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Abstract— Frameworks for context-aware services in a 

ubiquitous computing environment have been developed so far to 
allow the application services in the environment to monitor a 
sequence of patterns in user behavior as well as to manage the 
aggregated user profiles in one server. However, it is a great 
burden for the whole environment to attend to the individual 
desires of the users. Thus, we propose a user profile management 
framework in which the user’s desires, needs, and preferences for 
services are managed through a wearable personal station, a 
terminal device worn by users. We exploit service-specific user 
preferences by describing them as context to provide personalized 
services. Also, we dynamically update the preferences by learning 
them. The details such as service properties or contents can be 
adaptively changed according to the learning results. The 
proposed framework can be widely exploited for 
ubiComp-enabling applications which require the interaction 
between a user and an environment. Moreover, it may support 
personalized services while ensuring user’s privacy. 
 

Index Terms— context-aware, learning, personalized service, 
user profile 

I. INTRODUCTION 
arious kinds of context information are flowing in 

ubiquitous or wearable computing environments with a 
wide range of networking, computing, and distributed contents 
and services. Over the last few years, research activities on 
context and context-aware have been reported [1]. In these 
researches, there have been mentioned several kinds of 
contexts such as environment contexts, user contexts, 
computing resource contexts. Among those kinds of contexts, 
user-related context information is required to provide 
personalized services. Recent studies have made a great attempt 
to develop frameworks describing and utilizing various kinds 
of user-related context information to support personalized 
services. ClixSmart Navigator [2] implemented a Navigation 
Server between a content store and a WAP gate-way. As a 
similar system, Intelligent Software Agents Group of 

computing science department in University of Aberdeen 
developed a recommendation system called RECO [3] which 
aims to facilitate the use of context-aware services in a dynamic 
environment where users can access a variety of services from 
different locations. Meanwhile, there also have been researches 
on the user profile data model to support context-aware service 
in the field of ubiquitous computing [4, 5, 6]. These are 
established through a Web interface. KDDI cooperation in 
Japan has been developing a framework for constructing 
common profile model and managing the personalized profile 
of user activities from mobile terminal devices [7]. In 
aggregating, updating and disseminating user profile, they 
implemented the framework as a client-server architecture in 
which Profile Aggregator called “Home Server” collects user 
profiles from a number of desktop PCs. 
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These approaches to researches on provision of 
context-aware services exploiting well-known user profiles 
have some limitations in that, they have the environment keep 
continuously monitoring a sequence of patterns in user 
behavior to provide users with context-aware services. They 
did not take user-centric context-aware service into 
consideration. In other words, in ubiquitous or wearable 
computing environments, users are likely to prefer 
spontaneously to disseminate their personal information within 
the desired situation rather than be monitored by the 
environment for enjoying context-aware services. Besides, 
those systems are restricted just to the level of recommending 
the expected user-desired service in sequence. That is, they do 
not support the personalized services in which the details such 
as service properties or contents are able to be adaptively 
changed according to a user. 

To overcome limitations above, in this paper, we propose a 
framework in which wearable personal station (WPS) with a 
user and application services in an environment are the 
distributed independent entities, respectively, to interact with 
each other just when it requires exchanging a context between 
them. For this to result, we developed the mechanism to support 
providing context-aware services without a centralized home 
server. It can reduce a great burden for the whole environment 
to attend to the individual desires of the users by managing the 
user’s desires, needs, and preferences for services through a 
WPS. Moreover, we exploit service-specific user preferences 
by describing them as context to provide personalized services. 
Then, we dynamically update the preferences by learning them. 
The details such as service properties or contents can be 
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adaptively changed according to the learning results. Especially, 
in the proposed framework, it is considered for a user to take 
care of his personal information protecting his right to privacy. 
That is, users do need to distribute their profile only when they 
indeed want to enjoy services.  

This paper is organized as follows. In section 2, related 
works are explained. We describe User Profile Management 
Framework in section 3. And the method for user profile 
management is explained in section 4. Section 5 deals with 
experiments. Finally, we conclude our work and give a brief 
remaining work in Section 6.  

