

REBUILDING THE SEMANTIC WEB SERVICE
ARCHITECTURE

Xuan Shi1 and Vasudevan Jagannathan2
1Department of Geology and Geography, West Virginia University; 2Department of Computer
Science and Electrical Engineering, West Virginia University

Abstract: Semantic Web services can be defined as “the augmentation of Web Service
descriptions through Semantic Web annotations, to facilitate the higher
automation of service discovery, composition, invocation, and monitoring in
an open, unregulated, and often chaotic environment” (Payne, et al., 2004).
Web service infrastructure (WSDL, UDDI and SOAP) has been criticized in
almost all papers on the topic of “Semantic Web Services”, typically as
“existing technologies for Web services only provide descriptions at the
syntactic level, making it difficult for requesters and providers to interpret or
represent non-trivial statements such as the meaning of inputs and outputs or
applicable constraints” (Cabral, et al., 2004). Adding rich semantics into Web
Services are expected to “support greater automation of service selection and
invocation, automated translation of message content between heterogeneous
interoperating services, automated or semi-automated approaches to service
composition, and more comprehensive approaches to service monitoring and
recovery from failure” (Martin, D., et al., 2004). Current approaches for
Semantic Web Service infrastructures are developed by a variety of research
groups, among those efforts, OWL-S (Martin, D., et al., 2004), WSMO
(Roman, et al., 2004), etc. were the most recognized and outstanding
achievement to date in this field. However, how to derive service semantics
automatically has been problematic with the current syntactically oriented
Web services technologies.

This paper proposes a fundamentally different approach to rebuild the
semantic Web Services architecture. The semantic web service generated by
this proposed new approach is:

 Xuan Shi1 and Vasudevan Jagannathan2

• Self-describing.

• Document based rather than object based.

• Meaning or semantics oriented rather than name or syntax oriented.

• Service domain and functional purpose independent.

• Human semantics and behavior simulated.

• Standardized Web service with ONE interface with proven
efficiency.

• Obviating the need for WSDL for semantic description.

• With simplified implementation for the discovery, matchmaking,
composition and invocation of Web service within its current
infrastructure (UDDI, WSDL, SOAP).

This proposal is being demonstrated by an initial pilot project. The goal is to
support the dynamic and intelligent discovery, matchmaking, composition and
invocation of semantic Web services.

Key words: Semantic request and response, self-describing, document-based, Web
services, WSDL, service domain, ontology, standardization

1. THE PROBLEM OF SEMANTIC SERVICE
DESCRIPTION

According to W3C (2004), WSDL defines service description about the message
formats, data types, transport protocols, and transport serialization formats as a
machine-processable specification of the Web service's interface. The semantics of a
Web service is the shared expectation about the behavior of the service, and, is the
“contract” between the service requester and the service provider regarding the
purpose and consequences of the interaction. “While the service description
represents a contract governing the mechanics of interacting with a particular
service, the semantics represents a contract governing the meaning and purpose of
that interaction”. By design, “a service description is a machine-processable
description of a service” that contains a machine-processable description of the
messages that are exchanged by the service” and “may include a description of the
service's semantics”, while it has been expected that “a service semantics is about

REBUILDING THE SEMANTIC WEB SERVICE ARCHITECTURE

the service tasks that constitute the service” and “should be identified in a service
description” and “may be described in a formal, machine-processable language”.

Semantics of web services are tied to names given to functions and arguments in

WSDL. They are not derived from any standardized ontology. This fact is a source
for confusion, as meaning of the services has to be guessed. Some examples of
problems drawn from the domain of geospatial applications are as follows:

1. Service semantics can be ambiguous when data is passed using XML/GML

document, one of the common representation, for geospatial features. This
is because a GML document can represent many different things from
points to polylines to polygons. And, the representations in GML can have
other complicating factors. Polygons for instance, can be geo-referenced
(tied to a global referencing scheme). WSDL function names typically used
in current day practice do not account for such interpretations.

