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Abstract

We review several kinds of previously studied concept similarity mea-
sures, and then rephrase them in terms of a simple DL. We discuss the
difficulties encountered in trying to generalize these formulations to more
complex DLs, and settle on one based on probability/information theory
as being the most principled.

1 Motivation and Goals
The idea of measuring concept similarity has received considerable attention
in several domains, including psychology, cognitive science, and computational
linguistics and information retrieval. This work has been applied and extended
recently in the field of Information Integration, which often relies on ontologies
and hence concepts described in DLs. Most past work has concentrated on the
similarity of “atomic” concepts (word senses), rather than composite, defined
concepts, which are the stock-in-trade of DLs. This has sometimes been char-
acterized as the difference between considering nouns appearing in a dictionary,
e.g. WordNet, and general arbitrary noun phrases.

The modest goal of this paper is to consider the problem of generalizing pre-
vious efforts to define similarity for primitive concepts to composite ones. To
this end, we review three classes of approaches found in the current literature,
rephrase them in terms of a very simple description logic, and then try to gen-
eralize this to a complex DL. These extensions invite a host of new questions
that we leave open for further research.

To begin with, we make several observations about possible real-valued func-
tion(s) sim(C, D) that would measure concept similarity in general. First, any
effort to assess simlarity via absolute numeric values seems ill-advised — in small
experiments even human judgments have been shown to correlate only in the
.91 to .94 range. A less exacting target is to use sim to provide relative order-
ings over concepts. Some researchers have studied a complementary measure,
distance dist(C, D), which can similarly be used for ordering alternatives. To



the extent that two functions provide similar orderings (e.g., consistently differ-
ing by a constant factor) they are essentially indistinguishable for our purposes.
Nonetheless, there are two important general properties that are widely agreed
to be desirable for sim(C, D):

1. sim(C, D) is positively correlated with the amount of commonality be-
tween C and D.

2. sim(C, D) is negatively correlated with the amount of difference between
C and D.

The key question then becomes how to measure “commonality”; in turn, this is
related to how information about the concept is captured.1

2 Three approaches to concept similarity
Clearly, in order to compare concepts we need to consider what information we
have available about them. We follow Rodriguez [14] in categorizing a variety
of approaches, and for each we give a few of the best known functions, which we
shall follow.

Feature-based Models In this approach, a concept C is characterized by a
a set of features ftrs(C).

In his pioneering work on similarity, the psychologist Amos Tversky [16] in-
troduced two families of measures: the “contrast model”, where the similarity
of C and D is a linear function: contrasttv(C, D) = θf(ftrs(C) ∩ ftrs(D)) −
αf(ftrs(C) \ ftrs(D))− βf(ftrs(D) \ ftrs(C)), where \ is set difference, θ, α, and
β are non-negative constants, and where f(.) is often taken as the count of fea-
tures in the set (written |.|). Tversky also proposed a normalized “ratio model”,
where similarity is a fraction involving these sets:

simtv(C, D) =def

f(ftrs(C) ∩ ftrs(D))

f(ftrs(C) ∩ ftrs(D)) + αf(ftrs(C) \ ftrs(D)) + βf(ftrs(D) \ ftrs(C))

In cases where asymmetry of similarity is not desired (as in this paper), we
can normalize things, and assume α = β = 0.5. Under the assumption that
f is distributive over disjoint sets (f(V ∪ W ) = f(V ) + f(W )), simtv is more
commonly written as

simtv(C, D) =def
2× f(ftrs(C) ∩ ftrs(D))

f(ftrs(C)) + f(ftrs(D))

1Other properties, such sim(C,D) being a metric have been hotly contested, and will not
be explicitly considered here.



Semantic-network based models In this approach, background information
is provided in the form of a semantic network involving concepts and at least is-a
edges. Sometimes more complex relationships are considered (as in WordNet).