II. RELATED WORKS 
Over the last few years, research activities on context-aware 

services have been reported [2]. These earlier studies mainly 
concentrated on the development of application-specific 
systems. However, those researches are gradually putting their 
focus on the infrastructure for ubiquitous computing, according 
as context-aware applications require the well-organized 
environment in which sensing, processing, and networking 
techniques could be exploited in effect. Context toolkit [3] 
provided a toolkit for framework for managing sensor-based 
context information to support rapid prototyping of 
context-aware services. Recent studies have made a great 
attempt to develop frameworks describing and utilizing various 
kinds of user profiles to support personalized services. 
ClixSmart Navigator [4] implemented a Navigation Server 
between a content store and a WAP gate-way. It automatically 
learns about users’ preferences as they browse and personalizes 
each browsing experience so that relevant options are more 
readily accessible. In addition, it has the ability to manually 
modify and customize the mobile portal through the web. 
Ultimately, the end-user receives the right information, at the 
right time, every time, putting an end to user frustration. As a 
similar system, Intelligent Software Agents Group of 
computing science department in University of Aberdeen 
developed a recommendation system called RECO [5] in which 
aims to facilitate the use of context-aware services in a dynamic 
environment where users can access a variety of services from 
different locations. In RECO, they replace the standard browser 
with an agent-based client which allows the dispatch of 
recommendation messages without an explicit request from the 
user. At the core of the RECO system is a multi-agent 
architecture which provides the agents that are needed in order 
to monitor user behavior and make recommendations. 
Sequence patterns in user behavior discovered by AprioriAll 
[6] and context is exploited in establishing a user model. Thus, 
by using user preference profiles, it creates and learns the rules 
to justify validity of recommendation at a certain situation 
which can be described by time and location. The traditional 
software agent’s approaches to researches on provision of 
context-aware services exploiting well-known user profiles 
have some limitations in that, they have the environment 
keeping continuously monitoring a sequence of patterns in user 
behavior to provide users with context-aware services such as 

recommendation services of the expected user-desired services. 
They did not take user-centric context-aware service into 
consideration. In other words, in ubiquitous or wearable 
computing environments, users are likely to prefer 
spontaneously to disseminate their personal information within 
the desired situation rather than be monitored by the 
environment for enjoying context-aware services. Moreover, 
they did not apply service-specific user preferences to provide 
the personalized services in which the details such as service 
properties or contents can be adaptively changed according to a 
user. 

Meanwhile, there also have been researches on user profile 
data model to support context-aware service provision in the 
field of ubiquitous computing. Ubisworld [7] proposes a basic 
semantics and RDF-based data structure for representing 
property attributes regarding physical objects (persons and 
objects), spatial and temporal information, and user activities 
through a web-based interface. The Haystack [8] is developed 
by the Haystack Project at the MIT Laboratory for Computer 
Science and Artificial Intelligence. Haystack is a Semantic 
Web browser that aggregates RDF from multiple arbitrary 
locations and presents it to the user in a human-readable 
fashion, with point and click semantics that let the user navigate 
from one piece of Semantic Web data to other, related pieces. 
SOUPA Project [9] defines the shared ontology, regarding 
beliefs, desires and intentions, time, space, events, user profiles, 
actions and policies for security and privacy. These are 
established through a Web interface. Not to be based on only 
web-based input data so that an adaptive update method for 
collecting user related information from diverse sources could 
be realized, studies regarding middleware and infrastructure 
support for context-aware systems (e.g. Context Fabric [10] 
and GAIA [11]) have also been attempted. CoBrA [12] is a 
broker-based agent framework for building smart spaces, e.g., 
smart meeting rooms, and intelligent homes via SOUPA 
ontology mentioned above. As an illustration of these, KDDI 
cooperation in Japan has been developing a framework for 
constructing common profile model and managing the 
personalized profile of user activities from mobile terminal 
devices [13]. In aggregating, updating and disseminating user 
profile, they implemented the framework as a client-server 
architecture in which Profile Aggregator called “Home Server” 
collects user profiles from a number of desktop PCs.  

