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Abstract. Information retrieval applications utilizing equivalent terms (e.g. 
synonyms, alternative spellings. expansions of acronyms and abbreviations), 
face the problem that the appropriateness of polysemous candidate terms cannot 
be known a priori. This paper describes a method of utilizing the context of the 
query words in order to provide a clue to selecting, from among the possible 
equivalent terms, the ones that have a higher utility, where utility is defined as 
likeliness to improve recall while preserving precision. A method of “seeding” 
the system with thousands of potential contextual relations enables a rapid run-
time assignment of context to the user’s present query.  The result is the 
broadening of retrieval through equivalent terms, without the typical 
concomitant decrease in precision.1

1. Introduction 

One of the main problems in keyword searches is that of missing relevant documents 
wherein the relevant information is expressed in different words entirely than were 
entered in the original query.  Granted, for simple searches with very popular words, 
and where relevant information is plentiful, this is not much of a problem (e.g. as of 
this writing, the queries “San Francisco weather” and “Brittney Spears photos,” when 
entered on any major Internet keyword search engine, yield plentiful, relevant results 
on the basis of an exact keyword match) but for longer queries, and searches where 
the relevant phrasing is hard to predict, it can be a nightmare.   

Examples of the questions that arise in this predicament are: How can a search 
engine recognize where there are synonymous words for the query words, e.g. that 
“mother-daughter matching sleeping gowns” matches “adult-child coordinated night 
gown set”? How can a search engine recognize that “hotel room with a view of the 
Golden Gate Bridge” matches “suite that provides a panorama of the entire Bay Area 
skyline?”  

                                                          
1 The software described herein is the subject of patents pending with the USPTO on behalf of 

TextDigger, Inc.
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1.1 Conventional approaches to the problem of missed candidates 

Probably the most straightforward approach to take is to automatically add synonyms 
to a query.  This is easily done by simple look-ups in a machine readable thesaurus or 
WordNet.  Why not just add all the synonyms automatically (or at least the most 
common ones), and then search for all of them at once?  Unfortunately, this approach 
encounters some very big roadblocks. 

1.1.1 The problems in the attempted solution 
There are several problems in auto-adding synonyms to queries: 

1. Words have many different senses 
2. Words have many synonyms in each sense 
3. Worst of all: most synonyms themselves have other senses which are not

synonymous with the original word. 
For example, while “bank” can mean the turning of an aircraft, the word “turn,” 

also has other senses (such as in “it’s your turn” or “the turn of the century”, etc.) 
which have nothing to do with any of the senses of “bank.” 

This means that automatically adding all the synonyms of every query term, 
usually creates more irrelevant hits, not fewer.  While the synonyms do give the 
benefit of enabling the search engine to find more relevant information, that effect is 
overshadowed by the creation of a mountain of additional, irrelevant search results. 
In other words, while increasing recall, it destroys precision.  

We should then suppose that the better thing to do, if at all possible, would be to 
tackle the problem of word sense disambiguation head on, because then we might 
have a better chance of picking the synonyms that are appropriate.  Research in word 
sense disambiguation has had substantial results, but we must examine the 
applicability of lexical WSD to search.   

1.1.2 Conventional Methods of Word Sense Disambiguation (WSD) 
Conventional methods of word sense disambiguation generally proceed along the 

following lines: 
1. Manually sense-tagging a large corpus (marking each word as to its 

canonical sense).  One will use most of this data as the “training data” while 
saving a minority portion for the “testing data.” 

2. Using the training data, for each sense of each word, extract contextual 
features (e.g. record which words are found frequently occurring next to, or 
in the same sentence as, or within n words distance of the target word). 

3. Determine common patterns in the contextual features (e.g. apply any 
standard machine learning algorithm, whether that be neural nets, or case-
based reasoning, or genetic classifiers, or whatever) to enable classification 
among several senses of a word, and validate the classifier on the testing 
data.

After the foregoing project is completed, then based on the determined patterns (or 
feature value-sets, or derived rules concerning them), new occurrences of words 
(given a surrounding context, i.e. the text before and/or after the word) can be 
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assigned a guess, or a probability, of having certain senses, i.e. be classified according 
to their canonical sense. 

A considerable amount of research and debate has surrounded steps 2 and 3 of this 
process, and it is no doubt fruitful to investigate and optimize these phases.  However, 
for our present purposes, what is remarkable is that almost all of the conventional 
methods of WSD agree on Step 1.  A large set of manually tagged training data is 
presumed in the vast majority of methods attempted in word sense disambiguation – it 
is the point of departure for the various competing methods.  This mere fact, by itself, 
presents the biggest limitation for search applications. 