Similarity measures in this setting usually involve measuring path lengths in
the network. In particular, one of the earliest and best known is the proposal by
Rada et al [12], which locates the most specific is-a ancestor node E=msa(C,D)
of C and D, and then defines their similarity as the length of the path from C
to E plus the length of the path from D to E.2 More recent proposals also take
into account the depth of msa(C,D) (in order to apply principle 2), the density
of edges at nodes, and possibly edge weights.

Information-content based models In this case we have available both
a semantic network, and also information pr(C) about the probability of an
individual being described by a specific concept/word C. (Such a probability
is usually estimated from some task-specific corpus.) Resnick [13] focused on
E=msa(C,D) as the representative of the similarity of C and D, but suggested
that pr(E) is a better basic measure than the depth of the concept in the Is-A
hierarchy, since it is not affected by later changes to the hierarchy. Resnick went
on to show that rather than using the probability pr(E), one obtains results
that correlate better with human judgments by using as a similarity measure
information content

simres(C, D) = IC(E) =def − log pr(E)

Jiang and Conrath [6] proposed a more refined measure of distance com-
pensating for factors like concept depth and density, but a simplified version of
this formula dealing only with IC extends Resnick’s measure by also satisfying
Property 2:

distjc(C, D) =def IC(C) + IC(D)− 2× IC(msa(C, D))

Lin [10] derived mathematically from 6 basic axioms (some about the proposed
properties of similarity, some about the form of the function) the related formula

simlin(C, D) =def
2× IC(msa(C, D))

IC(C) + IC(D)

In general, when specific similarity measures are proposed, they are exper-
imentally compared with human judgments of similarity and other, previously
proposed measures. The recent popularity of IC-based similarity measures is
indicated by papers such as [4], which finds distjc empirically best on a spelling
correction task, and [11], which uses simres and the gene ontology GO.

2Both here and below, we only consider the simple case where the semantic net is a tree,
so that E is unique.



3 Specifying similarity for descriptions
We now propose to take a very simple DL, A, involving only conjunction, and
show how each of the above measures can be applied to it. The important point
is that one can then consider what it would take to extend each approach when
the DL was generalized from A to something more complex.

The DL A allows conjunction of concepts, which can be atomic or defined in
an acyclic T-box using expressions of the form D := C1u . . .. We will use A and
B for atomic concepts, and C and D for possibly more complex expressions or
named defined concepts.

This language admits a simple structural subsumption algorithm, where the
normal form nf(C) of a concept C is the set of atoms appearing in its definition,
and CvD is decided by testing whether nf(C) ⊆ nf(D).

Reformulation in A For the feature model, we will view features as atomic
concepts, and then an ordinary concept is just the conjunction of its features.
A simple, but important, observation is that set intersection and difference of
the atom sets corresponds, at least in this simple case, to computing the least
common subsumer[5, 8] and concept difference [18, 3] in A. As a result, we can
translate into DL notation Tversky’s measures as follows:

contrasttv(C, D) =def f(lcs(C, D))− 0.5f(diff(C, D))− 0.5f(diff(D, C))

simtv(C, D) =def
2× f(lcs(C, D))

2× f(lcs(C, D)) + f(diff(C, D)) + f(diff(D, C))

Recall that normally in this case f is taken as the count of (possibly weighted)
features, in this case atomic concepts.

In the case of a semantic network model, we will perform a well-known encod-
ing: whenever node F in the network has is-a parent nodes G1, . . . , Gn, introduce
atomic concept F ∗, and now define concept F as F := F ∗uG1u . . .uGn. In the
resulting T-box, the defined concepts have the same subsumption hierarchy as
the original corresponding nodes in the semantic network; moreover, if in the
original network there was a path U1, U2, . . . Un = > to the root of the is-a hier-
archy then the normal form of U1 in the new DL is nf(U1) = U∗