2. Operational semantics are hard to specify using WSDL as the numbers of
graphical operations that can be performed are innumerable. A complete
listing of such operations will make WSDL very specific with limited use
or extremely large or both.

3. Composition of web services is difficult, as the operational semantics are
ambiguous.

A typical problem in the communication between Web service requester and

provider can be described as follows: if you give me the object 1, 2, and 3 in order,
I will invoke Function C and return you the new object. Interpretation of such a
contract is tied to the meaning of “object 1, 2 and 3 and Function C”. To understand
the meaning, the service requestors must decode and understand how the function
treats the arguments by examining documentation and information not represented
in the WSDL. This essentially means one cannot support automated discovery,
composition and invocation.

One approach to the semantics problem relies on developing a completely

different infrastructure that captures knowledge about the semantics of the service.
OWL-S approach is an example of such an approach (Martin et. al., 2004). In this
approach, ontologies are used to capture the computing semantics using object/class
hierarchy. For instance, one can define a class of Buy with subclasses BuyTicket
containing the subclasses BuyMovieTicket and BuyAirlineTicket (McIlraith, et. al.,
2001).

This paper proposes an alternative approach to build semantic Web Services

based on the following:

 Xuan Shi1 and Vasudevan Jagannathan2

1) Web services interfaces are simplified to support XML-document

exchange: getService(String request): String response.
2) Web service interface also needs to provide a mechanism to learn

about the service offering. Service offering description is an
ontologically-derived XML-document.

3) Web service invocation happens via the exchange of ontologically-
derived documents of service request and response.

This approach is further elaborated below.

2. WEB SERVICE SIMPLIFICATION

Simplified Web services are envisioned as self-describing services.
Communication between service requester and provider will actually be document
exchange rather than functional invocation. Such process can be described as: the
service requester sends the service provider one document with explicit and
detailed service request and service provider will return another document back to
the service requester with the generated result corresponding to the service
request.

For service requester to understand what the service can provide, service

provider will first offer a template XML document that describes explicitly both the
input variables to invoke the services and the output results. Service requester then
get the XML document on service description by invoking the function,
getServiceDescription(): String ServiceDescription, to retrieve the XML document.
[Note: the getServiceDescription() method is strictly not necessary. This
functionality can be subsumed by the method: getService() or as suggested below,
the description can be made available directly]

In the implementation described here, an XML document titled

ServiceDescription.xml was co-located with the web services server to improve
performance. The document-based invocation of web services was shown to be
useful for Web service discovery and matchmaking as illustrated by Table 1 and 2.
By the time of writing this paper, 9 Web services were developed with exactly the
same two WSDL interfaces except the location of the services. The XML document
ServiceDescription.xml for each Web service is located at the same Web server
directory with the service. To get the service description document for each Web
service by invoking the function getServiceDescription():String ServiceDescription,
it takes 761-771 milliseconds. By directly reading the XML document from its URL,
however, it takes only 0-10 milliseconds, i.e. about 1% of the time used for
functional invocation.

REBUILDING THE SEMANTIC WEB SERVICE ARCHITECTURE

Table 1. Code segments for retrieving the content of Service Description (ASP.NET in VB)

Code segment for the dynamic

invocation of Web service
Code segment for reading XML file by

URL at client side
Dim strURL As String
Dim strNameSpace As String
Dim classname As String
Dim methodname As String =

"getServiceDescription"
Dim strInput() As String
……

Dim obj As Object =

InvokeWebservice(strURL,
strNameSpace, classname, methodname,
strInput)

Dim strServiceDescription as String =
CType(obj, String)

Dim strURL As String
Dim xdoc As New XmlDocument()
Dim strServiceDescription As String
……

xdoc.Load(strURL)

strServiceDescription = xdoc.OuterXml

To test a matchmaking and classification on all 9 Web services, time used

through functional invocation is about 14310-15032 milliseconds while time used by
reading the same 9 XML files directly from the URLs is about 60-90 milliseconds,
about 0.5% of the former one. The pilot project developed for this demonstration
can be accessed at: http://157.182.136.76/AItest/ws/AIDemo1/WebForm3.aspx ,
which is shown by Figure 1.