1.1.3 Limitations of Conventional WSD 
The need to manually tag a corpus containing numerous example sentences for each 
word in a variety of contexts, presents not one but several problems to the designer of 
an open-ended search application2:

1. The manual labor cost, in number of hours, is mind-boggling.  It can require 
several person-months to manually tag the several thousand example 
sentences that are required as training data for disambiguating one single 
word in the English language as an example of an algorithm.   

2. The labor in question is not just any sort of labor, but linguistically trained 
labor.  The tagging must be performed by those who understand grammar, 
parts of speech and canonical word senses, and are very literate.  This skill 
requirement extends far beyond that of the worker typically employed to do 
standard data processing.   

3. Many word senses simply do not have enough examples in the corpus, to 
provide a sufficient baseline for subsequent disambiguation, even if the data 
were all tagged. 

4. Given that for a search application, what is to be disambiguated is a query 
word, and since queries are usually short (four words or less), there is not 
enough context for most WSD methods to perform their analysis. 

Given these formidable roadblocks to scalable WSD for generalized search 
applications, we have sought an alternative approach to distinguishing those among 
numerous synonyms or equivalent terms that are most appropriate to a given query. 
This method utilizes the text corpus and the history of past queries, on an automated 
basis, and does not require manually tagged training data.  We will now describe this 
method in greater detail. 

2 An Alternative Approach 

The essence of the TextDigger approach is to determine, before the actual keyword 
search, which equivalent terms are most likely to preserve precision while increasing 

                                                          
2 For an example of the type of approach here described, see (Bruce and Weibe 1994).  There 

are also a few WSD systems that do not require manual tagging of training data, such as 
(Yarowsky 1995), but they still have limitations (such as recognizing only canonical senses), 
and they typically do not address problems 3and 4 on this list.  
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recall.  The chief features of the approach being discussed here, are (1) to assign a 
prior probability to every WordNet synonym reflecting its probability of having 
indeed the same sense as the original word and (2) to determine which of the various 
potential equivalent terms, when substituted one at a time in the context of the 
remaining, unaltered query terms, yields multiple hits in semantically continuous 
segments of the hit documents.  A final contextual synonymy confidence score is then 
determined as a function of both these measures.   

In addition to requiring that candidate synonyms pass a threshold on this score, 
they are subjected also to an absolute requirement of multiple contextual attestations 
in the source documents.  Only those equivalent terms that meet these conditions are 
deemed to “pass” with regard to the context represented by the other terms in the 
original query.  The hope is that some meaningful subset of query terms will pass this 
test, which are far more likely to preserve precision when used together in a 
disjunctively expanded query, than would be the case with the entire, unaltered set of 
potentially equivalent terms. 

2.1 Related work 
Our approach is similar in some ways to (Ramakrishnan, 2003) in that it does not “pin 
down” a single word sense for every query term, but involves rather the demoting of 
certain senses while qualifying others as more viable, and thus can be seen as a “soft” 
WSD.  It differs however in the manner in which the probabilities of each word sense 
are calculated, and also in its granularity, as our method assigns scores not at the level 
of WordNet senses, but at the level of every synonym within each sense.   

In other ways, our approach is similar to that of (Agirre and Martinez, 2000) in that 
it uses the Web as a resource to help automate the disambiguation task.  However, our 
analysis of Web content is more intensively concerned with the context of co-
occurring query words (and their candidate synonyms), and does not employ a 
Bayesian network, but rather a context validation model that combines statistical and 
rule-based approaches as described herein. 

2.2 Outline of method 
By “prior probability” we mean the probability of relevance of a candidate synonym, 
based purely on (1) the distribution of senses listed in WordNet, and (2) the bias of 
our application as to part-of-speech (POS), but without any reference yet to the actual 
source documents.  We calculated this prior probability for a word by examining its 
sense numberings in all four parts-of-speech in WordNet, and giving each one a 
weighting inversely proportional to the longest sense-depth, e.g. where the largest 
number of senses in any POS was 6, the 6th sense was weighted a 1, and the 1st sense 
in every POS was weighted 6 (even in a POS having less than 6 senses).  We then 
scored each sense of each POS as a function of this sense weight divided by the total 
of all sense weights across all POS.  We then factored this against both an internal and 
external POS-bias.  The “internal POS bias” is the one derivable from WordNet by 
counting to see which POS has the most senses listed, and calculating a proportional 
bias accordingly.  The “external POS bias” comes from a usage profile of our search 
application, showing that users most frequently search for nouns, and least frequently 
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for adverbs, with the frequency of their searching for verbs and adjectives falling in 
the middle.    

By “semantically continuous” segments of text we mean the standard approach 
within NLP (e.g. Hearst 1997) of checking semantic distance between content words 
in contiguous text blocks, and noticing when there is a marked shift in semantic 
space.  If the substitute term is found together with the original query terms in the text 
corpus, but not in a semantically continuous block of text, it is disqualified for our 
present purposes.  This rules out a great number of would-be synonyms. 

