
Architecture of Pattern Management Software System 

Erki Eessaar 

Department of Informatics, Tallinn University of Technology, Raja 15, 12618 Tallinn,  
Estonia 

eessaar@staff.ttu.ee 

Abstract. Patterns and models are artifacts that are assets to their owners. 
Storing them in a repository and using common interfaces for their management 
simplifies their usage. This article proposes architecture of an extensible 
repository system that is called Pattern Management Software System (PMSS). 
It permits metamodel engineer to define abstract syntax of a new modeling or 
pattern writing language using a metamodel. System registers metamodel in the 
object-relational database and creates database objects for recording 
corresponding artifacts and their metadata. Views provide to the users different 
ways of looking at the data in the database. New views are continuously 
created. How can user find appropriate views? This article proposes that one 
component of PMSS must be the subsystem that permits searching and 
execution of the views. 

1   Introduction 

This article deals with the management of artifacts that are created and 
used during the software development. These artifacts are for example 
models and patterns. Knowledge about the reoccurring practices can be 
extracted from the models and recorded as patterns. Artifacts are 
created using wide range of languages and tools. Artifacts should be 
easily findable and accessible in order to promote reuse and should 
therefore be collected to the repository. For example, following queries 
can be used in order to find data modeling pattern from the repository. 
These queries are used as an illustration and don’t represent syntax that 
is used. 
SET A=(<id>, <name> of artifacts WHERE metamodel is 
<entity relationship model> AND artifact contains 
element of type <entity> which name is <'Order'>); 

SET B=(SET <A>) UNION (<id>, <name> of artifacts WHERE 
type is <pattern> AND element of type <solution> is 
associated with the artifacts IN the SET <A>)); 

Angle brackets "<" and ">" represent placeholders for the parameter 
values. User has to assign value to each parameter before executing the 

189 



 190 

query. Current example contains sample value of each parameter. 
System must store metadata about the artifacts and their language in 
order to support selection of some of these values from the repository.  
The main contribution of this article is the proposal of the architecture 
of repository of artifacts that uses object-relational database 
management system. 
General name of the proposed system is Pattern Management Software 
System (PMSS). Word "pattern" stresses that one purpose of PMSS is 
to promote creation of patterns based on the artifacts that are recorded 
in the repository. 
The rest of the paper is organized as follows. Section 2 describes 
related works. Section 3 describes the architecture of PMSS. Section 4 
discusses advantages and disadvantages of the proposed solution. 
Section 5 provides conclusions and describes future work with the 
topic. 

2   Related Works 

Next are described some projects for creating repositories of patterns. 
Greenfield and Short [1] argue that Domain Specific Languages (DSL) 
help automate code generation from the models. DSL uses domain 
specific vocabulary and needs repository of domain specific patterns. 
Example of such repository is repository of patterns for the electricity 
supply industry [2]. PsiGene [3] is a component-based domain specific 
development method that uses domain-specific patterns for generating 
application specific components for the simulation software. Halaris 
and Geroupoulus [4] describe the information structure of the reuse 
repository, which could be used to store and retrieve reusable objects of 
any kind. It could be used together with the different software 
engineering methodologies. Each of these reusable objects belongs to 
some class and is described by the set of attribute-value pairs. Objects 
can be searched using semantic similarity. There is also weakly 
structured Portland Pattern Repository (PPR) [5] that contains 
interconnected pages that everyone can edit. One disadvantage of PPR 
is that there is no possibility to restrict search to only some components 
of pattern. 
Yacoub and Ammar [6] argue: "Patterns are mental building blocks that 
are more related to human understanding than to automatic usage." 