1uU∗
2u . . .uU∗

n−1.
In other words, if the network was a tree, then | nf(C) | is the length of the path
from U1 to the root. Since the paths from C and D to the root first intersect at
msa(C,D), which once again is the same as lcs(C,D), we get

distrada(C, D) =def | C | + | D | − 2× | lcs(C, D)) |

where | X | measures the cardinality of the normal form of X.
For the IC models, notice again the parallel between msa(C,D) in a semantic

net and lcs(C,D) in a DL, so translating IC measures to A yields:

distjc(C, D) =def IC(C) + IC(D)− 2× IC(lcs(C, D))



simlin(C, D) =def
2× IC(lcs(C, D))

IC(C) + IC(D)

Generalizing beyond A Let us consider what obstacles we face if we want
to extend the above three kinds of approaches to a more complex DL. On the
positive side, notions such as lcs are available in arbitrary DLs; therefore we can
focus on applying the various measures beyond simple atomic names.

In feature based models, the key issues are what counts as a feature, and
what are valid decompositions into features. In a propositional DL, one might
take minimal disjunctive normal form, and count literals; but it is much less clear
what to do with terms constructed using roles. For example, if (atleast 3 R),
(atleast 4 R) and (atleast 9 R) each count as a single feature, how would one
account for the fact that the first and second would be judged to be more
similar than the second and the third? And what should one do about nested
role restrictions: ∀R.∀R.A vs. ∀R.A? Clearly, more information is required
concerning the salience of roles, and how to combine such measures in the cases
of enumenration and nesting to produce a legitimate measure of feature set
“size” .

Similarly, in network-based measures, such as distrada, a key problem is that
of assigning a useful size for the various concepts in the description. To elucidate
the difficulties, we note that in the one paper [17] we have found which tried to
address similarity in a DL involving atoms, conjunctions, and existential restric-
tions (AE), the concepts were converted to a graph and at least three metrics
evaluating the size of the lcs were explored, including the sum of the length of the
role paths, the number of roles from the root, and the number of roles bearing
value restrictions; none of these performed well. This arbitrariness in choosing
a size measure for complex concepts appears to be a substantial obstacle to this
approach. Once again, we require some mechanism for measureing size beyond
what is available in the pure structural form.

In such situations, information content appears to provide a much more
sensible basis for the size measure. Essentially, we wish to allow the IC of
complex concepts to drive our notions of component salience and allow the laws
of probability in a given domain to govern the combination of these weights into
a proper measure of “size”. Most interestingly, this results in exactly the IC-
based measures of similarity in certain simple cases. In order to use an IC-based
approach, we need however to be able to estimate the probability pr(C) of an
object being an instance of an arbitrary concepts C.

Originally, with what we now see as atomic concepts, probabilities were
estimated from large text corpora. For more complex DLs, we could obtain
estimates from databases whose semantics are modeled by concepts and roles
of the DL we are considering. For example, if we could define a view over the
database for every primitive role and concept, then [2] shows how to translate



any complex DL concept C into an SQL query QC , which returns tuples for
all its instances. The count of such tuples, relative to the total number of
possible individuals, yields the desired statistic. Moreover, as suggested to us by
Alon Halevy, query optimizers maintain statistics about database contents which
allow them to estimate query size, including number of tuples, without actually
running the query. So one could obtain appropriate probability estimates quite
quickly.

More accurate information about probabilities would have to come from an
ontology which actually provides this kinds of information. Bacchus [1] proposed
using a probability distribution over the domain of interpretation ∆ as semantics
for probability statements concerning FOL formulas with free variables. P-
Classic [7] instantiated this scheme more congenially for DLs, using Bayes nets
and provides algorithms for computing pr(C) for arbitrary descriptions for the
subset of Classic it considers, and claims that extensions are easily found for more
complex DLs. Therefore, the empirical success of IC-based similarity measures
on simple concepts, and the existence of a theory for P-Classic indicates that
among the choices considered here the best solution to our original problem – to
find the similarity of complex descriptions – relies on using IC-based similarity
measures backed up by a P-Classic like ontology, which provides information
about the probabilities of objects satisfying properties described by concepts.

