
Data Integration Using DataPile Structure

David Bednárek, David Obdržálek, Jakub Yaghob, and Filip Zavoral

Department of Software Engineering
Faculty of Mathematics and Physics, Charles University Prague

{david.bednarek, david.obdrzalek, jakub.yaghob,
filip.zavoral}@mff.cuni.cz

Abstract. One of the areas of data integration covers systems that maintain co-
herence among a heterogeneous set of databases. Such a system repeatedly col-
lects data from the local databases, synchronizes them, and pushes the updates
back.
One of the key problems in this architecture is the conflict resolution. When
data in a less relevant data source changes, it should not cause any data change
in a store with higher relevancy.
To meet such requirements, we propose a DataPile structure with following
main advantages: effective storage of historical versions of data, straightfor-
ward adaptation to global schema changes, separation of data conversion and
replication logic, simple implementation of data relevance.
Key usage of such mechanisms is in projects with following traits or require-
ments: integration of heterogeneous data from sources with different reliability,
data coherence of databases whose schema differs, data changes are performed
on local databases and minimal load on the central database.

1 Introduction

The concept of data integration covers many different areas of application [3,13]. In
this paper, we focus on one kind of applications characterized by the following re-
quirements:
− Data warehousing: The data originated at the local data sources should be repli-

cated into a central repository (data warehouse) in order to allow efficient analyti-
cal processing and querying the central system independently of local systems.

− Back-propagation: Any update which occurs in a local database (performed by its
local application) should be distributed to other local databases for which this kind
of data is relevant.

− History records: The central repository should maintain full history of all data
stored therein.

Each one of the requirements forms a well-known problem having well-known solu-
tions [2,8,9,10]; nevertheless, combining the requirements together introduces new,
interesting problems, and disqualifies many of the traditional solutions. This paper
presents a technique, called DataPile, which combines flexible storage technology

178

 179

(built upon a standard relational database system) with system architecture that sepa-
rates the replication mechanisms from the schema-matching and data-conversion
logic. Since the approach is inspired by XML techniques rather than relational data-
bases, its combination with modern XML-based technologies is straightforward.
Nevertheless, the system is created over relational database system and direct integra-
tion with traditional database systems is also possible.

One of the most difficult problems in the area of data integration is handling of
duplicate and inconsistent information. The key issue in this problem is entity identi-
fication, i.e. determining the correspondence between different records in different
data sources [11, 14]. The reality requires that the system administrators understand
the principles of the entity matching algorithm; thus, various difficult formalisms
presented in the theory [7] are not applicable. Our approach uses a simplified entity
matching system which allows the users to specify matching parameters that are easy
to understand. Some researchers [6] advice that successful entity identification re-
quires additional semantics information. Since this information cannot be generally
given in advance, the integrated system should be able to defer decision to the user.
The system should detect inconsistencies and either resolve them, or allow users to
resolve them manually. The need for user-assisted conflict resolution induces a new
class of problems: The repository should be able to store data before final resolution
while their relationship to the real world entities is not consistent. Consequently, the
system should be able to merge entities whenever the users discover that the entities
describe the same real-world entity, and, conversely, to split an entity whenever the
previous merge is found invalid. Under the presence of integrity constraints and his-
tory records, this requirement needs special attention.

The relationship between the global system and local database is usually expressed
using the global-as-view and local-as-view approaches [5]. In our system, a mixture
of these methods is used depending on the degree of integration required.

Maintenance of history records falls in the area of temporal databases and queries,
where many successful solutions are known [1, 4, 12]. The theory usually distin-
guishes between the valid time, for which the data element is valid in the real world,
and the transaction time, recording the moments when the data entry was inserted,
updated, or deleted. In our approach, the central system automatically assigns and
stores the transaction time, while the local systems are responsible for maintaining the
valid time where appropriate. Queries based on transaction time are processed by
special algorithms implemented in the central system; queries related to valid time are
processed in the same manner as queries to normal attributes.

The rest of the paper is organized as follows: The second chapter describes the
principles of the DataPile technology used to flexibly store structured data in a rela-
tional database system. The next chapter focuses on entity identification using data
matching and relevance weighing. The fourth chapter shows the overall architecture
of the integrated system. The fifth chapter presents an evaluation based on a commer-
cial data-integration project where the DataPile approach was used.

