
Representing the Context of Equivalent Query Words
as a Means of Preserving Search Precision

Timothy A. Musgrove

TextDigger, Inc.
235 Second Street, San Francisco, CA 94105 USA

Tim.Musgrove@cnet.com

Abstract. Information retrieval applications utilizing equivalent terms (e.g.
synonyms, alternative spellings. expansions of acronyms and abbreviations),
face the problem that the appropriateness of polysemous candidate terms cannot
be known a priori. This paper describes a method of utilizing the context of the
query words in order to provide a clue to selecting, from among the possible
equivalent terms, the ones that have a higher utility, where utility is defined as
likeliness to improve recall while preserving precision. A method of “seeding”
the system with thousands of potential contextual relations enables a rapid run-
time assignment of context to the user’s present query. The result is the
broadening of retrieval through equivalent terms, without the typical
concomitant decrease in precision.1

1. Introduction

One of the main problems in keyword searches is that of missing relevant documents
wherein the relevant information is expressed in different words entirely than were
entered in the original query. Granted, for simple searches with very popular words,
and where relevant information is plentiful, this is not much of a problem (e.g. as of
this writing, the queries “San Francisco weather” and “Brittney Spears photos,” when
entered on any major Internet keyword search engine, yield plentiful, relevant results
on the basis of an exact keyword match) but for longer queries, and searches where
the relevant phrasing is hard to predict, it can be a nightmare.

Examples of the questions that arise in this predicament are: How can a search
engine recognize where there are synonymous words for the query words, e.g. that
“mother-daughter matching sleeping gowns” matches “adult-child coordinated night
gown set”? How can a search engine recognize that “hotel room with a view of the
Golden Gate Bridge” matches “suite that provides a panorama of the entire Bay Area
skyline?”

1 The software described herein is the subject of patents pending with the USPTO on behalf of

TextDigger, Inc.

63

1.1 Conventional approaches to the problem of missed candidates

Probably the most straightforward approach to take is to automatically add synonyms
to a query. This is easily done by simple look-ups in a machine readable thesaurus or
WordNet. Why not just add all the synonyms automatically (or at least the most
common ones), and then search for all of them at once? Unfortunately, this approach
encounters some very big roadblocks.

1.1.1 The problems in the attempted solution
There are several problems in auto-adding synonyms to queries:

1. Words have many different senses
2. Words have many synonyms in each sense
3. Worst of all: most synonyms themselves have other senses which are not

synonymous with the original word.
For example, while “bank” can mean the turning of an aircraft, the word “turn,”

also has other senses (such as in “it’s your turn” or “the turn of the century”, etc.)
which have nothing to do with any of the senses of “bank.”

This means that automatically adding all the synonyms of every query term,
usually creates more irrelevant hits, not fewer. While the synonyms do give the
benefit of enabling the search engine to find more relevant information, that effect is
overshadowed by the creation of a mountain of additional, irrelevant search results.
In other words, while increasing recall, it destroys precision.

We should then suppose that the better thing to do, if at all possible, would be to
tackle the problem of word sense disambiguation head on, because then we might
have a better chance of picking the synonyms that are appropriate. Research in word
sense disambiguation has had substantial results, but we must examine the
applicability of lexical WSD to search.

1.1.2 Conventional Methods of Word Sense Disambiguation (WSD)
Conventional methods of word sense disambiguation generally proceed along the

following lines:
1. Manually sense-tagging a large corpus (marking each word as to its

canonical sense). One will use most of this data as the “training data” while
saving a minority portion for the “testing data.”

2. Using the training data, for each sense of each word, extract contextual
features (e.g. record which words are found frequently occurring next to, or
in the same sentence as, or within n words distance of the target word).

3. Determine common patterns in the contextual features (e.g. apply any
standard machine learning algorithm, whether that be neural nets, or case-
based reasoning, or genetic classifiers, or whatever) to enable classification
among several senses of a word, and validate the classifier on the testing
data.

