
Possibilistic Stable Model Computing

Pascal Nicolas and Claire Lefèvre

LERIA - Faculty of Sciences - University of Angers
2 Boulevard Lavoisier, 49045 Angers Cedex 01, France
{pascal.nicolas, claire.lefevre}@univ-angers.fr

Abstract. Possibilistic Stable model Semantics is an extension of Stable
Model Semantics that allows to merge uncertain and non monotonic
reasoning into a unique framework. To achieve this aim, knowledge is
represented by a normal logic program where each rule is given with its
own degree of certainty. By this way, it formally defines a distribution
of possibility over atom sets that, on its turn, induces for each atom a
possibility and a necessity measures. The latter underpins the definition
of a possibilistic stable model in which every consequence of the program
is given with a level of certainty.
In this work we explain how we can compute the possibilistic stable mod-
els of a possibilistic normal logic program by using available softwares for
Answer Set Programming and we describe the main lines of the system
that we have developed.

1 Introduction

Answer Set Programming (ASP) [1] is an appropriate formalism to represent
various problems issued from Artificial Intelligence and arising when available
knowledge is incomplete as in non monotonic reasoning, planning, diagnosis. . . In
ASP, knowledge is encoded by logical rules and solutions are obtained as models.
Each model is a minimal set of atoms containing some facts and deductions
obtained by applying by default some rules. So, conclusions rely on present and
absent data, they form a coherent set of hypotheses and represent a rational view
on the world described by the rules. In whole generality there is not a unique
set of conclusions but maybe many ones or none.

Possibilistic logic [2] is issued from Zadeh’s possibility theory [3]. It offers a
framework for representation of states of partial ignorance owing to the use of
a dual pair of possibility and necessity measures. Possibilistic logic provides a
sound and complete machinery for handling qualitative uncertainty with respect
to a semantics expressed by means of possibility distributions which rank-order
the possible interpretations [4]. In other words, it deals with uncertainty by
means of classical 2-valued interpretations that can be more or less certain.

In [5], we have defined Possibilistic Stable Model Semantics that is a new
framework dealing with uncertainty in ASP. It has been developed to handle
normal logic programs in which each rule is given with a certainty degree and
it is based on the introduction into ASP of possibility theory concepts. Figure 1
positions this work within other linked formalisms.

204 Pascal Nicolas and Claire Lefèvre

Reasoning with incomplete and incertain information

Possibilistic Logic

Classical LogicStable Model SemanticsDefault Logic

Model Semantics

Possibilistic Stable

Possibility Theory

Fig. 1. Possibilistic Stable Model Semantics

Next section 2 recalls some theoretical backgrounds about possibilistic stable
model semantics and, in section 3, we expose the main lines of the system that
we have developed in order to compute possibilistic stable model semantics.

2 Possibilistic Stable Model Semantics

In [5] we have extended stable model semantics in order to take into account
some certainty degrees on rules. For this, we consider given a finite set of atoms X
and a finite, totally ordered set of necessity values N ⊆]0, 1]. Then, a possibilistic
atom is a pair p = (x, α) ∈ X ×N . We denote by p∗ = x the classical projection
of p and by n(p) = α its necessity degree. These notations can also be extended
to a possibilistic atom set (p.a.s.) that is a set of possibilistic atoms in which
every atom x occurs at most one time.

Definition 1. Consider A = 2X×N the finite set of all p.a.s. induced by X and
N . ∀A,B ∈ A, we define:

A uB = {(x,min{α, β}), (x, α) ∈ A, (x, β) ∈ B}
A tB = {(x, α) | (x, α) ∈ A, x 6∈ B∗}

∪ {(x, β) | x 6∈ A∗, (x, β) ∈ B}
∪ {(x, max{α, β}) | (x, α) ∈ A, (x, β) ∈ B}

A v B ⇐⇒ {A∗ ⊆ B∗, and ∀a, α, β, (a, α) ∈ A ∧ (a, β) ∈ B ⇒ α ≤ β

Proposition 1. 〈A,v〉 is a complete lattice.

