
Youngjung Suh, Dongoh Kang and Woontack Woo 64

Context-based User Profile Management for
Personalized Services

Youngjung Suh, Dongoh Kang and Woontack Woo

Abstract— Frameworks for context-aware services in a

ubiquitous computing environment have been developed so far to
allow the application services in the environment to monitor a
sequence of patterns in user behavior as well as to manage the
aggregated user profiles in one server. However, it is a great
burden for the whole environment to attend to the individual
desires of the users. Thus, we propose a user profile management
framework in which the user’s desires, needs, and preferences for
services are managed through a wearable personal station, a
terminal device worn by users. We exploit service-specific user
preferences by describing them as context to provide personalized
services. Also, we dynamically update the preferences by learning
them. The details such as service properties or contents can be
adaptively changed according to the learning results. The
proposed framework can be widely exploited for
ubiComp-enabling applications which require the interaction
between a user and an environment. Moreover, it may support
personalized services while ensuring user’s privacy.

Index Terms— context-aware, learning, personalized service,
user profile

I. INTRODUCTION
arious kinds of context information are flowing in

ubiquitous or wearable computing environments with a
wide range of networking, computing, and distributed contents
and services. Over the last few years, research activities on
context and context-aware have been reported [1]. In these
researches, there have been mentioned several kinds of
contexts such as environment contexts, user contexts,
computing resource contexts. Among those kinds of contexts,
user-related context information is required to provide
personalized services. Recent studies have made a great attempt
to develop frameworks describing and utilizing various kinds
of user-related context information to support personalized
services. ClixSmart Navigator [2] implemented a Navigation
Server between a content store and a WAP gate-way. As a
similar system, Intelligent Software Agents Group of

computing science department in University of Aberdeen
developed a recommendation system called RECO [3] which
aims to facilitate the use of context-aware services in a dynamic
environment where users can access a variety of services from
different locations. Meanwhile, there also have been researches
on the user profile data model to support context-aware service
in the field of ubiquitous computing [4, 5, 6]. These are
established through a Web interface. KDDI cooperation in
Japan has been developing a framework for constructing
common profile model and managing the personalized profile
of user activities from mobile terminal devices [7]. In
aggregating, updating and disseminating user profile, they
implemented the framework as a client-server architecture in
which Profile Aggregator called “Home Server” collects user
profiles from a number of desktop PCs.

Manuscript created June 17, 2005. This work was supported by SeonDo

project of MIC, Korea
Youngjung Suh is with Gwangju Institute of Science and Technology,

Gwangju, 500-712, S.Korea (+82-62-970-2279, e-mail: ysuh@gist.ac.kr)
Dongoh Kang is with Electronics and Telecommunication Research Institute,

DaeJeon, 500-712, S.Korea (+82-42-860-5012, e-mail dongoh@etri.re.kr)
Woontack Woo is with Gwangju Institute of Science and Technology.,

Gwangju, 500-712, S.Korea (corresponding author to provide phone:
82-62-970-2226, fax:62-970-2249, e-mail: wwoo@gist.ac.kr)

These approaches to researches on provision of
context-aware services exploiting well-known user profiles
have some limitations in that, they have the environment keep
continuously monitoring a sequence of patterns in user
behavior to provide users with context-aware services. They
did not take user-centric context-aware service into
consideration. In other words, in ubiquitous or wearable
computing environments, users are likely to prefer
spontaneously to disseminate their personal information within
the desired situation rather than be monitored by the
environment for enjoying context-aware services. Besides,
those systems are restricted just to the level of recommending
the expected user-desired service in sequence. That is, they do
not support the personalized services in which the details such
as service properties or contents are able to be adaptively
changed according to a user.

To overcome limitations above, in this paper, we propose a
framework in which wearable personal station (WPS) with a
user and application services in an environment are the
distributed independent entities, respectively, to interact with
each other just when it requires exchanging a context between
them. For this to result, we developed the mechanism to support
providing context-aware services without a centralized home
server. It can reduce a great burden for the whole environment
to attend to the individual desires of the users by managing the
user’s desires, needs, and preferences for services through a
WPS. Moreover, we exploit service-specific user preferences
by describing them as context to provide personalized services.
Then, we dynamically update the preferences by learning them.
The details such as service properties or contents can be

V

ubiPCMM 2005 65

adaptively changed according to the learning results. Especially,
in the proposed framework, it is considered for a user to take
care of his personal information protecting his right to privacy.
That is, users do need to distribute their profile only when they
indeed want to enjoy services.

This paper is organized as follows. In section 2, related
works are explained. We describe User Profile Management
Framework in section 3. And the method for user profile
management is explained in section 4. Section 5 deals with
experiments. Finally, we conclude our work and give a brief
remaining work in Section 6.