After the foregoing project is completed, then based on the determined patterns (or
feature value-sets, or derived rules concerning them), new occurrences of words
(given a surrounding context, i.e. the text before and/or after the word) can be

64

assigned a guess, or a probability, of having certain senses, i.e. be classified according
to their canonical sense.

A considerable amount of research and debate has surrounded steps 2 and 3 of this
process, and it is no doubt fruitful to investigate and optimize these phases. However,
for our present purposes, what is remarkable is that almost all of the conventional
methods of WSD agree on Step 1. A large set of manually tagged training data is
presumed in the vast majority of methods attempted in word sense disambiguation – it
is the point of departure for the various competing methods. This mere fact, by itself,
presents the biggest limitation for search applications.

1.1.3 Limitations of Conventional WSD
The need to manually tag a corpus containing numerous example sentences for each
word in a variety of contexts, presents not one but several problems to the designer of
an open-ended search application2:

1. The manual labor cost, in number of hours, is mind-boggling. It can require
several person-months to manually tag the several thousand example
sentences that are required as training data for disambiguating one single
word in the English language as an example of an algorithm.

2. The labor in question is not just any sort of labor, but linguistically trained
labor. The tagging must be performed by those who understand grammar,
parts of speech and canonical word senses, and are very literate. This skill
requirement extends far beyond that of the worker typically employed to do
standard data processing.

3. Many word senses simply do not have enough examples in the corpus, to
provide a sufficient baseline for subsequent disambiguation, even if the data
were all tagged.

4. Given that for a search application, what is to be disambiguated is a query
word, and since queries are usually short (four words or less), there is not
enough context for most WSD methods to perform their analysis.

Given these formidable roadblocks to scalable WSD for generalized search
applications, we have sought an alternative approach to distinguishing those among
numerous synonyms or equivalent terms that are most appropriate to a given query.
This method utilizes the text corpus and the history of past queries, on an automated
basis, and does not require manually tagged training data. We will now describe this
method in greater detail.

2 An Alternative Approach

The essence of the TextDigger approach is to determine, before the actual keyword
search, which equivalent terms are most likely to preserve precision while increasing

2 For an example of the type of approach here described, see (Bruce and Weibe 1994). There

are also a few WSD systems that do not require manual tagging of training data, such as
(Yarowsky 1995), but they still have limitations (such as recognizing only canonical senses),
and they typically do not address problems 3and 4 on this list.

65

recall. The chief features of the approach being discussed here, are (1) to assign a
prior probability to every WordNet synonym reflecting its probability of having
indeed the same sense as the original word and (2) to determine which of the various
potential equivalent terms, when substituted one at a time in the context of the
remaining, unaltered query terms, yields multiple hits in semantically continuous
segments of the hit documents. A final contextual synonymy confidence score is then
determined as a function of both these measures.

In addition to requiring that candidate synonyms pass a threshold on this score,
they are subjected also to an absolute requirement of multiple contextual attestations
in the source documents. Only those equivalent terms that meet these conditions are
deemed to “pass” with regard to the context represented by the other terms in the
original query. The hope is that some meaningful subset of query terms will pass this
test, which are far more likely to preserve precision when used together in a
disjunctively expanded query, than would be the case with the entire, unaltered set of
potentially equivalent terms.

2.1 Related work
Our approach is similar in some ways to (Ramakrishnan, 2003) in that it does not “pin
down” a single word sense for every query term, but involves rather the demoting of
certain senses while qualifying others as more viable, and thus can be seen as a “soft”
WSD. It differs however in the manner in which the probabilities of each word sense
are calculated, and also in its granularity, as our method assigns scores not at the level
of WordNet senses, but at the level of every synonym within each sense.

In other ways, our approach is similar to that of (Agirre and Martinez, 2000) in that
it uses the Web as a resource to help automate the disambiguation task. However, our
analysis of Web content is more intensively concerned with the context of co-
occurring query words (and their candidate synonyms), and does not employ a
Bayesian network, but rather a context validation model that combines statistical and
rule-based approaches as described herein.

