
How to Exploit Ontologies in Trust Negotiation

? Travis Leithead1, Wolfgang Nejdl2, Daniel Olmedilla2, Kent E. Seamons1,
Marianne Winslett3, Ting Yu4, and Charles C. Zhang3,5

1 Department of Computer Science, Brigham Young University, USA
{tleithea,seamons }@cs.byu.edu

2 L3S Research Center and University of Hannover, Germany
{nejdl,olmedilla }@l3s.de

3 Dept. of Computer Science, University of Illinois at Urbana-Champaign, USA
{winslett,cczhang }@cs.uiuc.edu

4 Dept. of Computer Science, North Carolina State University, USA
yu@csc.ncsu.edu

5 Cisco Systems, Inc., USA
cczhang@cisco.com

Abstract. The World Wide Web makes it easy to share information and re-
sources, but offers few ways to limit the manner in which these resources are
shared. The specification and automated enforcement of security-related policies
offer promise as a way of providing controlled sharing, but few tools are avail-
able to assist in policy specification and management, especially in an open sys-
tem such as the Web, where resource providers and users are often strangers to
one another and exact and correct specification of policies will be crucial. In this
paper, we propose the use of ontologies to simplify the tasks of policy specifi-
cation and administration, and to avoid several information leakage problems in
run-time trust management in open systems.

1 Introduction

Open distributed environments like the World Wide Web offer easy sharing of informa-
tion, but offer few options for the protection of sensitive information and other sensitive
resources, such as Web Services. Proposed approaches to controlling access to Web re-
sources include XACML [3], SAML [4], WS-Trust [2] and Liberty-Alliance[1]. All of
these approaches to trust management rely on the use of vocabularies that are shared
among all the parties involved, and declarative policies that describe who is allowed
to do what. Some of these approaches also recognize that trust on the Web, and in
any other system where resources are shared across organizational boundaries, must be
bilateral.

Specifically, the Semantic Web provides an environment where parties may make
connections and interact without being previously known to each other. In many cases,
before any meaningful interaction starts, a certain level of trust must be established from
scratch. Generally, trust is established through exchange of information between the two
parties. Since neither party is known to the other, this trust establishment process should

? In alphabetical order



be bi-directional: both parties may have sensitive information that they are reluctant to
disclose until the other party has proved to be trustworthy at a certain level. As there
are more service providers emerging on the Web every day, and people are performing
more sensitive transactions (for example, financial and health services) via the Internet,
this need for building mutual trust will become more common.

To make controlled sharing of resources easy in such an environment, parties will
need software that automates the process of iteratively establishing bilateral trust based
on the parties’ access control policies, i.e.,trust negotiationsoftware. Trust negotiation
differs from traditional identity-based access control and information release systems
mainly in the following aspects:

1. Trust between two strangers is established based on parties’ properties, which are
proven through disclosure of digital credentials.

2. Every party can define access control and release policies (policies, for short) to
control outsiders’ access to their sensitive resources. These resources can include
services accessible over the Internet, documents and other data, roles in role-based
access control systems, credentials, policies, and capabilities in capability-based
systems. The policies describe what properties a party must demonstrate (e.g., own-
ership of a driver’s license issued by the State of Illinois) in order to gain access to
a resource.

3. Two parties establish trust directly without involving trusted third parties, other than
credential issuers. Since both parties have policies, trust negotiation is appropriate
for deployment in a peer-to-peer architecture such as the Semantic Web, where a
client and server are treated equally. Instead of a one-shot authorization and authen-
tication, trust is established incrementally through a sequence of bilateral credential
disclosures.

A trust negotiation process is triggered when one party requests to access a re-
source owned by another party. The goal of a trust negotiation is to find a sequence of
credentials(C1, . . . , Ck, R), whereR is the resource to which access was originally
requested, such that when credentialCi is disclosed, its policy has been satisfied by
credentials disclosed earlier in the sequence or to determine that no such credential
disclosure sequence exists.