A possibilistic definite logic program (p.d.l.p.) is a set of possibilistic rules of
the form:

(c← a1, . . . , am. , α) where m ≥ 0, {c, a1, . . . , am} ⊆ X , α ∈ N

Possibilistic Stable Model Computing 205

and a possibilistic normal logic program (p.n.l.p.) is a set of possibilistic rules of
the form:

(c← a1, . . . , am, not b1, . . . , not bn. , α) m ≥ 0, n ≥ 0

for which we just have to precise that ∀i, bi ∈ X , all the rest being the same as
for a p.d.l.p.

n(r) = α is a necessity degree representing the certainty level of the in-
formation described by the rule r. The higher is n(r) the more certain is r.
The classical projection of a possibilistic rule r is r∗ = c ← a1, . . . , am. (or
r∗ = c← a1, . . . , am, not b1, . . . , not bn.). If R is a set of possibilistic rules,
then R∗ = {r∗ | r ∈ R} is the program obtained from R by forgetting all the
necessity values. For a classical rule r we use the following notations (extended
to a rule set as usual): the positive prerequisites of r, body+(r) = {a1, . . . , an};
the negative prerequisites of r, body−(r) = {b1, . . . , bm}; the conclusion of r,
head(r) = c and the positive projection of r, r+ = head(r)← body+(r).

Example 1. The p.n.l.p.

P =

(mary., 1),
(stormy meeting ← mary, bob., 1),
(stormy meeting ← mary, john., 0.8)
(bob← not peter., 0.8)
(peter ← not bob., 0.5)
(john., 0.2)

represents the following informations.
It is certain that Mary comes.
It is certain that if Mary and Bob come, then the meeting will be stormy.
It is almost sure that if Mary and John come, then the meeting will be stormy.
It is almost sure that Bob comes if Peter does not.
Maybe, Peter comes if Bob does not.
It is very uncertain that John comes.

In view of this example, let us mention that certainty degrees are qualitative.
The exact numerical value does not matter. The only important point is their
relative values that allow to rank the rules from the more certain to the less
certain.

As in the classical case without necessity value, we need to define what is the
reduction of a program and what is the applicability degree of a rule.

Definition 2. Let P be a p.n.l.p. and A be an atom set. The possibilistic reduct
of P wrt. A is the p.d.l.p. PA = {((r∗)+, n(r)) | r ∈ P, body−(r∗) ∩A = ∅}.

Definition 3. Let r = (c ← a1, . . . , am., α) be a definite possibilistic rule
(body−(r∗) = ∅) and A be a p.a.s.,

– r is α-applicable in A if body+(r∗) = ∅

206 Pascal Nicolas and Claire Lefèvre

– r is β-applicable in A if
{
{(a1, α1), . . . , (an, αn)} ⊆ A
β = min {α, α1, . . . , αn}

– r is 0-applicable otherwise.

And, for a given p.d.l.p. P , an atom set A and an atom x,

App(P,A, x) = {r ∈ P | head(r∗) = x, r is ν-applicable in A, ν > 0}

The applicability degree of a rule r captures the certainty of the inference
process realized when r is applied wrt. a p.a.s. A. If the body of r is empty, then r
is applicable with its own certainty. If the body of r is not verified (not satisfied
by A), then r is not at all applicable. Otherwise, the applicability level of r
depends on the certainty level of the propositions inducing its groundedness and
on its own necessity degree. Firstly, the necessity degree of a conjunction (the
rule body) is the minimal value of the necessity values of subformulae (atoms)
involved in it. Secondly, the certainty of a rule application is the minimal value
between the rule certainty and the certainty of the rule body. This approach is
similar to the Graded Modus Ponens in possibilistic logic [2].

Definition 4. Let P be a p.d.l.p. and A be a possibilistic atom set. The imme-
diate possibilistic consequence operator ΠTP maps a p.a.s. to another one by
this way:

ΠTP (A) =

{
(x, β)

x ∈ head(P ∗), App(P,A, x) 6= ∅,
β = max

r∈App(P,A,x)
{ν | r is ν-applicable in A}

}

then the iterated operator ΠT k
P is defined by

ΠT 0
P = ∅ and ΠTn+1

P = ΠTP (ΠTn
P),∀n ≥ 0

Here, we can remark that if one conclusion is obtained by different rules,
its certainty is equal to the greatest certainty with which it is obtained in each
case (operator max). Again, it is in accordance with the inference process in
possibilistic logic.