However, in ubiquitous/wearable computing environments, 
it should be reasonable that a user maintains their own personal 
information, i.e. user profile while application services has only 
to provide users with context-aware services just by exploiting 
user-related information distributed by the user. At the same 
time, wearable personal station (WPS) with a user and 
application services in an environment are the distributed 
independent entities, respectively, to interact with each other 
just when it requires exchanging a context between them. For 
this to result, there needs the mechanism to support providing 
context-aware services without a centralized home server. As 
mentioned above, frameworks for providing context-aware 
services in ubiquitous computing environments have been 
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developed so far to allow the application services in the 
environment to keep monitoring a sequence of patterns in user 
behavior as well as manage the aggregated user profiles in one 
server. Especially, in wearable computing environments, it is 
reasonable for a user to take care of his personal information 
protecting his right to privacy. On the other hand, it is a great 
burden for the whole environment to attend to the individual 
desires of the users. Thus, it is necessary that the user’s desires, 
needs, and preferences for services be managed through a 
wearable personal station which they carry on their hands. Also, 
users can enjoy personalized services by selectively 
disseminating their private information while ensuring their 
privacy. That is, users do need to distribute their profile only 
when they indeed want to enjoy services. In this paper, we 
propose the framework to effectively manage user profiles 
which contain user activity, demands and service-specific 
preferences in order to provide personalized services to users in 
ubiquitous or wearable computing environments. 

III. USER PROFILE MANAGEMENT FRAMEWORK 

A. Context Model 
To aware context information from user’s activities in a daily 

life, a unified context is needed to create context for triggering 
services users want by analyzing and integrating information 
obtained from various kinds of sensors. Context used in the 
proposed framework is defined as a flexible but unified context 
describing a user’s situation to trigger application services. In 
other words, it describes user’s situation as who, when, where, 
what, how, and why (5W1H) and is shared between sensors and 
services [14]. We define different kinds of context, i.e. 
preliminary, integrated, conditional, and final context. The 
preliminary context generated from sensors is not enough to 
trigger an appropriate service. In other words, the preliminary 
context from a sensor may not be accurate or even incomplete 
since a sensor may not fill up all 5W1H, in general. Thus, we 
define integrated context, conditional context, and thus final 
context. The integrated context is obtained by integrating 
preliminary contexts from a set of sensors. We determine the 
final context which contains a set of parameters and a service 
function to be used to trigger a user-centered service. As a 
result, an application developer may easily develop 
context-aware application by specifying the condition of 
service to be triggered as a 5W1H of conditional context.  

B. wear-UCAM 
ubi-UCAM [14],Unified Context-aware Application Model, 

for providing context-aware services in a ubiquitous computing 
environment have been developed so far to allow the 
ubiServices [15] in the environment to manage all user 
conditional contexts describing user’s desires on a particular 
service. In addition, Interpreter in each ubiService provides 
graphical user interface to have users reflect their 
service-specific preferences by setting up user conditional 
context. To alleviate a great burden for all application services 
in the whole environment to care for the individual desires of 

the users for the application services, we came to propose 
wear-UCAM [16], Unified Context-aware Application Model 
for Wearable Computing. 

Especially, in wear-UCAM, the point that we would like to 
emphasize is to allow users to take care of their personal 
information while protecting their privacy. Thus, we make it 
possible that the user’s desires, needs, and preferences for 
services are managed through a WPS. wear-UCAM is a 
framework which offers personalized services to users 
according to service-specific user preferences by analyzing 
various kinds of contexts obtained from ubiSensors in an 
environment or wearSensors worn by users. The Fig. 1 shows 
the overall architecture of wear-UCAM. 

The main features of wear-UCAM are as follows.  
1) updating user profile based on User Conditional Context, 
2) obtaining high-level context analyzed through primitive 

context extracted from biological sensors which users have in 
wear, and  

3) protecting user’s right to privacy from an environment. 
Although wear-UCAM leverages the communication between 
wearSensors and wearServices by utilizing unified context as 
same in ubi-UCAM, it is able to be distinguished from 
ubi-UCAM in that privacy protection can be supported by 
exploiting a user profile management technique in a WPS. 
Ultimately user profile management framework can be 
cooperated with ubi-UCAM. 
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Fig. 1. wear-UCAM Architecture 

C. Service Scenarios 
We has implemented ‘ubiHome’[15], a testbed for applying 

ubiComp enabling technologies to home environments. In 
ubiHome, a variety of sensors are equipped pervasively in 
order to generate preliminary contexts about residents, and 
personalized services are provided by exploiting the resident’s 
context. To show the usefulness of the proposed framework, 
we show the sample service scenarios in ubiHome. The unified 
ubiHome application service incorporates ubiTV, cMP, cMail 
Checker, etc. which are already developed. Organized 
interaction between application services is ensured by 
intelligent context-awareness of ubi-UCAM and wear-UCAM. 
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For example, while sitting on a couch watching movie, a user 
can observe outsider scene through camera monitoring. Also, 
he can check his E-mail, and send reply using a PDA. 