The use of declarative policies and the automation of the process of satisfying them
in the context of such atrust negotiation processseem to be the most promising ap-
proach to providing controlled access to resources on the Web. However, this approach
opens up new and pressing questions:

1. What confidence can we have that our policies are correct? Because the policies will
be enforced automatically, errors in their specification or implementation will allow
outsiders to gain inappropriate access to our resources, possibly inflicting huge and
costly damages. Unfortunately, real-world policies [9] tend to be as complex as any
piece of software when written down in detail; getting a policy right is going to be
as hard as getting a piece of software correct, and maintaining a large number of
them is difficult as well.

2. How do we avoid information leakage problems in automated trust negotiation?
Using very specific policies we may already leak information about what we want



to protect. On the other hand malicious opponents may try to get information which
is not relevant to the resource we want to access.

In this paper, we will address these questions by exploring, in section 2, the use
of ontologies for providing abstraction and structure for policy specification, and, in
section 3, for providing additional knowledge which can be used during the trust ne-
gotiation process to avoid giving out to much information during the trust negotiation
process.

2 Using Ontologies to Ease Policy Specification and Management

Using structure and abstraction helps for maintaining complex software and it also helps
for maintaining complex sets of policies. In the context of the Semantic Web, ontologies
provide formal specification of concepts and their interrelationships, and play an essen-
tial role in complex web service environments [6], semantics-based search engines [11]
and digital libraries [19].

One important purpose of these formal specifications is sharing of knowledge be-
tween independent entities. In the context of trust negotiation, we want to share in-
formation about credentials and their attributes, needed for establishing trust between
negotiating parties. Figure 1 shows a simple example ontology for credential IDs.

Each credential class can contain its own attributes; e.g., a Cisco Employee ID
credential has three attributes:name, rank anddepartment . Trust Negotiation is
attributed-based and builds on the assumption that each of these attributes can be pro-
tected and disclosed separately. While in some approaches (e.g. with X.509 certificates)
credentials and their attributes are signed together as a whole by the credential issuer,
in this paper we will rely on cryptographic techniques such as [17] which allow us to
disclose credentials with different granularities, hiding attributes not relevant to a given
policy.

IBM_Employee_Id

name String

rank String

Enterprise_Issued_Id

isa

Cisco_Employee_Id

department String

name String

rank String

isa

Government_Issued_Id

State_Id

age Integer

name String

isa

DL

age Integer

name String

isa

Id

isa isa

Fig. 1. Simple ID Credential Ontology

In trust negotiation, a party’s security policies consist of constraints that the other
party has to satisfy; e.g. it has to produce a proof that it owns a certain credential, and



that one of the credential attributes has to be within a certain range. Assuming a casino
requires any customer’s age to be over 21 and requires a state Id to testify that, the
policy for itsadmits service can be represented as6:

Casino:
allowedInCasino(Requester)←
type(CredentialIdentifier, “StateId”) @ Issuer @ Requester,
issuedFor(CredentialIdentifier, Requester) @ Issuer @ Requester,
age(CredentialIdentifier, Age) @ Issuer @ Requester,
Age> 21.

In this example, the first two statements in the body of the rule require the requester
to prove that he owns a credential of typeState Id issued byIssuer . If the re-
quester proves that he has it (notice that information about attributes has not been dis-
closed so far, except for theissuedFor attribute), the casino asks for the value of the
attributeage in the presented credential. Then it verifies whether the requester’s age is
over 21 and, if successful, admits theRequester into the casino.

2.1 Sharing Policies for Common Attributes

Often, credentials share common attributes, and these attributes might share the same
policies. Figure 1 shows an example of a simple credential hierarchy, where the con-
crete credential classes used are depicted in the leaves of the hierarchy. The upper part of
the hierarchy represent the different abstract classes: the root represents any ID, which
is partitioned into different subclasses according to the issuer of the credential, distin-
guished betweenGovernment Issued andEnterprise Issued IDs. The leaf
nodes represent concrete classes which contain the attributes, i.e.name, age , rank
anddepartment .