2.2 Outline of method
By “prior probability” we mean the probability of relevance of a candidate synonym,
based purely on (1) the distribution of senses listed in WordNet, and (2) the bias of
our application as to part-of-speech (POS), but without any reference yet to the actual
source documents. We calculated this prior probability for a word by examining its
sense numberings in all four parts-of-speech in WordNet, and giving each one a
weighting inversely proportional to the longest sense-depth, e.g. where the largest
number of senses in any POS was 6, the 6th sense was weighted a 1, and the 1st sense
in every POS was weighted 6 (even in a POS having less than 6 senses). We then
scored each sense of each POS as a function of this sense weight divided by the total
of all sense weights across all POS. We then factored this against both an internal and
external POS-bias. The “internal POS bias” is the one derivable from WordNet by
counting to see which POS has the most senses listed, and calculating a proportional
bias accordingly. The “external POS bias” comes from a usage profile of our search
application, showing that users most frequently search for nouns, and least frequently

66

for adverbs, with the frequency of their searching for verbs and adjectives falling in
the middle.

By “semantically continuous” segments of text we mean the standard approach
within NLP (e.g. Hearst 1997) of checking semantic distance between content words
in contiguous text blocks, and noticing when there is a marked shift in semantic
space. If the substitute term is found together with the original query terms in the text
corpus, but not in a semantically continuous block of text, it is disqualified for our
present purposes. This rules out a great number of would-be synonyms.

By requiring multiple attestations, we mean simply to reflect that finding one hit is
not a good enough indicator of the equivalent term’s appropriateness. We look for
two or more hits within the corpus. Our early prototyping showed that this greatly
improved precision, whereas asking for broader attestation (say, three or four
examples) did not substantially increase the eventual precision beyond what was
gained with our double-attestation threshold.

An example of this process can be seen in Table 1, where the query “hotel with
activities for kids” was tested on a major keyword search engine, in several forms.
One will notice very many synonyms in the unaltered WordNet synset (twenty-six),
and then a much shorter list (four) after our contextual processing. This is a 15%
synonym retention rate, for this example. Across forty sample queries, the average
synonym retention rate was 28% (i.e. 76% of synonym candidates were discarded).

For this test, hundreds of search results were manually graded, comprised of the
top twenty results for each of forty sample queries, at four different phases:
unexpanded, expanded but unprocessed, processed with context analysis, and
processed with both context and proper-name analysis.

2.3 Measuring recall
Since recall is difficult to judge when searching the entire Web, and since it is non-
controversial in this case that recall will be improved, only the precision was
measured as a strict percentage, while recall was monitored in relative or “pragmatic”
terms, as the number of new, relevant hits appearing in the top twenty that did not
(and never could) come up on the unaltered query (due to their using different words).
For example, on the aforementioned query, after expansion we found in the top
twenty hits a web page for the Denali Bluffs Hotel, describing a “Tundra Wilderness
Tour” recommended for families with “children” (and no mention of the original
query word “kid”), and we found another web page explaining that the Grand Hyatt in
Beijing has an affiliation with the Imperial Tours Company, offering a “family and
child-oriented luxury tour of China.” In total, four relevant hits in the top twenty
were found that would not have satisfied the original query on a strict keyword-
matching basis, and when viewed against the nineteen relevant hits found originally in
the top twenty, we call this a “relative” increase in recall of 21% (i.e., 4/19).

Across forty sample queries, the average relative increase was higher – about 38%.
However, the increase varied dramatically from a low of 7% (1/14) to a high of 300%
(9/3), and the standard deviation was rather large (.18), suggesting that a larger set of
sample queries should be tested. Granted, this measure is suggestive rather than
precise, but the main point is, expecting recall will generally improve in most cases,
to see if precision can be recovered after query expansion to near the point where it
was before expansion.