 191 

Therefore tools that help to use patterns should also help user to 
understand consequences of the solution. For example, Mirbel [7] 
introduces context frame that describes context of the process fragment 
as a set of compatible criteria. Appropriate fragment can be selected by 
comparing context of the problem and contexts of the process 
fragments that represents possible solutions. 
How to implement repository of reusable artifacts? One solution is to 
build these systems directly on top of a file-system. OMG introduces 
Reusable Asset Specification (RAS) [8] that helps to organize reusable 
assets that describe solution to the software development problem. 
Asset is implemented as a package file that contains artifact files that 
represent solution and XML file that manifests properties of the asset. 
Reusable assets can be collected to the central RAS repository. 
Many repository systems use database management systems (DBMS) 
according to Dittrich and others [9]. Open source artifact management 
system OSCAR [10], that is part of the distributed software 
development environment GENESIS, stores metadata about the 
artifacts in the database. It keeps artifacts and associated informal 
materials in the files that are outside the scope of DBMS. System 
records and presents process information including the actors 
responsible for changes of artifacts and the rationale associated with 
those changes. Many repository systems store all the information in the 
database. Some systems use relational database [11, 12]. According to 
Dittrich and others [9] many of the repository systems use object-
oriented DBMS. Date [13] gives an overview of problems of object-
oriented databases and shows their weaknesses. Recently object-
relational DBMS (ORDBMS) have attracted attention. SERUM [14] is 
an example of repository system that uses ORDBMS. SERUM 
provides framework for building customized repository managers. 

3   Metadata Based Architecture of PMSS 

Firstly purposes of the PMSS will be described. Secondly the 
architecture will be described that helps to achieve these purposes. 



 192 

3.1 Purposes of PMSS 

• Store permanently development results and make them available to 
the public.  

• Provide environment where groups of users can develop language of 
some problem domain by recording and grouping patterns that 
describe this domain. 

• Simplify recording of associations between artifacts in order to 
determine their context. For example, problem statement of pattern 
can be accompanied with "As Is" models [15] that highlight current 
practices. Description of the solution can be accompanied with "To 
Be" models [15]. 

• Give an overview of the creation and usage of artifacts and active 
contributors. 

• Give an overview of the popularity of different artifact languages. 
• Provide platform for the standardization of the pattern writing 

language. 

3.2 The Architecture 

Repository system contains repository manager according to Bernstein 
and Dayal [16] and repository (database). A repository manager 
provides services for modeling, retrieving, and managing the objects in 
a repository according to Bernstein and Dayal [16]. Repository 
manager must offer functions of DBMS and also additional functions. 
PMSS uses object-relational DBMS (ORDBMS) PostgreSQL as its 
database platform. ORDBMS provides possibility to define user 
defined types (UDT) and user defined functions (UDF) (see SQL:1999 
[17] and also SQL:2003 standard). Architecture of PMSS will be 
described in terms of functional subsystems and data centric 
subsystems that are called registers. Identification of such subsystems 
is part of the IS strategic development that is proposed by Roost and 
others [18]. A functional subsystem corresponds to one or more 
business processes [18] that are performed using repository manager. 
"A register is a logical data-centric view of a business object that holds 
the state and transactions data of the object and provides related 
recording and query services." [18]. A register corresponds to one 
logical part of the repository. One functional subsystem reads and 
modifies data in one or more registers. Subjects who have some role in 



 193 

the system use services of functional subsystems that belong to the area 
of competence of their role [18].  
Architecture of PMSS (see Figure 1) can be explained in terms of the 
levels of the information system that are proposed by Halpin [19].  
 
 
 

 

Fig. 1. PMSS Architecture 

 
 
Conceptual level describes structure of the application domain 
according to Halpin [19]. Application domains in PMSS are patterns 
and models. Their abstract syntax is described using metamodels and 
recorded in the repository dictionary registers.  
Logical level is expressed in terms of data and operations that are 
supported in the data model according to Halpin [19]. Repository of 
PMSS is dynamically extensible. Changes in the metamodels trigger 
automatic changes in the structure of registers of artifacts. For example, 
new tables, columns or domains are created. New tables are needed in 
order to record elements of artifacts. System records also information 
about the database objects.  
Internal level includes details about the physical storage and access 
structures according to Halpin [19]. PMSS is built on top of the 
ORDBMS and uses its data management mechanisms. 