Proposition 2. Let P be a p.d.l.p., then ΠTP has a least fix-point tn≥0ΠTn
P

that we called the set of possibilistic consequences of P and we denote it by
ΠCn(P).

At this point, we have recalled everything necessary to introduce possibilistic
stable model semantics.

Definition 5. Let P be a p.n.l.p. and S a p.a.s.
S is a possibilistic stable model of P if and only if S = ΠCn(P (S∗)).

Example 2. Let P be the p.d.l.p. of example 1, then

S1 = {(mary, 1), (peter, 0.5), (john, 0.2), (stormy meeting, 0.2)}

Possibilistic Stable Model Computing 207

is a p.s.m. of P since

P (S∗
1) =

(mary., 1),
(stormy meeting ← mary, bob., 1)
(stormy meeting ← mary, john., 0.8),
(peter., 0.5),
(john., 0.2),

and

ΠT 0

P (S∗1) = ∅
ΠT 1

P (S∗1) = {(mary, 1), (peter, 0.5), (john, 0.2)}
ΠT 2

P (S∗1) = {(mary, 1), (peter, 0.5), (john, 0.2), (stormy meeting, 0.2)}
ΠT k

P (S∗1) = ΠT 2

P (S∗1) ,∀k > 2

Thus, ΠCn(P (S∗
1)) = S1 proving that S1 is a p.s.m. of P .

Moreover,

S2 = {(mary, 1), (bob, 0.8), (john, 0.2), (stormy meeting, 0.8)}

is the second (and last one) p.s.m. of P .

In this example, we can see that our framework allows us to draw conclu-
sions labeled with a certainty degree. We are able to distinguish between the
two possibilistic stable models one (S2) in which the conclusion saying that the
meeting will be stormy is more certain than it is in the other one (S1).

3 Possibilistic Stable Model Computation

3.1 Algorithm

Let us begin by mentioning that, given a p.n.l.p. P there is a one to one mapping
between the p.s.m. of P and the stable models of P ∗ (see [5]). Firstly, this
property implies that the complexity class of the existence problem of a p.s.m.
is the same that those of the existence problem of a stable model. Secondly,
it ensures that, given S a stable model of P ∗ then ΠCn(PS) is a p.s.m. of
P . Moreover, it is easy to establish that the computation of ΠCn(PS) can be
done polynomially (see definition 4 and proposition 2). So, the computation of
a p.s.m. has not to be significantly harder than the computation of a classical
stable model since this last one can be exponential. Despite this high level of
complexity, some efficient ASP solvers are available today :

– DLV [6] http://www.dbai.tuwien.ac.at/proj/dlv
– Smodels [7] http://www.tcs.hut.fi/Software/smodels
– Cmodels [8] http://www.cs.utexas.edu/users/tag/cmodels.htms
– Nomore++ http://www.cs.uni-potsdam.de/wv/nomore++
– . . .

208 Pascal Nicolas and Claire Lefèvre

computeAllPSM(in Solv : an ASP solver, P : a p.n.l.p)
begin

while (Solv(P ∗) returns a s.m. S)
write ΠCn(P S)

endwhile
end

Fig. 2. General algorithm

So, the extension of one of them to compute p.s.m. has to be realizable without
losing to much efficiency and the general algorithm for this purpose is sketched
in figure 2.

So, starting from this general algorithm we have decided to develop a system
in C++ by choosing Smodels, and its associated grounder Lparse, as underlying
ASP solver. Our choice has been guided by a compromise taking into account the
system performances, the source code availability and our familiarity with the
system. Moreover, any ASP system could have been used. But, the possibility
to clearly separate the grounding of the rules and the computation of the stable
models has been also one reason of our choice.