This somewhat degenerated hierarchy however does not yet allow for policy re-use.
For this we have to exploit attribute inheritance. In our example, all leaf nodes share
theNameattribute, which therefore can be moved up to the root classId . We are now
able to specify common policies for theNameattribute at theId level. Similarly, we
will move Rank up so that it becomes an attribute ofEnterprise Issued Id , and
Age an attribute ofGovernment Issued Id . A subclass automatically inherits its
superclass’s attributes, which might be local or inherited from the superclass’s super-
class. This leads to the refined ontology as described in figure 2, where each leaf node
has the same set of attributes as in figure 1, but inherited from higher levels. This makes
it possible to specify shared policies for these shared attributes, similar to method in-
heritance in object oriented programming languages.

2.2 Composing and Overriding Policies

Now, given such credential ontologies, we can specify security policies at different
levels. Being able to inherit and compose these security policies simplifies policy main-
tenance, though of course we have to distinguish between the case where we compose

6 Our examples in this paper are specified using a simplified version of the PeerTrust [16, 14]
language



IBM_Employee_Id

Enterprise_Issued_Id

rank String

isa

Cisco_Employee_Id

department String

isa

Government_Issued_Id

age Integer

State_Id

isa

DL

isa

Id

name String

isa isa

Fig. 2. Refined Ontology

inherited and local policies and the case where the policy specified for an attribute of a
specific class overrides the policy inherited from the superclass. In this paper we will
describemandatory policiesanddefault polices.

Illinois_DL

Civilian_DL

isa

Hawaii_DL

isa

Texas_DL

isa

...

isa

Driver_License

isa

Military_DL

isa

Fig. 3. Driver License Ontology

Mandatory Policies Mandatory policies are used when we want to mandate that poli-
cies of a higher level are always enforced at lower levels. Assume the ontology depicted
in 3 and that we want to hire an experienced driver to accomplish a certain highly clas-
sified and challenging task. Before we show the details of the task to an interested
candidate, we want the candidate to present a driver’s license, which can be proven to
satisfy the following mandatory policies as specified at the different levels:

At the Driver License level, we enforce generic requirements for driver li-
censes; e.g., a driver license has to be signed by a federally authorized certificate au-
thority and must not have expired.

At the Civilian DL level, we require that the driver license is non-commercial,
assuming commercial drivers may have a conflict of interests in the intended task.

At the Illinois DL level, we require that the category of the driver license is
notF , assumingF licenses are for farm vehicles only. At theMilitary DL level, we



can specify policies such as “the driver license must be for land passenger vehicles” as
opposed to fighter planes or submarines.

So for an Illinois driver, the overall policy is: must hold a valid driver license, as
qualified by the policy at the DriverLicense level; must hold a non-commercial driver
license, as required by the CivilianDL policy; and the driver license must not be for
farm vehicles only. The advantage of using mandatory policies here is twofold: firstly,
shared policies such as the generic driver license requirements are only specified once
at a higher level, which means a more compact set of policies; secondly, it gives a
cleaner and more intuitive logical structure to policies, which makes the policies easier
to specify and manage.

Default Policies In this example, we assume that all driver licenses show driving ex-
perience (expressed in years of driving). Now suppose that a specific task requires the
following policy: in most cases, 4 years’ driving experience is required; however, if the
driver comes from Texas, he/she needs only 3 years’ experience (assuming it is harder
to get a driver’s license in Texas).

To simplify the specification of this policy, we can use the default policy construct.
A parent’s default policy is inherited and enforced by a child if and only if the child
does not have a corresponding (overriding) policy. In our example, we can specify at
theDriver License level that the driving age has to be at least 4 years; then at the
Texas DL level, specify an overriding policy that the driving age has to be at least 3
years.

It’s of interest to note that the same result can be achieved here without using de-
fault policies: we can move the shared 4-year mandatory policy down toeveryconcrete
driver license class exceptTexas DL, where we require 3 years. However, the power
of policy sharing is lost.

3 Using Ontologies to Protect Sensitive Information

In the previous section we have used ontologies to structure credentials and policies,
making policy maintenance easier. This section concentrates on how to use ontologies
to offer additional protection for sensitive information.