 194 

How can one retrieve artifacts? Artifact is broken to elements and each 
element is recorded in the database. It allows searching artifacts using 
SQL. Files that contain serialized artifacts can be recorded in the 
database and associated with the artifacts. External level specifies 
operations accessible to the users or group of users according to Halpin 
[19]. PMSS uses views that help users to find artifacts and additional 
(including statistical) information about them.  

3.2.1 Repository Structure and Meaning Management Subsystem 
Role of the users of all these subsystems is a metamodel engineer. 
Subsystems use repository dictionary registers that provide a data 
dictionary function to the whole system. User describes abstract syntax 
of the modeling or pattern writing language as metamodels using 
subsystem of metamodels ("S_metamodels"). It can be done using 
forms. Metamodels are recorded in the register of metamodels 
("R_metamodels). Examples of metamodels: 
• Metamodel of Alexandrian form of patterns. 
• Metamodel of Pattern and Component Markup Language [20]. 
• Metamodel of Entity Relationship model. 
Metamodel engineers describe element types and their attributes, 
associations and generalizations. Each element type belongs to the 
certain metamodel. "Prologue", "Problem statement", "Discussion", 
"Solution", "Diagram" and "Epilogue" are examples of the element 
types that are used in the Alexandrian form of patterns according to 
PPR [5]. "Entity", "Attribute", "Relationship" are examples of the 
element types that are used in the Entity Relationship model. System 
enables registering semantics of the metamodel elements as prose. For 
example, problem statement has attributes "short description" and "long 
description". Metamodel engineers can also group element types that 
are part of the different metamodels but have a similar meaning. For 
example, element "Problem" in the Canonical pattern form corresponds 
to the element "Intent" that belongs to the pattern structure described by 
Gamma and others [21] according to PPR [5]. Element of the artifact 
can be associated with one or more artifacts. Metamodel determines 
types of artifacts with which element of the artifact can have 
associations. 
Date [13] writes: "The sole good idea of object systems in general is 
proper data type support". Therefore PMSS permits creation of 
domains that determine possible values of attribute that have this 



 195 

domain. Domain can have a set of associated constraints and default 
value. For example, domain determines minimum and maximum 
amount of values that attribute can have. Multivalued attribute can have 
more than one value. Domain can have an explicitly defined set of 
values that are only allowed values of attributes that have this domain. 
Each attribute in the metamodel is associated with the domain. Each 
element type has by default an attribute that is a unique identifier and 
has the systemic domain "surrogate key" which values follow the rules 
of surrogate key (see Date [13]). Values of this domain are generated 
by the system. Element type can have more than one unique identifier. 
Metamodel engineer manages domains using subsystem of domains 
("S_domains") and they are recorded in the register of domains 
("R_domains").  
Some metamodels that are recorded in "R_metamodels" are systemic 
metamodels that describe structure of the registers of PMSS: 
"R_metamodels", "R_domains", "R_artifacts", etc. Each not-systemic 
metamodel has one corresponding register of artifact elements 
("R_artifact_elements"i) where artifacts with this metamodel are 
recorded. Creation or modification of not-systemic metamodels triggers 
changes in the database structure. New database objects are created or 
existing ones are modified using rules that are described in Table 1. 
System also registers database objects of the repository in the register 
("R_struct") (see Figure 2) and correspondence between the metamodel 
elements and database objects in the register of mappings ("R_map"). 
"R_map" is omitted from the Figure 2. 



 196 

R_domainsR_metamodels

R_artifacts

R_struct

R_ERD

<<comment>>
ERD and Alexandrian 
form of patterns are 
examples of the 
metamodels. R_ERD 
and
R_Alexandian_pattern 
are examples of the 
registers of artifact 
elements.