II. RELATED WORKS
Over the last few years, research activities on context-aware

services have been reported [2]. These earlier studies mainly
concentrated on the development of application-specific
systems. However, those researches are gradually putting their
focus on the infrastructure for ubiquitous computing, according
as context-aware applications require the well-organized
environment in which sensing, processing, and networking
techniques could be exploited in effect. Context toolkit [3]
provided a toolkit for framework for managing sensor-based
context information to support rapid prototyping of
context-aware services. Recent studies have made a great
attempt to develop frameworks describing and utilizing various
kinds of user profiles to support personalized services.
ClixSmart Navigator [4] implemented a Navigation Server
between a content store and a WAP gate-way. It automatically
learns about users’ preferences as they browse and personalizes
each browsing experience so that relevant options are more
readily accessible. In addition, it has the ability to manually
modify and customize the mobile portal through the web.
Ultimately, the end-user receives the right information, at the
right time, every time, putting an end to user frustration. As a
similar system, Intelligent Software Agents Group of
computing science department in University of Aberdeen
developed a recommendation system called RECO [5] in which
aims to facilitate the use of context-aware services in a dynamic
environment where users can access a variety of services from
different locations. In RECO, they replace the standard browser
with an agent-based client which allows the dispatch of
recommendation messages without an explicit request from the
user. At the core of the RECO system is a multi-agent
architecture which provides the agents that are needed in order
to monitor user behavior and make recommendations.
Sequence patterns in user behavior discovered by AprioriAll
[6] and context is exploited in establishing a user model. Thus,
by using user preference profiles, it creates and learns the rules
to justify validity of recommendation at a certain situation
which can be described by time and location. The traditional
software agent’s approaches to researches on provision of
context-aware services exploiting well-known user profiles
have some limitations in that, they have the environment
keeping continuously monitoring a sequence of patterns in user
behavior to provide users with context-aware services such as

recommendation services of the expected user-desired services.
They did not take user-centric context-aware service into
consideration. In other words, in ubiquitous or wearable
computing environments, users are likely to prefer
spontaneously to disseminate their personal information within
the desired situation rather than be monitored by the
environment for enjoying context-aware services. Moreover,
they did not apply service-specific user preferences to provide
the personalized services in which the details such as service
properties or contents can be adaptively changed according to a
user.

Meanwhile, there also have been researches on user profile
data model to support context-aware service provision in the
field of ubiquitous computing. Ubisworld [7] proposes a basic
semantics and RDF-based data structure for representing
property attributes regarding physical objects (persons and
objects), spatial and temporal information, and user activities
through a web-based interface. The Haystack [8] is developed
by the Haystack Project at the MIT Laboratory for Computer
Science and Artificial Intelligence. Haystack is a Semantic
Web browser that aggregates RDF from multiple arbitrary
locations and presents it to the user in a human-readable
fashion, with point and click semantics that let the user navigate
from one piece of Semantic Web data to other, related pieces.
SOUPA Project [9] defines the shared ontology, regarding
beliefs, desires and intentions, time, space, events, user profiles,
actions and policies for security and privacy. These are
established through a Web interface. Not to be based on only
web-based input data so that an adaptive update method for
collecting user related information from diverse sources could
be realized, studies regarding middleware and infrastructure
support for context-aware systems (e.g. Context Fabric [10]
and GAIA [11]) have also been attempted. CoBrA [12] is a
broker-based agent framework for building smart spaces, e.g.,
smart meeting rooms, and intelligent homes via SOUPA
ontology mentioned above. As an illustration of these, KDDI
cooperation in Japan has been developing a framework for
constructing common profile model and managing the
personalized profile of user activities from mobile terminal
devices [13]. In aggregating, updating and disseminating user
profile, they implemented the framework as a client-server
architecture in which Profile Aggregator called “Home Server”
collects user profiles from a number of desktop PCs.

However, in ubiquitous/wearable computing environments,
it should be reasonable that a user maintains their own personal
information, i.e. user profile while application services has only
to provide users with context-aware services just by exploiting
user-related information distributed by the user. At the same
time, wearable personal station (WPS) with a user and
application services in an environment are the distributed
independent entities, respectively, to interact with each other
just when it requires exchanging a context between them. For
this to result, there needs the mechanism to support providing
context-aware services without a centralized home server. As
mentioned above, frameworks for providing context-aware
services in ubiquitous computing environments have been

http://haystack.csail.mit.edu/

Youngjung Suh, Dongoh Kang and Woontack Woo 66

developed so far to allow the application services in the
environment to keep monitoring a sequence of patterns in user
behavior as well as manage the aggregated user profiles in one
server. Especially, in wearable computing environments, it is
reasonable for a user to take care of his personal information
protecting his right to privacy. On the other hand, it is a great
burden for the whole environment to attend to the individual
desires of the users. Thus, it is necessary that the user’s desires,
needs, and preferences for services be managed through a
wearable personal station which they carry on their hands. Also,
users can enjoy personalized services by selectively
disseminating their private information while ensuring their
privacy. That is, users do need to distribute their profile only
when they indeed want to enjoy services. In this paper, we
propose the framework to effectively manage user profiles
which contain user activity, demands and service-specific
preferences in order to provide personalized services to users in
ubiquitous or wearable computing environments.

III. USER PROFILE MANAGEMENT FRAMEWORK

A. Context Model
To aware context information from user’s activities in a daily

life, a unified context is needed to create context for triggering
services users want by analyzing and integrating information
obtained from various kinds of sensors. Context used in the
proposed framework is defined as a flexible but unified context
describing a user’s situation to trigger application services. In
other words, it describes user’s situation as who, when, where,
what, how, and why (5W1H) and is shared between sensors and
services [14]. We define different kinds of context, i.e.
preliminary, integrated, conditional, and final context. The
preliminary context generated from sensors is not enough to
trigger an appropriate service. In other words, the preliminary
context from a sensor may not be accurate or even incomplete
since a sensor may not fill up all 5W1H, in general. Thus, we
define integrated context, conditional context, and thus final
context. The integrated context is obtained by integrating
preliminary contexts from a set of sensors. We determine the
final context which contains a set of parameters and a service
function to be used to trigger a user-centered service. As a
result, an application developer may easily develop
context-aware application by specifying the condition of
service to be triggered as a 5W1H of conditional context.