3.1 Avoiding Information Leaking Requests

We assume the ontology presented in figure 2 and an equipment provider which has the
following external policy for its big customer Cisco:

Cisco Purchase Records:
permits(Requester) $ Requester←
type(CredentialIdentifier, “CiscoEmployeeId”) @ Issuer @ Requester,
issuedFor(CredentialIdentifier, Requester) @ Issuer @ Requester,
authorizedEmployee(CredentialIdentifier) @ Issuer @ Requester.

authorizedEmployee(CredentialIdentifier)←
rank(CredentialIdentifier, Rank),



Rank> “Manager”.
authorizedEmployee(CredentialIdentifier)←
department(CredentialIdentifier, “Sales”).

This policy gives access to Cisco employees which are either working at the sales
department or are at least a manager. If the request for a valid Cisco employee ID is
already considered leakage of confidential business information, we can obscure the
policy by abstracting it to a higher level in the type hierarchy:

Cisco Purchase Records:
permits(Requester) $ Requester←
type(CredentialIdentifier, “EnterpriseIssuedId”) @ Issuer @ Requester,
issuedFor(CredentialIdentifier, Requester) @ Issuer @ Requester,
type(CredentialIdentifier, “CiscoEmployeeId”),
authorizedEmployee(CredentialIdentifier).

In general, we can summarize this abstraction process as follows: elevate the type
of a required sensitive credential to one of its ancestors, which is more generic and
discloses less information when requested from the other party; the policy body stays
unchanged except that an additional type check is necessary to offset the abstraction.

3.2 Avoiding Answering Unnecessary Requests

We have focused on protecting sensitive information on behalf of the requester of a re-
source. Similarly, the party providing resources also wants to disclose only information
that is relevant to the task at hand. Ontologies describing standard types of negotiations
help accomplish this goal. These ontologies contain properties that will describe typical
attributes required in the specified negotiation, without specifying any additional con-
straints. A simple ontology of this kind is depicted in figure 4. This kind of ontology
leads to two additional uses of ontologies:need-to-know disclosureandpredisposed
negotiation.

Need-to-Know Disclosure.A negotiator may use properties collected from such on-
tologies to screen received policies and detect unusual credential solicitations, a tech-
nique we call need-to-know disclosure. Need-to-know disclosure occurs when the ser-
vice provider possesses the credentials and properties necessary to solicit a requester’s
sensitive property, but the property in question is not relevant to the current negotiation.
For example, a trust negotiation agent is entering into a home loan transaction with a
legitimate bank. The bank releases a policy requiring a credit card. The requester’s trust
agent ascertains that the credit card request is not relevant to the home loan negotia-
tion because that property is not found within the ontology for the current negotiation.
Though the bank server - acting as a legitimate financial institution - could request the
credit card, the home loan transaction as defined by the given ontology, doesn’t typi-
cally require a credit card. Thus, information that the bank server did not need-to-know
is not disclosed. Need-to-know disclosure based on knowledge assimilated with the aid
of ontologies facilitates a safeguard to the resource requester against malicious property
phishing attacks or poorly formed policies without revealing the presence or absence of
the requested property.



Financial_Transaction

Id Integer

Name String

Investment

Custodial_Account Integer

isa

Loan

Credit_Rating Float

Employment_History String*

isa

Credit

Credit_Card_Number Integer

Expiration_Date String

isa

Small_ Business

Business_License String

isa

Home

Utilities_Payment_History String

isa

Fig. 4.Negotiation-Type Ontology with Associated Properties for a Typical Financial Transaction

Predisposed Disclosure Strategies.Sometimes a party does not want to wait for specific
detailed requests for certificates, but provides information about a set of predisposed
credential or policies in one step. This is a modification of the eager strategy described
in [21]. Methods similar to those described in need-to-know disclosure provide the basic
framework - a set of properties related to a negotiation type which are collected from
an ontology (we leave the details of the discovery and collection of these ontologies for
future work). Predisposed disclosure involves selecting the credentials or policies that
best fit the anticipated needs of the service provider and pushing them along with the
resource request. Predisposed disclosure expedites rounds of negotiation in an attempt
to satisfy the service provider’s disclosure policy without receiving it. This disclosure
technique compliments the eager strategy by narrowing the scope of the credentials
disclosed to a more relevant set (preserving the sensitivity of credentials that do not
pertain to the negotiation) and ensuring the privacy of sensitive policies, since the eager
strategy requires no policy disclosures.