R_Alexandrian_pattern

{XOR}

{XOR}

{Artifact must be other than owner of the element}

{Associated element 
must be from the 
other artifact}

Domain

Base type

Element type Attribute

Metamodel

Artifact Element of artifact

Schema Table Column Domain

Entity Attribute

Same meaning

Association

PrologueSolution

Group of artifacts

Possible value
Unique ID

1

0..1

*
0..1

*

1

1

1
*

1

* *

0..1

1

*
1

*

1

0..1

1

0..1

1..*1

1..*
* 1

1
*

1

*

1

*

1..*

*

* 1

* 1

1
*

owns
** * *
*

1

1

1

*

*

*1

 

Fig. 2. Registers for recording metamodels, domains and artifacts 

 

Table 1. Database objects that are created based on the metamodel elements 

Element type Type of database object 
Metamodel Schema 
Element type Table (in the schema) 
Single-valued 
attribute 

Column (in the table) 

Multivalued 
attribute 

Table, columns and foreign key constraint 



 197 

Unique identifier 
(ID) 

Primary key or alternative-key constraint. The 
latter is implemented using uniqueness and 
NOT NULL constraint. 

1:M relationship Foreign key column and constraint 
M:N relationship Intermediate table that contains foreign key 

columns and has foreign key constraints 
Domain Domain. Domain "surrogate key" has 

corresponding sequence generator. 
 
 
 
Registers "R_struct" and "R_map" contain also information about the 
database objects that correspond to the systemic metamodels. Therefore 
it is possible to get information about the structure and meaning of the 
whole repository from one source. For example, it is possible to find 
out that names of the metamodels can be found from the column 
"name" in the table "Metamodels" that belongs to the schema 
"Metamodels". It is advantageous if one wants to find appropriate 
values to the parameters of views (see section 3.1.4). Creation of the 
systemic metamodels, domains and corresponding database objects is 
part of the setup process of PMSS. 
Element type has properties that determine minimum and maximum 
amount of corresponding elements that can be part of the artifact that 
has this metamodel. If new element is added to the artifact then system 
automatically checks this rule. 
Metamodels are associated with the classification schemes that are used 
for the classification of the corresponding artifacts. These classification 
schemes are managed using subsystem of classification schemes 
("S_classification_schemes") and recorded in the corresponding 
register ("R_classification_schemes") (see Figure 4). For example, 
patterns can be (good) patterns or anti-patterns. In addition artifacts can 
be classified by granularity, variability and articulation like in the OMG 
RAS [8], by maturity [4] and also by subject area (object-oriented 
design, data modeling etc.).  



 198 

3.2.2 Subsystem for the Management of Artifacts 

 

Fig. 3. Draft of the form that is used for the management of artifacts 

 
Roles of users of this subsystem are pattern developer or software 
developer. They create, modify or delete artifacts using subsystem of 
artifacts ("S_artifacts"). "S_artifacts" uses register of artifacts 
("R_artifacts") and registers of artifact elements. Each not-systemic 
metamodel has one corresponding register of artifact elements. Figure 3 
gives an example of the artifact management form. From the document 
section one can select available files that contains serialized artifact.  
Artifacts can be associated and grouped. Associations and groups have 
a type. For example, two patterns can be associated because they are 
alternatives. Pattern language is example of the group of patterns. 
Artifact group is also an artifact that has the metamodel. It gives 
possibility to associate additional information with the artifact language 
as a whole.  
Software developer can also register information about the usage of the 
artifacts in the development work and its opinion about the artifact. 
This is special kind of artifact event and is recorded in the register of 
artifact events ("R_artifact_events"). It is background information to 
the potential users of the artifact. 