B. wear-UCAM
ubi-UCAM [14],Unified Context-aware Application Model,

for providing context-aware services in a ubiquitous computing
environment have been developed so far to allow the
ubiServices [15] in the environment to manage all user
conditional contexts describing user’s desires on a particular
service. In addition, Interpreter in each ubiService provides
graphical user interface to have users reflect their
service-specific preferences by setting up user conditional
context. To alleviate a great burden for all application services
in the whole environment to care for the individual desires of

the users for the application services, we came to propose
wear-UCAM [16], Unified Context-aware Application Model
for Wearable Computing.

Especially, in wear-UCAM, the point that we would like to
emphasize is to allow users to take care of their personal
information while protecting their privacy. Thus, we make it
possible that the user’s desires, needs, and preferences for
services are managed through a WPS. wear-UCAM is a
framework which offers personalized services to users
according to service-specific user preferences by analyzing
various kinds of contexts obtained from ubiSensors in an
environment or wearSensors worn by users. The Fig. 1 shows
the overall architecture of wear-UCAM.

The main features of wear-UCAM are as follows.
1) updating user profile based on User Conditional Context,
2) obtaining high-level context analyzed through primitive

context extracted from biological sensors which users have in
wear, and

3) protecting user’s right to privacy from an environment.
Although wear-UCAM leverages the communication between
wearSensors and wearServices by utilizing unified context as
same in ubi-UCAM, it is able to be distinguished from
ubi-UCAM in that privacy protection can be supported by
exploiting a user profile management technique in a WPS.
Ultimately user profile management framework can be
cooperated with ubi-UCAM.

Signal
Acquisition

Communicator
(Networking Interface)

Feature
Extraction

Preliminary
Context

Generation

wearSensor

Context
Integrator

Context Manager
User Profile Manager Interpreter

wearService ServiceProvider

Integrated
Context

Preliminary
Context

Final
Context

Fig. 1. wear-UCAM Architecture

C. Service Scenarios
We has implemented ‘ubiHome’[15], a testbed for applying

ubiComp enabling technologies to home environments. In
ubiHome, a variety of sensors are equipped pervasively in
order to generate preliminary contexts about residents, and
personalized services are provided by exploiting the resident’s
context. To show the usefulness of the proposed framework,
we show the sample service scenarios in ubiHome. The unified
ubiHome application service incorporates ubiTV, cMP, cMail
Checker, etc. which are already developed. Organized
interaction between application services is ensured by
intelligent context-awareness of ubi-UCAM and wear-UCAM.

ubiPCMM 2005 67

For example, while sitting on a couch watching movie, a user
can observe outsider scene through camera monitoring. Also,
he can check his E-mail, and send reply using a PDA.

Context-based Music Player

The Context-based Music Player provides user-centered
services based on the context such as user’s identity (Who),
user’s location (Where), time (When), body condition (How),
object for music player (What) and user’s stress level (Why).
For example, after a resident enters a living room, he sits on a
sofa in front of the TV. Then, an ubiService menu
automatically pops up on the monitor. If the resident selects
music player from the menu, Context-based Music Player plays
a list of music titles according to the service history of the user.
Also, it can automatically play the music which relieves the
user from a tension if it is identified that he is very stressful
through the analyzed context on user’s body condition obtained
from biological sensors.

IV. USER PROFILE MANAGEMENT METHOD
The one of the important components for context-aware

application model in a wearable computing environment is
User Profile Manager (UPM). It is an extensible and featured
version of Context Manager in ubi-UCAM, as shown in Fig. 2.
The basic role of UPM is to generate Final Context comparing
between Integrated Context and Conditional Context. Firstly,
UPM gets Integrated Contexts from Context Integrator. Then, it
compares Integrated Context with Conditional Context which
consists of User Conditional Context and Service Conditional
Context. At last, it generates Final Context and sends it to
wearSP. The featured role of UPM is to learn the preferences
for services of the user so that it can support the personalized
service. Specifically, it generates UCCs and disseminates them
into the environment while automatically updating them.

wearInt

FC’ IC (situation)

UCC UCC’(set)

SS

wearCI

GUI wearSP

(≈ User Attention) FC

Matching &
FC generation

Learning UCC’
(Intention)

UPM (wearCM)

UCC #1
UCC #2
UCC #2

Fig. 2. User Profile Management in wearService

A. Context-based User Profile Description
User profile can be categorized into two according to its

characteristics: one is static, the other is dynamic. Static
user-related information is personal information such as name,
age, address books, etc. Also, information which a user can
initially set as his service-specific desires through Graphical
User Interface (GUI) offered by Service Provider is considered
as static. In case of the dynamic user profile, there can be the
meaningful context information integrated from preliminary
contexts describing user’s biological conditions such as stress
level, attention status, etc. These are obtained from biological
sensors which users have in wear. Next, user’s feedback
information on services, service-specific user preferences, is
likely to be changed dynamically. wear-UCAM shares unified
context with ubi-UCAM. Thus, user-related information, user
profile, is systematically and extensively described as each
field of Context5W1H in the unified context [14]. Description
of user profile with Context5W1H is as follows.

 Basically, ‘Who’ comprises of user’s identity,
characteristics, and relationship. Identity can be used to
authenticate him as unique in his group. Characteristics
describes user‘s attributes or physical features. Relationship is
important to contain priority information to access services in
user’s group as home and office.

 ‘Where’ consists of user’s indoor or outdoor location.
Especially, there exists a field to describe the body position
where biological sensors are attached.

 ‘What’ is information of sensors which users attach on their
body and services which users want. There are two subentries
of ‘ServiceWhat’: one is service identity, the other is service
attribute. A specific service that users want to enjoy is
identified by the entry of service identity. The entry of service
attribute includes useful information to provide a proper
service to users: which type of service the users like, which
contents the service is able to offer to the users, which object
users are attending on, etc. ‘SensorWhat’ identifies a specific
sensor among sensors which are attached on user’s body.