4 Related Work

Recent work in the context of the Semantic Web has focused on how to describe security
requirements. KAoS and Rei policy languages [15, 20] investigate the use of ontologies
for modeling speech acts, objects, and access types necessary for specifying security
policies on the Semantic Web. Hierarchies of annotations to describe capabilities and
requirements of providers and requesting agents in the context of Web Services are in-
troduced in [10]. Those annotations are used during the matchamaking process to decide
if requester and provider share similar security characteristics and if they are compati-
ble. Ontologies have also been discussed in the context of digital libraries for concepts
and credentials [5]. An approach called “most specific authorization” is used for con-
flict resolution. It states that policies specified on specific elements prevail over policies
specified on more general ones. In this paper we explore complementary uses of ontolo-
gies for trust negotiation, through which we target iterative trust establishment between
strangers and the dynamic exchange of credentials during an iterative trust negotiation



process that can be declaratively expressed and implemented. Work done in [8] defines
abstractionsof credentials and services. Those abstractions allow a service provider to
request for example a credit card without specifically asking for each kind of credit card
that it accepts. We add to this work in the context of policy specification the concept of
mandatoryanddefaultpolicies.

Ontology-based policy composition and conflict resolving have also been been dis-
cussed in previous work. Policy inheritance is done byimplication in [12], but it does
not provide any fine-grained overriding mechanism based on class levels.Default prop-
ertiesare discussed in [13], short of generalizing the idea to policies. The approaches
closest to our default and mandatory policy constructs are theweakandstrongautho-
rizations in [7], where a strong rules always overrides a weak rule, and SPL in [18],
which forces the security administrator to combine policies into a structure that pre-
cludes conflicts. Compared to these approaches, we find ours particularly simple and
intuitive, while its expressiveness well serves general trust negotiation needs.

The concepts forming the basis for need-to-know credential disclosures within au-
tomated trust negotiation are suggested in [21], where two dichotomous negotiation
strategies are meticulously analyzed: eager and parsimonious. The strength of the ea-
ger strategy is its simplicity, yet it discloses all non-sensitive credentials, which raises
a privacy concern. A need for a smarter, need-to-know, credential disclosure strategy
is recommended in which credentials relevant only to the present negotiation are dis-
closed. The parsimonious strategy focuses and guides a negotiation, but does so only
according to the received credential request policies. Our work relies upon ontologies
to provide additional semantics that supplement these negotiation strategies and enable
genuine need-to-know disclosure.

5 Conclusions and Future Research Directions

Ontologies can provide important supplemental information to trust negotiation agents
both at compile time (to simplify policy management and composition) and at run-time
(to avoid certain forms of information leakage for all peers participating in a negotia-
tion). This paper has explored some important benefits of using ontologies.

For compile time usage, ontologies with their possibility of sharing policies for
common attributes provide an important way for structuring available policies. In this
context we discussed two useful strategies to compose and override these policies,
building upon the notions of mandatory and default policies. Further investigations
into these mechanisms should draw upon previous work on inheritance reasoning and
method composition in object oriented programming languages, and will improve the
maintenance of large sets of policies for real-world applications.

For run-time usage, ontologies provide valuable additional information, which can
be used to avoid information leaking requests and enable negotiators to detect creden-
tial requests irrelevant for the service currently negotiated. Need-to-know disclosure,
and predisposed negotiation are two ways to harness ontologies in a useful manner at
runtime to provide such privacy benefits.

Need-to-know disclosures make assumptions that require further research: the ex-
istence of standard negotiation typing ontologies; implicit trust of the content of such



ontologies and ontologies in general; determination of credential relevancy and effi-
ciency models for trust negotiation which include the overhead of using ontologies. For
predisposed negotiation, further work is required to determine how local credential sets
are condensed to reduce the scope of a negotiation and to select appropriate credentials
to push. Analysis of the effects of predisposed negotiation should focus on the effects
of creating a localized set of negotiation parameters (policies and credentials) specific
to the scope of the current negotiation, as well as the overall effects of ontology infor-
mation inference.