By requiring multiple attestations, we mean simply to reflect that finding one hit is 
not a good enough indicator of the equivalent term’s appropriateness.  We look for 
two or more hits within the corpus.  Our early prototyping showed that this greatly 
improved precision, whereas asking for broader attestation (say, three or four 
examples) did not substantially increase the eventual precision beyond what was 
gained with our double-attestation threshold. 

An example of this process can be seen in Table 1, where the query “hotel with 
activities for kids” was tested on a major keyword search engine, in several forms. 
One will notice very many synonyms in the unaltered WordNet synset (twenty-six), 
and then a much shorter list (four) after our contextual processing.  This is a 15% 
synonym retention rate, for this example.  Across forty sample queries, the average 
synonym retention rate was 28% (i.e. 76% of synonym candidates were discarded). 

For this test, hundreds of search results were manually graded, comprised of the 
top twenty results for each of forty sample queries, at four different phases: 
unexpanded, expanded but unprocessed, processed with context analysis, and 
processed with both context and proper-name analysis.   

2.3 Measuring recall 
Since recall is difficult to judge when searching the entire Web, and since it is non-
controversial in this case that recall will be improved, only the precision was 
measured as a strict percentage, while recall was monitored in relative or “pragmatic” 
terms, as the number of new, relevant hits appearing in the top twenty that did not 
(and never could) come up on the unaltered query (due to their using different words). 
For example, on the aforementioned query, after expansion we found in the top 
twenty hits a web page for the Denali Bluffs Hotel, describing a “Tundra Wilderness 
Tour” recommended for families with “children” (and no mention of the original 
query word “kid”), and we found another web page explaining that the Grand Hyatt in 
Beijing has an affiliation with the Imperial Tours Company, offering a “family and 
child-oriented luxury tour of China.”  In total, four relevant hits in the top twenty 
were found that would not have satisfied the original query on a strict keyword-
matching basis, and when viewed against the nineteen relevant hits found originally in 
the top twenty, we call this a “relative” increase in recall of 21% (i.e., 4/19).

Across forty sample queries, the average relative increase was higher – about 38%. 
However, the increase varied dramatically from a low of 7% (1/14) to a high of 300% 
(9/3), and the standard deviation was rather large (.18), suggesting that a larger set of 
sample queries should be tested.  Granted, this measure is suggestive rather than 
precise, but the main point is, expecting recall will generally improve in most cases, 
to see if precision can be recovered after query expansion to near the point where it 
was before expansion.   
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Table 1. Example of contextual synset analysis of “hotel with activities for kids” 

Results of 
expanding 
with 
synonyms 

Unexpanded Unprocessed
[full list from 
WordNet 2.0] 

After
Processing 
with context = 
[hotel, 
activities, 
kids] 

After
Proper-
Name 
Pruning 

Synsets  N.A. [hotel]  
[activity, action, 
activeness, bodily 
process, body 
process, bodily 
function, natural 
process, natural 
action] 
[kid, banter, 
chaff, child, fry, 
jolly, josh, 
kidskin, Kyd, 
minor, nestling, 
nipper, pull leg, 
shaver, small fry, 
tiddler, tike, tyke, 
young goat, 
youngster] 

[hotel] 
[activity] 
[kid, child, 
jolly, nestling, 
youngster] 

[hotel] 
[activity] 
[kid, child, 
nestling, 
youngster] 

Precision
[top twenty 
hits] 

.95 .60 .90 .95

2.4 Measuring precision 
As the following table shows (Table 2), the answer appears to be that context 

processing alone cannot quite restore the same level of precision of an unexpanded 
query, but when proper-name pruning is added (which could be considered also a type 
of context analysis which brings in additional background knowledge, i.e. lists of 
established proper names), the answer is Yes. 

These results were arrived at by our manually tuning the threshold of the final 
confidence score until we simultaneously enjoyed substantial recall improvements 
and no loss of precision.  Specifically, the final confidence score was normalized on a 
0-1.0 scale, and we ended up placing the threshold at 0.68.  Precision at this threshold 
actually ended up slightly higher than that of unaltered queries, though our goal was 
only to preserve it, and the slight increase we won is probably not statistically 
significant, given our relatively small sample size. 
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Table 2. Summary of search precision rates of results (top twenty hits) 

Original query Not 
expanded

Expanded
but not 
processed

After
context 
processing 

After
proper
name 
pruning 

“hotels with activities 
for kids” 95% 60% 90% 95%
“parking near Stratford 
Court hotel” 75% 40% 70% 80%
“winter hiking trails in 
the Bay area” 95% 55% 85% 90%
“guided tours of caves 
in France” 80% 65% 75% 95%
“nightgown with 
buttons all the way 
down” 35% 40% 60% 65%
“replacement parts for 
microwave oven” 70% 50% 65% 65%
“major earthquakes in 
Asia” 80% 30% 70% 75%
“conservative criticism 
on Bill of Rights” 95% 45% 55% 90%
“missile treaties with 
China” 75% 40% 75% 75%
“laws on growing 
marijuana in Oregon” 85% 65% 90% 90%
AVERAGE (of the 
above 10 queries) 79% 49% 74% 82%
AVERAGE (of all 40 
sample queries) 76% 41% 72% 80%

3 A limitation of the approach, and a method of addressing it 

The chief limitation of the approach is its computational intensiveness and latency of 
results.  The user must wait for extensive analysis of the query terms.  The system 
literally issues many dozens of slightly varying queries and post-processes all the 
results, in order to determine the contextually qualified synonyms.   

