Finally, the most likely context Im is obtained by choosing:

m max
i n

fIi S
S Ii

=
≤ ≤ ∈

∑arg ( )
1

.

The intuition is that, since the root term is included in all the nodes of a term-tree, its
“correct” sense should exhibit a high degree of semantic interconnectivity with all the
other components. This means that, eventually, one of the processes should cumulate
a higher weight )(Sf

iI  with respect to the others.
When the correct senses have been eventually determined for all the term components
of a term-tree, the tree is re-arranged using taxonomic relations, as shown in Figure 3.
More details and evaluations on the OntoLearn system are provided in the
aforementioned papers. A summary evaluation is in Section 4.

3.3 Sense-based query expansion

The third application that we explored is the use of sense information for query
expansion. Sense-based query expansion has not really proven its effectiveness in
information retrieval applications: published results are not very recent [17] [18], and
the use of statistical methods is currently prevailing. A more recent work [2] analyzes
the effect of expanding a query with WordNet synsets, in a “canned” experiment where
all words are manually disambiguated. In this paper it is shown that a substantial
increase in performance is obtained only with less than 10% errors in the word sense
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disambiguation (WSD) task. Unfortunately, the state of affairs for WSD [1] is far
below this threshold, as remarked in the introduction.

Figure 3. Complex concepts arranged in a taxonomic structure rooted in service#2.

However, the 10% error-rate threshold established in [2] is based on a query expansion
technique that associates with each disambiguated term the list of its synonyms and/or
hyponyms, in an and-or fashion. To our knowledge, all sense-based expansion
algorithms in literature use basically “kind-of” and synonymy information to generate
the expanded query.
Our claim is that the SSI algorithm offers the additional opportunity of expanding a
query with the concepts in an interconnection pattern; for example, the interconnection
pattern between smoke and disease in “diseases caused by smoke?”9:

suggests an expansion with the words tobacco and drug.
In a query expansion task, the SSI algorithm receives a list T including the set of
keywords in a query. For example, the (unexpanded) query above is rewritten as T = [
disease, cause, smoke ].
The problem here is that real-world queries are usually very short, reducing the
probability of finding monosemous terms10 for initializing the semantic context I. The
SSI process in this case is forked in as many executions as the number of senses of
the less ambiguous term. Given the limited and less focused context provided by short
queries, the precision in disambiguation is expected to be lower than for the
applications described in previous sub-sections. However, the evaluation section
shows that, even in presence of a WSD error rate higher than the 10% threshold
estimated in [2], a sense-based expansion strategy based on non-taxonomic relations
seems very promising.

                                                
9 This query is taken from those used in the public challenge TREC 2002
(web query track:
http://www.ted.cmis.csiro.au/TRECWeb/guidelines_2002.html)
10 The example above is indeed fortunate since disease has only one sense.
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4 Experimental results

This section is organized as follows: first, we provide evaluations for each of the three
applications described in previous Section. Then, we describe an evaluation experiment
over a standard WSD dataset, the so-called “all-words” dataset of Senseval-2.
To evaluate the performance of the various disambiguation tasks we used two common
measures: recall and precision. Recall provides the percentage of right senses with
respect to the overall number of terms to be disambiguated. In fact, when the
disambiguation algorithm terminates, the list P may still include terms for which no
relation with the synsets in I could be found. Furthermore, the number of
disambiguated senses depends on the weights associated with the rules in G. Precision
measures the percentage of right senses with respect to the retrieved senses. Notice that
thresholding the measure of certainty )(Sf

iI  in SSI algorithms (Section 3.1) can

optimally tune precision and recall: in our view, a higher precision is often more
important than a high recall, especially in the context of specific sense-based tasks,
like query expansion, where even few errors may produce very negative results on
retrieval. Therefore, we pursued high precision and “reasonable” recall. The balance
between these two measures has been tuned for each specific disambiguation task.
Furthermore, in our experiments, we also computed a baseline precision, using the
“first sense choice” heuristic. In WordNet, synsets are ordered by probability of use,
i.e. the first synset is the most likely sense. For a fair comparison, the baseline is
computed only on the words for which the algorithm could retrieve a synset.