4 Applying simplifying estimates
Unfortunately, developing full P-Classic ontologies, such as those illustrated in
[7], is likely to be a difficult task. More realistically, existing ontologies, such
as WordNet will probably be annotated with rough probabilistic estimates, and
drastic assumptions of independence will be made in order to guide appropriate
measures of IC.

For example, suppose we assume that every individual belongs to atomic
concept A with probability p, and that membership in atomic concepts is inde-

pendent. Then if C := A1u . . .uAn, it is easy to see that pr(C) = p| C |, and
hence IC(C) = | C | × (−log p), where the second factor can be treated as a
constant. As a result, it is easy to prove the following

Theorem 4.1 For the logic A, and with the above uniform independence as-
sumption, simlin(C, D) = simtv(C, D). Also, the measures distjc, distrada, and
contrasttv with θ = 0 and α = β = 1

2
, f(.) = | . | are within a constant factor of

each other.

In the presence of roles, we can again radically simplify P-Classic, and con-
sider a semantics where the probability of role R having exactly k fillers is
qk(1− q), for some 0 ≤ q ≤ 1. (Conceptually, this corresponds to tossing a coin
with probability of heads q in order to decide if the role has more fillers; these



probabilities add to 1, as needed.) And we assume that for every individual x,
the properties of role fillers are independent of each other and of x.

Consider now a description such as ∀R.D. According to the semantics, an
individual will have exactly k role fillers of type D with probability qk(1− q)×
pr(D)k. Therefore pr(∀R.D) is the sum of this geometric series, reducing to
pr(∀R.D) = (1 − q)/(1 − q × pr(D)). This formula can be used recursively
to compute the probability, hence IC, of nested ALL-descriptions once we can
estimate a value for q, or even for (1− q)/(1− q× pr(A0)), for some concept A0,
where pr(A0) has been estimated. A significant open problem in our research
agenda is how such information can be obtained from available data.

Our model of similarity also can be used to approach, though not necessarily
decide, questions such as how differences in concept structure might impact con-
cept similarity. For example, consider the series dist(B,BuA), dist(B, Bu∀R.A),
dist(B,Bu∀R.∀R.A),. . . , which one might argue should become smaller since
more deeply nested restrictions ought to represent smaller differences. Using
distjc, the only thing varying is the series IC(A), IC(∀R.A), IC(∀R.∀R.A), . . . .
Interestingly, it can be shown that this series decreases or increases asymptot-
ically depending on whether q(1 + p) is > 1 or < 1, so that there is in fact no
single, probability independent answer.

Finally, note that, as in P-Classic, it is not valid to compute pr( (atleast 3 R)
u(atmost 5 R)) as the product of pr((atleast 3 R)) and pr((atmost 5 R))
since the cases they cover are not exclusive. Therefore the concepts need to
be considered in a normal form where all information about role R is in a sin-
gle component, which is in some sense the structural normal form required for
computing similarity.

5 Summary
There are literally dozens of proposals for similarity measures, and we could have
tried to carry out the same program for each as we did here. For example [9]
examines over 10 different non-linear combinations of properties such as depth
and path length in WordNet, as well as Information Content, and after 5,000
hours of computation produces a formula that correlates well with the results
of human experiments involving 56 words [15]. In trying to find a direction for
measuring similarity of complex descriptions in DLs, we considered a few of the
best known previous measures and tried to apply them to DLs. This is just a
beginning. To some extent, our success stems from transforming the original
problem into one of finding estimates for probabilities, and thereby intimately
tying the similarity of descriptions not just to their structure but also their
distribution in the real world. Numerous other problems have been left open,
including dealing with non-tree IsA hierarchies, as well as experimental evalua-
tion of similarity functions applied to noun phrases (as examples of composite
concepts).
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