 
Context-based Music Player 

The Context-based Music Player provides user-centered 
services based on the context such as user’s identity (Who), 
user’s location (Where), time (When), body condition (How), 
object for music player (What) and user’s stress level (Why). 
For example, after a resident enters a living room, he sits on a 
sofa in front of the TV. Then, an ubiService menu 
automatically pops up on the monitor. If the resident selects 
music player from the menu, Context-based Music Player plays 
a list of music titles according to the service history of the user. 
Also, it can automatically play the music which relieves the 
user from a tension if it is identified that he is very stressful 
through the analyzed context on user’s body condition obtained 
from biological sensors. 

IV. USER PROFILE MANAGEMENT METHOD 
The one of the important components for context-aware 

application model in a wearable computing environment is 
User Profile Manager (UPM). It is an extensible and featured 
version of Context Manager in ubi-UCAM, as shown in Fig. 2. 
The basic role of UPM is to generate Final Context comparing 
between Integrated Context and Conditional Context. Firstly, 
UPM gets Integrated Contexts from Context Integrator. Then, it 
compares Integrated Context with Conditional Context which 
consists of User Conditional Context and Service Conditional 
Context. At last, it generates Final Context and sends it to 
wearSP. The featured role of UPM is to learn the preferences 
for services of the user so that it can support the personalized 
service. Specifically, it generates UCCs and disseminates them 
into the environment while automatically updating them. 
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Fig. 2. User Profile Management in wearService 

A. Context-based User Profile Description 
User profile can be categorized into two according to its 

characteristics: one is static, the other is dynamic. Static 
user-related information is personal information such as name, 
age, address books, etc. Also, information which a user can 
initially set as his service-specific desires through Graphical 
User Interface (GUI) offered by Service Provider is considered 
as static. In case of the dynamic user profile, there can be the 
meaningful context information integrated from preliminary 
contexts describing user’s biological conditions such as stress 
level, attention status, etc. These are obtained from biological 
sensors which users have in wear. Next, user’s feedback 
information on services, service-specific user preferences, is 
likely to be changed dynamically. wear-UCAM shares unified 
context with ubi-UCAM. Thus, user-related information, user 
profile, is systematically and extensively described as each 
field of Context5W1H in the unified context [14]. Description 
of user profile with Context5W1H is as follows. 

 Basically, ‘Who’ comprises of user’s identity, 
characteristics, and relationship. Identity can be used to 
authenticate him as unique in his group. Characteristics 
describes user‘s attributes or physical features. Relationship is 
important to contain priority information to access services in 
user’s group as home and office.  

 ‘Where’ consists of user’s indoor or outdoor location. 
Especially, there exists a field to describe the body position 
where biological sensors are attached. 

 ‘What’ is information of sensors which users attach on their 
body and services which users want. There are two subentries 
of ‘ServiceWhat’: one is service identity, the other is service 
attribute. A specific service that users want to enjoy is 
identified by the entry of service identity. The entry of service 
attribute includes useful information to provide a proper 
service to users: which type of service the users like, which 
contents the service is able to offer to the users, which object 
users are attending on, etc. ‘SensorWhat’ identifies a specific 
sensor among sensors which are attached on user’s body. 

‘When’ is time information generated when a user has an 
access to services. It represents the time biological signals are 
converted into preliminary context. It is also utilized to manage 
user’s history on usage of services. In addition, it is an 
important context in that it can describe time information users 
get to have the attention on a specific object.  

‘How’ represents body conditions or gestures of a user. The 
body condition information consists of EMG (electromyogram), 
BVP (blood volume pressure), heart rate, GSR (galvanic skin 
response), respiration, and temperature. These are able to be 
obtained by analyzing raw data extracted from biological 
sensors. The gestures contain body motion, position of hands 
and movement of legs. 