 199 

R_metamodels

R_metamodel_events

R_artifacts

R_artifact_events

R_subjects

R_classification_schemes

R_documents

MetamodelMetamode event

Artifact

Artifact event

Subject

Artifact event type

Metamodel event type

Classification_scheme Classifier value

Document

Granuality

Variability

Artculation

Subject area

MaturityArtifact state type

0..1

0..1

1

1
*

*
* *

*

*

1

1

1

*

*
1

*

*

*

1

1

*

*

*

1

*

*

*
0..1 *

* *
*

*

1

0..1

0..1

*

0..1

*

 

Fig. 4. Registers for recording information about the artifacts, events, documents and 
classification schemes 

3.2.3 Supporting Subsystems 
PMSS should permit registration of metadata about documents as well 
as storing document files. Examples of documents are documentation 
of development results and XMI files that contain serialized models. 
Documents can be associated with the artifacts in the repository. For 
example, pattern can be associated with the documents based on which 
it was worked out or documents that contain supporting or 
contradicting examples. Metadata about the documents and document 
files are recorded in the register of documents ("R_documents") using 
subsystem of documents ("S_documents"). PostgreSQL is object-
relational DBMS and therefore allows recording large objects in a 
table. It makes possible saving document files to the database. 
 PMSS allows management of subjects. Subjects are organizations or 
persons. Subject can have one or more role. Administrator manages 



 200 

subjects who use PMSS. Software developers and pattern developers 
manage subjects who have somehow contributed to the creation of the 
models or patterns but are not users of PMSS. Data about the subjects 
is recorded in the register of subjects ("R_subjects") using subsystem of 
subjects ("S_subjects"). 

3.2.4 Registration of Events 
PMSS records automatically information about the creation or 
modification of the artifact or its elements by the developers. These 
events are registered in the register of artifact events 
("R_artifact_events") (see Figure 4). This approach is similar to the 
approach of active artifact that is taken by OSCAR [10]. "The active 
artefact records logs of who and what has accessed the artefact and (if 
possible) their purpose in doing so" [10]. System records time and type 
of the event and name of the table where this event has happened. It 
associates this information with the reference to the subject and artifact. 
Special kind of event is change of the state of the artifact. Possible 
states of the artifact that is not patterns are: under construction; ready 
for the usage; archived. Possible states of the pattern are: under 
construction; candidate pattern; accepted pattern; under evaluation; 
archived. If a state of the artifact is changed then this event is recorded 
and associated with the new state type. 
System uses similar approach in order to record information about the 
events that have happened with metamodels, domains and views. 
System registers this information to the registers 
"R_metamodel_events", "R_domain_events" and "R_view_events", 
respectively. 
System uses triggers in order to technically implement registration of 
events. For example, if system creates table for the registration of 
artifact element then it also creates triggers that are associated with the 
table and which tasks are registration of the events that have happened 
with the data in the table.  
 
 
 
 
 



 201 

3.2.5 Subsystems for the External View to the Artifacts 
Software developers and pattern developers search artifacts. 
Metamodel engineers search metamodels. Managers want statistical 
overview about the artifacts and their usage. 
 View is a stored query that is executed then user invokes it. PMSS 
must support views that use queries described by Eessaar [22]. Each 
subject or role has a set of views that provide access to the data in the 
repository. User of PMSS must have up to date information about the 
views that one has right to use. Therefore PMSS contains subsystem of 
views ("S_views") and register of views ("R_views") (see Figure 5). 
"S_views" permits registration of views and registration of the 
association between the view definition and database object that 
implements this view. "S_views" belongs to the category of Repository 
Structure and Meaning Management Subsystems. 
PMSS uses parameterized and not-parameterized views. Levy and 
others [23] write: "A parameterized view is a conjunctive query that 
contains placeholders in argument positions in the body of the view, in 
addition to variables and constants." User of the parameterized view 
must give values with appropriate type to all the arguments of this 
view. In many cases possible values can be selected from the 
repository. If the parameter is associated with the domain then (a) its 
permitted values are all values that correspond to the rules of this 
domain. If the domain is associated with the set of possible values then 
user can choose one of these values. If the parameter is associated with 
the attribute (b) then its permitted values must have domain of the 
attribute. Additional restriction is that values must be selected from the 
set of existing attribute values in the repository.  