Let us mention that from now and without loss of generality, we shall use
necessity degrees belonging to lN∗. As recall in section 2, these values have not
a numerical meaning, but only a qualitative and relative significance. So, for
convenience we have chosen integer values to encode them. Thus, an input file
containing a p.n.l.p. will have to be presented as a sequence of expressions

α c :- a1, . . . , am, not b1, . . . , not bn.

where α ∈ {1, . . . , 100} if 100 is enough and encodes the full certainty for in-
stance. For the rest of our presentation we shall use this syntax when giving
some examples.

3.2 Rule grounding

If we want to use ASP paradigm to solve some large and realistic problems, then
using rules with variables to encode problems is absolutely necessary. It means
that the input of our system has to be a set of possibilistic rules where variables
are allowed as it is shown in the following p.n.l.p..

P1 =

50 b(X) :- a(X), not c(X).
100 c(X) :- a(X), not b(X).
100 a(1).
20 a(2).
30 a(3).

100 b(2).
80 d(4).

Possibilistic Stable Model Computing 209

Grounding a program consists in producing all rules that can be obtained by
replacing every variable by every constant of the language. At a first sight, it can
be achieved very easily, but if we do not take care, the resulting propositional
program may contain a huge number of useless rules. In fact, the grounding
task is itself a difficult process that has to be done carefully and that is why we
preferred to base our work on an already existing system like Lparse.

For the aforementioned program P1, its classical part is

P ∗
1 =

b(X) :- a(X), not c(X).
c(X) :- a(X), not b(X).
a(1). a(2). a(3).
b(2).
d(4).

whose grounded version by Lparse is

P ∗ =

b(1) :- not c(1). b(2) :- not c(2). b(3) :- not c(3).
c(1) :- not b(1). c(3) :- not b(3).
a(1). a(2). a(3).

b(2).
d(4).

The reader can see, that no useless instantiation, for instance with X = 4, is
made. Actually, a rule like b(4) :- a(4), not c(4). is useless since a(4) is impossible
to derive with these rules. Moreover, many rule simplifications are made as the
suppression of a(X) in the positive bodies of rules and the deletion of the rule
c(2) :- a(2), not b(2). since b(2) is given.

But, for our system, we have an additional task to achieve. It is to keep
the necessity degree affected to a rule with variables to every fully instantiated
rule generated from this rule. Since Lparse does a lot of simplifications (partial
evaluation) it would be very difficult, and sometimes impossible, to reassign the
right certainty degrees to the grounded rules. For instance, for next program

P2 =

100 c(X) :- a(X).
50 c(X) :- b(X).
80 a(1).

100 b(1).

Lparse produces the grounded program

P ∗
2 = {c(1). a(1). b(1)}

for which it is impossible to decide which certainty degree to assign to c(1) by
only using this output and the original p.n.l.p. P2 and not redoing the grounding
process. Even if we modified Lparse to not perform these partial evaluations its
output would be something like : {c(1) :- a(1)., c(1) :- b(1)., a(1)., b(1).}. In this
case again, to reassign the right degrees would be a time consuming process since
it would be something like a unification problem. So, that is why we propose the

210 Pascal Nicolas and Claire Lefèvre

following preprocessing that maps every possibilistic rule into a normal one in
which a special new atom is inserted to record the certainty degree.

preproc(r) = r′s.t.

 head(r′) = head(r)
body+(r′) = body+(r) ∪ {nu (α(r))}
body−(r′) = body−(r)

The generalization of this process to a p.n.l.p. P is defined as follows

Preproc(P) = {preproc(r) | r ∈ P}
∪ {]external nu (X).}
∪ {nu (α). | α ∈ A}

The directive]external nu (X). is a special feature used by Lparse to indi-
cate that expressions nu (X) are special atoms that could be given in a second
step (see Lparse manual for details). For us, the useful point is that Lparse
keeps every such atoms in the resulting grounded program. By this way, our
initial goal: grounding every rule by keeping the trace of the necessity degree, is
achieved as it can be seen in the two programs below.

– output of the preprocessing of P1

Preproc(P1) =

b(X) :- a(X), not c(X), nu (50).
c(X) :- a(X), not b(X), nu (100).
a(1) :- nu (100). a(2) :- nu (20). a(3) :- nu (30).
b(2) :- nu (100).
d(4) :- nu (80).
]external nu (X).
nu (100). nu (80). nu (50). nu (30). nu (20).