Table 2. Time used to retrieve the service description by different methods

Item Comparison Time

(milliseconds)
%

A Time used to invoke one function 761-771
B Time used to read one XML document by URL 0-10

0~1.3
(B/A)

C Time used to invoke 9 functions 14310-15032
D Time used to read 9 XML documents by URLs 60-90

0.4~0.6
(D/C)

Thus the proposed approach for semantic Web services is composed of two
elements:

• One standardized WSDL interface getService(String request): String
response

• An XML template, ServiceDescription.xml, that describes the details of the
provided Web service

http://157.182.136.76/AItest/ws/AIDemo1/WebForm3.aspx

 Xuan Shi1 and Vasudevan Jagannathan2

Figure 1. Speed comparison to retrieve the service description by different methods

Most importantly, this suggested approach will enable service provider to
transform all composite Web services into atomic ones to remove one of the
syntactic obstacles to build semantic Web services (Shi, 2004).

3. MESSAGE-ORIENTED SEMANTIC WEB
SERVICES

Clearly with this approach, the web services interface is simply a conduit for
exchanging XML-documents. The semantics, hence, has to be in the document
exchanged. Ontology tools, such as Protégé and OWL, etc. can be used to specify
such semantics.

The semantic service request and response relies on using ontology-derived

documents and agent-based web services. The agent, here, uses its knowledge base

REBUILDING THE SEMANTIC WEB SERVICE ARCHITECTURE

to determine if it knows how to answer the request, or needs to invoke a series of
other agent-based services to provide the answer. The solution framework can be
recursive and relies on distributed ontologies and knowledge that is represented in
each agent. As a result, no supplementary and separate ontology knowledge base
and mechanism are needed to process the request and response to interpret the
meaning of the exchanged message.

Interoperability issues have been discussed in GIS (Geographic Information

System) community for decades. One big obstacle is who has the power to define
the semantics and how to define service domains and functional categories, such as
the service domain named as “Travel” or “Transportation”. In another example,
“city” can have different meaning defined by different people and organizations. In
the spatial domain, a city can be represented as a point feature in a map drawn at
country or state level. The same city shows us as a polygon, in a large-scale map at
the city level.

Figure 2. Hierarchy of service domain description

This paper only provides a simple simulation and classification on the service
domains and will focus on the geospatial service as described in Figure 2. To
accomplish such a huge task, computer scientists have to cooperate with specialists
in all other domains who can contribute to build the domain specific service
ontologies in order to integrate each section into a whole system.

 Xuan Shi1 and Vasudevan Jagannathan2

Figure 3 is an example of the template ServiceDescription.xml file used in a

geospatial data conversion web service based on the hierarchy described in Figure 2.
Each template has 5 building blocks:

1. Service domain and function category description: defines both the service

domain/subdomain and function category/subcategory within the tags
<Service> and </Service>.

2. Format of the service request input XML document: defines the format and
style of the input XML document within the tags
<ServiceRequestXMLDocFormat> and
</ServiceRequestXMLDocFormat>. It is recommended that service
request be sent as a string data type.

3. Format of the service response output XML document: defines the format
and style of the output XML document within the tags
<ServiceResponseXMLDocFormat> and
</ServiceResponseXMLDocFormat>. That is to say, service response
returned to the service requester can be either a string of the service
response or an URL refers to the XML document of the service response
can be accepted. However, it is recommended that service response be sent
back as a string data type to keep consistency in the development and
communication.

4. Service request input requirements: defines the template for service
request. The service request will consist of 2 elements to formulate a XML
document: the XML declaration header, i.e. <?xml version="1.0"
encoding="utf-8"> , and the elements within the tags <ServiceRequest>
and </ServiceRequest> as described in the <RequestTemplate> section of
ServiceDescription.xml file.