Acknowledgments

The research of Nejdl and Olmedilla was partially supported by the projects ELENA
(http://www.elena-project.org, IST-2001-37264) and REWERSE (http://rewerse.net,
IST-506779). The research of Leithead, Seamons and Winslett was supported by
DARPA (N66001-01-1-8908), the National Science Foundation (CCR-0325951,IIS-
0331707) and The Regents of the University of California. The research of Yu was
partially supported by Faculty Research and Professional Development Fund, NCSU.

References

1. Liberty Alliance Project. http://www.projectliberty.org/about/whitepapers.php.
2. Web Services Trust Language (WS-Trust) Specification. http://www-

106.ibm.com/developerworks/library/specification/ws-trust/.
3. Xacml 1.0 specification http://xml.coverpages.org/ni2003-02-11-a.html.
4. Assertions and protocol for the oasis security assertion markup language (saml); committee

specification 01, 2002.
5. N. R. Adam, V. Atluri, E. Bertino, and E. Ferrari. A content-based authorization model for

digital libraries. IEEE Transactions on Knowledge and Data Engineering, 14(2):296–315,
2002.

6. A. Ankolekar. Daml-s: Semantic markup for web services.
7. E. Bertino, S. Jojodia, and P. Samarati. Supporting multiple access control policies in

database systems. InIEEE Symposium on Security and Privacy, pages 94–109, Oakland,
CA, 1996. IEEE Computer Society Press.

8. P. Bonatti and P. Samarati. Regulating Service Access and Information Release on the Web.
In Conference on Computer and Communications Security, Athens, Nov. 2000.

9. Cassandra policy for national ehr in england.
http://www.cl.cam.ac.uk/users/mywyb2/publications/ehrpolicy.pdf.

10. G. Denker, L. Kagal, T. Finin, M. Paolucci, and K. Sycara. Security for daml web services:
Annotation and matchmaking. InProceedings of the 2nd International Semantic Web Con-
ference, Sanibel Island, Florida, USA, Oct. 2003.

11. M. Erdmann and R. Studer. How to structure and access xml documents with ontologies.
Data and Knowledge Engineering, 36(3), 2001.

12. W. Emayr, F. Kastner, G. Pernul, S. Preishuber, and A. Tjoa. Authorization and access
control in iro-db.

13. R. Fikes, D. McGuinness, J. Rice, G. Frank, Y. Sun, and Z. Qing. Distributed repositories of
highly expressive reusable knowledge, 1999.



14. R. Gavriloaie, W. Nejdl, D. Olmedilla, K. Seamons, and M. Winslett. No registration needed:
How to use declarative policies and negotiation to access sensitive resources on the semantic
web. In1st First European Semantic Web Symposium, Heraklion, Greece, May 2004.

15. L. Kagal, T. Finin, and A. Joshi. A policy based approach to security for the semantic web.
In 2nd International Semantic Web Conference, Sanibel Island, Florida, USA, Oct. 2003.

16. W. Nejdl, D. Olmedilla, and M. Winslett. PeerTrust: automated trust negotiation for peers
on the semantic web. InWorkshop on Secure Data Management in a Connected World
(SDM’04), Toronto, Aug. 2004.

17. P. Persiano and I. Visconti. User privacy issues regarding certificates and the tls protocol. In
Conference on Computer and Communications Security, Athens, Nov. 2000.

18. C. Ribeiro and P. Guedes. Spl: An access control language for security policies with complex
constraints, 1999.

19. S. B. Shum, E. Motta, and J. Domingue. Scholonto: an ontology-based digital library server
for research documents and discourse.Int. J. on Digital Libraries, 3(3):237–248, 2000.

20. G. Tonti, J. M. Bradshaw, R. Jeffers, R. Montanari, N. Suri, and A. Uszok. Semantic web
languages for policy representation and reasoning: A comparison of KAoS, Rei and Ponder.
In 2nd International Semantic Web Conference, Sanibel Island, Florida, USA, Oct. 2003.

21. W. H. Winsborough, K. E. Seamons, and V. E. Jones. Automated trust negotiation. DARPA
Information Survivability Conference and Exposition, IEEE Press, Jan 2000.