– output of the grounding process done by Lparse

Preproc(P1) =

b(1) :- a(1), nu (50), not c(1).
b(2) :- a(2), nu (50), not c(2).
b(3) :- a(3), nu (50), not c(3).
c(1) :- a(1), nu (100), not b(1).
c(2) :- a(2), nu (100), not b(2).
c(3) :- a(3), nu (100), not b(3).
a(1) :- nu (100). a(2) :- nu (20). a(3) :- nu (30).
b(2) :- nu (100).
d(4) :- nu (80).

To end this description, let us say that we have implemented these techniques

in a program named preprocLparse that is able to accept a possibilistic logic
program that contains strong negations or constant declarations. In fact, these
particular points have no influence on our preprocessing and they are managed
as usual by Lparse. Thus, the following chain has to be used to realize whole
preprocessing

Possibilistic Stable Model Computing 211

preprocLparse inputfile | lparse --true-negation
where --true-negation is to allow the treatment of strong negation. The output
of this process is the input (in the internal Smodels’format) of our program
posSmodels described in the next section.

3.3 Possibilistic Stable model Computation

Here, we describe how we compute the p.s.m. of a p.n.l.p. by using the grounded
normal logic program produced by the preprocessing step described in previous
subsection. The whole algorithm, presented in figure 3, is formed by three parts.
The first thing to do is to read the output of the first step, that is a normal
logic program encoded in the internal Smodels’format, and to rebuild its corre-
sponding possibilistic logic program (see part 1 of the algorithm). By this way,
and because of the preprocessing treatment, we are provided with a grounded
p.n.l.p. P ′ where every rule is given with the right certainty degree. The second
step is to build for Smodels the non possibilistic corresponding n.l.p. SP ′ in
order to compute its stable models. This is done via the Smodels programming
API. Note that this causes a duplication of atoms and rules of the program :
one representation for Smodels, and one for posSmodels. But this is the price
to pay to stay independent of Smodels, and it is made so that we can directly
access from one kind of atoms to the other one. Thus, the computation of p.s.m.
is now possible by following the general algorithm of the figure 2 detailed in
the third part of figure 3. The whole process implements, the most efficiently as
possible, the immediate possibilistic consequence operator ΠTP introduced in
definition 4.

Let us comment some particular points.

– Since we know that every set S is a s.m. of P ′∗ then we can restrict our
attention to the program PP ⊆ P ′S . In fact, it is useless to take into account
rules with head or positive body not included in S since they can never be
involved in the p.s.m. corresponding to S that we want to compute.

– L(R) is a counter initiated with the body length of rule R and decreased
each time a new atom belonging to the body of R is added in Res. By this
way, at each step the applicable rules are those with L(R) = 0.

– An applicable rule with a certainty α and a head x can be dropped from PP
when an atom (x, α) is added in Res since this rule (because of the definition
of ν-applicability) will never produce a new possibilistic atom (x, β) with
β > α. But, a rule can not be discarded before since it can be used many
times to produce the same atom but with an increasing certainty degree at
each time as in the next example

P3 =

20 a.

100 x.
100 b :- a.
100 a :- x.

Res = ∅
Res = {(a, 20), (x, 100)}
Res = {(x, 100), (b, 20), (a, 100)}
Res = {(x, 100), (a, 100), (b, 100)}

212 Pascal Nicolas and Claire Lefèvre

posSmodels(in P : a n.l.p, Solv : an ASP solver)
begin
/* read n.l.p. P produced by lparse and construct corresponding p.n.l.p. P ′ */

P ′ ← ∅
while (read a rule R in P)

body+(R)← body+(R) \ {nu (α)}
P ′ ← P ′ ∪ {(R, α)}

endwhile
/* build program SP ′ in smodels (corresponding to P ′∗) */

create program SP ′ in smodels
for each rule R ∈ P ′

create rule R∗ in SP ′

endfor
/* compute all p.s.m. */

while (Solv(SP ′) returns a s.m. S) do

PP ← {(r∗+, n(r)) | r ∈ P ′, head(r∗) ∈ S and body+(r∗) ⊆ S and body−(r∗) ∩ S = ∅}
for each rule R ∈ PP compute L(R), the length of its (positive) body endfor
Res← ∅ /* the p.s.m. to compute */
repeat