4.1 Evaluation of gloss disambiguation task

The gloss disambiguation algorithm has been evaluated on two sets of glosses: a first
set of 100 general-purpose glosses11 and a second set of 305 glosses from a tourism
domain. This allows us to evaluate the method both on a restricted domain and a non-
specialized task.
For each word in a gloss, the appropriate WordNet sense has been manually assigned,
for over 1,000 words. The annotations are in part those made available by the authors
of the already mentioned eXtended WordNet project [14], in part (e.g. those in the
tourism domain) have been assigned by the three authors of the research described in
[13].
Table 1 gives an overview of the results. Table 1a provides an overall evaluation of
the algorithm, while table 1b computes precision and recall grouped by morphological
category. The precision is quite high (well over 90% for both general and domain
glosses) but the recall is around 40%. Remarkably, the achieved improvement in
precision with respect to the baseline is much higher for general glosses than for
domain glosses. This is motivated by the fact that general glosses include words that
are more ambiguous than those in domain glosses. Therefore, the general gloss
baseline is quite low. This means also that the disambiguation task is far more
complex in the case of general glosses, where our algorithm shows particularly good
performance.
An analysis of performance by morphological category (Table 1b) shows that noun
disambiguation has much higher recall and precision. This is motivated by the fact

                                                
11 The 100 generic glosses have been randomly selected among the 809
glosses used in the OntoClean project (see [13] for details)
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that, in WordNet, noun definitions are richer than those of verbs and adjectives. The
WordNet hierarchy for verbs is known as being more problematic with respect to
nouns. As already mentioned, we plan to integrate in our algorithm verb information
from FrameNet and VerbNet, lexico-semantic knowledge bases, providing rich
information especially for verbs.

Domains # glosses # words

# disamb.

words

# of
which
ok Recall Precision

Baseline

Precision

Tourism 305 1345 636 591 47,28% 92,92% 82,55%

Generic 100 421 173 166 41,09% 95,95% 67,05%

Table 1a) Performance of the gloss disambiguation algorithm b) Performance by
morphological category.

4.2 Evaluation of gloss disambiguation task

Ontology learning is perhaps the task for which our SSI algorithm is best suited: in
fact, words in a complex terminological string are expected to be highly related, since
the assumption is that the meaning of the entire string may be compositionally
obtained from the individual components.  
To test the SSI algorithm, we selected 650 complex terms from a set of 3,840
complex nominals extracted from a Tourism corpus and we manually assigned the
appropriate WordNet synset to each word composing the term. We did the same for
200 terms in an Economy corpus (Wall Street Journal). Annotation is a rather
subjective task, especially since in WordNet certain senses are very close.

We used two annotators with adjustment to reduce this problem. The results of the
evaluation are shown in Figure 4. The light and dark towers represent, respectively,
the precision and recall of the algorithm, for the Economy and Tourism domains
(towers on the right side). Performance is measured also as a function of the number
of complex terms from which the initial context T is built (e.g. Figure 2), indicated
by |T| in the Figure (towers on the left side). The results show that precision is
stable12 around 80%, while the recall considerably increases, as expected, with |T|.

4.3 Evaluation of query expansion task

The objective of the query expansion experiment was to obtain a better insight on the
use of sense information for improving web search. In a (still preliminary) study
(described also in [19]) we showed that it is possible to obtain up to 22% systematic
improvement in precision (over the first 10 retrieved pages using Google) when the

                                                
12 due to the use of a threshold for sense selection

Domains
noun

recall

noun

prec. adj recall

adj

prec. verb recall

verb

prec.
# tot
nouns

# tot
adj

# tot
verbs

Tourism 64.52% 92.86% 28.72% 89.29% 9.18% 77.78% 868 195 294

Generic 58.27% 95.95% 28.38% 95.24% 5.32% 80% 254 74 94
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initial query is expanded with words related to a given word sense by contextual
relations (namely, gloss and topic). The experiment has been conducted using the
query topics of the TREC 200113 web track.

84,48% 86,33% 81,95%
81,94%80,17%

47,62%
60,90%

63,99%
75,17%

63,27%

0%
20%
40%

60%
80%

100%

Economy Tourism |T| < 10 10 † |T| <
20

|T| ‡ 20

Precision Recall

Figure 4. Summary evaluation of SSI algorithm on Economy and Tourism, by domain
and by dimension of the initial context.

We experimented four sense-based expansion methods:
Synset   expansion: “expansible” words are replaced by their synsets, retrieved by the

algorithm of previous section.
Hyperonym    expansion: “expansible” words are augmented by their WordNet direct

hyperonyms.
Gloss     synset   expansion: “expansible” words are augmented by the synsets of its

glosses (disambiguated by an ad-hoc version of our WSD algorithm).
Gloss-topic      words   expansion: “expansible” words are augmented with the words

related to the concepts linked by gloss and topic relations.
Expansible words wi are those for which the SSI algorithm assigns a sense with a

confidence expressed by fI Swi( ) > β , where β is an experimentally tuned threshold

and 
S

 is a sense of wi. We queried the web with the first 24 of the 50 queries used in

the TREC2001 web track. The queries (called “topics”) include the actual query (title)
but also text to explain the query (description) and describe precisely the type of
documents that should be considered relevant (narrative). For example:

<TOP>
<num> Number: 518
<title> how we use statistics to aid our decision making?
<desc> Description:
Find documents that reference the use of statistical
data in decision-making.
<narr> Narrative:
A relevant document will describe a specific statistical method that is used to assist
decision-making.