‘When’ is time information generated when a user has an
access to services. It represents the time biological signals are
converted into preliminary context. It is also utilized to manage
user’s history on usage of services. In addition, it is an
important context in that it can describe time information users
get to have the attention on a specific object.

‘How’ represents body conditions or gestures of a user. The
body condition information consists of EMG (electromyogram),
BVP (blood volume pressure), heart rate, GSR (galvanic skin
response), respiration, and temperature. These are able to be
obtained by analyzing raw data extracted from biological
sensors. The gestures contain body motion, position of hands
and movement of legs.

‘Why’ consists of user’s intention, and emotion. Intention is
the user’s will to access a service with explicit or implicit
commands. In case of user’s will with implicit command, it can
be inferred by using the other context information. Emotion can
describe a user’s mental conditions but is difficult to do, in
general.

Youngjung Suh, Dongoh Kang and Woontack Woo 68

B. User Profile Handling

1) Context Aggregation
As mentioned before, user profile can be categorized into

two according to its characteristics: one is static, the other is
dynamic. Static user-related information is personal
information such as name, age, address books, etc. Also,
information which a user can initially set as his service-specific
desires through GUI offered by Service Provider can be
considered as static. These static user profiles are described in
5W1H of User Conditional Context (UCC), ‘Who’ being as a
focal factor. Then, the dynamic user profiles are described in
Context5W1H of Final Context (FC) since Final Context
contains the results of service execution which a user desires.
Thus, we can acquire the service-specific user preferences
which are dynamically changed by collecting Final Context
from ubiServices and wearServices. Integrated Context (IC) is
also one of meaningful user profile describing user’s biological
conditions such as stress level, attention status. Finally, after
learning and matching contexts, we can update User
Conditional Context which reflects user’s indirect intention to
enjoy a specific service, so that users can be provided the
personalized services. Fig. 3 shows the user profile
construction module.

UCCDB

FCDB

U1DB

U2DB

U3DB

ContextDB
SP Thread
if unnecessary,

thread is in blocked status

Eventing (Context Adding) – Assume thread is subscribed to ContextDB for eventing

User1Info. User2Info. User3Info.

1. GetCurrentFC

2. Find, Store & Check UserFCDB

Learning function
Receive FC list

Process learning
Make UCC

Send UCC to other services

3. If check is true.

Registering user:
Create UserInfo using information which is filled through UI
Create UserDB in ContextDB

Refer UserInfo.

Fig. 3. User Profile Construction Module

Procedures of user profile construction in UPM are as
follows. At first, UCC from Interpreter is stored in UCC
Database which consists of a primary and secondary database.
At an initial point, users can provide their personal specifics
such as name, favorites, schedules through GUI in WPS just
like PDA. It is descried as UCC and maintained in a secondary
database. At an arbitrary point, UCCs for users to provide their
explicit demands through GUI can be stored in a primary
database with a higher priority than a secondary one. UPM
aggregates FCs in FC Database at a regular interval (T). Every
interval (T), it gets FCs from FC database and feeds them into
input module of Neural Network as a training data set.

2) UCC generation and dissemination
After a proper training, inference network is resulted in.

Inference network plays a role in learning service-specific user
preferences. Learning results are exploited as a service
execution history of the users. Then, IC coming from Context
Integrator is provided as input data for inference network.
Inference network associates the inputs with specific service
categories or service parameters, that is, categories the user’s
4W1H context to several service categories (‘what’). It
produces a predictable data (prediction context) of 4W1H
along with the induced ‘what’. Then, UPM makes a
comparison between the resulting prediction context and UCC
in UCC database. In the first step, it compares between UCC
(user’s explicit demands) in a primary database and the current
prediction context. If there is the consistent context, UPM
sends the current prediction context to FinalContextGenerator.
If there is no consistent context, it goes to the second step of
comparison with UCC (learning results) in a secondary
database and the current prediction context. If there is the
consistent context in the second step, UPM sends the current
prediction context to FinalContextGenerator. If there is also no
consistent context in the step, UPM updates a secondary
database with the current prediction context, send the current
prediction context to FinalContextGenerator, and disseminate
it through a network to services in the environment. Fig. 5
illustrates the process of generating UCCs and disseminating
them into the environment through a network.

The brief mention on the procedure of UCC generation and
dissemination is as follows. First of all, we construct a primary
database in UCC Database from static user-related information
provided through GUI. Then, Final Contexts are aggregated at
a periodic interval and stored in FC Database. At a regular pace,
we analyze and learn the dynamic user-related information
from Final Contexts. At last, through context matching process,
we make a new User Conditional Context, update a secondary
database in UCC Database with it, and send it to other
ubiServices and wearServices.

ContextDatabase

Context
Integrator

CM Thread
GetContext (IC)

ICDatabase

FCDatabse

PutContext (FC)

Context
Generation

(FC)

UCCDatabase

Interpreter

Service
Provider

Eventing (Context Adding) – Thread is subscribed to ContextDatabase for eventing

Learning EngineLearning Engine

GetContext
(FClist)

PutContext
(UCC)Secondary DB

Primary DB
Context

Comparison

Matched Context

GetContext (UCClist)

Inference Net

Training
(Neural Network)

Prediction
Context

IC

ubiPCMM 2005 69

Fig. 4. User Profile Handling Module

UCCs disseminated through a network can be exploited for
several ubiServices to match with ICs from the environment for
triggering the corresponding service. Fig. 5 shows the
interaction between UPM in wearService and ubiServices in
the environment. UCCs come into usage for ubiServices to
provide a user with their contents. Since UPM makes UCCs
which reflect the user’s preferences that suit him best, it can
play a key role in providing personalized services in the
environment.