5. Service response output prototype: defines the template for service
response. The service response will consist of 2 elements to formulate a
XML document: the XML declaration header, i.e. <?xml version="1.0"
encoding="utf-8"> , and the elements within the tags <ServiceResponse>
and </ServiceResponse> as described in the <ResponseTemplate> section
of ServiceDescription.xml file. The output result can be either a returned
outcome of functional invocation or an error message.

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<WebService>
 <Service>
 <Domain>geospatial</Domain>
 <Category>functional service</Category>
 <Provider>minos</Provider>

REBUILDING THE SEMANTIC WEB SERVICE ARCHITECTURE

 <Name>DataConversion</Name>
 <Description>
 This service provides function to convert geospatial data from one format to another.
 </Description>
 <Function>
 <Name>LL2UTM</Name>
 <Category>Data Conversion</Category>
 <Description>
 This function will convert longitude/latitude pair into UTM meters.
 </Description>
 <namespace>LL2UTM.DataConversion.minos.geo.wvu.edu</namespace>
 </Function>
 </Service>
 <ServiceRequestXMLDocFormat>
 <description>Required elements in service request</description>
 <Elements>
 <element>XML declaration</element>
 <element>ServiceRequest in RequestTemplate</element>
 </Elements>
 <ServiceRequestXMLDocType>XML document string</ServiceRequestXMLDocType>
 </ServiceRequestXMLDocFormat>
 <ServiceResponseXMLDocFormat>
 <description>Returned elements in service response</description>
 <Elements>
 <element>XML declaration</element>
 <element>ServiceResponse in ResponseTemplate</element>
 </Elements>
 <ServiceResponseXMLDocType>XML document string</ServiceResponseXMLDocType>
 </ServiceResponseXMLDocFormat>
 <RequestTemplate>
 <ServiceRequest>
 <Service Name="DataConversion">
 <Function Name="LL2UTM">
 <InputVariables>
 <FeatureType>Point</FeatureType>
 <SourceData>
 <SRS>EPSG:4326</SRS>
 <coords multiElements = "false">
 <longitude>longitude</longitude>
 <latitude>latitude</latitude>
 </coords>
 </SourceData>

 Xuan Shi1 and Vasudevan Jagannathan2

 <TargetData>
 <SRS>EPSG:26917</SRS>
 </TargetData>
 </InputVariables>
 </Function>
 </Service>
 </ServiceRequest>
 </RequestTemplate>
 <ResponseTemplate>
 <ServiceResponse>
 <Service Name="DataConversion">
 <Function Name="LL2UTM">
 <InputVariables>
 <FeatureType>Point</FeatureType>
 <SourceData>
 <SRS>EPSG:4326</SRS>
 <coords multiElements = "false">
 <longitude>longitude</longitude>
 <latitude>latitude</latitude>
 </coords>
 </SourceData>
 <TargetData>
 <SRS>EPSG:26917</SRS>
 </TargetData>
 </InputVariables>
 <OutputResult>
 <UTMCoords>
 <SRS>EPSG:26917</SRS>
 <X>UTM X</X>
 <Y>UTM Y</Y>
 </UTMCoords>
 <OutputErrorMessage>error message</OutputErrorMessage>
 </OutputResult>
 </Function>
 </Service>
 </ServiceResponse>
 </ResponseTemplate>
</WebService>

Figure 3. Template ServiceDescription.xml file for a geospatial data conversion web service

Ideally, each serviced can be identified within one independent service domain or
more specific subdomain with multiple functions. Each service request template can

REBUILDING THE SEMANTIC WEB SERVICE ARCHITECTURE

then contain multiple requests identified by their unique namespace.
Correspondingly the service response template can have multiple responses. In this
case, to send a request to the service provider of geospatial data conversion web
service, the service request is shown in Figure 4:

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<ServiceRequest>
 <Service Name="DataConversion">
 <Function Name="LL2UTM">
 <InputVariables>
 <FeatureType>Point</FeatureType>
 <SourceData>
 <SRS>EPSG:4326</SRS>
 <coords multiElements = "false">
 <longitude>longitude</longitude>
 <latitude>latitude</latitude>
 </coords>
 </SourceData>
 <TargetData>
 <SRS>EPSG:26917</SRS>
 </TargetData>
 </InputVariables>
 </Function>
 </Service>
</ServiceRequest>

Figure 4. Service request to invoke the geospatial data conversion web service

Once the service requester send this request as a string data type to the service
provider, the later will then send back an XML document as the response with the
prototype described in Figure 5:

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<ServiceResponse>
 <Service Name="DataConversion">
 <Function Name="LL2UTM">
 <InputVariables>
 <FeatureType>Point</FeatureType>
 <SourceData>
 <SRS>EPSG:4326</SRS>
 <coords multiElements = "false">
 <longitude>longitude</longitude>
 <latitude>latitude</latitude>

 Xuan Shi1 and Vasudevan Jagannathan2

 </coords>
 </SourceData>
 <TargetData>
 <SRS>EPSG:26917</SRS>
 </TargetData>
 </InputVariables>
 <OutputResult>
 <UTMCoords>
 <SRS>EPSG:26917</SRS>
 <X>UTM X</X>
 <Y>UTM Y</Y>
 </UTMCoords>
 <OutputErrorMessage>error message</OutputErrorMessage>
 </OutputResult>
 </Function>
 </Service>
</ServiceResponse>

Figure 5. Service response prototype of the geospatial data conversion web service

Web service composition thus can be simplified to the following three steps:

1. Retrieve the element <ServiceRequest> from the template
ServiceDescription.xml file.

2. Add the XML declaration header, i.e. <?xml version="1.0"
encoding="utf-8"> with the element <ServiceRequest> to formulate a
service request XML document.

3. Change the necessary values within the tags <InputVariables> and
</InputVariables>.

4. REBUILDING THE SEMANTIC WEB SERVICE
ARCHITECTURE

Semantic Web service architecture can be reorganized in the following ways:

• Registration through UDDI
• Discovery, matchmaking through ServiceDescription.xml
• Composition based on ServiceDescription.xml
• Invocation through WSDL interface getService(String request): String

response
• Transport through SOAP

REBUILDING THE SEMANTIC WEB SERVICE ARCHITECTURE

Currently, UDDI is expected to be a registry for Web service publication so that

people can find necessary services through such yellow/white book service. While
semantic Web service is under construction, current UDDI registry nodes provided
by Microsoft and IBM are not very practical. The naming systems on the Web
service as well as its functions are based on common sense but not semantically and
explicitly well defined with ontology-based independent service domain and
functional category. Searching Web services by their names through UDDI is akin
to searching Google, useful possibly for people, but not for the purpose of
automated discovery and invocation. With the approach suggested here, UDDI
augmented with ServiceDescription.xml can aid in the automated discovery and
invocation of web services.

This research provides an initial implementation to demonstrate such a new

infrastructure. The pilot project can be accessed at
http://157.182.136.76/AItest/ws/AIDemo1/WebForm1.aspx Currently 9 Web
services have been developed all with exactly the same interface getService(String
request): String response and a service template document ServiceDescription.xml.
Here, WebService1 provides location service that converts a location name into its
geographic coordinates (longitude and latitude). WebService4 provides data
conversion service that converts a longitude and latitude pair into the corresponding
(x, y) coordinates in UTM meters.