</top>

                                                
13 TREC is a public challenge that runs every year on specific tasks, called tracks. The web

site is http://trec.nist.gov/
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Clearly, description and narrative texts cannot be used to expand the query, but only
to manually verify the correctness of retrieved documents, as we did. To query the
web, we used Google, which revealed not to be the best choice to exploit our
algorithm, due to the limitation of 10 words per query. Therefore, for longer queries
we are faced with the problem of choosing only a fragment of the candidate expansion
words. However, we felt that our results could be stronger if they show an
improvement in performance using the most popular search engine.

For each query, we retrieved the first 10 top ranked pages without query expansion,
and then we repeated the search with each of the sense based expansion methods
outlined above. When expansion terms are synsets, terms of a synset are put in OR.
Whenever plain query terms + expansion terms exceed the threshold imposed by
Google, we simply choose the first words of the list, a strategy that is certainly not
optimized. The results are shown in Table 2 ( β ≥ 0 8. ).

Table 2 Retrieved correct pages when using sense information for all disambiguated
words

Query short description

Plain
Query
words +Synonyms

+Hyperony
ms

+Gloss
synsets

+Gloss/
Topic words

Avg. correct pages
over first 10 5.125 5.291667 5.125 5.291667 6.291667

% variation with respect
to plain query words +3.25% +1.63% +3.25% +22.76%

The scope of the experiment is rather limited and preliminary, and there is room for
many improvements. For example, no additional mechanisms have been adopted to
parse the query, e.g. named entity recognition, nor we conceived a more refined
strategy to build a boolean query using sense information. Finally, more sophisticated
expansion strategies could be used, exploiting intersecting patterns among sense
graphs. Yet, Table 2 shows very interesting results: column 5 shows that the
gloss/topic expansion strategy achieves a 23% improvement over the plain query
words (column 1), and the improvement is consistent throughout the examples (in 19
over 24 queries). The experiment also shows, not surprisingly, that concepts occurring
in the same semantic domain (e.g. taxi and driver) are best suited for query expansion
than concepts related by taxonomic relations (e.g. taxi and vehicle).

4.4 Evaluation of a generic WSD task

In a final experiment, we evaluated the SSI algorithm on a standard WSD test set: the
“all-words” test set of Senseval-2. In this sense evaluation task, participants were
requested to disambiguate all the words in a generic text of 242 sentences, for a total
of 2,473 words. For example:

<text id="d00">
The
<head id="d00.s00.t01">art</head>
of
<head id="d00.s00.t03">change-ringing</head>
<head id="d00.s00.t04">is</head>
<head id="d00.s00.t05">peculiar</head>
to
the
<head id="d00.s00.t08">English</head>
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In the example, all the words annotated with a head tag must be disambiguated,
including words with limited semantic content (e.g. is).
Best systems are those achieving both high precision and recall, an evaluation policy
that perhaps is not best suited for many WSD applications (e.g. query expansion in
previous section). Despite the Senseval task does not depicts a realistic application
environment (though presumably this wasn’t an objective for the organizers), we felt
that an evaluation on a standard test set would be useful to obtain an unbiased
comparison with other WSD methods in literature. For a fair comparison, we ran the
experiment using the scoring software provided by the challenge organizers, available
on the Senseval-2 web site. The result is shown in Figure 5.

Figure 5 . Precision and recall of the SSI algorithm compared with the first and second
best systems in the Senseval-2 “all words” task.

The figure shows that SSI performs in between the first and second best systems in
the Senseval-2 context, out of 26 participant systems. However, SSI is an untrained
algorithm, while most Senseval-2 systems (including the first two) have been trained
on available semantically tagged corpora. Notice that SSI could be trained, for
example, through ad-hoc14 tuning of the rule weights mentioned in Section 2.3.
However, ad-hoc training would contradict the general-purpose nature of the SSI
methodology.

Conclusions
SSI is an open research area in our group, and several improvements are being

explored. The algorithm can be improved both through an enrichment of the structured
representation of word senses, and through a refinement and extension of the grammar
G. In the current version, grammar rules seek for patterns of conceptual relations
(graph edges), but more complex rewriting rules could be defined, involving constraint
specifications and type checking on concepts (graph nodes). Finally, machine-learning
algorithms could be used to learn recurrent intersection patterns among word senses
from semantically annotated corpora, as they are growingly made available from the
computational linguistics community.

                                                
14 “Ad-hoc” training implies learning from a semantically annotated corpus of word usage

examples for at least some of the 2,473 words in the data set.
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