Learning
Matching &

FC generation

FC’ IC (situation)

UCC

SS

UCC’
(Intention)

wearSP

UPM (wearCM)

wearCI

FC

GUI

UCC #1
UCC#2
UCC#2

·

w
e
a
rIn

te
rp

re
te

r

ubiHome (smart home environment)

UCC4

UCC1

UCC3

User’s
Preferences
for services

TV Service

Audio Service

Light Service

MR window
Service

UCC2

F.C.’
(= UCC)

wear-Service (UCC Generator)

Fig. 5. Interaction between User Profile Manager and services in

ubiHome environment

C. User Profile Update using Neural Network
Although users new in a home environment can provide their

personal information and service-specific preferences through
GUI offered by Service Provider in wear-UCAM, it is needed
to automatically update user’s service-specific preferences
when user’s command is not explicitly provided. And what if a
user wants to enjoy a service which he has not initially set his
preferences on it through GUI? In case of these situations, it is
also needed to learn the user’s behavior patterns to infer
service-specific preferences, so that results of learning can be
reflected into the dynamic update of user profile.

In updating user profile, learning engine expects the
appropriate service for given input. The input represents the
current situation of user’s surroundings. We applied Neural
Network to the learning engine. The context can be the input
patterns. Users can determine the input patterns using GUI, for
service which he wants to be provided. And they also can be
generated from both Integrated Contexts and the collected Final
Contexts, in the form of 5W1H. And then, learning engine
outputs the proper result which represents service information.
The history of service-specific user preferences is stored in the
database for learning change of user’s demands. Learning
engine analyzes the history and determines new rules according
to the learning result through a neural network. For learning
user preferences, a Multiple-Layer Perceptron (MLP) neural

network is used [17]. It is shown in Fig. 6.

Fig. 6. MLP with Backpropagation

 It has long been regarded that neural networks might
provide the established basis for approximating any (linear or
nonlinear) function. In particular, MLP might provide the most
valid way to map any nonlinear relation, given sufficient
neurons in the hidden layers. Neural network is composed of
simple neurons operating in parallel. These neurons are
inspired by biological nervous systems. The network function
is determined by the connections between neurons. We can
train a neural network to perform a particular mapping function
by adjusting the values of the connections (weights) between
neurons. By training neural networks, we can enable a specific
input to lead a specific target output. There, the network is
adjusted, based on a comparison of the actual output and the
target output, until the actual output from a network is
consistent with the target one. Typically lots of input and target
pairs are used, in this supervised learning, to train a network.
The learning algorithm used in this system is the popular
backpropagation of which the direction of adjusting weights is
the reverse direction of processing data as shown in Fig. 6. If it
is carefully trained, neural network may induce generalization
beyond the training data to produce approximately correct
results for new cases that were not exploited for training.
Neural network is useful for solving non-linear problems and it
takes less time and cost than other algorithms.

V. EXPERIMENTS
We have implemented ‘ubiHome [18]’, a testbed for

applying ubiComp enabling technologies to home
environments. In ubiHome, various sensors and services are
equipped being pervasive. Sensors generate preliminary
contexts describing residents and their surroundings, and
personalized services are offered by exploiting the resident’s
context. Each sensor is regarded as a smart sensor as it is
individually connected to a PC and does work with inherent
processing, networking, and sensing abilities. We performed

Youngjung Suh, Dongoh Kang and Woontack Woo 70

the experiments by using resources in ubiHome.
For a dynamic update of user profile, we mentioned that we

applied a neural network to the learning engine of UPM. The
neural network architecture in Fig. 7 consists of three layers;
input layer, hidden layer, and output layer. We use a set of
contexts as input because contexts express user’s behavior
pattern. If the number of elements of each context is EN and the
number of context is CN, then the total number of input neurons
is equal to EN × CN. The number of neurons in the hidden layer
is selected by experiments and the number of neurons in the
output layer is the number of categories in services to be
provided to the users.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Weight
-1.0 ~ 1.0

Weight
-1.0 ~ 1.0

WHO

WHATHOW

WHEN

WHERE

WHY

Hidden
Layer

Output
Layer

Service

Service
Parameter

Input
Layer

Fig. 7. Organization of MLP

The input and output pairs of training pattern are fed to the
neural network because the supervised learning is exploited.
The adopted MLP is performed in two steps, i.e. learning and
then mapping. First, MLP learns the nonlinear relationship
between the context information (3W1H) and the user's
intention (‘what’) through examples, rather than complicate
behavior pattern analysis and mapping. The Fig. 8 shows the
procedures of network training, context inferring, and context
matching.

when where how why what

1

·

·

when where how why what

1

2

3

·

·

when where how why what

1

2

3

·

·

Training FC set

FC DB to be trained

[Inference Net]

Trained
Neural Network

Context Integrator

Learning
process

ICFC

when where how why what

Prediction
context

N samples

when where how why what

1

·

·

SS Context set

Service Provider

Interpreter

SS

Comparison
(Matching)

FC
Generator

UCC

when where how why whatUpdate

Updated
UCC

FC

Fig. 8. Context Inferring and Matching

The procedure of training the network is as follows: Firstly,
the input data are obtained with the form of 3W1H from FC
database. After getting the context (3W1H), we apply the
neural networks (NN) to induce an intention of a user from
input contexts. In the neural network, each input vector is
converted into the numerical value. These numerical input
values are the input to the hidden layer for processing. In this
processing, weights and biases in networks are adjusted. It
compares the trained results and the given target data. If they
are identical, it puts an end to training networks. If they are not,
it adjusts networks again until the trained result is consistent
with the target data. After proper training, the MLP associates
the input vectors with specific service/service parameters
category, i.e. categorizes the user’s contexts to several service
categories. In this framework, a set of user’s context (i.e. when,
where, how, and why) are mapped directly to a set of symbolic
representation of services i.e. {TV.On/Off, Audio.On/Off,
TV.On.Comedy, etc.}, as input and output vectors of the MLP.
Fig. 9 shows one mapping sets of each layer in MLP. In the
input layer, as shown in this figure, only one neuron is assigned
to each element of 3W1H context, i.e. ‘when’, ‘where’, ‘how’,
‘why’. Also, in the output layer, only one neuron is assigned to
‘what’ context.