Service discovery and matchmaking can happen if ontologically-derived

descriptions are available for web services. In the demonstration project, after the
user types in a place (such as Morgantown, WV) and selects the service
“GetLatitude/Longitude” or “Convert to UTM X, Y”, the system will loop through
the service description documents of each available web service in the list box. By
reading through ServiceDescription.xml, the system automatically selects the
appropriate service by matching the semantic service description. Once the
appropriate service is identified, the system can then compose the service request
document, invoke the service, get the service response document and retrieve the
necessary values from the service response. The result of this pilot project can be
shown in Figure 6.

http://157.182.136.76/AItest/ws/AIDemo1/WebForm1.aspx

 Xuan Shi1 and Vasudevan Jagannathan2

Figure 6. Dynamic Web service invocation by automatic service discovery, matchmaking,
composition and interpretation

With the specification of domain-specific ontologies, data and service semantics
can be well defined in the service description document ServiceDescription.xml.
Problems as mentioned in those case studies can be resolved. Given the example to
define a geospatial polygon feature layer as the input variable, such polygon feature
can be defined as follows in Figure 7 using OWL/RDF:

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 ……>

<owl:Class rdf:ID="Geometry"/>
<owl:Class rdf:ID="SpatialReferenceSystem"/>
……

REBUILDING THE SEMANTIC WEB SERVICE ARCHITECTURE

<owl:Class rdf:ID="2Dshape">
<rdfs:subClassOf rdf:resource="#Geometry"/>
</owl:Class>

<owl:Class rdf:ID="Polygon">
<rdfs:subClassOf rdf:resource="#2Dshape"/>
</owl:Class>

<owl:Class rdf:ID="Projected">
<rdfs:subClassOf rdf:resource="#SpatialReferenceSystem"/>
</owl:Class>
……

<owl:Class rdf:ID="inputPolygon">
<rdfs:subClassOf rdf:resource="#Polygon" />
<owl:ObjectProperty rdf:ID="SRS">
<rdfs:domain rdf:resource="#SpatialReferenceSystem" />
<rdfs:range rdf:resource="#Projected"/>
<owl:hasValue>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string" />
 <rdf:value="EPSG:26917"/>
</owl:hasValue>
</owl:ObjectProperty>
</owl:Class>

<owl:Class rdf:ID="bufferPolygon">
<rdfs:subClassOf rdf:resource="#Polygon" />
<owl:ObjectProperty rdf:ID="SRS">
<rdfs:domain rdf:resource="#SpatialReferenceSystem" />
<rdfs:range rdf:resource="#Projected"/>
<owl:hasValue>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string" />
 <rdf:value="EPSG:26917"/>
</owl:hasValue>
</owl:ObjectProperty>
</owl:Class>
……

</rdf:RDF>

Figure 7. Semantic data description on georeferenced polygons

 Xuan Shi1 and Vasudevan Jagannathan2

The order and relationship of input variables as well as the meaning of the

service can also be defined with the aid of XLink as follows in Figure 8:

<?xml version="1.0"?>
……
<RequestTemplate>
 <ServiceRequest>
 <Service Name="SpatialSelection">
 <Function Name="selectPolygons">
 <SpatialSelection>
 <Criterion>IsContainedBy</Criterion>
 <LayerRelationship xlink:type="arc" xlink:from="source" xlink:to="overlay" />
 </SpatialSelection>
 <InputVariables>
 <PolygonLayer xlink:type="resource" xlink:label="source">

 <FeatureType>Polygon</FeatureType>
 ……
 </PolygonLayer>
 <PolygonLayer xlink:type="resource" xlink:label="overlay">
 <FeatureType>Polygon</FeatureType>
 ……
 </PolygonLayer>
 </InputVariables>
 </Function>
 </Service>
 </ServiceRequest>
 </RequestTemplate>
……

Figure 8. Service semantics for feature selection function

The purpose and behavior of Web service can be defined meaningfully as in the

following example:

<?xml version="1.0"?>
<WebService xmlns:xlink="http://www.w3.org/1999/xlink" xlink:type="extended"

xlink:title="SpatialDataProcessing">
 <Service>
 <Domain>geospatial</Domain>
 <SubDomain>functional service</SubDomain>
 <Provider>WVGISTC</Provider>
 <Name>SpatialDataProcessing</Name>

REBUILDING THE SEMANTIC WEB SERVICE ARCHITECTURE

 <Description>This service provides function for spatial data processing.</Description>
 <Function>
 <Name>intersect</Name>
 <Category>Geospatial Data Processing</Category>
 <Description>This function will cut an input layer with the features from an overlay

layer to produce an output layer with features that have attribute data from both layers.
</Description>