 180

2 The DataPile

2.1 Terminology

We have used an own terminology, which is partly derived from the XML terminol-
ogy. The first term is entity, which represents a type of the traditional database row.
An entity consists of attributes, which are analogous to the traditional database col-
umns. An entity instance is an instance of entity and directly equals to traditional
database row contents. An attribute value is an instance of attribute and forms a value
of one column in one row. A metatable is a conventional database table used by the
DataPile to store schema information and other system data.

2.2 Data Verticalization

Usual information systems consist of some nontrivial number of conventional data-
base tables; huge information systems have huge number of such tables. Moreover,
the requirement for preserving all changes in data usually leads to the scheme, where
changing one value of one column in one row causes inserting a new changed row
(possibly very large) and updating the old row with some state changing column (e.g.
validity termination timestamp). Another problem in conventional information sys-
tems is extensibility; adding some new columns or new tables may cause large appli-
cation code rewriting.

DT_PILE

stoh_id
attr_id
ent_id
state
relevance
val_num
val_str
val_dt
val_id
lobh_id
ts_create
ts_state
iapp_id
ts_valid_from
ts_valid_to

NUMBER(18)
NUMBER(18)
NUMBER(18)
INTEGER
FLOAT
NUMBER(18,0)
NVARCHAR2(2000)
TIMESTAMP
NUMBER(18)
NUMBER(18)
TIMESTAMP
TIMESTAMP
NUMBER(18)
TIMESTAMP
TIMESTAMP

<pk>
<fk3>
<fk2>

<fk1>

DT_LOB_HASH

lobh_id
lob_hash
val_lob

NUMBER(18)
RAW(32)
BLOB

<pk>

DT_ENTITY

ent_id
tent_id
ts_created

NUMBER(18)
NUMBER(18)
TIMESTAMP

<
<

MT_ATTR_TYPE

attr_id
tent_id
name
type
mod
classifier
wtent_id
optional
multiple

NUMBER(18)
NUMBER(18)
VARCHAR2(256)
INTEGER
INTEGER
INTEGER
NUMBER(18)
INTEGER
INTEGER

<pk>
<fk2>

<fk1>

MT_ENTITY_TYPE

tent_id
name

NUMBER(18)
VARCHAR2(256)

<pk>

Figure 1. A sample schema of the DataPile-based system

 181

All these problems are addressed by the proposed method of storing data in different
way than in traditional approaches but using standard relational databases – the
DataPile. All real applications data are stored in two relational tables: one less impor-
tant table DT_LOB_HASH is dedicated for storing LOBs (for performance pur-
poses), and the second one, the most important, DT_PILE stores data of all other
datatypes. This particular table is called the Pile, because all data is stored in one
table without any “well-formed” internal structure or hierarchy. Each row in the pile
represents one attribute, whose value is/was valid during certain interval of transac-
tion time.

The Fig. 1 represents slightly simplified schema of the heart of DataPile-based in-
formation system. Tables with prefix DT_ hold real data; all other tables (with prefix
MT_) are metatables. The table DT_ENTITY holds valid “global” ID for an entity
instance stored in the pile together with information about the entity in form of a
reference to the metatable MT_ENTITY_TYPE which stores entities. Entities consist
of attributes, and this is modeled by the metatable MT_ATTR_TYPE.

Real values are stored in columns val_xxx of the main table DT_PILE , where xxx
represents logical type of the attribute (number, string, datetime, ID – foreign key).
Besides the actual data, other additional data is stored in the DT_PILE table: Transac-
tion time aspect of any attribute value is represented by two columns ts_valid_xxx.
The type of given attribute value can be found by reference attr_id to the
MT_ATTR_TYPE. The ent_id value compounds all attribute values into one entity
instance. Other columns not mentioned here serve the system for proper implementa-
tion of the functionality needed.

Such a structure easily avoids all the problems mentioned at the beginning of this
paper: The number of relational tables used does not grow with an expansion of an
information system; it is constant regardless on how huge the system is. Data changes
are preserved with minimal overhead – one attribute value change is represented by
inserting a new value into the pile – one new row is inserted into DT_PILE table not
touching the rest of attribute values related to the same entity instance. Extensibility
of the system is reached by the possibility to insert some new rows into metatables
and therefore the possibility of defining new entities, attributes, or both.

From the above described layout we can see that this data structure fulfils two re-
quirements put on the information system as a whole: easy extensibility of the data
scheme and full information about data changes on the timeline.

3 Data Matching and Weighing

The requirement on data unification is solved by two algorithms: data matching
and data weighing.