WHO HOWWHEN WHERE WHY

Input Layer Hidden Layer Output Layer

Service,
Parameters

User Rightaftergettingup

Rightbeforegoingtobed

Morning

Day

Evening

Audio.SilentMusic
Audio.PlayfulMusic

Audio.ClassicalMusic
Audio.ExcitingMusic

Stresslevel
-Serene

-Composing

-Nervous

-Anxious
N samples

4 inputs

N X 4 neurons

What

TV

Audio

TV.Comedy
TV.Show
TV.News
TV.Drama

TV

Sofa

MRWindow

Audio

SitDown

StandUp

MoveAround

3 bits 2 bits 2 bits 4 bits

1 input

2 bits

1 neuron 1 neuron1 neuron 1 neuron 1 neuron

N Layers
(M neurons

per each
layer)

Fig. 9. 1st Data sets of each layer in MLP

Note that alternatively, the proposed UPM can be used to
make the analysis procedure even simpler. For example,
without extracting directly user’s status and desire from
physical sensors, context information {when, where, how,
why} obtained from context-aware application model can be
directly connected to the input layer of NN. Each context is
denoted by numerical values, which stand for where the user is,
when he is observed, which gesture he takes, and what his
stress level is. Thus, these contexts can be trained to be mapped
to the proper output categories. We described the experimental
result in more detail as follows.

We indicate inputs, outputs, vectors, and neurons as
Network Status in Fig. 10. In addition, hidden layer topology,

ubiPCMM 2005 71

training parameters, stopping condition and results are
presented above. There is learning rate as training parameter.
The number of iterations and error tolerance are included in
stopping conditions. We can find that as the number of hidden
layers is increased, the total error rate is decreased, other things
being equal, as shown in Figure 10-a. Also, as the number of
nodes within the hidden layer is increased, the total error rate is
decreased. When the total number of nodes is fourteen in two
hidden layers, the accuracy is at around 42%, which shows best
performance with same experimental condition.

Network Status T1 T2 T3 T4 T5 T6

Inputs 4 4 4 4 4 4
Outputs 1 1 1 1 1 1
Vectors 160 160 160 160 160 160
Neurons 9 13 13 15 17 19

Hidden Layers

the # of hidden layer 1 1 2 2 2 2

the # of nodes/h 4 (= INPUT) 8 (= INPUT X 2) 4 (= INPUT) 5 6 7
the total # of nodes 4 8 8 10 12 14
Training Parameters

learning rate 0.3 0.3 0.3 0.3 0.3 0.3
Stopping condition
the # of iterations 100000 100000 100000 100000 100000 100000

Tolerance % 95% 95% 95% 95% 95% 95%
Results

total error rate 23.2131 19.466 21.1334 6.753 6.0425 3.7278
% Correct 11 7 8 23 21 42

Fig. 10 – a . Learning Results with Network status (adjusting the
topology of hidden layer)

In Figure 10 – b, it is shown that as we increase the number
of iterations, others being equal, the total performance is
improved, gradually. Comparing between 12 nodes and 14
nodes in two hidden layers with 3,000,000 iterations, latter is
better than former. T14 is found as the best one of results which
we got from this experiment.

T7 T8 T9 T10 T11 T12 T13 T14

4 4 4 4 4 4 4 4

1 1 1 1 1 1 1 1

160 160 160 160 160 160 160 160

17 17 17 17 17 19 19 19

2 2 2 2 2 2 2 2

6 6 6 6 6 7 7 7

12 12 12 12 12 14 14 14

0.1 0.01 0.3 0.5 0.3 0.3 0.3 0.3

100000 100000 500000 500000 3000000 100000 1000000 3000000

95% 95% 95% 95% 95% 95% 95% 95%

6.0634 16.84 5.4123 12.0368 3.5412 3.7278 2.2381 1.3058

31 11 30 15 48 42 55 72

Fig. 10 – b. Learning Results with Network status (adjusting learning
rate and iteration number)

Fig. 11 shows another mapping sets of each layer in MLP. In
the input layer, as shown in the figure, the different number of
neurons is assigned to each element of 3W1H context, i.e.
‘when’(5), ‘where’(4), ‘how’(3), ‘why’(4). In the output layer,
17 neurons are assigned to ‘what’ context. That is, the number
of neurons in each input data is the number of possible samples
of each element in 3W1H context. The number of neurons in
the output layer is the number of target samples of elements in

‘what’ context.

WHO HOWWHEN WHERE WHY

Input Layer Hidden Layer Output Layer

Service,
Parameters

User Rightaftergettingup

Rightbeforegoingtobed

Morning

Day

Evening

Audio.SilentMusic
Audio.PlayfulMusic

Audio.ClassicalMusic
Audio.ExcitingMusic

Stresslevel
-Serene

-Composing

-Nervous

-Anxious
N samples

4 inputs

N X 16 neurons

What

TV

Audio

TV.Comedy
TV.Education

TV.News
TV.Drama

TV

Sofa

MRWindow

Audio

SitDown

StandUp

MoveAround

1 input

5 neurons 4 neurons 3 neurons 17 neurons4 neurons

Input/Target Pattern Example

N Layers
(M neurons

per each
layer)

Fig. 11. 2nd Data sets of each layer in MLP

umber of INPUT
nodes times the number of OUTPUT nodes).