67

Table 1. Example of contextual synset analysis of “hotel with activities for kids”

Results of
expanding
with
synonyms

Unexpanded Unprocessed
[full list from
WordNet 2.0]

After
Processing
with context =
[hotel,
activities,
kids]

After
Proper-
Name
Pruning

Synsets N.A. [hotel]
[activity, action,
activeness, bodily
process, body
process, bodily
function, natural
process, natural
action]
[kid, banter,
chaff, child, fry,
jolly, josh,
kidskin, Kyd,
minor, nestling,
nipper, pull leg,
shaver, small fry,
tiddler, tike, tyke,
young goat,
youngster]

[hotel]
[activity]
[kid, child,
jolly, nestling,
youngster]

[hotel]
[activity]
[kid, child,
nestling,
youngster]

Precision
[top twenty
hits]

.95 .60 .90 .95

2.4 Measuring precision
As the following table shows (Table 2), the answer appears to be that context

processing alone cannot quite restore the same level of precision of an unexpanded
query, but when proper-name pruning is added (which could be considered also a type
of context analysis which brings in additional background knowledge, i.e. lists of
established proper names), the answer is Yes.

These results were arrived at by our manually tuning the threshold of the final
confidence score until we simultaneously enjoyed substantial recall improvements
and no loss of precision. Specifically, the final confidence score was normalized on a
0-1.0 scale, and we ended up placing the threshold at 0.68. Precision at this threshold
actually ended up slightly higher than that of unaltered queries, though our goal was
only to preserve it, and the slight increase we won is probably not statistically
significant, given our relatively small sample size.

68

Table 2. Summary of search precision rates of results (top twenty hits)

Original query Not
expanded

Expanded
but not
processed

After
context
processing

After
proper
name
pruning

“hotels with activities
for kids” 95% 60% 90% 95%
“parking near Stratford
Court hotel” 75% 40% 70% 80%
“winter hiking trails in
the Bay area” 95% 55% 85% 90%
“guided tours of caves
in France” 80% 65% 75% 95%
“nightgown with
buttons all the way
down” 35% 40% 60% 65%
“replacement parts for
microwave oven” 70% 50% 65% 65%
“major earthquakes in
Asia” 80% 30% 70% 75%
“conservative criticism
on Bill of Rights” 95% 45% 55% 90%
“missile treaties with
China” 75% 40% 75% 75%
“laws on growing
marijuana in Oregon” 85% 65% 90% 90%
AVERAGE (of the
above 10 queries) 79% 49% 74% 82%
AVERAGE (of all 40
sample queries) 76% 41% 72% 80%

3 A limitation of the approach, and a method of addressing it

The chief limitation of the approach is its computational intensiveness and latency of
results. The user must wait for extensive analysis of the query terms. The system
literally issues many dozens of slightly varying queries and post-processes all the
results, in order to determine the contextually qualified synonyms.

To get around this, we utilized a list of the top queries from a major online search
site, and used it to determine frequently co-occurring query words. We then pre-
processed these word sets for context, and stored them in a “context cache”. When a
new query comes in that matches one of these wordsets (as a subset match), the
cached context is used instantaneously instead of generating the context from scratch.

As of this writing we are not at the point of deploying a run-time system on
enterprise-class servers, and therefore, any measuring of the actual time-savings is not

69

informative or useful. However, a study of the ten queries above showed the
following combinations (Table 3) would have been pre-processed:

Table 3. Pre-seeding context with frequently combined query words

Pre-processed word combinations from a
list of previously inputted user queries
“activities” + “kids”
“hiking” + “trails”
“Bay” + “area”
“missile” + “treaties”
“treaties” + “China”
“laws” + “marijuana”

The word combinations in Table 3 account for 11 of 39, or 28%, of the content words
(i.e. words kept after “stop words” were discarded) across the first ten sample queries,
and suggests that a substantial real-time savings could be won through pre-seeding the
context base. There is no reason not to suppose that a larger collection of query word
combinations would lead to an even greater match rate between the pre-established
context base and the stream of incoming, novel queries.