 <Namespace>
intersect.SpatialDataProcessing.services.wvgistc.wvu.edu

 </Namespace>
 </Function>
 </Service>
……

 <RequestTemplate>
 <ServiceRequest>
 <Service Name="DataProcessing">
 <Function Name="createNewPolygons">
 <SpatialDataProcessing>
 <Criterion>Intersect</Criterion>
 <LayerRelationship xlink:type="arc" xlink:from="source" xlink:to="overlay" />
 </SpatialDataProcessing>
 <InputVariables>
 <PolygonLayer xlink:type="resource" xlink:label="source">

 <FeatureType>Polygon</FeatureType>
……

 </PolygonLayer>
 <PolygonLayer xlink:type="resource" xlink:label="overlay">
 <FeatureType>Polygon</FeatureType>

……

 </PolygonLayer>
 </InputVariables>
 </Function>
 </Service>
 </ServiceRequest>
 </RequestTemplate>
……

Figure 9. Service semantics for “intersect” function for geospatial data processing

 Xuan Shi1 and Vasudevan Jagannathan2

<?xml version="1.0"?>
<WebService xmlns:xlink="http://www.w3.org/1999/xlink" xlink:type="extended"

xlink:title="SpatialSelection">
 <Service>
 <Domain>geospatial</Domain>
 <SubDomain>functional service</SubDomain>
 <Provider>WVGISTC</Provider>
 <Name>SpatialSelection</Name>
 <Description>This service provides function for spatial query and

analysis.</Description>
 <Function>
 <Name>selectPolygons</Name>
 <Category>Spatial Query and Analysis</Category>
 <Description>This function will select polygon features from source layer that is

spatially correlated by the overlay layer.</Description>
 <Namespace>

selectPolygons.SpatialFeatureSelection.services.wvgistc.wvu.edu
 </Namespace>
 </Function>
 </Service>
……
<RequestTemplate>
 <ServiceRequest>
 <Service Name="SpatialSelection">
 <Function Name="selectPolygons">
 <SpatialSelection>
 <Criterion>Intersect</Criterion>
 <LayerRelationship xlink:type="arc" xlink:from="source" xlink:to="overlay" />
 </SpatialSelection>
 <InputVariables>
 <PolygonLayer xlink:type="resource" xlink:label="source">

 <FeatureType>Polygon</FeatureType>
……

 </PolygonLayer>
 <PolygonLayer xlink:type="resource" xlink:label="overlay">
 <FeatureType>Polygon</FeatureType>

……
 </PolygonLayer>
 </InputVariables>
 </Function>
 </Service>
 </ServiceRequest>

REBUILDING THE SEMANTIC WEB SERVICE ARCHITECTURE

 </RequestTemplate>
……

Figure 10. Service semantics for “intersect” function for spatial query and analysis

The differences between the two “intersect” functions for spatial query and

spatial data processing are described in Figure 9 and 10. In this way, the purpose of
the function can be described and defined meaningfully. OWL/RDF can also be
used to define the content of service description and the relationship of service
domain/subdomain or function category/subcategory within the tag <Service> and
</Service>.

5. CONCLUSION

WSDL provides a standard interface for the exchange of objects and functions in
distributed computing systems. As a description language, WSDL factually
describes how the service architecture (the hierarchy and relation of data type, class,
object, operation, etc.) is created without the capability to define the content and
meaning of the message exchanged in the communication. When developing Web
service, semantics are imposed into programming languages to give names to
different objects, classes, data types, operations, etc. Such a naming system is based
on common sense. For example, one can define a function name such as
GetAirlineTicket or BuyAirlineTicket or any other names to perform the same
function. Under such situation, semantic Web service description tightly coupled
with WSDL cannot be dependable and believable for service requesters to find what
they really want. Although one can purposefully define the name of certain
functions and data objects, such as “token” as a string, “description1” or
“description2” as string, or “dataSource” as string, etc. (Shi, 2004), such common
sense based naming system is difficult to rely on for the purpose of automated
discovery and execution of services dynamically.