Fig. 12 represents the learning results with network status
when 2nd data sets of each layer in MLP are exploited. In this
experiment, we tried to observe how fast the network is well
trained in reaching around 99% of accuracy. As shown in Fig.
12, the smallest number of iterations is 5 under T3 network. It
means that the network is the most tolerant of errors under 1
hidden layer topology with 272 neurons (the n

Network Status T1 T2 T3 T4

Inputs 16 16 16 16

Outputs 17 17 17 17

Vectors 160 160 160 160

Neurons 33 65 305 97

Hidden Layers(TOPOLOGY)

the # of hidden layer 0 1 1 2

the # of nodes/h 32 (= INPUT X 2) 272 (= INPUT x OUTPUT) 32 (= INPUT X 2)

the total # of nodes 32 272 64

Training Parameters

learning rate 0.3 0.3 0.3 0.3

Stopping condition

the # of iterations 7094 304 5 97

Tolerance % 95% 95% 95% 95%

Results

total error rate 4.99 4.96 1.17 4.96

% Correct 99.95 99.95 99.98 99.95

lts with Network status Fig. 12 . Learning Resu (adjusting learning rate
and iteration number)

s seem to be approximated
to red outputs, as we expected.

Figure 13 shows the results of comparing between actual
outputs of prediction results and desired outputs of training sets.
We can realize that the actual output

 desi

Youngjung Suh, Dongoh Kang and Woontack Woo 72

Fig. 13. Comparison btw actual outputs and desired outputs (Total
Error Rate 1.3058, iteration # 3000000)

Fig. 14 shows the Error Distribution Chart of an output
variable. Through this chart, we can analyze which sample data
of training sets affects to result in errors.

Fig. 14. Error Distribution Chart (Total Error Rate 1.3058, iteration #
3000000)

VI. CONCLUSION AND FUTURE WORKS
In this paper, we designed and tested UPM which employs

learning mechanism of Neural Network. Without directly
extracting user’s status and desire from physical sensors,
context information {when, where, how, why} obtained from
context-aware application model can be connected to the input
layer of NN. Each context is denoted by numerical values,
which represent where he is, when he is observed, which
gesture he makes, and what his stress level is. Thus, these
contexts can be trained for being mapped to appropriate output
categories. The final result after training MLP is enough good
to recognize user’s behavior pattern which can be used to infer
the preferred service of the user. Remaining work is to consider
the method which can reflect users’ feedback in real-time. Also,
when any one of the input contexts is not provided to the

system, the system should still provide appropriate services to
the user. We need to evaluate learning mechanism of Neural
Network and consider a bayesian approach to human activity
recognition [19]. Furthermore, it is important that users be able
to enjoy context-aware personalized services by selectively
disseminating their private information without compromising
their privacy. That is, users only have to distribute their profile
the time when they indeed want to enjoy services. Privacy
control mechanism should be elaborated from now on.

Actual Output Disired Output Actual Output Disired Output Actual Output Disired Output

13.2572 13 4.638171 5 3.323117 3

15.77974 16 4.877563 5 3.330195 3

1.025283 1 5.059554 5 2.806404 3

0.928683 1 4.964586 5 3.016124 3

0.9349977 1 7.048586 6 3.064165 3

1.133425 1 9.078062 9 2.987198 3

4.857995 5 12.18801 12 8.150376 8

5.024797 5 14.99448 15 10.6666 11

4.958493 5 4.835256 5 14.10716 14

5.039969 5 4.899389 5 16.31325 17

4.005897 4 4.98481 5 7.906893 8

4.062534 4 4.993693 5 10.65116 11

4.033796 4 1.254928 1 14.2172 14

3.943906 4 1.079246 1 16.34376 17

3.905409 4 0.896942 1 7.15222 7

3.988985 4 0.9161988 1 9.732225 10

4.013333 4 3.100619 3 13.56354 13

4.00633 4 3.117309 3 16.1084 16

6.651451 6 2.979155 3 7.089486 7

8.900903 9 3.053519 3

12.14961 12 2.863694 3

14.86247 15 3.148607 3

REFERENCES
[1] Anind K. Dey and Gregory D. Abowd, .Towards a Better Understanding

of Context and Context-Awareness., Proceedings of the CHI 2000
Workshop on .The What, Who, Where, When, and How of
Context-Awareness., The Hague, Netherlands, April 1-6, 2000.

[2] R. Want, K. Fishkin, B. Harrison and A. Gujar, “Bridging Physical and
Virtual Worlds with Electronic Tags,” In Proc of ACM SIGCHI 99, May
1999.

[3] A. K. Dey, D. Salber, G. D. Abowd, “ A Conceptual Framework and a
Toolkit for Supporting the Rapid Prototyping of Context-Aware
Computing,” Human-Computer Interaction (HCI) Journal, Vol. 16,
pp.97-166, 2001.

[4] Barry Smyth and Paul Cotter, “Personalized adaptive navigation for
mobile portals”, ECAI 2002, (2002).

[5] Context-Aware Personalised Service Delivery. In R Lopez de Mantaras &
L Saitta (ed), Proceedings of the Sixteenth European Conference on
Artificial Intelligence - ECAI-2004 (Valencia, Spain), IOS Press,
Amsterdam, pages 1077-1078, 2004

[6] C. Muldoon, G.M.P. OHare, D. Phelan, R. Strahan, and R.W. Collier,
‘Access: An agent architecture for ubiquitous service delivery’, in
Proceedings Seventh International Workshop on Cooperative
Information Agents (CIA), (2003).