3.1 Data Matching

Let us show an example, which represents usual situation we meet while processing
the same data in different applications. Let application A1 have a record about a per-

 182

son with the name “Jana”, surname “Teskova” with some personal identification
number “806010/7000” and an address “Mother’s home No. 10”. The same informa-
tion is stored in the application A2 as well. After Jana Teskova got married, she took
her husband’s surname (as it is quite usual over here). So her surname changes to
“Stanclova”. She also moved to live with her new husband on the address “New
home 20”. Our person notifies about her marriage and the accompanying changes
only the office using application A1, and does not notify other office with application
A2 - at first she might not even know A2 does not share the data with A1 as they both
are used to keep data about people in one organization, and at second she may expect
that A1 and A2 are integrated together, so changes in A1 are automatically redistrib-
uted to A2 as well (but this is a so called distribution problem, which is discussed
later). So the result is A1 and A2 store different data about one entity instance. What
happens when we try to merge data from A1 and A2 into a common data storage?

As our example shows, nearly all attributes have changed. But some of them are
constant, especially personal identification number, which should by truly unique in
our country. The association of words “should be” unfortunately means that cases
exist, when different persons have the same personal identification number. On the
other side, these cases are rare. Having two personal records with the same personal
identification number means they belong in fact to a single person with probability of
roughly 0,999999.

In this example, other attributes have changed, but a combination of some attrib-
utes can have significant meaning: e.g. name and surname together form a whole
name. Even name and surname aren’t commonly unique in a state, equality of such
attributes means some nontrivial probability these two records describe a single per-
son.

This example leads us to attribute classification. Every attribute is assigned one of
these classes: determinant, relevant, uninteresting.
− Determinant – identifies an entity instance with very high probability (e.g. personal

identification number, passport number etc.).
− Relevant – significant attribute, which helps identify unambiguously equality of

entities (e.g. attribute types “name” and “surname” for entity type “person”).
− Uninteresting – has no impact on entity matching.
Following algorithm describes entity matching for two entity instances (one is already
stored in the database, the second one is a newly integrated/created entity):
1. All determinant and relevant attribute values are equal – quite clear match with

very high probability.
2. A nonempty subset of determinant and nonempty subset of relevant attribute

values are equal, remaining determinant and relevant attribute values have no
counterpart in the complimentary entity instance – very good match with quite
high probability yet (example: let us extend our example with another attribute
“passport number”. The first entity instance has attributes “personal identifica-
tion number” and “passport number” filled. The second entity instance has only
“personal identification number” filled and “passport number” is missing.).

 183

3. A nonempty subset of determinant attribute values is equal, remaining determi-
nant attribute values has no counterpart in the complimentary entity instance, but
some nonempty subset of relevant attribute values differ – this case seems to be
clear as well, because the probability of match for determinant attribute values
outweighs probability of different relevant attribute values, but some uncertainty
remains as the probability of determinant attribute values is always <1.0. We
must not loose any data and their history, so the system solves such a case by
considering these two entity instances as different with notification to the system
administrator. The administrator can investigate this case more precisely and can
merge these two entities together using an administrator application. This case
directly describes the situation during entity matching from our first example –
the personal identification number as a determinant attribute value is the same,
but surname as a subset of relevant attribute values differs.

4. A nonempty subset of determinant attribute values differs, remaining determinant
attribute values with counterpart are equal, some nonempty subset of relevant at-
tribute values is equal, remaining relevant attribute values have no counterpart –
this case usually arises out of misspelling one determinant attribute value. This
case is solved as above – entity instances are considered to be different and the
system administrator is notified.

5. All other cases – input entities are different entity instances with very high prob-
ability.

3.2 Data Weighing

Let us show another example: An employee record is usually kept in different appli-
cations in different departments, e.g. human resources department, pay-
roll/accountants department, library, etc. Some applications and departments them-
selves emphasize some entities and usually some subset of attributes from entities
used, e.g. staff department knows with high probability that given person has a cer-
tain name, surname, home address, etc., whereas payroll department knows with high
probability his/her account number, etc.

It should be beneficial for data integration to have possibility measure somehow
the probability, that an application has entity instances (or more precisely on individ-
ual attribute values) filled with correct values. Therefore, every attribute value in the
DataPile keeps a number which measures probability this given value is correct. This
probability is stored in the DT_PILE column “relevance”.