‘Why’ consists of user’s intention, and emotion. Intention is 
the user’s will to access a service with explicit or implicit 
commands. In case of user’s will with implicit command, it can 
be inferred by using the other context information. Emotion can 
describe a user’s mental conditions but is difficult to do, in 
general. 
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B. User Profile Handling 
 

1) Context Aggregation  
As mentioned before, user profile can be categorized into 

two according to its characteristics: one is static, the other is 
dynamic. Static user-related information is personal 
information such as name, age, address books, etc. Also, 
information which a user can initially set as his service-specific 
desires through GUI offered by Service Provider can be 
considered as static. These static user profiles are described in 
5W1H of User Conditional Context (UCC), ‘Who’ being as a 
focal factor. Then, the dynamic user profiles are described in 
Context5W1H of Final Context (FC) since Final Context 
contains the results of service execution which a user desires. 
Thus, we can acquire the service-specific user preferences 
which are dynamically changed by collecting Final Context 
from ubiServices and wearServices. Integrated Context (IC) is 
also one of meaningful user profile describing user’s biological 
conditions such as stress level, attention status. Finally, after 
learning and matching contexts, we can update User 
Conditional Context which reflects user’s indirect intention to 
enjoy a specific service, so that users can be provided the 
personalized services. Fig. 3 shows the user profile 
construction module. 
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Fig. 3. User Profile Construction Module 

Procedures of user profile construction in UPM are as 
follows. At first, UCC from Interpreter is stored in UCC 
Database which consists of a primary and secondary database. 
At an initial point, users can provide their personal specifics 
such as name, favorites, schedules through GUI in WPS just 
like PDA. It is descried as UCC and maintained in a secondary 
database. At an arbitrary point, UCCs for users to provide their 
explicit demands through GUI can be stored in a primary 
database with a higher priority than a secondary one. UPM 
aggregates FCs in FC Database at a regular interval (T). Every 
interval (T), it gets FCs from FC database and feeds them into 
input module of Neural Network as a training data set.  

 

2) UCC generation and dissemination 
After a proper training, inference network is resulted in. 

Inference network plays a role in learning service-specific user 
preferences. Learning results are exploited as a service 
execution history of the users. Then, IC coming from Context 
Integrator is provided as input data for inference network. 
Inference network associates the inputs with specific service 
categories or service parameters, that is, categories the user’s 
4W1H context to several service categories (‘what’). It 
produces a predictable data (prediction context) of 4W1H 
along with the induced ‘what’. Then, UPM makes a 
comparison between the resulting prediction context and UCC 
in UCC database. In the first step, it compares between UCC 
(user’s explicit demands) in a primary database and the current 
prediction context. If there is the consistent context, UPM 
sends the current prediction context to FinalContextGenerator. 
If there is no consistent context, it goes to the second step of 
comparison with UCC (learning results) in a secondary 
database and the current prediction context. If there is the 
consistent context in the second step, UPM sends the current 
prediction context to FinalContextGenerator. If there is also no 
consistent context in the step, UPM updates a secondary 
database with the current prediction context, send the current 
prediction context to FinalContextGenerator, and disseminate 
it through a network to services in the environment. Fig. 5 
illustrates the process of generating UCCs and disseminating 
them into the environment through a network. 

The brief mention on the procedure of UCC generation and 
dissemination is as follows. First of all, we construct a primary 
database in UCC Database from static user-related information 
provided through GUI. Then, Final Contexts are aggregated at 
a periodic interval and stored in FC Database. At a regular pace, 
we analyze and learn the dynamic user-related information 
from Final Contexts. At last, through context matching process, 
we make a new User Conditional Context, update a secondary 
database in UCC Database with it, and send it to other 
ubiServices and wearServices. 
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Fig. 4. User Profile Handling Module 

UCCs disseminated through a network can be exploited for 
several ubiServices to match with ICs from the environment for 
triggering the corresponding service. Fig. 5 shows the 
interaction between UPM in wearService and ubiServices in 
the environment. UCCs come into usage for ubiServices to 
provide a user with their contents. Since UPM makes UCCs 
which reflect the user’s preferences that suit him best, it can 
play a key role in providing personalized services in the 
environment. 
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Fig. 5. Interaction between User Profile Manager and services in 

ubiHome environment 

C. User Profile Update using Neural Network 
Although users new in a home environment can provide their 

personal information and service-specific preferences through 
GUI offered by Service Provider in wear-UCAM, it is needed 
to automatically update user’s service-specific preferences 
when user’s command is not explicitly provided. And what if a 
user wants to enjoy a service which he has not initially set his 
preferences on it through GUI?  In case of these situations, it is 
also needed to learn the user’s behavior patterns to infer 
service-specific preferences, so that results of learning can be 
reflected into the dynamic update of user profile. 