 202 

R_struct

R_views

R_domains

R_subjectsR_view_events

Attribute

{XOR}

Schema

Function

View

View

ParameterDomain

Not-parameterized view

Parameterized view

Subject

Role

View event

Type

permission to use

*

1

composite type

type determines structure of returned rows

function implements parameterized view

1

1

*

*

1

*

1

1

1

1

1

*

*

*

permission to use*

1

1

1

*

*

*

0..1
*

*
0..1

values are determined by
*

 

Fig. 5. Registers for recording information about the views 

Next some examples of the queries will be presented. Name of the 
parameter and type of source of its value (in brackets) are shown 
between the angle brackets. 
1. Find artifacts where value of attribute <Attribute id (b)> of element 

type <Element type id (b)> contains string <Free text (a)>. 
2. Find artifacts that are associated with the element <Element type id 

(b)> of artifact <Artifact id (b)>. 
3. Find artifacts, which elements with the meaning <Same meaning id 

(b)> contain string <Free text (a)>. 
4. Find events with the artifact <Artifact id (b)> that have happened 

during last <n (a)> days. 
5. For each language find amount of the artifacts that are created using 

this language during the period of last <n (a)> days.  
6. Find amount of artifacts that are created by each subject during the 

period of last <n (a)> days. 
Views 4-6 help to achieve goals of PMSS about the statistical 
overviews. Examples of the queries based on which not-parameterized 
views are created: 



 203 

7. Find data modeling patterns. 
8. Find amount of candidate patterns. 
Parameterized view can be implemented in the ORDBMS using set-
returning function that returns a set of records that form the answer to 
the question. Not-parameterized view can be implemented in the 
database using view object.  
Register "R_struct" contains information about the database objects that 
implement views and register "R_map" contains information about the 
correspondence of the views and database objects. User can search the 
view, give values to the parameters (see Figure 6) and execute it using 
query subsystem "S_query". System uses corresponding database 
objects in order to find information and present it to the user (see 
Figure 7). 

 

Fig. 6. Draft of the form or page that is used for the execution of the view 

 

Fig. 7. Draft of the form or page that shows the result of the view 

If user wants to see details of the artifact then system opens the form 
that is described in the Figure 3. 



 204 

4   Discussions 

PMSS conforms to the four-layer metamodeling architecture of OMG 
Meta-Object Facility (MOF) [24]. Database objects (including 
constraints) in the registers "R_metamodels" and "R_domains" specify 
language that can be used in order to define metamodels (M3). 
Metamodels (M2) are recorded to the repository dictionary registers 
and models (M1) are recorded to the registers of artifacts (see Figure 
1). 

PMSS can be used during all phases of the development of 
information system. PMSS can be used within one organization or by 
the set of the collaborating organizations. It can also be used in the 
public domain in order to provide artifacts based on the open-source 
paradigm. PMSS would also be part of a development subsystem of 
Enterprise Information System that is proposed by Roost and others 
[25] and Enterprise Continuum that is proposed in the Open Group 
Architectural Framework [26]. Currently prototype of PMSS is under 
development.  

Advantages of PMSS are: 
• PMSS improves process of system modeling because it makes 

possible to search reusable artifacts as well as their metadata. 
Selection of some parameter values from the repository and 
possibility to search views makes searching more comfortable. 

• PMSS records metadata about artifacts as well as artifacts themselves 
in the database in order to escape problems of controlling access to 
artifacts, which are not under control of DBMS. 

• PMSS is extensible in the sense that users can define new 
metamodels in order to start recording new kinds of artifacts.  

• Metamodel engineer can change structure of the registers of artifact 
elements by using concepts from the metamodel domain and not 
using concepts from the database design domain. 