During processing of incoming data all incoming attribute values are somehow
evaluated (this will be explained later) and the computed relevance is compared to
current relevance of attribute value stored in the DataPile. If the new value has greater
or equal computed relevance than current value has, the new value “wins”, becomes
the current value, and the old value is marked as archive. Otherwise (when the rele-
vance is lower than current relevance) the new value is stored as well, but only as a
remark saying the application has ineffectually tried to change this attribute value.

 184

But there is a problem: when an unimportant application with low relevance keeps
correct data (replicated from the central repository) and wants to change some attrib-
ute values (because a user has made some changes), these changes will be always
ignored. This problem is solved by “approving” the data. Every application must
confirm to central repository it agrees with current data replicated from central reposi-
tory to this application. This confirmation is stored in the DataPile and the system
knows the given application has accepted the current attribute value. When such an
application (which approved a current attribute value) changes the value, the rule
about weighing relevance is ignored and the attribute value is changed.

For example, a large company has usually some branch offices, where department
branches can be located as well. Such branches usually show different credibility,
which should be reflected by the relevance computation as well.

For computing relevancy of an attribute value following equation is therefore used:

 atecetiapapa RRRRRR ⋅⋅⋅⋅= (1)

where Ra means attribute value relevancy, Rap is static application relevancy (e.g.
application used by staff department), Riap is static instance of application relevancy
(e.g. branch of department), Ret is a static entity relevancy, Rec is a computed entity
instance relevancy, and Rat is a static attribute relevancy. All these static values are
stored in metatables as floating-point values. Rec represents computed relevancy for
given entity instance and its value is computed as follows:

()iRR
i

acec ∏= (2)

where Rac(i) is either a value stored in metatables (when attribute i from given entity
has some particular value stored in metatables as well), or it has value of 1. This
computed relevancy supports changing of the relevancy based on the presence of
selected attributes in the entity.

4 Implementation

4.1 The DataPile Architecture

The whole DataPile-based system is in general shown on the following picture.

 185

Temporal
database

Application
server

Central
database

DataPile

App1 App2 Appn

Local
DB1

Local
DB2

Local
DBn

Figure 2. The DataPile architecture

Every application (marked in the picture as App1..n) has its own local database (Local
DB1..n). The DataPile machinery is constituted by the Trinity of Central database,
Temporal database, and Application server: the Central DB contains the DataPile as
data structure for collected data storage, the Temporal DB serves only as communica-
tion medium between the DataPile machinery and applications (data is revealed here
only during replication and immediately deleted when replication ends). The Applica-
tion server, which gives life to the whole system, is discussed in following section.

4.2 Application Server

The whole DataPile architecture utilizes the request/reply paradigm. The application
server behaves to the rest of world passively; it waits for requests inserted into the
temporal DB, fulfills them using central DB data, and writes a reply back into the
temporal DB.

Application server is by intention implemented so that it doesn’t understand any
data semantic. Everything is controlled by the content of metatables and nothing is
hardcoded. The application server is primarily responsible for replication, computing
algorithms like all the above mentioned data matching and weighing, and can handle
other requests too (e.g. perform specialized queries upon the data stored in the
DataPile).

 186

4.3 Replication channel

The communication channel between an application and the DataPile machinery is
not as simple as it may appear on the first look. In reality there are inserted two fil-
ters: export and import filter. They are traditional adapters, which are responsible for
adapting different database schemas used by the DataPile machinery and local data-
base. A watchful reader may note that the direction from application to the DataPile is
marked as “export”, opposite direction as “import”; the marking is taken from the
application point of view.

App
server

Export filter Appi

Temporal
database

Import filter Local
DBi

Figure 3. Communication between the DataPile machinery and an application

4.4 Cache

New applications may advantageously use collected data in central repository. Un-
fortunately the DataPile structure is not very well suited for direct access (e.g. search-
ing is not very effective). Almost all applications in fact need to know only current
attribute value, ignoring all history stored in the DataPile. To support such applica-
tions, the application server actively builds and maintains caches, where only current
attribute values are stored and these caches are presented to applications in the form
of traditional relational tables. The applications can easily search and use all other
RDBMS functions on the caches.

5 Evaluation and Conclusions

The architecture described in this paper brings an alternative to traditional techniques.
It brings several advantages but also some disadvantages.

All the concepts described in this paper were used in a real project – design and
development of an information system based on data replication and synchronization
of data coming from bigger number of different data sources (approx. 30 local infor-
mation systems and 20 other applications producing 30 millions entries per year for
60 000 users, in this project). The project lasts from the fall 2003 and now is in the
phase of finishing the pilot phase and starting roll-out.