[7] Ubisworld, http://www.u2m.org/
[8] D. Huynh, D. R. Karger and D. Quan, “Haystack: A Platform for Creating,

Organizing and Visualizing Information Using RDF,” In Proc. of
Semantic Web Workshop, May 2002.

[9] SOUPA, http://pervasive.semanticweb.org/
[10] Jason I. Hong and James A. Landy, “An Infrastructure Approach to

Context-Aware Computing,” Human Computer Interaction, Vol. 16,
2001.

[11] A. Ranganathan and R. H. Campbell, “A Middleware for Context-Aware
Agents in Ubiquitous Computing Environments,” In Proc. of
International Middleware Conference, June 2003.

[12] H. Chen, T. Finin and A. Joshi, “Semantic Web in the Context Broker
Architecture,” In Proc. of Percom 2004, March 2004.

[13] Daisuke Morikawa, Masaru Honjo, Akira Yamaguchi, Masayoshi Ohashi,
KDDI Corporation, "A Proposal of User Profile Management Framework
for Context-Aware Service," In SAINT-W'05, January 31 - February 04.

[14] S. Jang, W. Woo, “ubi-UCAM: A Unified Context-Aware Application
Model,” LNAI (Context03), pp. 178-189, 2003.

[15] Y.Oh, W.Woo, “A unified Application Service Model for ubiHome by
Exploiting Intelligent Context-awareness,” UCS’04, pp. 117-122, 2004.

[16] D.Hong, W.Woo, "wear-UCAM: A Toolkit for Wearable Computing,"
ubiCNS05, accepted, 2005.

[17] Richard P. Lippmann, “An introduction to computing with neural nets”,
IEEE Acoustics, Speech and Signal Processing Magazine, 4(2):4--22,
April 1987.

[18] Seiie Jang, Choonsung Shin, Yoosoo Oh, and Woontack Woo,
"Introduction of “UbiHome” Testbed," The first Korea/Japan Joint
Workshop on Ubiquitous Computing & Networking Systems
2005(ubiCNS2005), pp. 000-000, 2005.

[19] A. Madabhushi and J. K. Aggarwal, “A bayesian approach to human
activity recognition”, In Second IEEE InternationalWorkshop on Visual
Surveillance (CVPR Workshop), pages 25–30, Fort Collins,CO, June
1999.

[20] (Handbook style) Transmission Systems for Communications, 3rd ed.,
Western Electric Co., Winston-Salem, NC, 1985, pp. 44–60.

ubiPCMM 2005 73

[21] Motorola Semiconductor Data Manual, Motorola Semiconductor
Products Inc., Phoenix, AZ, 1989.

[22] (Basic Book/Monograph Online Sources) J. K. Author. (year, month, day).
Title (edition) [Type of medium]. Volume(issue). Available:
http://www.(URL)

[23] J. Jones. (1991, May 10). Networks (2nd ed.) [Online]. Available:
http://www.atm.com

[24] (Journal Online Sources style) K. Author. (year, month). Title. Journal
[Type of medium]. Volume(issue), paging if given. Available:
http://www.(URL)

[25] R. J. Vidmar. (1992, August). On the use of atmospheric plasmas as
electromagnetic reflectors. IEEE Trans. Plasma Sci. [Online]. 21(3). pp.
876—880.Available:http://www.halcyon.com/pub/journals/21ps03-vidm
ar

Youngjung Suh received the B.S. degree in Computer
Engineering from Chonnam National University in 2001
and M.S. degree in Information & Communication
Engineering from Gwangju Institute of Science and
Technology (GIST) in 2003. Research Interest: Mixed
Reality, Vision Based Human Computer Interaction,
Context-aware technology, Ubiquitous computing,
Wearable computing

Dong-Oh Kang received his B.S. degree in electronic
engineering from Yonsei University, Korea, in 1994.
And, he received his M.S. and Ph.D. degrees in electronic
engineering from Korea Advanced Institute of Science
and Technology, Korea, in 1996 and 2001 respectively.
Since 2001, he has been working at Electronics and
Telecommunications Research Institute, and now, he is a
senior member of engineering staff of the Post-PC

Platform Research Team where he is developing a Post-PC platform. His
research interests include context-aware middleware, home network
middleware, distributed control, and Post-PC platform.

 Woontack Woo received his B.S. degree in EE from
Kyungpook National University, Daegu, Korea, in 1989
and M.S. degree in EE from POSTECH, Pohang, Korea, in
1991. He received his Ph. D. in EE-Systems from
University of Southern California, Los Angeles, USA.
During 1999-2001, as an invited researcher, he worked for
ATR, Kyoto, Japan. In 2001, as an Assistant Professor, he
joined Gwangju Institute of Science and Technology

(GIST), Gwangju, Korea and now at GIST he is leading U-VR Lab. Research
Interest: 3D computer vision and its applications including attentive AR and
mediated reality, HCI, affective sensing and context-aware for ubiquitous
computing, etc.

http://www.(url/
http://www.atm.com/
http://www.(URL/

	I. INTRODUCTION
	II. related works
	III. user profile management framework
	A. Context Model
	B. wear-UCAM
	C. Service Scenarios
	Context-based Music Player

	IV. user profile management method
	A. Context-based User Profile Description
	B. User Profile Handling
	1) Context Aggregation
	2) UCC generation and dissemination

	C. User Profile Update using Neural Network

	V. experiments
	VI. conclusion and future works