To get around this, we utilized a list of the top queries from a major online search 
site, and used it to determine frequently co-occurring query words.  We then pre-
processed these word sets for context, and stored them in a “context cache”.  When a 
new query comes in that matches one of these wordsets (as a subset match), the 
cached context is used instantaneously instead of generating the context from scratch.  

As of this writing we are not at the point of deploying a run-time system on 
enterprise-class servers, and therefore, any measuring of the actual time-savings is not 
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informative or useful.  However, a study of the ten queries above showed the 
following combinations (Table 3) would have been pre-processed: 

Table 3. Pre-seeding context with frequently combined query words 

Pre-processed word combinations from a 
list of previously inputted user queries 
“activities” + “kids” 
“hiking” + “trails” 
“Bay” + “area” 
“missile” + “treaties” 
“treaties” + “China” 
“laws” + “marijuana” 

The word combinations in Table 3 account for 11 of 39, or 28%, of the content words 
(i.e. words kept after “stop words” were discarded) across the first ten sample queries, 
and suggests that a substantial real-time savings could be won through pre-seeding the 
context base.  There is no reason not to suppose that a larger collection of query word 
combinations would lead to an even greater match rate between the pre-established 
context base and the stream of incoming, novel queries. 

3.1 Matching Context and Situation 

There is one complication of using the clever trick of pre-seeding a context base: it 
now becomes non-trivial to match a stored context with a novel, incoming search. 
For we are seeking to save computation time by finding one or more partial matches. 
Note in Table 3 the occurrence of both [“missile” + “treaties”] and [“treaties” + 
“China”], which intersect in respect of the word “treaties.”  In this case, we take the 
intersection (not the union) of the synonyms in the context base for these two vectors, 
which is the more conservative approach for guarding precision.   

It is informative in this regard to examine what a context vector in the context base 
really means in practical terms.  To take our familiar example, one set of vectors 
produced from our tests recommends to us that : 

1. “Kids” in the context of “hotel” is likely to mean the same as any of 
“children, youngster, infant, nestling” would mean in the same context, and 
each of these latter words is not likely to mean anything other than “kid” in 
that same context.  

2. “Kid” in the context of “activity” is likely to mean the same as any of 
“children, youngster, tiddler, infant, jolly” would mean in the same context, 
and each of these latter words is not likely to mean anything other than “kid” 
in that same context.  

3. Taking “kid” in the presence of both “hotel” and “activity”, it is likely to 
mean the same as any of “children, youngster, infant” (the intersection of the 
previous two lists) – and likewise, these latter words are not likely to mean 
anything besides “kid” in the same context (i.e. the context of “hotel” and 
“activity”). 
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Note that the intersection of these vectors in line 3, above, does not produce exactly 
the same list of final synonyms as our direct approach did earlier, but it is rather close, 
and has the benefit of eliminating a good deal of real-time latency for the user. We 
presume that a large context base of such vectors, easily joinable, could prove useful 
to many applications in the areas of information retrieval and presentation, including 
but not limited to our general search application. 

3.2 Forthcoming work 
Our further development involves using meta-tags and ontological classification 

information that is embedded in many of the search documents, to further refine the 
assignment of context.  This is why we speak of matching the context to the 
“situation” rather than merely to the “query”; the user’s profile and session history are 
also additional clues to the selection of the appropriate synonym context.  In view of 
this fact, we call the combination of the query along with the user’s profile and 
history, the “situation” of a query.  We also hope to run tests on larger sets of sample 
queries and on some additional standard test data, such as TREC. 

4 Conclusion 

Representing a “synonym context” as the subset of possible synonyms which are 
multiply attested in the presence of contextual query words in semantically 
continuous segments of the source documents, has been shown to be a powerful 
technique for increasing recall of keyword searches without a loss in the final 
precision of the search. The increased computation that is required can be at least 
partly reduced by pre-seeding the process with a “context base” of the pruned synsets 
of frequently co-occurring query words.  Additional clues from the overall situation of 
the query (e.g. the user’s interest profile and ontological navigation history) may 
enable the precision to reach an even higher level in subsequent stages of this project. 
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