• System provides information about the meaning of the element types 
in the artifacts. For example, what does "prologue" mean in the 
context of Alexandrian form of patterns? 

• Repository contains information about the purpose of database 
objects. 

• Information about a same meaning of different element types permits 
searches across elements that have the same meaning but different 
names. 



 205 

• System keeps track of events with the metamodels, domains, views 
and artifacts. It helps to estimate contribution of subjects and 
provides background information. 

Disadvantages of the system are: 
• PMSS distinguishes attributes and element types at the conceptual 

level. But Halpin [19] suggests: "an attribute-based model is 
inherently unstable. Even worse, applications using the model often 
need to be recoded when a model feature is changed." PMSS tries to 
overcome these problems by automatically changing database 
structure after changes of metamodel. 

• Some drawbacks come from the fact that the current implementations 
of relational or object-relational DBMS's are not fully conformant 
with the ideas of the relational model and have problems [13]: 

− SQL is defective. For example, it lacks possibilities to make queries 
about the hierarchical relationships. If one wants to make query in 
order to find all classes that are associated directly or indirectly with 
some class using generalization relationship then procedure has to be 
written. 

− Each database management system has its own SQL dialect. 
Therefore change of DBMS means rewriting parts of PMSS. 

− SQL:1999 [17] permits definition of user defined types (UDT) and 
creation of columns or tables that have UDT. But Date [13] argues 
strongly against typed tables and says that DBMS should support 
definition of datatypes that can be used in the definition of columns. 
PMSS permits definition of domains that are implemented using 
domain objects in order to restrict values in the columns. Creation of 
the domain by the metamodel engineer should cause creation of the 
data type and operators in the DBMS that fully conforms to the ideas 
of Date [13]. 

− Lack of possibilities to define declarative database constraints that 
reference two or more tables. Well-formedness rules in the 
metamodels could be implemented as declarative integrity 
constraints in the "R_metamodels" but instead triggers and control-
procedures have to be created which use proprietary syntax. 

− Many views that are theoretically updatable (see Date [13]) are not 
updatable in practice. It makes impossible to implement interface for 
modifying artifacts using views. 



 206 

5   Conclusions and Future Work 

Architecture of Pattern Management Software System was introduced 
in this paper. PMSS uses ORDBMS as its database platform. Definition 
of the abstract syntax of the artifact language causes automatic 
extension of the repository, in order to allow recording of artifacts. 
System also provides views in order to search artifacts and their 
metadata. Some problems of ORDBMS that restrict implementation of 
PMSS where also mentioned. Currently prototype of PMSS is under 
development. 
In the future PMSS must be extended in order to support some 
important functionality of the traditional repository systems that are 
described for example by Bernstein and Dayal [16]: checkout/checkin; 
management of versions of artifacts; configuration management; 
context management. Another necessary extension is to permit user to 
define new views based on the metamodel descriptions. PMSS should 
also permit loading of existing models to the repository. Future work 
will also include creation of framework that generates dynamically web 
pages for the artifact management based on the metadata in the 
repository.  

References 

1. Greenfield, J., Short, K.: Software Factories: Assembling Applications with Patterns, 
Models, Frameworks, and Tools. John Wiley & Sons, USA (2000) 

2. Rolland, C., Loucopoulos, P., Grosz, G., Nurcan, S.: A Framework for Generic Patterns 
Dedicated to the Management of Change in the Electricity Supply Industry. 9th International 
Workshop on Database and Expert Systems Applications (1998) 

3. Riegel, J. P., Kaesling, C., Schütze, M.: Modeling Software Architecture Using Domain-
Specific Patterns. First Working IFIP Conference on Software Architecture, Kluwer 
Academic Publishers (1999) 

4. Halaris, J., Geroupoulus, S.T.: Reuse Concepts and a Reuse Support Repository. IEEE 
Symposium and Workshop on Engineering of Computer Based Systems (1996) 27 – 34 