In updating user profile, learning engine expects the 
appropriate service for given input. The input represents the 
current situation of user’s surroundings. We applied Neural 
Network to the learning engine. The context can be the input 
patterns. Users can determine the input patterns using GUI, for 
service which he wants to be provided. And they also can be 
generated from both Integrated Contexts and the collected Final 
Contexts, in the form of 5W1H. And then, learning engine 
outputs the proper result which represents service information. 
The history of service-specific user preferences is stored in the 
database for learning change of user’s demands. Learning 
engine analyzes the history and determines new rules according 
to the learning result through a neural network. For learning 
user preferences, a Multiple-Layer Perceptron (MLP) neural 

network is used [17]. It is shown in Fig. 6. 
 

 

 
 

 

Fig. 6. MLP with Backpropagation  

 It has long been regarded that neural networks might 
provide the established basis for approximating any (linear or 
nonlinear) function. In particular, MLP might provide the most 
valid way to map any nonlinear relation, given sufficient 
neurons in the hidden layers. Neural network is composed of 
simple neurons operating in parallel. These neurons are 
inspired by biological nervous systems. The network function 
is determined by the connections between neurons. We can 
train a neural network to perform a particular mapping function 
by adjusting the values of the connections (weights) between 
neurons. By training neural networks, we can enable a specific 
input to lead a specific target output. There, the network is 
adjusted, based on a comparison of the actual output and the 
target output, until the actual output from a network is 
consistent with the target one. Typically lots of input and target 
pairs are used, in this supervised learning, to train a network. 
The learning algorithm used in this system is the popular 
backpropagation of which the direction of adjusting weights is 
the reverse direction of processing data as shown in Fig. 6. If it 
is carefully trained, neural network may induce generalization 
beyond the training data to produce approximately correct 
results for new cases that were not exploited for training. 
Neural network is useful for solving non-linear problems and it 
takes less time and cost than other algorithms. 

V. EXPERIMENTS 
We have implemented ‘ubiHome [18]’, a testbed for 

applying ubiComp enabling technologies to home 
environments. In ubiHome, various sensors and services are 
equipped being pervasive. Sensors generate preliminary 
contexts describing residents and their surroundings, and 
personalized services are offered by exploiting the resident’s 
context. Each sensor is regarded as a smart sensor as it is 
individually connected to a PC and does work with inherent 
processing, networking, and sensing abilities. We performed 
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the experiments by using resources in ubiHome.  
For a dynamic update of user profile, we mentioned that we 

applied a neural network to the learning engine of UPM. The 
neural network architecture in Fig. 7 consists of three layers; 
input layer, hidden layer, and output layer. We use a set of 
contexts as input because contexts express user’s behavior 
pattern. If the number of elements of each context is EN and the 
number of context is CN, then the total number of input neurons 
is equal to EN × CN. The number of neurons in the hidden layer 
is selected by experiments and the number of neurons in the 
output layer is the number of categories in services to be 
provided to the users. 
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Fig. 7. Organization of MLP 

The input and output pairs of training pattern are fed to the 
neural network because the supervised learning is exploited. 
The adopted MLP is performed in two steps, i.e. learning and 
then mapping. First, MLP learns the nonlinear relationship 
between the context information (3W1H) and the user's 
intention (‘what’) through examples, rather than complicate 
behavior pattern analysis and mapping. The Fig. 8 shows the 
procedures of network training, context inferring, and context 
matching.  
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Fig. 8. Context Inferring and Matching 