3.1 Matching Context and Situation

There is one complication of using the clever trick of pre-seeding a context base: it
now becomes non-trivial to match a stored context with a novel, incoming search.
For we are seeking to save computation time by finding one or more partial matches.
Note in Table 3 the occurrence of both [“missile” + “treaties”] and [“treaties” +
“China”], which intersect in respect of the word “treaties.” In this case, we take the
intersection (not the union) of the synonyms in the context base for these two vectors,
which is the more conservative approach for guarding precision.

It is informative in this regard to examine what a context vector in the context base
really means in practical terms. To take our familiar example, one set of vectors
produced from our tests recommends to us that :

1. “Kids” in the context of “hotel” is likely to mean the same as any of
“children, youngster, infant, nestling” would mean in the same context, and
each of these latter words is not likely to mean anything other than “kid” in
that same context.

2. “Kid” in the context of “activity” is likely to mean the same as any of
“children, youngster, tiddler, infant, jolly” would mean in the same context,
and each of these latter words is not likely to mean anything other than “kid”
in that same context.

3. Taking “kid” in the presence of both “hotel” and “activity”, it is likely to
mean the same as any of “children, youngster, infant” (the intersection of the
previous two lists) – and likewise, these latter words are not likely to mean
anything besides “kid” in the same context (i.e. the context of “hotel” and
“activity”).

70

Note that the intersection of these vectors in line 3, above, does not produce exactly
the same list of final synonyms as our direct approach did earlier, but it is rather close,
and has the benefit of eliminating a good deal of real-time latency for the user. We
presume that a large context base of such vectors, easily joinable, could prove useful
to many applications in the areas of information retrieval and presentation, including
but not limited to our general search application.

3.2 Forthcoming work
Our further development involves using meta-tags and ontological classification

information that is embedded in many of the search documents, to further refine the
assignment of context. This is why we speak of matching the context to the
“situation” rather than merely to the “query”; the user’s profile and session history are
also additional clues to the selection of the appropriate synonym context. In view of
this fact, we call the combination of the query along with the user’s profile and
history, the “situation” of a query. We also hope to run tests on larger sets of sample
queries and on some additional standard test data, such as TREC.

4 Conclusion

Representing a “synonym context” as the subset of possible synonyms which are
multiply attested in the presence of contextual query words in semantically
continuous segments of the source documents, has been shown to be a powerful
technique for increasing recall of keyword searches without a loss in the final
precision of the search. The increased computation that is required can be at least
partly reduced by pre-seeding the process with a “context base” of the pruned synsets
of frequently co-occurring query words. Additional clues from the overall situation of
the query (e.g. the user’s interest profile and ontological navigation history) may
enable the precision to reach an even higher level in subsequent stages of this project.

References

Agirre, E. and Martinez, D. Exploring automatic word sense disambiguation with decision lists
and the Web. In Procedings of the COLING 2000 Workshop on Semantic Annotation and
Intelligent Content. Saarbrcken, Germany (2000)

Bruce, R. and Weibe, J. Word-sense disambiguation using decomposable models.
Proceedings of the 32nd Annual Meeting of the Association for Computational Linguistics,
139-146. (1994)

Hearst, M. Texttiling: Segmenting text into Multi-Paragraph Subtopic Passages.
Computational Linguistics 23(1): 33-64. (1997)

Ramakrishnan, G., Prithviraj, B., Deppa, A., Bhattacharya, P., and Chakrabarti, S. Soft Word
Sense Disambiguation. In Proceedings of the Second International WordNet Conference –
GWN 2004, 291-298. Masaryk University Brno, Brno, Czech Republic, December (2003).

Yarowsky, D. Unsupervised word sense disambiguation rivaling supervised methods,
Proceedings of the 33rd Annual Meeting of the Association for Computational Linguistics,
189-196. (1995)

71