5. Portland Pattern Repository's Wiki. Pattern Forms. (2005) 
http://c2.com/cgi/wiki?PatternForms 

6. Yacoub, S., Ammar, H.: Pattern-oriented analysis and design: composing patterns to design 
software systems. Addison-Wesley, Boston (2003) 

7. Mirbel, I.: A polymorphic context frame to support scalability and evolvability of 
information system development processes. Proceedings of the Sixth International 
Conference on Enterprise Information Systems, Vol. 3 (2004) 131-139 

8. OMG Reusable Asset Specification. OMG Adopted Specification ptc/04-06-06 



 207 

9. Dittrich, K., Tombros, D., Geppert, A.: Databases in Software Engineering: A Roadmap. The 
Future of Software Engineering. 22nd International Conference on Software Engineering, 
Assn for Computing Machinery (2000) 

10. Boldyreff, C., Nutter D., Rank S.: Active Artefact Management for Distributed Software 
Engineering. Proceedings of the 26th Annual International Computer Software and 
Applications Conference, IEEE Computer Press (2002) 1081-1086 

11. Blanning, R.W.: Data management and model management: a relational synthesis. 
Proceedings of the 20th annual Southeast regional conference (1982) 139-147  

12. Park, H.C., Lee, W.B., Kim, T.G.: A relational algebraic framework for models 
management. Proceedings of the 26th conference on Winter simulation (1994) 649-656 

13. Date, C. J.: An Introduction to Database Systems. 8th edn. Pearson/Addison Wesley, 
Boston (2004) 

14. Mahnke, W., Ritter, N., Steiert, H.P.: Towards Generating Object-Relational Software 
Engineering Repositories. University of Kaiserslautern, Proc. Datenbanken in Büro, Technik 
und Wissenschaft, Freiburg, Germany (1999) 

15. Evitts, P. A.: UML Pattern Language. Macmillian Technical Publishing (2000) 
16. Bernstein, P.A., Dayal, U.: An Overview of Repository Technology. Proceedings of the 20th 

International Conference on Very Large Data Bases (1994) 705-713 
17. Gulutzan, P., Pelzer, T.: 1999. SQL-99 Complete, Really. Miller Freeman, USA (1999) 
18. Roost, M., Kuusik, R., Rava, K., Veskioja, T.: Enterprise Information System Strategic 

Analysis and Development: Forming Information System Development Space in an 
Enterprise. Proceedings of the International Conference on Computational Intelligence 
(2004) 215-219 

19. Halpin, T.: Information Modeling and Relational Databases. From Conceptual Analysis to 
Logical Design. Morgan Kaufman Publishers, San Francisco (2001) 

20. Pattern and Component Markup Language. Draft 3 (2003) 
http://www.objectventure.net/files/docs/PCMLSpecification.pdf 

21. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable 
Object-Oriented Software, Addison Wesley, Reading Mass. (1995) 

22. Eessaar, E.: Methods for Searching Patterns from the Database of Patterns. The 16th 
Conference on Advanced Information Systems Engineering Forum Proceedings  (2004) 
103-111 

23. Levy, A. Y., Rajaraman, A.,Ullman, J. D.: Answering Queries Using Limited External 
Query Processors. Proceedings of the fifteenth ACM SIGACT-SIGMOD-SIGART 
symposium on Principles of database systems (1996) 227-237 

24. Meta Object Facility (MOF) Specification. Version 1.4 (2002) 
25. Roost, M., Kuusik, R, Rava, K., Veskioja, T.: A Model-Driven Architecture of Enterprise 

Information System as the Space for Information Systems Development, The 16th 
Conference on Advanced Information Systems Engineering Forum Proceedings (2004) 194 

26. TOGAF "Enterprise Edition" Version 8.1 (2004) 
http://www.opengroup.org/architecture/togaf8-doc/arch 