The procedure of training the network is as follows: Firstly, 
the input data are obtained with the form of 3W1H from FC 
database. After getting the context (3W1H), we apply the 
neural networks (NN) to induce an intention of a user from 
input contexts. In the neural network, each input vector is 
converted into the numerical value. These numerical input 
values are the input to the hidden layer for processing. In this 
processing, weights and biases in networks are adjusted. It 
compares the trained results and the given target data. If they 
are identical, it puts an end to training networks. If they are not, 
it adjusts networks again until the trained result is consistent 
with the target data. After proper training, the MLP associates 
the input vectors with specific service/service parameters 
category, i.e. categorizes the user’s contexts to several service 
categories. In this framework, a set of user’s context (i.e. when, 
where, how, and why) are mapped directly to a set of symbolic 
representation of services i.e. {TV.On/Off, Audio.On/Off, 
TV.On.Comedy, etc.}, as input and output vectors of the MLP. 
Fig. 9 shows one mapping sets of each layer in MLP. In the 
input layer, as shown in this figure, only one neuron is assigned 
to each element of 3W1H context, i.e. ‘when’, ‘where’, ‘how’, 
‘why’. Also, in the output layer, only one neuron is assigned to 
‘what’ context. 
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Fig. 9. 1st Data sets of each layer in MLP 

Note that alternatively, the proposed UPM can be used to 
make the analysis procedure even simpler. For example, 
without extracting directly user’s status and desire from 
physical sensors, context information {when, where, how, 
why} obtained from context-aware application model can be 
directly connected to the input layer of NN. Each context is 
denoted by numerical values, which stand for where the user is, 
when he is observed, which gesture he takes, and what his 
stress level is. Thus, these contexts can be trained to be mapped 
to the proper output categories. We described the experimental 
result in more detail as follows.  

We indicate inputs, outputs, vectors, and neurons as 
Network Status in Fig. 10. In addition, hidden layer topology, 
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training parameters, stopping condition and results are 
presented above. There is learning rate as training parameter. 
The number of iterations and error tolerance are included in 
stopping conditions. We can find that as the number of hidden 
layers is increased, the total error rate is decreased, other things 
being equal, as shown in Figure 10-a. Also, as the number of 
nodes within the hidden layer is increased, the total error rate is 
decreased. When the total number of nodes is fourteen in two 
hidden layers, the accuracy is at around 42%, which shows best 
performance with same experimental condition. 

 
Network Status T1 T2 T3 T4 T5 T6

Inputs 4 4 4 4 4 4
Outputs 1 1 1 1 1 1
Vectors 160 160 160 160 160 160
Neurons 9 13 13 15 17 19

Hidden Layers     

the # of hidden layer 1 1 2 2 2 2

the # of nodes/h 4 ( = INPUT) 8 ( = INPUT X 2) 4 ( = INPUT) 5 6 7
the total # of nodes 4 8 8 10 12 14
Training Parameters

learning rate 0.3 0.3 0.3 0.3 0.3 0.3
Stopping condition
the # of iterations 100000 100000 100000 100000 100000 100000

Tolerance % 95% 95% 95% 95% 95% 95%
Results

total error rate 23.2131 19.466 21.1334 6.753 6.0425 3.7278
% Correct 11 7 8 23 21 42  

Fig. 10 – a . Learning Results with Network status (adjusting the 
topology of hidden layer) 

In Figure 10 – b, it is shown that as we increase the number 
of iterations, others being equal, the total performance is 
improved, gradually. Comparing between 12 nodes and 14 
nodes in two hidden layers with 3,000,000 iterations, latter is 
better than former. T14 is found as the best one of results which 
we got from this experiment. 

 
T7 T8 T9 T10 T11 T12 T13 T14

4 4 4 4 4 4 4 4

1 1 1 1 1 1 1 1

160 160 160 160 160 160 160 160

17 17 17 17 17 19 19 19

2 2 2 2 2 2 2 2

6 6 6 6 6 7 7 7

12 12 12 12 12 14 14 14

0.1 0.01 0.3 0.5 0.3 0.3 0.3 0.3

100000 100000 500000 500000 3000000 100000 1000000 3000000

95% 95% 95% 95% 95% 95% 95% 95%

6.0634 16.84 5.4123 12.0368 3.5412 3.7278 2.2381 1.3058

31 11 30 15 48 42 55 72  

Fig. 10 – b. Learning Results with Network status (adjusting learning 
rate and iteration number) 

Fig. 11 shows another mapping sets of each layer in MLP. In 
the input layer, as shown in the figure, the different number of 
neurons is assigned to each element of 3W1H context, i.e. 
‘when’(5), ‘where’(4), ‘how’(3), ‘why’(4). In the output layer, 
17 neurons are assigned to ‘what’ context. That is, the number 
of neurons in each input data is the number of possible samples 
of each element in 3W1H context. The number of neurons in 
the output layer is the number of target samples of elements in 

‘what’ context. 
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Fig. 11. 2nd Data sets of each layer in MLP 

umber of INPUT 
nodes times the number of OUTPUT nodes). 