FixPoint← true
for all rule R ∈ PP

if(L(R) == 0) then
deg ← applicability degree of R in Res /* definition 3*/
if (head(R) 6∈ Res∗)then /* a new atom is added */

for each rule R′s.t. head(R) ∈ body+(R′)
L(R′)← L(R′)− 1

endfor
endif
Res← Res t {(head(R), deg)} /* t of definition 1 */
if (Res has been modified) then FixPoint← false endif
if (n(R) == deg) then remove R from PP endif /* this rule is now useless */

endif
endfor

until FixPoint
write Res

endwhile
end

Fig. 3. Possibilistic stable model computation

in which we can see that rule 100 b :- a. is used two times: firstly with (a, 20)
to produce (b, 20), and secondly with (a, 100) (when this atom has been
produced by rule 100 a :- x.) to produce (b, 100).

To end, let us shortly present our representation of atoms and rules. An atom
A have : a name, an array of rules whose head is this atom A, an array of rules
in which A appears in the positive body, and, if it is a possibilistic atom, a

Possibilistic Stable Model Computing 213

lparse −−true−negation p.s.m.

posSmodels

preprocLparseP smodels

Fig. 4. Process chain.

degree. A rule is naturally represented by its head (an atom), two sets of atoms
for the positive and negative bodies, a counter (L(R)) for the number of atoms
in its positive body that are not already in the p.s.m. actually computed, and
its degree. This allows us to access directly to all informations we need. Finally,
given an atom of Smodels, we need to access to our own atoms. This task is
efficiently achieved by deriving from Smodels Atom class a new AtomExt class
with an additional field for referencing our atom. When creating program for
Smodels, we create also atoms of class AtomExt. So that, after a stable model
S has been computed by Smodels, we can easily recover our own representation
of atoms in S.

3.4 Examples and evaluations

Our whole system, sketched in the figure4, has been implemented in C++ and
is available at:

http://www.info.univ-angers.fr/pub/pn/Softwares/PosSmodels
Its usage is :

preprocLparse inputfile | lparse --true-negation | posSmodels k
In the figure 5 we summarize some experimental results. In all cases our goal

is to estimate the overhead of ”possibilistic computation” so that is why we
compare the performance of our whole system (as in the chain of the figure 4)
with the performance of Lparse and Smodels on the same programs with or
without certainty degrees.

– In the left side graph, we have reported the whole CPU times needed to
compute all the possibilistic and classical stable models of a program encod-
ing a Hamiltonian cycle problem in a so-called simplex graph. The program
contains 30183 rules and 672 atoms and has 948 different models. We have
successively computed 1, 100, . . . , 900 (classical and possibilistic) stable
models and we can see that in the two cases the times linearly grow w.r.t.
the number of models to compute.

– In the right side graph, we have reported the ratio of the time consumed by
our whole system over the time consumed by Lparse+Smodels to compute
one, possibilistic or not, stable model of a program. This program encodes
a problem of Hamiltonian path in a complete graph. The number of nodes
in the graph growths from 5 to 35. For this last instance, the corresponding
program has 3747 atoms and 90684 rules and Smodels needs roughly 100
seconds of CPU time to compute the first stable model. In this graph, we

214 Pascal Nicolas and Claire Lefèvre

0 250 500 750 1000

0

10

20

30

PreprocLparse+L
parse+posSmode
ls time (sec)

Lparse+Smodels
time (sec)

number of computed models

0 5 10 15 20 25 30 35

0

0,25

0,5

0,75

1

1,25

1,5

1,75

2

Ratio posSmodels/Smodels

Number of nodes in the complete graph

Fig. 5. Performance evaluation

can see that the time consumed to treat the possibilistic part is negligible in
front of the time consumed to compute the classical stable models. This is
in accordance with our theoretical remark mentioned in subsection 3.1.