This research proposes and implements a completely different approach to

develop semantic Web services. Other schools of thought rely on external semantics
that augment WSDL structures such as OWL, WSMO. The new approach
prototyped here, directly encodes the semantics into an XML document as an
integral part of Web service itself to transfer, understand and execute the service.
The structure of this document enables semantic processing. The service provider
here controls what is offered as a service by providing templates that are
semantically constructed. There is no third party broker needed in this scheme. The
service provider in this architecture becomes an intelligent agent and deals with
semantically, human understandable queries and responses back in a human

 Xuan Shi1 and Vasudevan Jagannathan2

understandable form. Under the proposed new semantic Web service architecture,
Web service can be dynamically invoked through automatic service discovery,
matchmaking, composition and interpretation. There is no reliance on WSDL file
and any other supplementary documents and diagrams. This approach does require
collaboration among many groups to develop a common ontological framework.

One final comment on the proposed approach is that it is extensible. Web

services can augment or change their service offering without changing their WSDL
interface. This makes the infrastructure simpler to manage but does require more
intelligence in the processing of messages. In this aspect this approach is similar to
Web and email processing. Both Web and email use standardized and simple
Internet protocols (HTTP/SMTP) to transfer the messages/content among the users.
Such content are self-describing – albeit only to human readers. While WSDL is the
protocol to transfer the service request and response messages, self-describing
content here relies on ontological derivation and require intelligent-agent as
processing engines.

6. REFERENCE

1. Aggarwal, R. 2004. Semantic Web Services Languages and Technologies:

Comparison and Discussion.
http://lsdis.cs.uga.edu/lib/download/aggarwal_essay_2004.pdf and

2. http://citeseer.ist.psu.edu/cache/papers/cs/32917/http:zSzzSzlsdis.cs.uga.eduzSz
libzSzdownloadzSzaggarwal_essay_2004.pdf/semantic-web-services-
languages.pdf

3. Cabral, L., Domingue, J., Motta, E., Payne, T., and F. Hakimpour. 2004.
Approaches to Semantic Web Services: An Overview and Comparisons.
http://eprints.aktors.org/326/ and
http://eprints.aktors.org/326/01/cabralESWS04.pdf

4. Martin, D., Paolucci, M., McIlraith, S., Burstein, M., McDermott, D.,
McGuinness, D., Parsia, B., Payne, T., Sabou, M., Solanki, M., Srinivasan, N.,
and K. Sycara. 2004. Bringing Semantics to Web Services: The OWL-S
Approach. In: Proceedings of First International Workshop on Semantic Web
Services and Web Process Composition (SWSWPC 2004), July 6-9, 2004, San
Diego, California, USA.

5. McIlraith, S. A., Son, T. C., and H.Zeng. 2001. Semantic Web Services. IEEE
Intelligent Systems. March/April 2001

6. Payne, T. and O. Lassila. 2004. Semantic Web Services. IEEE Intelligent
Systems. July/August 2004

REBUILDING THE SEMANTIC WEB SERVICE ARCHITECTURE

7. Roman, D., Keller, U. and H. Lausen (eds.). 2004. Web Service Modeling

Ontology - Standard (WSMO - Standard), version 0.1
http://www.wsmo.org/2004/d2/v01/

8. Shi, X. 2004. Semantic request and response for standardized Web services.
http://www-106.ibm.com/developerworks/webservices/library/ws-semantic/

9. W3C. 2004. Web Services Architecture. http://www.w3.org/TR/ws-arch/

	THE PROBLEM OF SEMANTIC SERVICE DESCRIPTION
	WEB SERVICE SIMPLIFICATION
	MESSAGE-ORIENTED SEMANTIC WEB SERVICES
	REBUILDING THE SEMANTIC WEB SERVICE ARCHITECTURE
	CONCLUSION
	REFERENCE