 187

Basic and commonly usable advantage of the DataPile structure is its maintainabil-
ity, easy extensibility and ability to keep the track of the whole data history. All cur-
rent applications used at all branches remain preserved and functional without any
change according to a strongly desired requirement. The central data repository inte-
grates data from all data sources including all their history and sources of their
changes. This enables recovering of any historical snapshot of any data. All data
changes are redistributed to all other applications that contain these data, even if the
source and destination schemas are different. The global schema changes affect nei-
ther data in the central repository nor local applications.

During the development of the project, we have discovered several disadvantages
of our approach:

Efficiency, especially during export and matching, is low. During the initial export
of one certain local system, about 500 000 entries had to be processed. This took
more than 24 hours. This time complexity is caused by a relatively complex matching
algorithm. Fortunately, this time complexity is not very important in everyday life
because number of data changes is smaller in magnitude in comparison to the initial
migration data volume.

The second disadvantage is the fact, that the structure of the central repository
makes constructing direct queries difficult. Therefore the concept of caches was in-
troduced and all the queries to non-historical data are performed on the caches instead
of the DataPile itself.

The project showed that the DataPile approach is suitable for certain class of large
applications, where data warehousing is coupled with maintaining consistency of
local databases. In this class of applications, the drawbacks mentioned above are
outweighed by integration of data warehousing features with the support for data
replication, synchronization, and cleaning using back-propagation.

References

1. Bruckner, R., List, B., Schiefer, J., Tjoa, J. A.: Modeling Temporal Consistency in Data
Warehouses, In 12th International Workshop on Database and Expert Systems Applica-
tions (DEXA'01), IEEE Computer Society Press, Munich, Germany (2001) 901-905

2. Chawathe, S., Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou, Y., Ull-
man, J., Widom,J.: The TSIMMIS Project: Integration of Heterogeneous Information
Sources. In Proc. of IPSJ Conference (1994) 7-18

3. Ibrahim, I. K., Schwinger, W.: Data Integration in Digital Libraries: Approaches and
Challenges, Software Competence Center Hagenberg, Austria (2001)

4. Jensen, C. S., Snodgrass, R. T.: Temporal Data Management. IEEE TKDE (1999) 11(1):
36-45

5. Lenzerini, M.: Data integration: A theoretical perspective. In Proc. of the 21st ACM
SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2002)
(2002) 233-246

6. Lim, E.P., Srivastava, J., Prabhakar, S., Richardson, J.: Entity identification in database
integration, in Proceedings Ninth International Conference on Data Engineering, Vienna,
Austria, April 19--23, 1993, IEEE Computer Society Press, Washington, DC (1993) 294-
301

 188

7. Mecella, M., Scannapieco, M., Virgillito, A., Baldoni, R., Catarci, T., Batini, C.: Manag-
ing Data Quality in Cooperative Information Systems, Proceedings of the 10th Interna-
tional Conference on Cooperative Information Systems, Irvine, CA (2002)

8. Mostéfaoui, A., Raynal, M., Roy, M., Agrawal, D., el Abbadi, A.: The Lord Of The
Rings: Efficient Maintenance Of Views At Dataware Houses. Publication interne No.
1441, IRISA, Rennes, France (2002)

9. Nica, A., Lee, A. J., Rundensteiner, E. A.: The CVS Algorithm for View Synchronization
in Evolvable Large-Scale Information Systems. In Proceedings of International Confer-
ence on Extending Database Technology (EDBT'98), Valencia, Spain (1998) 359-373

10. Rundensteiner, E. A., Koeller, A., Zhang, X.: Maintaining Data Warehouses Over Chang-
ing Information Sources, Communications of the ACM, Vol. 43, No.6 (2000)

11. Schallehn, E., Sattler, K., Saake, G.: Extensible and similarity-based grouping for data
integration. In 8th Int. Conf. on Data Engineering (ICDE), San Jose, CA (2002)

12. Torp, K., Jensen, C. S., Snodgrass, R. T.: Stratum Approaches to Temporal DBMS Im-
plementation. In Proceedings of IDEAS, Cardiff, Wales (1998) 4-13

13. Widom, J.: Research Problems in Data Warehousing. In Proceedings of the 4th Int'l Con-
ference on Information and Knowledge Management (CIKM) (1995)

14. Yan, T. W., Garcia-Molina, H.: Duplicate removal in information dissemination. In Pro-
ceedings of VLDB-95, September 1995. Information Systems, Irvine, CA (2002)