Let us end our presentation by illustrating the possible use of possibilistic
stable semantics to compare several solutions of a combinatorial problem. For

Pcolor =

8>>>>>>>>>><>>>>>>>>>>:

100 v(1..4).
100 e(1, X) :- v(X), X! = 1.
100 colored(X) :- v(X), red(X).
100 colored(X) :- v(X), green(X).
100 red(X) :- v(X), not green(X).
50 green(X) :- v(X), not red(X).

100 :- e(X, Y), red(X), red(Y).
100 :- e(X, Y), green(X), green(Y).

9>>>>>>>>>>=>>>>>>>>>>;

1

32

4

Fig. 6. 2-coloring graph problem

instance, in figure 6 we can see the p.n.l.p. Pcolor that encodes a 2-coloring prob-
lem for the graph given on the right side of the same figure. In this particular
case, and by interpreting certainty degrees as preference degrees, we have ex-
pressed that color red is preferred over color green to color every vertex. From
Pcolor, our system returns the two p.s.m.:

S1 =

(v(1), 100) (v(2), 100) (v(3), 100) (v(4), 100)
(e(1, 2), 100) (e(1, 3), 100) (e(1, 4), 100)
(red(2), 100) (red(3), 100) (red(4), 100) (green(1), 50)
(colored(1), 50) (colored(2), 100) (colored(3), 100) (colored(4), 100)

Possibilistic Stable Model Computing 215

and

S2 =

(v(1), 100) (v(2), 100) (v(3), 100) (v(4), 100)
(e(1, 2), 100) (e(1, 3), 100) (e(1, 4), 100)
(red(2), 100) (red(3), 100) (red(4), 100) (green(1), 50)
(colored(1), 100) (colored(2), 50) (colored(3), 50) (colored(4), 50)

By adding an optimization criterion, for instance maximize Σ{α | (colored(X), α) ∈
S}, we could see that answer S1 is a better solution than S2 to color the graph
since it uses more the red color than the green one. But, this optimization prob-
lem is not solved by our actual system.

4 Conclusion

In this work, we have described the implementation of the theoretical work intro-
duced in [5], that is the stable model semantics. We have based our development
on the existing ASP softwares Lparse and Smodels, and our resulting system is
able to compute all the possibilistic stable models of a possibilistic normal logic
program. As it was expected by some theoretical complexity results, the com-
putation of the certainty degree of each consequence of the program does not
increase significantly the whole time computation as soon as the computation of
one classical stable model is not direct.

References

1. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9(3-4) (1991) 363–385

2. Dubois, D., Lang, J., Prade, H.: Possibilistic logic. In Gabbay, D., Hogger, C.,
Robinson, J., eds.: Handbook of Logic in Artificial Intelligence and Logic Program-
ming. Volume 3. Oxford University Press (1995) 439–513

3. Zadeh, L.: Fuzzy sets as a basis for a theory of possibility. In: Fuzzy Sets and
Systems. Volume 1. Elsevier Science (1978) 3–28

4. Dubois, D., Prade, H.: Possibility theory: qualitative and quantitative aspects. In
Smets, P., ed.: Handbook of Defeasible Reasoning and Uncertainty Management
Systems. Volume 1. Kluwer Academic Press (1998) 169–226

5. Nicolas, P., Garcia, L., Stéphan, I.: Possibilistic stable models. In: International
Joint Conference on Artificial Intelligence, Edinburgh, Scotland (2005)

6. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:
The dlv system for knowledge representation and reasoning. ACM Transactions on
Computational Logic (to appear in 2005)

7. Syrjänen, T., Niemelä, I.: The Smodels systems. In: International Conference
on Logic Programming and NonMonotonic Reasoning, Vienna, Austria, Springer-
Verlag (2001) 434–438

8. Lierler, Y., Maratea, M.: Cmodels-2: Sat-based answer set solver enhanced to non-
tight programs. In: International Conference on Logic Programming and NonMono-
tonic Reasoning. Volume 2923 of LNCS., Springer-Verlag (2004) 346–350