 

Fig. 12 represents the learning results with network status 
when 2nd data sets of each layer in MLP are exploited.  In this 
experiment, we tried to observe how fast the network is well 
trained in reaching around 99% of accuracy. As shown in Fig. 
12, the smallest number of iterations is 5 under T3 network. It 
means that the network is the most tolerant of errors under 1 
hidden layer topology with 272 neurons (the n

Network Status T1 T2 T3 T4

Inputs 16 16 16 16

Outputs 17 17 17 17

Vectors 160 160 160 160

Neurons 33 65 305 97

Hidden Layers(TOPOLOGY)

the # of hidden layer 0 1 1 2

the # of nodes/h 32 ( = INPUT X 2) 272 ( = INPUT x OUTPUT) 32 ( = INPUT X 2)

the total # of nodes 32 272 64

Training Parameters

learning rate 0.3 0.3 0.3 0.3

Stopping condition

the # of iterations 7094 304 5 97

Tolerance % 95% 95% 95% 95%

Results

total error rate 4.99 4.96 1.17 4.96

% Correct 99.95 99.95 99.98 99.95

 

lts with Network status Fig. 12 . Learning Resu (adjusting learning rate 
and iteration number) 

s seem to be approximated 
to red outputs, as we expected. 

 

Figure 13 shows the results of comparing between actual 
outputs of prediction results and desired outputs of training sets. 
We can realize that the actual output

 desi
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Fig. 13. Comparison btw actual outputs and desired outputs (Total 
Error Rate 1.3058, iteration # 3000000) 

Fig. 14 shows the Error Distribution Chart of an output 
variable. Through this chart, we can analyze which sample data 
of training sets affects to result in errors. 
 

 
 

Fig. 14. Error Distribution Chart (Total Error Rate 1.3058, iteration # 
3000000) 

VI. CONCLUSION AND FUTURE WORKS 
In this paper, we designed and tested UPM which employs 

learning mechanism of Neural Network. Without directly 
extracting user’s status and desire from physical sensors, 
context information {when, where, how, why} obtained from 
context-aware application model can be connected to the input 
layer of NN. Each context is denoted by numerical values, 
which represent where he is, when he is observed, which 
gesture he makes, and what his stress level is. Thus, these 
contexts can be trained for being mapped to appropriate output 
categories. The final result after training MLP is enough good 
to recognize user’s behavior pattern which can be used to infer 
the preferred service of the user. Remaining work is to consider 
the method which can reflect users’ feedback in real-time. Also, 
when any one of the input contexts is not provided to the 

system, the system should still provide appropriate services to 
the user. We need to evaluate learning mechanism of Neural 
Network and consider a bayesian approach to human activity 
recognition [19]. Furthermore, it is important that users be able 
to enjoy context-aware personalized services by selectively 
disseminating their private information without compromising 
their privacy. That is, users only have to distribute their profile 
the time when they indeed want to enjoy services. Privacy 
control mechanism should be elaborated from now on. 

Actual Output Disired Output Actual Output Disired Output Actual Output Disired Output

13.2572 13 4.638171 5 3.323117 3

15.77974 16 4.877563 5 3.330195 3

1.025283 1 5.059554 5 2.806404 3

0.928683 1 4.964586 5 3.016124 3

0.9349977 1 7.048586 6 3.064165 3

1.133425 1 9.078062 9 2.987198 3

4.857995 5 12.18801 12 8.150376 8

5.024797 5 14.99448 15 10.6666 11

4.958493 5 4.835256 5 14.10716 14

5.039969 5 4.899389 5 16.31325 17

4.005897 4 4.98481 5 7.906893 8

4.062534 4 4.993693 5 10.65116 11

4.033796 4 1.254928 1 14.2172 14

3.943906 4 1.079246 1 16.34376 17

3.905409 4 0.896942 1 7.15222 7

3.988985 4 0.9161988 1 9.732225 10

4.013333 4 3.100619 3 13.56354 13

4.00633 4 3.117309 3 16.1084 16

6.651451 6 2.979155 3 7.089486 7

8.900903 9 3.053519 3

12.14961 12 2.863694 3

14.86247 15 3.148607 3
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